

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 121–135, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Cascading Dialog Modeling with UsiXML

Marco Winckler1,2, Jean Vanderdonckt2, Adrian Stanciulescu2,
and Francisco Trindade3

1 IRIT, Université Toulouse 3, France, 118 route de Narbonne,
F-31062 Toulouse cedex 9 (France),

 winckler@irit.fr, http://liihs.irit.fr/winckler/
2 Belgian Lab. of Computer-Human Interaction, Louvain School of Management,

Université catholique de Louvain, Place des Doyens,
1 – B-1348 Louvain-la-Neuve (Belgium)

 jean.vanderdonckt@uclouvain.be, http://www.isys.ucl.ac.be/bchi
3 Federal University of Rio Grande do Sul (UFRGS), Caixa Postal 15064,

91501970 Porto Alegre (Brazil)
fmtrindade@inf.ufrgs.br

Abstract. This paper discusses multi-level dialog specifications for user inter-
faces of multi-target interactive systems and it proposes a step-wise method that
combines a transformational approach for model-to-model derivation and an in-
teractive editing of dialog models for tailoring the derived models. This method
provides a synthesis of existing solutions for dialog modeling using a XML-
based User Interface Description Language, UsiXML, along with State-
WebCharts notation for expressing the dialog at a high level of abstraction. Our
aim is to push forward the design and reuse of dialog specifications throughout
several levels of abstraction ranging from task and domain models until the fi-
nal user interface thanks to a mechanism based on cascading style sheets. In this
way, it is expected that the dialog properties are not only inherited from one
level to another but also are made much more reusable than in the past.

Keywords: cascading style sheet, dialog modeling, multi-target user interfaces,
StateWebCharts, user interface description language, UsiXML.

1 Introduction

The large variety of computing systems available nowadays (e.g., low-weight desk-
top/notebook computers, cell phone, Personal Digital Assistant - PDA, Smartphone)
have created a milestone for cost-effective development and fast delivery of multi-
target interactive systems [21]. Multi-target user interfaces should be adapted to de-
vice’s constraints such as screen resolution and preferred interaction techniques (e.g.
text, graphical, voice-based, gesture) which requires the inclusion of the notion of
plasticity in the development process [3]. Quite often, it is required the development
multiples versions of the same applications. The availability of many computing de-
vices creates problems for ensuring cross-consistent execution of the software along
different platforms and it will ultimately increase the costs and time required for soft-
ware construction and maintenance.

122 M. Winckler et al.

In the last years User Interface Description Languages (UIDL) appeared as a suit-
able solution for developing multi-target user interfaces. By applying appropriate
model transformations, specifications of User Interfaces (UI) created with UIDLs can
be reused and adapted according to constraints imposed by input/output devices, dif-
ferent contexts of use, or specific user preference. For example, UIDLs such as UIML
[1], XIML [15], XUL [20], UMLi [7], among many others, have been successfully
used for this purpose. In this scenario, the Cameleon reference framework [5] intro-
duced a fresh perspective for the development of User Interface Description Lan-
guages (UIDL) by proposing 4 abstraction levels for the specification of user interface
(i.e., task models, abstract UI, concrete UI and final UI). Such as multi-layer specifi-
cation aims at giving more flexibility for specifying variations of the UI design, which
is often required to generate the best solution according different contexts of the use.
By successive transformations of abstract models, the specification of the UIs is com-
pleted and refined to more concrete specifications until it features executable device-
platform-modality dependent specifications.

We assume that an UIDL must cover three different aspects of the UI: the static
structure of the user interfaces (i.e. including the description of user interface ele-
ments - e.g., widgets - and their composition), the dynamic behavior (i.e., the dialog
part, describing the dynamic relationships between components including event, ac-
tions, and behavioral constraints) and the presentation attributes (i.e., look & feel
properties of UI elements). However, this is not always the case as many UIDLs do
not provide full modeling support for all theses aspects. In particular, dialog model is
one of the most difficult to exploit and it is often misunderstood [11].

Dialog models play a major role on UI design by capturing the dynamic aspects of
the user interaction with the system which includes the specification of: relationship
between presentation units (e.g., transitions between windows) as well as between UI
elements (e.g., activate/deactivate buttons), events chain (i.e., including fusion/fission
of events when multimodal interaction is involved) and integration with the functional
core which requires mapping of events to actions according to predefined constraints
enabling/disabling actions at runtime.

In this paper, we analyze the specification of the dialog part when using a
multi-layer description language. In particular, it presents a method that combines
transformational approaches and interactive (i.e., manual) edition of dialog models.
The remainder of this paper is structured as follows: Section 2 defines the concepts
that are useful for understand our approach which is presented in Section 3, and illus-
trate how they have been implemented in a case study (here, a car rental system) in
Section 4. Section 5 discusses the related work. Section 6 summarizes the benefits and
discusses some future avenues to this work.

2 Basic Concepts

This section describes the basic concepts about modeling the dialog aspect of multi-
target applications.

 Cascading Dialog Modeling with UsiXML 123

2.1 The Architecture of Dialog Arch

The basic assumption on dialog modeling is that it must describe the behavior of input
and output devices, the general dialogue between the user and the application and the
logical interaction provided by the interaction technique. These requirements for dia-
log modeling can be decomposed in layers as proposed by architecture Arch [2]
which describes the various architectural components of an interactive application and
the relationships between them as show in Fig. 1. For the purpose of this paper, the
left hand side of the Arch (which concerns the functional core of the application) is
not relevant. The steps that are considered in a complete dialog between the user and
the system, from the physical input to the physical output (presentation rendering) are
the following:

1) Low-level events (physical events) are generated by the physical devices and
received by the Physical Interaction component;

2) Low-level events are transformed into logical events that independent of the
employed input device;

3) Logical events are treated by the dialog controller which coordinate the se-
quence of events and the connection the functional core of the application;

4) Changes in the system state generates abstract rendering events;
5) Rendering events are reified into more concrete events offering a concrete

rendering of the physical output.

Fig. 1. The architecture Arch

According to the Arch architecture above the dialog model (step 3) can be isolated
from technical details concerning the physical input events and rendering output. So
that, changing the input/output devices (e.g., mouse x touch screen) would not affect
the specification of the dialog itself (this is true when considering the same interaction
technique, ex. pointing). Conversely, different dialog models would be applied to dif-
ferent contexts of the use (ex. guided interaction through sequential screens or all-at-
one interaction on a single screen) without a major impact on the input and/or output
devices. Moreover, the same dialog model would be suited to different modalities
with similar results. The dynamic adaptation of the dialog should be flexible enough
in order to support any modification of the presentation, however the method allowing
the adaptation are out of the scope of this paper.

124 M. Winckler et al.

2.2 Levels of Abstraction of User Interfaces

The Cameleon Reference Framework [5] proposes to describe user interfaces accord-
ing four levels of abstractions: task models, abstract user interfaces (AUI), concrete
user interface (CUI) and final user interface (FUI). By appropriate tool support it is
possible to refine abstract user interface elements into more concrete specifications.
According to the step considered, user interface specifications include more or less
details about the user interface behavior, which lead designers to treat different dialog
components (ex. state, condition, transitions, actions, etc) as exemplified in Table 1.

Table 1. Abstraction levels on dialog modeling

UI Abstraction level Concepts Dialog Components

Task Model (TM) Interactive tasks carried out by
the end user & domain objects

Tasks and dependencies between tasks

Abstract User Inter-
face (AUI)

UI definition independent of any
modality of interaction

Relationship between logical presentation units (e.g. transition
between windows), logical events, abstract actions

Concrete User Inter-
face (CUI)

Concretizes AUI into CIOs
(widget sets found in popular
graphical and vocal toolkits)

States, (concrete) events, parameters, actions, controls,
changes on UI dialog according to events, generic method
calls, etc

Final User Interface
(FUI)

operational UI that runs on a
particular platform either by in-
terpretation or by execution

“Physical” signature of events, platform specific method calls,
etc

2.3 Specifying User Interface Dialogs

There are a large number of notations and techniques for describing the dialog aspect
of the user interface. A review on the advances of dialog notations can be found in
[11]. Hereafter we focus on some few, but representative, UIDLs which are presented
in Table 2. Some notations are devoted to the dialog aspect of the user interface (for
example, ICO [3], SCXML [18] and SWC [21]), while other UIDLs might also cover
the structure and the presentation aspects. Is some cases the description of the dialog
is supported by an external language (e.g., XUL), however, quite often, the dialog is
embedded into the UIDL, such as is the case of UsiXML, XUL and UIML.

Currently only UsiXML [10] and TERESA XML [12] have 4 levels of abstraction
as proposed by the Cameleon Reference Framework. XUL and UIML’s dialog speci-
fication are oriented to implementation, which corresponds to the level CUI and FUI
in the framework Cameleon.

As UIDLs must capture the intended dialog behavior, the specification of complex
relationship between widgets quite often requires some kind of formal description
technique such as Lotus, Petri Nets or Statecharts. However, this not avoids having
some UIDLs implementing specific notations. It is noteworthy that UIDLs based on
Petri Nets (such as ICO [3]) or based on StateCharts (SCXML[18] and SWC [21])
should also be considered as generic languages which can be employed at different
levels of abstract of the user interface design.

UIDLs might include many mechanisms for specifying dynamic behavior such as
the UI changes (corresponding to the local dialog changing properties of individual
user interface components, ex. widgets), method calls (facilitating the integrating with
the application’s functional core), events, explicitly representation of current system

 Cascading Dialog Modeling with UsiXML 125

Table 2. Support for Dialog Modeling of some User Interface Description Languages
L

an
gu

ag
e

Aspects de-
scribed

Specification
Levels of
abstrac-

tion

Formalism/
Notation lan-

guage

Dynamic behavior
described

Data ex-
change

Control
(conditions)

U
SI

X
M

L

Presentation,
Dialog, Struc-

ture
Embedded

Task Mod-
el, AUI,

CUI, FUI

Specific nota-
tion for every

abstraction level

transition, method
call, ui change

parame-
ters

Yes

X
U

L
 Presentation,

Dialog, Struc-
ture

XBL Xul
binding lan-

guage
CUI, FUI

Specific nota-
tion

transition, method
calls

parame-
ters

Yes

IC
O

Dialog Embedded Generic Petri Net
ui changes method

call, event, transition
reference Yes

SC
X

M
L

Dialog Embedded Generic Statecharts
event, method call,

transition, state
parameter,
reference

Yes

T
E

R
E

SA
-X

M
L

Presentation,
Dialog, Struc-

ture
Embedded

Task mod-
el, AUI,

CUI, FUI
Lotus

event, ui changes,
transition

Parame-
ters

Yes

U
IM

L
 Presentation,

Dialog, Struc-
ture

Embedded CUI, FUI
Specific nota-

tion
ui changes method

call, event, transition

parame-
ters, refer-

ence
Yes

SW
C

Dialog Embedded Generic Statecharts
ui changes method
call, event, transi-

tion, state

Parame-
ters

Yes

state and explicitly representation of transitions changing the state of the system.
Date exchange can be done via passage of parameters along transitions, by reference
to objects or both. All notations surveyed consider some kind of control for specifying
constraints (i.e. conditions) during the execution of the dialog.

3 A Method for Dealing with Multi-level Dialog Specification

The proposed method is based on the following shortcomings:

• Autonomy of the dialog with respect to the structure and the presentation of the
UI which implies that for any UI model describing the user interface components
must have at least one dialog model supporting each design options. The separa-
tion of the dialog might lead to the reusability of some specifications and improve
readability.

• Use of formal description technique for reducing the ambiguity of specification;
This requirement is also important for implementing tool support;

• Use of some graphical representation for the dialog. This is an important re-
quirement for improving the readability of specifications;

• Combined use of automated and manual transformations of abstract UI specifica-
tion into more concrete UI. Automated transformations might improve productiv-
ity but designer should be able to modify the dialog afterwards;

126 M. Winckler et al.

• No imposed start point for dialog specifications. It is advisable to start by task
models. However, some designers would prefer to start with more concrete dia-
log models and then refine them until the implementation; conversely, abstrac-
tions can be defined after deep analysis of existing concrete models.

3.1 Notations

The method proposed relies on UIDLs able to cover different level of abstraction and
independence of dialog towards the user interface. For the purpose of this paper we
employ two notations: UsiXML [10] to describe the structure and the presentation as-
pects of the user interface, and SWC [21] to describe the dialog.

UsiXML (USer Interface eXtensible Markup Language) is defined in a set of XML
schemas. Each schema corresponds to one of the models in the scope of the language.
UsiXML consists of a User Interface Description Language (UIDL) that is a declara-
tive language capturing the essence of what a UI is or should be independently of
physical characteristics. It describes at a high level of abstraction the constituting
elements of the UI of an application: widgets, controls, containers, modalities, interac-
tion techniques, etc. Several tools exist for editing specification using UsiXML at dif-
ferent level of abstraction. The interest on UsiXML is the fact that it supports all fours
levels of abstraction considered in this paper. Despite of that, UsiXML do not impose
any particular development process so that designers are free to choose the abstract
level the most appropriate to start their projects.

StateWebCharts notation (SWC) was originally proposed to specify dynamic be-
havior of Web applications. SWC is a formal description technique based on Harel’s
StateCharts. States in SWC are represented according to their function in the model-
ing: they can be static, dynamic, transient or external. Additionally, SWC transitions
explicitly represent the agent activating it (e.g. user actions are graphically drawn as
continuous arrows while transitions triggered by system or completion events are
drawn as dashed arrows). The interest on SWC for this paper remains on the full sup-
port to describe events and the notion of containers associate to states which can be
easily mapped to UsiXML containers. Further information about these notations and
the proper mapping between then is given along the case study on section 4.

3.2 Step-Wise Method

The method presented in this section proposes the combined use of transformational
approaches and interactive (i.e. manual) edition of dialog models. The name “cas-
cade” is a reference for the fact that, similar to other user interface models, dialog
models can be derive from abstract to more concrete specification. The general reifi-
cation schema is presented by Fig. 2.

The reification schema presented is composed of the following steps: 1) a task
model is produced; 2) an Abstract Dialog Model can be generated automatically from
task models using transformation rules. In this case, the dialog at this level is limited
to the relationship that can be inferred from task models. Designers must create dialog
specifications using external tools. Abstract UI can also be created manually in the
absence of task models. Appropriate mapping is required to connect the Abstract UI
and the Abstract Dialog. 3) A Concrete Dialog Model will be generated from the

 Cascading Dialog Modeling with UsiXML 127

Abstract Dialog Model based on transformation rules. More Concrete Dialog Compo-
nents will be added manually according to design choices. 4) The Final UI Dialog
Control is generated from Concrete Dialog Control to copy with the target platform.

Task Model

Abstract UI Abstract dialog

Transformational approach

Dialog modeling

Step

 mapping

Transformational approach

Concrete UI

Concrete dialog

 mapping

Transformational approach

Step

Final UI

Dialog modeling

Concrete dialog (revised)

Step

Step

Fig. 2. Dialog reification schema

Table 3. Mapping scheme between UsiXML and SWC constructs

Abstraction
level of UI

UsiXML Construct SWC Constructs Description of Constructs

Task Model

(TM)

Task
Relationships (e.g. enabling)

-

-

User tasks

Relationships between tasks

Abstract
User Inter-
face

(AUI)

abstractContainer
abstractIndividualComponent

control

compound states
basic states
transitions

High level containers for UI components
UI containers (ex. presentation units)

Relationships between containers

Concrete
User Inter-
face (CUI)

window
behavior

event
action

methodCall / transition / uichange
-

parameters
-
-
-
-
-

basic state

transition

event

action

action type

condition

parameters

user transitions

system transitions

transient states

history states

end states

UI components featuring containers

Definition of relationships between containers

Events raising

Behavior associated to events

Action executed when event is triggered

Pre-condition associated to actions

Data exchange format

User initiated actions

System initiated actions (ex. timed transitions)

Non-deterministic behavior of functional core

Memory for recent states

Notification of end of system execution

128 M. Winckler et al.

Designers could start working the dialog at any step of the abstraction levels pre-
sented by Fig. 2 by reusing specifications produced via a transformational approach or
creating specification for both UI components and dialog at each level. The mapping
of between the dialog specification with SWC and others components of the user in-
terface in UsiXML is ensured by mapping tables as presented in Table 3.

4 Case Study

The case study concerns a simple car rental system allowing users to choose a car,
book and pay a reservation and print a receipt. The detailed case study can be found in
[16] (pp. 140-164). The next sections present the car rental system featuring 3 levels
of abstraction (task model, AUI and CUI); the level FUI is similar to the CUI (refin-
ing dialog primitives to target platforms) so, it will not be described hereafter.

4.1 Task Model

The task model considered for the car rental application is presented in Fig. 3.a. The
sequence for execution of sub-tasks could follow different orders thus originating dif-
ferent scenarios. We limit our discussion to a single scenario presented in Fig. 3.b.

a) Task description b) Scenario for task model

Fig. 3. Specification of task models: a) task model using IdealXML; b) a scenario

In Fig. 4 we present the task model according to the UsiXML syntax as it is gener-
ated by the tool IdealXML. One might notice that all relationships and dependencies
among tasks are preserved at this level (see lines 14 and 26 for enabling tasks and 18
and 22 for undetermined choices) so that many scenarios can be extracted.

4.2 Abstract User Interface (AUI)

Once we have defined the task models, it is possible to generate the abstract model for
the user interface. Fig. 5 presents the corresponding abstract user interface (only ab-
stract containers - e.g. abstract windows – are shown) for the task model. The abstract
model provides definitions for user interfaces that are independent of any modality of
interaction. By using appropriate transformation rules, it possible to generate abstract
containers from task definitions as presented in Fig. 6. Abstract containers correspond
to the static part of the user interface.

 Cascading Dialog Modeling with UsiXML 129

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!--Tasks-->

3. <taskmodel>
4. <task id="st0task0" name="RentCar" type="abstraction">
5. <task id="st0task2" name="DefinePreferences" type="interaction">
6. <task id="st0task3" name="DefineRentalPreferences" type="interaction"/>
7. <task id="st0task4" name="DetermineCar" type="interaction"/>
8. <task id="st0task5" name="DefinePayment" type="interaction"/>
9. </task>
10. <task id="st0task6" name="ProcessPayment" type="application"/>
11. <task id="st0task7" name="ConfirmRentalInformations" type="application"/>
12. </task>
13. <!--Tasks relationships-->
14. <enabling>
15. <source sourceId="st0task2"/>
16. <target targetId="st0task6"/>
17. </enabling>
18. <undeterministicChoice>
19. <source sourceId="st0task3"/>
20. <target targetId="st0task4"/>
21. </undeterministicChoice>
22. <undeterministicChoice>
23. <source sourceId="st0task4"/>
24. <target targetId="st0task5"/>
25. </undeterministicChoice>
26. <enabling>
27. <source sourceId="st0task6"/>
28. <target targetId="st0task7"/>
29. </enabling>
30. </taskmodel>

Fig. 4. UsiXML specification of task models for a car rental system

Fig. 5. Abstract User Interface as depicted by IdealXML

1. <?xml version="1.0" encoding="UTF-8"?>
2. <auimodel>

3. <abstractContainer id="idaio00" name="RentCar">
4. <abstractContainer id="idaio01" name="DefinePreferences">
5. <abstractIndividualComponent id="idaio02" name="DefineRentalPreferences">
6. <abstractIndividualComponent id="idaio03" name="idaio03">
7. <control id="idaio04" name="idaio04" actionType="interaction" ac-

tion="dialog.defineRentalPreferences" />
8. </abstractIndividualComponent>
9. </abstractIndividualComponent>
10. <abstractIndividualComponent id="idaio05" name="DetermineCar">
11. <abstractIndividualComponent id="idaio06" name=" idaio06">
12. <control id="idaio07" name="idaio07" actionType="interaction" action="dialog.determineCar" />
13. </abstractIndividualComponent>
14. </abstractIndividualComponent>
15. <abstractIndividualComponent id="idaio08" name="DefinePayment">
16. <abstractIndividualComponent id="idaio09" name="idaio09">
17. <control id="idaio10" name="idaio10" actionType="interaction" action="dialog.definePayment" />
18. </abstractIndividualComponent>
19. </abstractIndividualComponent>
20. </abstractContainer>

21. <abstractIndividualComponent id="idaio11" name="ProcessPayment">
22. <abstractIndividualComponent id="idaio12" name="idaio12">
23. <control id="idaio13" name="idaio13" actionType="application" ac-

tion="dialog.processPayment" />
24. </abstractIndividualComponent>
25. </abstractIndividualComponent>
26. <abstractIndividualComponent id="idaio14" name="ConfirmRentalInformations">
27. <abstractIndividualComponent id="idaio15" name="idaio15">
28. <control id="idaio16" name="idaio16" actionType="application" action="dialog.confirmRentalInformations" />
29. </abstractIndividualComponent>
30. </abstractIndividualComponent>
31. </abstractContainer>
32. </auimodel>

Fig. 6. UsiXML specification of abstract models for a car rental system

130 M. Winckler et al.

At this step one must identify two common dynamic behaviors: transitions between
different presentation units, the so called interaction (Fig. 6, line 7); or the so called
application which will be refined to method calls in the concrete user interface (Fig.
6, line 23). The so called interaction behavior corresponds to local dialog control; its
implementation is very simple as it just proceeds to the next presentation unit. The so
called Interaction behavior has a strong impact on the dialog of the application as
their execution might affect the sequencing of the next task. For example, the execu-
tion of the task ProcessPayment might return at least two possible states for the sys-
tems: successful payment or payment fail. Such as dynamic behavior is described in
the dialog model presented by Fig. 7. In Fig. 7, continuous lines on transitions (i.e. t4
and t5) correspond to interactive tasks which can be automatically refined by succes-
sive transformation of task models whilst dashed lines (i.e. t6) correspond to a behav-
ior that should be defined manually by the designer.

Fig. 7. Abstract Dialog modeling with SWC for a car rental system

It is noteworthy that the dialog at this step is also independent of the platform. Fur-
ther refinement is required in order to complete the integration with the functional
core of the application. The mapping between states and transitions of SWC to
UsiXML components is made manually by choosing from the UsiXML specification
the components that fits the best to the purpose of the dialog. In the example pre-
sented at Fig. 7, the state DefinePreferences is mapped to the abstractContainer
named DefinePreferences (see line 4 of Fig. 6).

4.3 Concrete User Interface (CUI)

At this step some modality constraints can be added into the design. There are many
possible scenarios for developing dialog models according to the modality chosen.
Due to space reasons we limited a single scenario but that could have 2 possible dia-
log models. The first case considers a dialog model for interactions on a single pres-
entation unit. For the second case, user interaction is supported along three different
presentation units. The first scenario (i.e. a single presentation unit) would be suitable
for large displays where users can freely choose the order of filling in the forms whilst
the second scenario (i.e. several presentation units) is suitable for small displays (e.g.
PDA) or to context of use where users need to be more guided during interaction (e.g.
vocal interaction on cell phones).

 Cascading Dialog Modeling with UsiXML 131

a) Single presentation b) multiple presentation units

Fig. 8. Concrete User Interface Specification using SketchiXML

Fig. 9 presents the corresponding CUI specification in UsiXML for the single pres-
entation unit depicted in Fig. 8.a.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <uiModel id="Car_Rental" … >
3. <head>
4. <version modifDate="2007-12-19T15:45:21.031-02:00"/>
5. <authorName>SketchiXML</authorName>
6. </head>
7. <cuiModel id="Car_Rental-cui" name="Car_Rental-cui">

8. <window id="window_0" name="window_0" … >
…
9. <comboBox id="ComboBox_0" name="ComboBox_0"…>
10. <behavior>
11. <event id="evt_0" eventType="change" eventContext="Button_0"/>
12. <action id="act_0" name="act_0">
13. <methodCall methodName="dialog.carTypeChange">
14. <action>
15. </behavior>
16. </comboBox>
…
17. <button id="Button_1" name="Button_1">
18. <behavior>
19. <event id="evt_1" eventType="click" eventContext="Button_1"/>
20. <action id="act_1" name="act_1">
21. <methodCall methodName="dialog.defineRentalPreferences">
22. <methodCall methodName="dialog.determineCar">
23. <methodCall methodName="dialog.definePayment">
24. <action>
25. </behavior>
26. </button>
…
27. </window>
28. </cuiModel>

Fig. 9. UsiXML Concrete User Interface Specification for a single presentation unit

In Fig. 10 we propose four design options for the concrete dialog. The option a)
(single presentation unit) corresponds to the dialog modeling for the single presenta-
tion depicted in Fig. 8.a. The mappings for connecting the SWC specification with the
other components of the UsiXML description are in bold face. The operational execu-
tion of the model Fig. 10.a is the following: once the state DefinePreferences is
reached, all user interface components in the mapping are shown in a single presenta-
tion unit. The transitions in SWC are implemented according to events, actions and
method calls mapped from UsiXML controls (ex. Fig. 9, line 11, 12 and 13).

132 M. Winckler et al.

a) single presentation unit b) any order, multiple presentation units

c) guided forth and backward interaction d) guided straight interaction

Fig. 10. Design option for dialog at the level Concrete Specification of the User Interface

Fig. 10.b, c and d, propose alternative interaction behavior for the multiple presen-
tation units depicted in Fig. 8.b. In all these examples, the mapping to concrete com-
ponents also include the sub set of containers named definePreferences, determine-
Car,and definePayment, which were previously identified at the step AUI (see sec-
tion 4.2). The most important differences concerns how the states are connected to
each other. It noteworthy that these design options only affect the specification of the
dialog and the UsiXML remain the same. As a consequence, a dialog model does not
imply a specific modality as any of the design options are suitable for rendering the
user interface via different channels.

5 Related Work

Several works have been done on the design and specification of the dialog aspect of
the user interfaces. Considering the organization of complex dialog structures, one
should mention the hierarchical events proposed by Kosbie [9] which demonstrates
how high level events can be identified and reified to low-level events triggered by
user interface devices. Important improvements have also been done towards formal
description techniques for the specification of complex dialog behavior. In this re-
spect, it is noteworthy the ICO formalism [3], based on Petri Nets, allows more ex-
pressive and modular dialog specifications than the earlier attempts on formal meth-
ods for describing fusion/fission of complex events as they occurs in multimodal in-
teraction techniques [13]. The organization of dialog models toward independent,
modular and self-contained dialog structures have been a main target for developing
complex interactive systems [8]. These previous work have mainly address the case of
the organization of the dialog according to a single implementation.

 Cascading Dialog Modeling with UsiXML 133

As far as multi-target user interfaces is a concerns, only a few work have consid-
ered multi-level dialog specification. Book and Gruhn [4] have proposed the use of
external dialogs for treating different presentation channels for multimodal Web ap-
plications. Their approach is based on a formal description technique called Dialog
Flow Notation (DFN) that provides constructs for the design of modular navigation
models for multimodal Web applications. Mori, Paterno and Santoro [12] have pro-
posed a design method and tool called TERESA for dealing with the progressive
transformation of abstract description of the user interface to final implementations
whilst try to preserve the usability and plasticity of the user interface. Similarly, Luy-
ten et al. [11] have proposed a transformational approach for derive final user inter-
face dialog from task models. These solutions are based on top-down approach of de-
velopment with little flexibility for implementing design options.

6 Conclusion and Future Work

This paper discussed several issues related to multi-level dialog specifications for
multi-target user interface User Interface Description Languages. Additionally it pro-
poses a design method combining two currently available UIDLs: UsiXML and SWC.
This work tried to demonstrate that transformational approaches and manual dialog
specification can be combined to promote the reification of abstract user interface into
more concrete user interfaces. The approach presented is duly based on the clear sepa-
ration of the dialog aspect of the other components of the user interface. Such as sepa-
ration presents several advantages such as it improves the readability of models, it
supports reuse of specifications and it might help the management of versions accord-
ing different design choices. This method is clearly based on open standards like
UsiXML which make possible to assemble UI elements built with different tools (for
instance, IdealXML, SketchiXML, GrafiXML, see www.usixml.org) and couple them
with external dialog specifications (for example, SWC). The advantage of such as an
approach is that one can reuse knowledge and tools for dealing with dialog models
and study the limits of dialog specification at different levels of abstraction. Dialog
models created with SWC can be simulated by the SWCEditor [23] so that, the behav-
ior of the application can be inspected at any time.

The current work is limited to dialog specified produced with the SWC notation.
However, we suggest that it could be generalized for other dialog description tech-
niques with similar expressive power. Another limitation is the fact no complex mul-
timodal interaction techniques requiring fission/fusion of events, for example, has
been taken into account. Such as situation will be investigated in future work.

References

1. Ali, M.F., Pérez-Quiñones, M.A., Abrams, M.: Building Multi-Platform User Interfaces
with UIML. In: Seffah, A., Javahery, H. (eds.) Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

2. Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard, R., Szezur, M.R.: The Arch
model: Seeheim revisited. In: User Interface Developer’s workshop version 1.0 (1991)

134 M. Winckler et al.

3. Bastide, R., Palanque, P.: A Visual and Formal Glue Between Application and Interaction.
Journal of Visual Language and Computing 10(5), 481–507 (1999)

4. Book, M., Gruhn, V.: Efficient Modeling of Hierarchical Dialog Flows for Multi-Channel
Web Applications. In: Proc. of 30th Annual Int. Computer Software and Applications
Conference COMPSAC 2006, Chicago, September 17-21, 2006, pp. 161–168. IEEE Com-
puter Society, Los Alamitos (2006)

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting With Com-
puters 15(3), 289–308 (2003)

6. Collignon, B., Vanderdonckt, J., Calvary, G.: An Intelligent Editor for Multi-Presentation
User Interfaces. In: Proc. of 23rd Annual ACM Symposium on Applied Computing SAC
2008, March 16-20, 2008, pp. 1634–1641. ACM Press, New York (2008)

7. da Silva, P.P., Paton, N.W.: User Interface Modeling in UMLi. IEEE Software 20(4), 62–
69 (2003)

8. Conversy, S., Eric, B., Navarre, D., Philippe, P.: Improving modularity of interactive soft-
ware with the MDPC architecture. In: Proc. of Engineering Interactive Systems 2007 (IFIP
WG2.7/13.4 10th Conference on Engineering Human Computer Interaction jointly organ-
ized with IFIP WG 13.2 1st Conference on Human Centred Software Engineering and
DSVIS - 14th Conference on Design Specification and Verification of Interactive Sys-
tems) EIS 2007, Salamanca, March 22-24, 2007. Springer, Heidelberg (2007)

9. Kosbie, D.S.: Hierarchical events in graphical user interfaces. In: Proc. of ACM Conf. on
Human factors in computing systems CHI 1994, Boston, April 1994, pp. 131–132. ACM
Press, New York (2004)

10. Limbourg, Q., Vanderdonckt, J.: UsiXML: A User Interface Description Language Sup-
porting Multiple Levels of Independence. In: Matera, M., Comai, S. (eds.) Engineering
Advanced Web Applications, pp. 325–338. Rinton Press, Paramus (2004)

11. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a Dialog Model from
a Task Model by Activity Chain Extraction. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 203–217. Springer, Heidelberg
(2003)

12. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice User Inter-
faces through Multiple Logical Descriptions. IEEE Transactions on Software Engineer-
ing 30(8), 507–520 (2004)

13. Navarre, D., Palanque, P., Bastide, R., Schyn, A., Winckler, M., Nedel, L., Freitas,
C.M.D.S.: A Formal Description of Multimodal Interaction Techniques for Immersive
Virtual Reality Applications. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005.
LNCS, vol. 3585, pp. 170–183. Springer, Heidelberg (2005)

14. Palanque, P., Bastide, R., Winckler, M.: Automatic Generation of Interactive Systems:
Why A Task Model is not Enough. In: Proc. of 10th Int. Conf. on Human-Computer Inter-
action HCI International 2003, Heraklion, June 22-27, 2003, pp. 198–202. Lawrence Erl-
baum Associates, Mahwah (2003)

15. Puerta, A., Eisenstein, J.: XIML: A Common Representation for Interaction Data. In: Proc.
of 6th ACM Int. Conf. on Intelligent User Interfaces Conference IUI 2002, San Francisco,
January 13-16, 2002, pp. 216–217. ACM Press, New York (2002)

16. Stanciulescu, A., Vanderdonckt, J.: Design Options for Multimodal Web Applications. In:
Proc. of 6th Int. Conf. on Computer-Aided Design of User Interfaces CADUI 2006, Bu-
charest, June 6-8, 2006, pp. 41–56. Springer, Heidelberg (2006)

 Cascading Dialog Modeling with UsiXML 135

17. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F.: A Transfor-
mational Approach for Multimodal Web User Interfaces based on UsiXML. In: Proc. of
7th ACM Int. Conf. on Multimodal Interfaces ICMI 2005, Trento, October 4-6, 2005, pp.
259–266. ACM Press, New York (2005)

18. State Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C Work-
ing Draft, February 21 (2007), http://www.w3.org/TR/scxml/

19. Trindade, F.M., Pimenta, M.S.: RenderXML – A Multi-platform Software Development
Tool. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 292–297. Springer, Heidelberg (2007)

20. XML User Interface Language (XUL), Mozilla Foundation (January 2008),
 http://www.mozilla.org/projects/xul/

21. Weiser, M.: The world is not a desktop. Interactions 1(1), 7–8 (1994)
22. Winckler, M., Palanque, P.: StateWebCharts: a Formal Description Technique Dedicated

to Navigation Modelling of Web Applications. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer, Heidelberg (2003)

23. Winckler, M., Barboni, E., Farenc, C., Palanque, P.: SWCEditor: a Model-Based Tool for
Interactive Modelling of Web Navigation. In: Proc. of 4th Int. Conf. on Computer-Aided
Design of User Interfaces CADUI 2004, Funchal, January 14-16, 2004, pp. 55–66. Klu-
wer, Dordrecht (2005)

	Cascading Dialog Modeling with UsiXML
	Introduction
	Basic Concepts
	The Architecture of Dialog Arch
	Levels of Abstraction of User Interfaces
	Specifying User Interface Dialogs

	A Method for Dealing with Multi-level Dialog Specification
	Notations
	Step-Wise Method

	Case Study
	Task Model
	Abstract User Interface (AUI)
	Concrete User Interface (CUI)

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

