
Bridging the Generation Gap: From Work
Tasks to User Interface Designs

Stephanie Wilson and Peter Johnson
Department of Computer Science, Queen Mary and Westfield College, Univer-

sity of London, Mile End Road, London E1 4NS, United Kingdom
Phone: +44-171 975 52{31, 24} – Fax: +44-181 980 6533

E-mail: Peter.Johnson@dcs.qmw.ac.uk
WWW: http://www.dcs.qmw.ac.uk/~pete

Abstract

Task and model-based design techniques support the design of interactive systems
by focusing on the use of integrated modelling notations to support design at vari-
ous levels of abstraction. However, they are less concerned with examining the na-
ture of the design activities that progress the design from one level of abstraction
to another. This paper examines the distinctions between task and model-based
approaches. Further, it discusses the role of design activities in such approaches,
based on experience with one task-based technique, and the resulting implications
for tool support and design guidelines. The discussion is contextualised by exam-
ples drawn from a number of case studies where designers applied a task-based
approach to solve one particular design problem: that of developing an airline
flight query and booking system.

Keywords

Automatic generation, design guidelines, model-based design, task-based design,
task models,

Introduction

Current interest in task and model-based approaches to design signifies a trend to-
wards placing greater emphasis on what an interactive system should do and how
people might use it rather than how the system itself works. Designers are encour-
aged to conceptualise designs at a higher level of abstraction than is the case when
working with standard prototyping tools; in particular, they are encouraged to fo-
cus on the behaviour and structure of the user interface rather than on specific de-
tails of low-level interaction objects. This interest is reflected in papers presented at
the DSV-IS workshops [DSV-IS94, DSV-IS95].

Task and model-based approaches to design have many features in common. Most
notably, they both focus on the use of models to represent the various sorts of in-

78 Computer-Aided Design of User Interfaces

formation that contribute to the design of interactive systems. For example, there
are models of users’ tasks, domain objects and actions, user characteristics, dia-
logue and interface behaviour, style guidelines, etc. (see also [Puerta96]). The mod-
els are expressed using formal and/or semi-formal notations, and relations may be
defined between the different models. Secondly, both approaches discuss issues
pertaining to the use of the models in design activities (e.g., analysis, evaluation,
generation, verification, etc.), some of which result in the creation of one model
from another. Thirdly, tools of various sorts have been developed to support the
design approaches and their modelling activities; some of these tools have aimed to
automate the design activities, while others have aimed to assist or support design-
ers in their work.

Broadly speaking, the task and model-based techniques are distinguished by their
ability to model aspects of usage of proposed systems: model-based approaches
tend not to model how a system might be used by users in accomplishing their
work tasks. This distinction is reflected in the extent to which the approaches have
focused on either the design process or the design support tools. We would sug-
gest that, to date, task-based techniques have displayed greater interest in the for-
mer, while model-based approaches have been more concerned with the latter.
Figure 1 compares the two approaches.

Abstract
interface

description

Interface A Interface B

Design
guidelines

(a) Model-based design: alternative interfaces
generated from the same abstract model, depending
on design guidelines.

(b) Task-based design: alternative abstract interface
descriptions designed to support the same task.

(a)
Task

description

Abstract
interface

description A

Abstract
interface

description B

Interface A Interface B

Design

Design
guidelines

(b)

Figure 1. Comparing model-based design and task-based desigm

Model-based approaches such as UIDE [Foley91, Foley94], HUMANOID [Szekely-
93] and MECANO [Puerta94b] were developed in an attempt to provide the de-
signer with better facilities for constructing user interface software; they aim to im-
prove interface design by changing the level of abstraction at which it is done and
by improving or automating the tools with which it is done. These techniques in-
corporate models that allow the designer to express the proposed design at a high
level of abstraction, focusing on the behaviour of the interface. Automatic tools
then generate executable interfaces from these abstract models, usually under the
guidance of other information such as style guides or user models. The abstract

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 79

model is in effect a design solution, albeit an abstract design solution. As such,
these techniques limit their interest in the design process to those processes that
occur in the transition between abstract and concrete (or executable) design solu-
tions. Model-based techniques are not user centred per se; they support the designer
more in the construction than in the design of usable systems, imposing no con-
straints on how the abstract design solution is produced.

Task-based techniques such as ADEPT [Wilson93] and MUSE [Lim94] aim to im-
prove design primarily by improving the usability and suitability of the design for
supporting the users’ work. These techniques focus on the process of creating de-
sign solutions: they advocate developing design solutions from information about
the users’ tasks, thus increasing confidence that the system is compatible with the
task it is intended to support. The tool support for task-based design has tended to
be weak, focusing on either editor tools to support task modelling notations or
lower-level generator tools similar to those of the model-based approaches.

The modelling structure in task-based approaches provides a context for interface
design: it offers a framework within which designers can practice their craft. While
much has been reported about the models in these approaches, about notations to
describe them and ways of checking or proving properties about them, considera-
bly less has been said about exactly how the models should be used to develop de-
signs.

It is only at the level of graphical user interface design, the level addressed by
model-based approaches, that a body of wisdom has been distilled from the collec-
tive experience of the HCI community over the last decade to guide the design
process (e.g., [Smith86, Hix93, Vanderdonckt95c]). This knowledge is most com-
monly expressed as design guidelines.

Other than this, little practical guidance has been offered to the design practitioner
to assist in the application of these techniques, although some steps in this direc-
tion have been taken in the context of scenario-based design (see [Rosson95] for
example.) This gives rise to questions such as what is it to develop a user interface
from a task description? What design decisions are involved? What makes one de-
sign choice better or worse than another? What constitutes a good or bad interface
to support a particular task? In the first instance, it raises the issue of developing
practical guidelines to support the task-based design of interactive systems; in the
longer term it raises the issue of developing task-based design principles.

This paper reflects on these issues in the context of our experience with one task-
based approach to design, ADEPT, and discusses the wider implications of these
experiences for tools to support task-based design. We examine firstly the activities
involved in producing a task model from a number of task analyses; secondly, the
design decisions that take place in moving from a model of existing work to envi-
sioning the tasks that will be supported by a future system; and, thirdly, the design
decisions that take place in moving from envisioned tasks to the design of a system
to support those tasks.

80 Computer-Aided Design of User Interfaces

The remainder of this paper is structured as follows. Section 1 provides some es-
sential background information; it highlights the main features of a task-based ap-
proach to design and presents an overview of the ADEPT approach in view of
these features. Sections 2, 3 and 4 discuss the creative processes that progress the
design from one modelling activity to another in this design paradigm, and take a
first step towards drawing out some guidelines to support these processes. The
discussion is illustrated with examples taken from a number of case studies where
groups of designers were asked to solve a particular design problem. In each case
study the designers were asked to develop a system that would support the task of
airline flight querying and booking.

This example task is particularly topical in view of the recent advent of on-line
flight schedules and booking systems that are accessible by the general public. The
designers applied the ADEPT approach using either pen and paper techniques or
the prototype suite of tools developed to support the approach. Section 5 examines
the implications for tool support and the last section concludes the paper with
some reflections on the current state of the art and the future challenges for re-
search and practice in this area.

1 Task-Based Design and ADEPT

Task analysis is today accepted within the HCI community as making an important
contribution to interactive system design practice. Although its inclusion in user-
centred design approaches has been advocated for some time, it is only recently
that we have seen methods which offer a tighter integration of the task analysis ac-
tivities with subsequent design activities, thereby supporting greater use of task in-
formation in creating a design.

Task-based design emphasises the importance of designers developing an under-
standing of users’ existing work tasks, the requirements for changing those tasks
and the consequences that new designs may have for tasks. This places people and
their tasks at the starting point of the design process, meaning that activities such
as prototyping are no longer simply a matter of trial and error, where an initial de-
sign is gradually improved by a series of design iterations, but are informed from
the outset by information about the tasks that the system is to support. This is par-
ticularly important in view of the fact that prototyping often fails because designers
do not have the opportunity to iterate from the early prototypes due to time con-
straints and external pressures (e.g. from management or customers). Furthermore,
the task descriptions can provide a focus for the generation of design ideas, helping
to ensure that novel ideas are motivated by a user-task perspective.

Figure 2 summarises our view of what might be described as a minimal task-based
design process, focusing on the models involved in the process. It starts with an
analysis of the users’ existing tasks, the results of which are expressed as the ‘Exist-
ing task model’. It then progresses, via a process of design, to a description of the
tasks it is proposed that the user will perform with the new system, known as the

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 81

‘Envisioned task model’. The process concludes with the detailed design of an in-
teractive system to support the envisioned tasks, termed the ‘Interface model’.
Clearly, this simplistic overview does not include evaluation activities, nor does it
show the iterative nature of the design activities.

Envisioned
task model

Existing
task model

Interface
model

designdesign

Figure 2. Overview of task-based design

Each of the components shown in figure 2 may be elaborated to reveal further
models and processes. For example, all of the models and processes involved in a
typical model-based approach such as UIDE would be encapsulated within the
component labelled ‘Interface model’. Likewise, a task model might consist of a
description of the task goals and a separate description of task objects.

A further important point is that not all task-based design approaches make this
clear distinction between existing and envisioned tasks. There are a number of dif-
ferent approaches to task-based design and only some of these take an analysis of
existing tasks as a starting point. Others have no description of existing tasks but
do have some form of description of the tasks to be performed with the system or
of the methods involved in using the system.

A number of task-based design approaches have been reported which broadly con-
form to the overview in figure 2 (for example, [Lim94, de Haan94, de Bruin94,
Bodart95a]), although they have set out with various aims. For example, to inte-
grate human factors techniques with software engineering methods or to provide
formal descriptions of user interfaces at various levels of abstraction with a view to
verifying properties of the system. In our work on the ADEPT project [Wilson93,
Johnson95], we set out to investigate how descriptions of users’ tasks should influ-
ence and guide the design of systems to support those tasks, and to show how tool
support might assist the designer in following such an approach.

An overview of task-based design in ADEPT is provided in figure 3 (again omitting
details of evaluative or iterative design processes). We take a work-task to be a
meaningful unit of work that a person undertakes in a given domain in the process
of achieving their work goals. Hence, the approach starts with an analysis of the
users’ existing work tasks and continues with the development of a description of
the envisioned tasks as an early design activity.

The envisioned task model is not a description of the methods for using the sys-
tem, but a description of how work goals can be achieved for which, as yet, no sys-
tem may have been designed. The existing task model forms part of the description
of the problem space for the design, while the envisioned task model forms part of
the proposed solution space for the design.

82 Computer-Aided Design of User Interfaces

design

task
analysis

design

Envisioned
task model

Abstract
interface

model

Prototype
interface

Users, organisations and existing
artefacts

domain
analysis

Requirements,Existing
task model

Design
guidelines

consequences
for user tasks

generation
automatic

Constraints,
Design ideas

Figure 3. Task-based design in ADEPT

Other aspects of the problem domain are also captured and recorded in the form
of requirements, design constraints and design ideas. These are in no sense final-
ised at the point where the analysis activities are completed, but can be supple-
mented, elaborated and modified as the design progresses. This additional informa-
tion from the problem domain will influence the design choices that are made at
each step in the process, including the design decisions made during the creation of
the envisioned task model.

Having created an initial vision of the tasks that users will perform with the new
system, the process continues with the development of an ‘abstract interface
model’. This is a high-level description of an interface to support the task, ex-
pressed in terms of abstract interaction objects, groupings of these objects and dia-
logue information.

Further design decisions at the level of the abstract interface model may have con-
sequences for the envisioned task; these are reflected in the diagram by the back-
ward arrow. The final stage in the process is the progression from abstract inter-
face model to prototype interface — a low-level, executable form of the proposed
design. Prototype design tools have been provided in ADEPT to support all stages
of the design process, but only this final step is automated under the influence of a
set of modifiable design guidelines. Once the prototype interface has been pro-
duced by the automatic generator tool, the designer may choose to modify it using
an interface builder tool.

Again, this is a simplistic overview of the complexities of the design process and it
would be naive to believe that design always proceeds in this orderly, top-down
fashion. Design is not a simple top-down process, but frequently involves bottom-
up activities as various studies have reported (e.g., [Hartson89]). Design modifica-
tions or decisions made at the level of the more concrete models during bottom-up
design activity may have consequences for more abstract models.

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 83

ADEPT and other task-based design approaches offer a guiding structure for the
design of interactive systems, the structure being provided by the series of explicit
models to be produced at various points during the process.

However, as alluded to in the previous section, these approaches do not offer the
designer guidance in how to progress the design from one modelling stage to an-
other, except at the final stage of the process where existing user interface design
guidelines are influential. While this has the advantage of not constraining or re-
stricting how design is done, it has the disadvantage that designers are being asked
to design within a new paradigm but yet are offered no practical guidance as to
how this should be achieved. The following three sections of this paper examine
this issue.

2 Analysing and Modelling Existing User Tasks

In this section we consider how designers perform task analyses within the context
of task-based design, and how the results of task analyses may be combined to
produce a coherent model for use in subsequent design activities (summarised later
in figure 6). The method of task analysis used in ADEPT follows our earlier work
on task analysis [Johnson91a], and emphasises the importance of modelling how
users perform tasks at present and their current knowledge of the domain and
tasks.

There are a number of data collection, analysis and modelling techniques that may
be employed in performing a task analysis. For example, data collection methods
include direct observation of workers in the workplace, interviews, questionnaires,
demonstrations and techniques that encourage workers to produce their own de-
scriptions of their work. Some techniques are more or less suitable for use in dif-
ferent situations.

For example, direct observation may be difficult in hazardous or safety critical
situations (since the presence of an observer may be hazardous to the observer or
may increase the probability of the observed worker making a serious mistake), or
in tasks that are highly cognitive in nature, for example in translating a document,
where there may be very little directly observable behaviour. In contrast, direct ob-
servation of tasks involving much overt activity will provide a rich source of data.
Detailed discussions of the various data collection techniques are given in [John-
son92a] and [Diaper89]. Some heuristics for selecting data collection techniques are
given below:

1. Always use more than one data collection technique since any technique will
only give partial information about a task.

2. Direct and indirect observation techniques are well suited for identifying pat-
terns of behaviour, temporal aspects of tasks, behaviours and procedural as-
pects of tasks, but are poorly suited to predominantly cognitive tasks. The ana-
lyst needs to be aware that observations are time consuming, cannot be used in

84 Computer-Aided Design of User Interfaces

isolation, and that interpretation of observations can involve a degree of infer-
ence on the part of the analyst.

3. Interviews provide a useful technique for identifying general rules, background
knowledge, conditions and constraints upon tasks, the goal structure of a task
and dependencies between tasks, but are poor at identifying temporal and pro-
cedural aspects of tasks. The analyst should be aware that people are better at
remembering conditions given actions, rather than actions given conditions.

4. Questionnaires are best used to obtain shallow descriptions of task properties,
and are useful to identify objects and attributes of a domain and their structural
(class and component) properties, but are poor at providing detailed task in-
formation or information about context sensitive task behaviours.

Each of the techniques has more specific guidelines for their use in task analysis.
One important point is that the analysis should focus on identifying characteristics
of specific tasks rather than asking users to generalise across many tasks. The
analysis should seek to identify all the variations and individual differences in each
task as well as general characteristics across many tasks.

This is achieved by analysing many different users performing each task, resulting
in a task description for each user on each task. These individual task descriptions
carry all the individual differences regarding how users achieve a given goal. (The
tasks are described in terms of the users' goals, sub-goals, procedures and actions,
together with a description of the objects used in performing the actions. See
[Johnson91b] for details.)

In our case studies, designers were asked to carry out an analysis for the task of
querying and booking a flight. A number of subjects were used in the analysis and
in each case data was collected about the last occasion the subject had booked a
flight — a specific task. This highlighted many individual differences in the way the
task was performed, all of which should be taken into account during the design
process.

Figure 4. Alternative task descriptions for giving travel details

A trivial example of this is shown in figure 4 for one component of the overall
task: giving details of the desired journey to a travel agent. In the first scenario the
subject does not specify which airport they wish to fly from (presumably any local

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 85

airport is acceptable to this individual), and they specify that they wish to depart
within a certain time interval (the ‘Departure Window’). In the second scenario the
subject names specific departure and destination airports, specifies a departure
time, a preferred airline and ticket type.

In order to use the information in design, the analyst must produce a composite
task model from each task description for the same goal. The composite task
model should include all the different ways of performing the task. Developing the
composite task model involves identifying all the alternate ways of achieving the
same goal, resolving any conflicting descriptions (e.g., where the same course of ac-
tion appears to lead to different sub-goal states) and identifying all the optional and
compulsory aspects of a task (the optional ones will be indicated by a high degree
of variance and low occurrence across each of the specific task descriptions, while
the compulsory ones will be indicated by a low variance and high occurrence
across each of the specific task descriptions).

In addition, in developing the composite task model the analyst should identify dif-
ferent objects used in the different specific tasks and any differences in the rele-
vance of their attributes to the task. The analyst should also identify typical exam-
ples of any object where there are a number of different examples of the same ob-
ject across the different task descriptions (for example, in booking an airline flight
there may be many different examples of timetables, some may be atypical in that
they exclude information on time differences, while others may be atypical in that
they include information on in-flight meals for each journey).

Figure 5. A composite object description

86 Computer-Aided Design of User Interfaces

An example of a composite object description, from the ADEPT object browser, is
given in figure 5 where the composite flight specification object consists of a num-
ber of compulsory and optional sub-objects.

Having produced a composite task model for all the relevant tasks in the domain
of work, the analyst should now consider characteristics across tasks. This aspect
of the analysis identifies commonalties of behaviours, common patterns of behav-
iours and common objects across the various tasks. In addition, this can identify
constraints and dependencies across tasks. For example, in the domain of interna-
tional travel, passenger information may be used by travel agents for invoicing the
traveller and by the airline for advertising new products to potential customers.
Similarly, patterns of behaviour such as the pattern by which the travel agent re-
quests the traveller’s destination and departure dates may correspond to the pattern
that the agent must use to enter information into a flight enquiry system.

The Development of Existing Task Models

Specific Task
Models:

Identify characteristics of specific tasks in the first instance.
Analyse many different users performing each task.
Identify all variations and individual differences in tasks.
Produce a task description for each user on each task.

Composite Task
Models:

From each task description for the same goal, produce a composite task model
which includes all the different ways of achieving the goal
Identify all the different ways of achieving the same goal.
Resolve conflicting descriptions (e.g. where the same course of action appears
to lead to two or more different goals).
Identify optional aspects of a task (i.e. where there is a high degree of variance
and a low occurrence across the specific task models).
Identify compulsory aspects of a task (i.e. where there is a low degree of
variance and a high occurrence across the specific task models).
Identify commonalities of behaviour, patterns of behaviour and common
objects across the different tasks.
Identify constraints and dependencies across tasks.
Identify the different objects and typical instances of objects where there are a
number of different examples of the same object across the different tasks.

Figure 6. Guidelines for developing extant task models.

3 Envisioning Future User Tasks

In a true task-based design approach, the first real design activities occur with the
consideration of how existing work tasks may be changed or enhanced and the
form that the work tasks will take in the future. In a general design situation the
work might be changed in many ways, such as reorganising the structure of the
workforce, rescheduling working patterns, relocating the work etc. However, in the
context of interactive system design and human-computer interaction it is only
those aspects of work that could be changed by the design and introduction of an
interactive computer system that are the focus of concern. What we term the ‘En-

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 87

visioned task model’ is a model of the anticipated nature of work which would
come about as a result of designing an interactive computer system.

The envisioned task model is developed from the existing task model, the require-
ments and the overall design problem statement of the design situation. The over-
all design problem might be (as in our case studies) “to increase the quality and ef-
ficiency with which air-travellers can book their flights, without increasing the costs
in terms of training time or number of staff required to carry out these tasks”.

The requirements might include constraints on the possible design solutions, such
as the system must be integrated with existing computer systems and must enable
users to transfer between the existing and new systems with minimum retraining.
Working with these requirements, problem statements and the existing task model,
the designers must identify where they might introduce a new interactive system to
improve the quality and efficiency of booking flights.

A first step in this process is to identify any tasks which could be either avoided or
carried by a new system on behalf of the users (where this is seen as desirable).
Additionally, the designers should identify any tasks that are not to be carried out
by the new system and which therefore must be carried out by the users, and any
tasks which will involve the users interacting with the new system. In doing this,
they have begun to define the scope of the new system design and where it impacts
the work domain.

Having defined a potential scope for the new system, a number of other considera-
tions influence the development of the envisioned task model from the existing
task model. These include identifying where sequences of activity can be made eas-
ier to perform, perhaps by removing unnecessary constraints between activities,
making it possible to carry out activities in parallel or in an interleaved fashion
where previously only sequential activities were possible.

For example, in seeking to improve the booking of flights, in the existing task
model it is only possible to make enquiries of specific flights (i.e., of particular
dates of travel and particular destinations), and this forces the user to make re-
peated queries whenever they want to know what flights might be available during
a given ‘window’ of time for departure and return. One possible design solution
would be to allow the user to make enquiries on more than one departure date and
more than one return date within a single query. This would have the effect of re-
placing a series of actions with a new, more efficient action. Further design consid-
erations centre around the objects that the user interacts with. One design option is
to create new objects that compose or combine many individual objects. By creat-
ing such new objects the designer is attempting to make it possible to carry out ac-
tions on those objects which will be more effective, and to bring together into a
single composite object those attributes of several objects that are all relevant to a
particular aspect of the task. For example, in the domain of air travel the user of a
flight booking system often needs to be able to retain a list of flight options that
are available at given dates, times, prices and routings. This information is often

88 Computer-Aided Design of User Interfaces

distributed around several information objects rather than held in a single object,
making it difficult for the user to carry out actions that involve all the information.
By creating a new object that brings together all the information into a single ob-
ject, say the "option-list", it not only makes that information readily available to the
users, it also makes it possible for them to perform actions directly on it, such as
redefining the departure dates, or enquiring about the availability of all items on the
option-list.

In developing the envisioned task model from the existing task model, the inten-
tion is to attempt to improve the work situation. One important aspect of work
that must be considered is the safety and security issues. Often safety and security
are embedded in the procedures of the work practice. For example, strict patterns
of behaviour and sequences of actions are performed to ensure that an unsafe or
insecure state does not occur. Since such embedding occurs it is possible to rein-
force, and in some cases automate, the safety/security procedures in the new sys-
tem.

The Development of an Envisioned Task Model

Influences: The envisioned task model is developed from: the requirements, the problem
statement and the existing task model.

Scoping the
design:

Identify any tasks that can be avoided or that are unnecessary.
Identify any tasks that can be carried out completely by the computer.
Identify any tasks that can only be carried out by the user.
Identify where users and the computer will need to interact to carry out a
task.

Improving the
work:

Identify where sequences of activity can be made easier to perform, e.g. by
removing unnecessary constraints between activities, making it possible to
interleave activities and/or carry out activities in parallel.
Create more powerful objects by composing and combining individual
objects, making it possible to carry out actions on those composed objects.
Bring together information that is distributed across several objects but all
required at the same point in a task.
Ensure that safety and security procedures are supported.

Figure 7. Guidelines for developing envisioned task models

However, it is also possible to make a previously safe/secure system become un-
safe/insecure by changing the temporal dependencies between actions, or by
changing the point in time at which particular information is displayed. It is there-
fore important to recognise that changes made to increase the efficiency of the
work may inadvertently affect the quality of the work. Figure 7 summarises these
guidelines for developing the envisioned task model.

These design deliberations lead to the development of an envisioned task model
which provides a definition of where a new system is going to fit into the work-
place, what tasks it will support, where users will interact with it, for what purposes
they will interact with it and how it will improve or otherwise change the quality
and efficiency of the work.

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 89

It does not specify how any interaction is to occur or how any information display
will appear. It does provide the constraints that any design of interaction or display
will have to meet: it provides the starting point for the development of the user in-
terface.

4 Creating an Interface Design

In creating an interface design to support a particular task, the question that arises
is how should the envisioned task description inform the design of the interface?
This progression from task to interface design will, in the first instance, be consid-
ered here as a single step, as might be the case when using paper-based tools, or
when using a paper-based task model in combination with a rapid prototyping tool.

Later, in section 4.4, we will discuss how this progression is actually supported by
existing task-based design tools. This activity starts once the designer has created a
vision of what the users’ future tasks might be and has validated this vision with
users. Various factors then contribute to the development of an interface design,
notably:

• Task descriptions (including task decomposition information, action and object
descriptions, sequencing information).

• Requirements (including functional and usability requirements for the new
system).

• Design ideas (which may be prompted by the task descriptions and the
requirements).

• Design constraints (including hardware, software and organisational constraints
that may render certain design options infeasible or too costly).

• Design guidelines (including layout rules, style guides, colour and typography
guidelines, etc.).

The focus here is on the first of these. A multitude of different interface designs
might be produced, each of which would vary in its fitness to support the users'
tasks.

In a task-based design approach, task information is the primary determinant of
the content, behaviour and structure of the user interface. Other factors such as
requirements, design ideas and design constraints influence design choices.

The task models contain several different types of information which are used in
different ways to guide the interface development: task decomposition informa-
tion, action and object descriptions and sequencing information. These are dis-
cussed below and summarised in figure 10.

90 Computer-Aided Design of User Interfaces

4.1 Decomposition Information

Task decomposition refers to the goal / subgoal structure identified initially in the
task analysis and subsequently reflected in the envisioned task model. For example,
figure 8 shows the top-level decomposition for the flight booking task. It involves
the traveller making some initial decisions about their travel dates and then repeat-
edly getting travel options from agents and either booking a flight or perhaps refin-
ing their flight specification because there were no suitable options.

Figure 8. Top-level goals and sub-goals for the flight booking task

This decomposition of a high-level task goal into subgoals, and eventually into the
procedures and actions that the user performs to achieve the goal, should be re-
flected in the overall structure of the interface. Essentially, the decomposition in-
formation should be reflected in the ‘grouping’ of components in the user inter-
face, i.e. components of the interface that are intended to support closely related
parts of the task should be grouped together. This grouping of components should
be strongest at the lowest level of decomposition: the actions that the user per-
forms to achieve some goal should be closely related.

For example, figure 4 showed some specific models for the "Give flight specifica-
tion" component of the task. An interface designed to support either of these sce-
narios should group together the interaction components intended to support the
various actions that make up the flight specification task. Grouping interface com-
ponents may mean placing them in close spatial proximity on the screen, or in
close temporal proximity in the dialogue structure.

4.2 Action and Object Information

The task model includes information about the actions that users perform to
achieve their goals and about the objects involved in the actions. This information
also guides the development of the interface; in particular, it influences the com-
ponents that will actually appear in the interface and the ways in which those com-
ponents can be manipulated.

Broadly speaking, actions in the task model are indicative of commands that the
user will issue to the system, while objects suggest the information to be manipu-
lated by the commands or to be displayed on the screen. The action-object group-
ings therefore indicate information that can be manipulated in particular ways. In
terms of choosing interface components, simple task objects and the actions ap-

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 91

plied to them can be supported by the sorts of widgets found in standard user in-
terface toolkits. For example, the task of formulating an initial request to an on-line
flight booking system involves a number of actions where information (repre-
sented as informational objects) is given to the system. Actions such as specifying
preferred airports or dates of travel can be supported by simple widgets such as
type-in text fields.

Figure 9. Examples of interface widgets to support simple task action-object groupings

Figure 9 gives a simple example of widgets that might be selected to support the
actions and objects of the flight specification task. More complex task objects ei-
ther require specialised widgets or can be supported by a group of standard wid-
gets. For example, specialised widgets could allow the user to select departure and
destination airports from a clickable world map or to select a preferred seat from
an outline representation of the aircraft.

4.3 Sequencing Information

The final aspect of the task description that influences the development of the user
interface is sequencing information. As can be seen in figure 8, the ADEPT task
models include detailed information about the temporal ordering of task activities.
If users perform their tasks in a certain order, clearly the systems designed to sup-
port the tasks should support the same task sequencing. In other words, the dia-
logue structure of the interactive system should be developed in line with the task
sequencing information.

Our experience has suggested that while it is critical that the system should not vio-
late the task sequencing constraints (i.e., it should not force the users to perform
their tasks in a different order), it can relax the constraints in situations where
safety conditions will not be violated, allowing users to perform tasks either in the
sequence they are currently performed or allowing them to develop new strategies
for achieving their task goals.

92 Computer-Aided Design of User Interfaces

Using Task Information to Guide the Development of Interface Designs
Task decomposi-
tion:

Reflect the goal, sub-goal and action decomposition in the overall structure of
the interface.
Group interface components that support closely related parts of the task.
Let the lowest level of task decomposition (i.e. the actions) be the strongest
determinant of task structure.
Group interface components by placing them in close spatial proximity on the
screen, or in close temporal proximity in the dialogue structure.

Task actions and
objects:

Use task actions and objects to determine the components that will actually
appear in the interface and the ways in which those components can be
manipulated.
Use actions to suggest commands.
Use objects to suggest information to be manipulated and/or displayed.
Use action-object groupings to indicate information that can be manipulated
in particular ways.
Support simple objects, and the actions applied to them, by the sorts of
widgets found in standard user interface toolkits.
Support complex task objects by either specialised widgets or by a group of
standard widgets.

Sequencing:

Let sequencing information in the task model be the major determinant of the
dialogue structure of the interactive system.
Do not violate task sequencing in the interface design.
If desirable, relax sequencing constraints in situations where safety
conditions will not be violated

Figure 10. Guidelines for developing user interfaces to support tasks

4.4 Tool Support for Interface Design

Most task-based design approaches support the transition from envisioned task to
interface design via a number of intermediate steps. As figure 3 showed, this is a
two-stage process in the case of ADEPT: from envisioned task to abstract interface
model and then from abstract interface model to executable prototype (see [Wil-
son93] for details). There are several motivations for this.

Firstly, a high-level description of the user interface, such as that provided by an
abstract interface model, allows the designer to reason at a level of abstraction re-
moved from implementation details, focusing on the behaviour of the interface
rather than the interaction details.

Secondly, it facilitates taking account of existing user interface design guidelines.
The use of task information discussed above primarily governs the transition from
envisioned task to abstract interface model, while the further transition to imple-
mentation is governed by a different set of rules. In stark contrast to the paucity of
information available to guide the transition from envisioned task to abstract inter-
face model, there is a whole body of guidelines covering issues at the level of
screen and dialogue design. Thirdly, it is easier to provide tool support for the pro-
cess when it is decomposed into a number of sub-activities, each with its own con-

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 93

cerns and associated guidelines. It should be noted that this discussion has focused
on the progression from envisioned task to prototype interface in the context of
design; it has not been concerned with examining the nature of the relationship
that exists between a final description of the envisioned task and the final interface.
Others have specified this as a refinement relationship. However, it is not reason-
able to suppose that the designer will formulate and express a complete design at
the level of the envisioned task at the first attempt. Rather, we can expect that fur-
ther design decisions may be made at the level of the interface description which
have consequences for the users’ tasks.

5 Implications for Tool Support

As mentioned earlier, there are relatively few usable tools available at present to
support task-based design. However, tool support is clearly an issue when design-
ers are confronted with large scale design problems where it would be difficult, if
not impossible, to manage the various models and their relationships on paper in a
correct and consistent manner. Those tools that are available to support the earlier
stages of the design process (task modelling and abstract interface modelling) tend
to take the form of editors. Editor tools offer designers a high degree of flexibility.

They impose no restrictions on the set of task or abstract interface models that
may be described, nor do they constrain or guide the designer in exploring design
alternatives or in making the design decisions involved in progressing from one
model to the next. In fact, their main contributions to task-based design support
are to ensure that the task information is available in an integrated environment, to
ease manipulation and management of the information and to ensure that the
models are syntactically correct.

While there are relatively few guidelines relating to the actual activities of design in
these approaches, there are rather more guidelines concerned with producing the
final software system. In other words, there are guidelines that offer suggestions as
to appropriate and inappropriate features of user interfaces. These guidelines can
be applied at the transition from abstract interface model to executable interface,
and cover many issues such as selection of interaction objects, layout, use of colour
and platform-specific style guides. This is the stage of the design process that cur-
rently offers the greatest potential for automation, as is evident from the tool sup-
port provided for model-based design. Existing tools have taken advantage of
these guidelines, although too much automation can come at the expense of insuf-
ficient flexibility.

This paper has reported some initial work on providing designers with practical
guidance in adopting a task-based approach to design. We are hopeful that further
research in this direction could result in the development of task-based design
guidelines which, in turn, would offer a basis for enhanced tool support. In this
context, we are talking about offering guidance and support to the designer rather
than encoding rigid guidelines to which the designer must adhere or which would

94 Computer-Aided Design of User Interfaces

be applied automatically. It is clearly premature even to consider automating these
essentially creative design activities, otherwise we would unduly and inappropriately
constrain the design activities. In the longer term, it remains an open question as to
how far it will ever be appropriate to automate these activities: design is by its very
nature a creative process and removing creativity from the process can only result
in a lack of innovation and a deskilling of designers. However, we can assist de-
signers by removing tedious and mundane jobs, and by providing appropriate sup-
port to facilitate their creative activities.

The discussion in this paper has intentionally focused on design activities, but
evaluation activities are also important in task-based design. Guidelines can help in
providing support for evaluation activities; it becomes feasible to assess where
good practice guidelines have been followed and where the design deviates from
the guidelines. For example, guidelines governing the transition from envisioned
task to interface design embody some notion of what it is for an interface to sup-
port a task and could therefore provide the basis for an assessment of the task fit
of the interface design.

Conclusion

This paper has highlighted some important features of task and model-based ap-
proaches to design and has contrasted the two techniques. To date, there has been
little evidence of the uptake of these techniques in design practice. This might be
accounted for by a number of factors such as the immaturity of the techniques and
the prototype status of the design support tools (where they exist at all).

Further, in the case of task-based design, we believe that it is unrealistic to expect
designers to design within a modelling framework without offering practical guid-
ance as to how design should be carried out in this context. These task and model-
based techniques can only hope to move out of the research community when they
begin to address issues beyond those of the form of the models they employ. This
paper has offered some insight into the design activities that occur in a task-based
approach to design, based on actual experience with such an approach. These re-
sults represent a tentative first step towards the development of task-based design
guidelines; further work in this direction remains a challenge for the HCI design
community.

Acknowledgements

The ADEPT project was funded by DTI and SERC, grant no. IED 4/1/1573. Our
current research is funded by the EPSRC, grant no. GR/K19211. We are grateful
to the Amodeus project for providing the original idea for the design problem used
in this paper and to the participants at our tutorials on task-based design for their
inspiration and novel solutions to the design problem. Thanks also to the anony-
mous CADUI’96 reviewers for their detailed and helpful comments.

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 95

References

[Bodart95a] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Sacré, B.,
Vanderdonckt, J., Towards a Systematic Building of Software Architectures: the TRIDENT
Methodological Guide, in Proceedings of 2nd Eurographics Workshop on Design,
Specification, Verification of Interactive Systems DSV-IS’95 (Château de Bonas, 7-
9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series, Springer-
Verlag, Vienna, 1995, pp. 262-278. http://www.info.fundp.ac.be/cgi-bin/pub-
spec-paper?RP-95-019

[de Bruin94a] de Bruin, H., Bouwman, P., van den Bos, J., A Task Oriented Method-
ology for the Development of Interactive Systems as used in DIGIS, in Proceedings of the
15th Interdisciplinary Workshop on Informatics and Psychology, Interdisciplinary
Approaches to System Analysis and Design (Schaerding, 1994).

[de Haan94] de Haan, G., An ETAG based approach to the design of user interfaces, in
Proceedings of the 15th Interdisciplinary Workshop on Informatics and Psychol-
ogy, Interdisciplinary Approaches to System Analysis and Design (Schaerding,
1994).

[Diaper89] Diaper, D., Task observation for HCI, in « Task Analysis for HCI », D.
Diaper (Ed.), Ellis Horwood, Chichester, 1989.

[DSV-IS94] Proceedings of 1st Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994),
F. Paternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin,
1995.

[DSV-IS95] Proceedings of 2nd Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’95 (Château de Bonas, 7-9 June 1995),
R. Bastide and Ph. Palanque (Eds.), Eurographics Series, Springer-Verlag, Vienna,
1995.

[Foley91] Foley, J.D., Kim, W.C., Kovacevic, S., Murray, K., UIDE - An Intelligent
User Interface Design Environment, in « Intelligent User Interfaces », J.W. Sullivan, S.W.
Tyler (Eds.), Addison Wesley, ACM Press, 1991, pp. 339-384.

[Foley94] Foley, J.D., History, Results and Bibliography of the User Interface Design Envi-
ronment (UIDE), an Early Model-based Systems for User Interface Design and Implementa-
tion, in Proceedings of 1st Eurographics Workshop on Design, Specification, Verifi-
cation of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994), F. Pa-
ternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp.
3-14.

[Hartson89] Hartson, H.R., Hix, D., Toward Empirically Derived Methodologies and Tools
for Human-Computer Interface Development, International Journal of Man-Machine
Studies, Vol. 31, 1989, pp. 477-494.

96 Computer-Aided Design of User Interfaces

[Hix93] Hix, D., Hartson, H.D., Developing User Interfaces - Ensuring Usability Through
Product and Process, John Wiley & Sons, New York, 1993.

[Johnson91a] Johnson, H., Johnson, P., Task Knowledge Structures: Psychological basis
and integration into system design, Acta Psychologica, Vol. 78, 1991, pp. 3-26. ftp://
ftp.dcs.qmw..ac.uk/publications/91-JohnsonH-1.ps.gz

[Johnson92a] Johnson, J.A., Selectors: Going Beyond User Interface Widgets, in Proceed-
ings of the Conference on Human Factors in Computing Systems CHI’92 « Strik-
ing a balance » (Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G. Lynch
(Eds.), ACM Press, New York, 1992, pp. 273-279.

[Johnson95] Johnson, P., Johnson, H., Wilson, S., Rapid Prototyping of User Interfaces
Driven by Task Models, in « Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development », J. Carroll (Ed.), John Wiley & Sons, London, 1995,
pp. 209-246.

[Lim94a] Lim, K.Y., Long, J., The MUSE Method for Usability Engineering, Cambridge
University Press, Cambridge, 1994.

[Puerta94b] Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A., Beyond Data
Models for Automated User Interface Generation, in Proceedings of British Conference
on Human-Computer Interaction HCI’94 « People and Computers IX » (Glasgow,
23-26 August 1994), G. Cockton, S.W. Draper, G.R.S. Weir (Eds.), Cambridge
University Press, Cambridge, 1994, pp. 353-366. http://www-
ksl.stanford.edu/KSL_Abstracts/KSL-93-62.html

[Puerta96a] Puerta, A.R., The MECANO Project: Enabling User-Task Automation During
Interface Development, in Proceedings of AAAI’96 Spring Symposium on Acquisition,
Learning & Demonstration: Automating Tasks for Users (Stanford, March 1996),
AAAI Press, pp. 117-121.

[Rosson95] Rosson, M.B., Carroll, J.M., Integrating Task and Software Development for
Object-Oriented Applications, in Proceedings of the Conference on Human Factors in
Computing Systems CHI’95 « Mosaic of Creativity » (Denver, 7-11 May 1995), I.R.
Katz, R. Mack, L. Marks, M.B. Rosson, J. Nielen (Eds.), ACM Press, New York,
1995, pp. 377-384.

[Smith86] Smith, S.L., Mosier, J.N., Design Guidelines for the User Interface Software,
Technical Report ESD-TR-86-278 (NTIS No. AD A177198), U.S. Air Force Elec-
tronic Systems Division, Hanscom Air Force Base, Massachusetts, 1986.

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based In-
terface Tools, in Proceedings of the Conference on Human Factors in Computing
Systems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM
Press, New York, 1993, pp. 383-390. http://www.isi.edu/isd/Interchi-be-yond.ps

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 97

[Vanderdonckt95c] Vanderdonckt, J., Tools for Working with Guidelines, Tutorial #12
notes, 6th International Conference on Human-Computer Interaction HCI Interna-
tional’95 (Yokohama, 10 July 1995), 1995.

[Wilson93] Wilson, S., Johnson, P., Kelly, C., Cunningham, J., Markopoulos, P., Be-
yond hacking: a model based approach to user interface design, in Proceedings of British
Conference on Human-Computer Interaction HCI’92 « People and Computers
VIII », J.L. Alty, D. Diaper, S. Guest (Eds.), Cambridge University Press, Cam-
bridge, 1993, pp. 217- 231. ftp://ftp.dcs.qmw..ac.uk/publications/93-WilsonS-
1.ps.gz

	Keywords
	Introduction
	1 Task-Based Design and Adept
	2 Analysing and Modelling Existing User Tasks
	3 Envisioning Future User Tasks
	4 Creating an Interface Design
	4.1 Decomposition Information
	4.2 Action and Object Information
	4.3 Sequencing Information
	4.4 Tool Support for Interface Design

	5 Implications for Tool Support
	Conclusion
	Acknowledgements
	References

