
Reflections on Model-Based Design:
Definitions and Challenges

Stephanie Wilson

List of participants

Mark Addison, Tom Bösser, Con Copas, Peter Forbrig, Andreas Homrighausen,
Frank Lonczewski, Josef Voss, Stephanie Wilson, Takayuki Yamaoka.

Abstract

This paper reports a working group discussion addressing various issues pertaining
to model-based design raised at the CADUI’96 workshop. Since the term ‘model-
based design’ was first applied in the context of interactive system design its usage
has been broadened beyond the original definition to include a wide range of de-
sign approaches that involve modelling activities. Therefore, a key question for the
nine participants of the working group was what constitutes model-based design?
The working group further reflected on the current state of the art in model-based
design, the limitations of the techniques and challenges for the future.

Introduction

The CADUI'96 workshop offered a timely opportunity to review progress in the
field of model-based design, to examine the current state of the art and to look to
future challenges. This paper reports the deliberations of one working group con-
vened during the workshop which reflected on these issues.

The nine participants in this working group shared common interests in model-
based design, automatic generation and task modelling, although they represented a
variety of backgrounds (industrial / academic, software engineering / psychology).
The working group was charged with addressing three discussion points:

 What models could or should be used in model-based design?
 How can the models be used at run-time?
 What are the limits / problems of model-based design?

328 Computer-Aided Design of User Interfaces

The discussion on each of these points is reported in sections 2, 3 and 4. However,
much of the available time was spent establishing a common ground for the dis-
cussion and reflecting on issues raised by the workshop so far. One important issue
for the group was the question of what constitutes model-based design; this is re-
ported in section 1 as it provides the basis for the remainder of the discussion.
Some general concerns were also voiced by the group.

For example, the observation that while a plethora of model-based techniques have
been reported recently in the research literature, there are few reports of industrial
application. Moreover, many of the systems are markedly similar in their capabili-
ties, suggesting that few advances are being made and that there is perhaps a ten-
dency to repeat the same mistakes in different systems.

It should be noted that due to timing constraints, the working group had only one
opportunity for discussion during the CADUI’96 workshop. This report has been
compiled from that discussion and subsequent contributions made by the partici-
pants.

1 What constitutes model-based design?

As a preliminary to considering the models that could or should contribute to de-
sign, a significant part of the discussion was devoted to addressing the question of
what constitutes model-based design. Participants had different interpretations of
the term model-based design. There was general agreement that the term originated
from domain modelling and problem solving literature in the AI community. Sys-
tems such as UIDE [Foley91] were probably the first to coin the term 'model-
based' in the context of user interface design, and had a clear connection to the use
of the term in AI. These systems incorporated declarative models, inference en-
gines and problem solving techniques. However, many of the approaches and sys-
tems presented at the CADUI’96 workshop would characterise themselves as
model-based, in spite of the fact that they make no use of problem solving tech-
niques.

This led into a discussion of what is a model, where there were two distinct views.
One view held that models are abstract declarative representations of real world
entities that can be used for reasoning, and that therefore a design technique is only
model-based if there is a tool providing some level of automation or reasoning.
The alternative view held that anything which provides an abstract representation
of some information may be regarded as a model, and that any design process
based around models could be termed model-based, irrespective of whether or not
the models are used for reasoning. The latter view appears to reflect the commonly
adopted terminology in the HCI community at present.

This currently accepted understanding of model-based development can be sum-
marised by this characterisation offered by one participant, Josef Voss:

 Reflections on Model-Based Design: Definition and Challenges 329

- model-based development works with a set of related models tailored to the
problem domain in general and the project under consideration;

- models are fixed points in the development process, guiding the progress from
abstract / user-centred concepts to system realisation;

- the development process itself can take various paths between these fixed
points;

- each model has a certain level of abstraction and provides a certain view of the
project.

A final discussion point on the theme of what is a model was "what is a task mod-
el"? Again, there were a number of different viewpoints, highlighting the fact that
people from different backgrounds had rather different perspectives.

Some comments were made concerning the appropriate level of abstraction for a
task model: should it describe the work that people do or should it give a detailed
account of their interaction with a particular system? This led to the question of
whether or not a task model can be independent of the technology.

The generally held view was that, at some level, a task model can be independent of
any specific interactive system, in the sense that it can be independent of the spe-
cifics of presentation details and of low-level interaction with particular widgets.
Other questions concerned whether hierarchy and sequencing should be expressed
in a task model, and, if so, how should they be represented.

2 What models could or should be used in design?

The discussion on this point attempted to understand what aspects of a design sit-
uation should be modelled during the design process. Given the time constraints,
the discussion was somewhat inconclusive and it was only possible to touch upon
some of the models that have contributed, or might contribute, to a model-based
approach. These included:

• problem domain models (including domain object models);
• task models (of existing and envisioned user tasks);
• user models;
• interaction models (at different levels of abstraction and including information

about dialogue and user interface components);
• models of design knowledge;
• implementation platform models.

These models do not represent all the information that is used during the design
process, nor are they ever likely to do so. The important point is that the models
should make explicit, and focus attention on, important information that might
otherwise be overlooked, and that they should do so in a manner which facilitates
the designer making use of the information in the creation of cost-effective and us-
able design solutions.

330 Computer-Aided Design of User Interfaces

3 How can the models be used at run-time?

Current model-based techniques are largely concerned with supporting interface
developers in the creation and realisation of interactive system designs. They are in-
tended for design-time use. Run-time use, on the other hand, means moving to-
wards supporting the users in their interaction with the resulting systems. Of
course, the fact that design models have the potential for run-time use does not
mean that it is necessarily a good idea to use them in this way. Further research is
required to determine how effective the design models might be in supporting the
users at run-time.

Many of the opportunities for run-time use rely on the fact that models created
during the design activities persist in machine-readable form in the run-time envi-
ronment. (However, there are also other 'run-time' uses for the models. For exam-
ple, a task model might be used as the basis for producing a training manual.) In
order to make use of design models at run-time, the run-time system must track
and maintain references between models. References in both directions are useful:
up-stream references from system-level models to user-level models, e.g. from a
button to a task description, and downstream references from user-level models to
system-level models, e.g. from a task action to a button. This would, for example,
allow help to be supported in both directions, “What does this button do?” and
“How can I accomplish this task?".

Different models offer different possibilities for run-time use: high-level models
such as task or domain models can be exploited in the provision of powerful help
systems. A user model can offer information, not just about user preferences, but
about forms of interaction or representations that might be appropriate for a given
user population performing a particular task. Lower-level models can support the
user by explaining the structure of the system itself and can provide a basis for user
modification /configuration of the system. For example, the interaction model
could be interpreted at run-time, facilitating configuration by users, or it could be
regenerated interactively at run-time, allowing modifications to be made at the level
of the task, user or problem domain models.

4 What are the problems / limitations of model-based
design?

There were two main thrusts to the discussion on this point. Firstly, the problems
and limitations of the model-based approaches in general were considered, and,
secondly, those of automatic generation in particular were addressed. Many of the
opinions expressed by participants in the working group reflected views voiced
elsewhere during the workshop, notably by Pedro Szekely during his plenary
presentation [Szekely96].

There was general consensus that model-based techniques have not, as yet, lived
up to the expectations and claims of their proponents by demonstrating their value

 Reflections on Model-Based Design: Definition and Challenges 331

in practice. It was suggested that we can only start to examine specific limitations
of model-based techniques after detailed study of realistic applications, of which
there are remarkably few at present. Certain data-centred approaches have been
successful in generating business-oriented applications where the emphasis is on
visualising and/or modifying form-based data, but the general worth of model-
based techniques has not been demonstrated for other types of interactive systems,
such as professional systems (e.g., medical equipment).

Some participants held the view that model-based design, and specifically model-
based generation, of user interfaces works best in restricted application domains
and for precisely defined work procedures such as the typical form-filling interfaces
for transaction processing mentioned above. Others questioned this view, believing
that while this may reflect the current state of the art, it is not an inherent limitation
of the approach.

Not surprisingly, a second point of discussion regarding the problems of model-
based design focused on the problems and limitations of automatic generation.
This had proved to be a contentious issue throughout the workshop. Some partici-
pants were wholly convinced of the merits of the idea and were keen to incorpo-
rate as much automation as possible into systems, with increasingly sophisticated
generator tools and complex design guidelines.

They offered arguments such as that this approach meant more rapid application
development times (by reducing the designer's workload), that it guaranteed the
generated system would meet some minimum standards, that it resulted in con-
sistency across user interfaces, etc. Other participants were less convinced, believ-
ing that automatic generation is a difficult problem and that it is therefore unrealis-
tic to expect any automated tool to ever be good enough. They cited reasons such
as the difficulties in coping with the diversity of application domains and the po-
tential lack of innovation or novelty in the generated design solutions (while auto-
mation might guard against bad design solutions, it was thought unlikely to result
in the 'best' solutions).

Further arguments centred on the observation that by the time design knowledge
has been assimilated and embodied in a set of sophisticated design guidelines, the
user interfaces generated by these tools tend to lag a generation behind current de-
velopments. While model-based techniques are currently approaching the point
where it is possible to generate limited WIMP type interfaces, current technology
has moved forward to multimedia and virtual reality systems.

It was felt that some form of design assistance, rather than full automation, could
be an alternative avenue to explore for supporting interactive system design. In this
scenario, automatic generation and manual development would be combined so as
to complement each other. For example, a transformation step starting with only a
part of the source model could be used to extend or complete a manually created
model. Automatic generation should be used primarily for activities that are tedious
to perform manually and are well understood (so that a body of design knowledge

332 Computer-Aided Design of User Interfaces

exists to guide the automation). For example, it could help with low-level prototyp-
ing or implementation activities, it could provide default translations between dif-
ferent models, or it could assist in model visualisation.

Finally, it should be noted that different forms of automatic generation are possi-
ble, some of which may be more or less feasible in practice and in their acceptabil-
ity to the design community. The term is usually taken to mean either the genera-
tion of abstract interaction models from task, user and problem domain models, or
the generation of concrete user interfaces from abstract interaction models and de-
sign guidelines. However, automatic generation can be used to produce resources
other than the interface itself. For example, task models could be used to generate
evaluation scenarios and test cases, while task models and abstract interaction
models could contribute to the generation of help systems.

5 Summary and future challenges

Within the working group there was some sense of reflecting on the state of the art
in model-based user interface design and on the future challenges for research and
development work in this field. To date, researchers have demonstrated that mod-
el-based techniques can support the design of interactive systems and have shown
how models capturing various forms of design information can contribute to such
a design process. They have also provided numerous examples of software tools to
support these techniques, for example, tools to support the construction of mod-
els, reasoning about models, or the generation of models.

The immediate challenge for the model-based design community is to offer evi-
dence of the practicality of these techniques. This requires the application of the
techniques to real world design problems and a more rigorous assessment of their
strengths and weaknesses in such use. In particular, we need to examine the validity
of claims such as "model-based techniques offer a cost effective approach to the
design of usable systems". How do the costs of a model-based approach compare
with those of other design techniques, and how effective are the resulting designs?
We need also to examine whether these techniques, and their supporting tools, are
capable of delivering systems in the technologies of today rather than yesterday.

Modelling is frequently a time-consuming, and therefore expensive, activity. The
added value of choosing to model certain information explicitly during design is
likely to vary between one design situation and another. Therefore, there are ques-
tions to be asked concerning the costs and benefits of modelling information ex-
plicitly, as opposed to leaving it implicit in the design context. For example, what,
if any, is the added value of using explicit user models? Similar questions must be
asked of the tools. We need to determine where software tools are the most effec-
tive approach to supporting design-time modelling activities, and where other ap-
proaches might be more appropriate (e.g., paper-based models). Likewise, we need
to investigate where model-based tool support might genuinely enhance the user's
interaction with a system at run-time.

 Reflections on Model-Based Design: Definition and Challenges 333

The final challenge discussed by the working group lies in the area of automatic
generation. Can we reconcile the two opposing schools of thought evident at the
CADUI'96 workshop, with one party eager to increase the level and sophistication
of automation, while others believed that, at some level, design decisions are best
left in the hands of the designer? The group felt that some compromise may offer
the best solution by taking advantage of the strengths of each approach.

