
Model-Driven Engineering of User Interfaces:
Promises, Successes, Failures, and Challenges

Jean Vanderdonckt
Belgian Laboratory of Computer-Human Interaction (BCHI),

Louvain School of Management (IAG), Université catholique de Louvain,
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

Phone: +32 10/478525 – Fax: +32 10/478324 – Skype: jeanvdd1712

jean.vanderdonckt@uclouvain.be, http://www.isys.ucl.ac.be/bchi/members/jva
http://www.usixml.org, http://www.similar.cc, http://www.openinterface.org

ABSTRACT
Model-driven engineering (MDE) of user interfaces consists in
describing a user interface and aspects involved in it (e.g., task,
domain, context of use) in models from which a final interface
is produced. With one big win in mind: when the user’s re-
quirements or the context of use change, the models change ac-
cordingly and so does the supporting user interface. Models and
a method for developing user interfaces based on MDE are pre-
sented in this tutorial supporting forward engineering (a new in-
terface is produced), reverse engineering (an existing interface
is improved), and lateral engineering (an existing interface is
adapted to a new context of use). Software supporting this
method will be used based on UsiXML (User Interface eXten-
sible Markup Language), a XML-compliant user interface de-
scription language.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided software engineering (CASE), Evolutionary
prototyping, Structured Programming, User Interfaces. H.5.2
[Information Interfaces and Presentation (e.g., HCI)]: User
interfaces – Graphical user interfaces, Interaction styles, Input
devices and strategies, Prototyping, Voice I/O.

General Terms
Design, Experimentation, Human Factors, Standardization,
Languages.

Keywords
Domain model, model-driven architecture, model-driven engi-
neering, model-to-model transformation, model-to-code trans-
formation, software quality, task model, user interface descrip-
tion language, user interface model.

1. INTRODUCTION
In the past, many attempts to establish a comprehensive model-
driven approach for developing the User Interface (UI) of an in-
teractive application have been launched: from information re-
lated task (what are the actions carried out by the user), domain
(what are the objects manipulated in this task), user (who is the
user), platform (what is the computing platform), environment
(in which environment is the user working), the presentation,
the dialog, the help, the tutorial of one or many UIs should be

derived. Today, no consensus has been reached and no method
has really emerged from these initiatives, namely by lack of
standardization, but also because the aims and goals may
largely vary from one interactive application to another. In this
paper, we would like to review the main principles that under-
pin model-driven engineering of user interfaces in order to
make the promises of this methodology more explicit. Then, we
would like to examine more closely the three dimensions of
such a methodology (i.e., the models, the method, and the tools)
in order to discuss some successes and failures of this kind of
methodology. Finally, we would like to conclude by identifying
a series of challenges that should be solved for the future for
unlocking the breaks that remain unsolved. Since 1997, the Ob-
ject Management Group (OMG – www.omg.org) [28] has
launched an initiative called Model-Driven Engineering (MDE)
to support the development of complex, large, interactive soft-
ware systems providing a standardized architecture with which:

– Systems can easily evolve to address constantly evolving
user requirements.

– Old, current and new technologies can be harmonized.
– Business logic can be maintained constant or evolving in-

dependently of the technological changes.
– Legacy systems can be unified with new systems.
In MDA, a systematic method is recommended to drive the de-
velopment life cycle to guarantee some form of quality of the
resulting software system. Four principles underlie the OMG’s
[28] view of MDA [3,17,20,25]:

1. Models are expressed in a well-formed unified notation and
form the cornerstone to understanding software systems for
enterprise scale information systems. The semantics of the
models are based on meta-models.

2. The building of software systems can be organized around a
set of models by applying a series of transformations be-
tween models, organized into an architectural framework of
layers and transformations: model-to-model transforma-
tions support any change between models while model-to-
code transformation are typically associated with code pro-
duction, automated or not.

3. A formal underpinning for describing models in a set of
meta-models facilitates meaningful integration and trans-
formation among models, and is the basis for automation
through software.

4. Acceptance and adoption of this model-driven approach re-
quires industry standards to provide openness to consumers,
and foster competition among vendors

In this approach, models are applied in all steps of development
up to a target platform, providing source code, deployment and
configuration files,… MDE has been applied to many kinds of
business problems and integrated with a wide array of other
common computing technologies, including the UI area.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ROCHI’08, September 18–19, 2008, Iasi, Romania.
Copyright © 2008 Jean Vanderdonckt.

Not all model-driven UI development environments or devel-
opment methods can pretend to be compliant with these princi-
ples. If we apply OMG’s principles to the UI development life
cycle, it means that models should be obtained during steps of
development until providing source code, deployment and con-
figuration files. MDA has been applied to many kinds of busi-
ness problems and integrated with a wide array of other com-
mon computing technologies. The following definition was ap-
proved unanimously by 17 participants of the ORMSC plenary
session meeting in Montreal on 23-26 August 2004. The stated
purpose of these two paragraphs was to provide principles to be
followed in the revision of the MDA guide.

MDA is an OMG initiative that proposes to define a set of
non-proprietary standards that will specify interoperable
technologies with which to realize model-driven develop-
ment with automated transformations. Not all of these tech-
nologies will directly concern the transformation involved in
MDA. MDA does not necessarily rely on the UML, but, as a
specialized kind of MDD (Model Driven Development),
MDA necessarily involves the use of model(s) in develop-
ment, which entails that at least one modeling language
must be used. Any modeling language used in MDA must be
described in terms of the MOF language to enable the meta-
data to be understood in a standard manner, which is a pre-
condition for any activity to perform automated transforma-
tion.

This definition emphasizes that models are not enough in order
to have a fully-MDA compliant UI development environment.
Some environments may includes models, but do not rely on a
transformational approach as there in no transformation engine
based on explicit transformations rules that can be edited by the
designer. Or because there is no genuine modelling language
behind. It is not just because there is a XML language that a
genuine modelling language may exist. This demonstrates that
in order to have a full MDA development methodology (and
not just a tool), three dimensions should be covered [2]:

1. A genuine UI model or set of related models that are
strongly defined based on a trilogy (semantics, syntax, sty-
listics) as any language should be defined [35]. Offering a
XML language does not necessarily include this trilogy.
Therefore, a UI model should be supported by a User Inter-

face Description Language (UIDL) or modelling language
that cover this trilogy.

2. A development method that is explicitly based on the previ-
ously introduced models and that provides explicit meth-
odological guidance and support to designers and to all
people who are involved in the Software Development Life
Cycle (SDLC).

3. A tool (or a suite of software tools) that support the enact-
ment of the development method. It is not because a tool is
available that a development method has been rigorously
defined. Of course, a tool may induce some method, but this
process remains poorly defined in a way that is implicit to
the tool. A tool should be explicitly developed in order to
support a development method, and not just what we have
in mind.

These three dimensions of a genuine development methodology
(or approach) will be addressed in the next sections. First, a
general outline and framework will be given, then a particular
section will be devoted to each dimension: models, method, and
supporting tool.

2. TOWARDS A MDE-COMPLIANT
APPROACH FOR USER INTERFACE
DEVELOPMENT

Our main goal is to examine the experience gained by existing
model-driven approaches for developing UIs and to introduce
the audience to the development of UIs based on MDE based
on this experience. The particular objective is to teach how to
practically setup, deploy, and apply a MDE-compliant ap-
proach. The one that is outlined here is based on UsiXML (User
Interface eXtensible Markup Language – http://www.usixml.
org) as a UIDL, but the observations are independent of this
language and could be equally applied to other UIDLs such as
UIML [15], XIML (www.ximl.org). In [35], we explain that
one single UIDL does not fit all and that it is impossible to find
out in one UIDL all the qualities required to successfully run a
MDE-compliant approach. This UI description language is uni-
formly used throughout the different steps of a MDE-compliant
development life cycle to store the models involved in the vari-
ous processes.

Figure 1. The MDE-compliant approach for UI development based on UsiXML.

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface

Rendering

Final user
interface

UsiXML
models: task,

domain
Generative

programming

Graph
transformations

Graph
transformations

Derivation rules

IdealXML

ReversiXML

FlashiXML, QtkXML
GrafiXML, InterpiXML

VisualiXML

TransformiXML

GrafiXML, VisiXML
SketchiXML, FormiXML

PlastiXML, ComposiXML

KnowiXML

UsiXML Method engineering

Computing-Independent
Model (CIM)

Platform-Independent
Model (PIM)

Platform-Specific
Model (PSM)

Code

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface

Rendering

Final user
interface

UsiXML
models: task,

domain
Generative

programming

Graph
transformations

Graph
transformations

Derivation rules

IdealXML

ReversiXML

FlashiXML, QtkXML
GrafiXML, InterpiXML

VisualiXML

TransformiXML

GrafiXML, VisiXML
SketchiXML, FormiXML

PlastiXML, ComposiXML

KnowiXML

UsiXML Method engineering

Computing-Independent
Model (CIM)

Platform-Independent
Model (PIM)

Platform-Specific
Model (PSM)

Code

Figure 1 outlines the MDE-compliant approach for developing
UIs decomposed into four major steps that result from the
Cameleon Reference Framework [4,40]:

1. Task and domain modelling (corresponding to the Com-
putting-Independent Model –CIM– in MDE): where a
model is provided for the end user’s task, the domain of ac-
tivity and, if needed, the context of use (user, platform, and
environment). This step is supported by IdealXML [34].
Fig. 2a graphically depicts a task model expressed accord-
ing to CTT notation [31]. This task model has been ex-
tended with new task types, attributes, and relationships.

2. Abstract User Interface (corresponding to the Platform-
Independent Model –PIM– in MDE): this level describes
potential user interfaces independently of any interaction
modality and any implementation technology. It defines ab-
stract containers and individual components, two forms of
Abstract Interaction Objects by grouping subtasks accord-
ing to various criteria, a navigation scheme between the
container and selects abstract individual component for
each concept so that they are independent of any modality.
An AUI abstracts a CUI into a UI definition that is inde-
pendent of any modality of interaction (e.g., graphical in-
teraction, vocal interaction, speech synthesis and recogni-
tion, video-based interaction, virtual, augmented or mixed
reality). An AUI can also be considered as a canonical ex-
pression of the rendering of the domain concepts and tasks
in a way that is independent from any modality of interac-
tion. An AUI is considered as an abstraction of a CUI with
respect to interaction modality. At this level, the UI mainly
consists of input/output definitions, along with actions that
need to be performed on this information. This step is also
supported by IdealXML [34]. Fig. 2b graphically repro-
duces a AUI.

3. Concrete User Interface (corresponding to the Platform-
Specific Model –PSM– in MDE): this level describes a po-
tential user interface after a particular interaction modality
has been selected (e.g., graphical, vocal, multimodal). This
step is supported by several tools helping designers and de-
velopers to edit, build, or sketch a user interface. For in-
stance, SketchiXML [6,7] (figure 3), GrafiXML [24], For-
miXML, ComposiXML [18], PlastiXML [5] and VisiXML
for graphical user interfaces. It concretizes an abstract UI
for a given context of use into Concrete Interaction Objects
(CIOs) so as to define widgets layout and interface naviga-
tion. It abstracts a final UI into a UI definition that is inde-
pendent of any computing platform. Although a CUI makes
explicit the final Look & Feel of a final UI, it is still a
mock-up that runs only within a particular environment. A
CUI can also be considered as a reification of an AUI at the
upper level and an abstraction of the final UI with respect
to the platform. Fig. 2c reproduces a CUI for a graphical
target environment. Each tool pursues a particular goal.
Some of them will be exemplified into more details later on
in this paper.

4. Final User Interface (corresponding to the code level in
MDE): this level is reached when the code of a user inter-
face is produced from the previous levels. This code could
be either interpreted or compiled. We hereby define a ren-
dering engine as a software component (or set of compo-
nents) that are able to interpret a UsiXML file expressed at
the CUI level and to run it or a code compiler that (semi-
automatically generate code from a UsiXML file expressed
at the CUI level. Another level could be imagined as well,
but does not present any particular interest. Fig. 2d deter-
mines a final UI corresponding to the CUI given in Fig. 2c.

Task & domain

AUI level

CUI level

FUI level

Task & domain

AUI level

CUI level

FUI level

Figure 2. The four levels: (a) task and domain, (b) abstract

UI, (c) concrete UI, and (d) final UI.

Figure 3. SketchiXML, a tool for sketching a user interface.

3. MODELS
Before examining closely what are the challenges regarding the
‘models’ dimension, let us detail more the models of concern in
UsiXML. UsiXML is a collection of models for specifying a
UI, some of them being used to support a particular level, some
other being used to support a transition from one level to an-
other:

• Task model: is a model describing the interactive task as
viewed by the end user interacting with the system.

• Domain model: is a description of the classes of objects
manipulated by a user while interacting with a system.

• Mapping model: is a model containing a series of related
mappings between models or elements of models.

• Transformation model: Graph Transformation (GT) tech-
niques based on AGG [9] were chosen to formalize explicit
transformations between any pair of models, except from
the FUI level.

• Context model: is a model describing the three aspects of a
context of use in which a end user is carrying out an inter-
active task with a specific computing platform in a given
surrounding environment. Consequently, a context model
consists of a user model, a platform model, and an environ-
ment model. Each of these three facets is itself a model.

• auiModel: is the model describing the UI at the abstract
level as previously defined.

• cuiModel: is the model describing the UI at the concrete
level as previously defined.

• Process model: is a model organizing tasks in time and
space in order to form high-level business processes.

• Workflow model: is a model structuring business processes
into a workflow information system.

• Resource model: is a model specifying resources that can
be consumed by tasks specified in task models.

In UsiXML, the uiModel is the topmost super class containing
common features shared by all component models of a UI that
may contain any combination of the aforementioned models.
This raises the following intertwined challenges that are related
to models only. It does not depend from any method relying on
these models. But a difficulty already raised at this level may
be exacerbated at the next level.

C1. Need to ensure quality properties of a model
Each used model should in principle benefit from a certain
amount of quality properties. Table 1 summarizes some of these
properties and Meyer’s seven sins of specification reformulated
in order to address modeling quality. For instance, a model
should be at least complete, consistent, and correct. This is a
heavy assumption that is rarely met. A model is rarely complete
because it suffers from an intrinsic incompleteness. But once it
is written, it could be consistent and correct. Model checking
techniques can automate this process.

C2. Need to cover semantics, syntax, and stylistics
Continuing with the language definition one can say that syntax
deals solely with the form and structure of symbols in a lan-
guage without any consideration given to their meaning. The
abstract syntax is defined as the hidden structure of a language,
its mathematical background. FlowiXML [14] uses directed
graph as abstract syntax. A concrete syntax is an external ap-
pearance; the visual syntax consists of boxes and arrows, a
somewhat classic representation for a graphical structure. This
visual syntax will be mainly used to in this work as an expres-
sion means for the transformation rules that are going to be de-
veloped in a future. The textual syntax is described using an
XML-based language. The objective of stylistics is to provide a
representation of a set of defined objects in order to facilitate
their understanding and manipulation in tools. The representa-
tion can be of different types (e.g., graphical, textual). If one of
the three aspects of the trilogy (semantics, syntax, stylistics) is
not rigorously defined, one may fail to ensure the quality prop-
erties defined in Table 1. For instance, a UIDL suffering from
no semantics may suffer from incorrection, lack of expressive-
ness, and lack of separability. A UIDL suffering from no stylis-
tics may suffer from stylistic incompleteness and, therefore,
from lack of expressiveness.

Property Definition
Completeness Ability of a model to abstract all real world aspects of interest via appropriate concepts and relations
Stylistic com-
pleteness

Ability of a model to represent all real world aspects of interest via appropriate stylistics of the concepts and
relations

Consistency Ability of a model to produce an abstraction in a way that reproduces the behaviour of the real world aspect of
interest in the same way throughout the model and that preserves this behaviour throughout any manipulation
of the model.

Correction Ability of a model to produce an abstraction in a way that correctly reproduces the behaviour of the real world
aspect of interest

Expressiveness Ability of a model to express via an abstraction any real world aspect of interest
Concision Ability of a model to produce concise, compact abstractions to abstract real world aspects of interest
Separability Ability of models to univocally classify any abstraction of a real world aspect of interest into one single model

(based on the principle of Separation of Concerns from Dijkstra [8])
Correlability Ability of models to univocally and unambiguously establish relationships between models to represent a real

world aspect of interest
Integrability Ability of models to concentrate and integrate abstractions of real world aspects of interest into a single model

or a small list of them.
Meyer’s speci-
fication sin [23]

Definition

Noise Characteristic of a model that abstract aspects that do not correspond to anything in the real world aspects
Silence Characteristic of a model that does not abstract a real world aspect
Contradiction Characteristic of a model that provides two or more different abstractions of the same real world aspect, but in

different ways that raise a contradiction between them
Surspecification Characteristic of a model that overly abstracts a real world aspect into unneeded abstractions
Ambiguity Characteristic of a model that provides two or more abstractions of the same real world aspect without know-

ing which one corresponds truly to the real world aspect
Redundancy Characteristic of a model that provides two times the same abstraction (or more) of the same real world aspect
Incoherence Characteristic of a model that provides an abstraction that does not reflect the true behaviour of a real world

aspect
Table 1. Quality properties of a model and the Meyer’s seven specification sins.

C3. Difficulty of identifying the minimal amount of models
In order to ensure a particular development path, it is not com-
pulsory to define all models for a particular interactive system.
Rather, there is a strong need to identify first which models are
needed, and to which level of modeling, and then to proceeding
with them until the final UI. Depending on the project type and
resources, fewer or more models could be used. On the one
hand, only a CUI is required to get a final UI, whether it is in-
terpreted or compiled. This is for a minimum budget. On the
other hand, one may really go through all the four levels as out-
lined in Fig. 1 whether budgets permits. In this case, it is ex-
pected that the resulting quality will be better and that the
specifications resulting from this process will generate wins.
Between these two extremes positions, it is always difficult to
identify which models are needed, which models to start from,
which models to obtain progressively. Method engineering [37]
is trying to address this challenge particularly.

C4. Risk of Model Proliferation
The more complicated the final UI is, the more models are
needed and the more relationships between these models should
be established to ensure correlability, while maintaining sepa-
rability. This may result into a model proliferation that may re-
duce the attractivity and the feasibility of the complete method-
ology. For instance, a task model may be needed in some cir-
cumstances. But even when it is needed, it is perhaps not
enough [29].

4. METHOD
MDE-compliant development of UI have also recognized
methodological advantages:
1. Advantages in terms of methodology: It is a widely

accepted software engineering principle to start a software
development cycle with a specification stage. The MDE
supports a user-centred and UI-centred development life
cycle: it lets designers work with tasks, users and domain
concepts instead of thinking in engineering terms.

2. Advantages in terms of reusability: In a multi-target
context [4], MDE tools can provide automatic portability
across the different targets [26]. The availability of a
complete description of the interface in a declarative form
allows the reuse of some interface components [26].

3. Advantages in terms of consistency: This approach ensures
some form of consistency between the early phases of the
development cycle (i.e., requirements analysis,
specification) and the final product [25]. In a multi-target
context [4], it also guarantees a minimal consistency
between the UI generated for different targets. This is not
always possible when using traditional techniques where
the development of each version of the UI is likely to be
performed separately.

Therefore, we are facing some more challenges that are
pertaining to the method dimension.

C5. Support annotation-based UI design
Not all information related to the UI objects can be captured in
any existing UI builder that fits all the purposes. This is also
applicable to UsiXML: although a conceptual representation is
maintained, e.g. for both a CUI and a AUI, possibly along with
a context model, it cannot capture all design aspects through the
underlying model. Therefore, there is a need to provide some
support for annotation-based design. An annotation is defined
as any information captured at UI design-time that needs to be
further exploited in the remainder of the UI development life
cycle. It could be a guideline for a model-to-code generator, a

model-to-model transformation engine, or simply for human
purposes. Several types of annotations are defined: Presenta-
tion (any guideline related to presenting information such as a
metric, a convention), Specification (any guideline related to
the connection with the data base, such as the data type), Veri-
fication (any syntactical or semantic constraint to be verified,
such as a mask, a profile, or a regular Perl expression), Discus-
sion (any design consideration that requires further attention
and refinement) and Tools (any guideline that will be exploited
later on by other software for automatic processing). All these
annotation types have options such as task, domain for Specifi-
cation, description for Presentation, etc. For instance,
SketchiXML is a multi-fidelity [7] software for sketching a UI
which can export a UI into a UsiXML file. This file can then be
in turn imported in GrafiXML [24] and refined. Or in the other
way around. When multiple designers collaborate in the design
case, an annotation can be refined with a sub-type such as “de-
cision”, “proposition” or “argumentation” to capture at design-
time multiple or alternative UI design considerations and facili-
tate the decision. An annotation can be augmented by text, im-
age (e.g. a drawing), sound or voice (e.g., a vocal comment).
Annotations are saved in the UsiXML description.

C6. Support (de)composition
Composition or decomposition of the UI elements may occur in
any situation when previously defined or existing elements
should be reused for another project or interactive system. In
particular, the problem of multi-device UIs [26] has received a
lot of attention that concluded on a plethora of approaches and
algorithms [10]. For instance, a GrafiXML plug-in, called
ComposiXML [18], has been developed in order to compose
and decompose existing GUIs. In UI builders, UI recomposition
is traditionally performed by copying and pasting UI controls
of interest from one UI to another one, thus requiring many
manual adjustments such as alignment, resizing, reshuffling.
These operations, although simple, are often perceived as tedi-
ous [27]. To overcome these shortcomings, the Operator allows
the designer to select one or two GrafiXML projects, that is one
or two UsiXML files, and make some composition or decom-
position operations on these UI, which are as follows (Fig. 4):

 Unary Operators: these operators are used to operate on a
single UI at a time. They are used to filter, remove widgets
or change a kind of widget by another.

 Binary Operators: these operators are used to compose a
single UI from different UIs. You can choose to remove
duplicated items or select only those items. For instance, we
can merge three windows into a single one in a single logi-
cal operation.

Figure 4. Unary and binary operators offered by

ComposiXML.

C7. Support multi-path development of UIs
Even if a method is properly structured according to the well-
identified MDE levels, it does not mean that it will fit the de-
velopment procedures established since a long time in a par-
ticular organization. These procedures are hard to change not
only because of the habitudes but also because of the cost in-

duced by this change. For instance, a particular organization
may prefer to have a top-down forward engineering approach,
while another may prefer a bottom-up reverse engineering ap-
proach. When several different UIs should be produced for
multiple targets, diagonal engineering [40] may be also pur-
sued. This all stems for a framework that supports multiple de-
velopment paths possible with the same models and language.

C8. Support multi-fidelity
Because building a model is a complex and long process that
does not come up with a complete, rigorously defined, model
after the first step, it is perhaps desirable to allow designers to
build models progressively, with varying levels of details.
When such a model should be validated with the corresponding
stakeholders, there is also a need to present a model in a way
that is understandable to these stakeholders, and not in a way
that prevent them to make any valuable comment on the model.
For all these reasons, a same model could be approached with
multiple levels of fidelity, ranging from none to low-fidelity to
high-fidelity, with the capacity to smoothly move from one
level of fidelity to another. This notion has been successfully
applied to UI sketching [7 and to interface specifications [22].
This notion could be generalized to any kind of model.

C9. Support method engineering
As a corollary of the multi-path development challenge appears
also a need to help method engineers to develop themselves the
method they want, with the tools they want operating on the
model they want. Therefore, these preferences could be cap-
tured a tool that fosters method engineering, instead of merely
model engineering. Once a method has been properly defined,
it can be applied in a straightforward way by the members of a
development team. This method can also be refined, extended,
modified to give another method definition. Each method defi-
nition gives raise to method enactment [36,37].

5. SUPPORTING TOOLS
MDE has been the target of some major criticisms regarding
their supporting tools [27,38]. The main shortcomings
commonly cited are:
1. High threshold (C10): the designers need to learn a new

language in order to express the UI specifications.
2. Low ceiling (C11): each model-based systems has strict

limitations on the kind of UIs they can produce and the
generated UIs are generally not as good as those that could
be created with conventional techniques.

3. Wide walls (C12): model-driven systems do not support a
wide range of possible explorations.

4. Unpredictability (C13): it is difficult to understand and
control how the specifications are connected with the final
UI. Therefore, the results may be unpredictable.

5. Lack of propagation of modifications (C14): changes made
to one model or to the final UI are generally not propagated
to the other levels of specification.

6. System dependent and private models (C15): a lot of models
are strongly tied to their associated model-based system and
can not be exported. Furthermore, some model specifica-
tions are neither publicly available, nor obtainable via a
license

Most of these problems could be addressed, at least partially:
1. High threshold: most models can be built graphically in a

design environment, which prevents users from learning the
specification language. Even if the designers have to learn
the specification language, the automation of a portion of
the development should reduce the development effort.

2. Low ceiling: we believe that this criticism holds only for a

specific kind of model-based generation tool, which
generates the UI starting from very high level models (Task
Model and/or Domain Model).

3. Wide walls: our approach considers a design space that
benefits from a generative intrinsic quality. This enables
designers to add design options or new values for the
existing ones thus offering the possibility to extend the
range of exploration.

4. Unpredictability: our approach relies on an explicit set of
rules, fully documented and accessible. It offers the
designer full control on the selection of those rules. The
results of the application of a rule may be previewed.

5. Lack of propagation of modifications: although the problem
of the impact of a modification made on a given model over
the other models remains a tricky one, we will attempt to
determine the side effects on the other models entailed by
the application of a given rule.

6. System dependent and private models: we will make use of
a UI description language publicly and freely available.

It is expected that the capabilities and the quality of
automatically generated UIs and interactive applications will be
expanding step by step and that in the future, perhaps a point
will be reached where the capabilities of an interface builder as
included in an Integrated Development Environment (IDE) and
a MDE-compliant environment will become comparable. Many
tools turn out to be more focused on requirements management
than on providing support in extracting requirements from user
needs and translating them into good UI design. After all, de-
spite - or perhaps precisely because of - the vast functionality
of many tools, the outcome often is unsatisfactory in terms of
UI design, usability and aesthetics. This is described as the high
threshold - low ceiling phenomenon of UI tools [27]. In order to
easily produce some results with reasonable efforts, an IDE
should have a low threshold: the threshold with which one can
obtain a reasonably good UI should be as low as possible [21].
On the other hand, an IDE should have a high ceiling: the maxi-
mum overall performance of the IDE should be as high as pos-
sible. To these two dimensions, one usually adds a third one:
wide walls (Fig. 5). An IDE should have walls that are as wide
as possible, thus meaning that the range of possible UIs that can
be obtained via the IDE should cover as much different UIs as
possible.

Figure 5. Threshold vs ceiling vs walls for expressing the capa-

bilities of IDEs

Capabilities

Resources
(time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

S
ec

on
d

ge
ne

ra
tio

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts

UI ty
pes

Walls

Capabilities

Resources
(time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

S
ec

on
d

ge
ne

ra
tio

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts

UI ty
pes

Walls

6. GLOBAL CHALLENGES
In order to see MDE becoming more successful in the near fu-
ture, we believe that the following global challenges need to be
addressed explicitly and carefully, in addition to those cited.

C16. Need for a common User Interface Description Lan-
guage (UIDL): in order to share files between tools and make
them interoperable. But also in order to foster incrementality of
efforts. Over years, we have seen too many efforts separated,
thus replicating some efforts that have been previously
achieved, before adding a new value. We have seen this situa-
tion too many times in order not to recommend that we all use
at least a same base of a UIDL. This does not mean again that a
single UIDL will fit all, as proved in [35]. But at least there will
be some incremental efforts based on a shared definition of a
UIDL. For this purpose, the UIML (User Interface Markup
Language – www.uiml.org) [15] is adopting an approach where
only the minimal amount of abstractions are defined and ma-
nipulated. This solution has the advantage of being lightweight
all the time, but has the disadvantage that its expressivity is re-
duced.

C17. Need for improved effort incrementality
Having a common UIDL is already one fundamental step to-
wards improving incremental research/development efforts. But
it is a necessary, but insufficient, condition. Supporting tools
should be developed in such a way that the basic model opera-
tions and algorithms should be made easily accessible and reus-
able. This is rarely the case, even with modern software like
Teallach [13], Teresa [26], MultimodaliXML [34], and Win-
dows transitions [39].

Figure 6. A “Minority report”-like interface based on glove.

C18. Need for advanced modeling for dynamic aspects.
Among all models, the dialog model is probably the one that
received the least attention over the past two decades [19].
Therefore, there is an important effort to consent in order to
come up with abstractions of behavioural aspects that may span
over the four levels of abstraction [41]. This need is even more
important as more dynamic aspects occur in recent applications
(e.g., Rich Internet Applications, Web 2.0) that are not yet cov-
ered by an appropriate model. They are therefore left out. Simi-
larly, behavioural aspects are little or no subject to modeling in
very complex applications, such as in virtual or augmented re-
ality, apart perhaps the presentation aspects. Only recently,
some of these advanced systems have been subject to a MDE
approach because of their complexity. This may include, but
not limited to: glove-based UIs [11] (fig. 6), 3D UIs [12] (Fig.
7), UI of workflow information systems [14] (fig. 8), haptic UI
[16], UI specifications [21], multimodal UIs [30,34].

C19. Need for powerful transformation and rendering en-
gines
The attractivity of a MDE is directly proportional to the power
of its rendering engines: the more abstractions a rendering en-
gine can produce, the more attractive it is. This is again ex-
plained by the low-threshold – high ceiling principle. Some
commercially available tools, such as Oliva Nova® [25] exhibit
enough rendering capabilities to become credible, but this is
rarely the case of rendering engines produced by the research
community. Saying that the tool T automatically generates code
C from a model does not necessarily imply that the full power
of the resulting C language is used. Too often, only a minimal
subset is used that diminishes this attractivity. Moreover, hav-
ing powerful rendering engines is not enough. One may become
happy with the results generated by such a rendering engine,
but there will be always another person willing to change these
results. Several reasons explain this need: the desire to keep
control over an application, the need to be compliant with a
particular style guide, the need to cope with user preferences
that were not considered in the MDE approach. Therefore, there
will be always a need to tweak the results of a MDE here and
there, particularly at the very end. This process is often referred
to as the beautification [32]. Various solutions exist to address
the tweaking problem and its beautification, such as manual
tweaking, template-based modifications [25], and transforma-
tion profiles [1]. The survey of transformation engines deliv-
ered in [33] clearly shows that most of these transformation en-
gines support little or no beautification.

Figure 7. (a) a Final UI produced in VRML; (b) manual ed-

iting of this final UI in a 3D editor (Alice).

Figure 8. FlowiXML, a graphical editor for workflow UIs.

Figure 9. Utilizing INSPECTOR for collaborative meetings

at a megapixel powerwall. © Univ. of Konstanz [21,22]

C20. Need to ensure model traceability
Each time a MDE approach is enacted, there will be a need to
ensure the traceability between the models used in this ap-
proach. This is partially explained by the C14 challenge (need
for propagation), but this is also highly desired in order to keep
an accurate history of the SDLC that has been applied for a par-
ticular case. At any time questions like the following may be
raised: to what part of the task model does this UI fragment cor-
respond to? If I change this UI fragment, what should I change
in the models that I have written in order to obtain this UI
fragment? What is the cost of this modification propagation?
How can I reuse UI fragments that have been derived from a
task and a domain model, but in another project? Whatever the
inputs of a MDE will be, this need will stay forever. For in-
stance, if I start my MDE with a task and domain models, I will
always have the problem of maintaining the correlability be-
tween the models and the ones resulting from them until the fi-
nal UI. If I am using other models, like business processes (Fig.
9), the need will be exactly the same: a need for alignment be-
tween UI model and business processes [36]. Forever, there
will be a better connection between models wished: so that UIs
can be recuperated and transferred easily.

Figure 9. Example of a traceability established between a

task model resulting from business processes and UI.

7. CONCLUSION
In this paper, we identified and discussed twenty challenges
that we sincerely believe fundamental for MDE of UIs to be-
come successful. Some of them are really at hand while some
other may require considerable efforts.

In order to become really efficient and effective, Model-Driven
Engineering of User Interfaces has to face several challenges.
Some of them have been identified and discussed in this paper.
But probably the most difficult one is that the need for raising
the level of abstraction will face more and more complicated
aspects to abstract. The abstractions of the future will take time
to be discovered, will be more complex to describe, and even
more complex to generate. The more advanced the UI will be,
the more complicated the abstractions will become and the
more powerful the rendering engines should become. This is
why MDE of UIs is more efficient in specific domains where
abstractions are mastered and where repetitive systems should
be produced.

MDE of UIs could be sometimes compared with respect to tra-
ditional Software Development Life Cycles in the same way
homeopathy is compared with respect to general medicine. So
far, there has been little or no proof that homeopathy really cure
a disease, but it has been successfully used for very determined
symptoms that sometime general medicine experience some
trouble to cure with. MDE of UIs is like that.

In the near future, we will be trying to articulate research/-
development efforts around the software architecture that is de-
picted in fig. 10. In this figure, we are relying on principles of
modelware, where a model repository remains at the core of the
entire software architecture. At the periphery gravitates a series
of tools supporting the various steps of a method defined in a
method engineering. In this area, it is expected that a method
engineer will be able to properly define a MDE-compliant
methodology based on the project constraints and context. Once
defined, the method can be enacted though method engineering
tools that distribute the steps over time and space. In this way,
it is expected that the various members of the development
team will be able to clearly see where the project status is, what
is the current progress, and what are their next task in the
method that has been previously defined. This method engi-
neering process largely reinforces the cohesion between the
members, even if they are working remotely (as in outsourc-
ing). Each step can be therefore achieved in a manual way, in
an automated way, with mixed-initiative or by a borker that
manages the constraints between the designer, the system, and
their interaction.

Figure 10. An overview of the UsiXML future software ar-

chitecture for model and method engineering.

Multi-view
Model editor Browser Validator Repair

tool

Model repository of
UIDLmodels

UIDL cases repository
UIDL model patterns

UIDL XML Schema
Definition

Syntax
errors

Model checker

Design assistance tools

UIDL to - - -
rendering engines

WAP definition

C++, Java code

VoiceXML definition

SHTML definition

HTML definition

. . .

Model initiator

Model transformation engine

Model binder

Guideline evaluator Design, evaluation
Guidelines bases

Knowledge
bases

Localizer/globalizer

Data base
generator

Data bases

Case-Based Reasoning engine

Intelligent
agents

Model manager

SchematizerMeta-model
editor

Meta-
models

Model properties
Multi-view

Model editor Browser Validator Repair
tool

Model repository of
UIDLmodels

UIDL cases repository
UIDL model patterns

UIDL XML Schema
Definition

Syntax
errors

Model checker

Design assistance tools

UIDL to - - -
rendering engines

WAP definition

C++, Java code

VoiceXML definition

SHTML definition

HTML definition

. . .

Model initiator

Model transformation engine

Model binder

Guideline evaluator Design, evaluation
Guidelines bases

Knowledge
bases

Localizer/globalizer

Data base
generator

Data bases

Case-Based Reasoning engine

Intelligent
agents

Model manager

SchematizerMeta-model
editor

Meta-
models
Meta-
models

Model properties

Task Model User Interface

8. ACKNOWLEDGMENTS
Most of the research and the development of UsiXML and the
contents of this paper has been initiated by the European pro-
ject CAMELEON (Context Aware Modelling for Enabling and
Leveraging Effective interactiON, FP5-IST4-2000-30104) and
continued under the auspices of SIMILAR (FP6-IST1-2003-
507609, http://www.similar.cc), the OpenInterface Foundation
(FP6-IST4, www.openinterface.org) and the UsiXML Consor-
tium (www.usixml.org).

9. REFERENCES
[1] Aquino, N., Vanderdonckt, J., Valverde, F., Pastor, O. Us-

ing Profiles to Support Model Transformations in Model-
Driven User Interfaces Development. In Proc. of 7th Int.
Conf. on Computer-Aided Design of User Interfaces
CADUI’2008 (Albacete, 11-13 June 2008). Springer, Ber-
lin (2008)

[2] Bodart, F., Pigneur, Y. Conception assistée des systèmes
d’information : modèles, méthode, outils. Dunod, Paris
(1989)

[3] Brown, A. An introduction to Model Driven Architecture -
Part I: MDA and today’s systems. The Rational Edge (12
January 2004). Accessible at http://www-106.ibm.com/
developeworks/rational/library/3100105.html

[4] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computer 15,3 (2003) 289–308

[5] Collignon, B., Vanderdonckt, J., Calvary, G. An Intelligent
Editor for Multi-Presentation User Interfaces. In Proc. of
23rd Annual ACM Symposium on Applied Computing
SAC’2008 (Fortaleza, 16-20 March 2008). ACM Press,
New York (2008) 1634–1641.

[6] Coyette, A., Vanderdonckt, J. A Sketching Tool for De-
signing Anyuser, Anyplatform, Anywhere User Interfaces.
In Proc. of 10th IFIP TC 13 Int. Conf. on Human-Compu-
ter Interaction INTERACT’2005 (Rome, 12-16 September
2005). LNCS, Vol. 3585. Springer, Berlin (2005) 550–
564.

[7] Coyette, A., Kieffer, S., Vanderdonckt, J. Multi-Fidelity
Prototyping of User Interfaces. In Proc. of 11th IFIP TC 13
Int. Conf. on Human-Computer Interaction INTER-
ACT’2007 (Rio de Janeiro, September 10-14, 2007).
LNCS, Vol. 4662. Springer, Berlin (2007) 149–162.

[8] Dijkstra, E.W. The discipline of programming, Prentice
Hall, Engelwood Cliffs (1976)

[9] Ermel, C., Rudolf, M., Taentzer, G. The AGG-Approach:
Language and Tool Environment. In: H. Ehrig, G. Engels,
H.-J. Kreowski, G. Rozenberg (eds.), Handbook on Graph
Grammars and Computing by Graph Transformation. Vol.
2. World Scientific (1999) 551–603.

[10] Florins, M., Montero, F., Vanderdonckt, J., Michotte, B.
Splitting Rules for Graceful Degradation of User Inter-
faces. In Proc. of 10th ACM Int. Conf. on Intelligent User
Interfaces IUI’2006 (Sydney, 29 January-1 February
2006). ACM Press, New York (2006) 264–266.

[11] Garcia, J., Molina, J.P., Martinez, D., Garcia, A.S., Gon-
zalez, P., Vanderdonckt, J. Prototyping and Evaluating
Glove-Based Multimodal Interfaces. Journal of Multimo-
dal User Interfaces, Vol. 2, No. 1, 2008.

[12] Gonzalez, J.M., Vanderdonckt, J., Arteaga, J.M. A Method
for Developing 3D User Interfaces of Information Systems.
In Proc. of 6th Int. Conf. on Computer-Aided Design of
User Interfaces CADUI’2006 (Bucharest, 6-8 June 2006).
Springer, Berlin (2006) 85–100.

[13] Griffiths T., Barclay, P.J., Paton, N.W., McKirdy, J., Ken-
nedy, J.B., Gray, P.D., Cooper, R., Goble, C.A., da Silva,
P.P. Teallach: A Model-based user interface development
environment for object databases. Interacting with Com-
puters 14, 1 (2001) 31–68.

[14] Guerrero García, J., Lemaigre, Ch., Vanderdonckt, J.,
González Calleros, J.M. Model-Driven Engineering of
Workflow User Interfaces. In Proc. of 7th Int. Conf. on
Computer-Aided Design of User Interfaces CADUI’2008
(Albacete, 11-13 June 2008). Springer, Berlin (2008).

[15] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., A-
brams, M., Coyette, A., Vanderdonckt, J. Human-Centered
Engineering with the User Interface Markup Language. In
Seffah, A., Vanderdonckt, J., Desmarais, M. (eds.), “Hu-
man-Centered Software Engineering”, Chapter 7. HCI Se-
ries, Springer, London (2008) 141–173.

[16] Kaklanis, N., Gonzalez, J.M., Vanderdonckt, J., Tzovaras,
D. A Haptic Rendering Engine of Web Pages for Blind
Users. Proc. of 9th Int. Conf. on Advanced Visual Inter-
faces AVI'2008 (Naples, May 28-30, 2008). ACM Press,
New York (2008) 437–440.

[17] Kleppe, A.,Warmer, J., Bast, W. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addi-
son-Wesley, New York (2003).

[18] Lepreux, S., Vanderdonckt, J., Michotte, B. Visual Design
of User Interfaces by (De)composition. In Proc. of 13th Int.
Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2006 (Dublin, 26-28 July
2006). LNCS, Vol. 4323. Springer, Berlin (2006) 157–
170.

[19] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.
Derivation of a Dialog Model from a Task Model by Activ-
ity Chain Extraction. Proc. of 10th Int. Conf. on Design,
Specification, and Verification of Interactive Systems
DSV-IS’2003 (Madeira, 4-6 June 2003). LNCS, Vol.
2844. Springer, Berlin (2003) 203–217.

[20] Mellor, S.J., Scott, K., Uhl, A., Weise, D. MDA Distilled:
Principles of Model-Driven Architecture. Addison-Wes-
ley, New York (2004).

[21] Memmel, T., Reiterer, H. Inspector: Interactive UI Speci-
fication Tool. In Proc. of 6th Int. Conf. on Computer-Aided
Design of User Interfaces CADUI’2008 (Albacete, 11-13
June 2008). Springer, Berlin, 2008.

[22] Memmel, T., Vanderdonckt, J., Reiterer, H. Multi-Fidelity
User Interface Specifications. In Proc. of 15th Int. Work-
shop on Design, Specification, and Verification of Interac-
tive Systems DSV-IS’2008 (Kingston, July 16-18, 2008).
Lecture Notes in Computer Sciences, Vol. 5136. Springer,
Berlin (2008) 43–57.

[23] Meyer, B. On formalism in specifications. IEEE Software,
January 1985.

[24] Michotte, B., Vanderdonckt, J. GrafiXML, A Multi-Target
User Interface Builder based on UsiXML. In Proc. of 4th
Int. Conf. on Autonomic and Autonomous Systems
ICAS’2008 (Gosier, 16-21 March 2008), IEEE Computer
Society Press, Los Alamitos, 2008, pp. 15-22.

[25] Molina, J.C., Pastor, O. MDA in Practice: A Software
Production Environment Based on Conceptual Modelling,
Springer-Verlag, Berlin, June 2007.

[26] Mori, G., Paternò, F., Santoro, C. Design and Develop-
ment of Multidevice User Interfaces through Multiple
Logical Descriptions. IEEE Transactions on Software En-
gineering 30, 8 (August 2004) 507–520.

[27] Myers, B.A., Hudson, S.E., Pausch, R.F. Past, present and
future of user interface software tools. ACM Trans. On
Computer-Human Interaction 7, 1 (2000) 3-28.

[28] OMG: Model Driven Architecture (MDA). Document
number ormsc/2001-07-01. (2001).

[29] Palanque, P., Bastide, R., Winckler, M. Automatic Gen-
eration of Interactive Systems: Why A Task Model is not
Enough. Proc. of 10th Int. Conf. on Human-Computer In-
teraction HCI Int.’2003 (Heraklion, June 22-27, 2003).
Lawrence Erlbaum Associates, Mahwah (2003) 198–202.

[30] Palanque, Ph., Schyn, A. A Model-Based Approach for
Engineering Multimodal Interactive. Proc. of 9th IFIP TC
13 Int. Conf. on Human-Computer Interaction Inter-
act’2003 (Zurich, 1-5 September 2003). IOS Press, Am-
sterdam (2003) 543-550.

[31] Paternò, F. (1999). Model Based Design and Evaluation of
Interactive Applications. Springer Verlag, Berlin.

[32] Pederiva, I., Vanderdonckt, J., España, S., Panach, I., Pas-
tor, O. The Beautification Process in Model-Driven Engi-
neering of User Interfaces. In Proc. of 11th IFIP TC 13 Int.
Conf. on Human-Computer Interaction INTERACT’2007
(Rio de Janeiro, September 10-14, 2007). LNCS, Vol.
4662. Springer, Berlin (2007) 409-422.

[33] Pérez-Medina, J.L., Dupuy-Chessa, Front, A. A Survey of
Model Driven Engineering Tools for User Interface De-
sign. Proc. of 6th Int. Workshop on TAsk Models and
DIAgrams TAMODIA'2007 (Toulouse, November 2007).
LNCS, Vol. 4849.

[34] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Mi-
chotte, B., Montero, F. A Transformational Approach for
Multimodal Web User Interfaces based on UsiXML. In
Proc. of 7th ACM Int. Conf. on Multimodal Interfaces
ICMI’2005 (Trento, 4-6 October 2005). ACM Press, New
York (2005) 259–266.

[35] Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M., Vander-
donckt, J., Stanciulescu, A., Lepreux, S. A Language Per-
spective on the Development of Plastic Multimodal User
Interfaces. Journal of Multimodal User Interfaces, Vol. 1,
No. 2 (2007) 1–12.

[36] Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E.,
Vandermeulen, J. User Interface Derivation from Business
Processes: A Model-Driven Approach for Organizational
Engineering. In Proc. of 23rd Annual ACM Symposium on
Applied Computing SAC’2008 (Fortaleza, 16-20 March
2008). ACM Press, New York (2008) 553–560.

[37] Sousa, K., Mendonça, H., Vanderdonckt, J. Towards
Method Engineering of Model-Driven User Interface De-
velopment. In Proc. of 6th Int. Workshop on TAsk MOdels
and DIAgrams TAMODIA’2007 (Toulouse, 7-9 November
2007). LNCS, Vol. 4849. Springer, Berlin (2007) 112–
125.

[38] Szekely, P. Retrospective and challenges for model-based
interface development. Proc. of Workshop on Design,
Specification and Verification of Interactive Systems
DSV-IS'96 (Namur, June 1996). Springer, Vienna (1996)

[39] Vanderdonckt, J., Limbourg, Q., Florins, M. Deriving the
Navigational Structure of a User Interface. Proc. of 9th
IFIP TC 13 Int. Conf. on Human-Computer Interaction In-
teract’2003 (Zurich, 1-5 September 2003). IOS Press, Am-
sterdam (2003) 455–462.

[40] Vanderdonckt, J. A MDA-Compliant Environment for De-
veloping User Interfaces of Information Systems. In Proc.
of 17th Conf. on Advanced Inf. Systems Engineering
CAiSE'05 (Porto, 13-17 June 2005). LNCS, Vol. 3520.
Springer, Berlin (2005) 16–31.

[41] Winckler, M., Trindade, F., Stanciulescu, A., Vander-
donckt, J. Cascading Dialog Modeling with UsiXML. In
Proc. of 15th Int. Workshop on Design, Specification, and

Verification of Interactive Systems DSV-IS’2008 (King-
ston, July 16-18, 2008). Lecture Notes in Computer Sci-
ences, Vol. 5136. Springer, Berlin (2008) 121–135.

