
Animated Transitions for Empowering
Interactive Information Systems

Jean Vanderdonckt
Louvain Interaction Laboratory, Louvain School of Management, Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium - jean.vanderdonckt@uclouvain.be

In Memoriam: Paul Vanderdonckt (8 May 1933 – 31 March 2012)

Abstract—Animated transitions are widely used in many differ-
ent domains of human activity, ranging from cartoons and mov-
ies to computer science for powerfully conveying a message more
effectively and efficiently about a phenomenon of interest. This
paper reviews a series of techniques for defining, analyzing, and
exploiting animated transitions in different types of interactive
information systems. A general conceptual model is provided that
explicitly links a model of an interactive information system, its
model elements and relationships to animated transitions in or-
der to adequately reflect any change of the model into animated
transitions. Two instantiations of this conceptual framework are
discussed: animated transitions for representing adaptation of
the graphical user interface of an interactive system, along with
its implementation; and animated transitions between user inter-
face views during development life cycle.

Keywords- animation, animated transition, context-aware adap-
tation, information system, model-based approach, model-driven
engineering, web engineering

I. INTRODUCTION

Animation is defined in the Free Merriam Webster diction-
ary as follows [http://www.merriam-webster.com/dictionary/
animating]: “Animation is the act of animate, which is: to give
spirit and support to; to give life to, to give vigor or zest to; to
move to action; to make or design in such a way as to create
apparently spontaneous lifelike movement, to produce in the
form of an animated cartoon” [51]. Indeed, the verb “animate”
come from its Latin root animatus, past participle of animare,
which means “to give life to”. Model animation could therefore
be interpreted as the act to give life cto a model in such a way
as to create natural movement [48].

An animated transition is a particular animation intended to
graphically ensure a smooth transition between an initial state
of a system, whether it is computer-based or not, and a final
state of this system [15,16]. An animated transition is typically
aimed at representing a transition between two states by an an-
imation so as to give life to this change of state. In the domain
of graphics for instance, an animated transition could depict
how a particular graphic is transformed into another one [25]
over time to depict the change of the data over time on time
lines [20], such as demographic evolution or cartoons [46,47].

In the context of this paper, we consider that an animated
transition is a particular animation intended to ensure a smooth
transition between two states of an interactive information sys-
tem. Animated transitions [2,6,44] in interactive systems are
aimed at conveying to the end user a transition between states,

views or scenes [16,18], e.g., to foster a smooth transition be-
tween two scenes [6], menus [27] or images [28]. Animated
transitions improve feedback on users’ actions [24], notify dis-
play changes [40], and improve situation awareness in a dis-
tributed environment [39]. Animated transitions exist in many
different domains of application such as, but not limited to: air-
traffic control [31,39], data and decision making [14], docu-
mentation [12,14], graphics, information visualization, map
navigation [6], mobile computing [27,28], model-based design
[18], model-driven engineering [35,49], system simulation
[19], textual documents [14], user interface [11], dependable
systems [33], visual design [48], and zooming interfaces [42].
Before examining the implications of animated transitions, a
conceptual framework is introduced that identifies the main
concepts of interest in order to specify, design, and implement
animated transitions for an interactive system.

II. A CONCEPTUAL MODEL FOR ANIMATED TRANSITIONS

Figure 1 graphically depicts an overview of our conceptual
model [1] for animated transitions in interactive systems. It
could still be applied in principle in any methodological ap-
proach for information systems engineering.

A model of an interactive information system consists of a
series of model elements that characterizes the model in itself.
It is then built as a hierarchical decomposition of model ele-
ments into several refined sub-concepts appearing at the de-
composition sub-layers [34,49]. Any model element of interest
can then be in turn captured by an identifier, a name, a defini-
tion, and properties of interest gathered in a given characteriza-
tion. Model elements are linked together via model relation-
ships of a certain type and whose statement could be provided.
Typical relationships include: decomposition, abstraction, reifi-
cation, reflection, cross-cutting, translation, and mappings (e.g.,
mappings resulting from applying model transformations in
model-driven engineering). Any model, model element, or
model relationship may consist of attribute, which is character-
ized by a name, a definition, a data type, a definition of its do-
main of values, and potential constraints. Usually, a model is
represented through a model view, that could be graphical, tex-
tual or both (i.e., bimodal). Each view is of the following type:
conceptual (if the view reflects an abstract model), internal (if
the view reflects the code that is internal to the interactive sys-
tem) or external (if the view reflects the code in another way
than its internal representation). Each view could hold different
levels of fidelity (e.g., low-fidelity, mid-fidelity, high-fidelity)
and different levels of details (e.g., low, medium, high) de-
pending of the context of use.

978-1-4577-1938-7/12/$26.00 ©2011 IEEE

+modelID : string(idl)
+modelName : any(idl)
+modelDefinition : string(idl)
+modelVersion : any(idl)

Model

+elementID
+elementName
+elementDefinition
+elementCharacterization

Model Element

1

-isStructuredIn

*

+relID
+relName
+relDefinition
+relStatement

Model Relationship

+attributeID
+attributeName : Attribute
+attributeDefinition
+attributeDateTypeharacterization
-attributeDomain

Attribute
+constraintID
+constraintName
+constraintType
+constraintExpression
-constraintSatisfaction
-constraintLanguage

Attribute Constraint

1 * 1
* 1*

+hasSource

1..* 0..*
+hasTarget

1..* 0..*

1 *

+viewlID : string(idl)
+viewName : any(idl)
+viewType
+levelOfFidelity
+levelOfDetails

Model View
+shapeID
-shapeName
-shapeType
-shapePosition
-shapeDimensions
-shapeDensity
-shapeColorSaturation
-shapeColorHue
-shapeTexture
-shapeText
-shapeLineSpec

View Shape

1

-isRenderedThrough

*

-connectionID
-connectionType
-connectionLine
-connectionConstraints

View Connection+hasSource

1..* 0..*
+hasTarget

1..* 0..*

-transitionID
-transitionType
-transitionDefinition
-transitionCorresp

Transition

+atID
+atType
+atTemporization
+atEffect
+atInitialSeep
+atFinalSpeed
+atTemporalFunction

Animated Transition

1..*+depicts

0..*+isDepictedIn

+views1..*

+isViewedIn0..*

Figure 1. Definition of a general-purpose conceptual model.

A model view is rendered through a series of view shapes
(e.g., line, polygon, graphic, text or any combination of them),
each shape being characterized by different attributes (e.g., po-
sition, length, height, density, texture, color). These attributes
could be selected depending on the level of precision required
by the model view: Figure 2 lists major attributes by decreasing
order of precision in order to represent a model attribute de-
pending of its type (e.g., quantitative, ordinal or nominal). Fig-
ure 2 shows that in all cases the position of view elements is
always the most precise way to represent model attributes. A
transition between views, whether they are for the same model
or for different models, is then ensured through an animated
transition that maps the view elements (corresponding to re-
spective model attributes) of the different model views. For ex-
ample, a transformation [34,35,36] from a CIM model to a PIM
model could be ensured through animated transitions and simi-
larly from a PIM model to a PSM model, and from a PSM
model to code. Similarly in Human-Computer Interaction
(HCI), animated transitions could be used from task and con-
cepts to abstract user interface, from abstract user interface to
concrete user interface, and from concrete user interface to fi-
nal code. Since it is not mandatory to process the development
life cycle through all these levels, it is also possible to imagine
animated transitions between non-subsequent levels of abstrac-
tion, such as from CIM to PSM, PIM to code, or CIM to code.
In HCI, it could be from task and concepts to concrete user in-
terface, from abstract user interface directly to final code.

Depending on the type of model attribute, on the type of
corresponding view shape (e.g., a rectangle, a circle, a line),
different animated transitions could be imagined such as: text-
to-text, text-to-position, text-to-dimension, text-to-color, text-
to-shape or reciprocal animated transitions [16].

Straight
line

Straight
line

Straight
line

Shape Shape

Shape

Length

Length

Length

Figure 2. Representation style depending on the level of precision
and variable type (adapted from [30]).

III. AN INSTANTIATION OF THE CONCEPTUAL FRAMEWORK

In this section, a particular instantiation of the conceptual
framework introduced in Section 2 is provided to the area of
adaptation of a Graphical User Interface (GUI) of a web appli-
cation, with some review of related work. Adaptation of a web
application typically falls into two categories depending on
who is in control of the adaptation process [13]: adaptivity
when the web application is responsible for adapting itself
[9,10], adaptable when the end user is responsible for adapting
the web application by means provided by this application [7],
and mixed-initiative when the responsibility is shared between
the web application and the end user [13]. Adapting a web ap-
plication obviously represents an important opportunity for
several stakeholders [8,10,37,43]:

─ End users: the adaptation is in principle always undertaken
in order to improve the global quality of a web application
for the ultimate benefit of the end user, preferably depend-
ing on the context of use so that to obtain a context-aware
(or context-sensitive) web application. Adaptation can be
effectively and efficiently applied to a wide variety of hu-
man activity domains. Potential benefits include improving
[29]: usability, user experience, navigation, task comple-
tion time,…

─ Designers: several methods exist that support designers in
conducting web engineering (e.g., [23,37,43] all provide
extensive and interesting comparison and survey of major
web engineering methods), but only some of them support
adaptation explicitly, with varying levels of granularity,
context-awareness [43].

─ Developers: adaptation can be developed for many differ-
ent types of web applications ranging from simple HTML
pages [8] until Rich Internet Applications (RIAs) [22];
several User Interface Description Languages (UIDLs)
[49] could provide developers with developing facilities
for producing various interfaces for various contexts of use
from a set of models [34]; the complexity of software ar-
chitectures for supporting adaptation could vary depending
on the sophistication of context-awareness [4], thus mak-
ing it more complex for developers [50,52].

Beyond the aforementioned aspects, end users may suffer
from several intrinsic drawbacks of adaptation that are hard to
overcome, one of the most important being the end user dis-
ruption [13,29]: there is a discontinuity between the web appli-
cation before and after the adaptation process, there is nothing
between the initial and final states, thus inducing a cognitive
de-stabilization that may prevent end users from accepting, us-
ing, and benefiting from the adaptation. We are intended to
demonstrate by animated transitions how adaptation has been
achieved on a web application in such a way that any web en-
gineering method or adaptation development practice could
benefit from this process to minimize the disruption.

A. Related Work in Adaptation of User Interfaces

Adaptation has been subject to extensive investigation that
leads to recognizing a series of benefits vs. costs [8,9,10,13,
29]: adaptive UIs are able to optimize task completion time and
rate, they induce a positive impact on accuracy, human perfor-
mance, predictability, situation awareness, and cognitive work-
load. Adaptivity has also been revealed effective when the UI
should be adapted to the constraints imposed by any loss of
screen resolution [32], like on mobile devices [28]. Browne et
al. [7] as well as Dieterich et al. [13] are among the first sur-
veys of adaptation processes at large, not just for web applica-
tions; They demonstrate that the coverage of four adaptation
steps by adaptation methods is largely varying: initiative (who
is taking the initiative of adaptation), selection (who selected
the appropriate adaptation operations), decision (who decides
to apply the adaptation operations), and execution (who exe-
cutes the adaptation operations). In this paper, we assume that
selection and decision have already been on what adaptation
operations should be executed, but we prefer to demonstrate
these operations during their execution. Brusilovsky et al. have
introduced a taxonomy of adaptation operations for hyperme-
dia applications that have been refined and expanded several
times [8]: adaptation can be applied to any element for either
presentation or dialog (including navigation) or both. Again,
this paper is not intended to contribute to defining adaptation
operations (since it is properly done in [8]), but to rely on them
to map them onto appropriate animated transitions.

DiffIE [45] highlights web page contents that have been
updated since last visit, thus inducing a positive impact on how
people interact with the web page and understand their con-
tents, and perceived these contents as dynamic (Figure 3a). It is
particularly appreciated by end users to identify what has
changed in a web page in order to handle the most recent data.

Phosphor widgets apply afterglow effects [3] to foster some
visual reminiscence of changes of values of widgets on a
screen (e.g., the value change of a slider – Figure 3b). For in-
stance, if the current value of a widget has changed, an animat-
ed transition is applied to this widget to reflect this change.
This does not stop the current end user’s task, but may attract
her attention [26] to a focus that is not the current one.

Differentiated transitions [40,41] are animated transitions
explaining a dynamic process over time, e.g., an animated tran-
sition animates the transfer time, the network bandwidth, and
the file size when a file is transferred from one location to an-
other (Figure 3c).

Always on

In‐situ

New to you

Non‐intrusive

Changes to page
since your last visit

Figure 3. Some animated transitions for adaptation: DiffIE (a), Phos-

phor widgets (b), Differentiated transitions (c).

Fialho & Schwabe [21] enrich the user experience of web
applications by applying a visual rhetoric as a way to set the ef-
fects presented by animation, as well their sequence and dura-
tion. In order to capture the dynamic aspects of a widget, an
Abstract Widgets Ontology (AWO) was extended to include
the following classes: Transition (for representing a state
change), RhetoricalStructure (for animating a transition or in
response to an event), and Decoration (for animating a widget
change). The Decoration class is further refined into the fol-
lowing elements: InsertElement (for introducing a new ele-
ment), RemoveElement (for removing an element from the des-
tination state), MatchElements (for matching the parameters of
an element in the current state and another in the destination
state), TradeElements (for performing a transformation of an
element in the current state into another in the destination
state), and EmphasizeElement (for highlighting an element sub-
ject to an action). This work is the closest to the one presented
in this paper: while it represents changes in the model based on
a visual rhetoric, our paper focuses on animated transitions for
web adaptation.

Programming animated transitions by hand is possible but
complex without a framework [50,52], for instance in JavaS-
cript for HTML, using some APIs or libraries, but this task as-
sumes a development effort whose cost could be considered far
superior to the benefit of using the animations. This is why an
animation engine will be considered in this paper in order to
reduce programming efforts to its minimum. For example, the
LWUIT library [38] supports the implementation of various an-
imated transitions from one form to the next one to be dis-
played, based on mechanisms provided by the interface Anima-
tion (which renders widgets animatable) and the classes Motion
(which enables object motion), Transition (which ensures ani-
mated transition from one form to another), CommonTransi-
tions (which provides Slide and Fade visual effects), and Tran-
sition3D (which provides 3D visual effects such as Cube, Fly

in, and Rotate). Such a library indeed reduces the development
cost by offering basic classes for developing animated transi-
tions. But a significant effort remains for connecting these clas-
ses to adaptation process. It makes sense to elaborate a model-
based approach for dealing with animated transitions so that
each animated transition is properly assigned to an adaptation
operation until ultimately there is no more any development ef-
fort required to deploy the solution. The next section introduces
the conceptual model of animated transitions for depicting an
adaptation of a graphical user interface for a web application.

B. Conceptual Model of Animated Transitions for
Adaptation of a Graphical User Interface

Figure 4 provides a UML Class Diagram that gives an
overview of the conceptual model used for demonstrating web
adaptation operations by executing animated transition. The
Concrete User Interface (CUI) [49] of a web application is real-
ized so that it can be submitted to adaptation operations that are
in turn mapped onto appropriate animated transitions. These
various aspects are further detailed in the next sub-sections.

1) Definition of the Concrete User Interface

A Concrete User Interface (CUI) is defined as a model cap-
turing abstractions of a Graphical User Interface (GUI) for a
given interaction modality (e.g., the graphical modality), but
independently of any implementation technology. Several simi-
lar models exist to describe the UI of a web application [37,43].
User Interface eXtensible Markup Language (UsiXML) [49]
was selected in our case in order to model a CUI for various
reasons: availability, compliance with the Cameleon Reference
Framework (CRF), openness, definition of its semantics via
UML Class Diagrams, availability of concept definitions, and
transformation between models. But other UIDLs could be
equally selected provided that equivalent concepts exist as
counterparts. At first glance, there is no restriction of the pre-
sent work to be ported to another UIDL or web engineering
methods as long as they already incorporate equivalent abstrac-
tions. Since it is not the goal of this paper to detail a UsiXML
CUI, we refer to www.usixml.org for full documentation. A
brief overview is only given here: a CUI consists of a hierar-
chical decomposition of concrete containers, perhaps arranged
together via spacing individual components. Each container is
in turn decomposed into concrete individual component, an ab-
straction for widgets with several subclasses.

Our reference model here is the CUI model that captures an
abstraction of GUI widgets of a web application independently
of any implementation. The corresponding model view is de-
fined by a Look & Feel (L&F) of these widgets. Therefore,
each view shape is regulated by the rendering of the corre-
sponding widget in the computing platform used. This does not
assume that there is a restriction on these representations.
Simply, we need to ensure an animated transition of view
shapes corresponding to widgets subject to adaptation. For in-
stance, the view shape corresponding to an edit field belonging
to the model consists of a rectangular area, whose style is de-
fined through attributes such as line style, foreground and
background colors, textures, etc. If this widget is adapted into
another one, say a combination box, then an animated transi-
tion could show how this view shape is transformed into anoth-
er view shape, corresponding to a combination box.

-isScrollable : boolean(idl)

textInput

textOutput

checkBox

radioButton

-isDropDownable : boolean(idl)
-isEditable : boolean(idl)

ComboBox

ListBox

Tree

Item

datePicker

1

*

1

*

-label : string(idl)
-presentationType
-assignment
-buttonType : string(idl)

Button

-id : string(idl)
+name : string(idl)
+definition : string(idl)
+graphicalIcon : object(idl)
+containerType : string(idl)
+flowAlignment : string(idl)
+borderAlignment : string(idl)
+columnsNumber : fixed(idl)
+linesNumber : fixed(idl)

Concrete Container
-id : string(idl)
+name : string(idl)
+definition : string(idl)
+graphicalIcon : object(idl)
+icon : object(idl)
+label : string(idl)
+shortLabel : string(idl)
+abbreviatedLabel : string(idl)
+shortCut : string(idl)
+mnemonic : short(idl)
+isEditable : boolean(idl)
+isMandatory : boolean(idl)
+order : fixed(idl)

Concrete Individual Component

1 1..* 11..*

-isLaidOutIn 1

-laysOut

0..*

-id : string(idl)
+value : fixed(idl)
+unit : string(idl)

Spacing Individual Component

1

0..*

-id : string(idl)
+name : string(idl)
+creationDate : Date
+modificationDate : Date

Concrete Interface Model

-id : string(idl)
+name : string(idl)
+versionNumber : string(idl)

User Interface Core Model

link

+scenarioID : octet(idl)
+scenarioDefinition : string(idl)
+Source : string(idl)
+Target : string(idl)

Transition Scenario

+operationID : string(idl)
+operationDefinition : string(idl)
+operationRationale : string(idl)

Adaptation Operation

+isInvolvedIn0..*

+Involves1..*

+ordering
+Parameters
+Values

Parameterization

* *
+transitionID
+transitionName
+transitionTime
+transitionOptions
+transitionParam

Animated Transition+animates

*

+isAnimatedBy

*

+isOperatedBy1..* +operatesOn1..*

Figure 4. The conceptual model used for demonstrating web adapta-

tion.
2) Definition of Adaptation Operations and Transition

Scenario
An Adaptation operation is hereby defined as any trans-

formation operated on any web page element (modeled as a
concrete individual component) in order to adapt the page for
the ultimate benefit of an end user interacting in a certain con-
text of use, that is itself characterized as a triple (User, Plat-
form, Environment) [32]. Such adaptation operations may in-
volve a series of actions that are intended to obtain a certain
global effect on the initial UI before adaptation until the final
UI after adaptation is obtained.

Each adaptation operation [15] produces a transient web
page being adapted (Figure 5), which consists in an intermedi-
ary web page stage during adaptation. Usually, the end user
does not perceive any of these transient web pages since they
are subject to transformation. End users are only presented with
the initial and the final web pages, which cause the end user
disruption and the cognitive perturbation. The whole sequence
of adaptation operations conducted for the web page adaptation
is called the transition scenario that involves a wide spectrum
of adaptation operations which fall into six categories [15]:

1. Resizing operations: are aimed at changing a widget size in
order to optimize screen real estate, aesthetics, and visual
design. For instance, an edit field could be expanded or re-
duced in order to accommodate screen resolution.

2. Relocating operations: are aimed at changing a widget lo-
cation in order to accommodate constraints imposed by the
context of use, like screen resolution. For instance, “Ok”,
“Cancel”, and “Help” are relocated to the bottom of a web
page.

3. Widget transformations: are aimed at replacing one or a
group of widgets by another widget or another group of

widgets ensuring the same task. For instance, an accumula-
tor that consists of list boxes with possible values and cho-
sen values could be replaced by a multi-selection list,
which could be in turn replaced by a multi-selection drop-
down list.

4. Image transformations: are aimed at changing the size,
surface, and quality of an image in order to accommodate
the constraints imposed by the new context of use, namely
the display/platforms constraints. For instance, cropping or
reformatting image processing techniques could produce
an image suitable for the new context.

5. Splitting rules: are aimed at dividing one or a group of
widgets into one or several other groups of widgets that
will be displayed separately. For instance, a dialog box is
split into two tabs in a tabbed dialog box.

6. Global replacement: is aimed at representing the results of
a general-purpose adaptation algorithm that cannot be de-
composed into a series of elementary adaptation opera-
tions. For instance, a semantic algorithm can change the
contents.

Initial web
page
before

adaptation

Final web
page after
adaptation

Transient
page being
adapted

Transient
page being
adapted

Forward animation

Transient
page being
adapted

Backward animation

ith adaptation
operation

BreakSkip

Restart
Return

Transition time for
ith adaptation operation

… …

Total transition time for transition scenario
Figure 5. The transition scenario between the initial web page and

the final web page.

Therefore, a transition scenario is hereby defined as a se-
ries of adaptation operations between a source and a target CUI
model (involving one or many containers and individual com-
ponents) based on particular parameterization (Figure 4). In-
deed, a single adaptation operation could be performed on a
single page element in isolation (e.g., resizing an individual or
a compound widget) or several page elements concurrently
(e.g., resizing a group of aligned edit fields)

In order to capture a transition scenario in a logical way, a
catalogue of adaptation operations addressing the six afore-
mentioned categories is provided. This idea is inspired from
Web Adaptation Language (WAL) [9], which consists of an
imperative language for describing the adaptation logic of a
web application that is parsed by an adaptation engine. The
positive consequence of this is that the adaptation logic could
be defined independently of its development. For this purpose,
each adaptation operation is defined in an Extended Backus-
Naur Form (EBNF) format to form a grammar. In this notation,
brackets indicate an optional section, while parentheses denote
a simple choice in a set of possible values. Supported adapta-
tion operations are as follows:

SET <Element.property> TO {value, percentage}: assigns a
value to any element property or a percentage of the actual
value. For instance, SET “Button_1.height” TO 10 will resize
the push button to a height of 10 units while SET “pushBut‐
ton_1. height” TO +10 increases its height by 10%. As a
shortcut, EXPAND “pushButton_1.height” OF 10 represents the

same operation while CONTRACT “pushButton_1.height” OF
10 represents the inverse operation.

DISPLAY <Element> [AT x,y]: displays any identified element at
a x,y location where x and and y are integer positions (e.g., in
characters or pixels). For instance, DISPLAY “Button_1” AT 2,3
displays an identified push button at coordinates 2,3 on a des-
ignated display. UNDISPLAY <Element> [AT x,y] is the inverse
operation. DISPLAY <Message> [AT x,y] displays a provided
message.

MOVE <Element> TO x,y [IN n steps]: moves any element to a
new location indicated by its coordinates x and y, possibly in a
fixed amount of steps (by default, one).

CHANGEBOX <Element> TO <Container.x,Container.y> [IN n
steps]: changes any element from a previous container to a
new container within which x and y specify its coordinates,
possibly in a fixed amount of steps. It is possible to change the
size of containers by the following operations:
CHANGECOLUMN <Container> BY {value} and CHANGEROW
<Container> BY {value}.

ROTATE <Element> BY {value} [IN n steps]: rotates any ele-
ment by a certain amount of degrees, possibly in a fixed
amount of steps.

REPLACE <Element1> BY <Element2>: replaces any element
Element1 by another one Element2. Sometimes the replace-
ment element could be determined after an adaptation algo-
rithm (6th category above), thus giving the following defini-
tion: REPLACE <Element1> BY <AdaptationAlgo:>. This mech-
anism is similar for image transformations: images are usually
transformed by local or remote algorithms (e.g., for resizing,
converting, cropping, clipping, repurposing), thus giving the
following definition: TRANSFORM <Image1> BY <Image‐
Algo:URL>.

DISTRIBUTE <Elements> INTO <Containers> [BY <Distrib‐
Algo:URL>: computes a distribution of a series of Elements in-
to a series of Concrete Containers, possibly by calling an ex-
ternal algorithm, local or remote.

In the above definitions of adaptation operations, only one
web page element is provided as parameter at a time. Obvious-
ly, an adaptation operation could consider several elements to-
gether. For this purpose, a selection mechanism is introduced
that defines the scope of possible elements as a parameter. A
Selector consists of a definition of the web page types to which
the adaptation operation is applied. Four major types of selec-
tor may affect <Element> or <Elements> fields in the defini-
tions:

1. universalSelector: applies the adaptation operation to all
UI elements belonging to the current GUI of concern. For
instance, SET “universalSelector.backgroundColor” TO
“Grey” will change the background color of the entire GUI
into grey.

2. elementTypeSelector: applies the adaptation operation to
all elements belonging to the selector’s type (e.g., all con-
tainers, all list boxes). For instance, SET “elementTypeSe‐
lection.foregroundColor=Button” TO “lightGrey” will set
the foreground color of all push buttons of the current web

page to light grey.
3. classSelector: applies the adaptation operation to all ele-

ments belonging to the selector’s type whose definition
makes them part of the class (e.g., all containers having an
ID greater or equal to “CC2”, all list boxes having more
than 10 items).

4. idSelector: applies the template to only one element be-
longing to the GUI of concern: the one whose id attribute
matches the string contained in the parameter. The idSelec‐
tor is used by default and should not be necessarily speci-
fied.

The above catalogue of adaptation operations mainly cover
simple attributes of elements included in a web page. These at-
tributes fall into two categories: attributes that have a visual
impact (e.g., color, size) and attributes that do not have any
visual impact (e.g., change of default value). This catalog is
mainly inspired by adaptation operations defined in Brusilov-
sky et al. taxonomy [8], but is not expected to cover all possi-
ble adaptation operations possible. The next section explains
how one or many animated transitions (along with their param-
eters) could animate a particular adaptation operation (Figure
2). Attributes with visual impact are therefore first-class citi-
zens to consider associated animations, but attributes with non-
visual impact could be equally considered. However, an ani-
mated transition is probably not the best way to convey such a
change, thus motivating the need for considering some general-
ization of the approach with other means than animated transi-
tions.

C. Mapping Adaptation Operations onto Animated
Transitions

Table 1 provides an overview of major animated transitions
gathered from the literature [2,6,44] and are classified accord-
ing to their goals. More sophisticated animated transitions
could be also considered, but they may induce some ‘lag’ prob-
lem [44] due to their cognitive load and/or time required to run
the animated transition.

Table 2 considers a sub-set of possible animated transitions
for each major adaptation operation. When alternate candidates
exist for one adaptation operation, we justify the priority as-
signed to each animated transition with respect to its goal. This
priority is maintained in a configuration file that can be edited
separately. We now give some example of some adaptation op-
erations.

Label contraction. When a web page should be contracted,
e.g., for being viewed on a small screen, it needs to be com-
pacted as much as possible. For this purpose, label contraction
consists in replacing the long label identifying an element (typ-
ically, an edit field or a list box) by a shorter version, if any.
For instance, “Department” may be contracted successively in-
to “Dept.”, a frequently used abbreviation, or “Dep.” if this is
acceptable for the end user. This process is captured by: SET
Label.name TO Label.ShortName. Since it is more important to
convey the contraction process than the replacement of the la-
bel by its short label, “Horizontal scroll from left” erases the
long label from its end to the beginning while replacing its by
its short version, thus giving the illusion of contraction.

Icon Name: definition

Horizontal scroll from right: to display the next element
from a sequence of elements

Horizontal scroll from left: to display the previous ele-
ment from a sequence of elements

Vertical scroll from bottom: to proceed with a step-by-
step reasoning, a continuous subject or a long passing
over, or a movement

Vertical scroll from top: to move back in a step-by-step
reasoning, a continuous subject or a long passing over, or
a movement

 Diagonal replacement from top/bottom left corner: to go
back to the previous page or screen or element

 Diagonal replacement from top/bottom right corner: to
move to next page or screen or UI element

Venetian blinds: to present a completely different topic,
to provide a feeling of coordinated time, to convey a sig-
nificant transition

Bam door close: to close a transient screen (e.g., an in-
formation screen, the About… splash screen), to close a
current scene, to signify game over

Bam door open: to open a transient screen, to initiate a
new step, to open a new window or UI element, to launch
a game, a simulation
Iris open: to show more detailed information about a par-
ticular topic

Iris close: to show more general information about a par-
ticular topic

Table 1. Major animated transitions.

Label expansion. When a web page should be displayed on
a large screen, like a public display or a wall screen, there is
room to have the full version of the label. This process is cap-
tured by: SET Label.name TO Label.LongName and is animated
by a “Horizontal scroll from right” to convey the illusion of
expansion.

Edit field move. When reformatted, a web page often in-
volves moving elements within a box. For instance, an edit
field could be moved horizontally, vertically or diagonally:
MOVE textInput_1 TO 1,10. According to Table 2, the ideal an-
imated transition would be an object motion according to a mo-
tion path that is computed at run-time between the two centers
and a real movement operated between these two locations.
The drawback of this animated transition is its complexity, its
possible overlapping of other elements if intercepted by the
motion path, and the time required to animate the process, thus
posing the ‘lag’ problem again upfront. Therefore, we prefer to
apply other animated transitions depending on the movement
type, such as the following ones:

Horizontal move: three alternate transitions could be con-
sidered: (a1) erase old element first, present the new after; (a2)
present the new first, erase old after; (a3) erase old element
while presenting the new one simultaneously. We justify our
decision here based on the cognitive load induced by the ani-
mated transition: low when one element is involved at a time in
a logical order (a1), medium when one element is involved, but
not in a logical order (a2), or high when two elements are in-
volved simultaneously, thus causing two foci of attention for
the end user. “Bam door close” is chosen for the first element
while “Bam door open” is chosen for the second one.

Adaptation oper-
ation

Animation family, animated transition
with justification

SET that modifies
the length of any
element into a
larger value (abso-
lute or relative)

Horizontal scroll/wipe from left: this op-
eration minimizes the visual change since
only the right part resulting from the en-
larging is changing. For edit fields, for in-
stance, this is particularly appropriate be-
cause it gives the feeling that the field is
really expanding

SET that modifies
the height of any
element into a
larger value (abso-
lute or relative)

Vertical scroll/wipe from bottom: this op-
eration minimizes the visual change since
only the right part resulting from the en-
larging is changing

DISPLAY that dis-
plays a new ele-
ment at a certain
position

Uncover, Box out, or Iris open: these op-
erations all induce a progressive display
of a new UI element at once, thus creating
the illusion that it is coming from the
empty.

UNDISPLAY that
undisplays an ele-
ment from a cer-
tain position

Cover, Box in, or Iris close: these opera-
tions all induce a progressive disappearing
of a existing UI element at once, thus cre-
ating the illusion that it is shrunk to an
empty/white region.

REPLACE that sub-
stitutes an element
by another one

Bam door open: this operation affects the
entire visual aspect of the previous one
and the new one.

DISTRIBUTE that
computes a distri-
bution of a series
of Elements into a
series of Contain-
ers

Bam door open or Iris open: these opera-
tions enable the visualization of an entire
group at once, instead of showing every
little display change individually

MOVE that moves
an element to a
new location indi-
cated by its coor-
dinates x and y,
possibly in a fixed
amount of steps

Ideally, the movement could be represent-
ed by an animation depicting the move-
ment itself. But practically, this would in-
duce a very long animation, thus increas-
ing again the lag problem [24]. Therefore,
we preferred to adopt a disappearing of an
element from its original location and an
appearing to its target location. Depend-
ing on these locations, vertical, horizontal
or diagonal replacements are selected. For
instance, when an element disappears
from a top left location to a bottom right
location, a diagonal replacement from
top/bottom left corner is selected, thus
creating the illusion that the element
moves from one location to another. Con-
sistently with this direction, when a web
page should only move linearly (either
vertically or horizontally), a verti-
cal/horizontal scroll is selected instead.

Table 2. Mapping table between adaptation operations and animated

transitions.

Vertical move: the reasoning is achieved by similarity to the
horizontal move. “Bam door close” and “Bam door open” for
the two locations.

Diagonal move: could be achieved by combining the above
transitions.

Widget move. Individual components (as represented in Fig.
2) are equally submitted to the same animated transitions, e.g.,
MOVE datePicker_2 TO 2,36.

Link promotion. Link promotion [9] consists of putting up-
ward a link from a group of links in order to reflect its change
of state, such as recency, frequency of use, recommendation.
According to Schlienger et al. [40], the best animated transition
would be to open a free slot for the promoted link while push-
ing down the rest of the links, then move the promoted link up.
In order to foster simplicity and avoid the ‘lag’ problem [44],
this could be captured alternatively by the following sequence
of adaptation operations: UNDISPLAY Link_4 AT 4,1; MOVE
Link_1,Link_2, Link_3 TO 2,1;3,1;4,1 ; DISPLAY Link_4 AT 1,1.
This solution does not induce any overlapping.

Link demotion. Link demotion [9] consists of putting back-
ward a link from a group of links in order to reflect its change
of state, such as obsolescence, reduction of interest or decrease
of recommendation level. Link demotion could be again re-
placed by: UNDISPLAY Link_1 AT 1,1; MOVE Link_2,Link_3,
Link_4 TO 1,1;2,1;3,1 ; DISPLAY Link_1 AT 4,1.

Display web element. If a new widget should appear, e.g.,
though a DISPLAY listBox_3 AT 2,2, the following animated
transitions could be considered: Appear (fast, but not very pro-
gressive), Bam Door Open (slow, but progression is uniform),
or Dissolve in (slowest, but progression is random and inde-
pendent of the widget shape). Due to these considerations, we
rank them in this priority order: “bam door open”, “appear”,
and “Dissolve in”. The UNDISPLAY operation is similar.

Widget substitution. Substituting a widget by another one
often arises when contextual conditions are considered, e.g.,
REPLACE inputText_1 BY comboBox_1 could be executed as
soon as the value domain is known. The following animated
transitions could be considered: Discover left (the old widget is
replaced by the new one from left to right), Wipe right (the old
widget is wiped from right and replaced by the new one simul-
taneously), or Box out (the old widget is globally replaced by
the new one, whatever the widget types and shapes are). Other
more cognitively expensive animated transition could be con-
sidered like Swirl, but the visual impact is stronger, which may
be not desirable given that several animated transitions should
occur.

Note that DiffIE [45] could be considered as a particular
case of our conceptual framework: new textual contents could
be animated by REPLACE label BY newLabel, SET new‐
Label.BackgroundColor TO “Yellow”.

D. Implementation of the Adaptation Animation Process

This section motivates and describes the implementation of
an Adaptation Animator that relies on the conceptual model in-
troduced before to run a transition scenario (Figure 6).

Transition
scenario

CUI Model
in UsiXML

Graphical
UI Builder

Animated
transitions

Adaptation
Editor

HTML XAML
Adaptation
Animator

Conversion
a b

c d e

Configu‐
ration

f

Figure 6. The software architecture for the animation process.

1) Software architecture

A Graphical User Interface Builder, i.e. GrafiXML [32]
was developed that exports the results of the design phase into
a Concrete User Interface (CUI) model stored in a UsiXML file
(Figure 6c) and can automatically generate HTML code (Fig-
ure 6a) corresponding to this CUI model. This initial HTML is
then incorporated in the web application and is converted into
Microsoft XAML UIDL (Figure 6b) by XSLT style sheets. The
GUI builder today consists of about 21,600 LOC implemented
in Java 1.5 with various libraries (e.g., Castor, Jakarta, Jdom,
LiquidINF, Looks, Xalan, and Xerces).

An Adaptation Editor enables the designer to apply any ad-
aptation operation defined in the catalogue on the initial web
page in order to obtain the final one after adaptation. For this
purpose, control panels are provided to let the designer apply-
ing any adaptation operation desired by a set of rules corre-
sponding to the five first categories introduced. Any such exe-
cuted operation is added in the log file of the Transition Sce-
nario (Figure 6d). The Adaptation Editor has been implement-
ed as a Java plug-in for GrafiXML and todays consists of about
1,300 LOC.

The Adaptation Animator then parses the transition scenar-
io on the XAML file by animating the transition contained in
the definition file, whose priority is based on the configuration
file (e.g., when several alternative animated transitions could
occur). The Adaptation Animator then renders the graphical
animation while enabling the end user to control it with differ-
ent actions based on Figure 5, such as “go next”, “go previ-
ous”, “restart”, “suspend/resume”, “go to end”.

The adaptation animator today consists of 1,100 LOC im-
plemented in Microsoft Expression Studio. This environment
has been selected for the following reasons: it is already
equipped with XAML, a XML-compliant UIDL for CUI; all
elements of a XAML-compliant GUI are vector-based and log-
ical operations could be then performed on them in a logical
way since they are treated as simple vectorial graphical objects,
some animated transitions of Table 2 are already built-in with
some options (like speed [17], duration).

MS Expression Studio comprises five products: Expression
Blend (for building GUIs for Silverlight, Windows, and Sur-
face), Expression Blend SketchFlow (for prototyping these
GUIs), Expression Web (for building Web GUIs), Expression
Design (for creating graphic assets for the Web or Silverlight,
Windows, and Surface), and Expression Encoder (for preparing
video assets for the Web or Silverlight, Windows, and Sur-
face). In our case, we used Expression Design to develop the
animated transitions based on aforementioned operations and
Expression Blend for the Animator itself.

Figure 7. The adaptation editor.

2) Possible paths

Figure 7 depicts that several paths are possible in order to
obtain the rendering of animated transitions on a web page.
The classical path would be to produce the HTML code from a
CUI model, thus forcing the designer to rely on such an editor.
It could be imagined though that any HTML web page could
be converted to XAML (Fig. 4b) so as to benefit from the ad-
aptation animator. In this case, an HTML page could be also
reverse engineered into a CUI model stored in UsiXML [49],
thus entering the external page in the loop. In the same way,
any XAML-based UI could be also transformed into UsiXML
thanks to XSLT style sheets, thus enabling designers to consid-
er many entry points.

Here are some links of videos capturing the resulting ani-
mation for two web pages:
 A simple login page:

http://www.youtube.com/watch?v=2mvvTL1yYBA
 A polling system:

http://www.youtube.com/watch?v=2ZViwktUbhU
 An address book:

http://www.youtube.com/watch?v=8MxokT-GCMY

E. Generalization to other interaction modalities

Animated transitions were considered as the focus of this
paper in order to demonstrate how adaptation operations have
been conducted. Animated transitions are of course not the on-
ly possibility. Bernsen’s taxonomy [5] identified 24 potential
unimodal output modalities of interaction for rendering some
information to the end user. Animated transitions are just one
of them. Based on this taxonomy, some other significant inter-
action modalities could be considered that require further in-
vestigation:

 Textual rendering: a textual statement explains the ra-
tionale behind an adaptation operation or algorithm, which
is particularly appropriate when non-visual attributes are of
concern. This textual statement could be rendered immedi-
ately in terms of the command language resulting from the
EBNF grammar introduced previously, in terms of log files
with time stamping (explaining which operation was exe-
cuted when), or in natural language by generating automat-
ically a sentence corresponding to the command language,
also based on reasoning explanation.

 Graphical rendering: an icon assigned to each adaptation
operation or an image showing the main steps of the adap-
tation process could be used.

 Animation: a dedicated animation for each adaptation op-
eration, a graphical morphing between the web page before
and after adaptation, or an avatar pointing to the web page
region that is subject to adaptation and explaining it.

 Sound: a short vocal synthesis of the adaptation operation
or a sound expressing the progression as used in [41].

 Hypermedia linking: a link could be provided to the end
user to access a knowledge base containing the definitions
of adaptation operations, a reference–based training could
provide on-line access to documentation, help messages,
Frequently Asked Questions (FAQs), a discussion forum
or even a physical person.

 Combination: several of the above techniques could be
considered together as long as the cognitive load does not
become prohibitive and as long as the ‘lag’ problem [44]
could be overcome by end user control.

F. Discussion of Animated Transitions

In this section, we presented a conceptual model for map-
ping web adaptation operations onto a set of potential animated
transitions (an instantiation of the general conceptual model in-
troduced in Section 2) that is used by the Transition Animator,
a program that executes a transition scenario based on these an-
imated transitions. It is expected that this demonstration will
reduce the end user disruption by establishing a visual bridge
between the web page before and after adaptation, thus sup-
porting a transition during the adaptation execution [13]. User
actions can speed up or slow down the animation process when
they want, thus providing them with a mean to reduce the ‘lag’
problem [44]. Preliminary results suggest the following conclu-
sions: in the beginning, end users require the demonstration to
be executed step by step in order to understand the full adapta-
tion process. This could be augmented by providing them with
some rationale explaining them the underlying guideline, rule
or heuristic that has been used for this purpose. This rationale
could be based on theory of argumentation and associated to
any animated transition so that end user could ask explanation
on-demand exactly as in Artificial Intelligence (AI): end users
tend to accept the reasoning of an expert system as soon as they
can browse the knowledge used for the reasoning. It is ex-
pected to have a similar conclusion here. What has been ob-
served is that after some time, end users prefer to speed up the
process, not just to reduce the ‘lag’ problem, but because they
feel convinced that there is indeed an obvious reasoning behind
the adaptation that could be demonstrated on-demand, and not
an obscure mechanism that escapes from their control (or illu-
sion of control). Therefore, a first line of future research will be
dedicated to investigating theory of argumentation for present-
ing the end user with explanation, perhaps with different output
interaction modalities [5]. A second potential avenue will be to
conduct a user study in order to determine the user preference
for an animated transition for each adaptation operation and to
compare these results with those resulting from the theoretical
reasoning that was held based on the cognitive load.

IV. A SECOND INSTANTIATION

In order to introduce a second instantiation of the general-
purpose conceptual framework introduced in Section 2, this
section introduces, defines, and explains the various steps re-
quired to establish an animated transition between UI views.
Figure 8 shows intermediate steps of an animated transition be-
tween a conceptual and an external view, then between an in-
ternal view and an external view. This last transition will be
now discussed in the next sub-sections, while the latter is simi-
lar in principle.

A. Step 1. Define the External View.

From its definition, the external view is interpreted as the
final GUI with the L&F belonging to its computing platform.
Therefore, the external view will consist of any runnable GUI
in any platform that could be expressed in terms of widgets.

B. Step 2. Define the Internal View

From its definition, the internal view is considered as the
developer’s view in which the UI code or description is manip-
ulated. Today, several UIDLs, such as XWT (http://wiki.eclip
se.org/E4/XWT), XIML (www.ximl.org), or UIML (www.
uiml.org), allows describing a GUI. In our case, UsiXML was
selected, but other UIDLs could be used without changing the
principles.

C. Step 3. Define the Mapping between Views

In order to define a mapping between UI views, say for in-
stance here from the internal view to the external view, a corre-
spondence should be established and maintained between ele-
ments belonging to the internal view and elements belonging to
the external view. This mapping is structured according to the
following format: Mapping M: series of pairs (variable name,
value)set of instructions on the widgets of the external view.

D. Step 4. Derive the Transition from the Mapping Definition

A transition is hereby defined as the logical way to trans-
form the input of a mapping into its output depending on their
respective data type (e.g., text, color, shape). A transition is
therefore encoded by an identifier, a name, a list of synonyms,
a description, a transition type (e.g., text-to-text, text-to-color,
text-to-shape), and a transition cardinality that is defined:

• One to one: one element belonging to the initial view (the
internal view in our running example) is mapped onto one
element belonging to the final view (the external view in
our running example). E.g., assign a label to a widget.

• One to many: one element belonging to the initial view is
mapped onto many elements belonging to the final view.
For example, create an instance of a widget type or assign
the same foreground color to a set of widget instances.

• Many to one: many elements belonging to the initial view
are mapped onto one element belonging to the final view.
For example, the foreground color of one widget in a web
page is determined by considering HTML code and CSS.

• Many to many: many elements belonging to the initial view
are mapped onto many elements belonging to the final
view. For example, HTML and CSS together determine the
border color of several widgets included in a container.

Conceptual
view

a

Internal
view

b

External
view

c

Animated transition between conceptual and external views

Animated transition between internal and external views

Figure 8. Starting point, intermediate steps, and ending points of animated transitions between user interface views.

V. CONCLUSION AND FUTURE WORK

This paper presented a general-purpose conceptual frame-
work for implementing animated transition between various
model views, which are structured into view shapes linked by
view connections. Each model view is aimed at representing
any model, its model elements, and model relationships that
link these elements. For a single model, one or many model
views could be defined with mappings between. An animated
transition is then defined as an animation between the view
shapes of one or many model views corresponding to this or
these models. Two instantiations of this general-purpose con-
ceptual framework are presented: one for user interface adapta-
tion for web application and one for transition between UI
views (conceptual, internal, and external) during development.

ACKNOWLEDGMENTS

This paper is dedicated in memoriam of Paul Vander-
donckt, retired principal controller at Société Anonyme Belge
de Constructions Aéronautiques (SABCA, www.sabca.be), the
father of the author, for the so numerous gifts received.

The author would like also to acknowledge the support of
the ITEA2-Call3-2008026 UsiXML project supported by Ré-
gion Wallonne DGO6 as well as the FP7-ICT5-258030
SERENOA project supported by the European Commission.

REFERENCES
[1] N. Aquino, J. Vanderdonckt, I. Panach, and O. Pastor, “Conceptual

Modelling of Interaction,” Chapter 3, in Handbook of Conceptual Mod-
elling: Theory, Practice, and Research Challenges, D. Embley and B.
Thalheim, Eds. Berlin: Springer-Verlag, 2011, pp. 335–358.

[2] R. Baecker and I. Small, “Animation at the interface,” in The Art of
Human-Computer Interface Design, B. Laurel, Ed., New York: Addison-
Wesley, 1990.

[3] P. Baudisch, D. Tan, M. Collomb, D. Robbins, K. Hinckley, M.
Agrawala, S. Zhao, and G. Ramos, “Phosphor: Explaining Transitions in
the User Interface Using Afterglow Effects,” in Proc. of ACM Symposi-
um on User Interface Software Technology UIST’2006 (Montreux, Oc-
tober 15-18, 2006). New York: ACM Press, 2006, pp. 169–178.

[4] H. Baumeister, A. Knapp, N. Koch, and G. Zhang, “Modelling Adaptiv-
ity with Aspects,” in: Proc. of ICWE'2005. LNCS, Vol. 3579. Berlin:
Springer, 2005, pp. 406-416.

[5] N.O. Bernsen, “Multimodality in Language and Speech Systems - from
theory to design support Tool,” in Multimodality in Language and
Speech Systems, Granström, B., Ed. Dordrecht: Kluwer Academic Pub-
lishers, 2002

[6] T. Bladh, D.A. Carr, and M. Kljun, “The Effect of Animated Transitions
on User Navigation in 3D Tree-Maps,” in Proc. of the 9th Int. Conf. on
Information Visualization InfoVis’2005 (Minneapolis, October 23-25,
2005). Washington: IEEE Computer Society, 2005, pp. 297–305.

[7] D. Browne, P. Totterdell, and M. Norman, M. (Eds.), “Adaptive User In-
terfaces,” Computers and People Series. London: Harcourt Brace Jo-
vanovich Publishers, 1990.

[8] P. Brusilovsky, A. Kobsa, and W. Nejdl, W. (Eds.), “The Adaptive Web,
Methods and Strategies of Web Personalization,” LNCS, Vol. 4321.
Berlin: Springer, 2007.

[9] S. Casteleyn, O. De Troyer, and S. Brockmans, “Design Time Support
for Adaptive Behavior in Web Sites,” in Proc. of ACM Symposium on
Applied Computing SAC’2003 (Melbourne, March 9-12, 2003). New
York: ACM Press, 2003, pp. 1222–1228.

[10] S. Casteleyn, F. Daniel, P. Dolog, M. Matera, G.-J. Houben, and O. De
Troyer, Eds., Proc. of the 2nd Int. Workshop on Adaptation and Evolu-
tion in Web Systems Engineering AEWSE’2007 (Como, July 19, 2007).
CEUR Workshop Proceedings, Vol. 267, 2007.

[11] B.-W. Chang and D. Ungar, “Animation: From Cartoon to User Inter-
face,” in Proc. of ACM Symposium on User Interface Software Tech-
nology UIST’93 (Atlanta, November 3-5, 1993). New York: ACM
Press, 1993, pp. 45–55.

[12] B.-W. Chang, J.D. Mackinlay, P.T. Zellweger, and T. Igarashi, “A
negotiation architecture for fluid documents,” in Proc. of the 11th Annual
ACM Symposium on User Interface Software and Technology UIST’98
(San Francisco, November 1-4, 1998). New York: ACM Press, 1998, pp.
123–132.

[13] H. Dieterich, U. Malinowski, T. Kuhme, and M. Schneider-Hufschmidt,
“State of the art in adaptive user interfaces,” in Adaptive User Interfaces
Principles and Practice, Schneider-Hufschmidt, M., Kuhme, T., Mali-
nowski, U., Eds. Amsterdam: Elsevier Science Publishers B.V., 1993,
pp. 13–48.

[14] F. Chevalier, P. Dragicevic, A. Bezerianos, and J.-D. Fekete, “Using
Text Animated Transitions to Support Navigation in Document Histo-
ries,” in Proc. of ACM Conf. on Human Aspects in Computing Systems
CHI’2010 (Atlanta, April 10-15, 2010). New York: ACM Press, 2010,
pp. 683–692.

[15] Ch.-E. Dessart, V. Motti, and J. Vanderdonckt, “Showing User Interface
Adaptivity by Animated Transitions,” in Proc. of 3rd ACM Symposium
on Engineering Interactive Computing Systems EICS’2011 (Pisa, 13-16
June 2011). New York: ACM Press, 2011, pp. 95–104.

[16] Ch.-E. Dessart, V. Motti, and J. Vanderdonckt, “Animated Transitions
between User Interface Views”, in Proc. of ACM Int. Working Conf. on
Visual User Interfaces AVI’2012 (Capri, May 21-25, 2012). New York:
ACM Press, 2012.

[17] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete,
“Temporal Distortion for Animated Transitions,” in Proc. of ACM Conf.
on Human Aspects in Computing Systems CHI’2011 (Vancouver, May
7-12, 2011). New York: ACM Press, 2011, pp. 2009–2018.

[18] P. Dragicevic, S. Huot, and F. Chevalier, “Gliimpse: Animating from
Markup Code to Rendered Documents and Vice Versa,” in Proc. of 24th
ACM Symposium on User Interface Software and Technology
UIST’2011 (Santa Barbara, October 16-19, 2011). New York: ACM
Press, 2011, pp. 257-262.

[19] C. Dunn, “The Use of Real-Time Simulation by Means of Animation
Film as an Analytical Design Tool in Certain Spatio-Temporal Situa-
tions,” Ergonomics, vol. 16, 1973, pp. 515–519.

[20] S. Eick, J. Steffen, and E.S. Jr. Seesoft, “A tool for visualizing line ori-
ented software statistics,” IEEE Trans. on Software Engineering, vol. 18,
no. 11, 1992, pp. 957–968.

[21] A.T.S. Fialho and D. Schwabe, “Enriching Hypermedia Application In-
terfaces,” in Proc. of 7th Int. Conf. on Web Engineering ICWE’2007
(Como, July 16-20, 2007). Lecture Notes in Computer Science, vol.
4607. Berlin: Springer-Verlag, 2007, pp. 188–193.

[22] I. Garrigós, S., Meliá, and S. Casteleyn, “Adapting the Presentation
Layer in Rich Internet Applications,” in Proc. of ICWE’2009. Berlin:
Springer, 2009, pp. 292–299.

[23] J.M. Gómez and T. Tran, “A Survey on Approaches to Adaptation on
the Web,” in Emerging Topics and Technologies in Information
Systems, M.D. Lytras, Ordóñez de Pablos, P., Eds. Hershey: IGI Global,
Hershey, 2009, pp. 136–152.

[24] C. Gonzalez, “Does animation in user interfaces improve decision
making?,” in Proc. of ACM Conf. on Human Aspects in Computing
Systems CHI’1996 (Vancouver, April 13-18, 1996). New York: ACM
Press, 1996, pp. 27–34.

[25] J. Heer and G. Robertson, “Animated Transitions in Statistical Data

Graphics,” IEEE Trans. on Visualization and Computer Graphics, vol.
no. 6, Nov. 2007, pp.1240–1247.

[26] W. Hong, J.Y.L. Thong, and K.-Y. Tam, “Does Animation Attract
Online Users’ Attention? The Effects of Flash on Information Search
Performance and Perceptions,” Information Systems Research, vol. 15,
no. 1, 2004, pp. 60–86.

[27] J. Huhtala, J. Mäntyjärvi, A. Ahtinen, L. Ventä, and M. Isomursu, “An-
imated Transitions for Adaptive Small Size Mobile Menus,” in Proc. of
the 12th IFIP TC 13 Int. Conf. on Human-Computer Interaction Inter-
act’2009 (Uppsala, August 24-28, 2009). Lecture Notes in Computer
Science, vol. 5726. Heidelberg: Springer, 2009, pp. 772–781.

[28] J. Huhtala, A.-H. Sarjanoja, J. Mäntyjärvi, M. Isomursu, and J. Häkkilä,
“Animated UI transitions and perception of time: a user study on ani-
mated effects on a mobile screen,” in Proc. of ACM Conf. on Human
Aspects in Computing Systems CHI’2010 (Atlanta, April 10-15, 2010).
New York: ACM Press, 2010, pp. 1339–1342.

[29] T. Lavie and J. Meyer, “Benefits and costs of adaptive user interfaces,”
International Journal of Human-Computer Studies, 68 (2010), pp. 508–
524.

[30] J. Mackinlay, “Automating the Design of Graphical Presentations of Re-
lational Information,” ACM Trans. on Graphics, vol. 5, no. 2, April
1986, pp. 110–141.

[31] Ch. Mertz, S. Chatty, and J.-L. Vinot, “The influence of design tech-
niques on user interfaces: the DigiStrips experiment for air traffic con-
trol,” in Proc. of HCI-Aero’2000 (Toulouse, September 2000).

[32] B. Michotte, J. Vanderdonckt, “GrafiXML, A Multi-Target User Inter-
face Builder based on UsiXML,” in Proc. of 4th Int. Conf. on Autonomic
and Autonomous Systems ICAS’2008 (Gosier, 16-21 March 2008). Los
Alamitos: IEEE Computer Society Press, 2008, pp. 15–22.

[33] T. Mirlacher, Modeling Animations for Dependable Interactive Applica-
tions, Proc. of 3rd ACM Symposium on Engineering Interactive Compu-
ting Systems EICS’2011 (Pisa, 13-16 June 2011). New York: ACM
Press, 2011, pp. 319–322.

[34] O. Pastor, “Generating User Interfaces From Conceptual Models: A
Model-Transformation Based Approach,” in Proc. of 4th Int. Conf. of
Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes,
15-17 May 2002), Ch. Kolski, J. Vanderdonckt, Eds. Dordrecht: Kluwer
Academics, 2006, pp. 1–14.

[35] O. Pastor and J.C. Molina, “MDA in Practice: a Software Production
Environment Based on Conceptual Modelling”, Berlin: Springer, 2008.

[36] I. Pederiva, J. Vanderdonckt, S. España, I. Panach, and O. Pastor, “The
Beautification Process in Model-Driven Engineering of User Interfaces,”
in Proc. of 11th IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT’2007 (Rio de Janeiro, September 10-14, 2007). Lecture
Notes in Computer Science, vol. 4662. Berlin: Springer, 2007, pp. 409–
422.

[37] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds., “Web Engineer-
ing: Modelling and Implementing Web Applications,” Human-Computer
Interaction Series. Berlin: Springer, 2008.

[38] B. Sarkar, “LWUIT 1.1 for Java ME Developers,” Packt Publishing,
2009.

[39] C. Schlienger and M. Anquetil, “A formal Proof of Animation and
Sound Benefit in ATC/ATM User Interfaces: Improving Controller's
Situation Awareness,” in Proc. of INO’2006 Workshop (Bretigny, De-
cember 5–7, 2006)

[40] C. Schlienger, P. Dragicevic, C. Ollagnon, and S. Chatty, “Les transi-
tions visuelles différenciées : principes et applications,” in Proc. of
IHM’2006 (Montréal, April 18-21, 2006). ACM Int. Series, vol. 133.
New York: ACM Press, 2006, pp. 59–66.

[41] C. Schlienger, S. Conversy, S. Chatty, M. Anquetil, and Ch. Mertz, “Im-
proving Users’ Comprehension of Changes with Animation and Sound:
An Empirical Assessment,” in Proc. of 11th IFIP TC 13 Int. Conf. on
Human-Computer Interaction INTERACT’2007 (Rio de Janeiro, Sep-
tember 10-14, 2007). Lecture Notes in Computer Science, vol. 4662.
Berlin: Springer-Verlag, 2007, pp. 207–220.

[42] M. Shanmugasundaram and P. Irani, “The effect of animated transitions
in zooming interfaces”. in Proc. of ACM Conf. on Advanced Visual In-
terfaces AVI’2008. New York: ACM Press, 2008, pp. 396–399.

[43] W. Schwinger, et al., “A survey on web modeling approaches for ubiqui-
tous web applications,” Int. Journal of Web Information System 4, 3
(2008), pp. 234–305.

[44] J. Stasko, “Animation in User Interfaces: Principles and Techniques,” in
Proc. of ACM Symposium on User Interface Software Technology
UIST‘1993. New York: ACM Press, 1993, pp. 81–101.

[45] J. Teevan, S.T. Dumais, D.J. Liebling, and R. Hughes, “A Longitudinal
Study of How Highlighting Web Content Change Affects People’s Web
Interactions,” in Proc. of ACM Conf. on Human Aspects in Computing
Systems CHI’2010 (Atlanta, April 10-15, 2010). New York: ACM
Press, 2010, pp. 1353–1356.

[46] B.H. Thomas and P. Calder, “Applying Cartoon Animation Techniques
to Graphical User Interfaces,” ACM Trans. on Computer-Human Inter-
action, vol. 8, no. 3, September 2001, pp. 198–222.

[47] J.B. Tucker, “Computer Graphics Achieves New Realism,” High Tech-
nology, June 1984, pp. 40–53.

[48] J. Vanderdonckt and X. Gillo, “Visual Techniques for Traditional and
Multimedia Layouts,” in Proc. of 2nd ACM Workshop on Advanced
Visual Interfaces AVI’1994 (Bari, June 1-4, 1994). New York: ACM

Press, 1994, pp. 95–104.

[49] J. Vanderdonckt, Model-Driven Engineering of User Interfaces: Promis-
es, Successes, and Failures,” in Proc. of 5th Annual Romanian Conf. on
Human-Computer Interaction ROCHI’2008 (Iasi, September 18-19,
2008), S. Buraga, I. Juvina, Eds., Bucharest: Matrix ROM, 2008, pp. 1–
10.

[50] D. Vodislav, “A visual programming model for user interface anima-
tion,” in Proc. of IEEE Symposium on Visual Languages InfoVis’97
1997, pp. 344–351.

[51] R. Williams, “Techniques d’animation pour le dessin animé, l’animation
3D et le jeu video”. Eyrolles, Paris, 2009. Translated from R. Williams,
“The Animator’s Survival Kit,” Faber and Faber ltd, 2009.

[52] R.C. Zeleznik, D. Brookshire Conner, M.M. Wloka, D.G. Aliaga, N.T.
Huang, P.M. Hubbard, B. Knep, H. Kaufman, J.F. Hughes, and A. van
Dam, “An Object-Oriented Framework for Integration of Interactive An-
imated Techniques,” in Proc. of SIGGRAPH’91. Computer Graphics,
vol. 25, no. 4, July 1991, pp. 105-112.

