
Generative Pattern-Based Design of User Interfaces
Jean Vanderdonckt

Louvain School of Management
Université catholique de Louvain

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
+32 10 47.85.25

jean.vanderdonckt@uclouvain.be

Francisco Montero Simarro
Laboratory on User Interaction & Software Engineering

University of Castilla-La Mancha
02071 Albacete, Spain

+34 967 599200 Ext.: 2468

fmontero@info-ab.uclm.es
ABSTRACT
This paper suggests a method for developing graphical user inter-
faces based on generative patterns. A generative pattern contains
portions of previously designed user interfaces are expressed
through models that are either partially or totally instantiated.
These portions could be identified and re-applied to a new design
case study by generating code by instantiating the specifications
contained in the models. The method involves typical models
found in user interface development life cycle such as task, do-
main, abstract user interface, concrete user interface, final user in-
terface, context model, and mappings between them. Any model
could virtually be the source of a pattern and could be described,
searched, matched, retrieved, and assembled together so as to cre-
ate a new graphical user interface. For this purpose, a software
has been developed that manages generative patterns by combin-
ing an existing user interface description language (UsiXML –
user interface extensible markup language) with concepts address-
ing problems raised by pattern description and matching in a pat-
tern-based language (PLML – Pattern Language Markup Lan-
guage, a language was introduced to uniformly represent user in-
terface patterns). Once instantiated from the generative patterns,
the models give rise to a model-driven engineering based on mod-
el-to-model transformation and model-to-code compilation.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
evolutionary prototyping, user interfaces. D.2.11 [Software En-
gineering]: Software Architectures – Patterns (e.g., client/server,
pipeline,blackboard). D.3.3 [Programming Language]: Lan-
guage Constructs and Features – Patterns. H.5.2 [Information
Interfaces and Presentation (e.g., HCI)]: User interfaces –
Graphical user interfaces (GUI), User interface management sys-
tems (UIMS).

General Terms
Algorithms, Design, Human Factors, Standardization, Languages.

Keywords
Descriptive pattern, Generative pattern, Model-Driven Engineer-
ing, User interface pattern.

1. INTRODUCTION
Since a more than two decades, design patterns [1,3,13,30] have
received much attention in various domains of the human activity,
including software engineering [8], software development [5], and
User Interface (UI) design [15,34] with the conviction that parts
or whole of any UI that has been designed for a past interactive
application may be reused later in another, perhaps similar, inter-
active application. In addition, design patterns are also frequently
expressed as a comprehensive way to communicate pairs of
(problem, solution) in a manner that remains largely applicable,
and more general than usability guidelines [34]. Usability guide-
lines were criticized for not mentioning explicitly the context in
which they are applicable [3]. The CHI’2003 workshop on UI
Patterns [12] observed that many different, probably inconsistent,
sources of UI design patterns exist today [10,11,29,34], thus rais-
ing the need for a common pattern language to express UI design
patterns. This resulted into the Pattern Language Markup Lan-
guage (PLML) [12] specification. The main goal of PLML was to
bring some structure and consistency to the many forms that have
been used by pattern authors. PLML became more widely applied
as several pattern collections have been translated into this for-
mat, thus facilitating comparison, re-use, and linking between var-
ious collections. PLML is a natural language-based way for writ-
ing patterns, thus potentially suffering from intrinsic problems
like ambiguity, inconsistency, PLML does not escape from these
problems. Therefore, this language is more frequently used for
describing UI patterns than for supporting pattern-based UI design
process [15] that is effectively and efficiently supported by soft-
ware. These problems include, but are not limited to (Fig. 1):

� Lack of expressivity. Several PLML tags express various
pattern aspects that were believed of sufficient general inter-
est, but some are missing. For instance, a tag describes the
forces of a pattern, but nothing describes the counter-forces.

� Flat definition. PLML is defined in a Document Type Defini-
tion (DTD) in a flat structure that does not easily support
structured pattern-matching and searching.

� Lack of separation of concerns. PLML mixes the expression
of several concepts together, thus reducing the principle of
separation of concerns where different aspects are captured in
different independent models. For instance, the context defini-
tion is completely embedded in a general tag without being
further refined. It is therefore hard to exploit this context de-
scription to identify potentially similar contexts of use in
which the same pattern could become applicable.

� Lack of structure. Several tags are defined in a general way
(e.g., a string), with no further decomposition, thus leaving
the definition very open and flexible (which is an advantage),
but discouraging a structured use of the tags by a software
(which is a shortcoming for large and efficient use).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
PEICS’10, June 20, 2010, Berlin, Germany
Copyright 2010 ACM 978-1-4503-0246-3…$10.00.

12

<!ELEMENT pattern (name?, alias*, illustration?, problem?, context?,
forces?, solution?, synopsis?, diagram?, evidence?, confi-
dence?, literature?, implementation?, related-patterns?, pat-
tern-link*, management?)>

<!ATTLIST pattern patternID CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT alias (#PCDATA)>
<!ELEMENT illustration ANY>
<!ELEMENT problem (#PCDATA)>
<!ELEMENT context ANY>
<!ELEMENT forces ANY>
<!ELEMENT solution ANY>
<!ELEMENT synopsis (#PCDATA)>
<!ELEMENT diagram ANY>
<!ELEMENT evidence (example*, rationale?)>
<!ELEMENT example ANY>
<!ELEMENT rationale ANY>
<!ELEMENT confidence (#PCDATA)>
<!ELEMENT literature ANY>
<!ELEMENT implementation ANY>
<!ELEMENT related-patterns ANY>
<!ELEMENT pattern-link EMPTY>
<!ATTLIST pattern-link type CDATA #REQUIRED

patternID CDATA #REQUIRED
collection CDATA #REQUIRED

 label CDATA #REQUIRED>
<!ELEMENT management (author?, credits?, creation-date?, last-

modified?, revision-number?)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT credits (#PCDATA)>
<!ELEMENT creation-date (#PCDATA)>
<!ELEMENT last-modified (#PCDATA)>
<!ELEMENT revision-number (#PCDATA)>

Figure 1. Document Type Definition of PLML.
In order to address these shortcomings, a method for developing a
UI based on generative patterns is introduced:
1. A definition of models involved in UI design, which can then

be mapped to a pattern.
2. A specification of these models and the pattern according to a

single User Interface Description Language (UIDL).
3. A definition of the method steps with these models.
4. A software for supporting the method called IDEALXML (In-

terface Development Environment for AppLications specified
in UsiXML).

2. BACKGROUND
A pattern must be useful because this shows how having the pat-
tern in mind may be transformed into an instance of the pattern in
the real world [1], as something thing that adds value to our lives
as developers and practitioners. A pattern must also be usable be-
cause this shows how a pattern described in literary form may be
transformed into a pattern that we have in our mind. And a pattern
must be used because this is how patterns that exist in the real
world first became documented as patterns in literary form. In the
next subsections, we discuss how UI patterns have been tried to
become useful, usable, and used.

2.1 Patterns compilation
Many references exist where design patterns in Human-Computer
Interaction (HCI) or interaction patterns appear. Compilations of
those references can be found in, for instance, The interaction de-
sign patterns page [10], The pattern gallery [11], HCI patterns
pages [4] or Interaction design patterns [34]. In those compila-
tions, several ways of documenting the same type of contents can

be identified from natural language to XML-based formats. Ma-
nipulating interaction patterns is very difficult and is necessary to
provide additional assistance in order to use them in a (semi-
automatically) way. In this sense, only a few proposals are availa-
ble where designers can work using patterns. In software engi-
neering, notations exist like UML and tools where design patterns
[14] can be used together. Design patterns are documented using
class diagrams from which guidance is provided to designs on
how to use them. These tools are not available in other fields like
HCI because UI patterns in this field are difficult to use, to docu-
ment, to compare, and to know. Using UI patterns typically re-
quires assistance for identifying, selecting, adapting, and integrat-
ing them. These tasks should be supported by tools to become re-
ally usable. For this purpose, the pattern documentation should be
improved prior to making them available in tools. Using only nat-
ural language is not enough in order to work efficiently with pat-
terns. There is no universal way to write a pattern.
Patterns are often referred to as being descriptive when they basi-
cally consist of a description of the pattern, its problem, the con-
text in which the problem is posed, and the potential solutions that
can be brought to solve the problem. Patterns are one form of es-
tablishing a mapping between the problem space and the design
space. Descriptive patterns are intended to be used mainly by hu-
man such as project leaders, designers, analysts, and developers.
Descriptive patterns usually seek to maximize descriptivity (i.e.,
the ability of a pattern to be described in details enough to be-
come self-contained) and genericity (i.e., the ability of a pattern to
be applicable to the widest problem space possible by interpreting
the description for a particular context of use). As opposed to de-
scriptive patterns, patterns are said to be generative when they
subsume an object-oriented representation that can be automati-
cally obtained in order to generate the final code. Generative pat-
terns are intended to be used by automata (e.g., algorithms, pro-
gram analysis and synthesis techniques). Generative patterns usu-
ally seek to maximize expressivity (i.e., the ability of a pattern to
be expressive enough so as to obtain a working system) and gen-
erativity (i.e., the ability of pattern to be expressed in a way that
facilitates automated generation of code).

Generativity

Genericity

HighLow

Low

High

Des
cri

pti
ve

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Genuine
patterns

Expressivity

Descriptivity

HighLow

Low

High

Des
cri

pti
ve

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Genuine
patterns

Generativity

Genericity

HighLow

Low

High

Des
cri

pti
ve

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Genuine
patterns

Generativity

Genericity

HighLow

Low

High

Des
cri

pti
ve

pa
tte

rns

Des
cri

pti
ve

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Genuine
patterns
Genuine
patterns

Expressivity

Descriptivity

HighLow

Low

High

Des
cri

pti
ve

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Genuine
patterns

Expressivity

Descriptivity

HighLow

Low

High

Des
cri

pti
ve

pa
tte

rns

Des
cri

pti
ve

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Gen
era

tiv
e

pa
tte

rns

Genuine
patterns
Genuine
patterns

Figure 2. Classification of patterns compilations according to
the four properties.

In our context, generative patterns tell us how to create a UI that
can be observed in the resulting interactive system to be devel-
oped. Non-generative patterns describe recurring phenomena
without necessarily saying how to reproduce or to concretize them
in a particular interactive application. We should therefore docu-
ment generative patterns since they show the characteristics of
good UIs (e.g., they convey information about usability [35]) that
are appropriate in their context of use and how to develop them.
This does not mean that descriptivity should be left out.

13

Pattern

+patternId(int)
+patternName(String)
+patternAlias(String)
+patternSynopsis(String)
+strengths(String)
+weaknesses(String)
+opportunities(String)
+threads(String)
+problem(String)
+solution(String)
+evidence(int)

+createPattern()
+readPattern()
+updatePattern()
+deletePattern()
+matchPattern()

PatternLink

+linkId(int)
+linkType(String)
+linkDefinition(String)
+createLink()
+updateLink()
+deleteLink()

is linked to0..n
0..n

links

UIModel

+id(int)
+name(String)
+creationDate(String)
+instantiateUIModel()

Author

Version

+modifDate(String)

TransformationModel TaskModel DomainModel AUIModel CUIModel MappingModel ContextModelFUIModel
+languageName(String)
+languageType(String)
+urlFile(String)
+codeFileName(String)

0..n
0..n

0..10..n

applyies

0..n

0..nis applicable in

Example

+exampleId(int)
+exampleName(String)
+exampleType(String)
+exampleDesc(String)
+exampleFileName(String)
+exampleRationale(String)

+createExample()
+readExample()
+updateExample()
+deleteExample()

examplifies
is examplified by

0..n 1..n

ActivityDomain

+activityName(String)
+activityDesc(String)
+eaCode(String)
+NACECode(String)

is valid for1..n

0..n concerns

relates
is related to

1..n
0..n

Reference

+referenceId(int)
+referenceType(String)
+authors(String)
+referenceTitle(String)
+referenceLocation(String)
+publishingDate(String)
+URL_HTML(url)
+URL_PDF(url)
+URL_abstract(url)
+RefComments(String)

is cited by
0..n1..n

cites

Figure 3. UML Class diagram of a UI pattern extended from PLML [12].
We here argue for a UI pattern scheme that combines both the
qualities of descriptive and generative patterns by defining a UI
pattern template containing both descriptive and generative as-
pects as opposed to one single dimension at a time. Genuine pat-
terns are expected that maximize the four properties of purely de-
scriptive and generative patterns. Descriptive patterns are usually
estimated of high genericity and descriptivity, but low in genera-
tivity and expressivity (Fig. 2). Generative patterns are in an in-
verse situation: they are high in generativity and expressivity, but
low in genericity and descriptivity. By combining the qualities of
both families into genuine patterns, it is expected to reach a high
level for the four properties simultaneously (Fig. 2).

2.2 Pattern software
Different software exists today for supporting the process of using
UI patterns. Environments exist where patterns can be introduced
[29], suggested [16], viewed [34] or used to develop prototypes
[26]. CANONSKETCH [7] is a tool to describe user interfaces using
the notation of Canonical Abstract Prototypes [9]. Introducing a
UI using this notation which is independent of any technology
represents a generative pattern since HTML code can be automat-
ically generated from the description. However, no other infor-
mation about the pattern is provided. The Montreal Online Usa-
bility Patterns Digital Library [29] is an Integrated Pattern Envi-
ronment (IPE) that was originally designed with two major objec-

tives: as a service to UI designers and software engineers for UI
development and as a research forum for understanding how pat-
terns are really discovered, validated, used and perceived.
MOUDIL consists of a pattern editor, a pattern navigator and a
pattern viewer. In this way, it supports descriptive patterns effec-
tively, but needs to be connected with other tools to give rise to a
running UI.
Greene [16] developed a software prototype to support pattern-
assisted design and development. The software supports the pat-
tern creating, browsing, viewing, and editing, but most important-
ly, it provides decision support to help filter and select patterns
based on criteria or drivers specified by the pattern authors as rel-
evant to particular patterns. Internally, patterns are stored as XML
documents. Pattern elements are the fields or properties of the pat-
terns (e.g., ‘Name’, ‘Problem’, ‘Forces’, ‘Context’, ‘Solution’,
etc.). There is a default set of such properties, but, since there is
of yet no accepted standard set of properties, this set is definable
and extensible by the pattern language author. One can define
different pattern types with different fields and links between pat-
terns may be user-defined and typed, thus providing mechanisms
that are adequate for making a true knowledge base of patterns.
One can search for patterns that contain specified strings in all or
any subset of the fields of the patterns. Although there are cur-
rently two decision support mechanisms embodied in the tool to
identify appropriate patterns, it does not produce any running UI.

14

MESCA [18] consists of a knowledge base of UI elements that are
considered as patterns. Its advantage relies in its case-based rea-
soning algorithm for finding out similar UI elements based on
search criteria. Again, it does not produce any running UI. The
PIM tool [25] probably represents the most advanced tool for UI
patterns which are both descriptive and generative: it stores mod-
els in the XIML (www.ximl.org) and allows several degrees of
pattern searching.

2.3 Methodologies
In the area of Model-Driven Engineering (MDE), several meth-
odologies exist that support the development life cycle of interac-
tive applications, such as UML-based methodologies. WISDOM [7]
or IDEAS [23] are object-oriented, they use the UML to specify,
visualize, and document the artifacts of the development project.
They have been adapted to develop interactive applications be-
cause UML does not support UI design. WISDOM and IDEAS
evolve incrementally through an iterative process. Other ap-
proaches are task centered [26], pattern-oriented [17,23,27,30],
involve different techniques such as usability engineering [17], in-
teraction templates [26], multiple design [27], and MDE [28,30].
They provide a methodological guidance on how to use patterns
but, again, are not generative. A major observation is that a UI
pattern may be informed by many different types of contents be-
longing to different models which are not all necessary at once,
but which could be considered individually when needed. Next,
we introduce our UI representation so that it is both descriptive
and generative.

3. CONCEPTUAL MODEL OF PATTERNS
The PLML [12] language, resulting from a consensus obtained
during the CHI’2003 workshop on patterns, is certainly a refer-
ence base to be considered for extension. Based on specifications
reproduced in Fig. 1, PLML has been expanded into a UML Class
Diagram for representing UI patterns that are both descriptive and
generative (Fig. 3). We now justify why these extensions have
been required. Each UI pattern should be properly identified;
therefore we need an identifier (patternID), a meaningful short
name (patternName), an alternate name (patternAlias), and a
pattern general description (patternSynopsys). PLML only pro-
vides the forces of a pattern as recommended by Alexander [1].
We believe this should be expanded: when we write a pattern the
notion of force generalizes the kinds of criteria that software en-
gineers use to justify designs and implementations. But these
forces should be counter-balanced with other dimensions which
are typically found in the SWOT analysis, a tool for auditing an
organization and its environments with four axes: strengths,
weaknesses, opportunities, and threads. Strengths and weaknesses
are internal factors and opportunities and threads are external fac-
tors. Forces are related with the 8 major ergonomic criteria as de-
fined Bastien & Scapin (i.e., compatibility, consistency, work
load, dialog control, adaptation, guidance, and error management
[2]). By expressing which ergonomic criteria are respected (or
addressed), we know in advance the quality of pattern and their
purpose. If we want to maximize consistency, patterns related to
consistency could be selected from the knowledge base. The evi-
dence scale (evidence) provides an indication of how seriously
designers and developers should consider each pattern. A five-
point Likert scale is used to depict the evidence related to each
pattern:

� 5: two or more experiments support the pattern.
� 4: one experiment supports the pattern.
� 3: two or more studies support the pattern.
� 2: one study supports the pattern.
� 1: one or more observations and no other supporting evidence

support the pattern.
� 0: no evidence supports the pattern.

In order to properly link patterns to each other, which is important
for not forgetting related or potentially contradicting patterns, a
taxonomy of relationships (patternLink) between patterns has
been defined: X uses Y in its solution, X is a variant of Pattern Y,
X has a similar problem as Y, X is related in the related patterns
section to Y, X specializes Y (in the sense of pattern inheritance),
X connects to Y as part of the sequence S, in this case, the label
includes S and a descriptive text that serves as the glue text in the
sequence, X mentions Y in its context, this means that Y was ap-
plied before Y, X and Y are members of the same class or family,
X and Y involve a common participant P and X and Y can be
found in the same known context of use U. The problem provides
a description of the problem space covered by the pattern while
the space attribute describes the solution space ensured by the
pattern. Another factor of confidence we can assign to a pattern
comes from the bibliographic reference (reference) where it is
defined: a pattern defined by an organization, an expert or a prac-
titioner may widely differ in its scope and purpose. For instance, a
pattern recommended by an official body could be considered as
stronger than a pattern provided by an individual person.
Examples showing the application of a pattern so as to facilitate
its interpretation and its application are fundamental [35]. There-
fore, example contains a description of a supportive example
demonstrating the applicability, the non-applicability, or an ex-
ception of the pattern. Each example could be associated, if need-
ed, to one or several domains of human activity (humanActivity)
that characterize whether a pattern is generic or specific to a do-
main. In this way, it is also possible to search the knowledge base
of patterns for patterns that are applicable to a particular domain,
say for instance chemistry, medical record of patient, museum
visits, etc. This concludes the upper part of Fig. 3 containing the
descriptive explanatory power of a UI pattern. The below part of
Fig. 3 represents the generative power as it relates the pattern to
any combination of UI models involved in the Cameleon Refer-
ence Framework [6] for developing multi-target UIs, which is de-
composed into four steps [6,31,32,33]:
1. Task and domain modeling (Platform Independent Model in

MDA): a model is provided for the end user’s task, the do-
main of activity and, if needed, the context of use (user, com-
puting platform, and environment).

2. Abstract User Interface modeling (Platform Independent
Model in MDA): this level describes potential UIs inde-
pendently of any interaction modality and implementation.

3. Concrete User Interface modeling (Platform Specific Model
in MDA): this level describes a potential UI after a particular
interaction modality has been selected (e.g., graphical, vocal,
multimodal). This step is supported by several tools helping
designers to edit, build, or sketch a user interface.

4. Final User Interface: this level is reached when the UI code is
produced from the previous levels. This code could be either
interpreted (in this case, UI rendering is ensured) or compiled
(in case, various techniques such as generative programming,

15

template-based approach, static code generation could be
used.

Our methodology enables expressing and executing model trans-
formation based on UIs viewpoints. For this purpose, the mapping
model links the various models resulting from the above steps
through mappings [6]:

� Reification is a transformation of a high-level requirement in-
to a form that is appropriate for low-level analysis or design.

� Abstraction is an extraction of high-level requirement from a
set of low-level requirements artifacts or from code.

� Translation is a transformation a UI in consequence of a con-
text of use change. The context of use is, here, defined as a
triple of the form (U, P, E) where E is an possible or actual
environment considered for a software system, P is a target
platform, and U is a user category.

� Reflection is a transformation of the artifacts of any level onto
artifacts of the same level of abstraction, but different con-
structs or various contents.

4. USING UI PATTERNS WITH IDEALXML
To support the usage of UI patterns as defined in Fig. 3, the Ide-
alXML software has been developed that today consists of 17,000
lines of Java code. It can exploit a knowledge base of UI patterns
stored in UsiXML language [32] (www.usixml.org). This UIDL
has been selected because it already covered the various models
involved in the below part of Fig. 3. The upper part has therefore
been equally defined so that it could be expressed in a XML for-
mat that is compliant with UsiXML. In order to illustrate how this
software can support the four-step method outlined above, let us
consider an example related with web design and development:
the Sedan-Bouillon web site (http://www. sedan-bouillon.org/) is
a web site for providing tourists with location-aware information
on the archeological site. Fig. 4 shows a screen shot where tourist
guides are ordered on-line.

Figure 4. Contact page on the Sedan-Bouillon site.
This web page is a form where the user can ask until three differ-
ent catalogs related with tourist information of this French region.
This request is considered as a transaction that a visitor (partici-
pant) establishes when he visits this website. This participant

should be provided with additional information in order to receive
these catalogs. And finally the user should send his request press-
ing send button. In order to design our application at least three
models should be considered: domain, task, and abstract UI mod-
els before reaching a final UI. Different elements are used for this
purpose: class diagrams for the domain model, ConcurTaskTree
notation [23] for the task model, and Abstract Interaction Objects
(AIOs) for the abstract UI model. We can use patterns for each
model. So, we can identify three classes in our diagram of classes:
participant, transaction and catalogs. These classes and their rela-
tionships are structured according two patterns [8]: participant-
transaction pattern (Fig. 5) and transaction-specificItem pattern
(Fig. 6). A participant-transaction pattern establishes a relation-
ship between a participant (i.e. agent, applicant, buyer, cashier,
customer, dealer, delegate, distributor, employee, investor, manu-
facturer, member, owner, professional, prospect, recipient, retail-
er, sales clerk, shipper, student, subscriber, supervisor, supplier,
teacher, worker) that is able to perform transactions (i.e. agree-
ment, assignment, contract, delivery, deposit, inquiry, order,
payment, problem, report, purchase, refund, registration, rental,
sale, shipment, subscription, withdrawal) [8]. Similarly, a task
model is specified according to the ConcurTaskTree notation
[23]. Fig. 7 reproduces such a task model where different tasks re-
lated with the request filling where the user firstly selects a cata-
log, then provides personal information of contact and finally
send his request. Fig. 8 reproduces patterns for task specifications:
for instance, when the user selects, writes, or invokes actions, we
can see similar graphical notations and propose edit pattern, in-
voke-validation-send pattern, form pattern or wizard pattern (Fig.
9). These patterns are represented using CTT notation and stored
in UsiXML [32], a User Interface Description Language.

TRANSACTION

+ RefTrans
+ DateTrans
+ HourTrans
+ StatusTrans
+ isAuthorized [0..1]
+ AboutTrans

+ CreateTrans ()
+ ReadTrans()
+ UpdateTrans ()
+ DeleteTrans()

+ RateTrans()
+ ComputeOnTrans ()
+ SortTrans ()
+ ComputeOnParticip ()

PARTICIPANT

+ NoParticip
+ NameParticip
+ FirstnamesParticip [1..n]
+ Password
+ StartDateParticip
+ EndDateParticip
+ isActive [0..1]
+ AuthorizationLevel
+ AboutParticip
+ CreateParticip ()
+ ReadParticip ()
+ UpdateParticip ()
+ DeleteParticip ()

+ SearchParticip ()
+ ComputeAuthorLevel ()
+ RateParticip ()

1..n

Figure 5. Participant-transaction pattern.

TRANSACTION

+ RefTrans
+ DateTrans
+ HourTrans
+ StatusTrans
+ isAuthorized [0..1]
+ AboutTrans

+ CreateTrans ()
+ ReadTrans()
+ UpdateTrans ()
+ DeleteTrans()

+ RateTrans ()
+ ComputeOnTrans ()
+ SortTrans ()
+ ComputeOnParticip ()

ITEM

+ Notem
+ NameItem
+ AboutItem

+ CreateItem ()
+ ReadItem ()
+ UpdateItem ()
+ DeleteItem ()

+ SearchItem ()
+ ComputeItem ()
+ RateItem ()

1..n

Figure 6. Transaction-specificItem pattern.

16

Figure 7. Domain model using patterns.

Figure 8. Task model using CTT notation.

Figure 9. Examples of task patterns:
edit pattern and invoke-validation-action.

After representing the task and the domain models, it is possible
to link elements of these two models through the mapping model.
Such mappings include: triggers, observers, updates (mappings
between domain and task), isReifiedBy, isAbstractedInto (map-
pings between abstract and concrete UIs), manipulates (task and
domain) and isExecutedIn (task and abstract UI). In this sense, we
can identify patterns between models (intramodel-patterns) as the
mapping model contains a series of mappings between the related
models. Therefore, if we have a domain model that represents a

domain pattern and a task model that represents a task pattern, it
is possible in IDEALXML to enter mappings between so as to cre-
ate a task+domain pattern. This reasoning is similar for all subse-
quent models found in the next steps. After modeling task and
domain, an AUI model is needed that represents a canonical ex-
pression of the renderings and manipulation of the domain con-
cepts and functions in a way that is independent from any modali-
ty and computing platform. Such AIOs are composed of multiple
facets, each facet describing a particular function to be assumed
(input, output, navigation and control) (Fig. 10). IDEALXML pro-
vides an editor where an abstract representation can be specified
using abstract containers, abstract individual components and
facets (Fig. 10). Fig. 11 represents a simplified abstract UI: first a
container for the request form and then several individual compo-
nents were defined in order to specify catalogs and components of
the form used in this example. All these specifications can be
done using IDEALXML where four editors (Fig. 12) are provided
in order to model tasks, domain presentation and mappings be-
tween them. For example, Fig. 13 depicts a mapping between
task, domain, and abstract UI, when the designer identifies tasks
where the user invokes actions, these actions can include valida-
tion of information and then the action will be executed. Methods
and attributes will be invoked too when these actions are done.

Abstract Container (AC)
Abstract Individual Component (AIC)
Input facet
Output facet
Navigation facet
Control facet
Select facet

Abstract Container (AC)
Abstract Individual Component (AIC)
Input facet
Output facet
Navigation facet
Control facet
Select facet

Figure 10. Stylistics for the Abstract User Interface.

17

Figure 11. Abstract specification of Sedan-Bouillon form.

Figure 12. Abstract UI, task and model relationships.

Figure 13. Several screens and tabs provided in IDEALXML
for the various models in the UI pattern.

5. CONCLUSION
In this paper, we have introduced IDEALXML, a software that
provide facilities for managing UI patterns according to the rules
of model-based approach as defined in MDA. With IDEALXML, it
is possible to specify task, domain, and UI models in a graphical
way and to automatically generate specifications in UsiXML, a
XML-based language used to specify UI. Patterns can be ex-
pressed at any level (e.g., one model only) or declined at several
levels (e.g., multiple models simultaneously). In addition, it is
possible to link several different UI for a single task+domain de-
pending on the context of use. In this case, the context determines
the solution given in the UI pattern. The original aspect is that the
patterns are generative (the UsiXML specifications initiate auto-
mated code generation) as opposed to only descriptive and con-
templative.

6. ACKNOWLEDGMENTS
We acknowledge the support of the ITEA2 Call3 Project UsiXML
(User Interface eXtensible Markup Language) under reference
2008026 and the Région Wallonne from Belgium.

7. REFERENCES
[1] Alexander, C. 1979. The Timeless Way of Building, Oxford

University Press, New York.
[2] Bastien, J.M.Ch. and Scapin, D.L. Evaluating a User Inter-

face with Ergonomic Criteria. Int. J. of Human-Computer
Interaction 7, 2 (1995), pp. 105–121.

[3] Bayle, E., Bellamy, R. Casaday, G., Erickson, T., Fincher,
S., and Grinter, B. Putting it all Together: Towards a Pattern
Language for Interaction Design. SIGCHI Bulletin 30, 1
(1998), pp. 17–24.

[4] Borchers, J. 2001. A Pattern Approach to Interaction De-
sign, John Wiley & Sons, New York.

[5] Budinsky, F., Finnie, M., Vlissides, J., and Yu, P. Automat-
ic Code Generation from Design Patterns. IBM Systems
Journal 35, 2 (1996), pp. 151–171. Accessible at http://
www.research.ibm.com/designpatterns/pubs/codegen.pdf

[6] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., and Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers 15, 3 (2003), pp. 289–308.

[7] Campos, P. and Nunes, N.J. Towards useful and usable in-
teraction design tools: CanonSketch. Interacting with Com-
puters 19, 5-6 (2007), pp. 597–613.

18

[8] Coad, P., Mayfield, M., and North, D. 1997. Object Models:
Strategies, Patterns, and Applications, Prentice Hall, New
Jersey.

[9] Constantine, L. 2003. Canonical Abstract Prototypes for
Abstract Visual and Interaction Design. In Proc. of 10th Int.
Conf. on Design, Specification, and Verification of Interac-
tive Systems DSV-IS’2003 (Madeira, 4-6 June 2003). J.
Jorge, N.J. Nunes, J. Cunha (Eds.). Lecture Notes in Com-
puter Science, Vol. 2844. Springer, Berlin, pp. 1–15.

[10] Erickson, T. The Interaction Design Patterns Page. Accessi-
ble at http://www.pliant.org/personal/Tom_Erickson/Inter
actionPatterns.html

[11] Fincher, S. The pattern gallery. Accessible at http://www.
cs.kent.ac.uk/people/staff/saf/patterns/gallery.html

[12] Fincher, S., Finlay, J., Greene, Sh., Jones, L., Matchen, P.,
Thomas, J., and Molina, P.J. 2003. Perspectives on HCI pat-
terns: concepts and tools. In Ext. Proc. of CHI’2003. ACM
Press, New York, pp. 1044–1045.

[13] Gaffar, A., Seffah, A., and Van der Poll, J. 2005. HCI Pat-
terns Semantics in XML: A Pragmatic Approach. In Proc.
of the 2005 workshop on Human and social factors of soft-
ware engineering HSSE’2005 (St. Louis, May 16, 2005).
ACM Press, New York, pp. 1–7.

[14] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading.

[15] Granlund, Å., Lafrenière, D., and Carr, D.A. 2001. A Pat-
tern-Supported Approach to the User Interface Design Pro-
cess. In Proc. of 9th Int. Conf. on Human-Computer Interac-
tion HCI International’2001 (New Orleans, 5-10 August
2001). M.J. Smith, G. Salvendy, D. Harris, R.J. Koubek
(Eds.). Vol. 1, Lawrence Erlbaum Associates, Mahwah.

[16] Greene, S. and Matchen, P. 2003. Tool-based decision sup-
port for pattern assisted development. In Proc. of CHI’ 2003
Workshop on User Interface Patterns.

[17] Javahery, H. and Seffah, A. 2002. A Model for Usability
Pattern-Oriented Design. In Proc. of 1st International Work-
shop on Task models and Diagrams for user interface de-
sign TAMODIA’2002 (Bucarest, 18-19 July 2002). Pri-
beanu, C., Vanderdonckt, J. (Eds.). Academy of Economic
Studies of Bucharest, Economic Informatics Department,
INFOREC Printing House, Bucarest, pp. 104–110.

[18] Joshi, S.R., McWilliam, W.W. 1996. Case-based reasoning
approach to creating user interface components. In Proc. of
CHI’96. ACM Press, New York, pp. 81-82.

[19] Kolodner, J. 1993. Case-Based Reasoning. Morgan Kauf-
man, San Mateo.

[20] López-Jaquero, V., Montero, F., Molina, J.P., Fernández-
Caballero, A., and González, P. 2003. Model-Based Design
of Adaptive User Interfaces through Connectors. In Proc. of
10th Int. Conf. on Design, Specification, and Verification of
Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003).
Lecture Notes in Computer Science, Vol. 2844. Springer-
Verlag, Berlin, pp. 245–257.

[21] Molina, P., Belenguer, J., and Pastor, O. 2003. Describing
Just-UI Concepts Using a Task Notation. In Proc. of 10th

Int. Conf. on Design, Specification, and Verification of In-
teractive Systems DSV-IS’2003 (Madeira, 4-6 June 2003).
Lecture Notes in Computer Science, Vol. 2844. Springer-
Verlag, Berlin, pp. 361-371.

[22] Nicola, J., Mayfield, M., and Abney, M. 2001. Streamlined

Object Modeling, Prentice Hall, New Jersey.
[23] Paterno, F. 1999. Model-based design and evaluation of in-

teractive applications. Springer, Berlin.
[24] Pribeanu, C., and Vanderdonckt, J. 2003. A Pattern-based

Approach to User Interface Development. In Proc. of 2nd

Int. Conf. on Universal Access in Human-Computer Interac-
tion UAHCI’2003 (Creete, 22-27 June 2003). Vol. 4, C.
Stephanidis (Ed.). Lawrence Erlbaum Associates, Mahwah,
pp. 1524–1528.

[25] Radeke, F., Forbrig, P., Seffah, A., and Sinnig, D. 2006.
PIM Tool: Support for Pattern-Driven and Model-Based UI
Development. In Proc. of 5th Int. Workshop on Task Models
and Diagrams for User Interface Design TAMODIA’2006
(Hasselt, 23-24 October 2006). K. Coninx, K. Luyten, K.
Schneider (Eds.). Lecture Notes in Computer Science, Vol.
4385. Springer-Verlag, Berlin (2007), pp. 82–96.

[26] Schneider, K. and Paquette, D. 2004. Interaction Templates
for Constructing User Interfaces from Task Models. In
Proc. of 5th Int. Conf. on Computer-Aided Design of User
Interfaces CADUI’2004 (Funchal, 14-16 January 2004).
Kluwer Academics Pub., Dordrecht, pp. 221–232.

[27] Seffah, A. and Forbrig, P. 2002. Multiple User Interfaces:
Towards a Task-Driven and Patterns-Oriented Design Mod-
el. In Proc. of 9th Int. Workshop on Design, Specification,
and Verification of Interactive Systems DSV-IS’2002 (Ros-
tock, 12-14 June 2002). Lecture Notes in Computer Science,
Vol. 2545, Springer-Verlag, Berlin, pp. 118–132.

[28] Seffah, A. and Gaffar, A. Model-based user interface engi-
neering with design patterns. Journal of Systems and Soft-
ware 80 (2007) pp. 1408–1422.

[29] Seffah, A. MOUDIL: Montreal Online Usability Digital Li-
brary. http://hci.cs.concordia.ca/moudil/

[30] Sinnig, D., Gaffar, A., Reichart, D., Forbrig, P., and Seffah,
A. 2004. Patterns in Model-Based Engineering. In Proc. of
5th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2004 (Funchal, 14-16 January 2004). Kluwer Aca-
demics Pub., Dordrecht, pp. 195–208.

[31] Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg, Q.,
Silva, W., Rodrigues, D., and Taddeo, L. Multi-model and
Multi-level Development of User Interfaces. In “Multiple
User Interfaces”, A. Seffah, H. Javahery (Eds.), John Wiley,
pp. 193–216.

[32] Vanderdonckt, J. 2005. A MDA-Compliant Environment
for Developing User Interfaces of Information Systems. In
Proc. of 17th Conf. on Advanced Information Systems Engi-
neering CAiSE'05 (Porto, 13-17 June 2005). O. Pastor & J.
Falcão e Cunha (eds.), Lecture Notes in Computer Science,
Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-31. DOI=
http://dx.doi.org/10.1007/11431855_2.

[33] Vanderdonckt, J., Limbourg, Q., Florins, M. Deriving the
Navigational Structure of a User Interface. In Proc. of 9th
IFIP TC 13 Int. Conf. on Human-Computer Interaction IN-
TERACT’2003 (Zurich, 1-5 September 2003). IOS Press,
Amsterdam, 2003, pp. 455-462.

[34] van Welie, M. 2004. Patterns in Interaction Design.
[35] van Welie, M., van der Veer, G.C., and Eliens, A. 2000.

Patterns as Tools for User Interface Design. In Proc. of the
1st Int. Workshop on Tools for Working with Guidelines
TFWWG’2000 Group (Biarritz, 7-8 October 2000). J.
Vanderdonckt, Ch. Farenc (Eds.). Springer-Verlag, London,
pp. 313–324.

19

