
M. Mühlhäuser et al. (Eds.): AmI 2007 Workshops, CCIS 11, pp. 121–130, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Distributed User Interfaces in Ambient Environment

Jean Vanderdonckt1, Hildeberto Mendonca1, and José Pascual Molina Massó1,2

1 Belgian Laboratory of Computer-Human Interaction (BCHI)
Louvain School of Management (LSM), Université catholique de Louvain

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
{vanderdonckt,mendonca,molina}@isys.ucl.ac.be
2 Laboratory of User Interaction & Software Engineering (LOUISE)

Inst. de Investigación en Informática de Albacete (I3A), Universidad de Castilla-La Mancha
Campus universitario s/n – S-02071 Albacete (Spain)

jpmolina@dsi.uclm.es

Abstract. Before developing an Ambient Intelligence (AmI) application, it is
often required to examine how its user interface will be distributed across the
various interaction surfaces of its physical environment and which types of ser-
vices these user interfaces will provide to end-users. For this purpose, a virtual
reality rendering engine has been developed that renders a user interface model
in a physical environment expressed by an environment model and a service
model which enables designers to prototype the definition and the distribution
of such user interfaces. After the modeling phase, the user interface is rendered
in a virtual reality scene that may be subject to prototyping thanks to the model
rendering engine. Any suggestion for modification applied on the underlying
models (i.e., user interface, environment, and service) is propagated in the vir-
tual reality scene. Depending on the interaction surface where a particular user
interface is rendered, some adaptation rules may be performed expressed in
terms of model-to-model transformations.

Keywords: context-aware adaptation, distributed user interfaces (DUI), envi-
ronment model, intelligent user interfaces, interaction surface, physical envi-
ronment, service model, user interface prototyping.

1 Introduction

A preliminary problem that arises when designing and developing Ambient Intelligence
(AmI) applications, but not the only one, consists in determining how portions of its User
Interface (UI) will be distributed in a physical environment (e.g., an augmented room, a
home, a virtual laboratory) [5,6] and which shape this UI will take (i.e., digital, physical,
or mixed) [9]. Once this distribution is more or less determined, it is the responsibility of
designers to identify which interaction surfaces [4] will build the ambient environment
and which capabilities they will be equipped with [7]. This lead to the notion of Distrib-
uted User Interfaces (DUIs), which is a particular type of UI whose portions are distrib-
uted and executed in time and space in a particular physical environment.

When the development cost of a DUI turns out to be too high for considering alter-
native designs, it is likely that this exploration will be abandoned soon or limited

122 J. Vanderdonckt, H. Mendonca, and J.P. Molina Massó

largely limited. A rapid and cheap prototyping technique may be then preferred. In
addition, the usability issues raised by distributing a UI across one or several locations
[7] are serious, although the benefits have been empirically demonstrated [11]: the
display size has a positive effect of task completion time, tasks are better performed in
multi-displays environment, to name a few.

Therefore, we believe that rapid prototyping of DUIs in AmI remains a key issue:
not only rapid prototyping could be used as a vehicle for developing and demonstrat-
ing visions of innovative DUIs, but also they could help showing various distribution
configurations before going to full implementation. However, rapid prototyping is
also a challenging problem since the design space involves multiple dimensions: the
physical environment itself, the DUI, the interaction surfaces, and the capabilities of-
fered by these interaction surfaces. In order to address this problem more specifically,
this paper provides a context model decomposed into three facets (i.e., user, comput-
ting platform, and physical environment). The environment is itself linked to interac-
tion surfaces and their capabilities expressed as a service model.

The remainder of this paper is structured as follows: some related work is reported
in Section 2, the models used in our approach are defined in Section 3. Section 4 will
exemplify this model with some application in an augmented room. Section 5 will
sum up the benefits of the models provided and some future avenues for this work.

2 Related Work

Some advanced researches share some similarities with the work described in this pa-
per or provided initial material from which an extension has been introduced. Only
the ones closest to this work are reported.

DYNAMO-AID [3] provides a distribution manager which distributes the sub-tasks
of a task model to various computing platforms in the same physical environment,
thus fostering a task-based approach for distributing UIs across locations of the physi-
cal environment. In contrast, the approach of this paper does not rely on a task model
but rather gives the freedom and the responsibility to designers to distribute UIs in the
environment by providing them with the appropriate mechanisms. In addition, there is
no genuine model of interaction surfaces coupled with services described in a model.

The MIGRATION project [1] distributes UIs across web-based platforms of a cluster
and provides a service-oriented approach for ensuring migration of these portions
across the elements of the cluster. Again, this could be expanded with a model of in-
teraction surfaces and services if more services are desired.

In Everywhere [10], DUIs could be rendered on various interaction surfaces such
as large screens, white-boards, wall displays as well as personal surfaces. Only digital
interfaces are considered as opposed to 3DSim [8], where only hardware interfaces
are supported because it is the tool goal to prototype physical interfaces in a physical
environment, thus also providing some sort of rapid prototyping. The material devel-
opment of the physical UI is conducted after the prototype is validated.

VAQUITA [2] consists of a tool for reverse engineering an existing web page and
redisplay it for another platform whose model has been previously defined. Per se,
this tool is not a tool for supporting DUIs, but for retargeting a UI to another platform,
according to the paradigm of multiple channel UIs [12,13,14].

 Distributed User Interfaces in Ambient Environment 123

In this paper, the environment model is produced as a virtual reality scene, thus
allowing the rendering of both software (e.g., widgets) and hardware (e.g., physical
buttons) objects, but this is achieved mainly for rapid prototyping purposes only. It is
obvious that it cannot produce a physical UI, but the models used to prototype them
could be passed to the development team afterwards. The tool provides basic opera-
tions such as copy a UI from one surface to another one, whether they belong to a
computing platform or not, duplicate, and migrate.

The approach described in this paper is different from the above important pieces
of work in that it explicitly relies on a physical environment model decomposed into
surfaces, some of them being interactive some others not. These surfaces are then at-
tached to a service model characterizing the capabilities they can offer to the UI ren-
dering engine in virtual reality. The DUI could be physical, digital, or mixed.

3 Modeling Context of Use, Physical Environment, and Services

Figure 1 reproduces the meta-model of the various models exploited by the rendering
engine and their relationships. The constituent models are then explained successively
in the following respective sub-sections.

3.1 The Context of Use and the Physical Environment

The Context of use describes all the entities that may influence how the user’s task is car-
ried out with the UI [5]. It takes into account three relevant aspects, each aspect having its
own associated attributes contained in a separate model: user stereotype (e.g., system ex-
perience, task experience, task motivation), computing platform (e.g., mobile platform,
desktop, laptop, wall screen), and physical environment (e.g., office conditions such as
lighting, level of noise). The physical context is here represented as a virtual reality
scene, this is why we adopted a simplified representation inspired from X3D (see
http://www.web3d.org/x3d/) where such as scene is composed of surfaces (i.e., any type
of plane with its size, position, angle, etc.). This physical environment is populated by
surfaces which could be connected together to form a topology of the scene (e.g., a floor,
some walls and a ceiling to form an augmented lab), but also with shapes (i.e., any type
of volume which could represent a scene object, such as a chair, a desk, cupboards). De-
fined as a sub-type of surface, the concept of interaction surface, firstly introduced in [4],
is hereby referred to as any physical surface which can be “acted on or observed” so as to
support user interaction with a system, whether visible or embedded. For instance, an in-
teraction surface could be digital (e.g., a screen, a monitor, a wall display) or physical
(e.g., a table equipped with camera tracking techniques, a pad with projection). The defi-
nition of physical (e.g., weight, size, material, solidity/fluidity/nebulosity) and modality
attributes is in [4].

Each computing platform could be located precisely with respect to an environ-
ment surface and could hold none, one or many hardware platforms, which are de-
clared as a general form of output (e.g., a display, a monitor, a screen). Each such
platform is of course an interaction surface which could be acted on (by using point-
ers) and/or observed (by looking at the screen). Each interaction surface is defined by
its shape, which is the area sensible to interaction. Hardware platforms are therefore
considered as rectangular-shaped interaction surfaces. One could imagine probably other

124 J. Vanderdonckt, H. Mendonca, and J.P. Molina Massó

+id : string(idl)
+name : string(idl)

Context

+id : string(idl)
+stereoType : string(idl)
+taskExperience : string(idl)
+systemExperience : string(idl)
+device Experience : string(idl)
+taskMotivation : string(idl)

userStereotype

+id : string(idl)
+name : string

Platform

+id : string(idl)
+type : string(idl)
+name : string(idl)
+isNoisy : boolean(idl)
+isStressing : boolean(idl)
+lightingLevel : string(idl)

Environment

Context Model

+Composes1

+isComposedOf1..*

0..1

0..*

0..1

0..*

+surfaceID : string(idl)
+name : string(idl)
+title : string(idl)
+xPosition : float(idl)
+yPosition : float(idl)
+zPosition : float(idl)
+height : float(idl)
+frameColor : float(idl)
+transparencyLevel : float(idl)
+texture : float(idl)
+xOrientation : float(idl)
+yOrientation : float(idl)
+zOrientation : float(idl)
+angleOrientation : float(idl)
+top : float(idl)
+right : fixed(idl)
+width : float(idl)

Surface

-xPosOnSurface : float(idl)
-yPosOnSurface : float(idl)
-zPosOnSurface : float(idl)

Location

0..1

-isLocatedOn

0..*

-Locates

+playService()

+isFluid : boolean(idl)
+isRigid : boolean(idl)
+isRotatable : boolean(idl)
+Material : string(idl)
+cost : float(idl)
+quality : string(idl)

InteractionSurface

+isConnectedTo

0..*

+Connects0..*

1

*

+id : string(idl)
+nameShape : string(idl)
+xPositionShape : float(idl)
+yPositionShape : float(idl)
+zPositionShape : float(idl)
+xSizeShape : float(idl)
+ySizeShape : float(idl)
+zSizeShape : float(idl)
+geometryShape : string(idl)

Shape

1

*

+shapes

0..*

+isShapedAs 1

+hardwareID : string(idl)
+category : string(idl)
+colorCapability : string(idl)
+pointingDevice : string(idl)
+pointingResolution : float(idl)
+screenWidth : fixed(idl)
+screenHeight : fixed(idl)
+screenSizeChar : fixed(idl)

Hardware Platform

-isPossessedBy1

-possesses0..*

UI Model

+serviceName : string(idl)
+serviceFunction : string(idl)
+serviceInputs : string(idl)
+ServiceOutputs : string(idl)

Service

-Provides1..* -isprovidedBy1..*

+performService()
+raiseEvent()

+roleName : string(idl)
+roleType : string(idl)
+roleCapabilities : string(idl)
-rolePermissions

Role

+isPerformedBy

1..*

+performs

1..*

+influenceService()

+eventName : string(idl)
+eventInformation : string(idl)
+eventSeverity : string(idl)
-eventSolution : string(idl)

Event
+handles

1

+isHandledBy

0..*

+influenceService()

+conditionName : string(idl)
+conditionArgument : string(idl)
+conditionPredicate : string(idl)
-conditionValue : string(idl)

Condition

+influenceService()

+messageName : string(idl)
+messaheParts : string(idl)
+conditionPredicate : string(idl)
-conditionValue : string(idl)

Message

+controls0..*
+isControlledBy0..*

+isConstrainedBy1..*
+constraints0..*

+isGuardedBy

0..*

+guards

0..*

+isInput/outputBy

0..*

+input/output

0..*

Fig. 1. The meta-model used for rendering a user interface in an ambient environment

shapes like a circle or an oval, but in our implementation, only convex surfaces are sup-
ported. The interaction surface type depicts the level of physicality of the surface used to
render the DUI. A computer monitor and a public display are considered as digital
surfaces, as opposed to projection surfaces that are considered as physical ones. This

 Distributed User Interfaces in Ambient Environment 125

distinction will impact the rendering of an object as a widget for a digital surface or as a
physical device for a physical surface.

3.2 The Services

The service model is a meta-model comprising of five concepts useful for service
modeling, calling, and composition inspired from the service model of [9]. This meta-
model is based on generic service composition constructs derived after a thorough
study of the current standards such as Business Process Execution Language (BPEL –
http://en.wikipedia.org/wiki/BPEL) and Business Process Modeling Language (BP
ML – www.bpmi.org). Based on this study and on requirements for DUIs [1], the fol-
lowing classes have been identified:

• Service: This abstract class represents a well-defined business function similar to
basic activities such as those found in BPML. It contains four attributes: unique
name, function, inputs, and outputs. An instance of this class can be defined as fol-
lows: Service: (name="cuiRendering", function="concreteUserInterfaceRender-
ing", inputs="cuiModel, contextModel", outputs="cuiModel.instance"). This ex-
ample shows a service named ”cuiRendering” that is meant for rendering a par-
ticular concrete UI. It requires several input parameters to carry out this task, such
as, for instance, the UI model and the context model in which the UI should be
rendered. The output parameter of this class includes the handle to the UI instance
created in this context. Note that this service may exploit several sub-models such
as the platform model to render properly the UI whose model is provided.

• Event: This abstract class describes occurrences during the process of service exe-
cution and composition. These can be both of a normal and exceptional nature
(e.g., a serviced executed in case of an abnormal status). An instance of this class
can be defined as follows: Event: (name="widgetRenderingError", context= "con-
creteUserInterfaceRendering", severity="unrecoverable", information="rendering-
Status", solution="abandonExecution"). This example illustrates an event class
called "widgetRenderingError". If the attribute "Severity" in this event class is set
to "unrecoverable", then the execution needs to be abandoned. To signal the oc-
currence of "widgetRenderingError", a "widgetStatus" message must be sent to
indicate that a particular widget cannot be rendered on a particular platform. For
instance, the check box does not exist in WML 2.0, thus raising a rendering error.
This is recoverable though and possible solutions could be indicated: an empty
bow could be rendered instead or another service could be called, e.g. to replace
the failing widget by a list box with the two opposite values.

• Condition: This class constrains the behavior of the service and possible composi-
tions by controlling event occurrences, guarding activities and enforcing pre-
conditions, post-conditions and integrity constraints. For this purpose, a condition
class has four attributes, name, argument, predicate, value. A typical postcondition
for "cuiRendering" could be that "a CUI has been rendered and could be manipu-
lated by its handle". A typical precondition for "cuiRendering" could be that the
platform model exhibits a resolution that is large enough to accommodate the ren-
dering of a particular UI, i.e. not too large.

• Message: This abstract class represents a container of information (like propert-
ies in BPEL). Messages are used and generated by services as input and output,
respectively. They are also used to signal events, and can be correlated to other

126 J. Vanderdonckt, H. Mendonca, and J.P. Molina Massó

messages to express data dependencies. They have attributes such as name and
parts.

• Role: This class provides an abstract description for a party participating in the ser-
vice execution or composition. Roles are responsible for performing services and
raising events. An instance of this class can be: Role: (name="renderingEngine",
type="renderer", capabilities="(cuiRendering, cuiStoring, cuiRetrieving)", permis-
sions="(cuiRenderingAllowed)"). The previous example describes "renderingEngine"
as being of the type ”renderer”, both capable and authorized to render UI, to store a
currently being rendered UI and to retrieve its status during execution. Note that the
cuiRendering is executed prior to cuiStoring and cuiRetrieving.

To support the various services involved in Fig. 1, a rendering engine called VUI-
Toolkit has been developed above the UsiXML (www.usixml.org) and expanded with
the service model of Fig. 1 so as to render a concrete UI as a final UI in a virtual
world. First, the environment model gives rise to a virtual world com-posed on sur-
faces, some of them being interactive. In particular, computing platforms could be lo-
cated on some of these surfaces or considered as an interaction surface per se. Second,
the toolkit abstracts objects belonging to Web3D languages (e.g., VRML, VRML97,
X3D which are typically used in modeling virtual reality worlds and scenes). The next
section exemplifies how this toolkit could be used to support the execution of an indi-
vidual service, then the composition of several services taken together.

4 Executing, Composing Services for Distributed User Interfaces

4.1 User Interface Rendering

The cuiRendering service is responsible for rendering a UI or a portion of a UI on an
interactive surface in the physical environment. For this purpose, the service is in-
voked with appropriate parameters such as the UI model, the environment model in
which the rendering should occur and the interactive surface in it. Figure 2 reproduces
a UI rendering of a simple Internet radio UI on a laptop in an augmented room.

Fig. 2. Example of a user interface rendering

 Distributed User Interfaces in Ambient Environment 127

4.2 User Interface Migration

The cuiMigration service is responsible for migrating a UI or a portion of a UI from a
source interactive surface in the physical environment to a target one. For this pur-
pose, a composition of services is executed in the following sequence: cuiStoring for
storing the current values of the UI widgets (e.g., their default values, their current
values, the current behavior), cuiUnrendering to undisplay the UI from the interactive
surface of concern, cuiRetrieving to retrieve an existing UI model instantiated through
its handle, and cuiRendering to render it on another interactive surface. Figure 3 re-
produces some steps during the migration. A message is first produced to indicate the
beginning of a migration and when a new interactive surface is designated, an event
triggers the composition of services on the appropriate surface. In the current imple-
mentation, single windows can be migrated as a portion of a UI, but not individual
window elements.

Fig. 3. Example of a user interface migration

128 J. Vanderdonckt, H. Mendonca, and J.P. Molina Massó

4.3 User Interface Adaptation

The cuiMigration service is responsible for adapting a UI or a portion of a UI to a par-
ticular platform. This service is invoked when the target interactive surface is not able
to render the required UI due to space constraints.

4.4 Other User Interface Services

In AmI, other types of services are particularly useful such as, but not limited to:

• uiPhysicalization: this service is responsible for rendering a UI on a target interac-
tion surface that is physical such as a projected screen or a physical device. For
this purpose, different rendering functions select appropriate widgets or physical
widgets depending on the type of interaction surface used.

• uiDigitization is the inverse process, that is a service responsible for converting a
physical UI rendered on a physical interactive surface onto a digital one (screen).

• uiDuplicating: this service duplicates a UI rendered on an interactive surface onto
another one, thus creating a duplicate. From this time, the two instances live their
own life and are no longer coordinated.

• uiCopying: this service creates multiple copies of a singled rendered UI
• uiSwitching: this service is responsible for switching two UI between two interac-

tive surface.

5 Conclusion

This paper introduced a service model for rendering DUIs in AmI as a support for
rapid prototyping of DUIs by manipulation in a virtual reality scene. Some services
are rather traditional (e.g., copy, duplicate, store, retrieve), some others are more ad-
vanced (e.g., adaptation, migration). The main advantage of the structure in terms of
services is that functions can be precisely modeled and can be composed in a rigorous
way, that is, a new service can be created as the composition of already existing ser-
vices, thus creating a climate that is favorable for expanding the set of existing ser-
vices. For example, when an interface is migrated from a PC to a PDA, it may simply
be transferred thanks to the cuiMigration service and followed by a cuiRendering ser-
vice or it may also trigger an adaptation service (e.g., cuiAdaptation). If one wishes to
do this automatically, the three services can be composed together so as to form a new
service.

The prototype can be obtained as soon as an underlying model is created. Then, it
could be used in any software development method where the prototyping stage oc-
curs. In the future, we would like to develop functions as web services so that every-
body could benefit from them. In the virtual environment, one can explore alternative
designs by calling services related to the desired operation. In this way, a designer
may redistribute the DUI elements across the interactive surfaces of the environment
and investigate different assembling or manifestation of the DUI elements as physical
and/or digital objects. However, it is the manual operation what triggers the services,
as there is no algorithm for distributing UI pieces on interaction surfaces. Besides,

 Distributed User Interfaces in Ambient Environment 129

even though transition between digital and physical worlds is easy in this virtual envi-
ronment, rendering is currently limited by widgets provided by VUIToolkit.

The present work does not implement composition of services, neither dynamic
discovery of services (as in [1,6,9]), but sets the pave towards this direction. There
should be no reason why these services could not be invoked at run-time instead of
design-time, but their implementation should be updated accordingly. Composition
should be based on messages, but also on quality of services, e.g., find the closest sur-
face that could render a given UI. Thus, further extension of this work could also in-
clude modeling quality of services provided by interaction surfaces, which may start
from existing models, such as Q-WSDL, WSLA or DAML-QoS, to name a few.

Acknowledgments. We gratefully acknowledge the support of the SIMILAR network
of excellence (http://www.similar.cc), the European research task force creating hu-
man-machine interfaces similar to human-human communication of the European
Sixth Framework Programme (FP6-2002-IST1-507609). This research is fully funded
by SIMILAR.

References

1. Bandelloni, R., Paterno, F., Salvador, Z.: Dynamic discovery and monitoring in migratory
in-teractive services. In: Proc. of the 4th Annual IEEE Int. Conf. Pervasive Computing and
Com-munications Workshops PERCOMW 2006, March 13-17, 2006, IEEE Computer So-
ciety Press, Los Alamitos (2006)

2. Bouillon, L., Vanderdonckt, J.: Retargeting Web Pages to other Computing Platforms with
VAQUITA. In: Proc. of IEEE Working Conf. on Reverse Engineering WCRE 2002, Octo-
ber 28 -November 1, 2002, pp. 339–348. IEEE Computer Society Press, Los Alamitos
(2002)

3. Clerckx, T., Vandervelpen, C., Luyten, K., Coninx, K.: A Task Driven User Interface Ar-
chi-tecture for Ambient Intelligent Environments. In: Proc. of 10th ACM Int. Conf. on In-
telligent User Interfaces IUI 2006, Sydney, January 29 -February 1, 2006, pp. 309–311.
ACM Press, New York (2006)

4. Coutaz, J., Lachenal, C., Dupuy-Chessa, S.: Ontology for Multi-surface Interaction. In:
Proc. of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTERACT 2003, Zu-
rich, September 1-5, 2003, pp. 447–454. IOS Press, Amsterdam (2003)

5. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction
Journal 16(2-4), 97–166 (2001)

6. Ghorbel, M., Mokhtari, M., Renouard, S.: A Distributed Approach for Assistive Service
Provi-sion in Pervasive Environment. In: Proc. of 4th Int. workshop on Wireless mobile
applications and services on WLAN hotspots WMASH 2006, Los Angeles, September 29,
2006, pp. 91–100. ACM Press, New York (2006)

7. Giaglis, G.M., Kourouthanassis, P., Tsamakos, A.: Towards a Classification Framework
for Mobile Location Services. In: Mennecke, B.E., Strader, T.J. (eds.) Mobile commerce:
technology, theory, and applications, pp. 67–85. IGI Publishing, Hershey (2003)

8. Nazari Shirehjini, A.A., Klar, F., Kirste, T.: 3DSim: Rapid Prototyping Ambient In-
telligence. In: Proc. of the 2005 Joint Conf. on Smart objects and ambient intelligence: in-
novative context-aware services: usages and technologies sOc-EUSAI 2005, Grenoble,
October 2005. ACM Int. Conf. Proc. Series, vol. 121, pp. 303–307 (2005)

130 J. Vanderdonckt, H. Mendonca, and J.P. Molina Massó

9. Orriëns, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition. In: Or-
lowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS,
vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

10. Pinhanez, C.: The Everywhere Displays Projector: A Device to Create Ubiquitous Graphi-
cal Interfaces. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS,
vol. 2201, pp. 315–331. Springer, Heidelberg (2001)

11. Tan, D.S., Czerwinski, M.: Effects of Visual Separation and Physical Discontinuities when
Dis-tributing Information across Multiple Displays. In: Proc. of 9th IFIP TC 13 Int. Conf.
on Human-Computer Interaction INTERACT 2003, Zurich, September 1-5, 2003, pp. 9–
16. IOS Press, Amsterdam (2003)

12. Vanderdonckt, J., Puerta, A.R.: Computer-Aided Design of User Interfaces II. In: Proc. of
3rd Int. Conf. of Computer-Aided Design of User Interfaces CADUI 1999, Louvain-la-
Neuve, October 21-23, 1999. Information Systems Series, pp. 21–23. Kluwer Academics,
Dordrecht (1999)

13. Wolff, A., Forbrig, P., Reichart, D.: Tool Support for Model-Based Generation of Ad-
vanced User Interfaces. In: Proc. of the MoDELS 2005 Workshop on Model Driven De-
velopment of Ad-vanced User Interfaces MDDAUI 2005, Montego Bay, CEUR Workshop
Proceedings, vol. 159 (October 2, 2005)

14. Ziegert, T., Lauff, M., Heuser, L.: Device Independent Web Applications – The Author
Once – Display Everywhere Approach. In: Koch, N., Fraternali, P., Wirsing, M. (eds.)
ICWE 2004. LNCS, vol. 3140, pp. 244–255. Springer, Heidelberg (2004)

	Distributed User Interfaces in Ambient Environment
	Introduction
	Related Work
	Modeling Context of Use, Physical Environment, and Services
	The Context of Use and the Physical Environment
	The Services

	Executing, Composing Services for Distributed User Interfaces
	User Interface Rendering
	User Interface Migration
	User Interface Adaptation
	Other User Interface Services

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

