
USIXML: a User Interface Description Language for
Specifying Multimodal User Interfaces

Jean Vanderdonckt, Quentin Limbourg, Benjamin Michotte, Laurent Bouillon,
Daniela Trevisan, Murielle Florins

1 Université catholique de Louvain, School of Management (IAG), ISYS-BCHI
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

{vanderdonckt,limbourg, michotte, bouillon, trevisan,
florins}@isys.ucl.ac.be

http://www.isys.ucl.ac.be/bchi

Abstract. USer Interface eXtensible Markup Language (USIXML) consists of
a User Interface Description Language (UIDL) allowing designers to apply a
multi-directional development of user interfaces at multiple levels on independ-
ence, and not only device independence. In this development paradigm, a user
interface can be specified and produced at and from different, and possibly
multiple, levels of abstraction while maintaining the mappings between these
levels if required. Thus, the development process can be initiated from any
level of abstraction and proceed towards obtaining one or many final user inter-
faces for various contexts of use at other levels of abstraction. In this way, the
model-to-model transformation which is the cornerstone of Model-Driven Ar-
chitecture (MDA) can be supported in multiple configurations, based on com-
position of three basic transformation types: abstraction, reification, and trans-
lation.

Keywords: context-sensitive user interface, device independence, modality in-
dependence, model-driven architecture, model-to-model transformation, render-
ing independence, user interface description language.

1 Introduction

Many User Interface Description Languages (UIDLs) have been introduced so far
that addresses different aspects of a User Interface (UI): AUIML, UIML, XAML,
XIML, XUL,…. Depending on the perspective, the UIDL may address portability,
device independence, support of multiple computing platforms, user-centered design,
iterative and incremental development to name a few. This proliferation results in
many XML-compliant dialects that are not (yet) largely used and that do not allow in-
teroperability between tools that have been developed around the UIDL. In addition,
there has been little or no integration of the various models that not only addresses the
needs of traditional Graphical User Interfaces (GUIs) and Multimodal User Interfaces
(MUIs) simultaneously. Some UIDLs have been defined for one of them, but not for
both. To address the above challenges and others, we have defined USIXML (User
Interface eXtensible Markup Language – see www.usixml.org), a UIDL that is char-
acterised by the following original principles:

• Expressiveness of UI: any UI is expressed depending on the context of use thanks
to a suite of models analysable, editable, and manipulable by a software.

• Central storage of models: each model is stored in a model repository where all
UI models are expressed according to the same UI Description Language (UIDL).

• Transformational approach: each model stored in the model repository may be
subject to one or many transformations supporting various development steps.

• Multiple development paths: development steps can be combined together to form
developments paths that are compatible with the organisation’s constraints, con-
ventions, and context of use.

• Flexible development approaches: development approaches (e.g., top-down, bot-
tom-up, wide spreading, and middle-out) are supported by flexibly following al-
ternate development paths and enable designers to freely shift between these paths
depending on the changes imposed by the context of use.

2 The Reference Framework used for Multi-Directional UI
Development

Multi-directional UI development is based on the Cameleon Reference Framework
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to ma-
nipulate any specific artefact of interest as a model or a UI representation):
1. Final UI (FUI): is the operational UI i.e. any UI running on a particular computing

platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after compilation of code in an interactive development environment).

2. Concrete UI (CUI): concretises an abstract UI for a given context of use into Con-
crete Interaction Objects (CIOs) so as to define widgets layout and interface navi-
gation. abstracts a FUI into a UI definition that is independent of any computing
platform. Although a CUI makes explicit the final Look & Feel of a FUI, it is still a
mock-up that runs only within a particular environment. A CUI can also be consid-
ered as a reification of a AUI at the upper level and an abstraction of the FUI with
respect to the platform.

3. Abstract UI (AUI): defines interaction spaces (or presentation units) by grouping
subtasks according to various criteria (e.g., task model structural patterns, cognitive
load analysis, semantic relationships identification), a navigation scheme between
the interaction spaces and selects Abstract Interaction Objects (AIOs) for each con-
cept so that they are independent of any context of use. An AUI abstracts a CUI
into a UI definition that is independent of any modality of interaction.

4. Task & Concepts (T&C): describe the various tasks to be carried out and the do-
main-oriented concepts as they are required by these tasks to be performed. These
objects are considered as instances of classes representing the concepts manipu-
lated.

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction
Figure 1: The Cameleon Reference Framework.

This framework exhibits three types of basic transformation types: (1,2) Abstrac-
tion (respectively, Reification) is a process of elicitation of artefacts that are more ab-
stract (respectively, concrete) than the artefacts that serve as input to this process. Ab-
straction is the opposite of reification. (3) Translation is a process that elicits artefacts
intended for a particular context of use from artefacts of a similar development step
but aimed at a different context of use. With respect to this framework, multi-
directional UI development refers to a UI engineering method and tool that enables a
designer to (1) start a development activity from any entry point of the reference
framework (Fig. 1), (2) get substantial support in the performance of all basic trans-
formation types and their combinations of Fig. 1. To enable such a development, the
two most important requirements gathered from observations are:
1. A language that enables the expression and the manipulation (e.g., creation, modi-

fication, deletion) of the model at each development steps and for each context of
use. For this purpose, USIXML is introduced and defined.

2. A mechanism to express design knowledge that would provide a substantial sup-
port to the designer in the realisation of transformations. For this purpose, a GT
techniques is introduced and defined based on USIXML.

3 Transforming Specifications with USIXML

Graph transformation techniques were chosen to formalise USIXML, the language
designed to support multi-directional UI development, because it is (1) Visual: every
element within a GT based language has a graphical syntax; (2) Formal: GT is based
on a sound mathematical formalism (algebraic definition of graphs and category the-
ory) and enables verifying formal properties on represented artefacts; (3) Seamless: it
allows representing manipulated artefacts and rules within a single formalism. Fur-
thermore, the formalism applies equally to all levels of abstraction of USIXML (Fig.
2). USIXML model collection is structured according to the four basic levels of ab-
stractions defined in the Cameleon Reference Framework that is intended to express
the UI development life cycle for context-sensitive interactive applications. Each
level of Fig. 1 can be itself further decomposed into two sub-levels (Fig. 2):

• At the FUI level, the rendering materialises how a particular UI coded in one lan-
guage (markup, programming or declarative) is rendered depending on the UI
toolkit, the window manager and the presentation manager. For example, a push
button programmed in HTML at the code sub-level can be rendered differently,
here on MacOS X and Java Swing. Therefore, the code sub-level is materialised
onto the rendering sub-level.

• Since the CUI level is assumed to abstract the FUI independently of any comput-
ing platform, this level can be further decomposed into two sub-levels: platform-
independent CIO and CIO type. For example, a HTML push-button belongs to the
type “Graphical 2D push button”. Other members of this category include a Win-
dows push button and XmButton, the OSF/Motif counterpart.

Final User
Interface (FUI)

Concrete User
Interface (CUI)

Abstract User
Interface (AUI)

Task &
Concepts

Rendering

Code

Platform-
independent
CIO

Modality-independent
AIO type

Task
Classes

Download

<input type=submit value=“Download" name=btnG>

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered: download file
Object: computer file

OSF/Motif
XmButton

Windows
push button

Download Down
Load

VRML97/X3D
button

Software
key

Function
key

Graphical 3D push button Physical push button
Platform-
independent
CIO type

Physical control AIOModality-dependent
AIO

Final User
Interface (FUI)

Concrete User
Interface (CUI)

Abstract User
Interface (AUI)

Task &
Concepts

Rendering

Code

Platform-
independent
CIO

Modality-independent
AIO type

Task
Classes

DownloadDownload

<input type=submit value=“Download" name=btnG>

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered: download file
Object: computer file

OSF/Motif
XmButton

Windows
push button

DownloadDownload Down
Load

Down
Load

VRML97/X3D
button

Software
key

Function
key

Graphical 3D push button Physical push button
Platform-
independent
CIO type

Physical control AIOModality-dependent
AIO

Figure 2: Example of transformations in USIXML.

• Since the AUI level is assumed to abstract the CUI independently of any modality
of interaction, this level can be further decomposed into two sub-levels: modality-
independent AIO and AIO type. For example, a software control (whether in 2D
or in 3D) and a physical control (e.g., a physical button on a control panel or a
function key) both belong to the category of control AIO.

• At the T&C level, a task of a certain type (here, download a file) is specified that
naturally leads to AIO for controlling the downloading.

Thanks to the four abstraction levels, it is possible to establish mappings between
instances and objects found at the different levels and to develop transformations that
find abstractions or reifications or combinations. For example, if a Graphical User In-
terface (GUI) needs to be virtualised, a series of abstractions is applied until the sub-
level “Software control AIO” sub-level is reached. Then, a series of reification can be
applied to come back to the FUI level to find out another object satisfying the same
constraints, but in 3D. If the GUI needs to be transformed for a UI for augmented re-
ality for instance, the next sub-level can be reached with an additional abstraction and
so forth. The combinations of the transformations allow establishing development
paths. Here, some first examples are given of multi-directional UI development. To
face multi-directional development of UIs in general, USIXML is equipped with a
collection of basic UI models (i.e., domain model, task model, AUI model, CUI
model, context model and mapping model) (Fig. 4) and a so-called transformation
model (Fig. 3) [13].

Figure 3: USIXML Model Collection

Beyond the AUI and CUI models that reflect the AUI and CUI levels, the other UI
models are defined as follows:

• taskModel: is a model describing the interactive task as viewed by the end user in-
teracting with the system. A task model represents a decomposition of tasks into
sub-tasks linked with task relationships. Therefore, the decomposition relationship
is the privileged relationship to express this hierarchy, while temporal relation-
ships express the temporal constraints between sub-tasks of a same parent task.

• domainModel: is a description of the classes of objectsmanipulated by a user
while interacting with a system.

• mappingModel: is a model containing a series of related mappings between mod-
els or elements of models. A mapping model serves to gather a set of inter-model
relationships that are semantically related.

• contextModel: is a model describing the three aspects of a context of use in which
a end user is carrying out an interactive task with a specific computing platform in
a given surrounding environment. Consequently, a context model consists of a
user model, a platform model, and an environment model.

• uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component model
sin any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model, and context model. A UI model
does not need to include one of each model component. Moreover, there may be
more than one of a particular kind of model component.

Figure 4: Transformation model as defined in USIXML

4 Tool Support

A tool support is provided at various levels of Fig. 2.
• Reverse engineering of UI code: a specific tool, called ReversiXML, automati-

cally reverse engineers the presentation model of an existing HTML Web page at
both the CUI and AUI levels, with or without intra-model, inter-model mappings.
This tool allows developers to recuperate an existing UI so as to incorporate it
again in the development process. In this case, a re-engineering can be obtained
by combining two abstractions, one translation, and two reifications. This is par-
ticularly useful for evolution of legacy systems.

• Model edition: as editing a new UI in USIXML directly can be considered as a
tedious task, a specific editor called GrafiXML has been developed to face the de-
velopment of USIXML models. USIXML being at first hand a textual language,
an ad hoc XML editor was created. In this editor, the designer can draw in direct
manipulation any graphical UI by directly placing CIOs where they need to be
and editing their properties in the Composer, which are instantly reflected in the
UI design. At any time, the designer may want to see the corresponding USIXML
specifications and edit it. Selecting a USIXML tag automatically displays possible
values for this tag in a contextual menu. When the tag or the elements is modified,
this change is propagated in the graphical representation. In this way, a bidirec-
tional mapping is maintained between a UI and its USIXML specifications: each
time a part is modified, the other one is updated accordingly.

• Transformation specification and application: an environment called Trans-
formiXML, based on AGG (Attributed Graph Grammars tool) is used for this ex-
periment. AGG can be considered as a genuine programming environment based
on graph transformations. It provides 1) a programming language enabling the
specification of graph grammars 2) a customizable interpreter enabling graph
transformations. AGG was chosen because it allows the graphical expression of
directed, typed and attributed graphs (for expressing specifications and rules).

• A tool for transformation application: several Application Programming Inter-
face are available to perform model-to-model transformations. We tested AGG
API as this API proposes to transform model with graph transformations. An ini-
tial model along with a set of rules are transmitted to a Application Programming
Interface that performs appropriate model transformations and provide a resulting
model that can be edited.

Acknowledgements
USIXML has been developed in the context of the Cameleon research project
(http://giove.cnuce.cnr.it/ cameleon.html) under the umbrella of the European Fifth
Framework Programme (FP5-2000-IST2) and is now progressively being adopted in
the SIMILAR network of excellence (http://www.similar.cc), the European research
task force creating human-machine interfaces similar to human-human communica-
tion of the European Sixth Framework Programme (FP6-2002-IST1-507609).

References
1. Ali, M.F., Pérez-Quiñones M.A., Abrams M.: Building Multi-Platform User Interfaces with

UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and Ap-
plication Framework. John Wiley and Sons, New York (2003)

2. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites. In:
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, January 13-
16, 2004). ACM Press, New York (2004) 132–139

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15,3 (2003) 289–308

4. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In: Proc. of 5th ACM Int. Conf. on Intelligent User In-
terfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New York (2001) 69–76

5. Mori, G., Paternò, F., Santoro, C.: Tool Support for Designing Nomadic Applications. In:
Proc. of 7th ACM Int. Conf. on Intelligent User Interfaces IUI’2003 (Miami, January 12-15,
2003). ACM Press, New York (2003)141–148

6. Vanderdonckt, J., Berquin, P.: Towards a Very Large Model-Based Approach for User In-
terface Development. In: Paton, N.W., Griffiths, T. (eds.): Proc. of 1st IEEE Int. Workshop
on User Interfaces to Data Intensive Systems UIDIS’99 (Edinburgh, September 5-6, 1999).
IEEE Computer Society Press, Los Alamitos (1999) 76–85

7. Wong, C., Chu, H.H., Katagiri, M.A., Single-Authoring Technique for Building Device-
Independent Presentations. In: Proc. of W3C Workshop on Device Independent Authoring
Techniques (St. Leon-Rot, 15-26 September 2002), accessible at http://www.w3.org/2002/
07/DIAT/posn/docomo.pdf

