
Distributed User Interfaces: How to Distribute User Interface
Elements across Users, Platforms, and Environments

Jean Vanderdonckt
Université catholique de Louvain, Louvain School of Management, Louvain Interaction Laboratory

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

jean.vanderdonckt@uclouvain.be

Abstract

Distributed User Interfaces (DUIs) have become
one vivid area of research and development in
Human-Computer Interaction (HCI) where many
dramatic changes occur in the way we can interact
with interactive systems. DUIs attempt to surpass
user interfaces that are manipulated only by a sin-
gle end user, on the same computing platform, and
in the same environment, with little or no varia-
tions among these axes. In contrast to such cur-
rently existing user interfaces, DUIs enable end
users to distribute any user interface element,
ranging from the largest one to the smallest one,
across one or many of these dimensions at design-
and/or run-time: across different users, across dif-
ferent computing platforms, and across different
physical environments. In this way, end users
could be engaged in distributed tasks that are reg-
ulated by distribution rules, many of them being
currently used in the real world. This paper pro-
vides a conceptual framework that invites us to re-
think traditional user interfaces in a distributed
way based on the locus of distribution control: in
the hands of the end user, under control of the sys-
tem, or in mixed-initiative way. Any user interface
submitted to distribution may also be subject to
adaptation with respect to the user, the platform,
and the environment.

1. Introduction

If we look back retrospectively to the evolution of
concerns in Human-Computer Interaction (HCI)
from a Software Engineering (SE) point of view,
we can observe that several models appeared over
time in order to address the shortcomings ob-
served in the previous generation of models. For
instance, a data model has been progressively re-
placed by a domain model in order to automate
User Interface (UI) generation because the data
model was considered not enough expressive: data
structure were almost flat, data type are under-

specified, semantic relationships were absent,
constraints are not explicitly formalized, etc. To-
day, we reached a point where the prevalent mod-
els used to characterize a UI are task, domain, ab-
stract UI, concrete UI, and final UI, if we consider
for example the Cameleon Reference Framework
(CRF) [6]. Behind the curtains, this framework as-
sumes that only one context of use is considered at
a time. By context of use, we hereby understand
that one user is carrying out her task on a dedicat-
ed computing platform in a given environment,
thus leading to one single context. A context is
again considered as a triple C=(U,P,E) where U
denotes a user model, P denotes a platform model,
and E denotes an environment model.
 The consideration of one context of use at a
time is today completely surpassed by existing
situations in the real world: a given user is rarely
working alone and is largely involved in coopera-
tion and collaboration; a user is rarely using one
single platform at a time, but several different
platforms at a time or one after another, and a user
is no longer staying in the same environment since
she is moving from one environment to another or
across environments. In addition, a same task is
no longer carried out by a single user, but by a
multitude of different users, simultaneously or
not. All these reasons stem for considered the fact
that a UI is no longer concentrated, but distribut-
ed across users, platforms, and environments, the
three main dimensions of UI distribution.
 In this paper we tackle this problem with the
introduction of a transversal model for expressing
a Distributed User Interface (DUI) that supports
the aforementioned considerations. Section 2 in-
troduces our operational DUI definition and then
discusses some principles for distributing a UI
along these three dimensions and exemplifies
them on examples taken from the state of the art,
one facet at a time: task, domain, user interface,
user, platform, and environment respectively. Sec-
tion 3 introduces some principles for DUIs. Sec-
tion 4 shows some conclusions and future work.

Distribute
one

many
element(s) of

one

many
user interface(s) in order to support

one

many

one

many
user(s) to carry out task(s) on

one

many
domain(s) in

one

many
context(s) of use

Figure 1. A transversal model of DUI.

2. Terminology for DUIs

The literature abounds in the usage of different
terms for expressing different situations of distri-
bution [5,12,14,18,20], some of them being syno-
nyms, some of them radically different, thus pos-
ing a problem of a consensual ontology in the do-
main. The following distributions could occur:
 Multi-monitor usage: a single user using a sin-

gle computing platform wants to distribute her
UI across various monitors connected to the
same platform [10]. For instance, a dual display
is supported when a graphic card expands the
main monitor of a computing platform to two or
more connected monitors.

 Multi-device usage: a single user uses several
different devices together, whether they are run-
ning the same operating system or not [22]. For
instance, a user controls a music player running
on a media center using a remote control run-
ning on a handheld Personal Digital Assistant
(PDA) and/or on a physical device.

 Multi-platform usage: a single user uses hetero-
geneous computing platforms, perhaps running
different operating systems [8]. Multi-device
usage subsumes a multi-platform usage (since
there are different machines) but the reciprocal
does not hold: a user could use several comput-
ers (hence, multi-platform) that are similar
(hence, no multi-device) [25,26].

 Multi-display usage: we hereby define multi-
display as a combination of multi-monitor and
multi-device usages [22]. A single user may dis-
tribute a UI across multiple monitors and devic-
es simultaneously [24].

 Multi-user: it represents an extension of the pre-
vious usages to multiple users concurrently [5].
In this case, one or many users may want to dis-
tribute parts or whole of their UI across several
monitors, devices, platforms, or displays. For
instance, in a control room setup, users may
want to direct portions of a UI to other displays
of others users depending on the context of use.
When a multi-user interface is of concern, it is
also typically used for supporting tasks that are
allocated or de-allocated from one user to an-
other one, such as in task delegation, task sus-
pension and resuming.

 All these terms refer to some particular case of
a DUI. Depending on the source, the terms found
in the literature sometimes refers to the same situ-
ation, sometimes not. Therefore, we believe that
in order to introduce a correct definition of a situa-
tion for a DUI, there is a need to define a model of
distribution that is transversal to the different lev-
els of abstraction that are typically found in a User
Interface Development Life Cycle (UIDLC).

Let us consider the field of distributed compu-
ting [27]: “a distributed system consists of multi-
ple autonomous computers that communicate
through a computer network”. If we extrapolate a
DUI definition from this definition, this would
give “a distributed user interface consists of mul-
tiple autonomous user interfaces that communi-
cate through a computer network”. This definition
is very much reduced in that it does not consider
several aspects to be considered in a distribution:
task, domain, abstract or concrete UI, context of
use, which is in turn decomposed into platform,
user, and environment. To overcome these short-
comings, we suggest a transversal model (Fig. 1):

A UI distribution concerns the repartition of one
or many elements from one or many user inter-
faces in order to support one or many users to
carry out one or many tasks on one or many do-
mains in one or many contexts of use, each con-
text of use consisting of users, platforms, and en-
vironments.

 These different aspects are elaborated further
in the following respective sub-sections. The in-
verse operation is defined as follows:

A UI federation concerns the concentration of one
or many elements from one of many user interfac-
es in order to support one or many users to carry
out one or many tasks on one or many domains in
one or many contexts of use.

 Two significant cases of UI federation exist:
after a UI distribution has been operated, a UI
federation may be triggered in order to restore the
initial situation; if a UI federation is triggered not
after a UI distribution, then a UI composition may
be triggered depending on the conditions imposed
in the federation.

2.1. Distribute what? The elements

At first glance, the atomic element that could be
submitted to distribution is any UI widget, wheth-
er it is native or not in a toolkit, API, or program-
ming environment. However, if we even consider
that a widget is itself composed of other elements
(for instance, a radio box is composed of mutually
exclusive circles and radio items), then any of the-
se individual elements could be also submitted to
distribution (for instance, a radio circle could be
separated from its radio item). Most UI toolkits do
not natively support this distribution, thus requir-
ing a manual overwriting of the expose methods
for these widgets. Lower than any final element is
the pixel: in principle, this is the most atomic level
where distribution may occur.
 For this purpose, several techniques exist:
physical, logical, and semantic pixel conservations
[7]. If a UI that consumes S.L x S.H pixels should
be distributed on a surface D witch is D.L x D.H
pixels, then we need to consider that pixel size on
S is S.Pix and pixel size on D is D.Pix. Fig. 2 il-
lustrates possibilities in the case D.Pix / S.Pix > 1.
The more the case is located in the top right cor-
ner, the better it is.

 D.H / S.H

D.Pix / S.Pix < 1 D.L / S.L

Fewer pixels

Same number
of pixels

More pixels
but D shorter
than S

More pixels
and D equal
to S

More pixels
and D taller
than S

Figure 2. Different situations at the pixel level.

Another representative example is the Win-
Cuts system [23] that augments window managers
by letting users acquire and interact with alterna-
tive views of arbitrary regions of existing win-
dows. The Frisbee [13] is a widget that acts as a
telescope to a remote area on the display
(http://www.autodeskresearch.com/publications/
frisbee). Users manipulate remote items by inter-
acting with their proxies within the Frisbee’s main
area and reposition items on the main display by
moving them through specified transfer channels.

2.2. Distribute from what? The user interfaces

All elements subject to UI distribution should of
course belong to one or many UIs that should be
clearly identified. So far, we have considered that
all UI are graphical or at least have some graph-
ical feedback, even if other interaction modalities
are involved. For instance, if a multimodal UI in-
volves vocal and tactile interaction modalities, a
graphical modality could be added in order to
provide the end user with some feedback about
the task being carried out. Theoretically speaking,
other interaction modalities could be also distrib-
uted, but this is another research to be conducted.
For instance, speech syntheses and recognitions
could be distributed across several platforms not
only to optimize the computational power, but al-
so in order to help differentiating the speakers.

2.3. Distribute for which? The tasks

So far, the task has often been considered unique
in a single context of use or multiple contexts of
use, thus raising some variations in order to ad-
dress the constraints imposed by the different con-
texts of use. In order to be fully distributed, one or
many tasks should be considered to be carried out
simultaneously or not in a distributed way. In the
field of ambient intelligence, Luyten et al. [17,18]
introduced the notion of situated task in order to
model how a task could be distributed into several
sub-tasks to be carried out by one user, but on dif-
ferent platforms in the same environment over
time (Fig. 3). This is a very important way to rep-
resent one task that should be generalized to any
amount of tasks, whether they are carried out by
one or many users.

Figure 3. A task distributed across many platforms.

(Reproduced from [17] with permission).

 In the field of workflow information systems,
FlowiXML introduced a series of workflow UI
patterns that address several management patterns
for distributing tasks, ranging from simple delega-
tion to offering to one or many candidates [11].
For instance, a task could be offered to one or
many resources, one of which accepting it, carry-
ing out it and returning the results to the initiator.

2.4. Distribute on what? The domains

This aspect is very much relevant to the computer
science field of distributed databases. “A distrib-
uted database is a database that is under the con-
trol of a central DataBase Management System
(DBMS) in which storage devices are not all at-
tached to a common CPU. It may be stored in
multiple computers located in the same physical
location, or may be dispersed over a network of
interconnected computers. Collections of data
(e.g., in a database) can be distributed across mul-
tiple physical locations. A distributed database can
reside on network servers on the Internet, on cor-
porate intranets or extranets, or on other company
networks. Replication and distribution of data-
bases improve database performance at end-user
worksites.” (Source: http://en.wikipedia.org/wiki/
Distributed_database). So far, we were used to
model one single task attached to one domain
model, but this could be generalized to one task
model attached to one or several (potentially dis-
tributed) domain models.

2.5. Distributed abstract/concrete UIs

In Sub-section 2.2, we simply mentioned the dis-
tribution of a Final UI, as defined in the CRF [6].
This principle could therefore be propagated to
any other upper level, such as Concrete User In-
terface (CUI) level and Abstract User Interface
(AUI) level.

2.6. Distribute across what? The platforms

This dimension has probably received the largest
attention since the platform is certainly one pa-
rameter that significantly influences the design of
DUIs. Significant progress has been in the area of
multi-device UIs (where UIs are produced for
several devices simultaneously) and in UI migra-
tion (where UIs are migrated from one device to
another while maintaining task continuity). Less

work has been however devoted towards dividing
a UI across devices, displays, or platforms, where
they are used by the same user or shared by dif-
ferent users [2,3]. During the last decade, a DUI
was mostly defined in terms of platform distribu-
tion: a DUI was defined as any application UI
whose elements can be distributed across different
displays, devices, or different computing plat-
forms. Consequently, DUIs allow for the UI to be
spread out over a set of displays/devices/platforms
taking advantage of each display/device/platform's
unique properties instead of residing on a single
display/device/platform with the interaction capa-
bilities that are constrained on this display/device/
platform [5].

DUIs have been subject to several studies that
investigate their specific abilities with respect to
platform distribution that may lead to design im-
plications. This includes use of multiple monitors
on a same computing platform by a single user
[10], use of multiple platforms by a single user
with synchronisation between, exchange of infor-
mation between platforms belonging to different
users, moving information between displays on a
single platforms, partition of tasks across displays
for a single user [1], sharing common information
on a common display while keeping some infor-
mation private on a own platform,…

Figure 4. Partitioning of a window across several

screens to obtain a DUI [7].

Partitioning a window across several screens,
at the physical or at the logical level, is not com-
parable and involve different systems of coordi-
nates (Fig. 4). Several early techniques have been
implemented in order to support multi-display dis-
tribution such as, but not limited to: X11 remote
displays (www.x.org/), Virtual Network Compu-
ting (VNC - www.uk.research.att.com/vnc/), and

Windows Terminal Server (http://www.microsoft.
com/windows2000/technologies/terminal/default.a
sp), all allowing a window to move from one
screen to another at the window manager level.
But this is not the same level as application migra-
tion across workstations [2] or task-oriented mi-
gration of parts or whole of the UI [2].

Beale & Edmondson [4] conducted user sur-
veys to determine the user behavior induced by
using a DUI: they identified the importance of
having multiple carets and the complexity of mul-
ti-tasking and they suggest design implications for
using DUIs in order to support distributed tasks.
In particular, they stressed the importance of a
multi-tasking model that is partially built at the
local level of a single user and at the global level
across users when collaboration exists. The global
scenario should be also dissolved into local sce-
nario in order to preserve the consistency between
common tasks and individual tasks.

Tan & Czewinsky [23] found out that physical
discontinuities had no effect on performance, but
found a detrimental effect from separating infor-
mation within the visual field, when also separat-
ed by depth. Due to the multiplicity of interaction
techniques in DUIs, Nacenta et al. conducted a
study to compare the efficiency of six techniques
for moving objects from a platform (e.g., a tablet)
to another one (e.g., a tabletop) in four different
distance ranges and with three movement direc-
tions. Their study suggests that spatial manipula-
tion of data was faster than pressure-based tech-
niques.

One the one hand, more user studies are avail-
able on specific DUI setups that provide us with
more knowledge on design implications for such
DUIs. Yet, in order to allow for the user to get the
best potential of interaction capabilities offered by
the various devices/displays/platforms for the cur-
rent task to be carried out, we should enable de-
signers as well as developers to provide users with
the best DUI possible for a given set of devic-
es/displays/platforms by describing them in a
formal way [2]. This will enable the underlying
system to decide where different DUI elements
should be placed in locations that are significant
and usable for a distributed task to take place.

AttachMe/DetachMe [9] is a typical DUI ex-
ample where one single user distributed UI ele-
ments across several platforms at run-time, possi-
bly running different operating systems, in order

to better accomplish a given interactive task. One
significant application of this interaction tech-
nique is the painter’s palette [9]: in order to max-
imise the screen real estate used for painting, all
toolbars (e.g., with paint brushes, color palettes)
are dynamically migrated from the main desktop
to an external platform, typically a PocketPC. In
the implementation described in [9], three operat-
ing systems are supported: Mac OS X, Windows
Vista, and Linux. The same distribution occurs in-
dependently of any platform and operating sys-
tem, provided that the master platform is connect-
ed to the slave platform through a network con-
nection (e.g., LAN, Wi-Fi). Let us exemplify how
the AttachMe/DetachMe technique can be used
for distributing an initial UI (Fig. 5) into several
elements for entering information about a movie.

Figure 5. Initial UI to be distributed.

Let us assume that two situations should be
supported: one for use on a PC where a large
screen and a keyboard are present and one for use
on a PDA where the screen estate is small and
there is no keyboard. In the first situation, the PC
version offers a side by side presentation for the
three groups of input fields (Fig. 6).

Figure 6. First DUI in three parts.

The left part uses the normal text and number

input widgets. The middle part uses a set of radio
buttons for selecting the genre. The right part uses
a normal text widget.

In the second situation, the PDA version only
displays one part at a time, with navigational but-
tons at the bottom (Fig. 7). Furthermore, the text
and number input widgets have an arrow that dis-
plays a virtual keyboard for entering the data. The
middle part uses a menu to select between the
items instead of radio buttons. This widget also
has a list box renderer that we could use instead.
And finally the right part uses a text widget for
which no alternate renderer is currently provided.
If a renderer was created with support for a virtual
keyboard, then we could use it by specifying it in
a mechanism called “AdaptationMap”, without
changing any other part of the code.

Figure 7. Second DUI in three parts.

2.7. Distribute for who? The users

It is equally important for DUI to recognize that
they are used by different users, whether they are
working at the same place (co-located) or not (re-
mote collaboration [1], cooperation, competition
or coopetition). For instance, the game of Piction-
ary is a typical example of a task distributed for

many users: one player selects a word from a dic-
tionary, a second player draws this word on an in-
teractive surface shared by other players who have
to guess what this word is as quick as possible, but
below a certain time threshold. The team to which
the winning player belongs to receives the points.

Team 1 member guesses the
drawn word.

Team 1 member draws the word
on the PDA.

Team 2 member selects a word
for team 1 and watches how they
manage to guess it.

Figure 8. Setup of the Pictionary [19].

2.8. Distribute where? The environments

An environment is often considered as the social
and physical setup in which a user is carrying out
a task. Changing the environment in which a task
is performed may significantly affect the task per-
formance. For instance, an office environment
may provide quiet, stable, and reliable conditions
to properly perform a task while a mobile envi-
ronment in a corridor of this office may induce
noisy, moving, and unreliable conditions. So, even
if the user, the task, and the platform remain con-
stant, the user performance may be significantly
affected by a changing environment that should be
in principle reflected in some change in the UI.
Such a change is typically a UI distribution: when
the environment changes, the end user may want
to change the UI configuration by keeping only
vital elements that are critical for conducting the
task to its full completion, even if the details are
not known or manipulated. This question is also
related to the domain of situation engineering, in
which the end user’s behavior is studied through
various psychological and ethnographic methods
to understand how this behavior is influenced by
the social, psychological, perhaps organizational
aspects of the environment. In particular, situation
engineering is aimed at identifying the right paths
for conducting a task successfully and the bad
paths that may induce task failure in order to
avoid them.

Figure 9. Setup of the Pictionary [?].

Figure 9 exemplifies a system where a UI dis-
tribution is triggered by a change of environment.
In a typical presentation environment, a presenter
would typically present slides by browsing
through the slides via a presentation software on a

centralized platform. A physical remote control
device could support her for some limited actions,
such as “next slide”, “previous slide”. When a
presentation is conducted remotely, the presenter
is willing to embed a video streaming of her. In
order to avoid having two separate screens that
consume screen real estate, transparency could be
used to superimpose the presenter’s video on top
of the slides. So, when the presenter is in the room
(one environment), a normal control configuration
is desired; when the presenter is remote (in anoth-
er environment), a superimposed control configu-
ration is preferred. Figure 9 depicts the whole sys-
tem when UI distribution occurs between a PC
and a PDA. Note that only functional core is dis-
tributed. Indeed, native UI descriptions on a PC
and on a PDA are quite different. Using a same
toolkit for both platforms running in the different
environments would have been more complex to
implement. When the PDA disappears, the remote
controller function is migrated to the PC. When
then system is re-centralized, the window contain-
ing the remote controller could be merged with
the slide show or kept separated. When this opera-
tion occurs, the window is being rotated in Figure
9 in order to animate the transitions between the
two situations: centralized (one environment) and
decentralized (two environments).

In [28], Vandervelpen et al. present a light-
weight system for distributing services to different
users who are in a same physical environment, but
who may assume different roles. This interesting
setup raises the question of expanding the defini-
tion of environment to a situation, where a situa-
tion is a particular configuration of an environ-
ment in which some users are assigned to particu-
lar roles. In the setup described in [28], different
people are being assigned different services, e.g.,
“next slide”, “previous slide”, “zoom in”, “zoom
out” depending on the role they want to play in
the presentation. Each service is assigned to one
single user on one platform at a time, but one can
easily imagine that the same service could be re-
produced and distributed several times to different
users or to the same users if she is using different
platforms.

Speakeasy consists of a computing framework
that is designed to support use of resources such
as displays/devices/platforms that appear/disap-
pear opportunistically, called recombinant compu-
ting [20] depending on the environment.

3. Design Principles for DUIs

After having examined the various dimensions
along which UI distribution may occur, this sec-
tion suggests some instantiations of the transversal
model of DUI introduced in Fig. 1 by means of
design principles. These design principles are in-
troduced in order to address current design short-
comings of the typical situation discussed in the
introduction: one single user carrying out one sin-
gle task in one unique context of use. It is true that
these shortcomings are intertwined, as we ob-
served in Section 2 that each instantiation of the
Fig. 1 immediately creates interdependencies be-
tween the various dimensions covered.
 Each UI distribution could be also interpreted
as a form of UI adaptation since an original UI is
transformed into a target UI in order to be adapted
to a new situation. As such, UI distribution could
be considered as a particular form of UI adapta-
tion, but not vice versa.

3.1. Design Principle for distributing tasks

The instantiation of the transversal model of Fig. 1
in this case gives: distribute one UI in order to
support one user in carrying out one task on one
domain in many contexts of use. The end user
should be empowered with UI distribution mech-
anisms in order to carry out the same task while
the context of use is changing: from one platform
to another or from one environment to another. If
the task remains constant, the UI distribution
should also help the end user in requesting help to
other users for ensuring the successful completion
of this task or in allocating any sub-task to another
user. A sub-task of a main task could be delegated
to another user because of lack of familiarity, ex-
pertise, resource, time, availability of the primary
end user. Or for reasons that are external to the
primary end user: responsibilities, jobs definition,
separation of duties, role-based allocation, round
robin, etc. Actually, any pattern for task delega-
tion is applicable. In this way, multiple work
methods for carrying out the same task become
possible. For instance, a particular section of a
complex form could be sent to another user who is
more expert for this section than the initiator, be-
fore returning it filled in to the initiator (i.e. the
person who requested the help to the secondary
user).

3.2. Design Principle for distributing users

The instantiation of the transversal model of Fig. 1
in this case gives: distribute one UI in order to
support many users in carrying out many tasks on
one domain in one context of use. In other words,
when a particular context of use is given, several
users should be able to apply UI distribution to
their respective UIs (perhaps one UI if the system
is centralized or many if the system is decentral-
ized or if multiple systems are available) in order
to carry out one common task that could be de-
composed into sub-tasks that are under the re-
sponsibility of different users. Again, organisa-
tional allocation of tasks and related sub-tasks
should be applied in order to determine how these
sub-tasks will be offered to one or multiple users,
will be allocated to one or multiple users, and will
be executed by one or multiple users. In organisa-
tional allocation of tasks, the system should exhib-
it the ability to offer or allocate a task to users
based on their position within the organization and
their relationship with other users. Alternative
work methods could also be investigated such as:
allocation of a task to one or many users based on
any attribute or property of the user, the task, and
the relationship between. This includes allocation
of a task to a user based on experience, history,
success rate, familiarity with the type of task.

3.3. Design Principle for distributing platforms

The instantiation of the transversal model of Fig. 1
in this case gives: distribute many UIs in order to
support one user in carrying out many tasks on
one domain in one environment. In other words,
given that the user, the task, and the environment
remain constant, the platforms capabilities should
be investigated in order to enable the end user to
optimize the carrying out of one or many tasks
based on the specific properties of these plat-
forms, and their suitability for a task or any of its
sub-tasks. The example of the painter’s palette is
obvious: two platforms are available to the end
user for drawing and the global screen real estate
should be exploited in order to maximize the task
performance. Fig. 10 illustrates this design princi-
ple: three toolbars are progressively extracted
from the main UI of a vector drawing application,
recomposed to form a set of related palettes. Here
the UI distribution is reproduced on the same plat-
form for the simplicity of the screenshots, but the

new set of palettes could reside on any other plat-
form of the user, provided that it is connected
through a computer network.

Figure 10. Three different UI distributions for the paint-
er’s palette, here on the same platform [19].

The problem of screen allocation to (sub-
)tasks could be solved by a multi-criteria approach

if all the properties of concern are known at run-
time with their corresponding value. But this
would give a system with automated UI layout
[16] across several platforms depending on the
constraints imposed by these platforms.

3.4. Design Principle for distributing environ-
ments

The instantiation of the transversal model of Fig. 1
in this case gives: distribute one UI in order to
support one user in carrying out many tasks on
one domain in many environments. In other
words, the end user should be empowered with UI
distribution mechanisms that enable her to con-
duct the same task but in different ways in differ-
ent environments, while taking into account the
properties of each environment. This does not
necessarily include the usage of several platforms,
but in case of their availability, this should be tak-
en into account. Based on situation engineering,
this design principle is intended to support the
multiple behaviors that could be produced by a
single user in different environments or situations.
The UI distribution should produce a UI configu-
ration that is adjusted to the particular constraints
or properties of one or many environments, in-
cluding the smooth transition from one environ-
ment to another.

4. Conclusion

In this paper, we introduced a transversal model
for expressing a distributed user interface based
on the different aspects that may influence the
success of a distribution: elements, type of UI,
task, domain, abstract or concrete UI, user, plat-
form and environment. Each aspect becomes a
dimension along which design principles could be
elaborated in order to overcome the current limita-
tions imposed by the stereotyped UI of: one user
is carrying out one task on one domain in a fixed
context of use. This stereotyped UI is no longer
applicable today due to permeable boundaries of
users (i.e. a user may participate in different roles
in different groups), platforms (i.e. a platform is
itself included in a cluster, in a larger infrastruc-
ture), and environments (i.e. an environment could
give rise to different situations and different envi-
ronments could be easily connected to each other).

Only the problem of multiple domains has not
been explicitly addressed in this paper since it is

more relevant to the field of distributed data bases.
In this field, several domain models co-exist that
are interrelated based on high-level relationships
that could give rise to another model. For in-
stance, several distributed entity-relationship-
attribute (ERA) models that could serve to capture
a domain could co-exist and be interrelated into a
new higher-level ERA model. This is considered
beyond the scope of this paper.

In the near future, we plan to address the
aforementioned design principles for DUIs by de-
veloping a UI toolkit that provides the developer
with distribution primitives that are context inde-
pendent. These primitives could then be called in
a distribution scenario that explicitly represents
the logic of a UI distribution based on the trans-
versal model introduced in Fig. 1.

By this model and these design principles, we
encourage any research and development to inves-
tigate to what extent they could be supported by
appropriate interaction techniques and user studies
to determine to what extent the availability of the-
se techniques for supporting UI distribution in-
duce a significant effect on the end user, perhaps
on end user satisfaction, task performance, or any
other relevant metric. These aspects will be inte-
grated in the UsiXML [15] V2.0 User Interface
Description Language.

Acknowledgments

The author would like to thank Óscar Pastor (Uni-
versidad Politécnica de Valencia), Pedro Latorre
(Universidad de Zaragoza), and José Luis Garrido
(Universidad de Granada) for inviting us to give
this keynote address. We also acknowledge the
support of the FP7 Serenoa project funded by the
European Commission.

References

[1] Arroyo, R.F., Gea, M., Garrido, J.L., Haya,
P.A. Development of Ambient Intelligence
Systems Based on Collaborative Task Mod-
els. Journal of Universal Computer Science
14, 9 (2008), pp. 1545-1559.

[2] Bandelloni, R. and Paternò, F. Migratory
user interfaces able to adapt to various inter-
action platforms. International Journal of
Human-Computer Studies 60, 5-6 (2004),
pp. 621-639.

[3] Bharat, K.A. and Cardelli, L. Migratory Ap-
plications Distributed User Interfaces. Proc.
of ACM Symposium on User Interface
Software Technology UIST’95 (Pittsburgh,
Nov. 1995). ACM Press, New York, 1995,
pp. 132-142.

[4] Beale, R. and Edmonson, W. Multiple Car-
ets, Multiple Screens and Multi-Tasking:
New Behaviours with Multiple Computers.
Proc. of 21st British CHI Group Annual
Conference on Human-Computer Interac-
tion HCI'2007 (Lancaster, September 3-7,
2007). British Computer Society, 2007, pp.
55-64.

[5] Berglund, E. and Bång, M. Requirements
for distributed user interface in ubiquitous
computing networks. Proc. of 1st Int. Conf.
on Mobile and ubiquitous multimedia
MUM'2002. ACM Press, New York, 2002

[6] Calvary, G., J. Coutaz, D. Thevenin, Q.
Limbourg, L. Bouillon, and J. Vander-
donckt, A Unifying Reference Framework
for Multi-Target User Interfaces, Interacting
with Computers 15, 3 (June 2003), pp. 289-
308.

[7] Demeure, A., Sottet, J.S., Calvary, G.,
Coutaz, J., Ganneau, V., Vanderdonckt, J..
The 4C Reference Model for Distributed
User Interfaces. Proc. of 4th Int. Conf. on
Autonomic and Autonomous Systems
ICAS’2008 (Gosier, 16-21 March 2008), D.
Greenwood, M. Grottke, H. Lutfiyya, M.
Popescu (eds.). IEEE Computer Society
Press, Los Alamitos, 2008, pp. 61-69.

[8] Grolaux, D., Van Roy, P., and Vander-
donckt, J. Migratable User Interfaces: Be-
yond Migratory User Interfaces. Proc. of 1st
IEEE-ACM Annual Int. Conf. on Mobile
and Ubiquitous Systems: Networking and
Services MOBIQUITOUS’04 (Boston, August
22-25, 2004). IEEE Computer Society Press,
Los Alamitos, 2004, pp. 422-430.

[9] Grolaux, D., Vanderdonckt, J., and Van
Roy, P. Attach me, Detach me, Assemble
me like You Work. Proc. of IFIP Conf. on
Human-Computer Interaction INTER-
ACT’05 (Rome, 12-16 September 2005).
Lecture Notes in Computer Science,
Vol. 3585, Springer-Verlag, Berlin, 2005,
pp. 198-212

[10] Grudin, J. Partitioning digital worlds: focal
and peripheral awareness in multiple moni-

tor use. Proc. of ACM Conf. on Human As-
pects in Computing Systems CHI’01 (Seat-
tle, March 2001). ACM Press, New York,
2001, pp. 458-46.

[11] Guerrero, J., Vanderdonckt, J., Gonzalez, J.
FlowiXML: a Step towards Designing
Workflow Management Systems, Journal of
Web Engineering 4, 2 (2008), pp. 163-182.

[12] Hutchings, H.M. and Pierce, J.S. Under-
standing the Whethers, Hows, and Whys of
Divisible Interfaces. Proc. of ACM Working
Conf. on Advanced Visual Interfaces
AVI’06 (Venezia, May 23-26, 2006). ACM
Press, New York, 2006, pp. 274-277.

[13] Khan, A., Fitzmaurice, G., Almeida, D.,
Burtnyk, N., and Kurtenbach, G. A Remote
Control Interface for Large Displays. Proc.
of ACM Conf. on User Interface Software
Technology UIST 2004. ACM Press, new
York, 2004, pp. 127-136.

[14] Larsson, A. and Berglund, E. Programming
ubiquitous software applications: require-
ments for distributed user interfaces. Proc.
of 16th International Conference on Software
Engineering & Knowledge Engineering
SEKE'2004 (Banff, June 20-24, 2004).
ACM Press, New York, 2004, pp. 246-251.

[15] Limbourg, Q., Vanderdonckt, J., Michotte,
B., Bouillon, L., and Lopez, V. UsiXML: a
Language Supporting Multi-Path Develop-
ment of User Interfaces. Proc. of 9th IFIP
Conf. on Engineering for HCI (Hamburg,
2004). Lecture Notes in Computer Science,
Vol. 3425, Springer-Verlag, Berlin, 2005,
pp. 207-228.

[16] Limbourg, Q., Vanderdonckt, J. Multi-Path
Transformational Development of User In-
terfaces with Graph Transformations, in Sef-
fah, A., Vanderdonckt, J., Desmarais, M.
(eds.), “Human-Centered Software Engi-
neering”, Chapter 6, HCI Series, Springer,
London, 2009, pp. 109-140.

[17] Luyten, K. and Coninx, K. 2005. Distributed
User Interface Elements to support Smart
Interaction Spaces. Proc. of the 7th IEEE Int.
Symposium on Multimedia, IEEE Comp.
Society, Washington, DC, pp. 277-286.

[18] Luyten, K., Van den Bergh, J.,
Vandervelpen, Ch., and Coninx, K. De-
signing distributed user interfaces for ambi-
ent intelligent environments using models

and simulations. Computers & Graphics 30,
5 (2006), pp. 702-713.

[19] Melchior, J., Grolaux, D., Vanderdonckt, J.,
Van Roy, P., A Toolkit for Peer-to-Peer Dis-
tributed User Interfaces: Concepts, Imple-
mentation, and Applications. Proc. of 1st
ACM SIGCHI Symposium on Engineering
Interactive Computing Systems EICS’2009
(Pittsburgh, July 15-17, 2009). ACM Press,
New York, 2009, pp. 69-78.

[20] Newman, M.W., Izadi, S., Edwards, W.K.,
Sedivy, J.Z., and Smith, T.F. User Interfaces
When and Where They are Needed: An In-
frastructure for Recombinant Computing.
Proc. of ACM Conf. on User Interface
Software Technology UIST'2002. ACM
Press, New York, 2002, pp. 171-180.

[21] Pastor, O., Gómez, J., Insfrán, E., Pelecha-
no, V., The OO-Method approach for in-
formation systems modeling: from object-
oriented conceptual modeling to automated
programming, Information Systems 26, 7
(November 2001), pp. 507-534.

[22] Sjölund, M., Larsson, A., and Berglund, E.
Smartphone Views: Building Multi-device
Distributed User Interfaces. Proc. of Conf.
on Mobile Human-Computer Interaction
MobileHCI'2004. Lecture Notes in Comput-
er Science, Volume 3160, Springer-Verlag,
2004, pp. 127-140.

[23] Tan, D.S. and Czerwinski, M. Effects of
Visual Separation and Physical Discontinui-
ties when Distributing Information across
Multiple Displays. Proc. of 9th IFIP TC 13
Int. Conf. on Human-Computer Interaction
Interact’2003 (Zurich, 1-5 September 2003),
M. Rauterberg, M. Menozzi, J. Wesson
(eds.), IOS Press, Amsterdam, 2003, pp.
252-260.

[24] Vanderdonckt, J., Furtado, E., Furtado, V.,
Limbourg, Q., Silva, W., Rodrigues, D.,
Taddeo, L. Multi-model and Multi-level
Development of User Interfaces, Chapter
10, in Seffah, A. & Javahery, H. (Eds.),
“Multiple User Interfaces - Cross-Platform
Applications and Context-Aware Interfac-
es”. John Wiley & Sons, New York, No-
vember 2003, pp. 193-216.

[25] Vanderdonckt, J., Coutaz, J., Calvary, G.,
Stanciulescu, A. Multimodality for Plastic
User Interfaces: Models, Methods, and Prin-

ciples, Chapter 4, in “Multimodal user inter-
faces: signals and communication technolo-
gy”, D. Tzovaras (ed.), Lecture Notes in
Electrical Engineering, Springer-Verlag,
Berlin, 2007, pp. 61-84.

[26] Vanderdonckt, J. Model-Driven Engineering
of User Interfaces: Promises, Successes, and
Failures. Proc. of 5th Annual Romanian
Conf. on Human-Computer Interaction RO-
CHI’2008 (Iasi, September 18-19, 2008), S.
Buraga, I. Juvina (eds.). Matrix ROM, Bu-
carest, 2008, pp. 1–10.

[27] Van Roy, P. and Haridi, S. Concepts, Tech-
niques, and Models of Computer Program-
ming. MIT Press, Cambridge, 2004.

[28] Vandervelpen, Ch., Vanderhulst, G., Luy-
ten, K., and Coninx, K. Light-Weight Dis-
tributed Web Interfaces: Preparing the Web
for Heterogeneous Environments. Proc. of
Int. Conf. on Web Engineering ICWE'2005.
Lecture Notes in Computer Science, Vol.
3579. Springer-Verlag, Berlin, 2005, pp.
197-202.

