
A DESIGN SPACE FOR CONTEXT-SENSITIVE USER INTERFACES

Jean Vanderdonckt1, Donatien Grolaux1, Peter Van Roy2, Quentin Limbourg1, Benoît Macq3, Benoît Michel3
Université catholique de Louvain, BCHI1, INGI2,TELE3,

{vanderdonckt, grolaux, limbourg}@isys.ucl.ac.be, pvr@info.ucl.ac.be, macq@tele.ucl.ac.be, michel@similar.cc

Abstract
Context-sensitive user interfaces become a very impor-

tant class of interfaces as they reconfigure their presenta-
tion and dialog according to various events generated in
a dynamic context of use. Traditional procedural ap-
proaches for developing such use interfaces are very ex-
pressive, yet expensive to develop, difficult to use and
verbose to write. Declarative model-based approaches
have recently been considered as they allow user inter-
face code generation from models, they are quick to ma-
nipulate, yet they lack expressiveness. It is argued that a
mixed model-based approach obtained by mixing and in-
tegrating declarative and procedural elements combine
advantages of both approaches without suffering of their
shortcomings. An example shows how this new approach
can effectively and efficiently produce context-sensitive
user interfaces.

Keywords
Context-aware adaptation, Context of use, Interactive sys-
tem, Multimodal interaction, User interface, USer Inter-
face eXtensible Markup Language (UsiXML).

1 Introduction
Nowadays interactive applications users are more im-
mersed in a constantly evolving environment where there
is no longer an ability to predefine all possible configura-
tions and conditions of the context of use. For instance,
corporate environments, which are prompted to address
the challenges of market internalization, have to create,
introduce, and expand strategies to maintain or to im-
prove their market position. For this purpose, they tend to
switch from a business logic, where tasks are planned in a
predefined way and their results are observed afterwards,
to a dynamic and anticipative strategy that enables them
to react to unpredicted contextual events as quick as pos-
sible. Moreover, users of such interactive applications
supporting the activities of these organizations become
more mobile. In order to react to those contextual events,
they move with different computing platforms [3,6], rang-
ing from a laptop or pocket computer to a Personal Digi-
tal Assistant (PDA); or they move from one computing
platform to another [2,5,19], thus causing multiple oppor-
tunities for changing the conditions of the context of use.
At runtime, the context of use may dynamically change:
the computing platform may differ widely, the network
bandwidth may decrease, the interaction and display ca-
pabilities may be reduced, the user may assume a new

role in an ever-changing organization structure, the task
may evolve, etc. Those changes have created a need for
new user interfaces (UIs), that continue to support users
in accomplishing their tasks while the context evolves in
time, space, and resources. When the context of use
changes, a particular UI may suggest a reconfiguration,
that is an adaptation of its presentation and/or dialog to fit
the new context of use. In this article, we characterize
such Context-Sensitive User Interfaces (CSUIs) by first
reporting on some challenges posed by this new UI type.
We introduce a design space specifying the contextual
changing parameters that need to be reflected in a CSUI
in some way to continue to support users in their interac-
tive tasks while the environment is changing. We provide
some representative examples of CSUI based on the de-
sign space and we introduce a new method for developing
a CSUI based on separability and correlability of models
involved in UI design.

2 Challenges of Context-Sensitive User

Interfaces
Developing CSUIs poses a series of challenges that still
need to be solved due to several shortcomings:
♦ Limited specification of context: specifying the cir-

cumstances in which a wide range of varying contexts
may occur and turning this information into precise
design requirements of UI configurations (i.e. layout
and dialog) constitutes a challenging problem. This
problem has been addressed, but many representations
of this context and many techniques on how to capture
knowledge of the context variations have been intro-
duced [2, 3,4,5,6,16,18]. Moreover, once such a con-
text variation has been detected, there is no uniform
way to reflect it in the UI. Sometimes, not all configu-
rations of the context of use can be identified at the de-
sign time: rather, they are known at runtime. If these
configurations are not supported, the user’s task may
be definitely interrupted.

♦ Questionable usability: a fixed UI may be considered
usable in some expected contexts of use, where a given
set of constraints is met [6]. These inflexible UIs tend
to rapidly become inappropriate or unusable when the
context of use changes, thus leading to a questionable
usability. It this thus crucial to take the changing con-
text into account while keeping a minimal usability.

♦ Tremendous development effort: CSUIs are tradition-
ally developed through classical programming envi-
ronments, such as Basic, C++, or Java [19]. In these

Prepress
207

environments, developing a CSUI typically involves
designing the various configurations corresponding to
the multiple contexts of use. Any change of this con-
text is then reflected in a configuration change. Pro-
gramming a dynamically reconfigurable UI remains a
very complex task. A layout reconfiguration depend-
ing on a user change might be reasonably complex to
specify, but may require hundreds lines of code to be
supported. Not only may this activity increase the UI
code portion, but also require a dedicated software ar-
chitecture receiving contextual information thanks to
context-aware widgets [4].

♦ Increased testing and maintenance efforts: as layout
and dialog are often intertwined in a traditionally de-
veloped CSUI, the testing and the maintenance of con-
figurations dealing with layout and/or dialog can be-
come painful and unstructured. In particular, inserting
a new configuration into an existing pool may unde-
sirably affect several portions of code, thus lengthen-
ing the maintenance period. The development and
maintenance efforts are easily duplicated for cross-
platform UIs, while potentially reducing the consis-
tency [22].

3 Design Space for Context-Sensitive
User Interfaces

For years, there has been much interest in the adaptation
of UIs as there is today a core of extensive research and
development of the two facets of adaptation [8,16,19]:
♦ Adaptivity: when the system executes the adaptation

for the user. For example, the system displays different
levels of help depending on the type and frequency of
errors made by a user.

♦ Adaptability: when the user executes the adaptation.
For example, a user personalizes a UI according to se-
lected preferences as in Figure 1.

Figure 1. Adaptability of a widget for a bounded value.

Adaptation expresses some UI change according to possi-
ble types of variation, the most frequently used being,
with respect to the user’s characteristics, the user prefer-
ences, performance, the number of errors, the previous in-
teraction history, and the possible disabilities in case of
users with special needs. The ultimate goal of adaptation
is to empower any user with a UI that is uniquely custom-
ized according to his or her particular needs so as to cre-
ate a UI with maximal usability [5,20]. Since this usabil-
ity highly depends on the context of use, any change of
this context may no longer preserve the expected quality
level of usability. Therefore, context-sensitivity is in-
tended to constantly perform some adaptation to increase
or at least to maintain this level of usability while the con-
text of use is changing [4]. The availability or the lock of
resources required for human-computer interaction should
be taken into account when adapting a given UI.

Context-sensitivity subsumes many interesting forms that
can be considered in isolation. One significant form of
context-sensitivity is that of plasticity [2,20]: a plastic UI
is a particular UI type sensitive to any variation of the
computing platform and/or the environment. This envi-
ronment encompasses physical aspects (e.g., noise and
light conditions), software/hardware constraints (e.g.,
screen resolution, network bandwidth), and social posi-
tions (e.g., organization structure, task allocation and role
definition). As a plastic UI is not necessarily intended to
support user variation, it is assumed that the UI is ma-
nipulated by a predefined type of user who is supposed to
be representative of the user population. A need appears
for consolidating various experiences and approaches that
have been undertaken under the umbrella of adaptive,
adaptable, plastic, and reconfigurable UIs, that is a CSUI.

To represent the types of variation that can be theoreti-
cally considered in context-sensitivity, Figure 2 depicts a
design space expanding a design space for adaptation [8]
and another for plasticity [20]. This design space is pre-
sented like an action-reaction process: its upper part de-
scribes what type(s) of context variation may cause the
reconfigurability (the action), while the bottom part de-
scribes what type of reconfigurability is undertaken (the
reaction to the change of context).

Along the “With respect to what?” axis, context-sensi-
tivity is concerned with the types of context variations
raising the need for reconfiguring a UI [5]. These types of
variations are located in one or any UI models. A UI
model is a declarative, editable, and analyzable represen-
tation of some predefined aspects of a UI, according to
relevant abstractions [15]. The main purpose of these
model abstractions is to describe UI properties at a higher
level than just programming code that frees developers
from coping with too low level details and software/
hardware dependencies. In such an approach, several

Prepress
208

models could be involved. Some models may contain
sub-models: a computing-platform model contains models
of the various interaction objects and devices to be ma-
nipulated on this platform; a help model is decomposed
into guidance and tutorial models, along with separate
help facilities. It is not required that all these models
should be considered to develop a CSUI. Rather, this list
is intended to locate where any event indicating a change
of context occurs (action) and where the results of this
change of context should be applied (reaction). Model-
based approaches [6,9,13,14, 16,18,21,23] are particularly
suitable for CSUIs for the following reasons:
♦ Models are convenient to slice the human-computer in-

teraction complexity into expressive layers that can
communicate through appropriate protocols (principle
of expressiveness). For instance, the user (described in
a user model) can interact with widgets (modeled in an
interaction object model) that are part of the presenta-
tion (described in a presentation model) through a dia-
log (described in a dialog model) on a given screen
(detailed in a computing platform model). Changing a
screen for instance would only require a change in the
computing platform model, and nowhere else [22].

♦ They tend to separate different facets of UI design and
information into autonomous models (principle of sep-
arability of concepts), typically maintained as knowl-
edge bases [10], while preserving coupling through
design relationships between models’ abstractions
(principle of correlability of concepts).

♦ By abstracting requirements via concepts, they are able
to identify the UI parts that are common or different,
fixed or flexible, across a wide variety of different
contexts of use. It is also argued that identifying these
parts without a certain level of abstraction and inde-
pendence would remain infeasible [2].

♦ They allow defining rules expressing ordered relation-
ships between concepts hold in various models. New
design knowledge can be incorporated by establishing
mappings between models’ concepts [16].

♦ They allow the adoption of a knowledge-based ap-
proach [10] on top of the models: once the models cap-
ture the relevant information, artificial intelligent tech-
niques (e.g., production rules) can be deployed to rea-
son on the models contents and produce a reaction.

Along the “What?” axis, context-sensitivity is concerned
by the locus of reconfiguration: any model that is relevant
to a running UI is considered. For example, any change of
a computing platform characteristic (e.g., a screen resolu-
tion reduction declared in a computing-platform model)
should trigger a presentation reconfiguration (e.g., a sim-
pler UI with widgets consuming less screen real estate).
In computer-based systems, any change of a user (e.g.,
the learning level of a student captured in a user model
containing skills, experience, and cognitive profile)

should reconfigure the tutorial (e.g., keeping advanced
topics in a tutorial model). Moreover, a reconfiguration
may occur in many models, e.g., the change of a user may
also be mirrored in a change of presentation style.

Along with the “For what?” axis, context-sensitivity is
concerned by the four steps considered in adaptation [8].
The initiative specifies the entity which initiates the need
of reconfiguration. The proposal describes possible re-
configurations to be performed on the target models of
the UI. The decision states the entity which decides to ap-
ply the reconfiguration when needed. The execution clari-
fies the entity which is responsible for effectively per-
forming the reconfiguration that has been decided.

Along with the “Who?” axis, context-sensitivity is con-
cerned by the responsibility of undertaking any adaptation
step: it could be a user, a third party, the system or a
mixed-initiative involving several actors. Typically, one
entity (e.g., the system) is responsible for performing the
four steps. But a system may prompt a user with possible
reconfiguration mechanisms from which the user is able
to pick up one, thus decreasing the negative disruptive ef-
fects induced by adaptivity [8]. A user may select one
possible presentation style among a set of predefined ones
(Figure 3), while keeping its functionality.

Along with the “How many?” axis, context-sensitivity is
concerned by the number of reconfiguration occurrences
required to achieve the context-sensitivity [5]. For exam-
ple, one variation of screen resolution in the computing
platform may result into several presentation and dialog
reconfigurations. One task variation may lead to many
presentation and dialog reconfiguration to reflect the fact
that the task structure changed.

Along the “When?” axis, context-sensitivity is concerned
by the moment during which the reconfiguration is effec-
tively considered: at design-time, at runtime or both. For
example, a web page is intrinsically designed to support
various Web appliances (such as a classical web browser,
a WAP-compatible cellular phone, a television set top
box, and an Internet screen phone). Similarly, a web page
may compute a frame rate of a video sequence at runtime,
depending on the available bandwidth.

Along the “With what?” axis, context-sensitivity is con-
cerned by the type of model needed to support the inten-
ded reconfiguration. A passive model holds static proper-
ties that are only read to perform a reconfiguration, while
an active model holds dynamic properties that can be
changed at runtime. A shared model can hold both kinds
of properties. To accommodate multiple screen resolu-
tions of a same platform, a UI needs to embark an active
model to apply an appropriate reconfiguration [6]. When
models are considered only at design time, they often re-
main passive.

Prepress
209

Task
Domain

User
Interaction object

Device
Computing platform

Physical environment
Organization

Application
Presentation

Dialog
Help

Guidance
Tutorial

Design

With respect to what?

What?

Action (Before)

Reaction (After)

Who?
User Mixed System

When?With
what?

Passive m
odels

Shared m
odels

A
ctive m

odels

At design time
At run time

At both design and run time

How many?

One
Some

Many

For what?

Initiative

Proposal

D
ecision

Execution

Figure 2. A design space for context sensitivity.

Figure 3. Multiple presentation styles for

a single user interface.

4 Representative Examples of Context-
Sensitivity

The design space for context-sensitivity is able to express
several important UI categories:
1. Multi-language UIs: the UI is able to accommodate

variation of the natural language according to the
user’s needs. For example, the user can switch from
one language to another by selecting it from a UI
menu, or the system can automatically set it according
to a preference stated in a profile.

2. Plastic UIs: the UI is able to accommodate variations
of both the computing platform (e.g., screen resolu-

tion, colors, operating systems) and the physical envi-
ronment (e.g., the network bandwidth, the availability
of interaction devices), while preserving usability, that
is a set of properties specified during the requirements
phase [2,20]. These properties are defined in [2,20].
For example, the same UI can display a network load
in multiple forms according to varying screen con-
straints [6,20]. Figure 4 represents a plastic UI which
accommodates different presentations of a network
load while the window is being resized. This example
is adapted from [20].

Figure 4. A plastic user interface for network load.

Prepress
210

3. Cross-platform UIs: the UI is able to accommodate
variations of the computing platform, while preserving
a given usability level. For example, SUIT enables de-
signers to design one UI that can run on different plat-
forms, while preserving consistency [14].

4. Migratory UIs: the UI is able to accommodate reloca-
tion of the user terminal [1], while maintaining the
same context for the application when the user
switches between terminals of the same platform.

5. Mobile or nomadic UIs: the UI is able to accommodate
variations of the context of use and the change of user
position, while sustaining a given usability threshold.
For example, the GUIDE system [3] is varying accord-
ing to the user’s location in the physical space and pre-
sents different information, accordingly. Figure 5
represents the virtual keyboard: when a numerical en-
try is performed, the keyboard may become available
or unavailable depending on the user location. When
the keyboard becomes (temporarily) unavailable, the
edit field is replaced by a virtual keyboard.

Figure 5. The virtual keyboard.

After highlighting some representative CSUI examples,
we report on various methods used to develop such UIs
and we discuss their advantages and shortcomings.

5 Development of a Context-Sensitive
User Interface

What is the best way to develop a CSUI? The methods
which are frequently used to develop them are either pro-
cedural or, more recently, declarative (model-based).
Each approach has problems: the procedural approach is
difficult to use whereas the declarative approach lacks
expressiveness. We propose a mixed model-based ap-
proach that combines both declarative and procedural
elements into a single environment. Declarative pro-
gramming is often more appropriate for static, structural
aspects, while procedural programming is more adapted
to dynamic, behavior aspects. A representative example, a
context-sensitive clock, is given to show the advantages
of the mixed approach. Finally, we discuss what the
mixed approach implies in terms of support from the un-
derlying development platform.

5.1 Traditional approaches

The most frequently used approach to develop a CSUI
consists in writing a code statically supporting all possi-
ble configurations in a selected programming environ-
ment, such as C++, Pascal, Basic or Java. These environ-
ments are typically procedural in the sense they allow de-
velopers to code various CSUI aspects in procedures and
functions. Therefore, a single procedure may merge as-
pects which are relevant for different facets, e.g. the pres-
entation, the dialog, and the user. Beyond procedural pro-
gramming has been considered declarative programming
in a model-based approach [13]. In this approach, infor-
mation required in order to notify the changes of context
and reconfiguration can be expressed into facts and rules.

5.2 Limits of procedural and declarative ap-
proaches in isolation

These approaches can be compared along several criteria:
♦ Separability: in a procedural approach, a single pro-

cedure may merge different aspects which are rele-
vant to different facets, e.g. the presentation, the dia-
log, and the user, thus keeping separability low to
moderate. Instead, in a declarative approach, each
model contain only relevant aspects provided that a
clean separation scheme is uniformly applied, thus
raising separability from moderate to high.

♦ Code size: a purely declarative approach defines a set
of possibilities for different attributes. The model
chooses among this set of possibilities. This defines
“what” without defining “how”. A purely procedural
approach gives a set of primitive operations and the
ability to define other procedures by calling them.
The model calls the primitive operations in order to
“build” its content. Both approaches can potentially
generate an important section of code, especially
when models are considered verbose. For example, 4
functions and one hundred lines of JavaScript proce-
dural code is needed for Figure 1, 12 functions and
more than two hundreds lines of code for Figure 4.

♦ Complexity: however, lines of procedural code are
more complex to write and to interpret than lines of
specification in a model-based approach. Declarativ-
ity makes it easy to formally manipulate the model
definitions (e.g., to translate into different representa-
tions) but reduces the scope of model manipulations.

♦ Expressiveness: a procedural is by nature more ex-
pressive than a declarative approach. In particular, a
declarative approach is more convenient for describ-
ing static aspects (as the presentation) than for dy-
namic aspects (as the dialog) and vice versa. A de-
clarative approach limits the expressiveness to what
the designers initially put in the model, whereas pro-
cedurality has no limits on expressiveness, since it
defines a full-fledged programming language.

Prepress
211

5.3 Mixed declarative and procedural approach

We believe that each approach has fundamental disadvan-
tages when used in isolation, and that a realistic approach
should mix elements of both. To some degree, judging the
relative expressiveness and ease of use of the approaches
is subjective. For example, a model-based approach can
be considered as "too declarative" as they try to present
all possible configurations. Pure declarativity has only
one way to compose parts, i.e., to tile them syntactically.
This is such a strong limit on expressiveness that it re-
quires to “enumerate” all the possibilities. Declarativity
should consequently be used only in those UI parts where
expressiveness is less important.

In a mixed approach, three areas are distinguished: the
static structure of the widgets (nesting), their resize be-
havior (glue parameter), and their initial state. Other ar-
eas, in particular, event handling and widget updating, are
handled by a procedural approach. The complete interface
is defined by a record, with two kinds of components:
other records (nested widgets, etc.) and procedure values
(for event handlers and dynamic widget control). The
procedure values are embedded in the record. A mixed
approach using declarations for static definitions and pro-
cedures for dynamic ones is a promising idea, as we can
keep the best of both worlds.
FlexClock illustrates this mixed approach: the view defi-
nitions are purely static definitions (description of the UI
of the view, information for updating the clock according
to the current time and information for determining which
view to display according to the current window size).
The description of a single view is thus only three lines of
code! The dynamic aspects of FlexClock, e.g., the update
of the views each second according to the new time and
the selection of the best view upon window resize is left
to a pure procedural approach. Mixing both approaches in
the same language was possible only because of the exis-
tence of data structures in Oz [12,17] that could support
it: records and lists
There exists an extensive support from the language to
manipulate these data structures. As a direct result, we
have the opportunity to dynamically create any type of
record, i.e. description, we may need, while still remain-
ing in the same language. The calendar of FlexClock il-
lustrates this: the calendar is dynamically built from label
widgets. A ‘ten lines of code’ loop creates the complete
widget description, including the geometry management.
Once done, the description is given to the QTk toolkit
module [7] of the Mozart environment [11] to effectively
build the UI. In practice, it is simpler to manipulate data
structures of the language (which are supposed to be ma-
nipulated) instead of line of codes (which are intrinsically
static). Moreover procedures in Oz are values [12]. Dy-
namic definitions can thus be embedded into procedures,

i.e. values to create static definitions of dynamic behav-
ior. This pushes a little more the possibility of dynamic
definitions and was used for example to define the update
of the views of FlexClock according to the time.
In summary, we can use a declarative approach whenever
needed and keep a procedural approach elsewhere. We
can even build declarations on-the-fly as needed, using a
procedural approach! This is the key FlexClock is using
for creating a highly dynamical interface in very few lines
of code.

6 The FlexClock example
FlexClock is a simple context-sensitive clock application
(Fig. 6). It was written using the mixed approach intro-
duced above. We explain the design of FlexClock and
show how declarative and procedural elements each have
their place.

6.1 Architecture

The architecture is concurrent and event-driven. There are
two event sources: (1) a clock that ticks once per second
and (2) a 'resize' event for each resize of the window.
Clock events are sent to all the views, and cause them to
update their display. Resize events are input to a 'choice
procedure' that picks the best view and displays it. There
is no other interaction between these two event sources.
6.2 Implementation

The application is written in Oz [17] on the Mozart plat-
form [11], using the QTk UI toolkit [7] on top of Tcl/Tk.
The complete application is 370 lines of code, divided as
follows:
- 270 lines for the clock-specific code, including defini-

tion of the analog clock widget (80 lines), calendar
widget (50 lines), picking and drawing the Mozart icon
(70 lines), and formatting utilities (70 lines).

- 60 lines for the complete definition of all 16 views.
For each view, this includes the view declaration, the
view update function, and the minimum view area,
used to pick the best view.

- 40 lines for the event mechanisms (clock and resize)
and definition of the choice function.

6.3 Definition of a view

Each view is defined by a record that combines declara-
tive and procedural elements. Here is a typical view:

r(desc:label(handle:H3 glue:nswe

bg:white)

update:proc{$ T} {H3 set(text:{FmtTime

T}#'\n'#{FmtDate T})} end

area:60#30)<

The record has three fields and combines a declarative
with a procedural aspect. We explain the meanings of the
fields and why each chooses the approach it does. The

Prepress
212

'desc' field is purely declarative. It defines a label widget
with white background (bg:white) that is glued to its
surroundings in all four directions (glue:nswe). The la-
bel widget is accessible by its handle H3, which is an ob-
ject, used for the dynamic behavior. Note that the 'glue'
field is a “declarative” specification of the resize behav-
ior, i.e., of a “dynamic” aspect. That is, sometimes it is
possible to “push” the declarative approach to specify
part of the dynamic behavior. This is possible in areas
that do not need a lot of expressiveness, e.g., resize be-
havior. It is advantageous to use the declarative approach
if this is the case. The 'update' field is purely procedural.
It defines a procedure that calls the handle H3 to set a new
text. The procedure's argument T is the data to be dis-
played; the procedure is free to display it as it sees fit.
Since the refresh behavior can be quite complex, the pro-
cedural approach is appropriate. The 'area' field is de-
clarative. It gives information that is used as input for the
component that chooses the best view to be displayed.
6.4 What models are used

FlexClock applies the two quality criteria of concern that
have been mentioned:
- Separability: each view is independently defined with

respect to others. Modifying a view is a local modifi-
cation without effect of the rest of the code.

- Correlability: all defined views are connected together
throughout the view chooser, which is also separated
from the rest of the code.

FlexClock uses only a few models; in particular a presen-
tation and a dialog model. These models co-exist within
the same language and programming environment. By
analogy, consider type declarations in a programming lan-
guage. They are part of the program, yet they play an-
other role than the language operations.

Figure 6. The FlexClock application.

6.5 Requirements for underlying platform

We see the following requirements for a platform to sup-
port the mixed approach:
- Strong data structure support, including construction

and manipulation of dynamic record-like structures.
- Supports a functional language, for data structure ma-

nipulation.

- Supports embeddability: functions are values that can
be embedded in data structures. This is important so
that declarative data can contain procedural parts.

- Supports lightweight concurrency (threads, events).
- Has a declarative UI toolkit. The toolkit should allow

specifying declaratively all parts of a UI that can take
an advantage from it.

7 Conclusion
A design space and new method for developing context-
sensitive UIs have been introduced. The design space is
assumed to help designers to clearly locate, identify and
separate the events that cause of change of context as well
as the possible reconfigurations of the UI. The new de-
velopment method highlights several benefits:
♦ It is model-based: this approach outreaches traditional

procedural programming by its ability to record the
knowledge required to manage context-sensitivity
rather than programming it directly. This knowledge
can be reused for a wide variety of contexts, including
computing platforms and physical environments in-
stead of redeveloping it for each target platform. In
FlexClock for instance, a presentation model hold the
different views, a dialog model considers the user in-
teraction on these views, and a design model manages
the transitions between views after a window resize.

♦ It is based on separability of models: as several models
can be considered for an interactive application, they
can be implemented in active models in various ways.
Separating relevant aspects of each model in a separate
model allows the developer to minimize the impact of
change if a new context should be considered. In Flex-
Clock for instance, defining a new view is simply a
matter of inserting three lines of code, without modify-
ing the rest of the code.

♦ It produces readable, compact and effective code: de-
veloping a CSUI in a typically procedural manner re-
quires hundreds of lines of code while this method
concentrates the code on the information needed to de-
scribe a change of context. In FlexClock, each re-
sponse rule can be read by a human actor and inter-
preted by the system. The size of the program file is
reduced thanks to the declarative approach for static
aspects and procedural approach for dynamic aspects.

8 Acknowledgements
We gratefully acknowledge the support of the SIMILAR
network of excellence, the European research task force
creating human-machine interfaces similar to human-
human communication (http://www.similar.cc), Sixth
Framework Program (European Commission, FP6-IST1-
2003-507609) and the Salamandre project, Région Wal-
lonne, Initiatives III (Walloon Region, Convention
n°001/4511). For more information on the specification
language and tools, see http://www.usixml.org.

http://www.similar.cc/
http://www.usixml.org/
Prepress
213

9 References
[1] K.A. Bharat and L. Cardelli, “Migratory Applications

Distributed User Interfaces,” Proc. of ACM Conf. on
User Interface Software Technology UIST’95, ACM
Press, New York, pp. 133-142, 1995.

[2] G. Calvary, J. Coutaz, and D. Thévenin, “Embedding
Plasticity in the Development Process of Interactive
Systems,” Proc. of Workshop on User Interfaces for
All UI4ALL’2000, ERCIM Press, 2000.

[3] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
Ch. Ef-Stratiou, “Developing a Context-aware Elec-
tronic Tourist Guide: Some Issues and Experiences,”
Proc. of ACM Conf. on Human Factors in Comput-
ing Systems CHI’2000, ACM Press, New York, pp.
17-24, 2000.

[4] M. Crease, S. Brewster, and Ph. Gray, “Caring, Shar-
ing Widgets: A Toolkit of Sensitive Widgets,” Proc.
of BCS Conference on Human Computer HCI’2000,
Springer-Verlag, Berlin, pp. 257-270, 2000.

[5] A.K. Dey and G.D. Abowd, “Support for adapting
applications and interfaces to context,” In Multiple
User Interfaces: Cross-Platform Applications and
Context-Aware Interfaces, Seffah, A. and Javahery,
H. (eds.), John Wiley & Sons, 2003.

[6] J. Eisenstein, J. Vanderdonckt, and A.R. Puerta,
“Adapting to Mobile Contexts with User-Interface
Modeling,” Proc. of IEEE Working Conference on
Mobile Computer Applications WMCSA’2000, IEEE
Press, Los Alamitos, 2000.

[7] D. Grolaux, QTk Module, March 13, 2000. Accessi-
ble at http://www.info.ucl.ac.be/people/ned/qtk/http-
html/index.html

[8] D. Hartmut, U. Malinowski, T. Kuhme, and T.
Schneider-Hufschmidt, “State of the Art in Adaptive
User Interfaces,” in Adaptive User Interfaces, M.
Schneider-Hufschmidt (ed.), North Holland, Amster-
dam, pp. 1-48, 1993.

[9] Q. Limbourg, J. Vanderdonckt, B. Michotte, L.
Bouillon, and V. Lopez, “UsiXML: a Language Sup-
porting Multi-Path Development of User Interfaces,”
Proc. of 9th IFIP Working Conference on Engineer-
ing for Human-Computer Interaction jointly with
11th Int. Workshop on Design, Specification, and
Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004), Lecture
Notes in Computer Science, vol. 3425, Springer-
Verlag, Berlin, pp. 207-228, 2005.

[10] M.T. Maybury and W. Wahlster, “Readings in Intel-
ligent User Interfaces,” Morgan Kaufmann, San
Francisco, 1998.

[11] Mozart Consortium, “The Mozart Programming Sys-
tem (Oz 3),” January 1999. Accessible at http://www.
mozart-oz.org

[12] J.K. Ousterhout, “Tcl and the Tk Toolkit,” Addison-
Wesley, Reading, 1994.

[13] F. Paternò, “Model-based Design and Evaluation of
Interactive Applications,” Springer Verlag, Berlin,
November 1999.

[14] R. Pausch, M. Conway, and R. DeLine, “Lessons
Learned from SUIT, the Simple User Interface Tool-
kit,” ACM Trans. on Office Inf. Systems, vol. 10, no.
4, pp. 320-344, 1992.

[15] A.R. Puerta, “A Model-Based Interface Development
Environment,” IEEE Computer, vol. 14, no. 4, pp 40-
48, July/August 1997.

[16] A.R. Puerta and J. Eisenstein, “Towards a General
Computational Framework for Model-Based Inter-
face Development Systems,” Proc. of ACM Conf. on
Intelligent User Interfaces IUI’99, ACM Press, New
York, pp. 171-178, 1999.

[17] G. Smolka, “The Oz Programming Model,” Lecture
Notes in Computer Science, vol. 1000. Springer-
Verlag, Berlin, 1995.

[18] P. Szekely, P. et al., “Declarative Interface Models
For User Interface Construction Tools: The MAS-
TERMIND Approach,” Proc. of IFIP Working Con-
ference on Engineering the User Interfaces EHCI'95,
L. Bass and C. Unger (eds.), Chapman & Hall, Lon-
don, pp. 120-150, 1995

[19] P. Szekely, “Retrospective and Challenges for
Model-Based Interface Environments,” Proc. of 2nd
Int. Workshop on Computer-Aided Design of User
Interfaces CADUI’96 (Namur, 4-6 June 1996), J.
Vanderdonckt (ed.), Presses Universitaires de Na-
mur, Namur, pp. xxi-xliv, 1996.

[20] D. Thevenin and J. Coutaz, “Plasticity of User Inter-
faces: Framework and Research Agenda,” Proc. of
IFIP Conf. on Human-Computer Interaction Inter-
act’99 (Edinburgh, Sept. 1999), IOS Press, Amster-
dam, pp. 110-117, 1999.

[21] J. Vanderdonckt and F. Bodart, “Encapsulating
Knowledge for Intelligent Automatic Interaction Ob-
jects Selection,” Proc. of ACM Conf. on Human As-
pects in Computing Systems INTERCHI’93 (Amster-
dam, 24-28 April 1993), ACM Press, New York, pp.
424-429, 1993.

[22] J. Vanderdonckt, “A MDA-Compliant Environment
for Developing User Interfaces of Information Sys-
tems,” Proc. of 17th Conf. on Advanced Information
Systems Engineering CAiSE'05 (Porto, 13-17 June
2005), O. Pastor & J. Falcão e Cunha (eds.), Lecture
Notes in Computer Science, vol. 3520, Springer-
Verlag, Berlin, pp. 16-31, 2005.

[23] Ch. Wiecha, W. Bennett, S. Boies, J. Gould, and S.
Green, “ITS: A Tool for Rapidly Developing Interac-
tive Applications,” ACM Trans. on Information Sys-
tems, vol. 8, no. 3, pp. 204-236, July 1990.

Prepress
214

	Abstract

