

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 16 – 31, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A MDA-Compliant Environment for Developing
User Interfaces of Information Systems

Jean Vanderdonckt

Université catholique de Louvain (UCL), School of Management (IAG),
Information Systems Unit (ISYS), Belgian Lab. of Computer-Human Interaction (BCHI),

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
vanderdonckt@isys.ucl.ac.be

http://www.isys.ucl.ac.be/bchi/

Abstract. To cope with the ever increasing diversity of markup languages, pro-
gramming languages, tool kits and interface development environments, con-
ceptual modeling of user interfaces could bring a framework for specifying, de-
signing, and developing user interfaces at a level of abstraction that is higher
than the level where code is merely manipulated. For this purpose, a complete
environment is presented based on conceptual modeling of user interfaces of in-
formation systems structured around three axes: the models that characterize a
user interface from the end user’s viewpoint and the specification language that
allows designers to specify such interfaces, the method for developing inter-
faces in forward, reverse, and lateral engineering based on these models, and a
suite of tools that support designers in applying the method based on the mod-
els. This environment is compatible with the Model-Driven Architecture rec-
ommendations in the sense that all models adhere to the principle of separation
of concerns and are based on model transformation between the MDA levels.
The models and the transformations of these models are all expressed in
UsiXML (User Interface eXtensible Markup Language) and maintained in a
model repository that can be accessed by the suite of tools. Thanks to this envi-
ronment, it is possible to quickly develop and deploy a wide array of user inter-
faces for different computing platforms, for different interaction modalities, for
different markup and programming languages, and for various contexts of use.

1 Introduction

Today, the development of the User Interface (UI) of interactive applications, whether
they are an information system or a complex, possibly safety-critical system, poses a
series of unprecedented challenges due to the multiplication of several variables [10]:

• Diversity of users: the end users of a same interactive application could no longer
be considered similar as they exhibit various skills, capabilities, levels of experi-
ence and preferences that should be reflected in the UI. Instead of having one sin-
gle UI for all users, a family of different UIs should be developed to cope with the
differences of multiple categories of users, including those who are impaired.

• Richness of cultures: when an interactive application is going to be global, its UI
cannot remain the same for all languages, countries, and cultures. Rather, it can be

 A MDA-Compliant Environment for Developing UIs of Information Systems 17

submitted to a process of localization to tailor the UI to particular constraints or to
a process of globalization to adapt the UI to the largest population possible.

• Complexity of interaction devices and styles: Human-Computer Interaction (HCI)
is an area known for dealing with a wide variety of interaction devices (e.g., bi-
manual mouse, 3D pointers, laser pointer, phantom) and styles (3D tracking, eye
tracking, gesture recognition, speech recognition and synthesis). The handling of
events generated by these devices and their sound incorporation into an interaction
style requires many programming skills that often go beyond the classical capa-
bilities of an average developer of an information system. Even more, when sev-
eral modalities are combines, as in a multimodal application, this complexity is
decupled. Same for virtual reality, augmented reality and mixed reality applica-
tions.

• Heterogeneousness of computing platforms: the market of computing platforms is
submitted to a constant introduction of new computing platforms, each one com-
ing with a new set of constraints to be imposed on the UI that should run on it. For
instance, a significant constraint is the screen resolution and the interaction
capabilities that largely vary depending on the computing platform: mobile phone,
smartphone, Pocket PC, Blackberry, Handbag PC, Tablet PC, interactive kiosk,
laptop, desktop, multi-displays workstation, projected UI, wall screen. All these
computing platforms do not necessarily run the same operating system and the UI
is not necessarily developed with the same markup language (e.g., WML, cHTML,
HTML, DHTML, VoiceXML, X+V, VRML97, X3D) or programming language
(e.g., Visual Basic, C++, Java, C#). Even when a same language could be used,
several peculiarities are present on each platform, thus preventing the developer
from reusing code from one platform to another. The typical end user is using to-
day at least three platforms, sometimes with some synchronization between.

• Multiplicity of working environments: end users are nowadays confronted to a
series of different physical environments where they are supposed to work with
the same reliability and efficiency. But when the environment becomes more con-
straining, e.g., in stress, in noise, in light, in availability of network resources, the
UI is not necessarily adapted to these variations.

• Multiplicity of contexts of use: if a given context of use is defined as a particular
user category working with a given platform in a specific environment, then the
array of potential contexts of use explodes. Of course, not all the contextual varia-
tions should be considered and interpreted in a significant change of the UI, but at
least a reasonable amount of differences exist for context-aware applications.
From a user’s perspective, various scenarios may occur [1,3]:

1. Users may move between different computing platforms whilst involved in a
task: when buying a movie on DVD a user might initially search for it from her
desktop computer, read the reviews of the DVD on a PDA on the train on the
way home from work, and then order it using a WAP-enabled mobile phone.

2. The context of use may change whilst the user is interacting: the train may go
into a dark tunnel so the screen of the PDA dims, the noise level will rise so
volume of audio feedback increases so it can still be heard.

18 J. Vanderdonckt

3. Users may want to collaborate on a task using heterogeneous computing plat-
forms: the user decides to phone up a friend who has seen the movie and look
at the reviews with her, one person using WebTV and the other using a laptop,
so the same information is presented radically differently.

• Multiplicity of software architectures: due to the above variations, the UI should
be developed with dedicated software architecture in mind (e.g., [5]) that is explic-
itly addressing the variations considered as for mobile computing, ubiquitous
computing, context-aware applications (e.g., [1]).

Therefore, it is rather difficult to obtain a UI that addresses these variations while
avoiding reproducing multiple UIs for different contexts of use without factoring out
the common parts. In addition, when in the past, it was possible to code a UI by hand,
today this empirical, opportunistic approach is no longer viable. All these reasons and
others stem for a methodology for User Interface Engineering. This discipline is lo-
cated midway between Software Engineering (SE), Human-Computer Interaction
(HCI) and Human Factors (HF). Its primary goal is to develop a methodology for
developing the UI throughout the development life cycle that can be articulated with
traditional SE concepts. This methodology consists of:

1. A series of models pertaining to various facets of the UI such as: task, domain,
user, presentation, dialog, platform, context of use, etc. These models will be de-
fined in Section 2 and located on a reference framework. These models are uni-
formly and univocally expressed according to a single Specification Language, de-
scribed in Section 3.

2. A step-wise method towards Computer-Aided Design of User Interfaces (CADUI)
based on any combination of the above models. Section 4 will define this method
by combination of models and model transformations so as to be compliant with
the Model-Driven Architecture, to support Model-Driven Development (MDD).

3. A suite of software engineering tools that supports the designer and the developer
during the development life cycle according to the method. A subset of these tools
will be illustrated in Section 5.

Section 6 will summarize the main benefits of the MDA-compliant environment.

2 Models

Our methodology is explicitly based on the Cameleon Reference Framework [3],
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to
manipulate any specific artifact of interest as a model or a UI representation):

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular computing
platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after compilation of code in an interactive development environment).

 A MDA-Compliant Environment for Developing UIs of Information Systems 19

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Fig. 1. The Simplified User Interface Reference Framework [3]

2. Concrete UI (CUI): concretizes an abstract UI for a given context of use into Con-
crete Interaction Objects (CIOs) [19] so as to define widgets layout and interface
navigation. It abstracts a FUI into a UI definition that is independent of any com-
puting platform. Although a CUI makes explicit the final Look & Feel of a FUI, it
is still a mock-up that runs only within a particular environment (Fig. 2). A CUI
can also be considered as a reification of an AUI at the upper level and an abstrac-
tion of the FUI with respect to the platform. For example, in Envir3D [18], the
CUI consists of a description of traditional 2D widgets with mappings to 3D by re-
lying on different mechanisms when such a mapping is possible.

3. Abstract UI (AUI): defines abstract containers and individual components [12,13],
two forms of Abstract Interaction Objects [19] by grouping subtasks according to
various criteria (e.g., task model structural patterns, cognitive load analysis, se-
mantic relationships identification), a navigation scheme between the container
and selects abstract individual component for each concept so that they are inde-
pendent of any modality. An AUI abstracts a CUI into a UI definition that is inde-
pendent of any modality of interaction (e.g., graphical interaction, vocal interac-
tion, speech synthesis and recognition, video-based interaction, virtual, augmented
or mixed reality). An AUI can also be considered as a canonical expression of the
rendering of the domain concepts and tasks in a way that is independent from any
modality of interaction. An AUI is considered as an abstraction of a CUI with re-
spect to interaction modality. At this level, the UI mainly consists of input/output
definitions, along with actions that need to be performed on this information (Fig.
3). The AUI is mainly based on the Canonical Abstract Prototypes [4].

4. Task & Concepts (T&C): describe the various user’s tasks to be carried out and the
domain-oriented concepts as they are required by these tasks to be performed.
These objects are considered as instances of classes representing the concepts. Fig.
4 represents a potential task model representing the end user’s viewpoint for an
Internet Radio Player, based on LOTOS operators.

This framework also exhibits three types of transformation types: (1,2) Abstraction
(respectively, Reification) is a process of eliciting artifacts that are more abstrct (re-
spectively, concrete) than the artifacts that serve as input to this process. Abstraction

20 J. Vanderdonckt

Fig. 2. A concrete UI of an Internet Radio Player [15] in GrafiXML

Fig. 3. A Abstract User Interface of an Internet Radio Player [15] in IdealXML [16]

is the opposite of reification. (3) Translation is a process that elicits artifacts intended
for a particular context of use from artifacts of a similar development step but aimed
at a different context of use. Therefore, when there is a need to switch from one con-
text of use (e.g., one platform) to another one (e.g., another platform), the develop-
ment process can cope with adaptation to the new context of use at any level of ab-
straction. Of course, the higher the level of abstraction the adaptation is performed,
the more flexibility we have in the resulting processes.

With respect to this framework, multi-path UI development [12,13] refers to a UI
engineering method and tool that enables a designer to (1) start a development activity
from any entry point of the reference framework (Fig. 1), (2) get substantial support
in the performance of transformation types and their combinations as found in Fig. 1.
Several interesting development paths can be expressed on this framework since not

 A MDA-Compliant Environment for Developing UIs of Information Systems 21

Fig. 4. A task model of an Internet Radio Player [15] in IdealXML [16]

all steps should be achieved in a sequential ordering dictated by the levels. Instead,
locating what steps are performed, when, from which entry point and toward what
subsequent step are important. According to Fig. 1, transcoding tools start with a
FUI for a source context of use () and transforms it into another FUI for a target
context (). Similarly, portability tools start with a CUI for a source context ()
and transforms it into another CUI for another context (), that in turn leads to a
new FUI for that context (). To overcome shortcomings identified for these tools,
there is a need to raise the level of abstraction by working at the AUI level. UI Re-
verse Engineering abstracts any initial FUI () into concepts and relationships
denoting a AUI (), which can then be translated into a new AUI () by taking
into account constraints and opportunities for the new context. UI Forward Engi-
neering then exploits this AUI () to regenerate a new AUI adapted to this plat-
form, by recomposing the CUI () which in turn is reified in an executable FUI
(). In general, UI reverse engineering is any combination of abstraction relation-
ships starting from a FUI (), a CUI () or an AUI (). UI forward engineering is
any combination of reification relationships starting from T&C, AUI or CUI. Simi-
larly, UI Lateral Engineering is responsible for applying any translation at any level
of abstraction to transform the artifacts existing at the level where we are for an-
other context of use at the same level. For instance, when a designer has already
designed a UI for, let us say a desktop, and wants to design a corresponding UI for a
Pocket PC, she may need to apply Graceful Degradation techniques [7], which
consist of a series of transformations to support the translation from the desktop to
the PocketPC, while taking into account the constraints imposed by the new plat-
form.

So far, to support conceptual modeling of UIs and to describe UIs at various levels
of abstractions, the following models have been involved (Fig. 5) [13]:

22 J. Vanderdonckt

Fig. 5. The collection of models for specifying a user interface [12,13]

• taskModel: is a model describing the interactive task as viewed by the end user
interacting with the system. A task model represents a decomposition of tasks into
sub-tasks linked with task relationships. Therefore, the decomposition relationship
is the privileged relationship to express this hierarchy, while temporal relation-
ships express the temporal constraints between sub-tasks of a same parent task.

• domainModel: is a description of the classes of objects manipulated by a user
while interacting with a system. Typically, it could be a UML class diagram, an
entity-relationship-attribute model, or an object-oriented model.

• mappingModel: is a model containing a series of related mappings between
models or elements of models. A mapping model serves to gather a set of inter-
model relationships that are semantically related. It expresses reification, abstrac-
tion, and translation. In addition, other mappings [13] are defined and could be
defined.

• contextModel: is a model describing the three aspects of a context of use in
which a end user is carrying out an interactive task with a specific computing
platform in a given surrounding environment [3]. Consequently, a context model
consists of a user model, a platform model [5], and an environment model.

• auiModel: is the model describing the UI at the abstract level as previously de-
fined.

• cuiModel: is the model describing the UI at the concrete level as previously de-
fined.

• uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component model
sin any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model, and context model. A user interface
model needs not include one of each model component. Moreover, there may be
more than one of a particular kind of model component.

The conceptual modeling activities that reached to the meta-model of the cuiModel
represented a significant amount of work and is therefore detailed further in the next
subsection. The transformation model is the only remaining model: as such, it is de-
fined in the second subsection.

 A MDA-Compliant Environment for Developing UIs of Information Systems 23

2.1 The cuiModel

A CUI is assumed to be described without any reference to any particular computing
platform or toolkit of that platform. For this purpose, a CUI model consists of a hier-
archical decomposition of CIOs. A Concrete Interaction Object (CIO) is defined as
any UI entity that users can perceive such as text, image, animation and/or manipulate
such as a push button, a list box, or a check box [12,13,19]. A CIO is characterized by
various attributes such as, but not limited to: id, name, icon, content, defaultContent,
defaultValue.

Since a CIO is independent of any computing platform, we do not know yet which
interaction modality is used on that platform. Therefore, each CIO can be sub-typed
into sub-CIOs depending on the interaction modality chosen: graphicalCIO for GUIs,
auditoryCIO for vocal interfaces, 3DCIO for 3D UIs, etc. In this paper, we focus on
graphical CIO since they form the basic elements of a traditional 2D GUI or a 3D,
virtual UI. Each graphicalCIO inherits from the above CIO properties and has spe-
cific attributes such as: isVisible, isEnabled, fgColor and bgColor to depict fore-
ground and background colors, etc.

Each graphicalCIO is then sub-typed into one of the two possible categories (Fig.
6): graphicalContainer for all widgets containing other widgets such as page, win-
dow, frame, dialog box, table, box and their related decomposition or graphicalIndi-
vidualComponent for all other traditional widgets that are typically found in such
containers. A graphicalIndividualComponent cannot be further decomposed. The
model supports a series of widgets defined as graphicalIndividualComponents such
as: textComponent, videoComponent, imageComponent, imageZone, radioButton,
toggleButton, icon, checkbox, item, comboBox, button, tree, menu, menuItem,
drawingCanvas, colorPicker, hourPicker, datePicker, filePicker, progressionBar,
slider, and cursor.

Thanks to this progressive inheritance mechanism, every final elements of the CUI
inherits from the upper properties depending on the category they belong to. The
properties that have been chosen to populate the CUI level have been decided because
they belong to the intersection of property sets of major toolkits and window manag-
ers, such as Windows GDI, Java AWT and Swing, HTML. Of course, only properties
of high common interest were kept. In this way, a CIO can be specified independently
from the fact that it will be further rendered in HTML, VRML or Java. This quality is
often referred to as the property of platform independence.

Similar abstractions exist for auditory, vocal, 3D, virtual, and augmented reality in-
terfaces.

2.2 The TransformationModel

Graph Transformation (GT) techniques were chosen to formalize explicit transforma-
tions between any pair of models [13] (except from the FUI level), because it is (1)
Visual: every element within a GT based language has a graphical syntax; (2) For-
mal: GT is based on a sound mathematical formalism (algebraic definition of graphs;

24 J. Vanderdonckt

CUI Model

CIO

graphicalCIO

graphicalContainer graphicalIndividualComponent

CUI ModelCUI Model

CIOCIO

graphicalCIOgraphicalCIO

graphicalContainer graphicalIndividualComponentgraphicalContainergraphicalContainer graphicalIndividualComponentgraphicalIndividualComponent

Fig. 6. Decomposition of a CUI model into concepts

and category theory) and enables verifying formal properties on represented artefacts;
(3) Seamless: it allows representing manipulated artefacts and rules within a single
formalism. Furthermore, the formalism applies equally to all levels of abstraction of
uiModel (Fig. 1). The model collection (Fig. 5) is structured according to the four
basic levels of abstractions defined in the Cameleon Reference Framework [3] that is
intended to express the UI development life cycle for context-sensitive interactive
applications. The FUI level is the only model that cannot be supported by graph trans-
formations because it would have supposed that any markup or programming lan-
guage to be supported should have been expressed in a meta-model to support trans-
formations between meta-models: the one of the initial language to the one of our
specification language (Section 3). It was observed that to address this problem, the
powerfulness of GT techniques was not needed and surpassed by far other experi-
enced techniques, such a derivation rules [2].

3 Specification Language

In order to specify the different UI aspects and related models, a specification lan-
guage is needed that allow designers and developers to exchange, communicate, and
share fragments of specifications and that enables tools to operate on these specifica-
tions. Therefore, a User Interface Description Language (UIDL) is required that satis-
fies at least the following important requirements: software processability (the UIDL
should be precise enough to enable computational processing of the specifications by
an automaton, in particular to interpret or execute them), expressiveness (the UIDL
should be expressive enough to support common SE techniques such as model deriva-
tion, model transformation, mapping), standard format (the UIDL should be ex-
pressed in a format that maximizes its exchange among stakeholders), human read-
ability (the UIDL should be as much as possible legible and understandable by a hu-

 A MDA-Compliant Environment for Developing UIs of Information Systems 25

man agent), concision (the UIDL should be compact enough to be easily exchanged
among interested parties). Since software processability and expressiveness are the
two most important requirements, trade-offs could be accepted to satisfy those two
requirements, while decreasing the value of the two other requirements.

To address the above requirements, we introduced UsiXML (which stands for
USer Interface eXtensible Markup Language – http://www.usixml.org), a XML-
compliant markup language that describes the UI for multiple contexts of use such as
Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory and
Vocal User Interfaces, Virtual Reality, and Multimodal User Interfaces:

• UsiXML is primarily intended for non-developers, such as analysts, specifiers,
designers, human factors experts, project leaders, and novice programmers.

• UsiXML can be equally used by experienced designers and developers.
• Thanks to UsiXML, non-developers can shape the UI of any new interactive ap-

plication by specifying, describing it in the UIDL, without requiring programming
skills usually found in markup languages and programming languages.

• UsiXML consists of a declarative UIDL that capturing the essence of what a UI is
or should be independently of physical characteristics.

• UsiXML describes at a high level of abstraction the constituting UI elements of an
application: widgets, controls, containers, modalities, and interaction techniques.

• UsiXML allows cross-toolkit development of an interactive application.
• A UI of any UsiXML-compliant application runs in all toolkits that implement it:

compilers and interpreters.
• UsiXML supports device independence: a UI can be described in a way that re-

mains autonomous with respect to the devices used in the interactions (e.g.,
mouse, screen, keyboard, voice recognition system). In case of need, a reference to
a particular device can be incorporated.

• UsiXML supports platform independence: a UI can be described in a way that
remains autonomous with respect to the various existing computing platforms
(e.g., mobile phone, Pocket PC, Tablet PC, kiosk, laptop, desktop, and wall
screen). In case of need, a reference to a particular computing platform can be in-
corporated.

• UsiXML supports modality independence: a UI can be described in a way that
remains independent of any interaction modality (e.g., graphical interaction, vocal
interaction, 3D interaction, virtual reality interaction). In case of need, a reference
to a particular modality can be incorporated.

• UsiXML allows reusing elements previously described in anterior UIs to compose
a UI in new applications.

On the other hand, it is not supposed to cover all features of all types of UI:

• UsiXML does not want to introduce yet another language for UI implementation.
Instead, it proposes the integration of some of these formats: cHTML, WML,
HTML, XHTML, VoiceXML, VRML, Java, C++,.... It is up to the underlying im-
plementation to support the transformation of UsiXML into such a format.

• UsiXML does not describe the low-level details of elements involved in the vari-
ous modalities, such as operating system attributes, events, and primitives.

26 J. Vanderdonckt

• UsiXML cannot be rendered nor executed by its own: it relies on an implementa-
tion in any third-party rendering engine.

• UsiXML does not want to support all attributes, events, and primitives of all wid-
gets existing in nearly all toolkits. Instead, it is intended to support a common sub-
set of them that is believed to be representative and significant.

For the moment, the semantics of UsiXML are defined according to the above models
and relationships in terms of a UML class diagram, representing the meta-model of
the UIDL. All class diagrams are maintained in Rational Rose and lead to the defini-
tion of ML schemas that are available at http://www.usixml.org/index.php?view=page
&idpage=5 thanks to a series of systematic transformations. Therefore, any UI speci-
fication is expressed in UsiXML that is in turn compliant with the XML schemas.

4 Method

So far, many attempts to establish a comprehensive model-based approach for devel-
oping the UI have been launched [10,11,20,21], but only a few of them is MDA-
compliant: form information related task (what are the actions carried out by the
user), domain (what are the objects manipulated in this task), user (who is the user),
platform (what is the computing platform), environment (in which environment is the
user working), the presentation, the dialog, the help, the tutorial of one or many UIs
should be derived. Today, no consensus has been reached and no method has really
emerged from these initiatives, namely by lack of standardization. Since 1997, the
Object Management Group (OMG – www.omg.org) has launched an initiative called
Model Driven Architecture (MDA) to support the development of complex, large,
interactive software systems providing a standardized architecture with which:

– Systems can easily evolve to address constantly evolving user requirements.
– Old, current and new technologies can be harmonized.
– Business logic can be maintained constant or evolving independently of the tech-

nological changes.
– Legacy systems can be integrated and unified with new systems.

In this approach, models are applied in all steps of development up to a target plat-
form, providing source code, deployment and configuration files,… MDA has been
applied to many kinds of business problems and integrated with a wide array of other
common computing technologies, including the area of UIs.

In MDA, a systematic method is recommended to drive the development life cycle
to guarantee some form of quality of the resulting software system. Four principles
underlie the OMG’s view of MDA [14]:

1. Models are expressed in a well-formed unified notation and form the cornerstone
to understanding software systems for enterprise scale information systems. The
semantics of the models are based on meta-models.

2. The building of software systems can be organized around a set of models by
applying a series of transformations between models, organized into an architec-
tural framework of layers and transformations: model-to-model transformations

 A MDA-Compliant Environment for Developing UIs of Information Systems 27

support any change between models while model-to-code transformation are typi-
cally associated with code production, automated or not.

3. A formal underpinning for describing models in a set of meta-models facilitates
meaningful integration and transformation among models, and is the basis for
automation through software.

4. Acceptance and adoption of this model-driven approach requires industry stan-
dards to provide openness to consumers, and foster competition among vendors.

Our UI engineering methodology, based on UsiXML (Section 3), is compliant with
these four principles in the following way:

1. All involved models are expressed in UsiXML, a well-formed UIDL based on
XML schema. The semantics of the UsiXML models are based on meta-models
expressed in terms of UML class diagrams, from which the XML schema defini-
tion are derived. Right now, there is no automation between the initial definition
of the semantics and their derivation into XML schemas. Only a systematic
method is used for each new release.

2. All model-to-model transformations are themselves specified in UsiXML to keep
only one UIDL throughout the development life cycle. Model-to-code transforma-
tion is ensured by appropriate tools (see Section 5) that produce code for the target
context of use or platform. For reverse engineering, code-to-model transforma-
tions are mainly achieved by derivation rules that are based on the mapping be-
tween the meta-model of the source language (e.g., HTML, WML, VoiceXML)
and the meta-model of the target language (i.e., here UsiXML). So far, derivation
rules have been proved powerful enough to express reverse engineering rules for
UI, while keeping a relative concision.

3. All transformations are explicitly defined based on a series of predefined semantic
relationship and a set of three primitive ones (abstraction, reification, and transla-
tion). The transformation model could itself contain transformation rules.

4. The last principle, i.e., the standardization process, is only on the way. Only the
future will tell us whether a wide adoption of the above techniques will be effec-
tive.

In addition to the adherence of the basic MDA principles, our UI engineering meth-
odology classifies the involved models in a similar way. Fig. 7 graphically depicts the
distribution of models according to the OMG paradigm of MDA and their UsiXML
counterpart: task and domain models (T&C) are considered as the Computing Inde-
pendent Model (CIM) as they are stated independently of any implementation of any
interactive systems. Such models could be specified for virtually any UI type. The
Platform Independent Model (PIM) is interpreted as the Abstract UI model (AUI) in
UsiXML in the sense that it is independent of any interaction modality: at this level,
we do not know yet whether the UI will be graphical, modal, virtual or multimodal.
The Platform Specific Model (PSM) is interpreted as the Concrete UI model (CUI) in
UsiXML in the sense that it is independent of any vocabulary of markup and pro-
gramming languages. At this level, we have already chosen what kind on interaction
modality will be exploited, but we do not know yet which physical computing plat-
form will run the UI. This is why it should be believed that the CUI is not platform

28 J. Vanderdonckt

specific. Only some aspects of the target platform are selected, the platform being
modeled itself in the platform model. In contrast with other MDA-compliant architec-
tures, the present one can either render the UI directly (by interpretation) or automati-
cally generate code (by generation) that will be compiled, linked with the rest of the
application, and executed. Therefore, there is no ‘model-to-code’ transformation per
se. Rather, different tools produce different results from the UsiXML specifications.
For other ‘model-to-model’ transformations, graph transformation techniques are
exploited throughout the development life cycle to maintain consistency.

Model to Model

Platform
Independent
Model (PIM)

Platform
Specific

Model (PSM)
Model to Code Source code

MDA Components

Techniques proposed based on UsiXML

Computing
Independent
Model (CIM)

Model to Model

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface
Rendering

Final user
interface

UsiXML
models: task,

domain

Graph
transformations

Graph
transformations

Model to Model

Platform
Independent
Model (PIM)

Platform
Specific

Model (PSM)
Model to Code Source code

MDA Components

Techniques proposed based on UsiXML

Computing
Independent
Model (CIM)

Model to Model

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface
Rendering

Final user
interface

UsiXML
models: task,

domain

Graph
transformations

Graph
transformations

Fig. 7. The distribution of UsiXML models according to the MDA classification

5 Tools

Fig. 7 mainly depicts the forward engineering of UIs. As our UI engineering method-
ology is not restricted to this development path, other paths could be followed as well
[13]. Fig. 8 somewhat generalizes the development life cycle, but for one context of
use at a time. To support the application of a particular development path, a suite of
tools has been developed and is currently being expanded (see http://www.usixml.org/
index.php?view=page&idpage=20 for more information). The most significant tools
belonging to this suite are (Fig. 8):

• TransformiXML is a Java-based application that is responsible for defining, stor-
ing, manipulating, and executing productions contained in graph grammars to sup-
port graph transformations (model-to-model transformations)

• IdealXML [16] is a Java-based application containing the graphical editor for the
task model, the domain model, and the abstract model. It can also establish any
mapping between these models either manually (by direct manipulation) or semi-
automatically (by calling TransformiXML).

• KnowiXML [8] consists of an expert system based on Protégé that automatically
produces several AUIs from a task and a domain models for various contexts.

• GrafiXML [12] is the most elaborate UsiXML high-fidelity editor with editing of
the CUI, the context model and the relationships between. It is able to automati-
cally generate UI code in HTML, XHTML, XUL and Java thanks to a series of
plug-ins.

 A MDA-Compliant Environment for Developing UIs of Information Systems 29

• VisiXML is a Microsoft Visio plug-in for drawing in mid-fidelity graphical UIs,
that is UIs consisting exclusively of graphical CIOs. It then exports the UI defini-
tion in UsiXML at the CUI level to be edited by GrafiXML or another editor.

• SketchiXML [6] consists of a Java low-fidelity tool for sketching a UI for multiple
users, multiple platforms (e.g., a Web browser, a PDA), and multiple contexts of
use. It is implemented on top of Jack agent system.

• FormiXML is a Java editor dedicated to interactive forms with a smart system of
copy/paste techniques to support reusability of components. It automatically gen-
erates the complete UI code for Java/Swing.

• Several renderers are currently being implemented: FlashiXML opens a CUI
UsiXML file and renders it in Flash, QtkXML in the Tcl/Tk environment, and
JaviXML for Java.

• VisualiXML [17] personalizes a UI and produces one thanks to generative pro-
gramming techniques for Visual C++ V6.0.

• ReversiXML [2] opens a HTML file and reverse engineers it into UsiXML at both
the CUI and AUI levels.

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface

Rendering

Final user
interface

UsiXML
models: task,

domain
Generative

programming

Graph
transformations

Graph
transformations

Derivation rules

IdealXML

ReversiXML

FlashiXML
QtkXML
JaviXML

VisualiXML

TransformiXML

GrafiXML
VisiXML

SketchiXML
FormiXML

KnowiXML

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface

Rendering

Final user
interface

UsiXML
models: task,

domain
Generative

programming

Graph
transformations

Graph
transformations

Derivation rules

IdealXML

ReversiXML

FlashiXML
QtkXML
JaviXML

VisualiXML

TransformiXML

GrafiXML
VisiXML

SketchiXML
FormiXML

KnowiXML

Fig. 8. The suite of UsiXML tools structured according to the MDA classification.

6 Conclusion

In this paper, we have introduced a UI Engineering methodology articulated on three
axes: models and their specification language, method, and tools that support the
method based on the underlying models. All aspects are stored in UsiXML
(www.usixml.org) files that can be exchanged, shared, and communicated between
stakeholders (designers, developers, and end users). It has been demonstrated that the
global methodology adheres to the principles of MDA and is therefore compliant,
except for the standardization process which is ongoing. It is worth to note that this
environment has been largely studied and scrutinized for user interfaces of informa-
tion systems that are equipped with different types of interfaces (graphical, vocal,

30 J. Vanderdonckt

virtual, and multimodal mainly) on different types of computing platforms. We be-
lieve that a significant portion of UsiXML models could be equally used for the UI of
more sophisticated interactive systems (e.g., [9]), like safety-critical systems, indus-
trial supervision systems, etc. But this is matter of more extensive study. It is likely
that the model transformations will be more complex to discover and to apply.

Acknowledgements

The author would like to thank all members of the Belgian Lab. of Computer-Human
Interaction (BCHI) for their fruitful involvement in the UsiXML initiative. We grate-
fully acknowledge the support of the following projects: the SIMILAR network of
excellence (the European research task force creating human-machine interfaces simi-
lar to human-human communication – http://www.similar.cc), the SALAMANDRE
research project (User Interfaces for Mobile and Multi-platform Interactive Systems,
Initiatives III Research Program, DGTRE, Ministry of Walloon Region), the REQUEST
research project (WIST-Wallonie Information Société Technologies program under
convention n°031/5592), the Cameleon project (Context Aware Modelling for Ena-
bling and Leveraging Effective interaction – FP6-IST5-2000,
http://giove.cnuce.cnr.it/cameleon. html). We also thank very much our colleagues
who have been involved in these projects for their fruitful exchanges and discussions.

References

1. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a Soft-
ware Architecture Reference Model for Distributed, Migratable, and Plastic User Interfaces.
In: Proc. of EUSAI’2004. Lecture Notes in Computer Science, Vol. 3295. Springer-Verlag,
Berlin (2004) 291–302

2. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites; In:
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, 13-16 Janu-
ary 2004). ACM Press, New York (2004) 132–139

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A Uni-
fying Reference Framework for Multi-Target User Interfaces. Interacting with Computers,
Vol. 15, No. 3 (June 2003) 289–308

4. Constantine, L.L.: Canonical Abstract Prototypes for Abstract Visual and Interaction De-
sign. In: Proc. of 10th Int. Workshop on Design, Specification, and Verification of Interac-
tive Systems DSV-IS’2003 (Funchal, June 11-13, 2003). Lecture Notes in Computer Sci-
ence, Vol. 2844. Springer-Verlag, Berlin (2003) 1–15. Accessible at http://www.foruse.
com/articles/abstract.pdf

5. Coutaz, J.: PAC, an Object Oriented Model for Dialog Design. In: Proc. of 2nd IFIP Interna-
tional Conference on Human-Computer Interaction Interact’87 (Stuttgart, September 1-4,
1987). North Holland, Amsterdam (1987) 431–436.

6. Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces. In: Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer In-
teraction INTERACT’2005 (Rome, 12-16 September 2005). Lecture Notes in Computer
Science. Springer-Verlag, Berlin (2005)

 A MDA-Compliant Environment for Developing UIs of Information Systems 31

7. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design Method
for Multiplatform Systems. In: Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces
IUI’2004 (Funchal, 13-16 January 2004). ACM Press, New York (2004) 140–147

8. Furtado, E., Furtado, V., Soares Sousa, K., Vanderdonckt, J., Limbourg, Q.: KnowiXML: A
Knowledge-Based System Generating Multiple Abstract User Interfaces in UsiXML. In:
Proc. of 3rd Int. Workshop on Task Models and Diagrams for user interface design
TAMODIA’2004 (Prague, November 15-16, 2004). ACM Press, New York (2004) 121–128

9. Grolaux, D., Van Roy, P., Vanderdonckt, J.: Migratable User Interfaces: Beyond Migratory
User Interfaces. In: Proc. of 1st IEEE-ACM Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services MOBIQUITOUS’04 (Boston, August 22-25,
2004). IEEE Computer Society Press, Los Alamitos (2004) 422–430

10. Jacob, R., Limbourg, Q., Vanderdonckt, J.: Computer-Aided Design of User Interfaces IV.
Proc. of 5th Int. Conf. of Computer-Aided Design of User Interfaces CADUI’2004 (Fun-
chal, 13-16 January 2004). Information Systems Series, Kluwer Academics, Dordrecht
(2005)

11. Kolski, Ch., Vanderdonckt, J.: Computer-Aided Design of User Interfaces III. Proc. of 4th
Int. Conf. of Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes, 15-
17 May 2002). Information Systems Series, Kluwer Academics, Dordrecht (2002)

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: UsiXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In: Proc. of 9th IFIP Work-
ing Conference on Engineering for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). Springer-Verlag, Berlin (2005)

13. Limbourg, Q., Multi-path Development of User Interfaces. Ph.D. thesis. Université ca-
tholique de Louvain, IAG-School of Management. Louvain-la-Neuve (Nov. 2004).

14. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Ar-
chitecture. Addison-Wesley, New York (2004)

15. Molina, J.P., Vanderdonckt, J., Montero, F., Gonzalez, P.: Towards Virtualization of User
Interfaces. In: Proc. of 10th ACM Int. Conf. on 3D Web Technology Web3D’2005 (Bangor,
March 29-April 1, 2005). ACM Press, New York (2005)

16. Montero, F., Lozano, M., González, P.: IDEALXML: an Experience-Based Environment for
User Interface Design and pattern manipulation. Technical Report DIAB-05-01-4. Univer-
sidad de Castilla-La Mancha, Albacete (2005).

17. Schlee, M., Vanderdonckt, J.: Generative Programming of Graphical User Interfaces. In:
Proc. of 7th Int. Working Conference on Advanced Visual Interfaces AVI’2004 (Gallipoli,
May 25-28, 2004). ACM Press, New York (2004) 403–406

18. Vanderdonckt, J., Bouillon, L., Chieu, K.C., Trevisan, D.: Model-based Design, Genera-
tion, and Evaluation of Virtual User Interfaces. In: Proc. of 9th ACM Int. Conf. on 3D Web
Tech. Web3D’2004 (Monterey, April 5-8, 2004). ACM Press, New York (2004) 51–60

19. Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for Intelligent Automatic Interac-
tion Objects Selection. In: Proc. of the ACM Conf. on Human Factors in Computing Sys-
tems INTERCHI'93 (Amsterdam, 24-29 April 1993). ACM Press, New York (1993) 424–429

20. Vanderdonckt, J., Puerta, A.R.: Computer-Aided Design of User Interfaces II. Proc. of 3rd
Int. Conf. of Computer-Aided Design of User Interfaces CADUI’99 (Louvain-la-Neuve,
21-23 October 1999). Information Systems Series, Kluwer Academics, Dordrecht (1999)

21. Vanderdonckt, J.: Computer-Aided Design of User Interfaces. Proc. of 2nd Int. Workshop
on Computer-Aided Design of User Interfaces CADUI’96 (Namur, 5-7 June 1996).
Collection « Travaux de l’Institut d’Informatique » n°15. Presses Universitaires de Namur,
Namur (1996)

