
 - 183 -

Generating User Interface for Information Applications
from Task, Domain and User models with DB-USE

Vi Tran, Jean Vanderdonckt, Manuel Kolp, and Yves Wautelet
Louvain School of Management-PRISME

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{Vi.Tran, Jean.Vanderdonckt, Manuel.Kolp, Yves.Wautelet}@uclouvain.be

ABSTRACT
Database Systems UI (User Interface) generation from
declarative models has been the focus of numerous and
various approaches in the human computer interaction
community. Typically, the different approaches use the
different models based on and exploiting their singular
aspects. This paper proposes a new process that combines
the task, domain, and user models taken together to drive
the information system user interface design and code be-
hind generation. To this end, we propose a framework,
i.e., a methodological process, a meta-model and a soft-
ware prototype called DB-USE. The main difference in
our work from other ones is to contribute the mapping
rules for creating the UI objects and to combine the three
task, domain and user models to generate the code for
performing both the UI and the generic functions of a da-
tabase.

Keywords
Task Model, Domain Model, User Model, Automatic Us-
er Interface Generation

INTRODUCTION
Human-computer interactions are today managed through
ergonomic and powerful database user interfaces (UI).
These UI require to access and present data from different
types of structures that reside typically in enterprise func-
tional modules such as human resources, sales, marketing,
accounting, finances, manufacturing or productions ERP
packages [22]. Naturally database interfacing has been a
technical and human interaction issue since the seventies
[2, 3]. But, with the today's increasing use of very large
databases and extended business applications such as
ERP II, Customer Relationship Management, E-procure-
ment, Reporting/Drill-Down or Data Mining systems,
these user interfaces require dynamic automation and run-
time generation to properly deal with on a large-scale.

UI researchers have richly discussed the capability and
importance of automatic user interface generation and
propose them as the core of visual-based development
environments [4]. There are currently numerous and vari-
ous approaches using different input materials: designs,
patterns, architectures, declarative models, … In this set
of techniques, an emerging method is the automatic UI

generation from declarative models [5, 2, 6], inspired
from Fourth Generation Languages code generation [5].
In practice, these models are high-level abstractions such
as goal or task [7], presentation, dialogue [8] or interac-
tion, domain [9] models on which we will focus in the re-
search.

Typically, a strong motivation for database application UI
generation is the unexploited potential of relationships be-
tween objects. This makes possible to create task-domain
mapping rules that are in turn mapped onto containers in
the UI model [21].

Advantages of Declarative Models in User Interface
Generation
User interface is that subset of a software system that in-
teracts with the user of the system. Since it is used to
communicate between the end-users and the system’s
computer, making it a crucial element, the successfulness
of a software system depends on, besides the design of its
architecture, the user interface design [11]. End-users
expect UIs to be easy to use, understand and give the
most adequate result.

The development of successful interactive system re-
quires a careful design of the user interface. The user in-
terface affects the acceptation of the users to use this ap-
plication or not. A good user interface design helps the
users to work effectively and quickly. The first step is to
take a step-wise approach by using a methodological UI
derivation process based on the available resources such
as task, domain, data, user, presentation, dialog models.
This process is conducted by designing the user interface
manually or semi-automatically or automatically. In this
paper, we will approach the semi-automatic user interface
generation.

Numerous research works in the area of automatic user
interface generation [24] have focused mainly on UI gen-
erated from the declarative models. They present the fol-
lowing advantages [12] in regard to both the automatic
user interface and code application generations:

 They can provide a more abstract description of the
UI than the ones provided by the other UI develop-
ment tools.

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 184 -

 They facilitate designing and implementing the UI
in a systematic way since they offer capabilities such
as modeling user interfaces using different levels of
abstraction; incrementally refining the models; and
re-using UI specifications.

 They provide the infrastructure required to automate
tasks related to the UI design and implementation
processes.

An important point in using declarative models for creat-
ing the user interface is that these models typically de-
scribed at a conceptual level. So that, the user interface
created based on these model can be implemented in the
different ways on the different delivery platforms.

User Interface Generation from Combining Task, Do-
main and User models
The information used to build the user interface usually
comes from a large and complex context in which the us-
ers work to complete their tasks. This context includes the
users’ characteristics (user model), their current domain
of application (domain model often linked in the database
world to the data or conceptual model), the tasks they
commonly perform (task model), the platform they work
on (platform model), the device they are currently using
(device model) and so on. This context is not fixed for all
the user interface generating processes since it depends
on the different approaches. For example, in TRIDENT
[7] the user interface is determined from the task and ap-
plication models while in Mecano [9] the user interface is
determined from the sole domain model.

 The task, domain and user models are three important
models based on which the user interface is easily built
for the following reasons:

 The task model describes the abstract user interface.
The task model expresses how a end user may want
to interact with a system in order to reach a given
goal. This expression is intended to be independent
of any particular implementation or technology. This
explains why a same set of models could initiate
several different user interfaces [13].

 The domain model provides the special features
needed for creating a user interface and specifying
the methods for performing the generic application
functions. These features are the attributes of the ob-
jects in domain model, the relationships between
these objects and prototype of the generic applica-
tion functions. The domain model is not used sepa-
rate from other models to generate the user interface,
it is combined to the task, presentation models [21].

 The user model supports the creation of user inter-
faces which consider to the preferences of the users.
Like the domain model, the user model is not used
separately from other models to generate the user in-
terface since there are various aspects of the user in-
terfaces that are adapted according to user models.

Hence, combining models is an important concept in user
interface generation since the different models describe
different aspects of the UI. For example, a user interface
generated from a task model is expected to be a means by
which the user can communicate with the system to ac-
complish his task. The user interface generated from a us-
er model is expected to support the users based on their
characteristics. The user interface generated from several
different models carry many needed aspects of a user in-
terface. Various research works have focused on such
models to generate UIs. For instance, TOOD [14] uses the
task and user models to generate the UI. MECANO [9]
generates UI based on the domain model. TRIDENT [8]
or FUSE [15] combines the task and domain models
while SUPPLE combines the user and device models.

Unfortunately, the researchers who have focused on user
interface generation have not investigated and studied the
implementation and code generation of application tasks,
especially, those generic one related to editing, inserting,
deleting and searching data. This research focuses on the
code application generation for the tasks of a data-
oriented application coming from the following main
points:

 The data manipulation demand is very high. It is re-
peated regularly in most database applications espe-
cially for common tasks such as editing, inserting,
deleting and searching data.

 These functions are easily performed through re-
ceiving data from the user, displaying data to the us-
er, executing the different SQL select, insert, update
and delete queries with respect to the different user
requirements.

 Typically, we aim at defining and using a methodo-
logical framework for developing a user interface to
database application from the task model, domain
model and user model combined together. This
framework consists of:

 A meta-model that governs the semantics of the
task, domain and user models;

 A methodological process that supports the UI de-
signer/developer to create the UIs semi-
automatically from task, domain and user models;

 A software prototype supporting the methodological
process in order to generate both the user interface
code and the application code that performs the
basic functions of the database application.

The paper is structured as follows. Section 2 overviews
the related work in model-based UI generation. Section 3
described the models used in our approach. Section 4 is
concerned with the description of our process and Section
5 describes DB-USE in terms of CASE-Tool technology.
Finally, we conclude the paper.

 - 185 -

MODEL-BASED USER INTERFACE DEVELOPMENT
ENVIRONMENT: A SURVEY
To highlight the importance and need of declarative
models in UI generation, we present some major
processes of user interface generation based on these
models. These processes differ from each other in terms
of input information, mostly represented by declarative
models and from which the generation is effectively done,
the generation target, the generation process itself and the
tools.

Most MB-UIDEs (Model-Based User Interface Develop-
ment Environments) use the task and the domain model to
specify the user interfaces such as Tritdent, Teallch, Goli-
ath, Fuse such as shown in Table 1. If a model is used, it
is marked with “ ”; if not with “ ”; “ ” indicates
that there is no concrete validation even if the tool is said
to support the model.

MB-
UIDE

Models

Task Domain
Presenta-

tion
User Dialogue

Trident

Teallach

Tadeus

Fuse

Goliath

Janus

Mecano

Genius
Table 1. the different approaches in MB-UIDE and

the supported declarative models.

Trident [7] uses task, domain and presentation models to
specify the interface. The task model is represented with
an Activity Chaining Graph; the domain model by an en-
tity-relationship diagram and the presentation model by
the abstract user interface objects.

Teallach [2] uses the task, domain and presentation mod-
els to generate the user interfaces. Each model in Teallach
defines a view of the information required to generate the
interface to a particular application. The domain model
describes the underlying application in terns its data and
operation; the task model describes what the user can do
with the user interface in terms of its dynamic and infor-
mation processing requirement; and the presentation
model indicates how the resulting interface will appear.

In Tadeus [17], like most of other MB-UIDEs, the UI de-
veloper has to create the task model which is represented
by a hierarchical structure of the tasks; the domain model
which presents the important entities of the application;
the user model which presents the characteristics of the

users. Specially, the dialogue model is semi-automatically
created based on three created models. The dialogue
model is used to describe the interface in term of views
and dialogues.

In FUSE [15], the use of declarative models is similar.
The task model is used to describe the task hierarchy of
the application model. The domain model is used to de-
scribe the functions and the data structure of the relevant
user interfaces. The user model is used to describe the
static and dynamic properties of the user groups and indi-
vidual users which influences both the UI generation pro-
cess and the kind and depth of the help offered by the us-
er guidance component. The dialogue model of Fuse is
generated based on three models including task, domain
and user models. This model is used to describe the trans-
formation of the task, domain and user models.

Goliath [6] uses the declarative models including the ap-
plication, presentation and the dialogue models to gener-
ate the user interfaces. Goliath’s application model is
used to define the data types and function signatures. The
presentation model is used to describe the basic presenta-
tion elements that play a part of the interface. The dia-
logue model is defined in terms of abstract containers.

Janus [18] emphasizes the use of object-oriented domain
model to generate the interface. In this model, a domain
object is represented by a class and a class is described by
its attributes and methods. During the automatic genera-
tion process, a window is generated for each class; its at-
tributes are transformed into controls; and its methods in-
to buttons or menu items.

Like Janus, Mecano [9] uses the domain model to gener-
ate the static layout and the dynamic behavior of an inter-
face. The domain model of Mecano is a representation of
the objects in a domain and their relationships. The inter-
face model contains all the facets of an interface design.

Genius [8] generates the interfaces for database oriented
applications through an existing domain model represent-
ed as an extended entity relationship model. In order to
structure the information with respect to tasks of the user,
the views are defined in the domain model. A view con-
sists of a subset of entities, relationships and attributes of
the overall data model. The dialogue model is generated
from these views.

Design tools, such as those proposed in Table 2, are es-
sential for modeling the tasks, domain’s objects, UI’s ob-
jects … and for generating the interfaces.

MB-
UIDE

Tool
Language used for de-

scribing generated user
interface

Trident
SEGUIA
SIERRA

AION/DS

User interface language

Teallach Teallach Java code

Tadeus Tadeus Textual description for

 - 186 -

UIMS

Fuse

FIRE / FLUID

BOSS

PLUG-IN

C++ code

Goliath Goliath’s design tool Caml

Janus OOA-Tool C++ code

Mecano
Browser tool

Intelligent designer tool

Genius
ER diagram editor

ER : Entity Relationship
Textual description

Table 2. The different approaches in MB-UIDE and
their tools.

SEGUIA and SIERRA tools developed for the Trident [7]
approach. SEGUIA tool semi-automatic generates the us-
er interface by making questions and suggesting respons-
es to the designer. SIERRA tool generates the guidelines
for designing user interface.

Teallach [19] provides three separate editors for manipu-
lating the models. Most of the modeling operations are
performed ergonomically by drag-and-drop or cut-and-
paste. The user interface is generated in java.

In Tadeus [17], the user interface prototype is automati-
cally generated from the task, domain and dialog models.
This prototype is described in terms of textual descrip-
tions which can be implemented throught the tool User
Interface Management System.

FUSE [15] consists of the BOSS (BedienOberflächen-
SpezifikationsSystem), FLUID (FormaL User Interface
Development), PLUG–IN (PLan–based User Guidance
for Intelligent Navigation) and FIRE (Formal Interface
Requirements Engineering) components that may also be
used independently. FIRE provides graphical editors for
setting up the task, domain and user models. FLUID is
used to generate the specification of static and dynamic
properties of a logical user interface. Based on this logical
user interface, BOSS is used to generate the implementa-
tion of the user interface in terms of C++ code. Finally,
PLUG-IN is used to generate the user guidance compo-
nents.

Goliath [6] provides a graphical editor for modeling the
task, domain and presentation models. The interface gen-
erated by Goliath is a complete one implemented in Caml.

OOA-Tool (Object-Oriented Analysis) in Janus [18] gen-
erates user interfaces described in C++ code and designed
to be as ergonomic as possible.

Mecano [9] provides two separate tools: a browser and a
intelligent designer. The browser tool is used to define,
review and inspect the Mecano’s domain model. Based
on this model, dialog specifications are generated. These
specifications are classified into high-level and low-level

dialogs. The Intelligent tool creates the abstract interface
object based on the created dialogs.

In Genius [8], models are created by an ER diagram edi-
tor to generate the executable user interfaces for database-
oriented applications. The generated user interface is de-
scribed by a specific User Interface Management System,
but there is no user interface editor.

Most approaches discussed above try to generate the
complete and executable user interface based on some of
the task, domain, user, presentation, and dialog models.
Specially, these approaches have used the domain model
although this model is differently defined in the different
approaches. Beside of user interface generation, some of
the approaches have also generated the application code
for performing the generic application functions such
Teallach, Goliath. Most of these functions have a connec-
tion with the edition of data in the database. This also is a
goal of DB-USE, but unlike with the current approaches,
these functions will be automatic created by the DB-USE
system instead of being created by the designer. Teallach
specifically allows create the interface to non database
application by creating domain components which don’t
derive from the underlying database but derive from the
library of Java [19]. This is an important point that DB-
USE doesn’t use yet.

DB-USE MODELS
We describe in this section the main declarative models
used in DB-USE.

Task Model
The task model records the tasks potential end-users of
the system may need to perform to do their jobs, inde-
pendently of dealing with a particular computer platform
[20]. Many designs of an interactive system are generat-
ed to support these tasks. The task model provides sup-
port for modeling both the structure of the tasks and the
flow of information between the tasks when carrying out
the tasks. The structure of the tasks in the task model is
described by the relationships between these tasks. These
relationships can be of various types such as temporal and
semantic relationships.

DB-USE uses the task model to expresses how an end us-
er may want to interact with a system in order to reach a
given goal. This expression is intended to be independent
of any particular implementation or technology. This ex-
plains why a same set of models could initiate several dif-
ferent user interfaces [13].

DB-USE’s task model is transformed into UIs starting
with the ConcurTaskTrees Environment-CTTE [20]. User
interface generation will then be ensured by DB-USE .

The task model described by CTTE is created at the ana-
lyst level. In order to reuse it in our process, it has to be
transformed into a task model at the design level. At this
level, the task model has to describe the function the user
can do with an interface, how the user can interact with

 - 187 -

the system. DB-USE’s task model is used to derive the in-
terface. Its task types differ from CTTE and are defined
as follows:

 An Action task describes the end-user’s command to
the system such as close a dialog, delete a data rec-
ord, search information, open a dialog and so on.

 An Operation task describes the display of infor-
mation to the end-user or the reception of the infor-
mation from the end-user.

Task mapping

Abstraction task Action task

 Interaction task (Control type) Action task

 Interaction task (Ed-
it\Monitoring\Selection)

 Operation task

 Cooperation task Action task

 Application task Operation task

 User task None

Table 3. Task Mapping.

Table 3 illustrates the mapping of abstract, interaction,
application and user tasks from the CTTE’s task model at
the analyst level to action and operation tasks of DB-
USE’s task model at the design level. Figure 1 depicts an
example of the mapping between tasks in ConcurTask-
Trees and in our process.

Figure 1. Mapping of WithDrawCash task from the
task described in CTT to the task described in DB-

USE.

In the new task model, the structure, the relationship
between the supertask and its subtasks, the temporal
operators are all reused for the syntactic and semantic
aspects.

Domain Model
A domain model is a representation of both the objects in
a domain and their relationships. The information in the
domain model is basically the data model where the data
objects are defined including the relationships between
the data objects, and other information that is pertinent to
the relationships such as business logic. A domain model
may thus include a data model of the domain. In our pro-
cess, the domain model will be built from a certain data-
base (See Figure 5).

Figure 2. DB-USE’s domain model – Employee
management.

It is used to identify the attributes of a concrete user inter-
face and to build the important functions of a database
application. Besides, in order to obtain the desired behav-
ior of a database application task, the generic functions
are also defined in the model; these functions are, for in-
stance, Display(), AddNew(), Update(), Delete(),
Search(), Review(), Cancel() and Exit() functions. Unlike
Teallach and Goliath, the generic application functions
are simply defined in the domain model and they will be
analyzed and built in more detail by the system once the
function is linked to a concrete task in a concrete context.

User Model
The user model describes the characteristics of the desired
users or groups of users such as experience, skill,
knowledge, character. The main purpose of a user model
is to support the user interface designer to create the user
interfaces which tend to the preference of the user. The
user model captures capabilities and limitations of the us-
er population, for instance the kind of interaction tech-
niques that are available for visually disabled people dif-
fers from the techniques for other human beings. The user
model plays an important role in the user interface design;
based on it, the designer will specify a complex or a sim-
ple user interface. For instance, creating the user inter-
face for the experimented users who have experience with
the software applications is different from creating the us-
er interface for newcomers who have never used the
computer.

User characteristics can be classified as application-
independent or -dependent. Application independent
characteristics include preferences, capabilities, psycho-
motor skills, etc. Application dependent characteristics
include goals, knowledge of system and application, etc.
In the DB-USE’s user model, the users of the system are
grouped into three groups (Complex, Mean and Simple)
based on the user characteristics mentioned above. Figure
3 depicts DB-USE’s user model which describes the us-
er’s experience, cultural and psychological characteris-
tics. Then users are grouped based on these characteris-
tics.

Display(), AddNew(), Update(), Delete(), Search(), Review()

 - 188 -

Training and experience
characteristics

Skill, Computer
experience, Education,
Professional knowledge

…

 High
 Medium
 Low

Cultural characteristics

Language, Customs,
Sensitivities …

 High
 Medium
 Low

Psychological characteristics

Physical and perceptual
responses, Attitude, Cognitive
capabilities, Problem solving,

Strategies …

 High
 Medium
 Low

Grouping the users

Group 1

Complex

Group 2

Mean

Group 3

Simple

Figure 3. Grouping users based on characteristics.

ENGINEERING USER INTERFACE FROM COMBINING
TASK, DOMAIN AND USER MODELS
Figure 4 depicts the main components and the architec-
ture of DB-USE. The Model editor agent uses the task-,
database- knowledge bases to load the task model from a
XML file, the domain model from a concrete database
and the user model from a diagram file. The loaded tasks
have already been manually linked to the attributes of the
domain objects. From these linked objects, the UI builder
agent automatically creates the user interface (UI) objects
based on the mapping rules [1]. The Function editor agent
uses the Function description base to build the functions
of the application which are defined in domain model.
Once the UI objects have been created and the functions
structured, the code generator agent produces the code.
Specifically, our process does not only generate the user
interface code, but also the application code behind need-
ed to perform these pre-determined functions. In sum-
mary, the components of DB-USE are:

 The Task-knowledge base that describes the rules of
the task model.

 The Mapping rules base that describes the rules for
specifying the concrete user interface from domain’s
objects and the relationships between these objects
and for transforming the concrete user interface to
the final user interface [1].

 The Database-knowledge base that describes generic
aspects of the database tasks, the advantages of the
syntax and the structure of a query.

 The Layout-knowledge base that contains the syn-
tactic design guidelines for controls, windows and
other widgets layouts. It also describes the semantic
rules from which the control types are defined.

 The Messages base that contains the generic mes-
sages such as errors, warnings, information to users
messages.

 The Function description base that describes the ge-
neric functions of a task of database application.

Figure 4. Main components and architecture of

DB-USE.

DB-USE is specifically interesting to the benefit of the UI
designer. It is built to support them as much as possible in
every phases of the UI generation process. In DB-USE,
this process consists of five phases: model analysis, rela-
tion making, UI design, application function design, and
code generation (See Figure 5).

The Model analyst is responsible for the model analysis
phase. The task, domain and user models are automatical-
ly built by the DB-USE system from the existing re-
sources. The Model Editor is used to load the task model
from a XML file, the user model from a diagram file, the
domain model from a concrete database. The generic
functions of a database application which are defined by
DB-USE are included into its domain model. Once these
models have been loaded, they are verified and modified
by the Model analyst. He can change the attributes of the
tasks such as name, type or delete an existing task or add
a new one. Specially, he can create a new DB-USE task
model with the Model Editor if it is not created yet.

The associations between the components of the task and
domain models are made by the UI Designer in the rela-
tion making phase. Firstly, UI Designer has to specify a
composite action task that he wants to generate the UI.
Then DB-USE displays its sub-tasks based on rules RST
(Rules for selecting the Sub-Tasks). The operation tasks
are linked to the domain’s attributes and the action tasks
are linked to the functions defined in domain model (See
Figure 6). One operation task can be linked to more than
one domain’s attribute; one domain’s attribute can be
linked to more than one operation task. But one action
task can be linked to only one function.

 RST1: All sub-tasks at level 1 are selected.
 RST2: All sub-tasks of a sub-task of task type op-

eration is selected.

UI
builder

Database-
knowledge

Model ed-
itor

Task-
knowledge

User
Model

 Domain
Model

Declarative models
Task

Model

Mapping
rules

Function
editor

Messages

Function
description

Layout-
knowledge

Code gener-
ator

App
code

UI
 code

 - 189 -

Figure 5. The metrological process of DB-USE.

In the UI design phase of the DB-USE process, the CIOs
[16] (Concrete Interaction Objects) are created by the UI
Builder based the associations made in the relation mak-
ing phase and the user model. The user model is used to
generate individual user interfaces and to select the con-
trol type among the possible ones that matches the prefer-
ence of the end-users.

Once CIOs have been created, in order to reuse them in
the different running environments (including platform,
device and language); DB-USE stores them in terms of
UsiXML (USer Interface eXtensible Markup Language)
[23]. Since the programming language has been deter-
mined, the FIOs (Final Interaction Object) are created
based on the CIOs (See Figure 7).

Figure 6. Associations between tasks and domain’s

components.

In order to specify the attributes of the UI objects, DB-
USE uses the Mapping rules [1] base which defines the
rules for making the associations between the tasks and
domain’s components, specifying the control type, loca-
tion, dimension. In this phase, the UI Designer plays a
crucial role since he has to make sure that the created UI
objects satisfy the goal of the tasks.

The application function design phase starts once the
FIOs have been completely created. The Function base
will determine the linked functions of the created FIOs to
construct the structure for these functions (Display(),
AddNew(), Update(), Delete(), Search(), Review(), …).
One strong advantage of DB-USE is that application
functions are automatically constructed by the system not
by the Developer.

Finally, the UI code and the application code are generat-
ed in the code generation phase by the Code generator.
The role of the Developer in this phase is to verify the
generated code then modify it if needed in order to ensure
it is successfully compiled. Typically, the code generated
by DB-USE is clear and complete enough to be compiled
and executed immediately.

 - 190 -

Figure 7. Creating FIOs based on the CIOs.

DB-USE TOOL
DB-USE has been implemented in Java, widely used in
the large database-oriented software packages such as Or-
acle or SAP. Besides, Java is platform independent.

A presentation
The main purpose of DB-USE is to help designers to cre-
ate the user interface and generate the application code
for performing the generic functions of a database appli-
cation easily and quickly. We summarize below the im-
portant goals DB-USE aims to achieve:

A friendly and simple interface: The interface of DB-
USE has been designed in order that any designer can
work with it giving her/him the important features men-
tioned above. Similarly to other applications, the main in-
terest of our tool is the visual and/or graphical generated
result.

 Performing most of the functions discussed in the do-
main model: DB-USE has been developed to perform
most of the functions defined in the domain model. These
important functions makes the user interface directly
specified based on the associations between the task and
domain models; and the capability of the application code
generation.

Managing efficiently existing resources: As already dis-
cussed, the task, user and domain models used in our pro-
cess are the existing resources; they are used by the other
processes such the analyst process.

Visualizing the process: The interface visually supports
our process as much as possible. Currently, the tasks are
displayed in terms of graphical objects. The designer can
review the result in terms of graphics whenever he wants
during working.

 - 191 -

Generating and running the code: In the current version,
the user interface and application codes generated by DB-
USE are implemented in Java. The code generated has
been made clear, easy to understand and documented. The
generated code can be immediately compiled by a java
compiler without modifications.

Figure 8 depicts DB-USE. The tool is divided into three
separate areas. The first area is used to display the task
model; the second the domain model and the third one the
information of the UI objects

A concrete example - Edit Employee Information
In order to illustrate how the user interface code and ap-
plication code are generated by DB-USE, a simple exam-
ple is showed. The goal of this example is to allow the
end-user review the employee information, create a new
employee, delete an exiting one, and modify the employ-
ee information.

DB-USE performs this example through six steps.

Step 1: Loading Edit Employee Information Task model

The task model may be loaded from an existing CTTE
task model or created by using DB-USE. (See Figure 9)

(1) in Figure 9 allows the designer to create a new task
model, load an existing one, or save it in term of DB-
USE’s task model.

(2) in Figure 9 allows the designer to edit the tasks in the
task model.

(3) in Figure 9 is the task dialogue which is used to modi-
fy the task’s information.

Figure 9. Loading or creating task model.

Edit Employee Information task model is showed in Fig-
ure 10.

Step 2: Loading domain model

The domain model is loaded from Oracle database.

Figure 11. Loading domain model.

(1), (2) and (3) are the steps performed to load the domain
model. Edit Employee Information task involves to only
three objects including Jobs, Departments, and Employ-
ees. So the other objects are not showed in this case. Be-
side of creation of objects, the DB-USE also creates the
application functions in this model. These functions are
showed in the function popup menu of Figure 11.

1 2

3

F
igu

re 8.D
B

-U
S

E
 T

ool. 1

2

3

 - 192 -

Figure 10. Edit Employee task model.

Step 3: Making the associations between the tasks and the
domain’s components:

The association between the operation tasks and the at-
tributes of the domain’s objects is created by selecting a
concrete task and the attributes then just simply clicking
on the “Create UI object” button. The association be-

tween the action tasks and defined application functions
is created by selecting a concrete task, with the mouse,
then selecting the application function in the menu (See
Figure 11).

Figure 11. Making the associations between the tasks

and the domain’s attributes, the generic functions.

For Edit Employee Information task: The Employee id,
First name, Last name, Email, Hire date, Telephone, Sal-
ary, Marital status tasks are liked to Employe_ID,
First_Name, Last_Name, Email, Hire_Date, Tele-
phone_Number, Salary, Marital_Status attributes of the
Employees object. The Create new employee task is liked
to cancel() function to reset the control to empty; the Save
task is linked to AddNew() function to insert to data to
the database; the Delete task is linked to Delete() function
to delete the current record; the Review task is linked to
Review() function to review the first, previous, next and
last records; the Close task is linked to Exit() function to
close the form.

Step 4: Creating the UI objects.

Figure 12. User interface object are displayed in

terms of text.

Once an association has been created, a UI object is au-
tomatically created by DB-USE. The information of this
UI object is displayed in a table as show in Figure 12 This
information includes the label of the control, the attribute
linked, the data type of these attributes, the control type
and the editable attribute of control.

Step 5: Storing the UI objects by using UsiXML

The created UI objects will be described in UsiXML such
as represented in Figure 13 by selecting Application \
Save UI as UsiXML menu. The objective of using the
UsiXML is that the UI can be implemented in the differ-

 - 193 -

ent environments. Figure 13 depicts how to save the UI
objects in terms of UsiXML.

Figure 13. Some UI objects in Figure 12 are described

by using UsiXML.

Step 6: Creating the final user interface

Based on the programming language determined by the
designer and the created concrete interaction objects, the
final interaction objects are automatically specified.

In order to help the designer to materialize the user inter-
face that will be generated during the last step of the pro-
cess, DB-USE has to allow to review the user interface in
terms of graphics.

DB-USE generates the user interface code based on the
user interface objects that have been created and the ap-
plication code based on the selected functions. The code
generator produces java code by using graphical libriaries
such as Swing and AWT. Unlike the current applications,
DB-USE generates both the user interface and application
codes. The generated code is complete and can be com-
piled and ran immediately when usually code generated
by other applications are just prototypes or code skele-
tons.

Figure 14. Edit Employee Information form.

Figure 14 depicts Edit Employee Information form that is
generated from the previous steps.

CONCLUSION
To be efficient, data-intensive systems that are an im-
portant component of today’s software applications need
effective human-computer interaction. User interfaces for
such data systems has been a recurrent research issue and
nowadays these UI have to support automatic generation
to adequately be dealt with.

This framework has aimed at offering a low cost, short
time-to-implementation and efficient UI development en-
vironment from the business user side. Indeed, the objec-
tive of this tool has not only been to generate the user in-
terfaces but also to generate the application code for per-
forming the generic functions of the database applica-
tions. In future, the navigation between the dialogues will
be automatically specified based on the operators of the
task; the position and dimension attributes of UI object
will be optimized; and finally, allow define the data type
which do not come from the database.

This research has also contributed to define rules for
mapping task and domains models to one another in both
ways and translate these models into code in order to au-
tomate the user interface design process.

REFERENCES
1. Tran, V., Vanderdonckt, J., Faulkner, S., Generating

User Interface from Task, User and Domain Models.
In Proc. of 2nd Int. Conf. on Advances in Human-
oriented and Personalized Mechanisms, Technologies,
and Services CENTRIC’2009 (Porto, September 20-
25, 2009), IEEE Computer Society Press, Los Alami-
tos, 2009, pp. 19-26.

2. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J.,
Kennedy, J., Gray, P.D., Cooper, R., Goble, C.A.,
Pinheiro da Silva, P., Teallach: a model-based user in-
terface development environment for object databases.
Interacting with Computers, Vol. 4, No. 1, December
2001, pp. 31-68.

3. Eisenstein, J., Puerta, A., Adaptation in automated us-
er-interface design. In Proceedings of the 5th interna-
tional conference on Intelligent user interfaces, p.74-
81, January 09-12, 2000, New Orleans, Louisiana,
United States.

4. Nichols, J., Faulring, A.. “Automatic Interface Gener-
ation and Future User Interface Tools”. In: CHI. Pro-
ceedings of the Workshop on the Future of User Inter-
face Design Tools, 2005.

5. Pinheiro da Silva, P., Griffiths, T., N. Paton, 2000.
Generating user interface code in a model based user
interface development environment. In: Proceedings
of Advanced Visual Interfaces. ACM Press, New
York, pp. 155–160.

 - 194 -

6. Julien, D., Ziane, M., and Guessoum, Z.. GOLIATH:
An extensible model-based environment to develop
user interfaces. In Proceedings of the Fourth Interna-
tional Conference on Computer Aided Design for User
Interfaces, P. 95–106. Kluwer Academics Publishers,
2004.

7. Bodart, F., Hennebert, A.-M., Leheureux, J.-M.,
Provot, I., Sacre, B., Vanderdonckt, J. Towards a Sys-
tematic Building of Software Architectures: the TRI-
DENT methodological guide. In Proc. of 2nd Eu-
rographics Workshop on Design, Specification, Verifi-
cation of Interactive Systems DSV-IS'95 (Toulouse, 7-
9 June 1995), Ph. Palanque, R. Bastide (eds.), Spring-
er-Verlag, Vienna, 1995, pp. 262-278.

8. C. Janssen, A. Weisbecker, J. Ziegler: Generating Us-
er Interfaces from Data Models and Dialogue Net
Specifications. In Ashlund S., Mullet K., Henderson
A., Hollnagel E., White T. (eds.). New York: ACM
Press 1993 (pp. 418-423).

9. Puerta, A., “The MECANO Project: Comprehensive
and Integrated Support for Model-Based Interface De-
velopment,” Proc. CADUI 96, J. Vanderdonckt, ed.
http://www.info.fundp.ac.be/~jvd/dsvis/cadui96.html.

10. Moroney, L. and MacDonald, M. , ASP.NET Appli-
cations in Pro ASP.NET 1.1 in VB .NET From Pro-
fessional to Expert, Apress, 2006, pp. 183- 230.

11. Myers, B., Hudson, S. E., Pausch, R.. Past, present,
and future of user interface software tools. ACM
Transactions on Computer-Human Interaction (TO-
CHI), v.7 n.1, p.3-28, March 2000.

12. Pinheiro da Silva, P., User Interface Declarative Mod-
els and Development Environments: A Survey. In
Proceedings of DSV-IS2000, volume 1946 of LNCS,
P. 207-226, Limerick, Ireland, 2000. Springer-Verlag.

13. Wilson, S., Johnson, P.: Bridging the generation gap:
From work tasks to user interface designs. In Comput-
er-Aided Design of User Interfaces. Namur University
Press, 1996, P. 77-94.

14. Mahfoudhi, A., Abed, M., Abid, M.. “Towards a User
Interface Generation Approach Based on Object Ori-
ented Design and Task Model”. TAMODIA'2005 : 4th
International Workshop on TAsk MOdels and DIA-
grams for user interface design For Work and Beyond
Gdansk, Poland September 2005. (P. 26-27)

15. Lonczewski, F., Schreiber, S.: The FUSE-System: An
Integrated User Interface Design Environment. In: J.

Vanderdonckt (ed.): Computer-Aided Design of User
Interfaces. Namur University Press, 1996, 37-56.

16. Vanderdonckt, J. and Bodart, F. Encapsulating Know-
ledge for Intelligent Automatic Interaction Objects Se-
lection. In Proc. of the ACM Conf. on Human Factors
in Computing Systems INTERCHI'93 (Amsterdam, 24-
29 April 1993), ACM Press, New York, 1993, pp.
424-429.

17. Elwert, T. and Schlungbaum, E., Modelling and Gen-
eration of Graphical User Interfaces in the TADEUS
Approach. In Designing, Specification and Verication
of Interactive Systems, pages 193{208, Vienna, 1995.
Springer.

18. Balzert, H., From OOA to GUI - The JANUS-System,
in Proceedings of the 5th IFIP TC13 Conference on
Human-Computer Interaction, Lillehammer, June
1995, pp. 319-324.

19. Barclay, P.J., Griffiths, T., McKirdy, J., Paton, N.W.,
Cooper ,R., and Kennedy, J.. The Teallach Tool: Us-
ing Models for Flexible User Interface Design. In pro.
3rd International Conference on Computer-Aided De-
sign of User Interfaces, Louvain-la-Neuve (Belgium),
21-23 October 1999.

20. Paternò, F., Mancini, C., and Meniconi, S., Concur-
tasktrees: A diagrammatic notation for specifying task
models. In Human-Computer Interaction, pages 362–
369. Chapman and Hall, 1997

21. Pribeanu, C., Tool Support for Handling Mapping
Rules from Domain to Task Models. Coninx, K., Luy-
ten, K., Schneider, K. (Eds.): Proc. of TAMODIA
2006, Hasselt, Belgium, 23 – 24 October. Lecture
Notes in Computer Science - LNCS 4385, Springer
2007, pp. 16-23.

22. Laudon, Kenneth C., Laudon, Jane P., Management
Information Systems. Pearson Education (US), 2009.

23. Limbourg, Q., Vanderdonckt, J., Multi-Path Trans-
formational Development of User Interfaces with
Graph Transformations, in Seffah, A., Vanderdonckt,
J., Desmarais, M. (eds.), “Human-Centered Software
Engineering”, Chapter 6, HCI Series, Springer, Lon-
don, 2009, pp. 109-140.

24. Vanderdonckt, J. Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures. In Proc.
of 5th Annual Romanian Conf. on Human-Computer
Interaction ROCHI’2008 (Iasi, September 18-19,
2008), S. Buraga, I. Juvina (eds.). Matrix ROM, Bu-
carest, 2008, pp. 1–10.

