
Systematic Generation of Abstract User Interfaces
Vi Tran1, Jean Vanderdonckt1, Ricardo Tesoriero1,2, and François Beuvens1

1Université catholique de Louvain, Louvain School of Management
Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

2University of Castilla-La Mancha, Albacete (Spain)
{vi.tran, jean.vanderdonckt, ricardo.tesoriero, francois.beuvens}@uclouvain.be, ricardo.tesoriero@uclm.es

ABSTRACT
An abstract user interface is defined according the Came-
leon Reference Framework as a user interface supporting
an interactive task abstracted from its implementation, in-
dependently of any target computing platform and interac-
tion modality. While an abstract user interface could be
specified in isolation, it could also be produced from vari-
ous models such as a task model, a domain model, or a
combination of both, possibly based on information de-
scribing the context of use (i.e., the user, the platform, and
the environment). This paper presents a general-purpose
algorithm that systematically generates all potential abstract
user interfaces from a task model as candidates that could
then be refined in two ways: removing irrelevant candi-
dates based on constraints imposed by the temporal opera-
tors and grouping or ungrouping candidates according to
constraints imposed by the context of use. A model-driven
engineering environment has been developed that applies
this general-purpose algorithm with multiple levels of re-
finement ranging from no contextual consideration to full-
context consideration. This algorithm is exemplified on a
some sample interactive application to be executed in vari-
ous contexts of use, such as different categories of users
using different platforms for the same task.

Categories and subject descriptors
D.2.2 [Software Engineering]: Design tools and tech-
niques – User Interfaces. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – Graphical User In-
terfaces. I.7.2 [Document and text processing]: Docu-
ment preparation – Markup languages.

General Terms
Algorithms, Human Factors.

Keywords
Abstract User Interface, Concrete User Interface, Graphical
User Interface, Model-based User Interface Design, Model-
Driven Engineering, User Interface Description Language,
User Interface eXtensible Markup Language.

INTRODUCTION
The Cameleon Reference Framework (CRF) [3] is a con-
ceptual and methodological framework that structures the

User Interface (UI) development life-cycle according to
four levels: task and domain, abstract user interface, con-
crete user interface, and final user interface. In this CRF, an
Abstract User Interface (AUI) is defined as a UI supporting
an interactive task that is specified in a way that does not
refer to any peculiarity belonging to the implementation
world. The AUI is specified independently of any target
computing platform and interaction modality that could be
used for such a UI. More recently, the final report of the
W3C Incubator Group on Model-Based User Interface De-
sign [4] agreed upon the following definition:

“The Abstract User Interface (AUI) (corresponding to the
Platform-Independent Model– PIM– in Model-Driven En-
gineering) is an expression of the UI in terms of interaction
spaces (or presentation units [1]), independently of which
interactors are available and even independently of the mo-
dality of interaction (e.g., graphical, vocal, haptic …). An
interaction space is a grouping unit that supports the execu-
tion of a set of logically connected tasks.” [19]

In order to adhere to this standard definition, UsiXML
V2.1 [19] instantiates this definition by defining an AUI as
a hierarchy of Abstract Interaction Units (AIUs), each AIU
expressing the input/output required to conduct a particular
task or set of semantically related sub-tasks of a task over a
given domain of discourse. For this purpose, different types
of AIUs are defined and may contain any AIU type.

When interested in generating a AUI from a task model
and a domain model, we are generally confronted with a di-
lemma: on the one hand, the AUI definition should remain
independent of any platform and interaction modality in
order to preserve this property of independence (otherwise,
the AUI is no longer called abstract); on the other hand, a
general trend consists in trying to optimize the definition of
potential AUIs having already in mind the constraints im-
posed by the target platform and interaction modality. For
instance, when one desires to produce an AUI for a
smartphone, consciously or unconsciously, the AUI being
defined is already taking into account the constraints im-
posed by the target computing platform (e.g., a particular
operating system on a mobile phone having a specific
screen resolution) and/or the intended interaction modali-
ties (e.g., a graphical user interface equipped with bi-touch
capabilities). When the target computing platform is al-
ready decided, going through the AUI step is no longer re-
quired. Therefore, the phase of defining an AUI could be
skipped. However, it may still be interesting to identify all
potential AUIs that could result from a task model and then

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

101

decide by progressive refinement which ones could be the
most suitable for a certain context of use for a given devel-
opment environment.

This paper addresses the problem of systematic generation
of abstract user interfaces: first, an algorithm is provided
that automatically generates all potential AUIs from a same
task model; then, only AUIs relevant for a given context of
use could be kept by comparing different candidates
against various criteria constrained by the context of use.

Section 2 reviews the work related to the problem of identi-
fying AUIs from a task model. Section 3 defines the three
meta-models that will govern the process of systematic
generation of AUIs; the task meta-model as a starting point,
perhaps with the domain meta-model, and the AUI meta-
model as a target point. The process of systematic genera-
tion of AUIs is detailed in Section 4, first at the outline lev-
el, then at a detailed level. The software tool that supports
this process is described in Section 5. Section 6 concludes
this work by summarizing the main aspects of this process
and by presenting some avenues of this work.

RELATED WORK
The problem of automatically generating a UI from one or
many models has been addressed extensively by many dif-
ferent approaches [5,7,11,13,16,17], but the problem of de-
termining AUIs [1,8,10,12,15,18] from one or many initial
models so as to initiate this process has been partially ad-
dressed. In forward engineering, significant work has been
produced to generate one or many UIs from initial models
for multiple contexts of use. Only a few of them go through
the AUI level: IKnowU [8] fires rules for generating AUIs
for different platforms based on task, domain, and context
models. In reverse engineering, significant work has been
produced to recover a CUI model from code (e.g., from
HTML). Few of them goes until the AUI level: Re-
versiXML proceeds with the abstraction process until the
AUI level. The observation is similar for UI retargeting, UI
adaptation, etc. [20]

Bogdan et al. [2,7] take benefit of a discourse model to
generate different AUIs for different target devices such as
mobile phone, PC or PDA. However, these abstract user in-
terfaces are completely independent of the programming
languages such as Java Swing, AWT, or Windows-Forms.
Discourse models are created based on human communica-
tion theories, in other words they are used to describe the
human communicative acts. This approach generates UIs
for multiple devices, but unfortunately its determination of
the control types is not detailed. For example, one commu-
nicative act can be mapped to many control types such as a
Closed Question communicative act mapped to a radio but-
tons, or a check box, or a menu.

ROAM [5] automatically generates UIs for heterogeneous
platforms classified based on their capabilities such as pro-
cessors, memory, screen size, and software libraries. It al-
lows the user to migrate a UI from a specified platform to
another one, provided that ROAM is installed on both.

SUPPLE [9] automatically generates a UI that is adapted to a
person’s devices, task, preference and abilities. This system
uses various input materials to generate UIs including: us-
er, device and task models. Moreover, it also uses a render-
ing and optimization algorithm to search the space of pos-
sible interface objects to adapt its container once the con-
tainer’s size has been changed by the user; and uses the
cost function to generate styles of final user interfaces
based on different parameters. Supple considers both user
and device models and use well the optimization algo-
rithms to generate user interface addressing user’s subjec-
tive preferences and device capabilities.

Most approaches discussed above attempt generating a
complete and executable UI for multiple platforms by using
different algorithms from simple ones such as in Desktop-
to-Mobile [13] or ROAM [5] to complex ones such as in
SUPPLE [9]. ROAM requires that the UI designer provides
various implementations for multi-platforms. In order to
generate the UIs for different platforms, the UI designer
has to create the different layout structures; one layout
structure created is suitable to a device. Then she has to
link these layout structures to the task model manually.
Most steps of the UI generation process in the Supple sys-
tem are performed automatically but it has also some limits
e.g., this system directly generates CUIs instead of AUIs.

TOPCASED AUI [14] is an Eclipse-based modelling editor
enabling designers to specify AUIs directly, without neces-
sarily taking a task model as a starting point. This freedom
has a cost: there is no analysis of the quality of AUIs re-
sulting from this manual process.

In some aforementioned works, the use of temporal opera-
tors to link the tasks at the same abstract level has not been
discussed yet. For example, in [8], the containers are speci-
fied based on the groups of tasks, but these tasks are
grouped together without checking the operators between
them; in practice, tasks that can also exclude each other so
they cannot be grouped together. The ROAM system does
not exploit the semantics of temporal operators in the gen-
eration process.

META-MODELS
This section describes the main models used in this paper
including task, domain and AUI models. These models are
defined within the UsiXML V2.1 framework [19].

Task Meta-Model
The task meta-model (Figure 1) represents the task decom-
position view of the application in the Tasks & Concepts
layer of the UsiXML framework. Inspired by the Hierar-
chical Task Approach (HTA), the task decomposition is de-
fined for the tasks that can be performed independently of
the situation in which a task is performed. The temporal re-
lationship is also provided in this model. However, more
information to the relationship can be added by a context
model. Thus, the temporal relationship among tasks de-
pends on the context and varies according to the context
situation in which a task is performed.

102

Figure 1: Task meta-model overview.

Domain Meta-Model
The UsiXML domain model describes the various entities
manipulated by a user while interacting with the system.
This model specifies the main concepts of a User Interface
by identifying the relationships among all the entities with-
in the scope of the User Interface, their attributes and the
methods encapsulated within the entities. The UsiXML
domain model uses the UML V2.0 class diagram to de-
scribe the different entities manipulated by a UI. A UML
class diagram is a type of static structure diagram which
provides a rich expressiveness to describe the structure of a
system by using the classes, their attributes, and the rela-
tionships between the classes.

Abstract User Interface Meta-Model
The AUI model is aimed at specifying the end user interac-
tion in terms of concepts that do not make any reference to
any concrete platform or modality, which is done via the
Concrete User Interface (CUI) [3,11,12]. Usually, AUIs
are specified independently of platform and devices so that
the various CUIs can be created from a single AUI. The
AUI meta-model used in this paper is depicted in Figure 2
[19]. The AUI, corresponding to the Platform-Independent
Model (PIM) in Model-Driven Engineering (MDE) is an
expression of the UI in terms of interaction spaces (or
presentation units), independently from interaction units
available and from the interaction modality (e.g., graphical,
vocal, haptic). An interaction unit is a grouping unit that
supports the execution of a set of logically connected tasks.

ABSTRACT USER INTERFACE GENERATION
This section describes the AUI systematic generation pro-
cess from task and domain models at the outline and de-
tailed levels. At the outline level, we discuss the engineer-
ing process, the role of its components and the resources
used in this process in order to identify the responsibilities
to be taken for ensuring this step. At the detailed level, the
main steps of the process will be overviewed as well as the
mapping rules and the algorithms used so as to identify the
actions that will be needed by the responsible entities of the
outline level.

Figure 2: AUI meta-model.

Process at the Outline Level
AUI generation process and its main components are pre-
sented with respect to the UML profile for SPEM V2.0
(Software & Systems Process Engineering Metamodel
specification - http://www.omg.org/spec/SPEM/2.0/). After
describing components of the AUI generation process
(drawn as a package), a workflow is presented and speci-
fied that details package activities and work-products.

AUI Generation
Figure 3 shows the principal components of the AUI gen-
eration process including three process-roles and six work-
products. These work-products are the three UsiXML
models (i.e., task model, domain model and AUI model)
and three text documents (i.e., mapping rules, platform in-
formation and algorithm document).

Figure 3: AUI generation and its principal components.

Workflow
Our process for generating the abstract user interface is de-
picted in Figure 4. This process stars with loading the task
and domain models and finishes with returning the AUI
model stored in terms of UsiXML specifications. The ac-
tivities of the AUIs generation are depicted in order of their
performance. These activities are described in Table 1. Ta-
ble 2 describes the work-products used in our process.

103

Process at the Detailed Level
In this section, we discuss the engineering process and its
main steps for the generation of AUIs from task and do-
main models. There are five steps namely: link tasks to
domain components, assign weights for the tasks, create
task groups, specify configuration and generate AUIs. In
order to demonstrate the steps in this process, we use Con-
tact task of eHealth application. Contact task describes
how the information of a contact is displayed to the user
and how the user can add a new contact and modify an ex-
isting one. This task has three sub-tasks: View a contact,
Search contact, and change phone number (Figure 5).

Step 1: Link tasks to domain components and relation be-
tween the task and domain models
As discussed above, AUIs are generated based on the task
and domain models. These models are considered for the
following reasons:

 The task model constraint the AUI. It expresses how
the UI provides information to the user and how the
actions that users and system perform can be se-
quenced. This expression is intended to be independent
of any particular implementation or technology. This
explains why a same model or set of models could ini-
tiate several different UIs, whether they are abstract or
concrete. However, the amount of possible AUIs that
could be generated from a same task model depending
on its configuration is not infinite.

 The domain model provides the special features need-
ed for creating a user interface. These features are the
attributes of the objects in the domain model, the rela-
tionships between these objects and prototype of the
generic application functions. The domain model is
used to specify the control of this user interface – at
this level the user interface is specified more in details.

Two these models are related to each other. The relation-
ship between the task and domain models can be described
like the connections between the domain components and
the tasks themselves that enable the user to perform opera-
tions on the domain objects. These operations are creating,
deleting, modifying or selecting the objects in domain
model. The UI is specified by selecting the elements of a
domain model for the relevant tasks [19]. Before generat-
ing different abstract user interfaces for the different plat-
forms, the tasks in task model will be linked to the compo-
nents in domain model by the developer. The leaf tasks are
linked to the components in domain model; these compo-
nents maybe attributes, classes, and operations (Figure 6).

Task type Weight Description
1 0 Unknown task
2 1 Action task
3 2 Application task
4 3 Interaction task

Table 3: Weight of tasks

Figure 6: An example of linking tasks to domain components.

Figure 4: AUI generation workflow.

104

Table 1: Activities description.

No Activity name Goal Process role Input Output

1
Load task and do-
main models

The goal of this activity is to load task model and domain model
from XML files. These files are created by UsiXML tool.

UI Develop-
er

XML files
Task and
domain
models

2
Link tasks to do-
main components

Once task and domain models have been loaded, the tasks in task
model are linked to the components in the domain model by the UI
developer.

UI Develop-
er

Task and
domain
models

Linked
task model

3 Specify platforms
The platform on which generated user interfaces will be run is speci-
fied based on a text document. The aim of this activity is to provide
the platform information such as screen size, type, …

UI Designer
Text doc-
ument

4
Assign weight for
specified platform

The different platforms are assigned different weights by the UI de-
signer.

UI Designer

5
Assign weights for
tasks

The tasks in task model will be assigned weights based on the task
types. For example the weight of an action task is 1 and the one of an
application task is 2.

System

6 Create task groups Tasks will be grouped together to create all possible combinations. System
Linked
task model

Task
groups

7
Generate configu-
rations

Once the tasks have been grouped and the platform specified, the
system generates configurations suitable to this platform by selecting
task groups created during the previous activity.

System

8 Generate AUIs
AUIs are generated automatically based on the configurations and
the mapping rules.

System
AUIs
model

9 Release result The AUI is stored in terms of UsiXML specifications. System XML files

Table 2: Work-products description.
Work-product name Type Description

Task model UsiXML model The task model is a model structured in Figure 1. This model is used to describe the user’s tasks.

Domain model UsiXML model
The domain model is a model structured in Figure 2. This model is used to describe data objects
and the associations between these objects

AUI model UsiXML model The AUI model describes the AUIs defined by UsiXML.

Mapping rules Text document The mapping rule list describes the rules that are used for specifying the AUI’s types.
Platform information Text document The platform information describes the platform’s parameters.
Algorithm document Text document The algorithm document describes all algorithms used in AUI generation process.

Figure 5: Contacts task model.

Figure 7: Tasks in task tree are assigned weights based on the task types (See Table 3).

Figure 10: The configuration is based on the task weight and device weight.

105

The algorithm for specifying task weights is depicted as
follows:
FOR each task of task model
 IF task type is action task THEN
 SET task weight to 1
 ELSE IF task type is application task THEN
 SET task weight to 2
 ELSE IF task type is interaction task THEN
 SET task weight to 3
 ELSE
 SET task weight to 0
 END IF
END FOR

Figure 7 depicts the result of running the algorithm with
the task tree from Figure 6.

Step 3: Create task groups
This phase is decomposed in two sub-steps. The first one
tries to find all of the possible groups of tasks without ex-
amining operators between these tasks (Figure 8). The se-
cond one will reject the unsuitable task groups from the
ones created in the first sub-step (Figure 9). These are the
ones that contain at least two adjacent tasks that the oper-
ator placed between these tasks is not suitable to the orig-
inal task mode.

Figure 8: An example of task grouping.

The algorithm for creating task groups is depicted as fol-
lows:
RESET Vector taskGroups
INITIALIZE numOfTasks
FOR N = 1 to numOfTasks
 CALL Create_Group_N_Tasks(N)
END FOR
CREATE FUNCTION Create_Group_N_Tasks(number N)
 INITIALIZE taskGroup[N]
 CALL Combination(0 ,0 ,N)
END FUNCTION
CREATE FUNCTION Combination(number startIndex,
number currentIndex, number numOfTasksInGroup)
 FOR j = startIndex TO numOfTasks - numOf-
TasksInGroup + currentIndex - 1
 SET taskGroup[currentIndex] as taskList[j]
 IF currentIndex is equal to N - 1
 taskGroups.Add(taskGroup)
 ELSE
 Combination(j+1, currentIndex + 1, N)
 END IF
 END FOR
END FUNCTION

The main part of the source code in Java could be imple-
mented as follows;
private void Combination(int startIndex, int

currentIndex, int numOf-
TasksInGroup){

 for(int j = startIndex; j <= numOfTasks -
numOfTasksInGroup + currentIndex; j++){

 taskGroup[currentIndex] = taskList[j];
 if(currentIndex == numOfTasksInGroup - 1)
 taskGroups.Add(taskGroup)
 else
 Combination (j + 1, currentIndex + 1);
 }
}

One example for combination function is:
Vector taskGroups = new Vector ();
int numOfTasks = 3;
int[] taskList = {1, 2, 3};
private void Create_Group_N_Tasks (int N){

 int[]taskGroup = new int[N];
 Combination(0, 0, N);
}
for(int N = 0; N <=; N++)
 Create_Group_N_Tasks(N);

The result of this program is a combination of tasks 1, 2
and 3: {1, 2, 3, 12, 13, 23, 123}

Figure 9: An example of operator check.

In order to generate valid sequences of tasks, we have
formalized the definition of the task model using the
Haskell programming language; which is based on lamb-
da-calculus [6]. Lambda-calculus formalizes the function
definition, application and recursion employing Beta re-
duction. Thus, we have defined a TaskExpression
(TaskExp) as:
data TaskExp a = At a
 | En (TaskExp a) (TaskExp a)
 | Ch (TaskExp a) (TaskExp a)
 | Di (TaskExp a) (TaskExp a)
 | Co (TaskExp a) (TaskExp a)
 | Oi (TaskExp a) (TaskExp a)
 | Su (TaskExp a) (TaskExp a)
 | C (TaskExp a) a

where a task expression is defined as an atomic task (At),
a compose task (C) or any temporal relationship between
temporal operations between task expressions: Enabling
(En), Choice (Ch), Disabling (Di), Concurrency (Co),
Order independence (Oi) and Suspend-Resume (Su).
Thus, the “Change phone…” task can be expressed as:
C (En (At "Phone Number") (Ch (At "Submit") (At

"Modify"))) "Change Phone"

To find out the valid sequences (traces) of tasks for this
expression we employ the “trace” function. The following
code represents part of its definition:
trace :: TaskExp a -> [[a]]
trace (At a) = [[a]]
trace (C x a) = trace x
trace (Ch x y) = trace x ++ trace y
trace (En x y) = [a ++ b |
 a<-(trace x), b <- (trace y)]

106

trace (Co x y) = foldr (++) []
 [interleaving xs ys |
 xs <- trace x, ys <- trace y]
trace (Oi x y) =
 flatten (map bt (perms (lot (Oi x y))))

The “trace” function takes a task expression as input pa-
rameter, and returns a list of lists of atomic task names.
Each list of atomic task names represents a valid trace of
tasks. The definition of the trace function is trivial for the
following expressions: At, C, Ch and En. However, the
rest of them require auxiliary functions, such as, “perms”,
“between”, “interleaving”, “lot”, “bt”. The “perms” func-
tion returns the permutation of a list of atomic task names
as a list of atomic task name lists. It is defined as follows:
perms [] = [[]]
perms (x:xs) = concat (map (between x) (perms

xs))

To perform the permutation, the “between” function is
defined to generate all traces resulting from the insertion
of an atomic task at any position of an already defined
trace.
between e [] = [[e]]
between e (y:ys) = (e:y:ys) : map (y:) (between

e ys)

The “interleaving” function is linked to the concurrency
operation. It takes two traces as input parameters to return
a list of traces representing the concurrent execution of
both traces.
interleaving :: [a]->[a]->[[a]]
interleaving (x:xs) [] = [x:xs]
interleaving [] (y:ys) = [y:ys]
interleaving (x:xs) (y:ys) = map (y:) (inter-

leaving (x:xs) (ys)) ++ map (x:)
(interleaving (xs) (y:ys))

The “lot” function takes a task expression, and returns the
list of list of traces that represent the “composed traces”
derived from the task expression passed as parameter.
lot:: TaskExp a -> [[[a]]]

lot (Oi x y) = lot x ++ lot y
lot t = trace t :[]

To generate the trace resulting from the order independ-
ence temporal operator, we apply the “bt” function on
each of the list of traces generated from the result of ap-
plying the “lot” function. The “bt” function is defined as
follows:
bt::[[[a]]]->[[a]]
bt (xss:[]) = xss
bt (xss:xsss) = [a ++ b | a<-xss, b<-(bt xsss)]

The result of applying the trace function to the “Change
Phone…” task is: [["Phone Number","Submit"],

["Phone Number","Modify"]]; which reveals the valid
traces only for the temporal expression. Note that “[“and
“]” denote a list and “,” denote sequence in this case.

Step 4: Configuration is specified automatically.
Once the task groups have been created, the system auto-
matically specifies the configurations by selecting one or
more task groups. The system generates the different con-
figurations for the different platforms based on character-
istics such as screen size, processors, memory of devices.
In order to do that, each platform will be assigned a max-

imum weight by the UI designer. Usually, this maximum
weight is in direct ratio to the screen’s size, the power of
processor and memory, screen type ... The maximum
weight is used to specify the number of task groups which
are suitable to determined platform. The formulas for se-
lecting task groups based on weight of task group and
maximum weight are as follows:

Weight of a task group = ∑ Weight of its tasks
Maximum weight >= ∑ Weight of selected task
groups

The algorithm for selecting task groups based on the task
weight and device weight is defined as follows:
SET current weight to 0
SET maximum weight to 15
SET current group to null
WHILE current weight is less than maximum weight

AND group count is more than 0
 FOR each group in taskGroups
 IF current weight + group weight is less

than or equal maximum weight AND group
weight is less than current group
weight

 SET current group weight to group
weight
 STORE current group as group
 END IF
 END FOR
 IF current group is NOT NULL
 COMPUTE current weight as current weight +

group weight
 FOR each task in current group
 FOR each group in taskGroups
 IF group contains task
 REMOVE this group from taskGroups
 END IF
 END FOR
 END FOR
 ELSE
 BREAK WHILE
 END IF
END WHILE

Figure 10 depicts the configuration of contacts for a task
model with a device weight of 15. In this configuration,
two choices for creating the container are possible: the first
one that contains: Type first name, Type last name, View
phone number, Phone number and Submit; the other one
that contains: Type first name, Type last name, View phone
number, Phone number, and Modify

Step 5: Generating abstract user interface from task and
domain models
AUIs are generated based on the mapping rules and the task
groups specified manually by the developer or automatical-
ly by the system. For each created group, the system gener-
ates an AbstractCompoundIU; this AbstractCompoundIU
will contain all of AUIs generated for the tasks belonging
to this group. The rules for determining the AUI type are:

 Rule1: An AbstractSelectionUI is considered when a
task derives from an attribute of a domain class which
is not the edited class and the relationships between
the edited class and another one is ‘1-1’ or ‘n-1’and .

 Rule2: An AbstractInputUI is considered when a task
derives from the attributes of the classes that these
classes are the edited classes.

107

 Rule3: An AbstractOutputUI is considered when an
abstract user interaction has been created and its label
is the task name of the task related to this abstract user
interaction.

 Rule4: An AbstractDataItemUI is considered when a
task derives from the attributes of the classes.

 Rule5: An AbstractTriggerUI is considered when a
task derives from an operation of a class. For example.
Once the tasks have been grouped by the developer
based on the screen size of devices, the AUIs are gen-
erated automatically by system.

Figure 11: AUI is generated from configuration specified in

Figure 10.

One of the AUI specifications generated from the config-
uration above is shown in Figure 11. The abstract user in-
terface units are specified based on the following algo-
rithm:
FOR each task in task list
 IF task has sub tasks
 CREATE an AbstractCompoundIU
 ELSE
 IF task type is action task OR task is

linked to operation of class
 CREATE an AbstractTriggerIU
 ELSE IF task type is application task
 CREATE an AbstractOutputIU
 ELSE IF task type is interaction task
 IF task is linked to attributes of
class
 CREATE an AbstractInputIU
 ELSE IF task is linked to class
 CREATE an AbstractSelectionIU
 ELSE
 CREATE an AbstractInputIU
 END IF
 ELSE
 CREATE an AbstractInputIU
 END IF
 END IF
END FOR

SOFTWARE SUPPORT
Integrated software
The software developed to support the aforementioned
process and that implements the algorithms outlined in
the discussion all at once has been implemented in Java.
The main purpose of the tool is to help designers to gen-
erate AUIs from the task and domain models.

Figure 12: Task model editor.

The task model is loaded from a UsiXML file (Figure
12). Once tasks contained in the task model have been
loaded, they are collected into the different groups by the
designer depending on the concrete platform. The number
of tasks in our task model is unlimited. There are two
ways to group the tasks; the first one is that the tasks are
grouped manually by the designer; and the second one is
that they are grouped automatically based on the device
selected by designer (Figure 13). With this tool, the de-
signer can manipulate tasks easily with the mouse buttons
and Ctrl key. In order to observe task model easily and
clearly, the designer can decide which task attributes to
display in the task model by using Task model view dialog
(Figure 14).

Figure 13: Grouping tasks.

Figure 14: Selecting task attributes

The number of tasks in our task model is unlimited. In
this current version, the tasks are manually linked to the
components of domain model by the designer. Abstract
user interfaces are automatically generated based on
grouped tasks and the attributes of domain’s components.
Generated AUIs are stored in terms of UsiXML specifica-
tion. In this version, the designer cannot directly modify
automatically generated AUIs in order to preserve the
rules that have been fired to obtain these results. Indeed,
it the resulting AUIs are modified manually, they will no
longer be consistent with the rules that were used for this
generation. If the designer wants to change the AUIs, she
has to modify the task group or the relation between tasks
and domain’s components. Our generated AUIs are de-
picted in Figure 15.

AUI Generation as service
The systematic generation of AUIs from a task model
could be also invoked as a service from any other
UsiXML compatible software.

108

Figure 15: An example of AUI generated by our software.

For instance, Figure 16 reproduces an Eclipse-based task
model editor specifying tasks according to the UsiXML
V2.1 meta-model outlined in Figure 1. In this example, a
simple car rental task model is depicted, with more de-
tailed information about the sub-task FillIdentityInfor-
mation. Figure 17 details the first AUI candidates for this
task by decreasing order of amount of interaction units
contained and complexity, while Figure 18 shows some
rendering in the integrated software.

Figure 15: Task model in Eclipse-based task model editor.

Figure 16: AUI candidates from the same task model.

CONCLUSION
In this paper, we have presented an algorithm for system-
atically generating all potential abstract user interfaces
from a task model. Our AUI generation process has been
discussed at the comprehensive and detailed levels. At the
comprehensive level, we have discussed its main tasks
and the resources used in the process. At the detailed lev-
el, the process is represented step by step with the rules

for specifying the abstract user interaction types and the
algorithms used in each step. More specially, this paper
has provided a number of necessary algorithms for an
AUI generation process. In order to explore these algo-
rithms, an editor tool has been implemented to evaluate
the cost and performance of this method.

Figure 17: AUI rendered in the integrated software.

109

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the
FEDER eHealth project and the ITEA2-Call3-2008026
USIXML European project (User Interface eXtensible
markup language – http://www.usixml.eu, http://www.
usixml.org) and its support by Région Wallonne DGO6.

REFERENCES
1. Bodart, F., Hennebert, A.-M., Leheureux, J.-M.,

Provot, I., and Vanderdonckt, J. Computer-aided win-
dow identification in TRIDENT, in Proc. of IFIP TC13
Int. Conf. on Human-Computer Interaction Inter-
act’95 (Lillehammer, June 27-29, 1995). Chapman &
Hall, London, 1995, 331–336.

2. Bogdan, C., Falb, J., Kaindl, H., Kavaldjian, S., Popp,
R., Horacek, H., Arnautovic, E., and Szep, A. Gener-
ating an Abstract User Interface from a Discourse
Model Inspired by Human Communication, in Proc.
of the 41st Annual Hawaii Int. Conf. on System Sci-
ences HICSS’2008. IEEE Computer Society, Los
Alamitos, 2008, 1–10.

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A unifying refer-
ence framework for multi-target user interfaces. Inter-
acting with Computers 15, 3 (2003), 289–308.

4. Cantera Fonseca, J.M., González Calleros, J.M.,
Meixner, G., Paternò, F., Pullmann, J., Raggett, D.,
Schwabe, D., and Vanderdonckt, J. Model-Based User
Interface Incubator Group, Final Report. 4 May 2010.
Available at http://www.w3.org/2005/Incubator/mod
el-based-ui/XGR-mbui/.

5. Chu, H., Song, H., Wong, C., Kurakake, S., and Kata-
giri, M. Roam, a seamless application framework. J.
of Systems and Software 69, 3 (2004), 209–226.

6. Church, A. A set of postulates for the foundation of
logic. Annals of Mathematics 39, 2 (1932), 346-366.

7. Falb, J., Popp, R., Röck, T., Jelinek, H., Arnautovic,
E. and Kaindl, H. Fully-automatic generation of user
interfaces for multiple devices from a high-level mod-
el based on communicative acts, in Proc. of the 40th
Annual Hawaii Int. Conf. on System Sciences HICSS-
40 (Waikoloa, 3-6 January 2007). IEEE Computer
Society, Los Alamitos, 2007, Track 26.

8. Furtado, E., Furtado, V., Sousa, K., Vanderdonckt, J.,
and Limbourg, Q. KnowiXML: A Knowledge-Based
System Generating Multiple Abstract User Interfaces
in UsiXML, in Proc. of 3rd Int. Workshop on Task
Models and Diagrams for User Interface Design-
Tamodia’2004 (Prague, November 15-16, 2004).
ACM Press, New York, 2004, 121–128.

9. Gajos, K.Z., Weld, D.S., and Wobbrock, J.O. Auto-
matically generating personalized user interfaces with
Supple. Artificial Intelligence 174, 12-13 (2010), 910–
950.

10. González Calleros, J.M., Stanciulescu, A., Vander-
donckt, J., Delacre, J.P., and Winckler, M. A Compar-
ative Analysis of Transformation Engines for User In-

terface Development, in Proc. of 4th Int. Workshop on
Model-Driven Web Engineering MDWE’2008 (Tou-
louse, 1 October 2008). N. Koch, G.-J. Houben, A.
Vallecillo (Eds.), CEUR Workshop Proceedings, Vol.
389, 2008, 16–30.

11. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.
Derivation of a Dialog Model from a Task Model by
Activity Chain Extraction, in Proc. of 10th Int. Work-
shop on Design, Specification, and Verification of In-
teractive Systems DSV-IS’2003 (Funchal, June 11-13,
2003). Lecture Notes in Computer Science, Vol. 2844.
Springer, Berlin, 2003, 203–217.

12. Martínez-Ruiz, F. J., Vanderdonckt, J., and Arteaga, J.
M. Web User Interface Generation for Multiple Plat-
forms, in Proc. of 7th Int. Workshop on Web-Oriented
Software Technologies IWWOST’2008 (Yorktown
Heights, July 14, 2008). L. Olsina, O. Pastor, D.
Schwabe, G. Rossi, M. Winckler (Eds.), CEUR
Workshop Proceedings, Vol. 445, 2008, 63–68.

13. Paternò, F. and Zichittella, G. Desktop-to-Mobile
Web Adaptation through Customizable Two-
Dimensional Semantic Redesign, in Proc. of 3rd Int.
IFIP Conf. on Human-Centred Software Engineering
HCSE’2010 (Reykjavik, October 14-15, 2010). Lec-
ture Notes in Computer Science, Vol. 6409. Springer,
Berlin, 2010, 79–94.

14. Perico, E., TopCased User Interface generator, Atos
origin, 4 May 2005. http://www.topcased.org/index.
php?id_projet_pere=114

15. Plomp, C. and Mayora-Ibarra, O. A generic widget
vocabulary for the generation of graphical and speech-
driven user interfaces. International Journal of Speech
Technology 5 (2002) 39–47.

16. Pribeanu, C. An Approach to Task Modeling for User
Interface Design, in Proc. of World Enformatika Conf.
WEC’2005 (Istanbul, April 27-29, 2005). C. Ardil
(Ed.). Enformatika 5, 2005. 5–8.

17. Schneider, K.A. and Cordy, J. Abstract User interfac-
es: A model and notation to support plasticity in inter-
active systems, in Proc. of the 8th Int. Workshop of
Design, Specification and Verification of Interactive
Systems DSV-IS’2001. Springer, Berlin, 2001, 40–58.

18. Van den Bergh, J., Luyten, K., and Coninx, K. CAP3:
Context-Sensitive Abstract User Interface Specifica-
tion, in Proc. of ACM Symposium on Engineering In-
teractive Systems EICS’2011 (Pisa, June 13-16, 2011).
ACM Press, New York, 2011, 31–40.

19. Vanderdonckt, J., Tesoriero, R., Beuvens, F., and
Melchior, J. Towards a Fifth-Generation User Inter-
face Description Language with UsiXML V2.1. Sub-
mitted to Science of Computer Programming, June
2012.

20. Vanderdonckt, J. Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures, in Proc.
of 5th Annual Romanian Conf. on Human-Computer
Interaction ROCHI’2008 (Iasi, September 18-19,
2008). Matrix ROM, Bucharest, 2008, 1–10.

110

