
Generating User Interface from Task, User and Domain Models

Vi Tran, Jean Vanderdonckt, Manuel Kolp
Louvain School of Management-PRISME

Université catholique de Louvain
Louvain-la-Neuve, Belgium

Vi.Tran@uclouvain.be

Stéphane Faulkner
Louvain School of Management-PRISME

University of Namur
Louvain-la-Neuve, Belgium

Abstract— Researchers have greatly studied the
importance of automatic database user interface generation
based on declarative models. The task, domain and user
models are three important declarative models on which the
user interface can be built. This paper then proposes a
framework, i.e., a methodological process and a software
prototype to drive the automatic database user interface
design and code behind generation from the task, user and
domain model combined together. This includes both the
user interface and the sound and complete data update,
definition and manipulation. The case study used in this
paper is Translogistic, a project supported by the Walloon
Region that aims to develop a highly capable, competitive
and complete combined transport as well as a high value
quality logistics.

Keywords-Task Model, Domain Model, User Model,
Automatic Generation, User Interface

I. INTRODUCTION

Research works on UI have richly discussed the
capability and importance of automatic user interface
generation and propose them as the core of visual-based
development environments [16]. Specifically, user interfaces
for data systems have been a technical and human interaction
research question since a long time and today these UI
require dynamic automation and run-time generation to
properly be dealt with on a large-scale.

There are currently numerous and various approaches
using different input materials: designs, patterns,
architectures, declarative models to generate UI. In this set of
techniques, an emerging method is the automatic UI
generation from declarative models [1, 3, 6, 9], inspired from
Fourth Generation Languages code generation [2, 5, 7]. In
practice, these models are high-level abstraction such as goal
or task [1], pattern [14], presentation, dialogue [4] or
interaction, domain [8] models. The high-level abstraction
features provided by these declarative models typically
reduce the semantic gap between the software and
organizational concepts.

The information used to build the user interface usually
comes from a large and complex context in which the users
work to complete their tasks. This context includes the users’
characteristics (user model), their current domain of

application (domain model often linked in the database
world to the data or conceptual model), the tasks they
commonly perform (task model), the platform they work on
(platform model), the device [17] they are currently using
(device model) and so on. This context is not fixed for the all
the user interface generating processes since it depends on
the different approaches.

The task, domain and user models are three important
models based on which the user interface can be built easily
for the following reasons in the context of human computer
interaction:
 The task model describes the abstract user interface. The

task model is used as a single representation for the user
interface that can be used to generate the UIs for different
modalities and platforms.

 The domain model provides the special features for
creating a user interface. These features are the attributes
of the objects in domain model and the relationships
between these objects. The domain model is not used
separate from other models to generate the user interface,
it is combined to the task, application, domain, user,
dialog models.

 The user model supports the creation of user interfaces
which consider to the preference of the users. Like the
domain model, the user model is not used separate from
other models to generate the user interface since there are
various aspects of the user interfaces adapted according
to user models.
Combining models is an important concept in user

interface generation since the different models describe
different aspects of the UI. For example, a user interface
generated from a task model is expected to be a means on
which the user can communicate with the system to
accomplish his task. The user interface generated from a user
model is expected to support the users based on their
characteristics. The user interface generated from several
different models carry many needed aspects of a user
interface.

Various research works have focused on such models to
generate UIs. For instance, TOOL[10] uses the task and user
models to generate the UI. The UI is automatically
generated from the domain and use case models [18] and
from combining task, domain and presentation models [8].

This research hence proposes a framework, i.e., a
methodological process and a software to drive the
automatic database user interface design and code behind

2009 Second International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies, and Services

978-0-7695-3776-4/09 $26.00 © 2009 IEEE

DOI 10.1109/CENTRIC.2009.24

19

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

generation from the task model, user model and domain
model combined together.

The main difference in our work from other ones is the
combination of these three major models and the generation
of the code for performing both the UI and the basic
functions of a database application such as Display(),
AddNew(), Update(), Delete(), Search() and Review(). As
pointed out by Pribeanu [13], these basic functions can be
predicted and they are performed based on the attributes, the
objects and the relationships in domain model which are
linked to the tasks.

The different models serve a specific purpose at different
stages of our design process. The task model expresses the
knowledge required or procedures used to perform some
task; the user model describes the user abilities and beliefs;
the domain model defines the aspects of the application
which can be adapted or which are otherwise required for the
running of the system. Therefore, the task model is used to
specify a generic user interface; the domain model is used to
specify the control of this user interface – at this level the
user interface is specified with more detail – ; the user model
is used to influence the design and to select among
alternative solutions in the design space.

The rest of this paper is organized as follows: Section 2
presents our automatic UI and code generation process
taken together the task, user and domain models. In Section
3, we explain the UI generator. The Translogistic project
supported by the Walloon Region that aims to develop a
highly capable, competitive and complete combined
transport as well as a high value quality logistics is used as a
case study. Finally, we conclude the research.

II. ENGINEERING UI FROM TASK, USER AND DOMAIN

MODELS

Fig. 1 depicts the main components of our UI and code
generation architecture. The Model analyst agent uses the
task-, database- knowledge bases and the database itself to
analyze the task and domain models to derive sub-tasks,
domain objects and their attributes; the user model is also
loaded by the Model analyst agent. The Function analyst
agent uses the Function description base to define the basic
functions of the application. The loaded tasks have to be
manually linked to the attributes of the domain objects and
to the function defined by the system by the developer.
From these linked objects, the UI creator agent
automatically creates the user interface (UI) objects based
on the mapping rules. Once the UI objects have been
created, the code generator agent generates the code that
will implement the user interface. Specially, our process
does not only generate the user interface code, but also the
application code behind needed to perform these pre-
determined tasks.

The model analyst agent is used to load the task, user
and domain models.

In order to obtain the desired behavior of a database
application task, the Function analyst agent defines the
basic functions of an application by using the function

description base. These functions are, for instance,
Display(), AddNew(), Update(), Delete(), Search() and
Review() functions.

Once the tasks in the task model have been linked to the
attributes of the domain objects in the domain model,
Concrete Interaction Objects (CIOs) are created based on the
attributes characteristics and the relationships between the
domain objects by the UI creator agent. These characteristics
are for instance the data types, data length, is-key flag. Once
the CIOs have been created, they are transformed into Final
interaction Objects (FIOs). A FIO is described as a user
interface control unit in a concrete platform.

Finally, the code generator agent uses the Layout-
knowledge base to generate the user interface code based on
the FIOs and uses the Message base to generate the
application code based on the defined functions. The
application code is generated to perform the tasks linked to
the functions which are defined by the Function analyst
agent.

In summary, the components of our UI and Code

Generation Architecture are:
 The Database used to obtain the information on and

of domain model.
 The Task-knowledge base that describes the rules

of the task model.
 The Mapping rules base that describes the rules for

specifying the concrete user interface from domain
objects and the relationships between these objects
and for transforming the concrete user interface to
the final user interface.

 The Database-knowledge base that describes
generic aspects of the database tasks, the advantages
of the syntax and the structure of a query.

 The Layout-knowledge base that contains the
syntactic design guidelines for controls, windows

UI
creator Database

Database-
knowledge

Model
analyst

Task-
knowledge

User
Model

Data
Model

Declarative models

Task
Model

Mapping
rules

 Application
 code

User
interface

code

Code
generator

Layout-
knowledge

Function
analyst

Function
description

Messages

Fig.1. Main components of our UI and Code Generation Architecture.

20

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

and other widgets layouts. It also describes the
semantic rules from which the control types are
defined.

 The Messages base that contains the generic
messages such as errors, warnings, information to
users messages and so on

 The Function description base that describes the
basic functions of a database application. For
instance, in order to insert the data into a database it
has to create a function Insert() which is used to get
the data from end user and to input them into the
database.

Our process for generating the user interface is depicted in
Fig. 2. The code generation process starts with loading the
domain model from the database, the user model from a text
file, the task model from a XML file. The system also
defines the functions which are used to perform the generic
database tasks such as the ones listed previously.

Fig. 2. Code generation workflow: UIs generated from task, user and

domain models.

Once the models have been loaded, the developer
determines the tasks from which the user interfaces can be

generated based on the domain model. Typically, these tasks
are database manipulation tasks. The developer makes then
the links between the specified tasks and attributes of the
domain objects in the domain model and the links between
the others tasks and the defined functions. The CIOs are
created based on the linked objects; then these CIOs are
transformed to FIOs. Finally, the user interface code and
application code are automatically generated.

In this process, we use the database, XML file and
diagram file as resources to load the task, user and domain
models. These resources are created by the business
analyst/designer:

 The XML file stores the task model which is created
by task model case tools such as
ConcurTaskTreeEnvironment (CTTE) [11] or
TERESA [12].

 The Diagram file is used to describe the user’s
characteristics.

III. UI GENERATOR

As depicted in Fig. 2, the user interface generator has
seven different steps. It starts with loading the task, user and
domain models and ends with generating the user interface
code and application code. These steps are discussed in
detail in the following. The case study used in this paper is
Translogistic, a project supported by the Walloon Region
and labeled “competitiveness pole”. TransLogisTIC aims to
develop a highly capable, competitive and complete
combined transport as well as a high value quality logistics.

A. Loading the task, user and domain models

The task model is loaded from a XML file; this XML
file is built by the developer by using tools like CTTE [11] or
Teresa [12]. The types of tasks, read from the XML file, are
abstraction, interaction, application and user; these types are
defined at the analyst level. At this level, the defined tasks
represent different information including the unnecessaty
information for the UI generation. For instance, the user task
is a cognitive task that the end user selects a strategy to solve
a problem or checks the result. Therefore, they are translated
to action and operation types at the design level based on the
following Task Mapping Rules (TMR):

 TMR1: Abstraction/Cooperation and application
tasks are automatically mapped to action and
operation tasks.

 TMR2: We do not consider user tasks since these
are tasks from users and they do not communicate
with the system.

 TMR3: Interaction tasks are not classified
automatically but by the developer. Interaction tasks
in ConcurTaskTrees are used to describe the end-
user’s command to the system and end-user’s
communication with system. In our process, the Exit
task is an action task and Enter user name an
operation task; however in ConcurTaskTrees, these
same tasks are interaction tasks. This is indeed a
limitation when choosing a task model built by the

Loading models

Task model
Domain model

User model

Generating code

UI
code

App
code

C
od

e
ge

n
er

at
io

n
 w

or
k

fl
ow

Database

Defining functions

Developer

Make links
between tasks and

attributes of
domain object

Make links
between tasks
and methods

Creating concrete
interaction object

Transforming
CIOs to FIOs

Specifying
database functions

21

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

ConcurTaskTrees Environment to generate a user
interface (See for instance, EnterParameter and
ProvideRequest tasks in Fig. 3).

 TMR4: All sub-tasks of a task mapped to an
operation task from an interaction task are also
mapped to operation tasks (See, for instance, task
EnterParameter in Fig. 3).

An Action task is a task used to describe the end-user
command to the system such as close a dialog, delete a data
record, search information, open a dialog and so on.

An Operation task is a task which is used to describe the
display of information to end-user or the reception of the
information from the end-user.

Tasks are mapped as follows :

Task mapping
Abstraction task Action task

 Interaction task Action or operation task
 Cooperation task Action task
 Application task Operation task
 User task None

Fig. 3 depicts an example of the mapping between tasks

in ConcurTaskTrees and in our process considering a typical
AccessStudent Data task. Task Verify is not focused; tasks
AccesstudentData, ShowResults are automatically mapped to
action and operation tasks; tasks ProvideRequest,
EnterParameters, SubmitRequest are mapped to action and
operation tasks by the developer; tasks EnterName and
EnterDepartment are automatically mapped to operation
tasks since EnterParameters is mapped to an operation task.

The information in the user model is analyzed to classify

the users into three different classes based on their ability to
use the software. The analyzed information is the
characteristics of the users such as the experience, skill,
knowledge, behavior so on. The three classes of the user
model are named “Simple”, “Mean” and “Complex”
corresponding to three ability levels for using the software.
Based on these user classes, the designer will design a
complex, medium or simple user interface.

Finally, the domain model is loaded from a concrete
database by executing the SQL queries to obtain the
information of the domain objects (table names), their
attributes (column names), aspects of these attributes

(column attributes) and relationships between these objects.
This database is determined by the developer.

Based on the different databases, the different SQL
queries are executed to obtain the information of the domain
model. This information is stored specifically in the database
data dictionary with respect to the DBMS type.

For example, in Oracle, the table name is stored in the
User_tables view; the column attributes are stored in the
All_tab_cols view; the constraints are stored in the
All_constraints view. All these are views of the Oracle
Database data dictionary stored in the system user/schema.
In SQL server, the table name is stored in
information_schema.tables; the column’s attributes in the
information_schema.columns; the constraints in the
information_schema.constraints. They are, in this case,
meta-system views owned by dbo, the database owner.

B. Defining the database application functions

The system defines the functions for performing the
generic tasks of a database application such as add new a
record, delete a record, …. These functions are Display(),
AddNew(), Update(), Delete(), Search() and Review()
functions. They are described in detail in the Table 1:

TABLE I. DEFINED FUNTIONS

Function Description
Display() Used to select the data stored in the database

and to displays this data to the user
AddNew() Used to insert a data record into the database
Update() Used to modify the data of an object in the

database
Delete() Used to delete the data records of an object

in the database
Search() Used to filter the data records based on the

some search condition which are determined
by the user

Review() Used to review the data records by
displaying the first, next, previous and last
record

C. Making links between tasks and domain’s objects

The operation tasks are linked to the attributes of the
domain objects (See Fig. 4) and the action tasks are linked to
the defined functions (See Fig. 5). These links are defined
by the developer based on the RLO rules.

The Rules for making Link between Operation tasks and
domain’s attributes (RLO) are given below:

 RLO1: Operation tasks that have at least one sub-
task are not linked to the attribute of the domain
objects in the domain model.

 RLO2: Each leaf operation task (a leaf operation
task is a task which has no sub-task) is linked to at
least one attribute of the domain object. It means that
all operation tasks are used to generate the user
interface.

Fig. 3. Example of Mapping: an AccessStudentData task

ShowResults Mapping

EnterName

AccesstudentData

EnterParameters

ProvideRequest

EnterDepartment

SubmitRequest

Action task

Operation task

22

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

 RLO3: One operation task can be linked to more
than one attribute of the domain object. For example,
task Name is linked to attributes First Name and Last
Name.

 RLO4: One attribute of the domain object can be
linked to more than one operation task. For example,
attributes First_Name and Last_Names of object
Transporters are linked to tasks Name and Manager.

The Rules for making Links between Action tasks and

defined functions (RLA) are:
 RLA1: At first, each action task is linked to a

function which is defined by default and the name of
the function is the name of the task. For example, the
Task Search transporter is linked to the function
Search ().

 RLA2: Each action task is linked to only one
defined function.

 RLA3: Each defined function is linked to only one
action task.

 RLA4: The original action task may be linked to a
function and may be not based on the task goal. If
this task starts by performing a function then the
original action task is linked to this function. For
example, when the task display transporter
information starts, a display() function is performed
so that its original goal is linked to function
display().

D. Creating CIOs

A Concrete Interaction Object (CIO) is a graphical
object for entering and displaying the data that the user can
see, feel and manipulate [15]. A CIO is synonymous to a
control, a physical interactor, a widget or a presentation
object such as text-field, combo-box, check-box, button … A
CIO in our process is defined by its label, control type,
editable attributes as follows:

Concrete Interaction Object

Label: The label of the CIO; it will be used to label the control
Control type: The control type which is used to communicate

between the user and computer’s system
Editable: Yes if this control can be edited by end-user; otherwise No

The concrete user interface should define some, but not
all, aspects of the final presentation. This ensures sufficient
flexibility in being able to realize the presentation on a
variety of devices and platforms. Application developers
should be able to define themes and other policies for
guiding the transformation for a particular device/platform.
For example, the application can define the type and size of
font …

In order to determine the attributes of a CIO we need to
specify the domain object (called edited object) on which the
data can be changed and to specify the main attribute of the
domain objects (called main attribute).
 An Edited object is an object determined by the

developer. One can add a new data into, get data from,
search data on, … an Edited object if a task is linked to
basic functions New(), Delete(), Search() …

 A Main attribute of a domain object which relates to an
Edited object through a 1-1 or n-1 relationship is an
attribute determined by the developer. A Main attribute
is used to determine the control type in the next step.
For each leaf task, a CIO is created. Each CIO is created

based on the name of the task, the characteristics of the
domain attributes which are linked to this task and the
relationships between the domain objects. These
characteristics are the data type, length, is-key flag and so
on. The name of the CIO is the name of the linked task; the
control type and editable attributes of the CIO are
determined based on the RDC mapping rules presented
below. Fig. 6 depicts how to create the CIOs based on the
links between the tasks and the domain objects, and the
defined functions. In the example, the object Transporters is
an edited object, the attributes Service name and
Service_Name are the main attributes.

One task can be linked to more than one attribute of the
domain objects and one task has one determined data type.
Therefore if a task is linked to more than one attributes and if
the data type of these attributes is T then its data type is T.
Otherwise the data type is text. For example, if a Task Total
is linked to columns Price and Amount and the data type of
both columns is number, the data type of the CIO is number.
But if a task Make Appointment is linked to columns Date
(datetime type) and Address (text type) then the data type of
CIO is text. And if a task is linked to a function then its data
type is Void. In order to simplify determining the control
type we need to specify the class to which the linked

Figure 4. Making the links between the operation tasks and the
attributes of domain’s objects for the Translogistic Project

Return

Display transporter

Search
Transporter

Name

Display Transporter
info

Email Service name Type Manager

Fig. 5. Making the links between the action tasks and the defined methods for
the Translogistic Project

Search Transporters

Display transporter info Search transporter Choose transporter

Exit()
Name Category Address Search () ChooseTransporter()

Return

23

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

attributes belong. If the linked attributes derive from more
than one object and if the relationship between the edited
object and another one (called A) is 1-1 or n-1 then these
attributes belong to the edited object group; if it is 1-n or n-n
then these attributes belong to class A.

The control type of a CIO is determined based on the

following Rules for Determining the Control type.
 RDC1: When a task derives from the attributes of

the edited object then the control type of the CIO
created for this task is Text field or Text box if the
data type is Text; Number field if the data type is
Number; Check box/Radio if the data type is
Boolean; Date picker if the data type is Date and the
Editable attribute value of this CIO is Yes. For
example, in Fig. 6 the CIOs Name, Email,
Telephone … derive from the object Transporteurs.

 RDC2: When a task derives from an attribute of a
domain object which is not the edited object and if
this attribute is not the main attribute and the
relationships between the edited object and another
one is ‘1-1’ or ‘n-1’ then the control type of the CIO
is Text field or Text box if the data type is Text;
Number field if the data type is Number; Check
box/Radio if the data is Boolean; Date picker if the
data type is Date and the Editable value of this CIO
is No.

 RDC3: When a task derives from an attribute of the
domain object that is not the edited object and if this
attribute is the main attribute and the relationships
between the edited object and another one is ‘1-1’ or
‘n-1’ then the control type of the CIO is Combo box
and the Editable attribute value of this CIO is Yes.
For example, in Fig. 6, the CIOs Service name
derives from the object Services.

 RDC4: If a task derives from the attribute of a
domain object which is not the edited object and the
relationships between the edited object and another
one is ‘1-n’ or ‘n-n’ then the control type of the CIO
is table and the Editable value of this CIO is No. For

example, in Fig. 6 the CIOs Note, Address and Time
derive from object Appointments.

 RDC5: If the CIOs of the table type belong to the
same CIO class then they are assigned to the same
table control. Each CIO of type table in our process
is a separate interface, but in practice it is just a
column of a table. For example, the control type of
the CIOs Note, Address and Time is the table type
and they are separate CIOs but belonging to the
same group Appointments; they are then assigned to
the object Appointments.

 RDC6: If the data type is the container type then the
control type of the task is Tab or Panel control.

 These rules are summarized in Table 2:

TABLE II. CIO’S CONTROL TYPE

CIO created derives from following components
Relationship

between edited
object - related

object

Data type of
attribute of
domain’s

object

Edite

d
object

Related
object

1-1
n-1

1-n
n-n

Main
attrib
ute

(CIO)

Control type

Edita
ble

Text

 Text field

Text
(length>500)

 Text box

Text

Text field

Text
(length>500)

Text box

Text

Combo box

Text

 Table

Number

Number field

Number

Number field

Number

Combo box

Number

 Table

Date
DateTime

Date picker

Date
DateTime

Date picker

Date
DateTime

Combo box

Date
DateTime

 Table

Boolean

 Check box
Radio button

Boolean

Check box
Radio button

Boolean

Check box
Radio button

Boolean

 Table

Container Tab

Container panel

Void Button

Void Menu

Void Pop-up menu

Exit()

Fig. 6. Creating concrete interface object based on the Translogistic Project

Display transporter

Display transporter info
 Close

Button
Editable

Search()

 Name … Service info Display appointments

 Service name Type
Name
Text field
Editable Note Time Addres

 Service name
Compobox
Editable

 Type
Number field
NotEditable

 Time
Table
NotEditable

 Address
Table
NotEditable

 Search
Button
Editable

Search

 Note
Table
NotEditable

24

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Based on the classes in the user model, the system selects
a correct control type among the possible control types. In
other words, if there is more than one control type
determined for one CIO then our software chooses one of
them for this CIO from the classes in the user model. For
example the control type of the CIO Exit can be Button,
Menu or pop-up menu types. If it is “Simple” or “Mean”
then the control type is Button; if it is “Complex” then the
control type is Menu.

E. Translating CIOs to FIOs

The Final Interface Object (FIO) represents the
operational interface object that is running on a special
computing platform either by interpretation (e.g., through a
web browser) or by execution. The FIO is determined based
on the CIO in a certain language, on a certain platform and
so on.

A Final Interaction Object is defined as follows:

Final Interaction Object
Label: The label of the control
Control type: The control type is specified in

certain platform
Editable: Yes if this control can be edited by

end-user; otherwise No
Position: The position (X, Y) of control in a

form or in the screen
Size: The dimension of the control, it contains

width and height

The FIOs are specified based on the CIOs created in
Section D and the programming language determined by the
developer. For each CIO, a correlative concrete control is
created. As discussed, a CIO is defined by the attributes
Name, control type, editable, position and size. These
attributes are created as follows:

 The Label of the FIO is the Label of the CIO
 The Control type of the FIO is determined based on

Table III for the Java and VB.Net languages.
 The value of the FIO’s Editable is the value of the

CIO’s Editable.
 The Position and size attributes of a FIO are

determined based on the order of creating the FIO
and the length characteristic.

Table III shows the control type mapping for Java and
VB.Net .

TABLE III. FIOS’ CONTROL TYPE

Control type in Control type of
CUI Java-AWT Java-SWING VB.Net

Text field TextField JTextField TextBox
Text box TextArea JTextBox TextBox
Number field NumTextBox
Combo box JComboBox ComboBox
Date picker DateTimePicker
Check box Checkbox JCheckBox CheckBox
Radio control Choice JRadioButton RadioButton
Table Table JTable DataTable
Container Container JContainer ContainerControl
Tab JTabbedPane TabPage
Panel Panel JPanel Panel

Button Button JButton Button
Menu Menu JMenu Menu
Pop-up menu PopupMenu JPopupMenu PopupMenu
Label Label JLabel Label
List List JList ListBox
Dialog Dialog JDialog Dialog

F. Performing the defined functions

In order to perform the functions linked to the tasks in the
previous steps, our software determines the controls which
are affected by performing these functions. These functions
have been defined in Table I. After determining the control,
the software specifies how the control is affected. For
example, it has to get data from these controls or to display
data on these controls. Based on the goal of each function the
software generates the different SQL queries such as
Select/Insert/Update/Delete. These SQL queries are built
based on the attributes of the domain objects linked to the
tasks.

G. Generating code

Finally, the user interface and application code are
automatically generated based on the FIOs, the functions
linked to the tasks and the concrete programming language.
Different code syntaxes are generated for the different
languages.

Some important points need to be considered when
generating the code:

 The code syntax is generated differently considering
the languages.

 The code generated should be identified, clear and
easy to understand which is crucial to maintain,
enhance and develop this code.

 The control name is unique so we have to find a
solution for naming a control automatically so that
the generated name relates to the CUI name and is
unique too. Creating the name must be uniform and
standardized since we need to use these names when
we generate the code to display and update data.

 The controls are created in a concrete language
based on the attributes of the CUIs; the control type
is determined by the Control type of the CUIs; this
control is named by the name of the CUIs, etc.

IV CONCLUSIONS

To be efficient, data-intensive systems that are an
important component of today’s software applications need
effective human-computer interaction. User interfaces for
such data systems has been a recurrent research issue and
nowadays these UI have to support automatic generation to
adequately be dealt with.

We have proposed here a framework whose purpose is to
drive the automatic database user interface design and code
behind generation from the task, user and domain model
combined together.

Section 2 has presented our automatic UI and code
generation process taken together the task, user and domain
models. Section 3 has explained our UI generator.

25

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

This framework has aimed at offering a low cost, short
time-to-implementation and efficient development
environment from the business user side. Indeed, the
objective is not to provide a tool for supporting the
development of the database applications to not only the
developers but also to support non-IT end-user. We have
applied the research on Translogistic, a project supported by
the Walloon Region that aims to develop a highly capable,
competitive and complete combined transport as well as a
high value quality logistics is used as a case study

ACKNOWLEDGMENT

Most of the research on outbound logistics made at
UCL/CESCM and the contents of this paper have been
initiated by the Walloon region under the auspices of the
TransLogisTIC project (www.translogistic.be). We
gratefully acknowledge the Region and the project industrial
partners for their support.

REFERENCES
[1] C. Pribeanu. “An Approach to Task Modeling for User Interface

Design”. Proceedings of World Academy of Science, Engineering
and Technology, Vol.5, April 2005

[2] P.P. Da Silva, T. Griffiths, N. Paton, “Generating user interface
code in a model based user interface development environment”.
In Proc. of Advanced Visual Interfaces (AVI'00), New York, pp.
155–160, 2000.

[3] E. Schlungbaum and T. Elwert, “Automatic user interface
generation from declarative models”. In: J. Vanderdonckt, Ed,
Proceedings of Computer Aided Design of User Interfaces
(CADUI'96), pp. 3–18, 1996.

[4] B. Myers , S. E. Hudson , R. Pausch, “Past, present, and future of
user interface software tools”, ACM Transactions on Computer-
Human Interaction (TOCHI), v.7 n.1, p.3-28, March 2000

[5] L. Moroney and M. MacDonald, “ASP.NET Applications in Pro
ASP.NET 1.1” in VB .NET From Professional to Expert, Apress,
pp. 183- 230, 2006

[6] T. Griths, P. Barclay, J. McKirdy, N. Paton, P. Gray, J. Kennedy,
R. Cooper, C. Goble, A. West, and M. Smyth. “Teallach: A
Model-Based User Interface Development Environment for Object
Databases”. In Proc. of UIDIS'99, pp. 86-96, Edinburgh, UK,
September 1999.

[7] J. Eisenstein , A. Puerta, “Adaptation in automated user-interface
design”, Proceedings of the 5th international conference on
Intelligent user interfaces, p.74-81, January 09-12, 2000, New
Orleans, Louisiana, 2000.

[8] C. Pribeanu. An Approach to Task Modeling for User Interface
Design. Proceedings of World Academy of Science, Engineering
and Technology, Vol.5, April 2005.

[9] P. Pinheiro da Silva. “User Interface Declarative Models and
Development Environments: A Survey”. In Proceedings of DSV-
IS2000, volume 1946 of LNCS, pages 207-226, Limerick, Ireland,
June 2000. Springer-Verlag.

[10] A. Mahfoudhi, M. Abed, M. Abid. “Towards a User Interface
Generation Approach Based on Object Oriented Design and Task
Model”. TAMODIA'2005 : 4th International Workshop on TAsk
MOdels and DIAgrams for user interface design For Work and
Beyond Gdansk, Poland September 26-27, 2005.

[11] F. Paternò, G. Mori, and R. Galiberti, “CTTE: an environment for
analysis and development of task models of cooperative
applications”. In CHI ’01 Extended Abstracts on Human Factors in
Computer Systems. Seattle, Mar., ACM Press, 21–22, 2001.

[12] F. Paternò, C. Santoro: “One Model, Many Interfaces”. Proc. of
CADUI'2002, Kluwer. pp.143-154, 2002

[13] C. Pribeanu. “Tool Support for Handling Mapping Rules from
Domain to Task Models”. Coninx, K., Luyten, K., Schneider, K.
(Eds.): Proc. of TAMODIA 2006, Hasselt, Belgium, 23 – 24
October. Lecture Notes in Computer Science - LNCS 4385,
Springer 2007, pp. 16-23.

[14] M. Elkoutbi, I. Khriss, and R. K. Keller, “Generating User
Interface Prototypes from Scenarios”, in Proceedings of the Fourth
IEEE International Symposium on Requirements Engineering
(RE'99), pages 150-158, Limerick, Ireland, June 1999.

[15] D.A. Duce, M.R. Gones, F.R.A. Hopgood, J.R. Lee (Eds.), “User
Interface Management and Design”, Proceedings of the Workshop
on User Interface Management Systems and Environments,
Lisbon, 4-6 June 1990.

[16] J. Nichols, A. Faulring. “Automatic Interface Generation and
Future User Interface Tools”. In: CHI. Proceedings of the
Workshop on the Future of User Interface Design Tools, 2005

[17] K. Gajos and D. S. Weld. “Supple: automatically generating user
interfaces”. In IUI’04, Funchal, Madeira, Portugal, 2004. ACM
Press.

[18] A.M. Rosado da Cruz, J.Pascoal de Faria. “Automatic Generation
of User Interfaces from Domain and Use Case Models”. Quality of
Information and Communications Technology, 2007. QUATIC
2007. 6th International Conference on the.

26

Authorized licensed use limited to: Saerens Marco. Downloaded on November 2, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

