
Retrospective and Challenges for
Model-Based Interface Development

Pedro Szekely
Information Sciences Institute, University of Southern California, 4676 Admi-

ralty Way, Marina del Rey, CA 90292, USA
Phone: +1-310-822-1511 (ext. 641) - Fax : +1-310-823-6714

E-mail : szekely@isi.edu
WWW: http://www.isi.edu/isd/szekely.html

Abstract

Research on model-based user interface development tools is about 10 years old.
Many approaches and prototype systems have been investigated in universities and
research laboratories around the world. This paper proposes a generic architecture
for these tools, reviews the different approaches in light of this architecture, and
discusses their progress towards the goals of increasing the quality and reducing the
cost of developing interfaces. The paper closes with a discussion of challenges for
future model-based development tools.

Keywords

Model-based interface development, automatic user interface generation, user in-
terface design.

Introduction

Model-based user interface development tools trace their roots to work on user in-
terface management systems (UIMS) done in the early 1980’s [Myers95]. UIMSs
seeked to provide an alternative paradigm for constructing interfaces. Rather than
programming an interface using a toolkit library, developers would write a specifi-
cation of the interface in a specialised, high-level specification language. This speci-
fication would be automatically translated into an executable program, or inter-
preted at run-time to generate the appropriate interface.

Many early UIMSs focused on dialogue specification [Green86]. They used state
transition diagrams [Jacob86], grammars [Olsen83, Olsen86] or event-based repre-
sentations [Singh91] to specify the interface responses to events coming from the
input devices. The display aspects of the interface were typically specified outside
the specification language, in call-back procedures that painted the screen as ap-
propriate.

xxii Computer-Aided Design of User Interfaces

Some UIMSs used as their main specification the type and procedure declarations
that defined the functional aspects of the application [Beshers89, Olsen89]. Based
on this information, they generated menus to invoke the procedures, and dialogue
boxes to prompt users for the information needed to construct instances of the
types.

Through the late 1980’s and early 90’s the specification languages became more
sophisticated, supporting richer and more detailed representations that allowed the
systems to generate more sophisticated interfaces.

Today’s systems use specifications of the tasks that users need to perform, data
models that capture the structure and relationships of the information that applica-
tions manipulate, specifications of the presentation and dialogue, user models, etc.

The term model-based interface development tools refers to interface construction tools
that use these rich representations to provide assistance in the interface develop-
ment process. Tools range from automatic interface generation systems, generators
of help systems for applications, interface evaluation tools, advisors, etc.

Even though model-based interface development tools are much more sophisti-
cated than early UIMSs, they have not become popular in the commercial sector.
Most software developers use interface builders, toolkits and a programming lan-
guage to build the interfaces for interactive systems.

The main goal of this paper is to review the current progress in model-based tools,
and discuss challenges for the next generation of user interface tools in general, and
model-based tools in particular. The paper is organised as follows. The next section
will describe a general architecture of model-based tools that provides a way to
classify model-based tools according to the components of the architecture that
they emphasise.

The sections after analyse the success of model-based work on automatic interface
generation, high-level specification systems, help generation, and design advisors.
The last part of the paper discusses new challenges for user interface software, in-
cluding multi-platform support, intelligent support for the user, multi-modal inter-
faces and end-user tailoring. The paper closes with conclusions about the future of
model-based tools.

1 Generic Model-Based Interface Development Architecture

Figure 1 shows the typical components of a Model-Based Interface Development
Environments (MB-IDE). The rounded rectangles represent tools, the other
shapes represent information produced or consumed by the various tools. The
main components of the architecture are the modelling tools, the model, the automated

 Retrospective and Challenges for Model-Based Interface Development xxiii

Automated Design

Delivered
Application

Abstract
Design Tool

Concrete
Design Tool

Model

Task, Domain
Models

Abstract UI
Specification

Concrete UI
Specification

Compiler/
Linker

Design
Knowledge

Guidelines

Application
Code

Runtime
System

Implementation
Tool

Toolkit-Ready
File

Modeling ToolModeling ToolModeling Tools

Developer

Design Critics
Design Advisors

Figure 1. Model-Based Interface Development Process

design tools, and the implementation tools. Developers1 use the modelling tools to build
the model. The automated design tools are used to perform certain design activities
that developers either choose or are forced to delegate to the system. The imple-
mentation tool transforms the model into an executable representation that is
linked with application code, and delivered to the end-users. The following subsec-
tions discuss these components in more detail.

1.1 Model

The model is the main component of the system. The model typically organises in-
formation into three levels of abstraction. At the highest level are the task and do-
main model for the application. The task model represents the tasks that users
need to perform with the application, and the domain model represents the data
and operations that the application supports. Tasks models typically represent tasks
by hierarchically decomposing each task into sub-tasks (steps), until the leaf tasks
represent operations supplied by the application.

1 This paper uses the term developer to refer to all the people involved in constructing an interactive
application. When appropriate, the more specific terms such as task analyst, graphic designer, pro-
grammer, etc. will be used.

xxiv Computer-Aided Design of User Interfaces

The second level of the model, called in this paper the abstract user interface specifica-
tion, represents the structure and content of the interface in terms of two abstrac-
tions, Abstract Interaction Objects (AIO), information elements and presentation units. AIOs
are low-level interface tasks such as selecting one element from a set, or showing a
presentation unit. Information elements represent data to be shown, either a con-
stant value such as a label, or a set of objects and attributes drawn from the domain
model. Presentation units are an abstraction of windows. They specify a collection
of AIOs and information elements that should be presented to users as a unit. In
summary, the abstract user interface specification specifies in an abstract way the
information that will be shown in each window, and the dialogue to interact with
the information.

The third level of the model, called the concrete user interface specification, specifies the
style for rendering the presentation units, and the AIOs and information elements
they contain. The concrete specification represents the interface in terms of toolkit
primitives such as windows, buttons, menus, check-boxes, radio-buttons, and
graphical primitives such as lines, images, text, etc. In addition, the concrete speci-
fication specifies the layout of all the elements of a window.

The models of different MB-IDEs can differ substantially. Different MB-IDEs
typically provide different modelling languages for specifying the contents of the
model, and they also emphasise different levels of the model. For example, MAS-
TERMIND [Szekely95] requires developers to explicitly specify all levels of the
model, whereas JANUS [Balzert96] only requires a data model.

1.2 Modelling Tools

The modelling tools assist developers in building the models. The main goal of the
modelling tools is to hide from developers the syntax of the modelling languages,
and provide a convenient interface for developers to specify the often large quanti-
ties of information that are stored in the model. A wide range of modelling tools
have been developed, often specialised to the different levels of the model. These
tools range from text editors to build textual specifications of models (ITS
[Wiecha89, Wiecha90], MASTERMIND), forms-based tools to create and edit model
elements (MECANO [Puerta96b]) and specialised graphical editors (HUMANOID
[Luo93, Szekely92, Szekely93], FUSE [Lonczewski96], many others).

1.3 Design Critics and Advisors

Design critics are tools to evaluate designs. The model-based approach provides an
excellent platform for constructing analytic design critics because models contain a
rich representation of interface designs that these tools can analyse. Most design
critics work with the concrete user interface specification layer of the model be-
cause in most cases they provide evaluations about detailed features of the interface
(e.g., whether the interface provides a way to access all application functionality).

 Retrospective and Challenges for Model-Based Interface Development xxv

Design advisors are tools that suggest how to refine the abstract layers of the
model into more concrete ones. Design advisors use a knowledge-base of design
knowledge, typically represented as rules. The condition part of the rules identifies
some aspect of a design (e.g., an AIO), and the action part of the rule specifies a
way of refining/transforming the matched design element (e.g., the CIO to use for
an AIO).

1.4 Automated Design Tools

Many MB-IDEs allow developers to only specify certain aspects of a model. These
MB-IDEs feature automated design tools that compute the missing elements of the
model from the information that developers do provide. For example, JANUS
[Balzert96] only requires developers to supply a domain model, and it features an
automated design tool that automatically constructs both the abstract and concrete
specifications of the interface.

In contrast ITS and MASTERMIND [Szekely95] require developers to explicitly spec-
ify all levels of the model, so these systems do not offer automated design tools.
What they do offer is the capability to re-use specifications. The following section
discusses automated design tools in detail.

As shown in figure 1, automated design tools often use a repository of design
knowledge or design guidelines that control the behaviour of the design tool. In
most systems developers are not expected to modify the design knowledge, which
is typically specified by user interface specialists and the architects of the MB-IDE2.

1.5 Implementation Tools

The implementation tool translates the concrete specification of the interface into a
representation that can be used directly by a toolkit or interface builder. There are
essentially three kinds of implementation tools. Source-code generators (e.g., Mas-
termind) generate source code in a programming language, typically C++. UIMS
generators (e.g., FUSE) generate a file that can be read by an existing UIMS or in-
terface builder. Interpreters (e.g., ITS and HUMANOID) do not generate an “imple-
mentation file”, but rather interpret the model directly at runtime.

The last step in the interface generation process is to link the toolkit-ready-file with
application specific code and a runtime library. This is typically done using the
compiler and linker for the programming language used to implement the applica-
tion. Interpreter-based systems such as ITS do not use the compiler and linker, but
rather feature a runtime module that reads the models during runtime, and inter-
prets the concrete specification of the interface.

2 ITS can be viewed as an automated design tool where developers have to explicitly build the design
knowledge for each application or family of applications.

xxvi Computer-Aided Design of User Interfaces

Many MB-IDEs provide implementation tools that use the model to generate more
than the user interface. For example, JANUS, FUSE, UIDE [Foley91, Foley94] and
HUMANOID can generate significant parts of the help system for an application
based on the information contained in the model. Janus not only generates the in-
terface, but also generates the database schemas for an application, and much of
the data management code. Mastermind generates code for applications that allows
other processes to connect to an application, and to request to be notified when
certain tasks are completed, to be sent snapshots of the application state, and to
remotely invoke application tasks. This facility supports the construction of agents
that can assist users in various ways. This facility was used, for example, to build a
history agent that keeps a history of all the tasks that the user has completed an al-
lows users to re-invoke previously completed tasks.

As interfaces become more sophisticated, and users expect more services from
their interfaces. The ability to provide such additional run-time services for free is
one of the most attractive features of the model-based technology.

2 Retrospective

The following sections provide a retrospective of the main user interface design
and construction problems that have been addressed using the model-based ap-
proach. These sections discuss the various approaches that have been used, and
how well they solve the problems.

The retrospective section is organised into five main topics:

1. Automatic interface design. This section discusses the main approaches for auto-
mating interface design and their limitations.

2. Specification-based MB-IDEs. This section discusses MB-IDEs that do not try to
automate interface design, but rather give developers convenient languages for
expressing designs.

3. Help generation. Many MB-IDEs feature components that automatically generate
help. This section reviews the different approaches and comments on their suc-
cess.

4. Modelling Tools. This section discusses various approaches to modelling tools.
5. Design critics and advisors. This section presents a categorisation of these tools and

discusses their relative benefits.

Note. For each topic one or two tools are discussed in some detail. The chosen
tools are not necessarily the best tools according to some metric, but rather illus-
trate a point well, and detailed papers have been published about them. The goal of
this paper is to review the main approaches, not the individual tools.

2.1 Retrospective – Automatic Interface Design

The primary goal of many MB-IDEs is to automate as much as possible the design
and implementation of a user interface. These MB-IDEs emphasise the domain

 Retrospective and Challenges for Model-Based Interface Development xxvii

and task models, and automatically generate the abstract and concrete user inter-
face specifications from these models. Most MB-IDE in this category are oriented
towards database applications and produce interfaces that allow the end-users to
browse the database, to edit the contents of objects, to define new objects, and to
delete objects.

This section argues that automating interface design is intrinsically difficult, so MB-
IDEs should be very selective about the portions of the design that they choose to
automate.

2.1.1 Structure of Automated Design Tools

Model Contents. MB-IDEs whose primary goal is to automatically design use
mainly two kinds of models, a domain model that describes the structure and attrib-
utes of the information that the application provides, and a task model that describes
the tasks that users need to perform. For example, tools like JANUS, and early ver-
sions of MECANO, use only a domain model, whereas tools like TRIDENT [Van-
derdonckt94a, Vanderdonckt95b], ADEPT [Johnson95, Wilson96], DON [Kim 93]
and MODEST [Hinrichs96] use primarily a task model, but also have a domain
model.

The domain models of the automatic design tools are similar. They describe classes
of objects, inheritance between classes, the attributes of each class together with
their types and cardinality, and relationships between objects. In addition, the
models typically allow the inclusion of user interface specific information. For ex-
ample the model of object attributes often includes facets to indicate whether the
attribute should be shown to the user, an ergonomic name, and other information
to influence the choice of abstract interaction object to be used to specify the at-
tribute.

The task models of these tools are also similar. Tasks are usually decomposed hier-
archically, and information is included to specify the sequencing between the tasks
(e.g., and, or, xor, parallel). Often, the task model includes references to the do-
main objects needed and produced in each task. The task model is used during
automatic generation to determine the interface dialogue and to determine the in-
formation that should be shown in each window.

MB-IDEs in this category typically do not require developers to specify either the
abstract or concrete specifications of the interface.

Design Process. Most automated design MB-IDEs use the following sequence of
steps to automatically design an interface:

1. Determine the presentation units. This step essentially determines the windows that
will be used, and what information will be shown in each window.

2. Determine the navigation between presentation units. This step computes a graph of
presentation units that defines which units can be invoked from which other
units.

xxviii Computer-Aided Design of User Interfaces

3. Determine the AIOs for each presentation unit. The abstract interaction objects spec-
ify the behaviour of each element of a presentation unit in an abstract way (e.g.,
select one from set).

4. Map abstract interaction objects into concrete interaction objects. The concrete interaction
objects represent the widgets available in the target toolkit.

5. Determine the window layout. This steps determines the size and position of each
concrete interaction object.

The first three steps build the abstract user interface specification, and the last two
build the concrete specification.

Post Editing. Once the concrete specification is built, and the implementation
tool generates the “toolkit-ready” file, the developer has the opportunity to use and
interface builder beautify the layout, change fonts, colours, add decorations, and
perform other cosmetic enhancements.

2.1.2 Difficulties With Automated Design

Even though automatic design MB-IDEs can produce interfaces with little or no
development effort, there is concern about the quality of the generated interfaces.
There is substantial evidence to indicate that it is not feasible to produce good
quality interfaces for even moderately complex applications from just a data and
task models (together with simple annotations of the data model, such as flags that
indicate whether object attributes are relevant to the user interface).

The chapters by Morten Harning [Harning96] and by Stephanie Wilson and Peter
Johnson [Wilson96] describe critical decisions that must be made in the design of
an interface, which the automated design tools cannot currently make appropri-
ately, and which do not seem feasible to automate.

Harning’s paper contains an excellent example that illustrates the difficulty of
automating steps 1 and 3. Harning’s example is about a project management appli-
cation where users want an interface to monitor progress in the various activities
involved in a project. In this application there are four classes of objects repre-
sented in the data model: Employee, Project, Activity, Weekly Estimate, and Time
Entry. Harning demonstrates using examples that of a good interface must satisfy
the following properties:

• Users need windows that show information drawn from multiple objects. In the project
monitoring example, the project display is based mostly on the Project object,
but also shows attributes of the Employee and Activity objects. Furthermore,
the example shows that the choice of attributes is task-dependent, and required
developers to have a deep understanding of the user’s tasks. This means that
step 1 of the abstract design tool is hard, if not impossible to automate.

This property is achieved in the interfaces generated using Trident. The Trident
task model captures the information needed for each task, and the generation
algorithm calculates how the information flows between tasks in order to de-

 Retrospective and Challenges for Model-Based Interface Development xxix

termine what information to show in each presentation unit, and where to
place it. Systems like Janus, which only use the data model do not satisfy this
property.

• Users do not want the raw information, but rather they need the information to be re-
structured and summarised. In the project monitoring example, users want a
weekly report display that essentially combines the Activity and Weekly Esti-
mate objects on a weekly calendar display that shows how much effort was
spent on each activity during a specific week. Re-structuring and summarisa-
tion cannot be done without a deep understanding of the user’s tasks, and
again points to the difficulty of automating step 1.

 Another restructuring problem is that users want to see the names of people in
the Project Leader field as “name (initials)”. This means that rather than using
two AIOs to present two different attributes, a single one should be used to
present a combination of two attributes. This simple example suggests that the
assignment of object attributes to AIOs (step 3) is also a hard problem.

• Graphical displays are often more effective than tables and forms. Harning’s paper has an
example of a graphical display that uses a plot with two curves to show how
much time has cumulatively been spent on a project compared to the estimate
of the time remaining to complete the project. This example shows that the set
of AIOs need to be expanded to include more sophisticated elements such as
plots. Of course, then the problem is how to select the appropriate one (step
3), how to set all its parameters, and then how to map it to concrete interaction
objects (step 4).

There are two main approaches to automatic design, one based on task models,
and the other based on the domain model. The task model approach performs bet-
ter because task models have some of the information to satisfy the properties
listed above. The domain model approach does not have access to such informa-
tion, and can only produce simple interfaces, typically with one object per presenta-
tion unit.

The requirements listed above point to deep issues of interface design, and raise
questions about the utility of completely automating the design process, especially
steps 1 and 3. Even a small amount of developer involvement can have a huge dif-
ference. A simple calculation reveals the economics of the situation. Most of the
automatically designed interface force users to bring up several windows to view
the information they need to perform a task, rather than a single window with all
the information. Ignoring issues about time to assimilate improperly structured in-
formation and the error rates that can result, bringing up several windows and clos-
ing them can easily take 3 additional seconds. If users do this 20 times a day, in a
year, one full day will be lost per worker. If an organisation has 40 users, 2 man
months will be lost per year. Surely it is worth to have developers spend several
weeks working on a design.

xxx Computer-Aided Design of User Interfaces

2.1.3 Discussion

The conclusion of this section is that none of the 5 steps should be completely
automated. Rather, collaboration between developers and tools should be built in
from the start. Tools should offer suggestions and alternatives. Developers make
the decisions, accepting suggestions, choosing between alternatives or entering
their own solutions.

This means that the abstract and concrete specification layers of the models should
be available to the developers. The specification languages for these layers must al-
low developers to control all features of the interface that they want to control, no
matter how low level. Emphasis should shift from automation to computer aided
design.

A simple, and commonly used approach to computerised design aids is the post-
editing approach. An automated generation tool generates a first draft of the de-
sign, and then the developer edits the draft to produce the final design. This ap-
proach has a serious shortcoming, namely that when developers change the model,
they need to run the generator tool again, and the post-editing changes will be lost.

The post-editing approach has been used mainly to allow developers to beautify
layouts. However, many MB-IDEs such as FUSE feature automatic generator of
higher levels of abstraction, and run the risk of running into the same post-editor
problems.

One solution to the post-editing problem is to record the changes performed dur-
ing post-editing, and to reapply them to the output of the generation tools. This
approach was used in early versions of MECANO, but it proved difficult to apply
the changes reliably, especially when new elements were introduced to a design, or
old elements were deleted.

A more robust solution requires a deep integration of the computerised advisor
and the modelling tools. In this approach the advisor tools produce design alterna-
tives and suggestions that developers can incorporate into an evolving design via
the modelling tools. There is no batch generation process followed by a refinement
phase, but rather an incremental evolution of the design, where the computerised
advisors and the developers incrementally build the design.

Several MB-IDEs are moving away from automation in the direction of computer-
ised advisors. For example, the TADEUS [Elwert95, Schlungbaum96] system re-
quires developers to specify steps 1 and 2 in a structure called a dialogue graph.
Steps 3 and 4 are table driven. The system builds default tables with default entries,
but developers can edit these tables and override any entry. Step 5 is done auto-
matically, but TADEUS supports post-editing of the generated implementation file.

The FUSE system described in this book also provides a specification language and
tool (BOSS [Schreiber94b]) that lets developers specify the abstract interface speci-
fication, and many aspects of the concrete specification. In addition, FUSE provides
a tool (FLUID [Bauer96]) that uses the task and domain model to produce specifi-

 Retrospective and Challenges for Model-Based Interface Development xxxi

cations that can be fed to the BOSS tool to refine and produce an interface. It is
unclear for the published papers whether and how FUSE avoids the post-editing
problem.

TRIDENT is perhaps the most sophisticated and robust system that combines
automatic generation and computerised advice. TRIDENT developed many differ-
ent strategies and algorithms for performing each of the 5 steps listed above. For
example, they developed six strategies for defining presentation units, and have
tools that can automatically select and apply a strategy based on information con-
tained in the task and domain model. TRIDENT also offers developers the option
of choosing a strategy, or performing the step by hand. However, it is unclear from
the published literature on TRIDENT whether it uses an integrated approach as de-
scribed above.

2.2 Retrospective – Specification-Based MB-IDEs

MB-IDEs in this category seek to provide powerful interface specification lan-
guages. These languages provide effective layering or abstraction mechanisms that
allow developers to express interface properties at a convenient level of abstraction
to facilitate reuse and design modifiability. These languages also seek to give devel-
opers extensive control over all features of the interface, so that developers can ex-
press any design that they can think of. The goal is not to automate design, but
rather to make it easy for developers to express designs, change designs, retarget
designs to new platforms, new classes of users, new tasks, etc.

MB-IDEs in this category are oriented towards data management applications.
Most business-oriented applications fall in this category, but many engineering and
data visualisation applications do not, because they have interfaces whose graphical
components are too complex to be expressed in their interface specification lan-
guages.

2.2.1 Structure of Specification-Based MB-IDEs

The structure of specification-based MB-IDEs is also compatible with the architec-
ture shown in figure 1. They emphasise the model and the implementation tool,
and typically do not have an automated design tool.

The modelling language of these MB-IDEs have facilities for developers to express
models at the three different levels of abstraction shown in figure 1. The models of
these MB-IDEs typically feature a data model, but not always a task model. The
data model is used mostly in the implementation tool to generate the binding be-
tween the interface objects and the application data, so that the interface objects
can access the application objects to retrieve the pieces of information that will be
displayed (e.g., access the name field of a person object).

The modelling languages to specify the abstract and concrete user interface specifi-
cations are designed to maximise reuse. Even though the goals of the different

xxxii Computer-Aided Design of User Interfaces

MB-IDEs in this category are the same, the features of the modelling languages are
different. For this reason, this section will not attempt to describe these languages
in general terms, but rather uses the well known ITS system as an example. Other
MB-IDEs in this category include BOSS, HUMANOID and MASTERMIND.

2.2.2 ITS

The ITS system was developed by IBM research, and was used to construct several
large applications such as the information kiosks for the Seville world fair, a pur-
chasing system for a large corporation, an insurance industry application, and many
others.

ITS has modelling components corresponding to the three levels of modelling
shown in figure 1. The domain model is called a data pool, there is no task model,
the abstract specification is called content specification, and the concrete specification
is called a style specification.

The data pool definition language (domain model) supports the specification of
structured objects and sequences of objects, like the domain model in many other
MB-IDEs. The following is an example of the data pool specification for an airline
reservation system.

list listname = flights, numrecords = 10

field destination, rangename = cities, size = 20
field departure_time, size = 10
field departure_date, size = 20
field airline, rangename = airlines, size = 20
field number_stops, size = 5

The content specification (abstract user interface specification) of an interface con-
sists of a collection of frames. Frames can contain lists, forms, choices, information
blocks, and nested frames. These elements specify the information that will be pre-
sented to the user. Top-level frames correspond to presentation units. Lists and
forms specify which elements of the data pool are to be shown in a frame.

Information blocks specify static pieces of information to be shown in a frame.
Choices indicate sets of alternatives that can be chosen by the user, and correspond
to AIOs. Each element specification can be elaborated using an extensive set of at-
tributes that specify the interface content in detail.

The following is a fragment of the content specification for the airline reservation
example. This frame specifies that five flights are to be displayed, and specifies
which fields of the flights object to display.

frame id = check_today, action = getlist, listname = flights, value = flights.data

list listname = flights, number = 5
list-item field = destination, message = “To”
list-item field = departure_time, message = “Departure”
list-item field = departure_date, size = 20
list-item field = airline, message = “Carrier”

frame message = “To search for selected flights”
...

 Retrospective and Challenges for Model-Based Interface Development xxxiii

The style specification (concrete user interface specification) specifies the mapping
from AIOs to CIOs. To quote from Wiecha’s paper, “a style is a co-ordinated set
of decisions on the appearance and behaviour of the interaction techniques used in
a family of applications”. Styles are specified using rules. The condition part of the
rule can test any of the attributes of a frame or its children. The action part of the
rule selects the CIO to use, and specifies values for the attributes. Typically, the
rule set for an application consists of general rules that apply to families of frames
(e.g., there could be a rule for displaying choices as radio buttons), and specific
rules that match specific frames defined in the content (e.g., a rule for the check_
today frame defined above). General rules are reused in multiple applications and
within a single application. Specific rules are used to specify the features of a par-
ticular interface that make it different from the generic case.

The following is an example of a style rule. It specifies that if the content is a
choice, then construct a vertical group of a title, and something else, depending on
which of the nested conditions match. If only one element can be chosen, then the
second component is a vertical group, or a collection of horizontal groups, one for
every choice. The horizontal group consists of a dingbat to indicate radio buttons,
and a message. Note that this rule does not completely specify the display of
choices. Other rules may be used to determine the attributes of the unit types used
within this rule (VertGroup, HorzGroup, Dingbat and Message).

:conditions source = choice
 unit type = VertGroup
 unit type = Title
 :eunit

 :conditions kind = 1_and_only_1
 unit type = VertGroup
 unit type = HorzGroup, replicate = all
 unit type = Dingbat
 :eunit
 :unit type = Message
 :eunit
 :eunit
 :eunit
 :econditions
 …

 …
 :eunit
:econditions

The implementation tool of ITS consists of the rule interpreter and the run-time
support system that fires the rules appropriate rules when actions are invoked and
the contents of the data pool change.

2.2.3 Discussion

The main difference between specification-based systems such as ITS, and auto-
mated design tools such as JANUS is one of philosophy. In specification-based MB-
IDEs the modelling language is open, whereas in automated design tools it is

xxxiv Computer-Aided Design of User Interfaces

closed. In automated design tools, developers can only control the design using a
few attributes that the tool developers chose to export for that purpose, limiting
the developers’ ability to control the design of interfaces, and ultimately limiting the
quality of the interfaces that can be generated.

Even though ITS is a specification-based MB-IDE, developers do not specify all
the features of every individual window. The main point of ITS is that developers
should not have to do that. Developers using ITS must specify the abstract user in-
terface specification completely, that is, they have to specify the abstract interface
for every different kind of window. As argued in the previous section, this is good
because the abstract interface is precisely the hardest aspect to generate automati-
cally. However, developers using ITS do not have to specify the concrete user inter-
face specification completely. There is no automated designer to do it, but devel-
opers can reuse rule sets from libraries that contain the abstract to concrete map-
ping for significant portions of the interface specification. This reuse capability en-
ables specification-based MB-IDEs to incorporate many of the cost savings capa-
bilities of automated designers, while overcoming the most serious problems.

Other specification-based MB-IDEs such as HUMANOID and MASTERMIND share
the design philosophy of ITS, but differ in the nature of the modelling language. In
a large logistics application developed using HUMANOID, the developers were able
to identify about 13 different families of windows to account for the more than
100 different windows that the system provided. Developers modelled those 13
windows so they did not have to specify each window separately, as would appear
to be necessary with a pure specification-based system. However, the design of the
13 windows was according to user requirements, and it would not have been pos-
sible to design those windows automatically.

The BOSS system, briefly described in Lonczewski’s and Schreiber’s chapter [Lonc-
zewski96], is another example of a specification-based MB-IDE. BOSS is also a
module of the FUSE system, which is a mixture between automated designer, as
implemented in its FLUID module, and a specification system.

2.3 Retrospective – Help Generation

Many MB-IDEs [Lonczewski96, Moriyon94, Pangoli95, Palanque93b, Sukaviriya
90] have the ability to automatically, or semi-automatically generate a help system
for an application based on model information used to construct the user interface
in the first place.

Cartoonist [Sukaviriya90] was the first system to provide a compelling demonstra-
tion of help generation. Cartoonist allowed the user to ask “how do I do X?” ques-
tions, where X could be any of the actions of an application. In response, it would
show an animation showing the exact actions that the user needed to perform with
the mouse and keyboard to invoke the action. A typical example would show the
mouse selecting an object (if one was not selected), then pulling down the appro-
priate menu, filling out a dialogue box, and finally clicking the OK button.

 Retrospective and Challenges for Model-Based Interface Development xxxv

Cartoonist used the UIDE interface models. The abstract interface specification of
UIDE describes the actions that users can perform. The action specification con-
tains pre-conditions that specify the contexts in which the action can be per-
formed, and post-conditions that specify how actions modify the context. The
concrete specification models the mapping between actions and concrete interac-
tion objects. Using this information, Cartoonist was able to construct a plan with
the sequence of interaction techniques that needed to be invoked in order to per-
form an action. Cartoonist could even determine what other actions need to be in-
voked before in order to modify the context to satisfy the preconditions of the ac-
tion being explained. This allowed the user to ask for help at any time, even when
the context was not appropriate to perform the action.

HUMANOID also generated a help system for an application based on the model
[Moriyon94]. The help system provided hypertext help to explain the information
displayed in a region selected by the user (e.g., paper.txt represents a file), and ex-
plain all the commands that the user could issue (e.g., paper.txt can be selected by
clicking with the left button, and then the commands delete, and grep can be ap-
plied to it). An important contribution of the HUMANOID help system is that it
used an example-based technique to assist developers in specifying the text of the
help windows. HUMANOID first generated text automatically, but developers could
select text fragments to edit the wording, and then HUMANOID would interact with
the developer to find an appropriate place in the model to store the edited text
fragment. Placement in the model determined the contexts in which the text frag-
ment would appear.

The chapter by Contreras and Saiz in this book [Contreras96b] illustrates how the
knowledge in the models can be used to automatically generate software tutors,
and how the tutors can be customised to different classes of users with different
tutoring needs and preferences.

The chapter on the FUSE system, also describes how the information in a model
can be used to construct a help system. FUSE, like Cartoonist, produces context
sensitive help using the model information. It uses a different style of modelling
and also delivers the help in HTML pages rather than using animation.

2.3.1 Discussion

The ability to generate help systems using the information contained in the model
is one of the main benefits of the model-based technology. All of today’s applica-
tions feature a help system, and significant development effort must be devoted
towards implementing it. Context-sensitive help is especially difficult to implement
because it must reference internal data structures of the interface in order to query
the current context of the interface.

The next sections argue that it is precisely the ability to generate runtime services
such as help, that give the model-based technology an edge over conventional
technologies for implementing interfaces. Using conventional technologies, each

xxxvi Computer-Aided Design of User Interfaces

runtime service must be separately designed and implemented. Using the model-
based technology the services are generated for free, or for a small incremental
cost. The reason is that the services use the same information that is used to build
the interface in the first place. In addition, as an interface design evolves, the ser-
vices automatically evolve with it to remain consistent with the design.

2.4 Retrospective – Modelling Tools

Interestingly, ITS, the most widely used MB-IDE does not have a graphical model-
ling tool. Developers must learn the syntax of the modelling language, and enter
the models using a text editor. The creators of ITS found that developers learn the
syntax of the language quickly, and that the lack of a modelling tool is not an ob-
stacle to using the tool. They also report (personal communication) that a syntax
directed editor was built, but developers refused to use it.

The lesson to be learnt from this experience is that it is false that some tool is bet-
ter than no tool. A text editor is a powerful tool that is always available. Its most at-
tractive features are users know how to navigate with it, that it is very fast, that it
provides cut and paste, effective search mechanisms, global replace, the ability to
easily comment out pieces of a design, etc.

However, experience with widely used CASE tools, and expert system shells such
as Nexpert Object [Nexpert96] and Kappa [Kappa96] suggest that well engineered
graphical tools for building models are useful for the development of large applica-
tions. They can be better than text editors, but they must be well engineered, and
designed to support large applications.

Most MB-IDEs feature simple forms-based interfaces for creating and editing
model entities. Some MB-IDEs such as FUSE and ADEPT provide visual modelling
tools. These tools have not been extensively used, so it is early to comment about
their usability for developing large applications.

An interesting approach to modelling tools is embodied in a tool called Grizzly
Bear [Frank95]. This tool tries to hide from developers the intricacies of the mod-
els by providing an interface that looks like a traditional interface builder or a draw-
ing editor. The interface provides a palette of building blocks and a drawing area
where developers can draw pictures of the interface. Grizzly Bear builds models by
demonstration. It extracts model entities from the example interfaces that develop-
ers draw. It can generalise different pictures into different classes, and most impor-
tantly, it can infer dialogue fragments from before and after snapshots of an inter-
face. Grizzly Bear was used to completely build the model for a simple drawing
editor based on demonstrations of how the editor should work. An interesting fea-
ture of this tool is that it shows developers a textual view of the model as it is being
constructed. This view helps novice developers learn the modelling language, and
allows experienced developers to edit the textual representation directly. Grizzly
Bear represents the first step towards this kind of tool, and further progress needs
to be made before such a tool is ready for serious application development.

 Retrospective and Challenges for Model-Based Interface Development xxxvii

2.5 Retrospective – Design Critics and Advisors

Much work on design critics and advisors has been done in the context of model-
based tools [Bodart95d, Fischer93]. The reason is that in order to evaluate a design,
and automated critic has first to analyse the design to determine what it does. The
models provide rich information for critics and advisors to do their work.

The following kinds of evaluation tools have been investigated.

Property verification. The tool verifies that a design satisfies certain properties (e.g., all
application functionality is reachable). Some tools [Foley94, Palanque95] can only
verify a set of pre-defined properties encoded in a knowledge-base. More powerful
tools [Paternó95] allow developers to specify the properties to be verified.

End-user simulation. These tools [Kieras96] simulate a user interacting with an appli-
cation, and make predictions about times to perform tasks, learning times and
likely errors.

Summative evaluation. These tools produce numbers that can be used to rank designs.
An example of such a tool is AIDE [Sears95], a tool to compute metrics based on a
theory of layout quality. Work on such tools is still very preliminary. The chapter
by Comber and Maltby [Comber96], in this book describes experiments designed
to validate the results of some of these tools.

Many property verification tools [Löwgren92] are designed to detect violations of
standard user interface guidelines (e.g., File menu should have the mnemonic F).
These tools play a similar role to spelling checkers in word processors: they detect
surface problems that show a lack of professionalism. They do not detect problems
related to the semantics of the interface, but nevertheless, they are very useful.

Most style-guide verification tools are not model-based, but rather take as input the
toolkit ready file used in well known toolkits (e.g., resource files for Windows, UIL
files for Motif). The limitations of these tools are discussed in the paper by Farenc
et. al. in this book [Farenc96]. The problem is that the toolkit-ready file does not
contain enough information about a design to verify many of the style rules. In the
context of ERGOVAL, 44% of the rules can be automatically verified using the
toolkit-ready file, and up to 78% could be automated if the evaluation tool had ac-
cess to appropriate information. The model-based approach to interface develop-
ment should allow tools to get closer to the 78% limit.

For example, Farenc et. al. illustrate the limitations of toolkit-ready files with the
rule that states that “for any input, if there are any acceptable values, such values
must be displayed.”. Such a rule can be automated in the context of most MB-
IDEs because their models contain information about the acceptable values for in-
puts, and information about how the inputs are displayed.

There are a few notable examples of design critics aimed at more fundamental de-
sign issues, addressing issues similar to grammar and document content in word
processing. These critics require very detailed models, more detailed than the mod-

xxxviii Computer-Aided Design of User Interfaces

els currently being used in most MB-IDEs. One example of such a tool is
NGOMSEL [Kieras96], which belongs to the end-user simulation category of design
critics. NGOMSEL takes as input a detailed task model where the leaf tasks repre-
sent interaction techniques (CIO). It can simulate a user interacting with the appli-
cation, and predict how long it will take an expert user to complete a high level
task. NGOMSEL can also make predictions about features of an interface that users
will find difficult to learn.

Another example of a sophisticated design critic is embodied in the work of Fabio
Paternó [Paternó95]. His critic is a property verification critic that uses detailed
models of an application specified using the LOTOS [Paternó92] notation. His sys-
tem allows developers to specify complex properties using a notation based on
temporal logic.

One of Paternó’s papers [Paternó95] discusses an interesting example about an air
traffic controller application that uses a message area to display messages to the
user. The last message to arrive is shown in the message area, and the previous
ones are queued until the operator gets around to view them. This design could
lead to subtle timing problems where operators delete the wrong message, skip
viewing a message, etc. His paper shows how required properties of this interface
can be verified (e.g., the user can read a message several times), or how undesirable
effects can occur (e.g., user unwittingly deletes the wrong message). The expense of
building the complex models required by this critic can be justified in safety critical
applications such as air-traffic control.

Much work remains to be done before these advanced critics become a useful tool
for developers. These critics require detailed models that are time-consuming to
build, and expressed in specialised notations that most developers do not know.
However, work is in progress to integrate these tools with MB-IDEs (NGOMSEL
with MASTERMIND [Byrne94], Paterno is working on an implementation tool for
his notation). Once this work is complete these design critics will have a more sub-
stantial impact on the design and development of interfaces.

An interesting question is the extent to which MB-IDEs can render style-guide
verification tools unnecessary because the kinds of errors that they detect cannot
be committed when using an MB-IDE.

Automatic generation MB-IDEs provide one answer to this question. The design
algorithms of these tools are based on style-guides, so they will automatically be
obeyed. Most violations will be due to exceptions specifically coded in the design
algorithms.

Design advisors provide a different answer to this question, in the context of speci-
fication-based MB-IDEs. Design advisors can be viewed as pro-active critics.
Rather than telling designers what they did wrong, they try to steer designers away
from poor design choices. The most attractive feature of automated design advi-
sors is that they complement specification-based MB-IDEs so that developers do
not have to construct specifications on their own, but are assisted by advisors

 Retrospective and Challenges for Model-Based Interface Development xxxix

whose knowledge-bases codify expert knowledge and wisdom about interface de-
sign.

The work on design advisors has not yet reached a level of maturity that allows a
critical discussion of their approach and effectiveness. Two well known systems are
TRIDENT [Vanderdonckt95b] and EXPOSE [Gorny95].

3 Challenges and Opportunities

The main opportunities for model-based interface technology lie ahead because it
is better suited than traditional technology to meet the new interface challenges
that technology is creating.

Faster machines and networks enable more an more sophisticated applications,
providing users with more capabilities and more information, but at the same time
overwhelming them with more commands and options. Interfaces will need to be-
come more intelligent to assist users in performing their tasks, to help them come
up to speed in a new application, to allow users to customise them to make them
effective for the particular tasks that users perform most often.

Laptops are commonplace. Smaller portable devices such as PDAs and pagers are
getting linked to the networks and provide the ability to access the same informa-
tion that is available via workstations and laptops. The need will arise for applica-
tions that scale across a wide range of devices to provide users with the same or a
scaled down version of the workstation functionality. Scaled up versions will also
be needed to take advantage of wall-sized displays.

New modalities such as speech, natural language, hand-writing recognition are ma-
turing. Applications will need to reconfigure their interfaces to take advantage of
whatever modalities are available on the user’s platform. The following sections
discuss why the model-based technology is well positioned to meet these chal-
lenges, and give some suggestions on how MB-IDEs need to evolve.

3.1 Challenge 1 – Task-Centred Interfaces

The main difficulty that users face when interacting with an application is to figure
out how to use the capabilities of the application to perform desired tasks. Applica-
tions often offer many dozens of commands and options, so it is difficult for users
to learn and remember the sequence of commands needed to perform a task. Many
of the most popular and complex applications such as Microsoft Office and its
competitors attempt to cope with this problem by offering task assistants.

For example, Microsoft Excel has assistants to construct charts, to pivot tables, to
create templates, etc. Microsoft Word has assistants to format tables, to format
documents, to correct spelling, to do mail merge, etc. The typical behaviour of an
assistant is to analyse the current context (e.g., the array of selected cells in a
spreadsheet), and then ask users a sequence of questions about how they want the

xl Computer-Aided Design of User Interfaces

task performed, and finally perform the task for the user. Assistants make certain
tasks easy to perform, even if the limit the set of options that users have.

Related to task assistants are guidance systems. Guidance systems have two main
components, an indexing component that helps users find the topic they need
guidance on, and a component that component that guides the user in performing
the task. For example, Microsoft’s answer wizard, a kind of guidance system, al-
lows users to index in several ways: they can use keywords to find topics, of they
can browse the hierarchy of topics. Guidance is given to users using the task assis-
tant technology, traditional hypertext help windows, enhanced hypertext windows
with buttons to invoke relevant application functionality.

Today’s task assistants and guidance systems are implemented separately from the
interface, most surely at a significant development cost. Developers of these sys-
tems must, at least informally, build a model of the tasks that users are expected to
perform. For the task assistants they must encode in detail all the steps for per-
forming the task, taking into account all the contingencies that arise from the dif-
ferent contexts in which the assistant is invoked. For the guidance systems, devel-
opers must encode a comprehensive model of the tasks, including the words that
can be used to index them, the steps for each task, pointers to application com-
mands that perform particular steps, etc.

One of the challenges and opportunities for model-based technology is to partially
automate the generation of task assistants and guidance systems. Many MB-IDEs
use a task model to assist with the design of the interface, and also to control the
dialogue at runtime. Such task models already contain much of the information
needed for task assistants and guidance systems. They already contain a representa-
tion of all the tasks, the steps to perform each task, sequencing constraints, infor-
mation needed for each task, etc. The abstract and concrete interface representa-
tion contain the information that links tasks to the interaction techniques that in-
voke the various steps of a task. It seems quite sensible to enhance the task model
representation to include any additional information needed for the task assistants
and guidance systems, and to generate these services from the model.

As mentioned in a previous section, significant progress has been made in this di-
rection. What is needed is to make the transition from an interesting feasibility
demonstration, to a robust, high quality implementation. Current demonstrations
of help generation work for some of the tasks, not all, generate poor quality text
full of the internal names of objects (e.g., start1stConnection), and for the most
part, have never been user tested or formally evaluated.

The comparison between automated design tools and specification-based tools is
relevant here. Automatic interface generation systems offer interesting demonstra-
tions, but only systems like ITS become successful, because they provide develop-
ers with appropriate control over the design. Likewise, model-generated task assis-
tants and help generation systems will achieve high enough quality only if develop-

 Retrospective and Challenges for Model-Based Interface Development xli

ers of these systems can exert complete control over the text that is produced, and
significant control over the format.

3.2 Challenge 2 – Multi-Platform Support

Most of the user interface tools developed during the late 1980’s and early 90’s
were designed for a canonical platform featuring a mouse, a keyboard, and a 13
inch colour monitor. Today’s platforms are stretching the limits of the canonical
platform, often yielding hard to use interfaces.

Large, high resolution monitors cause the displays of some applications to become
unusable because the icons and text become hard to see, and hard to point at with
the mouse. Smaller displays, such as laptop 9 inch displays result in some applica-
tions using almost all the screen space for menus, toolbars, dialogue boxes, leaving
users a tiny window to perform their work. As argued before, the situation will get
much worse once radically smaller (PDA, pager) and larger devices become popu-
lar (wall displays).

Interfaces developed using traditional interface builders and toolkits are hard to
adapt to different platforms because developers must redesign each window for
each new platform. As the set of platforms proliferates, this becomes expensive.

Model-based technology offers a much better approach. For qualitatively similar
devices (e.g., workstation and laptop), changes in the AIO to CIO mapping, and
the CIO parameters are typically enough to appropriately scale the interface. More
radical changes can be done by redesigning the abstract interface specifications.
The important point to bear in mind is that in a system like ITS the amount of
work is proportional to the number of style rules, which is typically much smaller
than the number of windows.

ITS has demonstrated the usefulness of this approach by refining style rules to port
interfaces to use a touch screen rather than a mouse. The change involves making
the target areas larger, and increasing the spacing between adjacent target areas.

One of the interesting challenges in this area is to develop techniques to scale inter-
faces to radically different platforms, such as PDAs and pagers. Figure 2 shows an
example of a first step in this direction. The figure shows simple adaptations ex-
plicitly represented in Mastermind’s model that cause an interface to adapt to
changes in screen size by progressively removing less important information as the
available space becomes smaller. The fist adaptation causes the first column of
scrolling areas to be replaced by buttons that bring up pop-up windows with the
same information. The second adaptation causes some headings to disappear and
remaining heading fonts to become smaller.

xlii Computer-Aided Design of User Interfaces

Workstation

Laptop

PDA

Figure 2. Scaling an Interface to Multiple Platforms in MASTERMIND

3.3 Challenge 3 – Interface Tailoring

Interface tailoring refers to the ability to customise and optimise an interface ac-
cording to the context in which it is used. Interfaces can be tailored to tasks that
different segments of the user population need to perform most often, to the level
of use and experience of users, to the physical abilities of users, to platform charac-
teristics, etc.

 Retrospective and Challenges for Model-Based Interface Development xliii

There is a whole spectrum of tailoring possibilities. Interface tailoring can happen
at the factory, that is, developers produce several versions of an application tailored
according to different criteria. Tailoring can also be done at the user’s side, for in-
stance, by system administrators or experienced users. In the extreme, individual
users might tailor the interfaces themselves, or the interface could adapt on its own
by analysing the user’s patterns of use.

No matter when tailoring happens, and what interface features are tailored, tailor-
ing involves modifying the interface design. The simplest level of tailoring happens
at the concrete level of an interface specification where features such as the layout,
colours and fonts of an interface are changed. More sophisticated tailoring can
happen at the abstract interface specification where the dialogue gets modified, for
example to shortcut certain steps, to rearrange the order for performing steps, etc.
At the highest level, new tasks might be defined by composing existing tasks.

Many model-based interface tools address some aspects of interface tailoring. For
example, the FUSE system presents examples of how an interface can be tailored
according to the user’s level of experience. However, most of the examples are
about factory tailoring, where developers construct the rules that define how the
interfaces should adapt depending on certain contextual information such as a
simple user model.

However, it should be possible to use the automatic interface generation capabili-
ties of many MB-IDEs to support end-user, or administrator-level tailoring of in-
terfaces. Such a facility would be a compelling example of the benefits of the
model-based technology.

3.4 Challenge 4 – Multi-Modal Interfaces

New input modalities such as speech, natural language and pen gestures have ma-
tured to the point where they can be effectively used in practical applications. Cur-
rently, applications that take advantage of these modalities are custom built without
much tool support.

Building interfaces that combine these modalities with traditional graphical ele-
ments is hard for several reasons:

• To incorporate speech and natural language developers must define the lexicon
and perhaps the grammar for parsing and interpreting natural language sen-
tences.

• Speech, natural language and pen input are intrinsically ambiguous. No matter
how good the recognisers get, they will always produce a set of alternative in-
terpretations with levels of confidence, rather than a single certain interpreta-
tion. Interfaces must be designed to cope with this uncertainty.

• Users can speak and point at the same time, and the interpretation of the inputs
depends on their relative timing. In addition, the inputs from the various mo-
dalities can refer to each other (e.g., put this file <click> there <click>).

xliv Computer-Aided Design of User Interfaces

New output modalities such as 3D graphics are also becoming cheaper and com-
mon-place.

Currently, not many model-based interface systems are addressing the construction
of interfaces that use these modalities. The model-based interface community runs
the risk that the architectures and tools that are being developed will not work with
these modalities.

One notable exception is the work by Phil Cohen [Cohen92]. His system provides
an open architecture for the development of multi-modal user interfaces. The sys-
tem uses a blackboard architecture that allows an open-ended set of agents to col-
laborate. Agents collaborate to perform user tasks, to disambiguate natural lan-
guage requests, etc.

Conclusion

Much progress has been made towards demonstrating that the model-based ap-
proach provides a viable and effective new technology for developing user inter-
faces. Model-based systems have evolved from simple proof of concept prototypes
that were used on toy applications, to powerful systems that address the construc-
tion of interfaces for realistic applications (ITS, TRIDENT, JANUS, MASTERMIND,
etc.).

The models of many MB-IDEs have been integrated with mainstream software
engineering modelling techniques such as OOA (JANUS), ERA models (TRIDENT,
GENIUS [Janssen93]), making it easier to use these tools together with other well es-
tablished software engineering methodologies.

As a community, we need to make progress in two fronts. The first is to build
compelling demonstrations of the benefits of model-based tools. The interesting
demonstrations of help generation, platform scalability, design critics need to be
proven in more realistic settings with realistic applications.

The second front is to address the challenges being posed by new technology de-
velopments. As discussed in the last section, these challenges are in fact opportuni-
ties for the model-based technology. The challenges point towards solutions where
models play an important role, so the model-based technology is well positioned to
address them.

Reference

[Balzert96] Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C., The JANUS
Application Development Environment-Generating More than the User Interface, in this vol-
ume, pp. 183-206.

[Bauer96] Bauer, B., Generating User Interfaces from Formal Specifications of the Applica-
tion, in this volume, pp. 141-158.

 Retrospective and Challenges for Model-Based Interface Development xlv

[Beshers89] Beshers, C.M., Feiner, S.K., SCOPE: Automated Generation of Graphical In-
terfaces, in Proceedings of the 2nd Annual Symposium on User Interface Software
and Technology UIST’89 (Williamsburgh, 13-15 November 1989), ACM Press,
New York, 1989, pp. 76-85.

[Bodart95d] Bodart, F., Vanderdonckt, J., Using Ergonomic Rules for User Interface
Evaluation by Linguistic Ergonomic Criteria, in Proceedings of 6th International Con-
ference on Human-Computer Interaction HCI International’95 (Yokohama, 9-14
July 1995), Y. Anzai, K. Ogawa and H. Mori (Eds.), Advances in Human Fac-
tors/Ergonomics Series, Vol. 20A Symbiosis of Human and Artifact: Future Com-
puting and Design for Human-Computer Interaction, Elsevier Science B.V., Am-
sterdam, 1995, pp. 367-372. http://www. info.fundp.ac.be/cgi-bin/pub-spec-
paper?RP-95-023

[Cohen94] Cohen, P.R., Cheyer, A., Wang, M., Baeg, S.C., An Open Agent Architec-
ture, in Proceedings of AAAI Spring Symposium (March 1994), pp. 1-8.

[Comber96] Comber, T., Maltby, J., Investigating Layout Complexity, in this volume,
pp. 209-227.

[Contreras96b] Contreras, J., Saiz, F., A Framework for the Automatic Generation of
Software Tutoring, in this volume, pp. 171-182.

[Elwert95] Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User In-
terfaces in the TADEUS Approach, in Proceedings of 2nd Eurographics Workshop on
Design, Specification, Verification of Interactive Systems DSV-IS’95 (Château de
Bonas, 7-9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series,
Springer-Verlag, Vienna, 1995, pp. 193-208. http://www. informatik.uni-
rostock.de/~schlung/TADEUS/paper/DSV-IS95.html

[Farenc96] Farenc, Ch., Liberati, V., Barthet, M.-F., Automatic Ergonomic Evaluation:
What are the Limits?, in this volume, pp. 159-170.

[Fischer93] Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., Sumner, T., Embedding
Computer-Based Critics in the Context of Design, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 157-164.

[Foley90] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics:
Principles and Practice, Addison-Wesley, Reading, 1990.

[Foley94] Foley, J.D., History, Results and Bibliography of the User Interface Design Envi-
ronment (UIDE), an Early Model-based Systems for User Interface Design and Implementation,
in Proceedings of 1st Eurographics Workshop on Design, Specification, Verifica-
tion of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994), F. Pa-
ternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp.
3-14.

xlvi Computer-Aided Design of User Interfaces

[Frank95] Frank, M., Grizzly Bear: A Demonstrational Learning Tool For A User Interface
Specification Language, in Proceedings of the 8th Annual Symposium on User Inter-
face Software and Technology UIST’95 (Pittsburgh, November 1995), G.C. van
der Veer, S. Bagnara and G.A.M. Kempen (Eds.), ACM Press, New York, 1995,
pp. 75-76.

[Gorny95] Gorny, P., EXPOSE - An HCI-Counseling for User Interface Design, in Pro-
ceedings of the 5th IFIP TC13 Conference on Human-Computer Interaction IN-
TERACT’95, Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J.
Gilmore and S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 297-304.

[Green86] Green, M., A Survey of Three Dialogue Models, ACM Transactions on
Graphics, Vol 5, No. 3, July 1986, pp. 244-275.

[Harning96] Harning, M. An Approach to Structured Display Design - Coping with Com-
plexity, in this volume, pp. 121-138.

[Hinrichs96] Hinrichs, T., Bareiss, R., Birnbaum, L., Collins, G., An Interface Design
Tool based on Explicit Task Models, in Companion of the Conference on Human Fac-
tors in Computing Systems CHI’96 « Common Ground » (Vancouver, 13-18 April
1996), M.J. Tauber, V. Bellotti, R. Jeffries, J.D. Mackinlay, J. Nielsen (Eds.), ACM
Press, New York, 1996, pp. 269-270.

[Jacob86] Jacob, R.J.K., A Specification Language for Direct-Manipulation User Interfaces,
ACM Transactions on Graphics, Vol. 5, No. 4, October 1986, pp. 283-317.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423.

[Johnson95] Johnson, P., Johnson, H., Wilson, S., Rapid Prototyping of User Interfaces
Driven by Task Models, in « Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development », J. Carroll (Ed.), John Wiley & Sons, London, 1995,
pp. 209-246.

[Kappa96] PowerModel® The Object Power Tool. http://www.intellicorp.com/power-
model.html

[Kieras96] Kieras, D.E., A Guide to GOMS Model Usability Evaluation using
NGOMSL, in « The handbook of human-computer interaction », M. Helander, T.
Landauer (Eds.), Second Edition, North-Holland, Amsterdam, 1996.

[Kim93] Kim, W.C., Foley, J.D., Providing High-level Control and Expert Assistance in
the User Interface Presentation Design, in Proceedings of the Conference on Human
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T.
White (Eds.), ACM Press, New York, 1993, pp. 430-437.

 Retrospective and Challenges for Model-Based Interface Development xlvii

[Lonczewski96] Lonczewski, F., Schreiber, S., The FUSE-System: an Integrated User
Interface Design Environment, in this volume, pp. 37-56. ftp://hpeick7.informatik. tu-
muenchen.de/pub/papers/sis/fuse_cadui96.ps.gz

[Löwgren92] Löwgren, J., Nordqvist, T., Knowledge-Based Evaluation as Design Support
for Graphical User Interfaces, in Proceedings of the Conference on Human Factors in
Computing Systems CHI’92 « Striking a balance » (Monterey, 3-7 May 1992), P.
Bauersfeld, J. Bennett, G. Lynch (Eds.), ACM Press, New York, 1992, pp. 181-188.

[Luo93] Luo, P., Szekely, P., Neches, R., Management of Interface Design in HUMA-
NOID, in Proceedings of the Conference on Human Factors in Computing Systems
INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April 1993), S.
Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM Press,
New York, 1993, pp. 107-114. http://www.isi.edu/isd/CHI93-manager.ps

[Moriyón94] Moriyón, R., Szekely, P., Neches, R., Automatic Generation of Help from
Interface Design Models, in Companion of the Conference on Human Factors in
Computing Systems CHI’94 « Celebrating Interdependence » (Boston, 24-28 April
1994), C. Plaisant (Ed.), ACM Press, New York, 1994, pp. 225-231.
http://www.isi.edu/isd/CHI94-Help.ps

[Myers95] Myers, B.A., User Interface Software Tools, ACM Transactions on Com-
puter-human Interaction, Vol. 2, No. 1, March 1995, pp. 64-103.

[Nexpert96] Neuron Dataelements Environment. http://www.neurondata.com/

[Olsen83] Olsen, D.R., SYNGRAPH : a Graphical User Interface Generator, ACM
Computer Graphics, Vol. 23, No. 3, July 1983, pp. 43-50.

[Olsen86] Olsen, D.R., MIKE: The Menu Interaction Kontrol Environment, In: ACM
Transactions on Information Systems, Vol. 5, No. 4, pp. 318-344.

[Olsen89] Olsen, D.R., A programming language basis for user interface managment, in
Proceedings of the Conference on Human Factors in Computing Systems CHI’89
« Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis (Eds.),
ACM Press, New York, 1989, pp. 171-176.

[Palanque93b] Palanque, P., Bastide, R., Contextual Help for Free with Formal Dialogue
Design, in Proceedings of British Conference on Human-Computer Interaction
HCI’92 « People and Computers VIII », J.L. Alty, D. Diaper, S. Guest (Eds.),
Cambridge University Press, Cambridge, 1993.
http://www.cenatls.cena.dgac.fr/~palanque/Ps/hciinter 93. ps.gz

[Palanque95] Palanque, P., Bastide, R., Verification of an Interactive Software by Analysis
of its Formal Specification, in Proceedings of the 5th IFIP TC13 Conference on Hu-
man-Computer Interaction INTERACT’95, Lillehammer, 25-29 June 1995, K.
Nordbyn, P.H. Helmersen, D.J. Gilmore and S.A. Arnesen (Eds.), Chapman &
Hall, London, 1995, pp. 191-196. http://www.cenatls. cena.
dgac.fr/~palanque/Ps/interico95.ps.gz

xlviii Computer-Aided Design of User Interfaces

[Pangoli95] Pangoli, S., Paternó, F., Automatic Generation of Task-oriented Help, in
Proceedings of the 8th Annual Symposium on User Interface Software and Tech-
nology UIST’95 (Pittsburgh, November 1995), G.C. van der Veer, S. Bagnara and
G.A.M. Kempen (Eds.), ACM Press, New York, 1995, pp. 181-187.

[Paternó95] Paternó, F., Mezzanotte, M., Formal Verification of Undesired Behavious in
the CERD Case Study, in « Engineering for Human-Computer Interaction », Pro-
ceedings of the 6th IFIP TC 2/WG 2.7 Working Conference on Engineering for
Human-Computer Interaction EHCI’95 (Grand Targhee Resort, 14-18 August
1995), L. Bass, C. Unger (Eds.), Chapman & Hall, London, 1995, pp. 213-226.

[Puerta96b] Puerta, A., The MECANO Project: Comprehensive and Integrated Support for-
Model-Based Interface Development, in this volume, pp. 19-35.

[Schlungbaum96] Schlungbaum, E., Elwert, T., Automatic User Interface Generation
from Declarative Models, in this volume, pp. 3-18. http://www.informatik.uni-ros-
tock.de/~schlung/TADEUS/paper/CADUI96.html

[Schreiber94b] Schreiber, S., Specification and Generation of User Interfaces with the
BOSS-System, in Proceedings of the East-West International Conference on Hu-
man-Computer Interaction EWHCI’94 (St. Petersburgh, 1994), B. Blumenthal, J.
Gornostaev, C. Unger (Eds.), Lecture Notes in Computer Sciences, Vol. 876,
Springer-Verlag, Berlin, 1994, pp. 107-120. ftp://hpeick7.informatik.tu-muenchen.
de/pub/papers/sis/ewhci94.ps.Z

[Sears95] Sears, A., AIDE: A step toward metric-based interface development tools, in Pro-
ceedings of the 8th Annual Symposium on User Interface Software and Technology
UIST’95 (Pittsburgh, November 1995), G.C. van der Veer, S. Bagnara and G.A.M.
Kempen (Eds.), ACM Press, New York, 1995, pp. 101-110.

[Singh91] Singh, G., Green, M., Automating the Lexical and Syntactic Design of Graphical
User Interfaces: The UofA* UIMS, ACM Transactions on Graphics, Vol. 10, No. 3,
July 1991, 213-254.

[Sukaviriya90] Sukaviriya, P., Foley, J.D., Coupling a UI Framework with Automatic
Generation of Context-Sensitive Animated Help, in Proceedings of the 3rd Annual Sym-
posium on User Interface Software and Technology UIST’90 (Snowbird, 3-5 Oc-
tober 1990), ACM Press, New York, 1990, pp. 152-166.

[Szekely92] Szekely, P., Luo, P., Neches, R, Facilitating the Exploration of Interface De-
sign Alternatives: The HUMANOID Model of Interface Design, in Proceedings of the Con-
ference on Human Factors in Computing Systems CHI’92 « Striking a balance »
(Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G. Lynch (Eds.), ACM Press,
New York, 1992, pp. 507-514. http://www.isi.edu/isd/CHI92.ps

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based In-
terface Tools, in Proceedings of the Conference on Human Factors in Computing
Systems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April

 Retrospective and Challenges for Model-Based Interface Development xlix

1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM
Press, New York, 1993, pp. 383-390. http://www.isi.edu/isd/Interchi-be-yond.ps

[Szekely95] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher,
E., Declarative interface models for user interface construction tools: the MASTERMIND ap-
proach, in « Engineering for Human-Computer Interaction », Proceedings of the 6th
IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-Computer
Interaction EHCI’95 (Grand Targhee Resort, 14-18 August 1995), L. Bass, C.
Unger (Eds.), Chapman & Hall, London, 1995, pp. 120-150.
http://www.isi.edu/isd/Mastermind/Papers/ ehci95.ps

[Vanderdonckt94a] Vanderdonckt, J., Automatic Generation of a User Interface for Highly
Interactive Business-Oriented Applications, in Companion of the Conference on Human
Factors in Computing Systems CHI’94 « Celebrating Interdependence » (Boston,
24-28 April 1994), C. Plaisant (Ed.), ACM Press, New York, 1994, pp. 41 & 123-
124.

[Vanderdonckt95b] Vanderdonckt, J., Knowledge-Based Systems for Automated User In-
terface Generation: the TRIDENT Expierence, Technical Report RP-95-010, Facultés
Universitaires Notre-Dame de la Paix, Institut d'Informatique, Namur, 1995.
http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-010

[Wellner89] Wellner, P.D., Statemaster: A UIMS based on Statecharts for Prototyping and
Target Implementation, in Proceedings of the Conference on Human Factors in Com-
puting Systems CHI’89 « Wings for the mind » (Austin, 30 April-4 May 1989), K.
Bice, C. Lewis (Eds.), ACM Press, New York, 1989, pp. 177-182.

[Wiecha90] Wiecha, C., Bennett, W., Boies, S., Gould, J., Green, S., ITS: A Tool for
Rapidly Developing Interactive Applications, ACM Transactions on Information Systems,
Vol. 8, No. 3, July 1990, pp. 204-236.

[Wilson96] Wilson, S., Johnson, P., Bridging the Generation Gap: From Work Tasks to
User Interface Designs, in this volume, pp. 77-94.

	Abstract
	Keywords
	Introduction
	1 Generic Model-Based Interface Development Architecture
	1.1 Model
	1.2 Modelling Tools
	1.3 Design Critics and Advisors
	1.4 Automated Design Tools
	1.5 Implementation Tools

	2 Retrospective
	2.1 Retrospective – Automatic Interface Design
	2.1.1 Structure of Automated Design Tools
	2.1.2 Difficulties With Automated Design
	2.1.3 Discussion

	2.2 Retrospective – Specification-Based MB-IDEs
	2.2.1 Structure of Specification-Based MB-IDEs
	2.2.2 Its
	2.2.3 Discussion

	2.3 Retrospective – Help Generation
	2.3.1 Discussion

	2.4 Retrospective – Modelling Tools
	2.5 Retrospective – Design Critics and Advisors

	3 Challenges and Opportunities
	3.1 Challenge 1 – Task-Centred Interfaces
	3.2 Challenge 2 – Multi-Platform Support
	3.3 Challenge 3 – Interface Tailoring
	3.4 Challenge 4 – Multi-Modal Interfaces

	Conclusion
	Reference

