

SIMILAR PhD Registration Number:

ISBN 978-2-87463-114-6
Copyright registration D/2008/9964/8
EAN 9782874631146

A Methodology for
Developing Multimodal
User Interfaces of
Information Systems

By Adrian Stanciulescu

A dissertation submitted in fulfillment of the requirements
for the degree of

Doctor of Philosophy in
Management Sciences

of the Université catholique de Louvain

Committee in charge:

Prof. Jean Vanderdonckt, Université catholique Louvain, Advisor
Prof. Benoit Macq, Université catholique Louvain, Examiner
Prof. Manuel Kolp, Université catholique Louvain, Examiner

Prof. Philippe Palanque, Université Paul Sabatier, Reader
Prof. Yacine Bellik, Université Paris XI, Reader
Prof. Alain Vas, Université catolique Louvain, President of Jury

25 June 2008

Acknowledgements

I would like to express my thanks to:

— My advisor, Professor Jean Vanderdonckt, for his constant support and enthusiasm
regarding my work. Collaborating with him was not only a permanently enriching
professional experience, but also an opportunity to work with a person whose human
side I highly appreciate.

— Professors Benoit Macq (Université catolique Louvain, TELE Laboratory, Belgium),
Manuel Kolp (Université catolique Louvain, ISYS unit, Belgium), Philippe Palanque
(LITHS-IRIT, Université Paul Sabatier, France) and Yacine Bellik (LIMSI-CNRS,
Université Paris XI, France) for accepting to participate to the jury of this thesis.

— My colleagues from the Louvain School of Management (LSM) of Université ca-
tholique de Louvain (UCL) and especially the ones sharing the same office who en-
dured my long, noisy and most of the time annoying vocal tests.

— Familiei mele si in special parintilor mei care au fost cu adevarat alaturi de mine in
momentele de bucurie, dar mai ales in situatiile dificile pe parcursul studiilor
universitare. Un sincer multumesc pentru felul in care ati stiut sa imi indrumati pasii
prin sfaturile si experienta voastra de viata, lasandu-mi in acelasi timp libertatea de a-
mi lua propriile deciziile.

— Prietenei mele Milena, pentru sustinerea si incurajarile continue care mi-au adus un
nou suflu si mi-au permis sa imi regasesc entuziasmul de-a lungul ultimilor ani de
teza. Multumesc pentru optimismul de care dai dovada si pe care ai stiut sa mi-l
insufli atunci cand aveam mai mare nevoie. Atitudinea ta mereu pozitiva m-a ajutat sa
depasesc mai usor momentele dificile si sa-mi clarific deciziile viitoare. Multumesc de
asemenea pentru ajutorul acordat in redactarea tezei.

This thesis was accomplished thanks to the support of:

— The ISYS research unit of Louvain School of Management.

— The SIMILAR network of excellence, the European research task force creating
human-machine interfaces similar to human-human communication, supported by
the 6" Framework Program of the European Commission, under contract FP6-IST1-
2003-507609 (www.similar.cc).

— The Openlnterface Foundation, supported by the 6" Framework Program of the
European Commission, under the umbrella of SIMILAR network of excellence
(www.openinterface.com).

— The UsiXML Consortium, for User Interface eXtensible Markup ILanguage

(www.usixml.org).

— Philippe Guillaume, Didier Magotteaux and Vincent Wauters (IBM Belgium) for the
grant received for the IBM Multimodal Toolkit™, Software Modeler™, and
WebSphere™, with which this research has been achieved.

il

Table of Contents

ACKNOWLEDGEMENTS ... e e e e e e e et e eeeaa s I
TABLE OF CONTENTS ..ottt ettt e e e e e e e e e e e e e e e s nneeeneees 1
TABLE OF FIGURESo e e e e e e e e 6
TABLE OF TABLESottt 10
N N @ 115 1O L @ I 13
11 (7o) 01 1= PP S PR PRSP 13
1.2 Concerns of multimodal user iNterfaces..........ccccvverinieiienieie e 14
1.3 Terminology used in this thesSiSccccceeiiiieiiccc e 16
1.3.1 IMIOAE@ ...ttt ettt ettt ettt e et e et e b e e teeenb e e aaeenbeennees 17
1.3.2 1\ (T4 - PR SUUSRPSNt 17
1.3.3 IMOAALIEY oottt ettt et et e e eaa e e eenneenes 17
1.3.4 Multimode, multimedia and multimodality...........cccceeeiiieeiiiieiiieeieeeeees 18
O N 0TS £ PRSP 18
1.4.1 Thesis StAtEMENTeeeeiiieeiieeciie e e et e e e e e e eaaeeeeeee e 18
1.4.2 Definitions of working hypotheses...........ccoecvieriieiieniieiieieceeeeeee e, 19
1.4.3 S COPIE ittt et e e et e e e et ae e e aaaeeeenntaeeeennnne 22
1.5 REAAING IMAP ...ttt ettt e 24
2 STATE OF THE ART oottt 27
2.1 INEFOAUCTION ..ottt sttt sre b 27
2.2 Astructuring theoretical framework............ccocovvoiiieiiiie i 27
2.2.1 TYCOON framewWOrKccueeeiuiieeiiiieiiee e ettt e e e 28
2.2.2 CARE PIOPEITIES. ... vveieiieeeiieeeiieeeieeeeiteeetteeesteeeseteeeseaeeensreeessseeennseeeesseeennnes 29
223 W3C Multimodal Interaction Frameworkcccocooevviiiiiiiiiiiiiciicce, 31
2.2.4 Comparison of theoretical frameworksccceeeviieeiiiieiiiieciee e 33
2.3 User Interface DesCription LanQUAGEScccuervererrierieeieseesieeie et see s siee s 33
2.3.1 D€ 1 USRI 33
232 XIML ettt bttt 34
2.3.3 L8 01 SRR PPRRRRP 35
234 DISL ottt bttt 36

2.3.5 VOICEXIML ..o e e e e e e e e e e e e asaeaenanas 36

2.3.6 XHTMLAVOICE ...ttt sttt 37
2.3.7 TereSAXML ... 38
2.3.8 EMMA Lottt ettt ae s 38
2.4 User interface development toOISccoooiiiiiii i 38
2.4.1 Galatea Interaction Builder...........cocooiiiiiiiiiiiiiinicccece, 38
242 UIML Development TOOLKit........c.cooieiiieriieiienieeiie et 39
243 WebSphere Voice TOOIKItccvieevieiiieiiieciieiieeieeee e 40
244 TETESA ettt ettt 40
24.5 IMIONA ettt et ettt ettt st a et e st e e st e steenbeenaeenes 41
2.4.6 SUEDE ...ttt sttt et st b et beenbeenaenneens 42
2.4.7 CSLU TOOLKIE ..ttt ettt sttt e e eneas 43
24.8 1Y (0 1 O PRPS 43
2.49 Openlnterface Platformccoooiiiiiiiiiiiiee e 44
2.4.10 A Toolkit of Multimodal Widgetscceeveeriiiriiiiieiieiieeee e 45
2401 FRUIT ettt ettt st sae et et saee s 48
2.5 CONCIUSION ...ttt 50
2.5.1 Summary of the state of the art............cocevviiiiiieiiieie e 50
252 SROTECOMINGSevtiteeteeie ettt 54
2.5.3 REQUITEMENTSeovviieiiieiie ettt et e et eeeaaeesbeeenseeneeas 55
2.6 CONCIUSION ...ttt b 57
3 CONCEPTUAL MODELING OF MULTIMODAL USER INTERFACES....... 59
3.1 INEFOAUCTION ..ot 59
3.2 Selection of a User Interface Description Languagec.ccoovvvvivereneneniennenn. 59
3.2.1 Towards choosing a suitable UIDLccccooiiviiiiiniiniiniiniceciceceee, 59
322 UsiXML — the selected UIDLcocooiiiiiiiiiiieieieceeeeeee e 60
3.3 Conceptual contribULIONcooviiiiiicc e 61
3.3.1 TaSK MOAE] ... s 62
3.3.2 Domain MOdEl.......c.ooiiiiieiieeee et 65
3.33 Abstract User Interface Modelooeeviieiiiiiniiiiiieneeeceeeeee 66
334 Concrete User Interface Model...........cccvveviiieiiiiieiieceeeeeee e 71
3.3.5 Mapping MOooviiiiiiiiieieeieee et et 72
3.3.6 Transformation MOdel...........cooouiiiiiiiiiiiieceecee e 72
3.4 Semantics of the multimodal interaction ObjJects...........cc.ccoovvieieiiieniiineee, 74
34.1 Semantics of the Graphical Concrete Interaction Objects.........ccceeceeereennenn. 74
34.2 Semantics of the Vocal Concrete Interaction Objectscccccveveveevienvennnnn. 76
343 Semantics of the Multimodal Concrete Interaction Objects............ccccuveeneee. 84
344 Semantics of the Concrete User Interface Relationships..........ccccceeevieeiiennenn. 89
35 SYNAX OF USIXIML ..ot 91

3.5.1 From Semantics to Concrete SyNtaxcceceeveeeriieniiienieniieenie e 91

3.5.2 Concrete Syntax of Interaction ObJectS.........cevvuveeeiiieeeiieeniieeeieeeie e 93
3.6 Stylistics of INteraction ODJECTSccoviiiiiie e 96
T A @0 o] 1] o] o SRS 98

4 A TRANSFORMATIONAL METHOD FOR PRODUCING MULTIMODAL

USER INTERFACES. e e e aennaeaes 99
4.1 INEFOAUCTION ..o 99
4.2 Design space for USEr INTErTACEScoeiiiiiiiesesie e 99
4.2.1 Definition of deSign SPACEeevueieiiiiieeiieeieeee et 99
4.2.2 Rationale for choosing a design SPace........ccceeeeuveeeiuieeeiiieesiiieeciie e 100
4.2.3 Design options for user INterfacescoceevereerieneeiieniicneeiieieneceeeene 102
4.2.4 Design space in the context of Design Rationale approach.......................... 121
4.3 Specification of transformMationscccccevveii i 124
4.3.1 Selection of model-to-model transformational approachc.cceeuveeeeee. 124
432 Application strategy of transformation rulesccocceoeriiniiiiniinienennne 130
433 Shortcomings of the existing graph-based transformational approaches 131
4.3.4 Expanded model-to-model transformational approachcccccccvveennenn. 131
4.3.5 Transformation rule catalog...........cccvveriieiiiierieeiiieiieeiee et 138
4.4 The four steps of the transformational approach...........c..cccccooiiiiiiiennnn, 141
44.1 Step 1: The Task and Domain Modelsccceeevierieeciieniieiiecieeeeeee e 143

4.4.2 Step 2: From Task and Domain Models to Abstract User Interface Model . 143
443 Step 3: From Abstract User Interface Model to Concrete User Interface Model

147
4.4.4 Step 4: From Concrete User Interface Model to Final User Interface.......... 154
45 (@001 (o1 [111 (o] o [T 154
D T OO SUP P O R T it 155
5.1 [N Ao Yo 1103 1 (o) o PR 155
5.2 MUultimodaliX ML MOAUIES ...t e s 156
5.2.1 J L6 11 DL | U 156
522 TranSTOTMIXIMLLoeeeeeeeeeeeeeeeeee aeaeaeaeaananas 157
523 GralT XML e 159
52.4 VOICEXIML GENETALOT <. 160
5.2.5 XHTMLAVOICE GEIETALOL ... oottt e e ee e e e e et e eeeeeeeeeeeereaaaeaaeeaaes 160
5.3 Limitations of current tool SUPPOITcccoiiiiiieiiiireee e 161
5.4 (@F0] (o1 [T (0] F YR 163

6 VALIDATION ..ttt e e e 165

6.1 INEFOAUCTION ..ot 165
6.2 Case study 1: Virtual Polling Application..........c.ccccceviiiiie i 165
6.2.1 Step 1: The Task and Domain Modelsccceeviiiiiiiieniieeieeeee e 166
6.2.2 Step 2: From Task and Domain Models to AUI Modelccccoceveenenee. 170
6.2.3 Step 3: From AUI Model to CUI Modelccccoocvieiiiiiieeieeeeeeee e 172
6.2.4 Step 4: From CUI Model to FUToooiiiiiiiiieeeeeeeeee e 177
6.3 Case study 2: Car Rental APPlCAtIONcocvviiieiiiiiceee e 179
6.3.1 Step 1: The Task and Domain Modelsccccceveriiniininiinieninicneeeee, 180
6.3.2 Step 2: From Task and Domain Models to AUI Modelc.ccccevveeennennnne. 184
6.3.3 Step 3: From AUI Model to CUI Modelccccooeriiniininiiniiicnicneeeee, 185
6.3.4 Step 4: From CUI Model to FUTc.cooiiiiiiiiiiieeeceeeeeeee e 193
6.4 Case study 3: Map Browsing Applicationccccocvveieeiieeiiie e, 195
6.4.1 Step 1: The Task and Domain Modelscccceeverienieniniinieeeieeeeeee, 196
6.4.2 Step 2: From Task and Domain Models to AUI Modelcccoevveennnnnee. 198
6.4.3 Step 3: From AUI Model to CUI Modelcccecvverieeciieniieiieieeeeee e 199
6.4.4 Step 4: From CUI Model to FUToooiiiiiiiiieeeeeee e 204
6.5 Empirical validation ... 206
6.5.1 Methodology usability asSeSSMENtcc.cevueriereirieeieniinenieeeene e 206
6.5.2 Methodology result assesment plan..........c.ccceeeeveeeieerieeiienieeieesee e 212
6.5.3 RESUILS ...t ra e e sree e 214
6.5.4 Interpretation and diSCUSSIONecvieruieiiiieriieeiieeie ettt eeaeens 221
6.6 INternal Validation ..o 227
6.7 CONCIUSION ...ttt 231
6.7.1 Conclusions issued from the external validation..............cccceeeveveeeciieeninnen, 231
6.7.2 Conclusions issued from the internal validation.............cccecceevcvierieniieennnne. 234
T CONCLUSION ...ttt e e e e e e e e e e e e e es 235
7.1 INEFOAUCTION ... 235
7.2 Summary of CONtFIDULIONSccviiieiiee s 235
7.2.1 Theoretical and conceptual cONtribUtiONScceeeveeriieeeiienieeiiecie e 235
7.2.2 Methodological CONtribUtIONcceeeeciiieiiiiiecie et 236
7.2.3 TOOIS AEVEIOPEA.cuiieiiieiiieiieeeee et e ens 239
7.3 FUture WOrkK in ProSPECT..........coiuiiiiiiiieiee s 239
7.4 SOME PErsONAl CONCEIMSc..iiiiiiiitieii ettt 241
7.5 CoNClUdiNG FEMAIKSeciiiie et nne s 243

REFERENCES e e e e 245
APPENDIX A. USIXML EXPANDED TASK MODELccciiciiiiiiiie, 255
APPENDIX B. TRANSFORMATION RULE CATALOGccciiiiiiiieeeeeeeeeee, 257

APPENDIX C. USIXML CONCRETE SYNTAX FOR THE SPECIFICATION OF
DIFFERENT COMBINATIONS OF INPUT AND OUTPUT MODALITIES......... 295

APPENDIX D. QOC REPRESENTATION OF DESIGN SPACE OPTIONS IN
TEAM TOOL ... et 307

APPENDIX E. ACRONYMScooiiiiiiii e 313

Table of Figures

Figure 1-1 “Put that there” multimodal SyStemcocceeriiiiiiiiiiiiieee 14
Figure 1-2 Benefits of the identified concerns of multimodal Uls............cccceveriiiniinennnen. 16
Figure 1-3 The human five SENSES........cciiiiiiiiiiiiiiiiiieeieee et 17
Figure 1-4 Capabilities vs. resources for producing a user interfaceccoceecevvenennnens 21
Figure 1-5 ThesSIS STUCLUIEcccutiiiiiiiiiiieeiteete ettt s 24
Figure 2-1 General schema for state of the art analysis..........cocceeeeveniiniiniiincniccs 27
Figure 2-2 W3C Multimodal Interaction Frameworkcccccooiniiiinii, 32
Figure 2-3 Multimodal X+V application interpreted with Opera browser...........c...cc.c...... 37
Figure 2-4 The Interaction Builder graphical user interfacecccceeeveeevieeenieeenieeeneen. 39
Figure 2-5 UIML Development TOOlcocoiiiiiiiiiniiiinicieeceneceeeeeeeeie e 39
Figure 2-6 IBM WebSphere Voice Toolkit — communication flow builder perspective ... 40
Figure 2-7 Authoring a multimodal UI with Teresa..........cocceevieniineniiniiniiencneceeens 41
Figure 2-8 MONA editor with real time GUI Previewscccceeeeverrierieneenienienieereenens 41
Figure 2-9 Design mode in SUEDEcc.cociiiiiiiiiiiiiictceeeeceee e 42
Figure 2-10 CSLU toolkit - the graphical authoring editor...........cccceevvvieiiiieeiieeiieeeee, 43
Figure 2-11 Interaction component editor in MOSTccccooiiiiniiiiniiniieeececene 44
Figure 2-12 Integration of heterogenous components in Openlnterface.............ccceeceennenn. 45
Figure 2-13 Multimodal toolkit architecturecccueeiiiiiiiniiiieeeee e 47
Figure 2-14 The toolkit architecture —button feedback to mouse-over event..................... 48
Figure 2-15 The architecture of @ FRUIT SyStem........cccccoceeviiriiniiieniiniiiecicnicriecens 50
Figure 3-1 Cameleon Reference Framework for multi-target UISccooceeviienienennen. 60
Figure 3-2 Meta-model of the Task Modelcoooiiiiiiiiiiiiieeeee e 63
Figure 3-3 Meta-model of the Domain Modelcccoeiiriiniiniiiiniineeeeeeeeee 66
Figure 3-4 Meta-model of the AUT Modelccccooiiniiiiniiiiiiiicecccece 67
Figure 3-5 Abstract attribute values inheriting Task attribute values...........ccccceceveenennen. 68
Figure 3-6 The general structure of an instruction in ISS.......cccccovveviriiniiniininicniceee 68
Figure 3-7 Excerpt of the CUI Meta-modelcocceevieniniiiiiiniiieeieeiceeeeicee e 71
Figure 3-8 Meta-model of the Mapping Model............coccoeiiiiiiiiiiiiiiiiieeeeeee 72
Figure 3-9 Meta-model of the Transformation Modelccccooiiiiniininniniiieeeee 74
Figure 3-10 Graphical CONTAINETScecuerieriiiriiniiniiieeiereeseete ettt 75
Figure 3-11 Several Graphical Individual Components............ccoceeverveerieneenieneeneenennens 76
Figure 3-12 Vocal Concrete Interaction ObJectS........c.eevueiriiieniieiiieniieiie e 82
Figure 3-13 VocalCIOs involved in the fulfillment of Provide age task..............c.ccccen.. 83
Figure 3-14 VocalCIOs used for a vocal application of a Phone line company................. 84
Figure 3-15 Concrete UI Relationshipscoeevueeiiriinieniriicieeeeeeeee e 91
Figure 3-16 Generation of UsiXML Specification...........cccccueeeviieeiiiresiiieeeiieeeieeeevee e 92
Figure 3-17 Transforming of a class to into UsiXML specificationcccceeceervenueene. 92
Figure 3-18 Transformation of a relationship class into UsiXML specification............... 92

Figure 3-19 Transformation of the inheritance relationship into UsiXML specification..93
Figure 3-20 Transformation of the aggregation relationship into UsiXML specification..93
Figure 4-1 The design options composing the design spacecccceeveveerrieeieenieenneennen. 102

Figure 4-2 Sub-task presentation Values...........cccoecueeriieriieiieniiieiieeeeee e 105
Figure 4-3 Sub-task presentation values and a possible concretization in vocal and

EEAPNICAL ODJECES ...ttt ettt e 107
Figure 4-4 Types of navigation between sub-tasks and a possible concretization in vocal
and graphical ODJECScuiiiiiiiiiiie e 109
Figure 4-5 Navigation type values and a possible concretization in vocal and graphical
0] o <01 OO STUU RO PURTS 110
Figure 4-6 Control type values and a possible concretization in vocal and graphical objects
.. 111
Figure 4-7 Navigation and control type values and a possible concretization in vocal and
EAPhICAL ODJECES ...eoiiiiiiieiie et et 112
Figure 4-8 Guided sub-task in GUI Figure 4-9 Unguided sub-task in GUI ... 113
Figure 4-10 Ambigous answer in GUI Figure 4-11 Unambigous answer in GUI...... 114
Figure 4-12 Single answer in GUI Figure 4-13 Multiple answer in GUI. 115
Figure 4-14 Confirmation message in GUI Figure 4-15 Non-confirmed message
1311 1 U) OSSPSR 116
Figure 4-16 Order dependent answer in GUI Figure 4-17 Order independent answer in
(€ 1 6 OSSPSR 117
Figure 4-18 A possible design decision for a multimodal text input...........cc.cceeveernennen. 121
Figure 4-19 QOC diagram StIUCLUIEc.cecveeiieriieiieeiieeiieeeteesieeereeseeeereeseaeereessseeneeas 123
Figure 4-20 QOC representation of the sub-task guidance design option........................ 123
Figure 4-21 QOC representation of the sub-task guidance design option........................ 124
Figure 4-22 Progressive application of rule-based transformations.............c.ccoeveeenennee. 125
Figure 4-23 Identification of transformation rule approach features..............ccceeveeunennnee. 126
Figure 4-24 Structure of a transformation catalog..........ccceeveeviriiiniininiiniennceeeee, 126
Figure 4-25 Characterization of transformation in UsiXML.........c.cccoceevinieninninienennne. 127
Figure 4-26 Syntactically typed patterns and variables...........c.coeceeviiniiiniieniiienieeeeee, 128
Figure 4-27 Graphical concrete syntax of the patterns...........ccceeeeveeviercieeniencieeneeereeen. 128
Figure 4-28 From Task Model to Abstract Modelccccveeviiiiiiiieniieecee e 129
Figure 4-29 Textual syntax for expressing transformation rules..........ccccoeceeveriervenennn. 129
Figure 4-30 The application strategy of transformation rules...........ccccceeevveeerieeeenneennee. 130
Figure 4-31 Monocolored transformation rule generating: (a) groupBox elements; (b)
vocalMenu elements; (c) groupBoxes and vocalMenu elementscccceeeeeneee. 137
Figure 4-32 Transformation rules supporting sub-task presentation............cccceeeveenveenne. 138
Figure 4-33 Transformation rules supporting the vocal and graphical concretization of
sub-task presentation VAIUESccoeciieriiiriieiieeii ettt 139
Figure 4-34 Transformation rules supporting sub-task navigation values for graphical and
VOCAL CONCTEHIZATION ...ttt ettt e 139
Figure 4-35 Transformation rules supporting navigation type values for graphical and
VOCAL CONCTEHIZATION ...ttt ettt sttt 140
Figure 4-36 Transformation rules supporting control type values for graphical and vocal
CONCTELIZALION ...ttt ettt ettt ettt st e b e e et se e e bt et e satesbe e beenteeaeenbeenee 140
Figure 4-37 Transformation rules supporting navigation and control type values for
graphical and vocal CONCIEtIZAtIONccvieruiieiieiieeiieeie et 141
Figure 4-38 Transformation rules supporting the remaining set of design options for which
a stylistiCS Was NOt ASSIZNEMvevviereiieiieeieeiie ettt ettt e e e seeesaeeseaeens 141
Figure 4-39 General development scenario of Ulccccovviiiiiieiiiiiiieeciecce e 142

Figure 4-40 Sub-steps of the transformational approach............ccccoeeevviiiiiiniiienieneeen. 143

Figure 4-41 Separated sub-task presentation Figure 4-42 Combined sub-task
PTESEIEATION. ..cuteeiiieiieeieeeiteette et et e et et eeteesebeebeeenbeeaeeenseesseeenseessseenseasnseenseeenseas 144

Figure 4-43 Local placement for navigation Figure 4-44 Global placement for
NAVIZALION 1.ttt ettt et e ettt e et e et e e bt e sebeeteeeateeateeabeesseeenseessseenseasnseenseennseas 145

Figure 4-45 Local placement for control Figure 4-46 Global placement for
COMEIOL ettt ettt b ettt sb e b e bt et sae e s bt e b e eatesane e 145

Figure 4-47 Sequential navigation between sub-tasks presented in separated windows.. 150
Figure 4-48 Asynchronous navigation between sub-tasks presented in separated windows

.. 150
Figure 5-1 General development scenario — identification of MultimodaliXML modules

.. 155
Figure 5-2 Task Model editor Figure 5-3 Domain Model editor

.. 156
Figure 5-4 Mapping Model €ditorcooeriiriiniiiiniienecceeeeeeeeee e 156
Figure 5-5 TransformiXML — graphical user interfacecccoecvveveeecieenieecieenieereennen. 157
Figure 5-6 Model-to-model transformation based on AGG APIL..........ccccooveviniinnnnnne. 158
Figure 5-7 Generate abstract containers for each sub-task of the top-most task.............. 158
Figure 5-8 Initial Model Figure 5-9 Resultant model...... 158
Figure 5-10 GrafiXML — eXport fUNCtiON........ccveviieriiieiieiieeie e 159
Figure 5-11 Multimodal design tools complexity vs. SpecifiCitycccceeveerueereeneennnen. 162
Figure 5-12 A design space-based tool for development of multimodal Uls................... 163
Figure 6-1 Development scenario for virtual polling applicationcccceeeueeeiennnnnen. 166
Figure 6-2 Mappings between the Task Model and the Domain Model........................... 166
Figure 6-3 Mapping Model for the virtual polling systemccccceevieiiieniiinieenieeen. 167
Figure 6-4 Task Model expressed in USIXML.........cccoeviieiiieiiieniieiie e 168
Figure 6-5 Domain Model expressed in UsiXML.......cccoceeviioiiniiniiiiniinieicnceeceen 169
Figure 6-6 Mapping Model expressed in USIXMLcccoovieiiieniiiiieenieeiieieeve e 169
Figure 6-7 AUI Model expressed in USiXML........ccccooviiiiiiiiieiiieecieeeciee et 171
Figure 6-8 Graphical UI Figure 6-9 Vocal Ul.........cccooovivviiiniiiiiiieeeeee e 178
Figure 6-10 Multimodal Ulcccooiiiiiiiiiiee e 179
Figure 6-11 Development scenario for car rental applicationccecevveveeniereeneenne. 180
Figure 6-12 The decomposition of Determine rental preferences sub-task...................... 180
Figure 6-13 The decomposition of Determine rental preferences sub-task...................... 180
Figure 6-14 The decomposition of Determine car sub-taskccccceevveeeiieecieeiineenee, 181
Figure 6-15 The decomposition of Provide payment information sub-task..................... 181
Figure 6-16 Excerpt of Task Model expressed in UsSiXMLcccceevvieeniieeciee e, 182
Figure 6-17 Domain Model for the car rental System............cccceevveeiieerieeiiienieeeesee e, 183
Figure 6-18 Excerpts of Domain Model expressed in UsiXML...........cccceecvvveeciieenneeennee. 183
Figure 6-19 FUI — graphical input Figure 6-20 FUI — vocal input................... 194
Figure 6-21 FUI — equivalent graphical and vocal input...........cccceeveeeiieeecieencieeeeeeeee 195
Figure 6-22 Development scenario for the map brosing system...........cccecceeeeveeneeeneennen. 196
Figure 6-23 Task Model of the map browsing application............cccceeeeveeecieeecveeseneennee. 196
Figure 6-24 Specification of the Task Model in USiXMLccccoooieviininieninniinienenne, 197
Figure 6-25 Domain Model for the map browsing system............cccceeeeuveercrieencreeeereeenne 197
Figure 6-26 Excerpts of Domain Model expressed in UsiXML...........cccevvevienienienennne. 198
Figure 6-27 FUI — graphical INPUL........c.ccoovuiiiiiiiiiciieeeiie e 204

Figure 6-28 FUIL — VOCAl TNPULcoouiiiiiiiiieiieeiiee ettt 205
Figure 6-29 FUI — graphical input for browsing action and vocal input for browsing

QITECEION ...ttt ettt ettt st 205
Figure 6-30 Methodology assessment 1eVels.........ccccoecveeeriiiieiiiieniieieecee e 206
Figure 6-31 The multimodal version of the DVD rental applicationccceeveeuneeneee. 210
Figure 6-32 Physical position of the subjects and experimental apparatus...................... 211
Figure 6-33 A subject interacting with the applicationccceceeieiiiiiniiniienieeeeen, 212
Figure 6-34 The training appliCationcccveercuieeriieeeiiieeeiieeeieeeeieeeeireeeereeeeeeeeenee e 213
Figure 6-35 Task completion mean time per interaction modality...........cccccvcveverienenne. 215
Figure 6-36 Mean task procentage completion per interaction modality 215
Figure 6-37 Mean number Of €rrors per CateZOTYcocvereerueriereenierieneenieeieneeneeeee e 217
Figure 6-38 The timeline for a correct voice-enabling button manipulation.................... 217
Figure 6-39 Learning time for vocal Interactionccceeveeeiiievieeiieenieeiieeie e 218
Figure 6-40 Mean number of mouse clicks per interaction modality.............ccoeeveeereenee. 218
Figure 6-41 Distribution of the modality preference per subjectcccccevvevvrvuerienennne. 219
Figure 6-42 Mean number of errors per experience group for vocal interaction 221
Figure 6-43 Mean number of errors per experience group for MM interaction............... 221
Figure 6-44 Distribution of task completion time per interaction type and experience

24 (01010 O O TSRS P PP P TUUPPRRPPPRRPRPON 222
Figure 6-45 Task completion mean time per eXperience roupceeeveerreeerveerreesveennns 223
Figure 6-46 Modality interaction preference per application typeccceeeeeceeeneereeenen. 225
Figure 6-47 Requirements COVETAZE TALC.........ccveerveerueerreerieeereenieeeneessreeseensneeseessseensens 234
Figure 7-1 Connection between the effort rate and the outcome rate of our methodology

.. 242

Table of Tables

Table 2-1 Comparison of the surveyed user interface description languages 53
Table 3-1 Definition of existing values for the userAction attribute.............cccccveeeruveeneen. 62
Table 3-2 Definitions of existing values for the taskltem attribute...........ccceoerierienennnen. 62
Table 3-3 Definition of newly identified values for the taskType attributes...................... 64
Table 3-4 Synonyms for the taskType Valuesccceeviieiiieniieiieiieeeeee et 64
Table 3-5 Definitions of newly identified values for the taskItem attribute....................... 64
Table 3-6 Examples of combinations between values of taskType and taskItem attributes
.. 65

Table 3-7 Correspondence between popular widgets and CIOs of different modalities.... 88
Table 3-8 Possible combinations of input/output interaction types for a label and a

EEXEFTIEA ... s 94
Table 3-9 Stylistics for several vocal concrete interaction objects........c.cceeveeerveeeeeeeenneen. 98
Table 4-1 Color associated to the UsiXML model concepts..........coceeeeveenieeiieneeeneennen. 133
Table 4-2 Mappings between tasks types and AIC facets types......ccceeeveeecveeecreeercveeennee. 146
Table 4-3 Mappings between facet types and GIC typescceeeeveeveeeiieenieeiieenieeieeee. 148
Table 4-4 Design option values for textInput widget with graphical assignement for input

.. 149
Table 4-5 Mappings between facet types and VIC typescoeevveeviieecieeecieeeciee e 151
Table 4-6 Design option values for vocal assigned input...........ccoeeeeevieenieeiiieneenneennen. 152
Table 4-7 Mappings between facet types and GIC and VIC types........ccceeevveecveercnreennee. 153
Table 4-8 Design option values for multimodal textInput widget (graphical and vocal

equIValence fOT INPUL).....ccecuiieiiiieeiiee e e eree e e e s e e sreeesaaeeens 153
Table 5-1 Mappings between the vocal CIOs and VoiceXML elements.............ccceuee.... 160
Table 5-2 Mappings between the graphical CIOs and the XHTML elements 161
Table 6-1 Design option values for inputTeXt.........ccceeviieiieiiiieniieiieeieeieeee e 172
Table 6-2 Design option values for radioButtons.............cccceeeviiieeiiieccieecieccee e 173
Table 6-3 Design option values for outputText........ccceevevieiiiiiiienieiiieecee e, 173
Table 6-4 Design option values for control buttonsccceecvveeriiercieescieeeie e 173
Table 6-5 Design option values for vocallnputcccveerieeiiieniieiiiniecieeeeee e, 174
Table 6-6 Design option values for vocallnput with confirmation..............ccocceeeeninee. 174
Table 6-7 Design option values for vocallnput with grammar items...........cccceceevvenenee. 175
Table 6-8 Design option values for vocalPrompt............cceevveeiiiieiiieniiiecieeeee e 175
Table 6-9 Design option values for submit element..............ccceeviieiiiiiiiinieniiieeeeeeee. 175
Table 6-10 Design option values for multimodal inputTextcccceeviveeiieencieeniieenee, 176
Table 6-11 Design option values for multimodal radioButtonsccccceceeveriinennenne. 177
Table 6-12 Design option values for outputTeXt........ccccvveriiieriiieiiiieiieee e 177
Table 6-13 Mappings between task and domain models...........cccceeveiriiinieniienieneeen. 184
Table 6-14 Design option values for INPutText.......ccccccveeeiiieriiieeiiieeieeeiee e 186
Table 6-15 Design option values for cOmboBOX..........ccceeviiiiiiiniiiiiiiieeieeeeee e, 186
Table 6-16 Design option values for radioButtons.............cceeveiieriiienciieniieceee e 187
Table 6-17 Design option values for checkBOXesccoevieriieniiiiiiiiecieeeeee e, 187
Table 6-18 Design option values for liStBOX........ccccueeeiiiiiiiieiiiiieieeeeeeeeee e 187
Table 6-19 Design option values for multimodal inputTextccccevvieiieniiienieneenen. 188

10

Table 6-20 Design option values for multimodal comboboxcccceevverieniiiinicnennne. 189

Table 6-21 Design option values for multimodal radioButtonscccccecveeriieenneenee. 189
Table 6-22 Design option values for multimodal checkBoxes..........ccccccevveniininicnnnnne. 189
Table 6-23 Design option values for multimodal 1iStBOXescccveeevveercieencieeeiieeee, 190
Table 6-24 Design option values for multimodal inputTextc.cccoceevinienennineenennne. 191
Table 6-25 Design option values for multimodal comboboXccccceveevierciieneenneenen. 192
Table 6-26 Design option values for multimodal radioButtonsccccceceeveriinennenne. 192
Table 6-27 Design option values for multimodal checkBoxes..........cccccvvvvvieviiirninenne. 192
Table 6-28 Design option values for multimodal listBoxescccevieiieniiienienieeen. 193
Table 6-29 Mappings between task and domain models...........c.cceccvveeviieniiiiniieeiieeee, 198
Table 6-30 Design option values for multimodal radioButtonsccccceceverineenenne. 200
Table 6-31 Design option values for ImageZones..........c.eevveeeeieerieeecieenieeieenieereeseeeenens 200
Table 6-32 Design option values for multimodal radioButtonsccccceeviieiieennnnen. 201
Table 6-33 Design option values for multimodal radioButtonsc.cccceevveereenenennnen. 203
Table 6-34 Design option values for multimodal radioButtonsccccceceeveriineenenne. 203
Table 6-35 Estimated learning time of the methodological aspects...........ccceevveeeeenennen. 207
Table 6-36 Summary of the subject’s demographics and experience level...................... 209
Table 6-37 Mean task completion time (seconds) per experience groupoceeeveenee.. 220
Table 6-38 Mean task procentage completion per eXperience groupc..ceeeveerveereveenen. 220
Table 6-39 t-Test results for the significant difference in mean task completion time with
1ESPECt t0 MMM EXPEIICIICEvveeeevrieeiiieeiieeeiieeeiteeestteeeseaeeesaaeeesaseeessseeessseeessseeennseeas 222
Table 6-40 t-Test results for the significant difference in mean number of pronunciation
and synchronization errors with respect to MM eXperience..........cccceeecveeneerieeennnnne 223
Table 6-41 t-Test results for the significant difference in mean completion time with
TESPECt 10 EXPETIENICE CALEZOTY ..cuvveurieiiientierireetieeteenteeeteesteeebeeseeeebeesaeeenseesnseeeeas 224
Table 6-42 Subject’s opinion for web form applicationsccoeeeeevieenieeciieneeeneennen. 226
Table 6-43 Subject’s opinion for non web form application...........ccceeveevieriieneenieennen. 227
Table 7-1 Dependencies between design OPtiONS.........cccveevveeeieerieeeiieenieeieenieereeseveennees 237

11

12

1. Introduction

1 Introduction

1.1 Context

The most prevailing type of User Interface (UI) in today’s interactive applications is the
Graphical User Interface (GUI). Since GUISs restrict the Human-Computer Interaction
(HCI) mainly to the visual mode, they do not allow end users to communicate in ways
they naturally do with other human beings [Klem00]. More particularly, the standard
GUI does not work well for some users (e.g., users having limited literacy or typing
skills), in some circumstances (e.g., when users are moving around, when their hands or
their eyes are busy with other tasks), when the environment is constrained (e.g., the
keyboard and the mouse are not available) or when the end user is interacting with
another person. In order to go beyond the GUI imposed limitations, a new Ul paradigm
is needed. Multimodal (MM) Uls is one of these paradigms having the expected
capabilities.

The aforementioned problems also arise on the Internet, where an ever increasing
portion of the user population is carrying out interactive tasks with more advanced
interaction devices (e.g., mobile phones, smart phones, Personal Digital Assistants —
PDAs). As this population portion is increasing, new specific needs should be addressed.
As interaction devices become smaller, means of input other than keyboard or tap screen
become necessary. Indeed these devices benefit nowadays of enough processing power
to handle multiple and complex tasks. This situation also leads to considering a new
application technology called multimodal, where multiple methods of communication
between the end user and interaction devices are considered simultaneously. These
methods include, but are not limited to: keypad, tap screen, tactile screen, handwriting
recognition, speech synthesis, voice recognition, and gesture recognition.

MM Uls represent a research-level paradigm shift away from conventional windows-
icons-menus-pointers (WIMP) interfaces towards providing users with great expressive
powert, naturalness, flexibility and portability [Ovia99]. Such flexibility makes it possible
for users to alternate modalities so that physical overexertion is avoided for any
individual modality. It also permits substantial error avoidance and easier error recovery.
The flexibility of a MM interface can accommodate a wide range of users, tasks and
environments. For example, users who are temporarily or permanently disabled, tasks
which were not possible to carry out before and environments in adverse or very
constrained settings (e.g., noisy environments, mobile conditions) when a single mode
may not suffice. In many of these real-world examples, integrated MM Uls exhibit the
potential to support entirely new capabilities that have not been envisioned by previous
traditional systems based on GUIs.

13

1. Introduction

MM UlIs have been viewed as an attractive area for HCI research since Bolt’s seminal
“Put That There” system [Bolt80] where graphical objects are created and moved on a
o speech reco

wall screen usin onition and finger pointing (Figure 1-1).

Figure 1-1 “Put that there” multimodal system

Since then, the promise of MM Uls to deliver a more natural and efficient interaction has
not been discontinued [Cohe98]. MM Uls are expanding both in popularity due to the
increasing accuracy of perceptual input systems (e.g., voice recognition, handwriting
recognition, vision recognition) and the increasing ubiquity of heterogeneous computing
platforms (e.g., mobile telephones, handheld devices, laptops, whiteboards) and in the
range of information systems they support:

. Accessing business information, support desks, order tracking, airline arrival and
departure information, cinema and theater booking services and home banking.

o Accessing public information, including community information such as weather,
traffic conditions, school closures, directions and events; local, national and
international news; national and international stock market information; and
business and e-commerce transactions.

. Accessing personal information, including calendars, address and telephone lists,
to-do lists, shopping lists and calorie counters.

Since more and more people have access to the Internet, MM Uls promise to enable

anyone to access web based information systems from any online computing platform,

mobile or stationary, from anywhere and at anytime (e.g., at work, at home, on the move
between).

1.2 Concerns of multimodal user interfaces

In the context of this thesis we identify hereafter a set of concerns that are considered

important for developing MM information systems:

" Concern 1. Lack of support for multiple input/ ontput modalities: end users are not able to
flexibly choose the most suitable interaction modality for their task, as its
achievement depends on several aspects: the environment (e.g., noisy), the context
of use (e.g., driving in a car), the task complexity (e.g., directory assistance), the

14

1. Introduction

device capabilities (e.g., small displays), the users’ disabilities (e.g., visual
impairment) [Awde06].

. Concern 2. Lack of separation of modalities: most of the existing model-based approach
do not provide a separation of concepts assigned to different modalities. This could
enable designers to specify separately the Ul corresponding to each modality and
to further connect them altogether. Moreover, they could reuse, partially or totally,
the specification corresponding to an interaction modality in other applications that
employ it.

. Concern 3. Lack of combination of modalities: the existing MM systems do not always
provide a faster and more robust interaction as they rarely take advantage of the
combination capabilities of interaction modalities characterizing such systems. For
instance, they do not consider multiple modalities enabling parallel independent or
complemetar input in order to achive the tasks. Moreover, the users are rarely able
to select between two or more equivalent modalities the one they consider the
fastest for the task to achieve.

" Concern 4. Lack of modality-independent model: existing model-based approaches suffer
from a lack of a modality-independent model in the development life cycle
[Limb04b]. Due to the continously increasing number of new interaction devices
and as a consequence of interaction modalities that will determine the development
of new Uls with new modality capabilities, such model could enable to avoid their
redeployment from scratch. In addition, it could contribute to the principle of
separation of concerns [Dijk70].

" Concern 5. Lack of extensibility for new modalities: nowadays, the constant emergence of
new computing platforms supporting new sets of interaction modalities requires
the intergration of new model concepts manipulated by methods. Currently, these
concepts are difficult to extend therefore preventing the adaptation of methodolo-
gies for covering new interaction modalities.

" Concern 6. Lack of human readability of the ontology: few methods define in an explicit
manner their underlying concepts which are generally bounded to tools or meth-
odological recommendations, thus preventing a designer to grasp the conceptual
foundations of a methodology [Limb04b]. Moreover, research teams tend to con-
duct their researches and developments on their own models which make concep-
tual consolidation across methods difficult. Cross-method understanding is a tedi-
ous and time-consuming activity because it requires understanding the peculiarities
of each method and establishing correspondence between them. As a consequence,
communication among researchers becomes complex.

" Concern 7. Lack of a structuring framework for the development of MM Uls: we are not
aware of any development framework of MM Uls that structures the development
life cycle in terms of options to select by designers. Currently, the designer’s
decisions are not explicitly defined and do not clarify the development of such
systems which therefore requires more design workload.

" Concern 8. Lack of method explicitness: existing approaches seriously lack explicitness in
the way they propose their catalog of model-to-model and model-to-code trans-
formations both to the designer and to researchers [Limb04b]. The transformation
catalogs are often implicitly maintained in the head of developers and designers

15

1. Introduction

and/or hard-coded in supporting software. Consequently, the transformational
processes proposed in the literature consist essentially of black boxes. This lack of
explicitness dramatically hampers methodological guidance.

" Concern 9. Lack of method extendibility: developing Uls consists of making heuristic
decisions in a vast design space. Transformations have consequently an inherent
heuristic nature as they try to translate into algorithms part of these design deci-
sions. Proposed methods offer very little possibilities to the designer to modify
built-in heuristics: adding, deleting, modifying, reusing transformations is almost
impossible [Limb04b].

" Concern 10. Lack of support for tool interoperability: consequently to the lack of explicit-
ness, the exchange of knowledge regarding transformation catalogs can hardly be
achieved [Limb04b]. Even when transformation catalogs are made explicit in tools,
their heterogeneous formats prevents the reuse of transformations outside the con-
text for which they were designed.

Under the light shad by the above set of concerns we benefit from a twofold result
(Figure 1-2): (1) the statement of the current thesis is defined in Section 1.4.1, (2) a set of
features of MM Uls are employed in Section 2.5.1 in order to analyse the user interface
description languages (UIDLs) surveyed in the state of the art (Section 2.3).

Thesis statement:

Concerns of UL L ~ 1 Models
multimodal Uls 2. Method Methodology
3. Tool support
(2) analyse
State of the Art

Figure 1-2 Benefits of the identified concerns of multimodal Uls

1.3 Terminology used in this thesis

In order to precisely identify the object of concern of this thesis, three fundamental
terms often employed in the context of MM Uls are defined: mode, modality, media. The
scientific community has now debated definitions and uses of these terms for more than
twenty years without reaching clear consensus [Vand07]. For instance, the concepts of
modality and multimodality mean different things to different stakeholders. In cognitive
psychology, a modality denotes a human sense (e.g., vision, audition, taste, etc.) whereas
in Human-Computer Interaction, multimodality corresponds more or less to interaction
techniques that involve multiple human senses simultaneously. Much depends on the
perspective, e.g., from a user or a system point of view, or on the degree of precision
needed to solve or discuss a particular problem. In this section, we present our choices
using a system perspective.

16

1. Introduction

1.3.1 Mode

The human body has five major senses which operate to gather information from the
wortld around us (Figure 1-3): sight, hearing, smell, taste, and touch. Any stimulus to one
of the sense areas is detected by sensory nerves and is sent to the brain for interpretation.
The communication “mode” corresponds to the senses belonging to the motor and
sensorial system of the user [Bell92] as it refers to the communication channel used by
the two entities that interact [Schy05]. Consequently, two #uput modes exist that
correspond to two motor and sensorial human systems: the oral mode from the hearing
sense and the gesture mode from the touch sense. Similatly, five output modes correspond
to the five senses: visual (sight), auditive (hearing), tactile (touch), olfactive (smell) and
gustatory (taste) modes. By expanding this classification, four types of zput communication
modes are identified based on the implied sensorial system: graphical, vocal, tactile and
gesture. Similarly, six owtput communication modes could be identified based on implied
sensorial and motor systems: graphical, vocal, tactile, olfactory, gustatory, and gesture. A
communication mode determines an interaction type between the user and the system.
Thus, each communication mode has an associated interaction type. For instance, if the
communication mode between the user and the system is graphical, the interaction is said
to be graphical by analogy.

Figure 1-3 The human five senses

1.3.2 Media

Most of the authors agree in defining “media” as a technical support for information. In
[Niga94], “media” is defined as a physical device that allows storing, retrieving or
communicating information. Consequently, the definition is valid for all input devices
(e.g., mouse, keyboard, microphone), for all output devices (e.g., screen, loud speakers) as
well as for the devices storing the information (e.g., CD Rom, DVD) [Schy05].
Therefore, “media” is interpreted as being more than a “physical device” even if these
two terms are used very often alternatively.

1.3.3 Modality

Regarding the term “modality”, Nigay’s definition [Niga97a] has been adopted because it
clearly differentiates modalities by examining their intrinsic properties and because an
extensive definition in terms of properties has been introduced in a meta-model of
modalities [Bouc06]. The interaction modality is seen as a couple of a physical device 4
and an interaction language L.: <d, I.>. A physical device is a system artifact that
acquires (input devices) information (e.g., microphone, keyboard, or mouse) or delivers
(output device) information (e.g., screen or loud speakers). An interaction language
defines a set of conventional assembly of symbols that convey meaning (e.g., restricted
natural language, direct manipulation, unrestricted natural language). The symbols are

17

1. Introduction

generated by actions applied on physical devices. According to this definition, typical

examples of interacton modalities include:

. A graphical input modality described as the couple <wmouse, direct manipulation™.

o A vocal input modality modeled as <wzcrophone, pseudo-natural language N1.>, where
NL is defined by a specifc grammar.

o A tactile input modality specified as the couple <tzactile screen, tactile commands>.

m A graphical output modality modeled as the couple <screen, graphics langnage>.

o A vocal output modality described as the couple <lud speakers, pseudo natural
langnage N1.>.

1.3.4 Multimode, multimedia and multimodality

In this thesis, the definition of multimodality relies on a system-centered view. Thus, a
MM system is a system having the capability to communicate with the end users through
different types of communication modes and to extract and convey meaning
automatically [Niga97c|. Thus, a monomodal, respectively multimodal system is referred to as
any system that supports communication with the end user through a single modality,
respectively multiple modalities. Multimodality refers to output as well as to input
modalities: input, respectively output multimodal systems are employing at least two
different input, respectively output, modalities.

Since the prefix “multi” implies the use of more than one suffix, a monomedia, respectively
multimedia, system is referred to as any system that involves a single media, respectively
multiple media. But multimedia systems also involve multiple types of communication
modes. Consequently, what is the difference between a multimodal system and a
multimedia system? A multimedia system allows the acquisition, the storage and the
distribution of data, while a multimodal system is capable of acquiring and interpreting
data, as well as storing and distributing these interpretations [Cout92]. Therefore, a
multimodal system is a system with multimedia capabilities that enables semantic data
handling.

Similarly, a monomode, respectively multimode system is any system relying on a single mode,
respectively multiple modes, to support communication with the end user. A system can
therefore be multimodal while being monomode (e.g., two modalities that are used in the
same mode). Conversely, a multimode system subsumes its multimodality since at least
two different modes are exploited.

Having defined these terms, we are now ready to define the central objective of this
thesis and the working hypotheses it underlines.

1.4 Thesis

1.4.1 Thesis statement

In this thesis we argue that developing multimodal Uls is an activity that would benefit
from the application of a methodology which is typically composed of: (1) a set of
models gathered in an ontology, (2) a method manipulating the involved models and (3)
tools that implement the defined method.

18

1. Introduction

Therefore, we will defend the following thesis statement:

Define a design space-based method that is supported by model-to-model colored trans-
formations in order to obtain multimodal user interfaces of information systems from a
task and a domain models.

The concepts introduced above are reviewed and defined in the next section.
1.4.2 Definitions of working hypotheses

1.4.2.a.1 The models

Model-based tools have been investigated since the late 1980’s. The goal of these tools is to
allow designers to specify the Ul at an implementation independent level. The
specification is usually shared between a set of components, called models, each model
representing a facet of the interface characteristics. The number and type of these models
is different from one approach to another. Our approach, for instance, considers the fask
and domain models since the initial design stage in order to encourage the user-centered
design. Therefore, Chapter 3 will be dedicated to a precise description of the concepts
involved in the considered models.

The model-based approach has been the target of some major criticisms [Myer00, Puer96,
Shne06, Szek96]. The main shortcomings commonly cited are:

(1) High threshold: the designers need to learn a new language in order to express the
specifications of the Ul

(2) Low ceiling: each model-based systems has strict limitations on the kind of Uls they
can produce and the generated Uls are generally not as good as those that could be
created with conventional techniques.

(3) Wide walls: model-based systems do not support a wide range of possible
explorations [Shne06].

(4) Unpredictability: it is difficult to understand and control how the specifications are
connected with the final UL Therefore, the results may be unpredictable.

(5) Lack of propagation of modifications: changes made to one model or to the final Ul are
generally not propagated to the other levels of specification.

(6) System dependent and private models: a lot of models are strongly tied to their associated
model-based system and can not be exported. Furthermore, some model
specifications are neither publicly available, nor obtainable via a license.

Most of these problems could be addressed:

(1) High threshold: most models can be built graphically in a design environment, which
prevents users from learning the specification language. Even if the designers have
to learn the specification language, the automation of a portion of the development
should reduce the development effort.

(2) Low ceiling: we believe that this criticism holds only for a specific kind of model-
based generation tool, which generates the Ul starting from very high level models

19

1. Introduction

(Task Model and/or Domain Model).

(3) Wide walls: our approach considers a design space that benefits from a generative
intrinsec quality. This enables designers to add design options or new values for
the existing ones thus offering the possibility to extend the range of exploration.

(4) Unpredictability: our approach relies on an explicit set of rules, fully documented and
accessible. It offers the designer full control on the selection of those rules. The
results of the application of a rule may be previewed.

(5) Lack of propagation of modifications: although the problem of the impact of a
modification made on a given model over the other models remains a tricky one,
we will attempt to determine the side effects on the other models entailed by the
application of a given rule.

(6) System dependent and private models: we will make use of a Ul description language
publicly and freely available.

It is expected that the capabilities and the quality of automatically generated Uls and
interactive applications will be expanding step by step and that in the future, perhaps a
point will be reached where the capabilities of an interface builder as included in an
Integrated Development Environment (IDE) and a Model-Driven Architecture (MDA)-
compliant environment will become comparable.

The following definition was approved unanimously by 17 participants of the ORMSC
plenary session meeting in Montreal on 23-26 August 2004.

The stated purpose of these two paragraphs was to provide principles to be followed in
the revision of the MDA guide:

"MDA is an OMG initiative that proposes to define a set of non-proprietary standards that will specify
interoperable technologies — with — which — fo realize model-driven development with
antomated transformations. Not —all — of these technologies — will ~ directly concern the
transformation involved in MDA.

MDA does not necessarily rely on the UML, but, as a specialized kind of MDD (Model Driven De-
velopment), MDA necessarily involves the use of model(s) in development, which entails that at least one
modeling language must be used. Any modeling langnage used in MDA must
be described in terms of the MOF language to enable the metadata to be understood in a
standard — manner, which is a precondition for —any activity to perform antomated
transformation.”

Myers, Hudson, and Pausch [Myer00] argue that a model-based design tool will become
successful from the moment that a low threshold and a high ceiling will be possible. A
low threshold means that the designer or the developer does not need much to start
developing a Ul and that a simple UI could be obtained easily. In contrast, a high ceiling
means that the tool has enough capabilities to produce sophisticated Uls while
maintaining moderate the resources required for obtaining this UL

Typically, Uls produced in interface builders and IDEs require some significant amount
of resources (in terms of time, experience, skills), probably more than model-based
IDEs, but their coverage is maximum (Figure 1-4): they exhibit a low threshold and a

20

1. Introduction

high ceiling. In contrast, first-generation model-based IDEs suffered from a high
threshold and a low ceiling: they forced designers and developers to learn a new language
(the one of the models), but once this effort is made, the resources required to produce
the Ul are low. However, only some limited Uls could be obtained. The second
generation of model-based IDEs has expanded this coverage and the trend is now
pursued by MDA-compliant softwares. It is worth to notice that such softwares are
assumed to require less effort for learning the models since these models are already part
of general purpose development methods like UML. We therefore hope that the
coverage of such tools will progressively reach the coverage of traditional tools, but
always with less resources involved.

A
N L .
[} o o) .
£ 8 B b Ceiling
= -
a c w
3 S 7
Q ® <
© © o 7)
O c c < z
o 0] o T o
= (=) s c
®© @ E
S ° £
2 S k £s
° (0] Q 8 =
N (= ,‘R = C
o = R0
Irs} 2 23
[g e
o 8
b=l
2Q
£ c
\ 4
T Threshold

Resources (time, experience,...)

Figure 1-4 Capabilities vs. resources for producing a user interface

Model-based interfaces have also recognized advantages [Puer97]:
(1) Advantages in terms of methodology:

* Jt is a widely accepted software engineering principle to start a software
development cycle with a specification stage [Ghez01].

* The model-based approach supports a user-centred and Ul-centred
development life cycle: it lets designers work with tasks, users and domain
concepts instead of thinking in engineering terms.

(2) Advantages in terms of reusability:

* In a multiplatform context, model-based tools can provide automatic
portability across the different devices.

" The availability of a complete description of the interface in a declarative form
allows the reuse of some interface components.

(3) Advantages in terms of consistency:

* This approach ensures some form of consistency between the early phases of
the development cycle (requirements analysis, specification) and the final
product.

* In a multiplatform context, it also guarantees a minimal consistency between

21

1. Introduction

the UI generated for different target platforms. This is not always possible
when using traditional techniques where the development of each version of
the Ul is likely to be performed separately.

1.4.2.a.2 The method

The considered method consists of an zntegrated approach where all stages of the software
development life cycle are covered in a principled way, from eatly requirements to
prototyping and coding. This approach will benefit from a design space which will explicitly
guide the designer in choosing values of design options that are appropriate to the MM
Uls depending on parameters. In order to support these aspects our approach is also
transformational, i.e. based on a catalogue of transformation rules. Similarly to the concept
of schema transformation in database engineering [Hain02], we can define a
transformation between source model M and target model M’ as an operator which
replaces a construct Cin M by a construct C’in M’, ot inserts a new construct into M, or
removes an existing construct, while preserving a set @ of properties of M. The set @ of
properties we want to preserve includes:

. The usability of the UL

o The cross-platform consistency of the whole information system, i.e. the consistency
between the various versions of the UL

1.4.2.a.3 The tool

Besides being model-based and transformational, our approach is also computer-assisted by
automating, partially or totally, some repetitive tasks while offering some level of control
to the designer. In order to conciliate computer-support and human control, we adopt a

semi-antomatic approach where:

(1) Transformation rules are manually selected and parameterized by the designer, with
a possibility to modify this configuration at any time.

(2) Transformation rules are then automatically applied to reduce the design workload.

1.4.3 Scope

The current thesis basically concentrates on the following aspects:

. Engineering of Interactive Systems and in particular reactive systems that enable
to interact with humans [Schy05]. On one hand, these systems imply that the inputs
are not provided by another system, but by users who’s behaviour cannot be
predictable. On the other hand, reactive systems suppose that their outputs can be
perceivable and easily interpretable by humans. Amongs these particulat type of
Interactive Systems we target Information Systems (ISs) defined as “a set of
interrelated components that collect (or retrieve), process, store and distribute
information” [Laud06]. This information is typically stored in databases. The
importance of these ISs is vital in nearly all types of organizations. ISs can be
distinguished depending on the level they serve in the organization (i.e., strategic,
management or operational level) and on their major functional areas (e.g., sales

22

1. Introduction

and marketing, manufacturing and production, finance and accounting, and human
resources). Typical examples of ISs (or subsystems) are a payroll system, a
registration system or a sales order system. Examples of applications outside the
category of ISs are entertainment applications, embedded systems or supervision
systems.

o Graphical, vocal and multimodal interaction resulting from their combination.
As specified in Section 1.3.1 the human body has five main senses to perceive out-
side stimuli. Of these senses, only three have been successfully used in Human-
Computer Interaction. Sight and hearing are the most common modes of convey-
ing information to a user. Touch has been used for silent vibration modes in mo-
bile computing, but is not as common as the other two. Smelling and tasting output
devices have been investigated and very few practical applications have been found
interesting in an interaction context, because users find it impossible to rapidly per-
ceive the information conveyed by these modes. For instance, smel-based
interactions still found in their infancy [Kaye04, Brew06] show that olfactive
feedback has been shown less effective than its graphical counterpart, but less
disruptive [Bodn04]. Therefore, the former interaction remains less frequent in
actual ISs. Apart from the basic senses, there are additional ones like thermo-
reception or the sense of balance, but so far these cannot be used for interaction.
Therefore, only sight and hearing are considered in this thesis as they are useful for
information systems. By language abuse, we sometimes refer to interaction modali-
ties (Section 1.3.3) by their corresponding communication mode.

" The methodology addresses the development of MM Uls for predefined and
constant contexts of use specified at design time. Therefore any dynamic
migration from one modality to another at run time is not supported.

o As our interest concerns the development of a general method for producing MM
Uls based on a design space independent of the employed interaction modalities,
the fusion and fission aspects of these interactions, althought important, will not
be addressed. Moreover, there are already a lot of research works dedicated to this
particular area [Tour02], [Gait07], [Sun07].

o The scope of this work is limited to multimodal Uls of IS, which are familiar
to the vast majority of users and available on almost every platform. Hence,
we do not consider other families of Uls such as 3D Uls or tangible Uls.

" Consequently, other aspects related to other layers of interaction application
(e.g., functional core, physical interaction) as they are defined by different system
architecture (e.g., ARCH [Bass91], PAC-Amodeus [Niga94], W3C Multimodal
Interaction Framework [LarsO3b]) are not addressed in this thesis. In addition,
multimodal formal notations such ICO [Nava06], SCXML [Barn08] or NiMMiT
[Debo006] are out of the scope of this thesis.

o The primary goal of this thesis consists in defining a methodology that eases the
design’s workload when developing MMUIs. We take for granted the benefits
and shortcomings of these type of applications. Therefore, the question of

23

1. Introduction

usability and accessibility of UI resulting from this methodology, althought
important, will not be addressed explicitly in this thesis.

" The target audience of this thesis is, on the one hand, the HCI research
community and, on the other hand, the professionals involved in the design
and development of multimodal Uls. In the remainder of this manuscript, we
refer to these actors as “designers” or “developers”. The ultimate target is the end
user for whom the benefit of MM Uls should become obvious.

1.5 Reading Map

The remainder of this thesis is structured according to Figure 1-5.

1. Introduction

l

2. State of the Art

:

Methodology
3. Models 4. Method 5. Tools

!

6. Validation

I

7. Conclusions

Figure 1-5 Thesis structure

Chapter 1 defines the thesis statement based on a set of concerns of MM Uls consider
important for developing MM Uls. In addition, we have identified, defined and justified
the terminology that will be further employed in this dissertation.

Chapter 2 is dedicated to the state of the art in the area of MM Uls. First, a description
and a comparison between three significant conceptual MM frameworks are provided.
Furthermore, the features of a set of UIDLs and MM UI develoment tools are detailed.
We conclude with a summary of the state of the art that enables to establish a list of
shortcomings of current UIDLs. Based on these shortcomings a set of requirements of
MM Uls that argue the thesis statement are identified and will further be employed in the
validation process of the results provided by our methodology.

Chapter 3 concerns the ontological aspects of our methodology. First, we justify the

selection of the framework that will serve as a cornerstone of the thesis. Then, the
composing models are detailed by emphasizing our conceptual contribution. Further, the

24

1. Introduction

semantics of our ontology is presented along with the supporting syntax and stylistics.

Chapter 4 is dedicated to the transformational method employed in the current thesis.
The design space supporting this method and guiding the designer during the
development proccess of graphical, vocal and MM Uls is defined, justified and detailed.
Further, the selected graph-based transformational approach is expanded with the
concept of colored transformation rules. The four steps of the transformational
approach are identified and exemplyfied based on the design option composing the
aforementioned design space.

Chapter 5 concerns the implementation aspects of our methodology. The tool
supporting our method is introduced and each of the composing software modules are
detailed by identifying their role in the corresponding transformational step.

Chapter 6 will address the external and internal validation of the methodology. The
external validation consists of three case studies with different level of complexity: (1) an
on-line polling system, (2) a car rental system and (3) a map browsing system. Further, we
describe, analyse and interpret the results of an empirical validation with users thanks to a
comparative study of MM Uls resulting from various designed options supported by
transformations. For this purpouses, three systems were employed: the second case
study, a DVD rental sytem that is not described in the dissertation as it has the same level
of complexity as the previous one and the map browsing system. The internal validation
consists of reflections that aim to asses the characteristics of our methodology based on
the set of considered requirements.

Chapter 7 concludes this dissertation by identifying its contribution to the three
dimensions of the proposed methodology: models, method and tool implementation. In
addition, the chapter presents several possible extension paths for future work and
provides some personal reflexions with respect to the work presented in the current
thesis.

25

1. Introduction

26

2. State of the Art

2 State of the Art

2.1 Introduction

After a survey of the research literature, the current chapter presents the state of the art
issued from the real world MM Uls development solutions (Figure 2-1) that were considered
to bring a significant contribution to the development of the methodology defined in Section
1.4.1. The considered aspects of the current chapter do not take into account MM related
issues such as system architecture, fusion and fission mechanisms or MM formal notations
that are out of the scope of this dissertation according to Section 1.4.3. Consequently,
Section 2.2 provides a description of three conceptual MM frameworks and a comparison
between them. In Section 2.3 the features of a set of eight UIDLs surveyed in the literature
are presented along with their interest for our work. Further, Section 2.4 analysis some of
the existing Ul development tools considered important for us. The set of concerns
identified in Section 1.2 are used to provide a set of features based on which the surveyed
languages will be analysed in Section 2.5. As a result, a list of shortcomings will be identified
so that to further help us establish the requirements addressed by the current thesis.

Thesis statement:
Concerns of (1) define 1 Models
multimodal Uls 2. Method Methodology
3. Tool support
(2) analyse
Real {5) guide G)validate hapter 1
world l

Chapter 2

State of the At ——— Shortcomings ————— 12 Requirements
(3) identify (4) establish

Figure 2-1 General schema for state of the art analysis

2.2 A structuring theoretical framework

This section details the features of three conceptual frameworks considered important for
us, as they enable to manage different interaction modalities between the user and the system
and the cooperation established between them. In conclusion we provide a comparison over
the different points of view proposed by the frameworks.

27

2. State of the Art

2.21

TYCOON framework

The TYCOON (TYypes of COOperatioN) framework holds an interest for our work as it
enables to observe, evaluate and specify different types of cooperation among interaction
modalities [MartO1].

In [Mart97] a modality is defined as a process which analysis and produces chunks of
information. The TYCOON approach is based on the notions of #pes and goals of cooperation
between modalities. As a result of a study made in domains such as Psychology, Artificial

Intelligence, Human-Computer Interaction, five basic types of cooperation between

modalities were distinguished:

M

)

©))

“)

Transfer. Specifies that a chunk of information produced by a modality is used by
another modality. The transfer can appear either between two input/output modalities,
or between an input and an output modality. The goals of this cooperation type are:

v' Translation: for instance, in hypermedia interfaces a mouse click generates the
display of an image, or in information retrieval application, the user may express a
request in one modality (e.g., speech) and get relevant information in other
modality (e.g., video).

v" Improve recognition (e.g., mouse click detection may be transferred to speech
modality in order to ease the recognition of predictable words (e.g., here, that).

v Enable a faster interaction: when a part of an uttered sentence has been
misrecognized, it can be edited using a keyboard so that the user doesn’t have to
type/utter again the whole sentence.

Equivalence. Two modalities are said to be equivalent if a chunk of information may

be processed as an alternative, by either of the modalities. The goals of this type of

cooperation are:

v" Improve recognition command: for instance, when a speech recognizer engine is
not working accurately (e.g., in a noisy environment), the user can select the
command with a stylus.

v" Adaptation to the user by customization: the user is allowed to select the modality
he prefers.

V' Faster interaction: allows the system/user to select the fastest modality.

Specialisation. Indicates that a specific kind of information is always processed by the

same modality. The goals of this cooperation type are:

v" Interpretation: the user is helped to interpret the events produced by the system.

v Improve recognition: it enables an easier processing and it improves the accuracy
of the speech recognizer since the search space is smaller.

v’ Faster interaction: it decreases the duration of the integration and modality
selection process.

Redundancy. Several modalities cooperate redundantly when they are processing the

same information (e.g., the display of a confirmation dialog is replaced by two

redundant user actions: typing “quit” and uttering “quit”, thus enabling a faster
interaction). Some benefits of redundancy have been observed:

28

2. State of the Art

v" Support for users’ natural acting: a case study revealed that sometimes users select
their options (e.g., the town) both by speech and touch of tactile screen.

v" Increase of learnability: a redundant MM output involving both visual display of a
text and speech utterance of the same text enables faster graphical interface
learning.

(5) Complementarity. Considers several modalities each one processing different chunks
of information that are merged afterwards. The goals of this type of cooperation are:

v' Faster interaction: as the two modalities can be used simultaneously and convey
shorter messages better recognized than the longer ones.

v Improve interpretation: for an expert the graphical output is sufficient, but for

novice users a textual output is needed as well.
COMIT is a tool based on TYCOON framework that allows users to interact multimodality
with the system in order to build GUIs. COMIT is defined by a command language which is
used to specify several types of cooperation between speech recognition, keyboard and
mouse interaction.

2.2.2 CARE properties

The CARE (Complementarity, Assignment, Redundancy and Equivalence) properties hold
an interest for our work as it is a more advanced framework enabling to characterize the
possible relationships occurring among different interaction modalities available in MM Uls.
A modality is described as a couple of a physical device 4 and an interaction language I: <,
I> (Section 1.3.3). In order to give a formal definition of the CARE properties some
parameters have been defined in [Cout95]:

. State: is a set of properties that can be measured at a particular time to characterize a
situation.

= Goal: is a state that an agent intends to reach.

. Agent: is an entity capable of initiating the performance of actions (e.g., a user or a
system).

= Modality: is an interaction method that an agent can use to reach a goal.

= Temporal relationship: characterizes the use over time of a set of modalities. The use

of these modalities may occur simultaneously or in sequence within a temporal
window, that is, a time interval.

Based on the above parameters, the following formal definitions of the CARE properties are

specified:

(1) Equivalence (E). Modalities of a set M are equivalent for reaching state 5" from state s,
if it is necessary and sufficient to use any of the modalities. M is assumed to contain at
least two modalities:

Eguivalence (s, M, s') < (CardM) >1) N (N meM Reach(s, m, 5'))
E.g.: If we consider the following parameters:
. Modalities:
w1 = speech input <wmicrophone, restricted vocabulary-oriented natural langnage>,

29

2. State of the Art

)

©))

m2 = written natural langnage <keyboard, command langnage>.
. States:

§ = a multimodal user interface with an unfilled text field widget,

§' = a multimodal user interface in which the text field widget from state s is filled.
. Goal = reach stat s’ from s.
. Agent = user.
Then an example of equivalent use of modalities is: the user can fill in the text field by
employing any of the modalities 77 or #:2.
Assignment (A). Modality 7 is said to be assigned to reach szate s’ from state s, if no
other modality is used to reach s’ from s:

Assignment (s, m, s') <> Reach (s, m, s') N (N m" € M. Reach(s, w', s') = m'=m)

E.g.: If we consider the following parameters:

o Modality:
m = written natural language <keyboard, command language>.
. States:

§ = a multimodal user interface with an unfilled text field widget,

§’ =a multimodal user interface in which the text field widget from state s is filled.
. Goal = reach stat s’ from s.
. Agent = user.
Then an example of an assigned modality is: the user can fill in the text field only by
employing the modality 7. No other modality can be used to reach the state s
Redundancy (R). Modalities of a set M are used redundantly to reach state s’ from state
5, if they have the same expressive power (they are equivalent) and if all of them are
used within the same temporal window, 7

Redundancy (s, M, s', tw) < Eguivalence (s, M, s') N (Sequential (M, tw)v Paralle!
(M, 1))

E.g.: If we consider the following parameters:
. Modalities:

m1= speech imput <microphone, restricted vocabulary-oriented natural langnage>,

m2 = graphic input <mouse, direct manipulation>.
. States:

§ = a multimodal user interface with an unfilled combo box widget,

§" = a multimodal user interface in which the combo box widget from state s is filled.
. Goal = reach stat s’ from s.
. Agent = user.
Then an example of redundant use of modalities is: a combo box can be filled in by a
user ecither by employing modalities 77 and 72 in parallel, or by using them
sequentially but in the same temporal window (i.e., the user must act in a very short
time interval so as the inputs can be treated as if they were parallel).

30

2. State of the Art

(4) Complementarity (C). Modalities of a set M are used in a complementary way to
reach state s’ from state s within a temporal window, if all of them must be used to reach
s" from s, (i.e., none of them taken individually cannot cover the target state):
Complementarity (s, M, s', tw) < (CardM) >1) N (Duration(tw)# o) A
(VM ePM M'#M = —-REACH (5, M’ §')) n REACH (s, M, s') A
(Sequential (M, tw) v Parallel (M, tw)).
E.g.: If we consider the following parameters:
. Modalities:
m1= speech imput <microphone, restricted vocabulary-oriented natural langnage>,
m2 = written natural langnage: <keyboard, command langnage>.
o States:
§ = a multimodal user interface with an unfilled text field widget allowing
to input the name,
§ = a multimodal user interface in which the text field widget from state s is filled.
. Goal = reach stat s’ from s.
. Agent = user.
Then an example of complementary use of modalities is: modality 7 is employed by
the user to utter his/her first name, while 72 is used to fill in the last name. None of
the modalities taken individually can not be used to reach sate s°.
ICARE (Interaction CARE) [Bouc(04] is a component-based approach for the design and
development of MM Uls, composed of elementary components. An elementary component
supports a pure modality (e.g., speech only, graphics only). A graphical editor enables
designers to graphically assemble the components according to the CARE properties. This
assembly is afterwards transformed automatically into executable code. However, at run-
time, this code is unable to adapt dynamically to the context of use. In addition,
multimodality is limited to inputs.

2.2.3 W3C Multimodal Interaction Framework

The interest of our work in the W3C Multimodal Interaction Framework [Lars03b] identifies
with its objectives:

= Identifying basic components of MM systems.

. Specitying markup languages used to describe information required by components.

= Ensuring data flowing among components.

The framework describes input and output modes widely used today and can be extended to

include additional modes of user input and output as they become available. Figure 2-2

illustrates the basic components of the framework:

. End-user: enters input into the system and observes and hears information presented
by the system.

31

2. State of the Art

Input component: contains multiple input modes such as audio, speech, handwriting
and keyboarding. EMMA [W3C04a] may be used to identify the semantics of data that
represent the user’s input.

Output component: supposes multiple output modes such as speech, text, graphics,
audio files and animation. The output component is supported by the following
languages: SSML (Speech Synthesis Markup Language) used to describe how the words
should be pronounced, XHTML, XHTML Basic or SVG used to describe how the
graphics should be rendered and SMIL employed for the coordination of multimedia
output.

Interaction manager: is the logical component that coordinates data and manages
execution flow from various input and output modalities. It maintains the interaction
state and context of the application and responds to inputs from component interface
objects and changes in the system and environment.

Session component: provides an interface to the interaction manager to support state
management and temporary and persistent sessions for MM applications.

System and environment components: enable the interaction manager to find out
about and respond to changes in device capabilities, user preferences and
environmental conditions (e.g., which of the available modes the user wishes to use,
the resolution of the display, if the display supports color or not).

o p| Application
Functions
Input -
7 ’
(=¥ Interaction =i
! Mo sger P N ssion
\ anage - 7| Component
Qutput 14 . | System &
h Environment

Figure 2-2 W3C Multimodal Interaction Framework

MM interaction requirements for MM interaction specifications are described in [Maes03].
Three increasing difficulty order levels for the management of input interaction are

established:

(1) Sequential multimodal input: corresponds to an input received from a single modality
which may change over time. For this level it must be possible to specify which
modality or device to use for input and hint or enforce modality switches.

2 Simultaneous multimodal input: implies that the inputs from several modalities are
interpreted one after another in the receiving order, instead of being combined before
interpretation.

(3) Composite multimodal input: corresponds to an input received from multiple modalities at

the same time and treated as a single, integrated compound input by downstream
processes.

32

2. State of the Art

2.2.4 Comparison of theoretical frameworks

A first difference among the frameworks results from the way they are defining the notion
of modality. While in TYCOON a modality is defined as a process which analysis and
produces chunks of information, in CARE a modality is a couple of a physical device 4 with
an interaction language L : <d, L.>. The W3C Framework defines modality as a type of
communication channel used for interaction. The modality also covers the way an idea is
expressed or perceived, or the manner in which an action is performed (e.g., voice, gesture,
handwriting, typing).

Another difference encountered at the conceptual level is the existence of the #ransfer type of
cooperation in TYCOON, concept that is missing in the case of CARE. Moreover, due to
the fact that in several existing systems sounds are somehow specialized in notification errors
(e.g., forbidden commands are signaled with a beep), in TYCOON a clear distinction of the
type of specialization is being made:

. Modality-relative specialization: if sounds are used only to convey notification errors.

= Data-relative specialization: if errors only produce sounds and no graphics or text.
While CARE properties [Niga97b] define the relationships among devices and interaction
languages, interaction languages and tasks, or among different modalities, in TYCOON the
properties are used in a more restrictive way as they are describing only various types of
cooperation among modalities. Another contrast concerns the manner of treating the
interaction between the system and the user. With CARE it is possible to define cooperation
between different modalities from both the system point of view (systerz CARE properties) and
uset’s point of view (user CARE properties). The user CARE properties refer to the user’s
preferences that affect their choice for input modalities. With TYCOON only the system
point of view is considered.

Some similarities can be identified among the frameworks. The Redundancy property defined
in TYCOON and CARE frameworks could be expressed by employing modalities
sequentially or in parallel which corresponds, respectively, to sequential and simultaneous
MM input identified by W3C framework. Moreover, the Complementarity property supposes
either a sequential or a parallel use of modalities treated as a single which corresponds,
respectively, to sequential and composite MM input defined by the W3C framework.

2.3 User Interface Description Languages

This section presents a set of eight UIDLs surveyed in the literature that will further serve as
a basis for identifying the shortcomings of the state of the art.

2.3.1 XISL

XISL (eXtensible Interaction Scenario Language) [Kats03] holds an interest for our work as
it is the only web-based language that is supported by a tool enabling the development of
MM Uls based on interaction scenarios between the user and the system.

33

2. State of the Art

The goal of XISL is to provide a common language supporting MM interaction that is
characterized by three main features:

. Control dialog flow/ transition: feature employed from VoiceXML

= Synchronize input/output modalities: feature employed from SMIL

. Modality-extensibility: ensured by XISL.

For this purpouse, the language ensures the separation of the content (stored in
XML/HTML files) from the interaction (described in XISL documents). This provides
advantages in terms of: (1) reusability of the content and/or interaction, (2) improvement of
specification’s readability. Moreover, it supports the following types of cooperation between
modalities: parallel input/output, sequential input/output, alternative input. The user, system
or mixed initiative are supported by XISL for all the compliant devices: (i.e., PCs, mobile
phones, PDAs). New devices could also be considered thanks to the use of non strict values
of the elements specifying the input/output.

2.3.2 XIML

XIML (eXtensible Interface Markup Language) [Puer02a] represents an interest for our work
as it provides a modality-independent level in the development life cycle from which final
languages could be targeted. The main goal of the language is to enable a framework for the
definition and interrelation of interaction data. Interaction data refers to the data that defines
and links all relevant elements of a UL From the structure point of view, XIML language
includes the following representational units:
. Components: organized collection of interface elements categorized in major interface
components found in interface models:
v' User tasks: define a hierarchical decomposition of tasks in subtasks and the
relationships between them.
v Domain objects: is an organized collection of data objects and classes of objects
that is structured into a hierarchy.
v" User types: categotized in a hierarchy of users.
v’ Presentation elements: a hierarchy of interaction elements made of concrete
objects which communicate with users.
v Dialog elements: structured collection of elements that determine the actions
available to the users.
= Relations: definition or statement than links two or more XIML elements inside the
same component or between different components.
. Attributes: features or properties of elements.
XIML allows the development of Uls that must be displayed in a variety of devices. XIML
can be used to effectively display a single interface definition on any number of target
devices. This is made possible by the strict separation that XIMI makes between the
definition of a UI and the rendering of that interface which is left up to the target device to
handle. There are a number of converters [Puer02b] used to transform a XIML specification

34

2. State of the Art

to popular target languages (e.g., HTML, WML). XIML is also supported by a seties of tools
such as: XIML Validator, XIML Editor and XIML Viewer.

2.3.3 UIML

UIML [Abra04] is an XML-based language that holds an interest for our work as it provides:
(1) a device-independent method to describe a Ul, (2) a modality-independent method to
specify a UL

UIML allows describing the appearance, the interaction and the connection of the UI with

the application logic. The following four key concepts underlie UIML:

(1) UIML is a meta-language: UIML defines a small set of tags (e.g., used to describe a part
of a Ul) that are modality-independent, target platform-independent (e.g., PC, phone)
and target language-independent (e.g., Java, VoiceXML). The specification of a UI is
done through a toolkit vocabulary that specifies a set of classes of parts and properties
of the classes. Different groups of people can define different vocabularies: one group
might define a vocabulary whose classes have a 1-to-1 correspondence to UI widgets
in a particular language (e.g., Java Swing API), whereas another group might define a
vocabulary whose classes match abstractions used by a UI designer

(2) UIML separates the elements of a Ul and identifies: (a) which parts are composing the Ul
and the presentation style, (b) the content of each part (e.g., text, sounds, images) and
binding of content to external resources, (c) the behavior of parts expressed as a set of
rules with conditions and actions and (d) the definition of the vocabulary of part
classes.

(3) UIML groups logically the Ul in a tree of Ul parts that changes over the lifetime of the interface.
During the lifetime of a Ul the initial tree of parts may dynamically change shape by
adding or deleting parts. UIML provides elements to describe the initial tree structure
and to dynamically modify the structure.

“4) UIML allows Ul parts and part-trees to be packaged in templates: these templates may then be
reused in various interface designs.

To create multiplatform Uls, concept 1 is used to create a vocabulary of part classes (e.g., a

class Button) and concept 2 is used to separately define the vocabulary by specifying a

mapping of the classes to target languages (e.g., mapping class Button to class java.awt. Button

for Java and to the tag <button> for HTML 4.0). To create MM Uls, a multiplatform UI
should be created and then each part is annotated with its mode (e.g., which target platforms
uses that part). The behavior section from concept 2 is then used to keep the interface
modalities synchronized. For example, it might be defined a UIML part class called Prompt,
the mapping of Prompt parts to VoiceXML and HTML, and the behavior that synchronizes a
VoiceXML and HTML UI to simultaneously prompt the user for input.

35

2. State of the Art

2.3.4 DISL

DISL (Dialog and Interface Specification Language) [Scha06] is a UIML subset that holds an
interest for our work as it extends the language in order to enable generic and modality
independent dialog descriptions.

Modifications to UIML mainly concerned the description of generic widgets and improvements
to the behavioral aspects. Generic widgets are introduced in order to separate the
presentation from the structure and behavior, i.e., mainly to separate user- and device-
specific properties and modalities from a modality-independent presentation. The use of
generic widget attribute enables to assign each widget to a particular type of functionallity it
ensures (e.g., command, variable field, text field, etc.). Further, a DISL rendering engine can
use this information to create interface components appropriated to the interaction modality
(i.e., graphical, vocal) in which the widget will operate.

The global DISL structure consists of an optional Jead element for meta information and a
collection of templates and interfaces from which one interface is considered to be active at
one time. Interfaces are used to describe the dialog structure, style, and behavior, whereas
templates only describe structure and style in order to be reusable by other dialog
components.

Current implementations of DISL language include media players application for playing
mp3 files on mobile devices with limited resources or players run on PCs but controlled
remotely from mobile phones.

2.3.5 VoiceXML

VoiceXML holds an interest for our work as it is the only standardized language [W3C04b]
enabling vocal interaction extensively used in industry applications.

Its main goal is to provide web development and content delivery to voice applications, and
to free the authors of such applications from low-level programming and resource
management. It enables integration of voice services with data services using the traditional
client-server paradigm. A voice service is viewed as a sequence of interaction dialogs
between a user and an implementation platform. The dialogs are provided by document
servers, which may be external to the implementation platform. Document servers maintain
overall service logic, perform database and legacy system operations, and produce dialogs. A
VoiceXML document specifies each interaction dialog to be conducted by a VoiceXML
interpreter. User input affects dialog interpretation and is collected into requests submitted
to a document server. The document server replies with another VoiceXML document to
continue the user's session with other dialogs.

VoiceXML provides language features to support complex dialogs:

= Output of synthesized speech (text-to-speech)

" Output of audio files

= Recognition of spoken input
= Recognition of DTMF input
. Recording of spoken input

36

2. State of the Art

= Telephony features.

2.3.6 XHTML+Voice

XHTML+Voice, or X+V for short, holds an interest for our work as it is the only
standardized web-based language [W3C04b] where traditional graphical interaction (i.e.,
keyboard, mouse) can be combined with vocal and tactile interactions (i.e., human finger,
stylus pen).

The language is based on XHTMIL for graphical interaction, a simplified subset of
VoiceXML for vocal interaction and XML events for synchronizing them. The three
interactions available offer users the flexibility to select the modality that is the most suitable
for achieving their tasks depending on the context (e.g., level of noise, availability of the
hands). As X+V can afford a subset of the CARE properties (i.e., Assignment, Equivalence and
Redundaney just for output), the user can combine the different interaction types available.
X+V applications can be developed either manually or by employing the IBM Multimodal
Toolkit. The resultant specification is composed of: (1) graphical elements specifying the
presentation and the behavior of the GUI, (2) vocal elements specifying the exchange of
vocal information between the user and the system and (3) synchronization elements
between the two previous elements. The graphical and vocal engine included in the
multimodal browsers interpret separately the correspondent components. Currently, there

are only two multimodal X+V browsers: Opera (Figure 2-3) and NetFront.
fa _—EIE_IE]

File Edit View Bookmarks Widgets Tools Help

Cpen Save Prink Find Home Parels Tie Cascade Woice

ILETER § c ook vkimadslPizs. | =

W« v e D L htpfeesande| 2 |

=y ¥ Find next d Yoice |_] Authar maode ™

@Show images ¥ |4 Fit to width H’\ 100% ||

[»

| Multimodal Pizza Demo

Quantity:

Size:
o Small 12"
) Medium 18"
 Large 22"

Toppings: -
Extra Chasese

Vegetable Toppings:
Olives
Mushrooms
Onions
Feppers

Figure 2-3 Multimodal X+V application interpreted with Opera browser

37

2. State of the Art

2.3.7 TeresaXML

TeresaXML holds an interest for our work as it is employed in a model-based,
transformational approach for the development of MM and multi-device Uls.

The model-based approach [Mori04] is composed of the following steps: the initial task
model for the envisioned system is transformed into a system task model that is specific to
the target MM platform. The system task model is in turn transformed into an abstract UL, a
concrete Ul and then into the code of the final UI (i.e., X+V specifications).

2.3.8 EMMA

EMMA (Extensible MultiModal Addnotation Markup Language) holds an interest for our
work as it is a markup language used to contain and annotate information automatically
extracted from the input of users which manipulate MM Uls.

The language [W3C04a] is capable to convey meaning for different types of single input (i.e.,
text, speech, handwriting) and combinations of any previous modalities. These combinations
are compliant with the W3C Interaction Framework (Section 2.2.3) (i.e., sequential,
simoultaneous and composite).

The language is used as a standard data interchange format between components of a MM
system. EMMA is intended to be automatically generated by interpretation components used
to represent the semantics (not directly authored by developers) of the users' inputs. The
language does not represent a specification language and does not contain any
transformational approach that initiates a progressive development from different models.

2.4 User interface development tools

This section provides the description of a set of monomodal and multimodal UI devel-
opment tools considered important in the context of this dissertation.

2.4.1 Galatea Interaction Builder

Galatea Interaction Builder is a rapid-prototyping tool that supports XISL language [Kawa03].
It runs on PCs and can handle the following input modalities: speech, direct manipulation
(mouse) and written natural language (keyboard) as well as output modalities such as: speech
(text-to-speech), facial expression and graphic output. The tool provides a GUI design for
domain-specific prototyping (Figure 2-4). The interaction scenario is presented under the
form of a state transition diagram. Nodes of the diagram or MM interaction components,
which correspond to XISL tags, are connected with links. The toolbar on the right side of
the window provides the components used to specify the employed modalities (e.g.,
microphone for speech input, loud speaker for vocal output, a face symbolizing the output
provided by an avatar).

38

2. State of the Art

H Interaction Builder - [DemoAIR. xisI]

8 OO0O0OF) 0O0E) 003 0000000 X500 O0000H) 000000) 000

+ [£9] begin

4=

B3 |nteractionTree

Fered

D=d THEEOT
- Root
— & Scenario | X151 ~ 9
23
—-{&9) hody dialog I0: 02 2
-3 dislog This dislog s called from another disiog Dialog
=& dialog 9 @

S |

Exchange

Input

s

Output -

[il

UM

Figure 2-4 The Interaction Builder graphical user intetface

2.4.2 UIML Development Toolkit

UIML Development Toolkit (Figure 2-5) provides support for the UIML language by
allowing designers to generate high fidelity interfaces and production code. The tool is a
plug-in for the Eclipse IDE and is supported by LiquidUI, a tool that integrates a set of

converters for different software platforms (e.g., Java, HTML, WML, VoiceXML, C++).
£ UL Development - RequestHealthand Status.uiml - Eclipse Platform B -IDI}J:
Fie Edit Vew Placement Nawvigate Search Froject Ruon UiquidlD Window Help
[E3-EC |- ¥ o= @t 3| -][utDevchpment |
R Navigator I3 =5 ” albbiand a]|
|=|§, - |~ Palette —— v
i . Select
1 et samples & |
TE Cmeaes
= MissilelpinkManager, chss [Generic Containers +
a RequestHaathand Stabus.ui) —_
sarclear ~laix| S
Sysieminiml e
| System_Admiristration Add| I sichidframe
[GiList
[T 5:Table:
The next avallable uplink time is Time will be displayed h. "' Gifictetalchie
[Generic Compenents &
it Gitmiage
] GiTestrld
% GiFramptingut
4l | B 6 Rangeselector
LML View 52 S Bl G ToxtBox
1 <uiml> = =R
§ ‘gg:;; Transmiit Request Cancal [Generic M=nu Comp.., #
4 <preserkationid="base" base= [=] GiMenuBar
3 ‘JDEE;” %] G:Mesws
6 <interface=
7 datruchres [l G:Menulben
5 <patil="5 = ——— =
9 cpatide [Propesties 52 Interaction Edbar Qutlne %
10 cpartid=’ - bl =
1 <pat _G:TopContainerl29_
12 part Elbasic 18 _GButhoniz0_
13 <jpart :altemate-test 18 _GiButhon130_(1)
gt altermate-tes 4 L
e :ﬁf;f.f"“ aibacolor E] GiTextial_
16 <property name="g:lsyout” p Siburoncype Bl smeaisz_
17 <property names"athocalion’ gienabled
18 sproperty name="g:sze" part a:fgeciar
12 <property name=' Rb".DUl QHmagE-sre
el o gipadding

irclackad

=property name="g:text" parl
I<nronersf namﬁ'q:bcallo:"‘!:]
1 3

Figure 2-5 UIML Development Tool

39

2. State of the Art

2.4.3 WebSphere Voice Toolkit

IBM WebSphere Voice Toolkit supports the VoiceXML language and offers one of the
most complete set of features required to deploy vocal-based applications. Powered by
Eclipse technology, the toolkit eases the development of VoiceXML applications as it does
not require in depth knowledge of voice technology. It offers a full-featured voice
development environment including: (1) Graphical communication flow builder (Figure 2-6),
(2) VoiceXML development and debugging, (3) Grammar development and debugging, (4)
Pronunciation builder, (5) Call Control extensible Markup Language (CCXML)

G-kl |- Lp o o8 | o5 o 35 |00 =] s[5 —
RN, v e | iy xcemomi 5
Lhﬁ-i—xl P
I* Cornect '..
—]
Srstm)
Seatemant -
;n...d . ‘ . s Roegulsr or French? J (%) soooz0 .
(2] commane ks ” gl S, M b Fr)— S
) Confirmation Start NG _/fuam) Y -
3 Deceion, —_—
3 Procesing .
] Trarnter to Ageer € =000
R Cxcalark choxe)A * i
=pGaTa
) Gobal Commands
oy
(€ pocon
4-‘ Are you pure? ((_,
— 0K One sc00 of Rodky Rod., |———+__Hain s
o g
(4 200010 ‘ @ .
- . A,) T il
Gt Bym
v
< >
=% - uties G [F = = O Dereoertes 1 - Taske -
- Propesty | s |
= s Connedtion Line Strle pro
T — | s * Locatin f0,20]
e PR Oject Edbor
—|_.__, * Soe {100, 108
., e
o 'ﬁ__': i

Figure 2-6 IBM WebSphere Voice Toolkit — communication flow builder perspective

2.4.4 Teresa

Teresa (Figure 2-7) is a transformation-based environment that supports the development of
MM UI in TeresaXML language according to the steps identified in Section 2.3.7. However,
the transformation process uses parameters that are not related into a coherent and explicit
set of design options. In addition, Teresa transformations are hard coded and embedded into
the code.

40

2. State of the Art

Ble [ndow
ol [a] (s [aa [+~ =n (@

[Presentsions Tge

1- presentation_1 G Grouping Growging_1_0

2- presentation 2 4 Description: Selection

3- presentaton_3 f> Single Sebection: CarList

4 - presentation_d f5 Navigator Detsts
5 Concrete Attributes
Graphic attribles Gesture atiributes Muilimodal stiribises =
Irkeractor Id Carlist
Intractor Type Singin Selection - high,_cord
Connaction (F any)
Implementation Technigues
Cannards
St R_right -

W, Connections Back et -

Interactoe 1 Target |
Detads presantat . up it_backward |

Do 1@ _forviard |
" Canel

[£hange Object Atributes

Figure 2-7 Authoring a multimodal UI with Teresa
2.4.5 MONA

MONA (Mobile multimOdal Next generation Applications) [Aneg04] holds an interest for
our work as it is a complete environment for producing web-based MM applications (Figure
2-8).

The tool involves a presentation server for a wide range of mobile devices using wireless
LAN and mobile phone networks that generates graphical or MM (i.e., graphical and vocal)
UI able to dynamically adapt to different devices: WAP-phones, Symbian-based smart
phones or PocketPC and PDAs. The application design process is based on use cases that
allow, for each device, the refinement and validation of the design of MM UI prototypes.

These prototypes are further submitted to a heuristic evaluation performed by evaluators
with design experience.

e, s - 1

T P Bt AT

0o s o i o (% ¢ (B R oo e =
ook = | mHome g [

.....

Figure 2-8 MONA editor with real time GUI previews

41

2. State of the Art

2.4.6 SUEDE

SUEDE holds an interest for our work as it is a speech interface prototyping tool that
enables rapid and iterative creation of prompt-response vocal interfaces [Anno01].

SUEDE couples a simple prompt/response card model with the Wizard of Oz technique.
There are four types of cards: start card, prompt card, response card and group card. The
Wizard of Oz technique enables unimplemented technology to be evaluated by using a
human to simulate the response of a system. Wizard of Oz methodologies have a long
tradition in the design of vocal systems as well as the ability to suggest functionality before
the implementation of the system. The Wizard simulates dialog transition as a computer
would, reads the system prompts to the participants and process their response.

The iterative steps supported in SUEDE are: design, test and analysis. In design mode
(Figure 2-9), the speech designer begins to create dialog script examples. After constructing
several scrip examples, the designer begins to construct a design graph that represents a
more general design solution. In the test phase, the designer tries out a design with target
users. Due to the fact that the wizard recognizes user’s responses, no speech recognition or
speech synthesis is necessary to test Suede prototypes. During the analysis, designers
examine collected test data, deciding how this should influence the next design iteration in
order to obtain a more appropriate flow of the UL

Script Area

Vins s e mem i,

1 =
II "~y
Sl)b [—L)
1
1

1
1
Twimciczges | 1 o |———= |®|F
Lo o s R | O . v v
WM WTAK MU BT
* 4 5
; ',

m."‘m-lm l . .. IE - I,

\

Design Graph

.4
i
W g, I T 1

HUEDE

Figure 2-9 Design mode in SUEDE

42

2. State of the Art

2.4.7 CSLU Toolkit

CSLU Toolkit holds an interest for our work as it provides a basic framework and the tools
to build, investigate and use MM applications involving the following capabilities: speech
recognition, natural language understanding, speech synthesis and facial animation
technologies.

The toolkit is used for developing applications in Tcl/TK and C programming languages:

- RAD (Rapid Application Developer): is an easy to use graphical authoring tool (Figure
2-10) that enables the creation of structured dialogues applications and a wide variety
of interactive programs that run both over the telephone and on desktop PCs. RAD
component allows to drag and drop dialogue states onto a canvas, interconnect them
together, and configure them to play audio files, create animated text-to-speech,
recognize spoken language or display images.

- Bald:: is an animated, anatomically correct head that can be used from within RAD and
in other applications to provide a synchronized visual speech source. It allows the
configuration of many aspects of the face and the saving of these customized
configurations for later use.

- Baldi Syne: allows users to record a phrase and then animate Baldi with the uset’s voice.

. Festival: is the text-to-speech component of the toolkit.

mom g% 3 : assign
63 g “Im _sequence of
%I MEH/ activities with
%g ﬁ arrows
e oot
define M
activities,E].?umu = make
by placing L etsiens
objects on i based on
the canvas e Weicome users? input by
.3}:\&& H/:@m branching the
' | ;usfu — Canvas flow of activity
et : lﬁmfr;
Figure 2-10 CSLU toolkit - the graphical authoring editor
2.4.8 MOST

MOST (Multimodal Output Specification Platform) platform [Rous05] holds an interest for
our work as it enables the design of output MM systems (i.e., graphical, vocal and tactile
modalities) based on a three-step process: analysis, specification and simulation.

43

2. State of the Art

In the analysis phase the output interaction components (i.e., mode, modality and medium)
are identified (Figure 2-11). The specification phase formalizes the results of the previous
phase based on a series of attributes and criteria assigned to each specific output interaction
component. Depending on the current state of the interaction context, a behavioral model
allows the identification of the most suitable output form that can be further used in order
to present each interaction component. The behavioral model is composed of a set of
selection rules that produces the appropriate MM presentation. Finally, the simulation phase
is based on the WIWHT conceptual model which aims to answer the following questions:

= What is the information to present?

= Which modality/modalities should be used to present this information?

- How to present the information using this/these modality/modalities?

. Then, how to handle the evolution of the resulting presentation?

This model is supported by a tool that enables to develop a prototype of the complete
system as well.

& Multimodal Output Specification Tool
Fibe Compoment Conle o Help
RaBda oS & EEE F R
Componunt | Contest | nformation. | Butanr |
§ rPraper
General
Type !dtnin
Name ; (BrERn
Atttz
Conzurnpticn [t | im ¥ |20
=l Horizantl =iz (poely | ot ~ |1
ertical sipa (piusl] | b hd 1118
% A umpe: orlings it iz
Waual \ s Colnrs [T = | zo2000
kel |
Critesin
g N . i
e — Vizual isolation = == |
Audilnrg
ke Tsbta
= E _\e _1‘,=] Cornments
B e, - |Btrean madiam spenfcation
. el L g
Tachle bradon Yiorador

Figure 2-11 Interaction component editor in MOST

2.49 Openlnterface Platform

Openlnterface [Open07] holds an interest for our work as it aims to provide an open source
platform for the design and rapid development of MM prototyped applications as a central
tool for an iterative user-centered process.

44

2. State of the Art

The basic objects manipulated by the Openlnterface platform are called components (Figure
2-12). Each one represents a bundled piece of software that provides a set of
setvices/functionalities ranging from input devices driver, signal-treatment algorithm,
network module, graphical interface, etc. To be able to manipulate a component, the
Openlnterface platform requires the description of the component’s interface. This
description is specified in CIDL (Component Interface Description Language). Once the
CIDL is specified, the component can then be reused easily in any Openlnterface
application. Openlnterface components can be composed together to create a network of
components managing some advanced task. Such an inter-connection of components is
called a pipeline. In order to be manipulated by the Openlnterface platform, a pipeline must
be specified in the PDCL (Pipeline Description and Configuration Language). A PDCL
description defines the components that are used in the pipeline and the way they are
interconnected. The platform benefits from a set of advantages:

* It allows seamless integration of heterogeneous software. The platform manages the
translation/communication of the data among the different programming languages
using existing tools. The curtrently supported languages are C/C++, Java and Matlab, but
support of other languages can be added rather easily.

* It allows rapid prototyping of MM applications thanks to the bundled generic fission and
fusion mechanism and the easy software connection.

* The delivered software is a reusable independent unit.

Mouse
Component

Speaech
Component

clDy
HhL

C++

Sl ::} Openlnterrac

kernel

Imaoe Reade
Component

Figure 2-12 Integration of heterogenous components in OpenlInterface

2.4.10 A Toolkit of Multimodal Widgets

The toolkit holds an interest for our work as it aims to ease the development of MM Uls by
tulfilling the following four requirements [Crea00]: (1) each widget should be capable of
producing feedback in multiple modalities with no preference given to any particular

45

2. State of the Art

modality, (2) the widgets should be capable of using the most suitable modality or limiting
the use of a modality which has reduced resources, (3) it should be easy to change the
feedback produced by a widget in one or more modalities without any effect over the rest of
the modalities, (4) the produced feedback should be consistent, both between widgets and
between modalities.

These requirements are inffered from observations made over HCI that migth be different
depending on the context in which the interaction is taking place (i.e., indoor/outdoor,
noisy/quite environment, alone/a group). Therefore, the authors of the toolkit identify the
necessity of conveying the interfaces to the users by employing different output modalities,
refered here as sensory modalities (i.e., all auditory output is one sensory modality and all
visual output is another modality).

Figure 2-13 shows the architecture of the toolkit. The feedback controller ensures requirement
(1). It translates the external events into requests for feedback independent of the modality,
which are further transmitted to the modality mapper. The resource manager ensures
requirement (2). It receives the input from three sources: the control panel that allows the
users to set the weight for a particular modality, the output modules that indicate if the
resources are sufficient to render the widgets in a particular modality taking into account the
weight set by the user, and the external applications that can use the resource manager’s API
to influence the weight of different modalities. Requirement (3) is ensured by both the output
modules and the control panel. Because the widget behaviour does not encapsulate the feedback
given by the widget, it is simply a matter of changing the feedback of the widgets. To replace
one feedback with another, a simple switch between the existing output module and another
module should be operated. To supplement the existing feedback with another one in a
different modality, a new output module should be added to the toolkit. For all widgets, any
option set in the control panel is added to the request made for the feedback in the modality
mapper. There is a modality mapper for each output module the widget uses. The rendering
manager ensures requirement (4). It detects if a widget’s feedback clashes (e.g., two similar
sounds that are being played at the same time, thus interfering with each other and rendering
the conveyed information unintelligible) with the feedback from other widget and suggest a
change in the feedback.

46

2. State of the Art

External Events

! One of potentially
b4 many widgets

Widget
Behaviour

|

Feedback Resource

«——API

Controller Manager
T A
Modality < Control
Mapper Panel |[@—F—API
L A
h 4
Rendering Manager
T
Qutput
Module > >

une of potentially many
utput modules. Each has a
corresponding modality

mapper in every widget
and an output device.

Output
Device

Figure 2-13 Multimodal toolkit architecture

A concrete example of how the toolkit can be used for a standard button is illustrated in
Figure 2-14. The programming language offered by the toolkit is very close to Java Swing so
that the knowledge overload of the developers is practily unexistent as the MM rendering of
the Uls is ensured by the system. Currently, the toolkit has been implemented with two
widgets, a button and a progress bar using two modalities: graphical and audio.

47

2. State of the Art

An audio/visual button is in its default state. The
button 1s drawn as shown, with the cursor outside BUTTO
the area of the button. No sounds are played. - \

The mouse enters the button. This event is passed to

the widget behaviour, which is in a state such that 1t BUTTON
can accept this event. The event 1s translated into a .
request for feedback.

Mouse Enter

Widget
Behaviour

The request is passed to the feedback controller. l Mouse Over
This widget has a weight of 30 for audio feedback.

50 for visual feedback and 0 for haptic feedback.
Two requests are generated with appropriate
weights, one for audio feedback and one for visnal

feedback. No request is generated for haptic
feedback. Each request is passed onto the

appropriate modality mapper. R R
et S Modality Modality

Feedback
Controller

Mapper Mapper
(Visual) (audio)

Each modality mapper modifies the event in

accordance with user preferences set in the control

panel. In this case, the style Java Swing Toolkit is

applied to the graphical request and Jazz is applied

to the audio request. Each request is passed onto the Mouse Over Mouse Over

rendering manager. Swing Jazz

A\ v

The rendering manager checks for potential clashes)

with these requests. In this case there are no clashes Rendering

so the requests are passed onto the appropriate Manager

output modules.
Mouse Over | Mouse Over

Swing Jazz
Each output module receives the request and - .
] 3 i Visual Aundio
translates the request into concrete output. The Modul Modul
visual module draws the button yellow and the odule odule

audio module plays a persistent tone at a low
volume in a Jazz style.

P
Gl

Figure 2-14 The toolkit architecture —button feedback to mouse-over event

2,411 FRUIT

This system holds an interest for our work as it separates the traditional widgets in two
classes[Kawa90]: abstract widgets that are used to manage the semantical features and concrete
widgets that are employed for rendering purpouses in graphical and vocal modalities. This

48

2. State of the Art

separation is the result of the observations made over the development of current systems
where widgets manage both the semantical and presentational aspects of a UL
The abstract widgets are classified in three main classes:

= Base abstract widgets: basic unit interaction objects (e.g., pushbutton, text entry).

. Container abstract widgets: objects that organize abstract widgets and control focusing
policy.

. Compound abstract widgets: a group of abstract widgets which behave in a specific way

(e.g., file selection boxes are composed of several widgets and may have specific
interaction protocol).

The base widgets are sub-grouped in four main classe: (1) command: usually rendered in GUIs

as push buttons, they can also be keyboard entries or uttered commands in VUISs, (2) selection:

rendered in GUISs as list boxes, group of radio buttons, menus, whereas in VUIs they can be

concretized in words and numbers in VUIs, (3) valuator: rendered in GUIs as slidebars, (4)

TextDisplay, TextInput: rendered in GUIs as labels, wheras in VUIs they support the any

vocal output system or user input. The abstract widget container is grouped in three main

classes as well: (1) shell: rendered in GUISs as top level widgets (i.e., usually the windows), (2)

menn: 1s a type of shell that takes temporally the focus, (3) group: manages the foucus

dispatching among the contained abstract widgets.

A FRUIT system is composed of three parts (Figure 2-15):

. The rendered widgets are dispatched in one or multiple znteraction shells. Usually, the
designer choses a single shell (e.g., vocal), but multiple shells can be triggered (e.g.,
graphical) for completion purpouses.

. The abstract widgets centralize the application logic. They provide an interpretation at the
application level of the operations triggered over the rendered widgets..

= The session manager runs on each host as a daemon to manage FRUIT applications.

The designer develops the Ul by manipulating the abstract widgets. The end-user interacts

with the rendered widgets in one or multiple interaction shells (e.g., graphical, vocal). The

redered widgets communicate to the abstract widgets the operations to trigger via an
interaction protocol. The session manager component manages the FRUIT application. One
of the shortcomings of the system consists of the fact that the choice for the presentation of

a widget belongs to a black box that takes the decision depending on the assigned abstract

widget in the interaction shell. Thus, the designer’s decision is practically inexistent as the

choice of the interaction object belongs entirely to the system.

49

2. State of the Art

Application Code application

control
Communication Stub 1 Session Manager

abstract

widgets
interaction M Interaction Shell
protocol

rendered

widgets

Device Driver

i

User

Figure 2-15 The architecture of a FRUIT system

2.5 Conclusion

2.5.1 Summary of the state of the art

As illustrated in Figure 1-2 a set of features that will enable to determine the constraints of
the MM languages surveyed in the current chapter (Table 2-1) are inffered from the concerns
regarding MM Uls identified in Section 1.2:

. Input modalities: specify the input modalities that can be employed by the end-user while
interacting with the system. As there is a real need for more modality interaction
flexibility that enables users to select the most suitable one for their task (Concern 1)
the employed input modalities are identified:

v" Graphical: specifies the interaction devices (e.g., keyboard, mouse).

V" Vocal: specifies the type of vocal input (e.g., speech recognition).

v DTMF (Dual Tone Multi-Frequency): is the system used by the touch-tone
telephones that consist in assigning a specific frequency to each key so that it can
easily be identified.

- Output modalities: specify the output modalities employed by the system when providing
information to the users. This feature is also infered from Concern 1 as multiple
modalities should be made available so as to enable the interaction flexibility in output:
v" Graphical: specifies the output device (e.g., PC screen, GSM screen).

v" Vocal: specifies the type of output (e.g., speech synthesis, text-to-speech).

V' Avatar: is an animated face that behaves like humans; it is endowed with gesture
features and is able to make speech conversation with humans.

50

2. State of the Art

. Separation of modalities: specifies if the language specifications for the involved modalities
are separated or combined (Concern 2).

. CARE properties support for input modalities: specify which of the CARE properties are
supported for input modalities. This feature is inffered from Concern 3 (the CARE
properties are used to identify and characterize the different types of modality
combinations) and from the need to enhance the device effectiveness.

- CARE properties support for output modalities: specity which of the CARE properties are
supported for the output modalities. By analogy with the previous paragraph this
feature is inffered from Concern 3 and from the need to enhance the device

effectiveness.

- Independence of modality: specifies the existence in the development life cycle of a
modality-independent level for language specification (Concern 4).

. Exctensibility for new modalities: identifies if the language enables to be extensible with new
input and output modalities (Concern 5).

= Design options: identifies the existence of design options in the development process of
Uls (Concern 7).

- Model-to-model transformational approach: indicates the existence of a transformational

approach between the models involved in the development process. This feature is
motivated by the need to provide a model-driven engineering approach where model-
to-model and model-to-code transformations are applied in order to produce the final
MM UL

. Development tools: specifies the name(s) of the development tool(s). This feature is
motivated by the reduced number of MM Uls which migth be due to the lack of
development tools. It allows to investigate the existence of these tools enabling the
automatic development of MM Uls.

* [uterpretation/ Rendering/ Converter tools: ~ identifies ~ the name(s) of the
interpretation/rendering tools. Some languages converters where developed to target
already standardized languages. This feature is justified by the need to investigate the
existence of tools that could interpret/render/convert the eventually target languages
of our methodology.

51

2. State of the Art

Language XISL XIML UIML + DISL | VoiceXML X+V TeresaXML EMMA
Features
Input modalities | Graphical Graphical Graphical Vocal Graphical Graphical Graphical
v keyboard v keyboard v keyboard v speech v keyboard v keyboard v keyboard
v’ mouse v mouse v mouse DTMF v mouse v’ mouse v mouse
v touch screen DTMF Vocal v stylus pen v stylus pen Vocal
Vocal v speech v/ touch screen v touch screen v speech
v speech recognition Vocal Vocal recognition
recognition DTMF v speech recognition v speech
DTMF recognition
DTMF
Output Graphical Graphical Graphical Vocal Graphical Graphical
modalities v PC screen v'PC screen v PC screen v speech v'PC screen v'PC screen
v PDA screen v GSM screen v GSM screen synthesis v'handheld devices v"handheld
Vocal Vocal v text-to- screen devices screen
v speech v speech speech Vocal Vocal -
synthesis synthesis v audio v’ speech synthesis v’ speech
v text-to-speech v text-to- v text-to-speech synthesis
v audio speech v audio v text-to-speech
Avatar v audio v audio
Separa.tl.on of No - Yes - Yes Yes -
modalities
CARE
propertcs AE ; AE ; ALE, R A E,R ;
support for
input modalities
CARE
properties
support for A, E R - A, E, R - A, E, R A, E R -
output
modalities

52

2. State of the Art

1
ndependence No - Yes - No Yes -
of modality
E ibility for

xtensib ty © Yes No Yes No No Yes Yes
new modalities
Design options No No No No No Yes No
Model-to-model
transformational No Yes No No No Yes No
approach
Development Galatea Interaction XIML Vah.dator, UIML IBM IBM Multimodal

1 . Editor, Viewer WebSphere . Teresa No
too Builder development tool . . Toolkit
tools Voice Toolkit

Interpretation / Internet Explorer 6
Renderer/Conv with multimodal LiquidUT

cter tool software support Converters to (converter for IBM Opera browser Teresa (generation
creer tools components, ML Wt | HTML, WML, VoiceXML N thr N of X+V No

Anthropomorphic ’ VoiceXML, Java, browser croe owse specification)
spoken dialog agent etc.)
toolkit

Table 2-1 Comparison of the surveyed user interface description languages

53

2. State of the Art

2.5.2 Shortcomings

We identified the following shortcomings that serve as incentives to consider this topic

an important, original, yet unsolved and challenging research problem by observing the

current practice of MM UI usage:

Shortcoming 1. Lack of a fast interaction: the different input/output monomodal

interactions enabled by most of the current applications hinders users to take

benefit of their natural multimodal interaction skills. Therefore, the users are
slowed down when responding/accessing to the delivered information.

Shortcoming 2. High incidence of errors and difficult error recovery: even if multiple

interactions are available, there is a lack of systems enabling to switch between

interaction modalities in order to select the most suited one for the achievement of
the task. This results in an increasing error rate and difficulties to recover from
errors [Suhm99].

Shortcoming 3. Lack of genuine platform mobility: most of the current mobile platforms

do not allow users to take full advantage of their capabilities as they lack the ability

to switch between interaction modalities (e.g., eyes-free, hands-free, audio-only)

[Bert05].

Shortcoming 4. Lack of usable multimodal Uls: even if multiple interactions are available,

there is a lack of systems that convey information using the modalities that are

most appropriate to the end users and their tasks [Rous05].

Shortcoming 5. Lack of robust systems: the traditional GUIs are sometimes less robust

then the multimodal systems which benefit from a less complex syntax, higher

fluency and doubtless debit [Ovia99].

Shortcoming 6. Lack of device effectiveness: as devices continue to get smaller, the lack of

multimodal capabilities decreases the quality of interaction [Ovia99].

Shortcoming 7. Lack of multimodal experience: with the continously growing number of

new devices, there is a lack of experience with the employed multimodal

interactions [Hura03]. Therefore, the use of such interactions should be increased
by all means possible and encouraged to be accepted widely.

Shortcoming 8. Lack of multimodal applications deployment: although several real MM

systems have been built, most of them are:

e Difficult to generate due to the multitude of devices and their different capa-
bilities and hard to implement as creating a MM UI is more difficult than de-
signing for voice or graphics alone [Aneg04].

e Too specific to a particular issue.

e Rarely oriented towards information systems.

e Often providing solutions to very complex tasks.

e The result of a manual implementation, which is very specific, non reusable and
hard to reinstal.

Moreover, their number is still reduced compared to the high frequency of existent

monomodal applications. Therefore, a high number of users are not aware of the

existence of such systems and the benefits they could bring to the HCI.

54

2. State of the Art

2.5.3 Requirements

Our methodology, as defined in Section 1.4.1, is delineated by a set of requirements that
are elicited and motivated by: on the one hand, the concerns identified in Section 1.2 and
on the other hand, by the shortcomings emphasized in Section 2.5.2. which lead us to
conclude that the development of MM Uls can be improved along several dimensions.
These requirements are defined hereafter in a decreasing order of importance for each
dimension of the methodology: (1) Modeling requirements, (2) Method requirements and
(3) Tool requirements.

Modeling requirements:

Requirement 1. Support for multimodal input/output: states that our ontology
should enable multiple (i.e., at least two different) input/output interaction modalities.
The current requirement is motivated by the definition of the multimodal systems
(Section 1.3.4).

Requirement 2. Separation of modalities: states that the concepts and the
specifications corresponding to each modality should be syntactically separated one from
the other. The current requirement is motivated by two aspects: (1) flexibility in the
development process given by the possibility to specify separately the Ul corresponding
to each involved interaction modality and to further combine them altogether, (2)
reusability, totally or partially, of the specification corresponding to an interaction
modality in other applications that employ it. This requirement contributes to the
principle of separation of concerns [Dijk76].

Requirement 3. Support for CARE properties concerning the input/output
modalities: states that our ontology should ensure the support of the CARE properties
for input/output modalities. This requitement is motivated by the design facilities
offered by the CARE properties when defining the relationships that can occur between
input/output modalities.

Requirement 4. Ability to model a user interface independent of any modality:
states that the provided ontology should ensure a level in the development life cycle that
allows to specify a modality-independent UIL. This requirement is motivated by the
increasing number of novel devices and consequently of interaction modalities that will
determine the development of new Uls with new modality capabilities. A modality-
independent level will also enable to avoid the redeployment of Uls from scratch. This
requirement contributes to the principle of separation of concerns [Dijk76].

Requirement 5. Extendibility to new modalities: states that the ontology structure
should allow the extension with new types of interaction modalities. This requirement is
motivated by the constant emergence of new computing platforms, each of them
supporting a new set of interaction modalities. This requirement is a principle that we

55

2. State of the Art

would like to cover, but we are well aware that very complex interactions cannot be

supported.

Requirement 6. Ontology homogeneity: states that the ontological concepts should
be defined according to a common syntax. The requirement is motivated by the necessity
of defining a single formalism for model concepts in order to facilitate their integration
and processing.

Requirement 7. Human readability: states that the proposed ontology should be
legible by human agents. The current requirement is motivated by two aspects: (1) the
need to define in an explicit manner the ontological concepts in order to ensure their
precise comprehension, (2) the necessity of sharing the underlying concepts among the
research community.

Method requirements:

Requirement 8. Approach based on design space: states that our development life
cycle towards a final multimodal Ul should be guided by a set of design options. This
requirement is motivated by the need to clarify the development process in a structured
way in terms of options, thus requiring less design workload.

Requirement 9. Method explicitness: states that the component steps of our
methodology should define in a comprehensive way their logic and application. This
requirement is motivated by the lack of explicitness of the existing approaches in
describing the proposed transformational process.

Requirement 10. Method extendibility: refers to the ability left to the designers to
extend the development steps proposed in a methodology. The current requirement is
motivated by the lack of flexibility in the current methodological steps that hinders
designers to add, delete, modify and reuse these steps.

Tool requirements

Requirement 11. Machine processability of involved models: states that the
provided ontology should be proposed in a format that can be legible by a machine. This
requirement is motivated by the necessity of transposing the ontological concepts into
representations that can be processed by machines.

Requirement 12. Support for tool interoperability: refers to the possibility of reusing
the output provided by one tool into another. This requirement is motivated by the lack
of explicitness of transformations due to their heterogeneous formats that prevents the
reuse of transformations outside the context for which they were designed.

56

2. State of the Art

2.6 Conclusion

This chapter presented the existing multimodal frameworks, UIDLs and tools that were
considered to bring a signifiant contribution to the current thesis. The characteristics of
a set of languages surveyed in the literature were sumed-up and compared in Table 2-1.
As a result twelve requirements were elicited that will further argue the thesis statement
and validate the results provided by our methodology (Figure 2-1).

57

2. State of the Art

58

3. Conceptual Modeling of Multimodal Web User Interfaces

3 Conceptual Modeling of
Multimodal User Interfaces

3.1 Introduction

After identifying the requirements of MM applications in Chapter 2, the current chapter
introduces the concepts of our framework. Section 3.2 presents the selection of the UIDL,
whereas Sections 3.3, 3.4 and 3.5 describe the semantics, the syntax and the stylistics of the
selected language, respectively.

3.2 Selection of a User Interface Description Language

The objective of the current dissertation is supported by a model-based approach that is
intended to offer designers the capability of developing MM Uls of ISs. In software
engineering, model-based approaches relay on the power of models to construct and reason
about ISs. The goal of these approaches is to propose a set of abstractions, development
processes and tools that further enable an engineering approach for UI development. In
otder to achieve this goal a UIDL is desirable.

3.2.1 Towards choosing a suitable UIDL

For this purpouse two solution were considered: (1) introducing a new specification
language or (2) reusing or expanding an already existing Ul description language.

Starting from scratch with a specification language requires a lot of efforts before reaching a
significant level of interest. Thus, the first solution appears to be time-consuming. With
respect to the second solution, we have considered several existing MM languages for which
a set of shortcomings have been identified:

= X+V:

v" Is an implementation language and not a UI Description Language. As such, X+V
will be used in the current dissertation as a target language and not as a specification
language.

v' There is no modality-independent level (Requirement 4. Ability to model a Ul
independent of any modality).

V" There are no design options in the development life cycle (Requirement 8. Approach
based on design space).

= XISL:

v' There is no modality-independent level (Requirement 4. Ability to model a Ul

independent of any modality).

59

3. Conceptual Modeling of Multimodal Web User Interfaces

v' The specification language does not specify the interaction modalities separately
(Requirement 2. Separation of modalities).

V" There are no design options in the development life cycle (Requirement 8. Approach
based on design space).

TeresaXML:
v" Is based on a design space approach but it is limited in terms of alternatives of

design options.

v" The tool is based on a transformational approach, but the transformations are
precomputed and hard-coded. Thus, modifiability and extendibility are not
supported (Requirement 10. Method extendibility).

V" As the transformations are hard-coded, they are not expressed in the same language
as the specification language (Requirement 6. Ontology homogeneity).

To the above identified shortcomings a more general one is added: whenever we would like

to submit an extension of an existing language there is no guarantee that the Consortium in

charge with that language will consider it.

3.2.2 UsiXML - the selected UIDL

After identifying the shortcomings for the above MM languages we also considered UsiXML
(USer Interface eXtensible Markup Language), a UIDL that allows the specification of
various types of Uls such as GUIs, VUIs and 3D Uls. This language was selected to support
our model-driven approach due to the folowing motivations:

UsiXML is structured according to the four basic levels of abstraction (Figure 3-1)
defined by the Cameleon reference framework [Calv03]. The framework represents a
reference for classifying Uls supporting multiple target platforms and multiple contexts
of use and enables to structure the development life cycle into four levels of abstraction:
task and concepts, abstract Ul (AUI), concrete Ul (CUI) and final Ul (FUI). The
identification of the four levels and their hierarchical organization is built upon their
independence with respect to the context in which the FUI is used. Thus, the Task and
Concepts level is computational-independent, the AUI level is modality-independent and
the CUI level is toolkit-independent.

Task & Concepts \

Abstract User Interface

Concrete User |Interface

/ Context of use \

Final User Interface /

Figure 3-1 Cameleon Reference Framework for multi-target Uls

60

3. Conceptual Modeling of Multimodal Web User Interfaces

= UsiXML relies on a transformational approach that progressively moves from the Task
and Concept level to the FUI

® The steps of the transformational approach define in a comprehensive way their logic
and application (Reguirement 9. Method explicitness).

* The transformational methodology of UsiXML allows the modification of the
development sub-steps, thus ensuring various alternatives for the existing sub-steps to be
explored and/or expanded with new sub-steps (Reguirement 10. Method extendibility).

* UsiXML has a unique underlying abstract formalism represented under the form of a
graph-based syntax (Reguirement 6. Ontology homogeneity).

* UsiXML allows reusing parts of previously specified Uls in order to develop new
applications. This facility is provided by the underlying XML syntax of UsiXML which
allows the exchange of any specification. Moreover, the ability to transform these
specifications thanks to a set of transformation rules increases their reusability.

* The progressive development of UsiXML levels is based on a transformational approach
represented under the form of a graph-based graphical syntax. This syntax proved to be
efficient for specifying transformation rules [Limb04b] and an appropriate formalism for
human use (Reguirement 7. Human readability).

* UsiXML ensures the independence of modality (Reguirement 4. Ability to model a Ul
independent of any modality) thanks to the AUI level which enables the specification of Uls
that remains independent of any interaction modality such as graphical, vocal or 3D
interaction

* UsiXML supports the incorporation of new interaction modalities thanks to the
modularity of the framework where each model is defined independently and to the
structured character of the models ensured by the underlying graph formalism
(Requirement 5. Extendibility to new modalities).

*= UsiXML is supported by a collection of tools that allow processing its format
(Requirement 11. Machine processability of involved models)

* UsiXML allows cross-toolkit development of interactive application thanks to its
common Ul description format (Reguirement 12. Support for toolkit interoperability).

3.3 Conceptual contribution

The current section emphazises our ontological contribution defined according to UsiXML
v1.8 [USIX07] which integrates the improvements and the expansions accomplished by the
present thesis in order to adapt the UsiXML models to the requirements of MM Uls. For
each model a discusion of its suitability with respect to our MM interaction goals is carried
out and solutions are offered whenever shortcomings of the existing ontology defined
according to UsiXML v1.6.3 [USIX05] are identified. For the semantics of our ontology
UML class diagrams are employed .

61

3. Conceptual Modeling of Multimodal Web User Interfaces

3.3.1 Task Model

The existing Task Model defined in [USIX05] is an extended version of ConcurTaskTree
notation defined in [Pate97]. Due to the consideration of MM Uls, we expanded the existing
Task Model in order to better respond to the requirements imposed by these applications

(Section 2.5.3). A complete description of the expanded Task Model can be found in
Appendix A.

3.3.1.a Existing Task Model

The Task Mode/ describes the interactive tasks as viewed by the end user while interacting
with the system. It is composed of Zasks and zask relationships (Figure 3-2). Tasks are, notably,
described with attributes such as zame and #pe. The name of the task is generally expressed as
a combination of a verb and a substantive (e.g., consult patient file). The #pe attribute
identifies one of the four basic task types: user, interactive, system or abstract.

Leaf tasks are described by two additional attributes (i.e., #serAction and tasklte) that enable
a refined expression of the task nature. This expression is based on the taxonomy introduced
by [Cons03] that allows qualifying a UI in terms of the abstract actions it supports. The
taxonomy is twofold: a verb describes the type of activity at hand and an expression
designates the type of object on which the action is operated. By combining these two
dimensions a derivation of interaction objects that are supposed to support a task becomes
possible.

The userAction attribute refers to verbs that indicate the actions required to perform the task
(Table 3-1), while the fasklfem attribute refers to an object type or subject of an action (Table
3-2). The existing values where identified based on Constantine’s taxonomy.

userAction Definition
start Specifies that an action is triggered
stop Specifies that an action is ended
select Specifies a selection between multiple items
create Specifies the creation of an item
delete Specifies the deletion of an item
modify Specifies the modification of an item
move Specifies the movement of an item
duplicate Specifies the duplication of an item
toggle Specifies the toggle between different items
view Specifies that an item is shown to the user

Table 3-1 Definition of existing values for the userAction attribute

taskItem Definition

element Specifies that the item has a single characteristic
container Specifies that the item is an aggregation of elements
operation Specifies that the item is a function
collection Specifies that the item is composed multiple elements

Table 3-2 Definitions of existing values for the taskItem attribute

62

3. Conceptual Modeling of Multimodal Web User Interfaces

uitdodel
EpcreatinnDate - string
&szchemaversion string

taskiodel

R
vy

e source
as|

sourceld : strin
&id - string & g

&name st_rmg taskReIationshi/
Botype | string i 1.0 target

&frequency : integer =%
id © string | Etargetld ; string
%lmpunance :integer &onarne string

S structurationLevel ; integer
&complexityLevel : integer

%crmcny integer [}

¢rality : integer

&terminationvalue : string |

%userAcIlUn string ' |

&taskitem : string empara
——— @precundiliun event

&

binaryRelationship
——

unaryRelationship

| enabling ‘ | disabling | | suspendﬁesume‘ | orderlndependence | | optional | ‘ iteration ‘
[| [1 1

concurrencyWithinformationPassing | | independentConcurrency ‘
111]

{|f | finitelteration

Sbiterationhumber : integer

| enablingWithinformationPassing | | deterministicChoice | ‘ undeterrninisticChoice ‘
[| [| []
[1 [1 []

Figure 3-2 Meta-model of the Task Model

3.3.1.b Expanded Task Model for Multimodal User Interfaces

The wuserAction attribute refers to verbs that identify actions from the user point of view.
Taking into acount the values identified in Section 3.3.1.a, this definition is not generally
true. For instance, the view value specifies an action from the system’s perspective (i.e., the
system displays an item). Consequently, we replaced the name of the attribute with zasType,
a name that remains independent of the entity that accomplishes the task (i.e., the user or the
system). In order to avoid the confusion with the attribute #pe, the latter was renamed
category while keeping the previously specified semantics.

Morteover, we have added/modified several values of this attribute (Table 3-3). Thus, the
view value suggests the idea of visualisation of items, while the Task Model should remain
modality-independent. Consequently, we replaced it with convey, a value which doesn’t make
any reference to the employed modality. In addition, the delete value specifies that an item is
removed, but there is no value specifying that an item is reinitialized (e.g., setting to blank
the values of a text filed widget). For this purpose the erase value was added. Other taskType
values that address the requirements of 3D Uls are introduced and defined in [Gonz00].

taskType Definition
convey The item is conveyed to the user
erase The value of an item is reinitialized

63

3. Conceptual Modeling of Multimodal Web User Interfaces

Table 3-3 Definition of newly identified values for the taskType attributes

The developer should consider the values of the zas&Type attribute identified in Table 3-1 and
Table 3-3 only if the Task Model is employed for further reification processes towards the
generation of more concrete Ul models. Otherwise, the values are not mandatory. Table 3-4
provides a set of possible synonyms that can be used in parallel with the existing ones.

taskType Synonyms
start go/to/initiate
stop end/exit/finish/complete
select choose
create input/encode/enter
delete Eliminate
erase Efface
modify change/alter/transform
move relocate
duplicate clone/twin/reproduce
toggle switch
convey communicate/transmit

Table 3-4 Synonyms for the taskType values

The collection value of the fasklfem attribute identified in Table 3-2 specifies that an item is
composed of multiple elements, while a collection could be composed of a series of
containers as well. For instance, one container specifying the list of books of an author and
another specifying some features for each book (ie., title, publisher and price) can be
grouped into the same collection. Therefore, we split the collection value into collection of
elements and collection of containers (Table 3-5).

taskItem Definition
collection of Specifies that the item is

elements composed of a list of elements
collection of Specifies that an item is

containers composed of a list of containers

Table 3-5 Definitions of newly identified values for the taskItem attribute

By combining the zaskType and faskltem attributes a series of possible situations could occur

(Table 3-6).

taskType taskItem Example
start operation Start to look for the definition of a word in an online
dictionary
select element Select the gender of a person
create element Input an email address in a form
element Convey the result of a computational operation (the
result can be expressed graphically by displaying it on
the screen or vocally by system utterance)
container Convey the starting date of a conference (the day,

64

3. Conceptual Modeling of Multimodal Web User Interfaces

month and year can be displayed on the screen or can
be uttered by the system)

convey | collection of elements Convey the list of authors of a book (the list of
authors can be displayed or can be uttered by the
system)
collection of Convey the list of books of an author, by specifying
containers for each one the title, the editor, the publisher, the

price, etc. (each feature can be displayed or can be
uttered by the system)

Table 3-6 Examples of combinations between values of taskType and taskItem attributes

3.3.2 Domain Model

The Domain Model described in [USIX05] did not benefit from any conceptual contribution as
its specification is suitable for the requirements imposed by the development of MM Uls.
This model is a description of the classes of objects manipulated by a user while interacting
with the system (Figure 3-3). It consists of one or more domainClasses, and potentially one or
motre domainRelationships between these classes.

A class describes the characteristics of a set of objects sharing a set of common properties.
The concepts identified at the class level are: attributes, methods and objects. An attribute is a
particular characteristic of a class that is described by several features: attributeDataType refers
to basic data types as string, integer, real, boolean or enumerated (enumerated describes an
attribute that has a value from a set of enumerated items). The attributeCardMin and
attributeCardMax describes, respectively, the lower and upper bound of the attribute
cardinality (0 for a not mandatory attribute and 1 for a mandatory one). A method is the
description of a process able to change the system's state and is described by its signature
(i.e., name and input and output parameter(s)). An object is an instance of a class composed of
attribute instances that are able to call methods.

A domainRelationship describes various types of relationships between classes and can have
three types: generalization, aggregation or ad hoc. Class relationships are described thanks to
several attributes that enable to specify their role names and cardinalities.

65

3. Conceptual Modeling of Multimodal Web User Interfaces

uitdadel
attributelnstance &ycreationDate : string
&value String & schemaversion string
%
O.n
object
Spid - string
name : string 5OUICH)
Spclassnarme « string| 1 n'%BUL"EE“d string
= domainRelationap 7
domainClass |7 p &id - string 1.n target
&id - string o3 g 0—1 &targetld : string
name ;. string
s g
0.n E\D n ;
attribute method generalization usage
Bid - string &id - string SRoleAName : IsA"|| (@ usageType ; string
Byname : string &name : string
galmhutaDalaType string [
attributeCardMin : integer F -
SpattributeCardhix * mtager : 1 materialization 1 1 instanciation |
&attributeDomainCharacterization © string [1| 1
- adHoc aggregation
QD B O.n e : string SroleAName © "is_composed”
D &roleACardiin intager &roleACardMin © integer
enumerated'/alue = &roleACardMax : integer oroleACardMax © intager
&oname : string & id « string &rolaBMame © string &roleBName : "composes”
a dalaTyrpe string &roleBCardMin : integer oraleBCardMin : integer
Boname string &roleBCardMax « integer &roleBCardMax : integer
L Type : string & 1stantiatedCard : integer
Type : {byRef, by'al} &rolaBinstantiatedCard : integer

Figure 3-3 Meta-model of the Domain Model

3.3.3 Abstract User Interface Model

The Abstract User Interface Model described in [USIXO05] did not benefit from any conceptual
contribution as its specification is suitable for the requirements imposed by the development
of multimodal Uls. This model represents a canonical expression of the renderings and
manipulations of the domain concepts and functions in a way that is independent of any
interaction modality and computing platform. Threfore, there is no information regarding
the maner in which this abstract specification will be concretized: graphical, vocal or
multimodal. This concretization is achieved in the next level.

The AUI Model (Figure 3-4) is populated with Abstract Interaction Objects (AIOs) between
which Abstract User Interface Relationships have been defined.

66

3. Conceptual Modeling of Multimodal Web User Interfaces

uitdodel
creationDiate | sting
Bchurnaviersion | sling

A

auiMadel 1 SOUFCE
: “_-"?}g.;__li n| auiRelatianshin | 1 _n_'&nsourceld: sting |
- a:o _T--’ 1 "g»ia:si.'ing w 1
E : gtnng n narme - sting |1)
{narne - string o) target
ﬁ.algetld: string

A} il
abslractConlainer I
rderType © Slring 1 1 o abstractindiidual bl Emphisis suiDisbagCantrol
—‘ omparen

Byzplitiabiity ; boolean sayrnbial - sl

L R] st emporal |
— 1 [e e
/"'r: 1 S0 o.n Spdimenzion2 : intager
, \
Faced
i - string
@pniame : string
Saction Ty slang
Bpactionltarn : string
£
input nnagation | contral
":')mputDalaTrpe string i event | stiing
SpnputCardhlin | string Eaction
SpinputCardiax - sting &
@pinputCharactenization : string
\'I n
selection’value ausdput
wrne _ strng | | Epoutpal Content i
I

Figure 3-4 Meta-model of the AUI Model

AIOs are abstraction of widgets found in most of the popular graphical toolkits (e.g.,
windows, buttons) and vocal toolkits (e.g., prompts, vocal menus). They can have two types:
Abstract Individual Components (AICs) or Abstract Containers (ACs).

An AIC 1s any individual element populating an AC. An AIC assumes at least one basic
system interaction function described as a face in the UL As AICs are composed of multiple
facets, we call them multi-faceted. Each facet describes a particular function an AIC may
assume. We identify four main facets:

1. Input facet: specifies that an input information is accepted by the AIC.

2. Output facet: specifies that an output data is conveyed to the user by the AIC.

3. Navigation facet: specifies that the AIC enables a container transition.

4. Control facet: specifies that the AIC enables to trigger methods from the Domain Model.
An AIC may assume several facets simultaneously. For instance, an AIC may display an
output while accepting an input from a user or trigger a container transition and a method
defined in the Domain Model.

The actionType attribute of a facet enables the specification of the type of action an AIC
allows to perform. The actionltem attribute characterizes the item manipulated by the AIC. As
the AUI Model and the Task Model are both modality-independent, the values of actionType
and actionltems of the former model can be inherited (Figure 3-5) from the zaskType and
taskltem attributes defined in the Task Model, respectively.

67

3. Conceptual Modeling of Multimodal Web User Interfaces

Model Attributes

Task Model taskType + taskltem

|

AUl Model actionType + actionltem

modality
independent

Figure 3-5 Abstract attribute values inheriting Task attribute values

Even if there is no conceptual contribution brought to this level of specification, an
identification of the different types of structures an instruction can have and their
specification according to the AUI Model has been made. This will help us determine the
components of an instruction and the possible cardinalities of their instances at a level that is
still modality-independent. In addtion, each of these components could be further
concretized in a particular modality or combination of modalities giving rise to a MM
instruction.

We started our research taking into account the general structure of an instruction in ISs.
According to [IBM93] natural languages typically have significantly more nouns than verbs,
and a graphical Ul typically contains more objects then actions. Just as the same verb can be
applied to many nouns, the same action can be applied to many objects, independent of the
type of UI, be it graphical, vocal, MM, etc. Therefore, the action/object paradigm is defined
as a pattern for interaction in which a user selects an action and an object to apply it to. But
objects are usually endowed with features which help us characterize them. Therefore, in ISs
these features were transposed into parameters assigned to objects. Consequently, the
general structure of an instruction is composed of three elements (Figure 3-6) that could
have single or multiple cardinality or even could be optional depending on the context in
which the instruction is used:

Instruction:= { Action, Object, Parameter}

Figure 3-6 The general structure of an instruction in ISs

The models composing our ontology support this structure as follows: the actionType
attribute identifies the type of action(s) the instruction applies, the actionlter specifies the
type of object(s) on which the action is applied, whereas the parameter(s) describing the
object(s) are feature(s) stored in the Domain Model.

Based on these observations, four types of instructions have been identified. For each type
we provide two MM examples: (1) consists of vocal fulfillment of form-based UI and (2)
allows users to interact vocally and graphically in order to manipulate different objects on a
map. It is worth noticeing that whenever multiple actionTypes are applied on the same

actionlte the considered object can be identified:
» Directly: by re-specifying it for each actionType (E.g., “Create a blue lake. Select the blue lake
and move the blue lake under the green park”.

68

3. Conceptual Modeling of Multimodal Web User Interfaces

® Indirectly: by using deictic words in order to avoid multiple occurrences of the same object.
For instance, words like #bis, that, it, there, here can be employed to substitute objects
which have been previously introduced (e.g., “Create a blue lake. Select #bis (pointing
gesture towards the blue lake) and move /# under the green park”.

1. 7 actionType applied to 1 actionltem (element)
Example 1 (form-based Ul):
C: “What is your name?”
U: “My name is Peter.”

1 actionType = create applies to 1 element = name

L

Example 2 (direct manipulation Ul):
U: “Create a green forest.”

1 actionType = create applies to 1 element = green forest

v

2. 1 actionType applied to N actionltems (elements)
Example 1 (form-based UI):
C: “Please specify your birthday.”
U: “My birthday is on 8" of February 1986.”

applies to Element 1 = day

1 actionType = create applies to

Element 2 = month

applies

Element 3 = year

Example 2 (direct manipulation Ul):
U: “Delete the red hospital and the green cinema.”

applies to Element 1 =red hospital
1 actionType = delete <
applies to Element 2 = green cinema
3. N actionTypes applied to 1 actionltem (element)
Example 1 (form-based Ul):

C: “Please say your email address.”
U: “My email is johnson@yahoo.com. Select this e-mail.”

69

3. Conceptual Modeling of Multimodal Web User Interfaces

applies to

1 actionType = create I

1 actionType = select //

applies to

Element 1 = email address

Example 2 (direct manipulation Ul):
U: “Move the hospital next to the police office and select it.”

applies to

1 actionType = move I

1 actionType = select //

applies to

Element 1 = hospital

4. N actionTypes applied to N actionltems (elements)
Example 1 (form-based Ul):

U: “Erase the email address and modify the zip code to 1020.”

applies to

1 actionType = erase

Y

Element 1 = email address

applies to

1 actionType = modify

h 4

Element 1 = zip code

Example 2 (direct manipulation Ul):
U: “Delete the red cinema and create a green forest in its place.”

applies to

A J

1 actionType = delete Element 1 =red cinema

applies to

1 actionType = create

Y

Element 1 = green forest

AUI Relationships are abstract relationships among AUI objects. Relationships may have
multiple sources and multiple targets. There are a couple of types of relationships, among
which:

AbstractAdjacency: allows to specify an adjacency constraint between two AIOs

AbstractContainment: allows to specify that an AC embeds one or more ACs or one or
more AICs

AuiDialogControl: enables the specification of the dialog control in terms of LOTOS
operators between AlOs.

70

3. Conceptual Modeling of Multimodal Web User Interfaces

3.3.4 Concrete User Interface Model

The Concrete User Interface Mode! described in [USIXO05] benefit from a conceptual contribution
as its specification was not suitable for the requirements imposed by the development of
MM Uls. The benefits consist mainly in improved and expanded definitions of the vocal Ul
description.

This model allows both the specification of the presentation and the behavior of an Ul with
elements that can be perceived by the users [LimbO4b]. The CUI abstracts a FUI in a
definition that is independent of programming toolkit peculiarities.

CUI Model (Figure 3-7) concretizes the AUI for a given context of use into Conucrete
Interaction Objects/ Components (CIOs/ Components) and Concrete User Interface Relationships so as to
define layout and/or interface navigation of 2D graphical and/or vocal widgets.

ClOs realize an abstraction of widget sets found in popular graphical and vocal toolkits (e.g.,
Java AWT/Swing, HIML 4.0, Flash DRK 6, VoiceXML). A CIO is defined as an entity
(e.g., window, push button, text field, check box, vocal output, vocal input, vocal menu) that
can be perceived and/or manipulated by the users. Due to the graphical and vocal
consideration of UsiXML, CIOs are further divided into: graphicalCIOs and vocalCIOs. Details
regarding the types of graphicalCIOs, vocalCIOs and Concrete User Interface Relationships are
provided in the folowing section.

uiModel

@creationDate : string
schemaversion : string

tio

oid : string

&enarne string

Soican : uri

Sscontent : uri
&pdefaultContent string ar uri
Esdefaulticon : uri
Edefaultteln : uri

@shelp : string

@scurrentyvalue : string

Eerror: string :
Sfecdback : string cuiRelationship
SeisMandatory boolean &id - string

Bname : string

graphicalCio
Episvisible - boolean
SpisEnahled : boolean —

A

SstatusBarContent : uri
@defaultStatusBarContent siring
SiyColor: string

ShyColor: string
Shordendidth - integer
@horderType © integer

@ horderTitle : String
&defaultBorderTitle String
&horderTitlealign * String
EphorderColor : String
Q)tuulTlpDefau\lCUmem siring
@toolTipContent: uri
%transparencyRate integer

L

1
wocallndividualCompanent
EpkeyboardShortcut © string

[
graphicalCaontainer

graphicalindividualComponent

Srunicith - integer Ggluevartical : string
heigth : integer GpglueHarizontal : string
Ehgimage 1 uri @ defaulttnemanic : String
i OnTop : boolean & mnermonic : String

0.1~ [Sprepetition : integer o StextFont: string
&yisDetachahble - boolean H%'EE”‘“ boolean

EisMigrateatle : boolean isllalic : boolean

0. &isUnderlined : boolean

Q;lsStnkeThrough boolean

&isSubscript: boolean

%isSuperScrim boolean

El

&isPreformatted - boolean
EptestSize - integer
&textColor - String

Figure 3-7 Excerpt of the CUI Meta-model

71

3. Conceptual Modeling of Multimodal Web User Interfaces

3.3.5 Mapping Model

The Mapping Model described in [USIX05] did not benefit from any conceptual contribution
as its specification is suitable for the requirements imposed by the development of MM Uls.
This model contains a series of related mappings between models or elements of the models
(Figure 3-8). A Mapping Model serves to gather a set of pre-defined, inter-model
relationships that are semantically related. It consists of one to more interMode/Relationships, a
part of them being used throughout the steps of the transformational approach:

® Manipulates: maps a task onto a domain concept (i.e., a class, an attribute, a method or
any combination of these types).

» Updates: is a mapping between any AUI or CUI component and a domain attribute or
run time instantiated attribute. It enables to specify that a Ul component provides a
value for the related domain concept.

® Triggers: indicates a connection between a method of the Domain Model and a AUI or
CUI individual component.

» I[sExecutedIn: indicates that a task is performed through one or several ACs and AICs.

» [sReifiedBy: maps the elements of the AUI onto elements of the CUIL This relationship
specifies the manner in which any AIO can be reified by a CIO.

uibdodel

%ErealmnDate string
schema¥/ersion © string

source

Z‘X i & zourceld string
imerModeIReIati/
mapping onship

Model o0 B ing 1 P sw—
1 &name str\nghw
Rptargetld * siring

! trigoers ! | obseves 1 ‘ updates ! ‘ isReiﬁedBy| ||5Abstractedlnt0| | isExecutedin | | isTranslatedinto | ‘ manipulates | ‘ hasContext | | isShapedFor |
f [1 1 @ 1T 1 |

Figure 3-8 Meta-model of the Mapping Model

3.3.6 Transformation Model

The Transformation Model described in [USIX05] did not benefit from any conceptual

contribution as its specification is suitable for the requirements imposed by the

development of MM Uls.

This model (Figure 3-9) is conceptualizing rules that enable the transformation of a model

specification (at a certain level of abstraction) into another or adapting this specification for a

new context of use. A transformation rule realizes a unit transformation operation on a

model and is composed of:

» LHS (Left Hand Side): models the pattern that will be matched in the host model.

» RHS (Right Hand Side): models the part that will replace the LHS in the host model.

» NAC (Negative Application Condition): models the condition that has to hold false before
trying to match LHS into the host model.

72

3. Conceptual Modeling of Multimodal Web User Interfaces

AttributeCondition: is a textual expression indicating a condition scoping on element
attributes of the lhs of a transformation rule.

RuleMapping: defines the source and the target models of the transformation rule. For
instance, a rule may establish a mapping between a Task Mode/ and an Abstract Model. In
this case, the source indicates the source model of the mapping, while the target indicates
the target model.

Transformation rules are applied in order to develop Uls following a specific development

path (e.g., forward engineering, reverse engineering, adaptation to context of use). A
development path is composed of development steps that can imply three types of
transformations depending on the development direction:

Retfication: consists in the derivation of the next lower model in our reference framework
Abstraction: consists in the derivation of the next upper model in our reference
framework

Transiation: is a type of model transformation adapting a set of Ul models to a target
context of use.

A development step is decomposed into development sub-steps. A development sub-step is
always realized by a single transformation system. A transformation system is composed of a
set of sequentially applied transformation rules. One transformation system applies one sub-
derivation unit [Limb04]. A sub-derivation unit is defined as a collection of derivation rules
that realize a basic development activity. A basic development activity has been identified to
sub-goals assumed by the developer while constructing a system (e.g., choosing widgets,

defining navigation structure).

73

3. Conceptual Modeling of Multimodal Web User Interfaces

uiodel

& creationDate © string
&pzchematersion : string

developmentPath ?
Exid ; string fransformationModel
Smname : string
Ssourceviewnoint : {taske&damain, aui,cui} 1
Stargetviewpoint : {task&damain, aul, cui}

1
0.n —
developmentStep .
&id sting
y I
&name : string < ——

& sourceviewpnint - {task&domain, aui, cui}
Stargetviewpaint : {task&domain, aui, cui}

translation
psourceContaxtid : string

? 7 SstargetContetid © string

0.n ransformation System|

HevelopmentSubiSte Bid - string

Sid Stri.ng ks——————{&mame : string

&name : string 1 0. [@description : string
1.n
__________________ applicationOrder

——— 1

1n —

transformationRule
&id string
Snarme : string
Spdescription : string

0.h
o L
o ruleMapping
atiribute Condition N 0.1 i Bpsourceld : string

&expression : string | nac | lhs ‘ | rhs ‘ Butargetld - string
i e —
ruleTerm

BptermStatament ; string

Figure 3-9 Meta-model of the Transformation Model

3.4 Semantics of the multimodal interaction objects

Semantics (in Latin letters seantikds, or significant meaning, derived from sema, translated as szg7)
is the study of meaning, in some sense of a term. Hereafter we provide the semantics of the
CIOs composing the CUI Model and of the relationships defined between them.

3.4.1 Semantics of the Graphical Concrete Interaction Objects

No modifications were brought to the semantics of the Graphical C1Os described according
to [USIXO05]. These objects are divided into Containers and Individual Components.
Graphical Containers (GCs) (Figure 3-10) contain a collection of CIOs (either GICs or GCs)
that support the execution of a set of logically/semantically connected tasks. Hereafter we
define the semantics of a couple of containers used in the current thesis:

® Window: is a container that can be found in almost all 2D graphical toolkits. A window
may contain other GCs.

® Box:is a container that enables an unambiguous structuring of GICs within a window, a
tabbedItem, a dialogBox. Boxes are embedded one into the other. Their type may be:
main (i.e., the topmost box in a container), horizontal or vertical.

74

3. Conceptual Modeling of Multimodal Web User Interfaces

GroupBox: allows to group a set of GICs. A group of option buttons is a typical use of a
groupBox. Normally a groupBox does not contain any other GC.

TabbedDialogBox: is a group of dialogBoxes where each dialogBox is accessible via a tab
mechanism. A tabbed dialogBox is composed of tabbedItems.

Toolbar: is a bar containing a series of selectable buttons that give the user an easy way to
select different items.

MenuPopUp: is a menu of commands or options displayed when an item is selected. The
selected item is generally at the top of the display screen and the menu is displayed just
below it.

graphicalContainer
Swidth - integer
Svheigth : integer
Shalmage : uri
SisAlwaysOnTop : boolean
Srepetition ; integer
&visDetachable - boolean
l%\smigrateable “hoolean

i

|MenuP0pUp| |statusElar| flowBox tahble dialngBox tabbedDialogBox
[] []

! ! ! 1 ||®allign : string ngize string —" =.
tooiBar Sroie. ating @ *
SyisFlnat - bonlean b
&isFloatable : boolean type - string iy 7 o i n
[Rurelativeilidth - integer EwindowleftMargin © integer
Srelativetisicht - integer EywindowTopMargin : integer tabbeditern
MenuBar| (isSpltable : boolean \ &isResizable : boolean Sindex integer
isBalanced : booolean
SrizResizableHarizantal : boalean i
®isResizablevertical : boolean o tell
(SerelativeMinwiidth - integer Srdndex : integer
(SorelativeMinHeight : integer Syindex : integer
®izSeraliable hoolean &zindex - integer
[&isHeader : boolean
- &isFaoter : hoolean
gridBox &xSpan :integer
Sorows | integer SySpan : integer
borderBox Spcols s integer | [EzSpan :integer

0.1

0.1 01 . 0.1
[topBox| [ootomBes] [lefBox| | rightBox|
= ==

centerBox
———1

Figure 3-10 Graphical containers

Graphical Individual Components (GICs) are objects contained in GCs. Figure 3-11 illustrates a
part of GICs defined in [USIX05] for which we offer the semantics:

InputText: is a GIC specialized in handling input textual content.

OutputText: is a GIC specialized in handling output textual content.

Button: is alternatively called trigger button as it aims to trigger any kind of action
available in the system.

Checkbox: enables a boolean choice by checking a square box aside of a label.

RadioButton: enables a boolean choice by checking a circle aside of a label. A group of
optionButtons differentiates from a group of checkBoxes by its mutuall exclusive
selection feature.

75

3. Conceptual Modeling of Multimodal Web User Interfaces

= ComboBox: enables a direct selection over a collection of sequentially, predefined items. It
might also enable editing new items.
® ImageComponent: is a GIC specialized in handling image content.

BpglueHarizantal - string
Bpdetaultbdnemonic : String

Sting
:sting
EpisBold : boolean
Byisitalic : boolean
:boolean
BhisStrike Thraugh - boalean
ipt: boslean

boolean
ByisPreformatted : hoolean
<integer
Sting

-

EEE | | |]
= space ik somboBox [hourpicker | | [[datePideer || colorPicker |
5 [1
Epautoplay : boolean Syuniterid sting | | ——] orientation - stiing[isEditable : boolean i 1 (I] 1
RisLoop : integer Syvalue : integer B madineisible : integer
SsbuiltinContral : boslean |
Sysublitle : boolean -
uri chedkBox 1 A
BpdetaultState : boolean SpopUphenu - boolean
i Nae g n EotoolBarkenuy : boolean
1.n
o
Item i Tiee
cutputText imageComponent . o 1
E defaultHyperLinkT aiget - ui EpimageHeight integer toggleButton o
DhyperLinkTarget : uri Syimageiidth : integer Srdetaultstats - baalean o
=5"‘5'_‘E"L‘"“C°‘”' string EyimageHarizBpace - integer
SoactiveLinkColor : string SyimageBorder - integer g menultem 1
i :'"‘egesft SohyperlinkTarget : uri radioButton Stype : string
o ring
e R e sy
Hame : strin, :
BpsoroliStyle - stiing Sgroup a 7
Bo=crol Direction : string
BpsoroliHeigth : integer 1
listB:
Bpzcrolliffidth : integer O.n R0
integer Ao BpmaxlineVisible : integer
SosorollVerticalSpace integer BahyperlinkTargat url SpisEditable : baslean
integer By defaultHyperLinkT arget : uri Soutplas e koclesn
1IDelay : integer Bbchape : sting
HEolmne g nteghr %cuuldmalzs coord
OLines : integer
string
Sotitter : uri

inputTesd
exdhiargin - integar

boolean
boolean
*boolean
EpmaxLength : integer
OfColumns : integer
OfLines : integer

S stiing
BotextHorizontalAlign : string
Bpfitter : uri

BodetaultFilter : string

BoisP assword : boslean

a

Figure 3-11 Several Graphical Individual Components
3.4.2 Semantics of the Vocal Concrete Interaction Objects

3.4.2.a Existing semantics of the Vocal Concrete Interaction Objects

The existing vocal ontology described in [USIXO05] consists of concepts that support the
vocal interaction thanks to Auditory Interaction Objects and Auditory relationships. The former can
be Auditory Containers representing a logical grouping of other containers or Auditory Individnal
Components. These individual concepts can have two types: auditoryOutput supporting music,
voice or a simple earcon (i.e., an auditory icon) or auditorylnput which is a mere time slot
allowing users to provide an auditory input using their voice or any other physical device
able to produce sound. Auditory relationships can have two types:

» AuditoryTransition: enable to specify a transition between two auditory containers.

» AuditoryAdjancency: indicates the time adjancency between two auditory components.

By observing the current ontology described in [USIX05] we were able to identify that the
semantics of the vocal concrete interaction objects suffers from a set of shortcomings:

76

3. Conceptual Modeling of Multimodal Web User Interfaces

= It does not provide a specialized container that enables a dialog between the system and
the end-user (i.e., synthesize/collect data from the system/uset). This might prove to be
useful in order to better distinguish between containers that support a user/system
interaction and those that act just as basic containers used for grouping purpouses.

® It does not provide a specialized vocal container that allows users to choose between
different options. This is extremely useful as a traditional vocal dialog often consists of
multiple choice questions.

* It does not allow to identify the elements of an instruction: the utterances identified in
the grammar specify the tasks as a whole without mapping them with a corresponding
part (i.e., action, object). As a consequence, the grammar content cannot be reused.

® It does not allow to define the element’s order of utterance: there are no means to
specify an alternative between two or more utterances, a sequence of utterances or a
particular order of utterances. Consequently, all possible combinations between the
elements of an instruction have to be explicitly specified in the grammar. This will result
in a high number of possible combinations that will further increase with the growing of
the number of elements.

® It does not allow to specify the visibility of the grammar: grammars could be made
visible only in the current vocal forms or to other forms in the current document.

= It does not allow to specify the cardinality of an element utterance: for instance one user
would like to utter “Select the ship” while some others: “Select and delete the ship”. It
can be observed that in the first utterance there is only one action defined (i.e., “select”),
whereas in the second one there are two actions (i.e., “select and delete”).

= It does not allow to specify the language in which the utterances have to be pronounced
in order to be recognized by the system (e.g., English, French)

= It does specify explicitly the type of the system’s output. The output could provide the
user with synthesized prompt information or with some feedback following a previously
processed input.

* It does not allow to play audio pre-recorded files or to record user’s vocal messages

® It does not allow to interrupt the execution of the current container or of the entire
application. For instance the end-user would like to put end to a dialog which does not
provide any useful information or to stop interacting with the application due to an
unexpected outer system task.

3.4.2.b Expanded semantics of the Vocal Concrete Interaction Objects

Based on the shortcomings identified above, [USIX07] expands the existing vocal ontology
offering a larger set of vocalClOs (Figure 3-12) that cover the requirements of vocal and
MM Uls (Requitement 1. Support for multimodal input/output). By analogy with the
graphicalCIOs, the vocalCIOs are divided into Containers and Individual Components.
Vocal Containers (17Cs) represents a logical grouping of other VCs or VICs and inherit the
15Orderlndependent attribute which indicates if the inputs of the container can be filled in any
order or not:

77

3. Conceptual Modeling of Multimodal Web User Interfaces

VocalGroup: is the root element of all vocalCIOs. Acts as a basic container for all VCs
and VICs.

VocalForm: enables a dialog whose purpose is to synthesize/collect data from the
system/uset.

VocalMenu: allows to choose among different vocalMenultems. The currentl alue attribute
is employed to store uset’s input.

VocalConfirmation: requests from the user a confirmation of a previous input. It is
composed of a vocalPrompt that solicits the confirmation followed by a vocallnput gathering
the uset's input. For instance, "Do you want to delete this file? Say Yes or No."

VocallndividualComponents (171Cs) are vocalClOs contained in a VCs. All VICs inherit the
attribute &eyboardShorteut that is the DTMF representation of the output, where the possible
values are {0-9, #, *}. The following VICs were introduced:

VocalOutput: is an object used to synthesize data to the user. This data is specified in the
attribute defaunltContent inherited from the CIO class. The wolume attribute specifies the
sound volume expressed in Db (decibel). The znfonation attribute expresses the dominant
tone according to which the vocalOutput will be synthesized: positive, negative,
interrogative, exclamative. Pizch is the perceptual attribute of a vocalOutput which
enables the user to locate the sound on a scale from low (1) to high (5). An attribute
isnterruptible specifies if the vocalPrompt can be interrupted by a user’s utterance. A
vocalOutput can be further sub-devided into:

o [VocalFeedback: provides users with some feedback following a previously processed
vocallnput. For example: "Your answer was: male".

o [VocalPrompt: provides users with prompt information that will be synthesized. If
there is an audio file to be played, the attribute audioSource specities its URI.

o [VocalMenultem: specifies a menu item belonging to a vocalMenn. The DTMF sequence
corresponding to this item is specified by the dinf attribute. For example: the
sequence of strokes 1-3-5 will select directly this vocal item. The attached attribute
specifies the reference to the next document (an external reference expressed as an
uri) or to the next vocalContainer in the current document (its /id expressed as a string)
attached to this item.

e Audio: is employed to play audio prerecorded files. The audioSource attribute specifies
the URI of the audio file to be played or the name of the reference where the re-
corded file is stored. The errorMessage attribute indicated the synthesized error mes-
sage to be played by the system if the audio file is not technically available.

Vocallnput: is an object used to gather input from the user by speech recognition or audio

recording. The elapsedlime attribute is the time frame expressed in seconds during which

the user is allowed to utter the input. The recognized input is stored in the currentl alue
attribute. The defanltContent attribute replaces the use of a grammar for the following val-

uces:

78

3. Conceptual Modeling of Multimodal Web User Interfaces

® Boolean: used for Yes and No answers. For DTMF inputs, 7 stands for affirmative and
2 for negative.

® Date: used for input that specifies a date (i.e., four digits for the year, two digits for
the month and two digits for the day) are allowed.

e Dijgits: used for input that specifies digits from 0 through 9.

e Curreney: used for input that specifies amounts (the format may include a decimal
point) and the used currency. The format is: currency name, amount, eventually fol-
lowed by an amount after the decimal point (e.g., euros fifty point twenty).

o Number. used for input that specifies numbers (e.g., one hundred fifty-four).

® Phone: used for input that specifies a phone number.

e Time: used for input that specifies a time (i.e., the hours and the minutes). The format
is: hour, minute followed by AM or PM (e.g., nine twenty five AM)

® Grammar: 1s an structured and compacted enumeration of a set of utterances (i.e., words
and phrases) that constitute the acceptable user input for a given vocallnput. The
grammar can be internal (L.e., it is specified within the document) or external (i.e., it is
specified in an external file whos URI is specified by the defaultContent attribute). The
version attribute indicates which version of the grammar specification is being used (the
current version is 1.0). The /language attribute indicates according to which language the
utterance has to be pronounced in order to be recognized by the system. The
specification of the language takes the form of the couple: the name of the language
followed by the country in which it is used (e.g.: English-UK). The mainPart attribute is
the first part of the grammar that will be treated by the system. The mode attribute
specifies the available interaction type. The default type is woice for voice-based
interaction, whereas for phone-based interaction the value is dzf. The visibility attribute
specifies the visibility of the grammar. If set to document the grammar is active throughout
the current document. If set to form (the default value) the grammar is active throughout
the current vocalForm.

® Part: contains other part elements or available input items. The structure attribute specifies

how the user’s inputs should be uttered in order to be recognized by the system. There
are three possible values: choice (i.e., the grammar items are alternative inputs), sequential
(i.e., sequence of grammar items that have to be uttered one after another in the order of
their appearance) or asynchronous (i.e., sequence of grammar items in which the items do
not have any particular order of utterance). The visibility attribute specifies the visibility of
the part component. If set to private (the default value) the part component can be used
only by the containing grammar. If set to public the part component can be referenced by
other grammars. The multiplicity attribute indicates how many times the enclosed items
may be repeated. The default value is 1. The multiplicity is defined as follows:

o X (where X>0): the items are repeated exactly X times.

o X-Y (where 0=X<Y): the items are repeated between X and Y times (inclusive).

o X (where X=0): the items are repeated X or more times.

The /langnage attribute indicates in which language the items have to be pronounced in
order to be recognized by the system. The specification of the language takes the form

79

3. Conceptual Modeling of Multimodal Web User Interfaces

of the couple: the name of the language followed by the country in which it is used (e.g.,
French-CA). If it is not specified, it inherits the value from the language attribute of the
embedding grammar element.

» Jfem: enables to specify a grammar input or to reference another part element. The
grammar input is specified by the defaultContent attribute. The same attribute is used to
specify the referenced part as a string containing the “#“symbol followed by the name of
the part element. The /Jangunage attribute indicates in which language the item has to be
pronounced in order to be recognized by the system. The specification of the language
takes the form of the couple: the name of the language followed by the country in which
it is used (e.g.: French-CA). The attribute allows to mix multiple languages in the same
grammar. If it is not specified, it inherits the value from the language attribute of the
embedding part element.

* [ocalNavigation: ensures the dialog transfer between vocal C1Os. The nextContainer attrib-
ute transfers the dialog to a VC embedded either in the current document or in another
document. The value of the attribute is composed of # followed by the 74 of the VC.
The nextComponent attribute transfers the dialog to another VIC in the current VC. The
value of the attribute is composed of # followed by the 7d of the VIC. The evalContainer
attribute evaluates an ECMA Script expression that yields the document to which the
dialog will be transferred. If the expression is evaluated to TRUE, the first choice is con-
sidered, while if it is FALSE the second choice is considered. The eva/Component attribute
evaluates an ECMA Script expression that yields the VIC from the current VC to which
the dialog will be transferred. If the expression is evaluated to TRUE, the first choice is
considered, while if it is FALSE the second choice is considered. The isBridgeable
attribute indicates if the source document remains active during the navigation.

® Connect: enables to connect a grammar element to a dialog transition. The nextContainer
attribute transfers the dialog to a VC embedded either in the current document or in an-
other document. The value of the attribute is composed of # followed by the i of the
vocalGroup. The evalContainer attribute contains an ECMA Script expression that is
evaluated to determine the name of the VC to which the dialog is transferred. The VC is
embedded either in the current document or in another document.

® Record: is an object used to record a vocal message of the user. The defaultContent attribute
contains the URI of the recorded audio file or the name of the reference to this file that
can be further played using the awudio element. If the beep attribute is set to TRUE, an
acoustic beep is emitted by the system announcing the availability of the recording. If set
to false (the default value) no beep is emitted and the user can start to record
immediately after the prompt. The elapsedlime attribute specifies the maximum time
period during which the user is allowed to record the message. It is expressed in
miliseconds or seconds (e.g., "100ms" or "2s"). The silenceTime attribute is the silence
time period that determines the record to be stopped. It is expressed in milliseconds or
seconds. If the dimfEnabled attribute is set to TRUE (i.e., the default value), it enables the
users to press a key in order to stop the recording.

80

3. Conceptual Modeling of Multimodal Web User Interfaces

Submit: is employed in order to send data to the server and/or to ensure the dialog trans-
fer between vocal CIOs. The defaultContent attribute specifies the URI of the file towards
which the information should be send. The expr attribute specifies an ECMA script ex-
pression that is evaluated to determine dynamically the URI of the reference file. The
varList attribute contains the list of variables to submit. When the list is not specified, all
the variables of the vocallnputs in the current voca/Form are submitted. When specified, the
list may contain individual variable names of vocallnputs and/or declared variables. The
audioFetch attribute contains the URI of the audio clip to play while the submit element is
being processed. The #imeoutTetch attribute specifies the interval to wait for the content to
be returned before throwing an error event. This interval can be expressed in millisec-
onds or seconds. The nextContainer attribute transfers the dialog to a VC embedded either
in the current document or in another document. The value of the attribute is composed
of # followed by the 7/ of the VC.

vocall”ar: used to declare a variable. The defaunltContent attribute contains the name of the
variable that will hold the result. The currentl alue attribute specifies the initial value of
the variable. If no initial value is provided, the variable will hold the value #ndefined.
setl/ar: used to set a previously declared variable to a specific value. The defaultContent at-
tribute specifies the name of the variable to set, while the currentl alue attribute indicates
the new value of the variable.

reset] ar: used to clear a previously declared variable. The defau/tContent attribute specifies
the list of variables to be reset. When it is not specified, all variables in the current vocal-
Form are reset.

If: it conditions the execution of certain parts of the document. The guard attribute is a
condition that has to hold true in order to execute the instructions coming after the 7f
element.

Else: is an optional element embedded in the 7 element. It allows executing the instruc-
tions coming after it if the guard condition did not hold true.

Elsesf: optional element embedded in the 7 element. It is used to test more then two pos-
sible results. The guard attribute is a condition that has to hold true in order to execute
the instructions coming after the /f element.

Break: interrupts the execution of the current VC.

Exit: terminates the execution of the vocal application.

There are four possible values of event types that can be associated to vocalCIOs. These

values are specified by the eventType attribute of the event element:

Error: catches all events of type error.
Help: catches a help event.

Nolnput: catches a no input event.
NoMatch: catches a no match event.

81

3. Conceptual Modeling of Multimodal Web User Interfaces

e

ocalFeedback]
|

vocalCantainer

vocalCio

Q)\sOrderlndependem boolean

}mca\Conﬂrmation‘ |vuca|MenquocaIFDrm| ‘vocaloroup‘
[i 11 10 1

vocallndividualComponent

SkevboardShortout : string

vocalOutput
Solume integer
&intonation : string
Gppitch : integer
Spizinterruptible : hoolean

&

vocallinput

SelapsedTime : integer

0.4

0.1 record

vocalNavigation

Eheep : boolean

@elapsedTime : integer
&silenceTime : integer
&dtmiEnabled - hoolean

SnextCantainer : string
la)ﬂex‘tCumpumam string
GhavalCantainer : string
&evalComponent : string
&isBridgeanle : hoolean

0.n

gramrnar
&wersion : string

vocalMenultern

Slanguane : string

vocalPrompt

Epcount: integer

1

fﬂ1
0.n

audia
SraudioSource : uri
'%-ErmrMessage string

Bt string
&attached : string or uri

mode : string
GrnainPart : string

=h

Ssuisibility : string

1.n
0.n

part

Sstructure ; string

a.n
Sisibility : string

0.1

1.n

itern
Qﬁlanguage string

. N ———1
Q)expr_. string /] 1
arList : string
&audioFeteh : uri
SstimeoutFetch : integer setvar
 E— | I—

wocalar

connect I

it

SnextCantainer: string

% &ewpr: string

Smultiplicity : string
&languane : string
0.1

Figure 3-12 Vocal Concrete Interaction Objects

%guard string

o1
0.n

elseil

Eguard : string

For a better understanding of the concepts defined above we exemplify graphically two
vocal interactions between the system (S) and the user (U). The first dialog (Figure 3-13)
describes the fulfillment of the Provide age task by an end-user. The involved vocal CIOs are
described in the order of dialog flow:
VocalGroup: is the upper most VC that contains all vocalCIOs involved in the dialog.

VocalForm: is the VC that contains all the vocalCIOs involved in the dialog.

VocalPrompt: is the VIC employed to invite the user to input the age.

Vocallnput: is the VIC that gathers the user’s input (the age) by speech recognition with
the defaultContent attribute set to number.
VocalConfirmation: is the VC which requires the confirmation of the recognized input.
VocalFeedback: is the VIC that provides the user with the feedback regarding the
previously recognized input.
VocalPrompt: is the VIC inviting the user to confirm the previously provided feedback.
Vocallnput: is the VIC that gathers the user’s confirmation by speech recognition with the
defanltContent attribute set to boolean.

82

3. Conceptual Modeling of Multimodal Web User Interfaces

vocalGroup

dialog flow

vocalConfirmation

vocalPrompt

S:Please say your age u:18

|vocalFeedback}~ ——————— -{ vocaIPrompt|~————’| vocallnput

S:You answer was: “18” S:Are you sure? U:Yes

Figure 3-13 VocalCIOs involved in the fulfillment of Provide age task

The second dialog (Figure 3-14) describes a vocal application of a phone line company
where users can select among different options. It consists of two sub-tasks: first the user

provides the name to the system and then selects among three proposed options in a menu.
The involved vocalCIOs are described in the order of dialog flow:

VocalGroup: is the upper most VC that contains all vocalCIOs involved in the dialog.
VocalForm: is the VC containing the vocalCIOs involved in the fulfillment of the first
sub-task.

VocalPrompt: is the VIC used to welcome the user to the vocal application of the phone
line company and invites to input the name.

Record: is the VIC that records the user’s input (i.e., the name). The name of the reference
to the recorderd file is stored in the defanltContent attribute.

VocalMenu: is the VC that allows to select among different options. The selected option
recognized by the system is stored in the currentl alue attribute.

VocalMenulten1: is the VIC used to modify the personal info. For this purpouse it is
connected to a vocalForm specified by the aztached attribute

VocalMenultem?2: is the VIC used to select the move-out line option. For this purpouse it
is connected to a vocalForm specified by the a#fached attribute.

VocalMenulten3: is the VIC used to require bill info. For this purpouse it is connected to
a vocalForm specified by the aztached attribute.

VocalFeedback: is the VIC that provides the user with the feedback regarding the
recognized input. Based on this input the dialog continues with the corresponding
vocalForm.

83

3. Conceptual Modeling of Multimodal Web User Interfaces

vocalGroup dialog flow

S: Please select among the
following options:
modification of personal
info, line move-out, bill info

|vocalPrompt++| record | |vocaIMenuItem1++|\. IM .ultem2H\f IM .ultemSH U: bill info H vocalFeedback

=7 $:Your choice
is: “bill info”

to Phone line of personal info
company. Please

S elcome U:John Smith S:modi%cation S:line rJ\ove-out S:bil| info
say your name.

| vocalForm | | vocalForm | ‘ vocalForm |"

Figure 3-14 VocalCIOs used for a vocal application of a Phone line company

3.4.3 Semantics of the Multimodal Concrete Interaction Objects

MultimodalCIOs are obtained by combining graphicalCIOs and vocal/CIOs. For a set of popular
widgets, Table 3-7 identifies a possible correspondence with the proposed CIOs for three
types of interactions: graphical, vocal and MM. A correspondent rendering for each one of
them is illustrated as well. For graphical and MM Uls, we consider the imageComponent
element consisting of representative icons that enable to guide the user with available types
of interaction or to specify the type of vocal feedback provided by the system:
1. Label:
* Gt ensured by outputText.
» V:ensured by vocalPrompt.
E.g.: System (vocalPrompi): “Welcome to the UCL web site”
» MM: ensured by outputlext, vocalPrompt and imageCompmonent (loud speaker icon).
E.g.:
System displays the welcome message (outputText): Welcome to the UCL web
site.
System welcomes the user vocally (vocalPrompi): “Welcome to the UCL site”.
2. Label + Text field:
* G: ensured by outputText, inputText and imageComponent (keyboard icon).
» V: ensured by vocalPrompt and vocallnput.
E.g.
System (vocalPromp?): “Please say your name”.
User’s input (vocallnpui) is recorded in a file (record): “John Smith”.
= MM: ensured by outputlext, inputlext, vocalPrompt, record, andio and imageComponent
(microphone and keyboard icons to specify the available input interactions and loud
speaker icon to indicate the vocal feedback).
E.g.:
User clicks on the Nawmse label (outputTexd).
System (vocalPrompi): “Please say your name”.
User’s input (vocallnpui) is recorded in a file (record): “John Smith”.
System displays the recorded input (7nputTexs): John Smith.

84

3. Conceptual Modeling of Multimodal Web User Interfaces

System plays the recorded file (audio): “Your name is John Smith”.

3. Label + Combo box:

G: ensured by outputlext, comboBox with items and imageComponent (mouse and
keyboard icons).
V: ensured by vocalPrompt, vocallnput and grammar with items.
E.g.
System (vocalPrompl): “Select the credit card type. Choose between Visa,
MasterCard or American Express”.
User selects among the different proposed credit card types (grammar with items)
the desired one (vocallnput): “Visa”.
MM: ensured by outputText, comboBox with items, vocalPrompt, vocallnput, grammar with
items, vocalFeedback and imageComponent (microphone and keyboard icons to specify the
available input interactions and loud speaker icon to indicate the vocal feedback).
E.g.:
User clicks on the Credit Card label (outputTexi).
System invites the user to choose between different credit cards (voca/Promp?):
“Select the credit card type. Choose between Visa, MasterCard and American
Express.”
User selects among the different proposed credit card types (grammar with items)
the desired one (vocallnpui): “Visa”.
System displays the recognized input (comzboBox): Visa.
System (vocalFeedback): “Your choice is: Visa.”.

4. Group of radio buttons:

G: ensured by a groupBox embedding a set of radioButtons and zmageComponent (mouse
icon).
V: ensured by voca/Prompt, vocallnput and grammar with items.
E.g.:
System (vocalPromp?): “Please say your gender. Choose between male and female”.
User selects among the different options (grammar with items) the gender
(vocallnpud): “Male”.
MM: ensured by a groupBox embedding a set of radioButtons, vocalPrompt, vocallnput,
grammar with items and imageComponent (microphone and mouse icons to specify the
available input interactions).
E.g.:
User clicks on the Genderlabel (groupBox: label).
System invites the user to select the gender (vocalPromp?): “Please say your gender.
Choose between male and female”.
User selects among the different options (grammar with items) the gender
(vocallnpud): “Male”.
System displays the recognized input by checking the corresponding item
(radioButton): male.

5. Group of check boxes:

G: ensured by a groupBox embedding a set of checkBoxes and imageComponent (mouse
icon).
V: ensured by vocalPrompt, vocallnput and grammar with itemss.

85

3. Conceptual Modeling of Multimodal Web User Interfaces

System (vocalPrompi): “Please select your hobbies. Choose among the following
options: sports, travels, music, movies”.

User selects among the different options options (grammar with items) the
preffered hobbies (vocallnput): “Sport and music”.

MM: ensured by a groupBox embedding a set of checkBoxes, vocalPrompt, vocallnput,
grammar with items and imageComponent (microphone and keyboard icons to specify the
available input interactions).

E.g.:

User clicks on the Hobbies 1abel (groupBox: label).

System invites the user to select the hobbies (voca/Prompi): “Please select your
hobbies. Choose among the following options: sports, travels, music, movies”.
User selects among the different options options (grammar with items) — the
preffered hobbies (vocallnput): “Sport and music”.

System displays the recognized input by checking the corresponding items
(checkboxes): sports and music.

6. Label + List box:

G: ensured by an outputText, listBox with items and imageComponent (mouse icon).
V: vocalPrompt, vocallnput and grammar with items..
E.g.

System (vocalPromp?): “Please choose your favorite singers: Chris Hay, Lee Hardy,
Paul Sheetin,...”.

User select among the different options (grazmar with items) the favourite singer
(vocallnput): “Lee Hardy”.

MM: ensured by outputText, listBox with items, vocalPrompt, vocallnput, grammar with
ttems and zmageComponent (microphone and mouse icons to specify the available input
interactions).

E.g.:

User clicks on the Singers label (outputTex?).

System invites the user to select the singers (voca/Promp?): “Please choose your
favorite singer: Chris Hay, Lee Hardy, Paul Sheerin,...”.

User select among the different options (grammar with items) the favourite singer
(vocallnpud): “Lee Hardy”.

System displays the recognized input by selecting the corresponding item (/isthox
ttem): Lee Hardy.

86

3. Conceptual Modeling of Multimodal Web User Interfaces

User Interface type

Vocal interaction

Widgets Graphical interaction Multimodal (graphical and
vocal) interaction
outputText vocalPrompt outputText + vocalPrompt +
imageComponent
1. Label Welcome to the UCL web Welcome to

site

the UCL
web site

e)

g
Welcome to the UCL web site(

2.Label + Text
field

outputText + inputText +
imageComponent

Name

Please
say your
hame

outputText + inputText +
vocalPrompt + record + audio +
imageComponent

Name
-

)

3. Label + Combo
Box

outputText + comboBox +
items

MASTERCARD
AMERICAN EXPRESS

Select the credit
card type. Choose

between VISA,
Mastercard,...

outputText + comboBox + items +
vocalPrompt + vocallnput +
grammar + items + vocalFeedback
+ imageComponent

MASTERCARD
AMERICAN EXPRESS

4. Group of radio
buttons

groupBox + radioButtons

vocalPrompt + vocallnput + grammar + items

groupBox + radioButtons +
vocalPrompt + vocallnput +
grammar + items +

87

3. Conceptual Modeling of Multimodal Web User Interfaces

Gender “? |

male
temale

Please say your

gender. Choose
between male and
female.

imageComponent
Gender @r “?
male
temale

groupBox + checkBoxes +

groupBox + checkBoxes +

imageComponent vocalPrompt + vocallnput +
grammar + items +
B ‘? _ imageComponent
Hobbies N _ ‘Br ‘? _
5. Group of check e Please select your Hobbies %
boxes o hobhbies. Choose spotts
travgls 32; among the following travels
msic options: sports, .
S travels, music, Trsic
movies. MowVIES
outputText + listBox + vocalPrompt + vocallnput + grammar + items | outputText + listBox + items +
items + imageComponent vocalPrompt + vocallnput +
grammar + items +
‘? imageComponent
6. Label + List | Singers - @, 7
Box Chris Hay - Please choose your Singers T
Lee Hardy 5 ! favourite singer: Chris Hay -
Paul Sheerin - # cggf;?%ahfe Lee Hardy

Michael Moore |-

Sheerin,..

Faul Sheerin
Michael Moore | =

Table 3-7 Correspondence between popular widgets and CIOs of different modalities

88

3. Conceptual Modeling of Multimodal User Interfaces

3.4.4 Semantics of the Concrete User Interface Relationships

3.4.4.a Existing semantics of the Concrete User Interface relationships

The Concrete User Interface Relationships described in [USIX05] map two or more ClOs.
These relationships always have at least one source object and at least one target object.
There are three types of relationships:

1. GraphicalRelationship: maps two or more graphicalCIOs and is sub-divided in:

GraphicalTransition: maps one or several GCs by specifying a navigation structure
among the different containers populating a CUI Model. The #ransitionType
attribute identifies the following values: open, close, minimize, maximize,
suspend) resume. The transitionEffect attribute defines the animation type to be used
when a graphical transition is ensured from a source container to a target
container (e.g., wipe, box in, box out, fade in, fade out, dissolve, split).
GraphicalAdjacency: enables to specify an adjacency constraint between two
graphicalCIOs. An adjacency relationship is inferred from the order in which
components are place into horizontal and vertical boxes. Consequently, it is
never explicitly stated in the specification.

GraphicalContainment: enables to specify that a GC embeds one or more GCs or
one or more GICs. The relationship is particularly useful for adding or deleting
GICs from a GC.

GraphicalAlignament: specifies an alignment constraint between two GICs.
GraphicalEmphasis: enables to specify that two or more GICs are differentiated in
some way (e.g., with different color attributes).

2. VocalRelationship: maps two or more vocalCIOs and is sub-divided in:

VocalTransition: enables to specify a transition between two VCs. The transitionType
attribute determines the type of transition (e.g., open, mute, reduce volume,
restore volume). By analogy with the graphical conterpart relationship we extend
the existing set of values with two new ones: activate and deactivate. The
transitionEffect attribute allows a specification of an auditory effect to the transition
(e.g.: fade-out, fade-in).

VocalAdjacency: enables to specify an adjacency constraint between two vocal
CIOs. The delayTime attribute expresses a delay in milliseconds between two vocal
elements.

VocalContainment: allows to specify that a VC embeds one or more VCs/VICs.
This relationship is particularly useful for adding or deleting VICs from VCs.

3. CuiDialogControl: enables the specification of the dialog control in terms of LOTOS
operators between any types of ClIOs, be it graphical, vocal or combined. In the

current thesis we adopt this specification, but some other techniques, such as the
notation proposed in [Winc08], could be considered. In MM Uls, one has to give a
special attention to the dialog control between elements [IBMO03b]. For instance, if

the voice control moves from a text field to a list box, the designer should make sure

that the visual focus is also moved from the text field to the list box. Conversely, if

the visual focus initiates the transition, the voice should respond accordingly.

89

3. Conceptual Modeling of Multimodal User Interfaces

3.4.4.b Expanded semantics of the Concrete User Interface Relationships

By observing the existing ontology described in [USIX05] we were able to identify that
the semantics of the CUI relationships suffers from a set of shortcomings. Therefore an

expansion illustrated in Figure 3-15 Concrete UI Relationships is provided according to
[USIXO07):

When navigating between two sub-tasks the designer tipically considers two
simoultaneous actions that seem to appear natural during the HCI: deactivate the GC
in which the source sub-task is executed and activate the GC in which the target sub-
task will be executed. However, these actions are not explicitly specified by [USIXO05].
Therefore, in order to offer a more precise identification of transition types between
GCs we extend the existing set of values by introducing two new ones: activate and
deactivate.

The existing ontology did not allowed to specify the synchronization between the
graphical and the vocal components. Synchronization is an issue specific to the MM
environments. Since the current work consideres MM applications using both vocal
and graphical interactions, they should always be synchronized [IBM03b]. Therefore,
we introduce hereafter the synchronization relationship which synchronizes the
information manipulated by the vocalCIOs and graphicalCIOs in a MM Uls. The
two types of interaction objects specified in our ontology are syntactically separated
one from the other (Requirement 2. Separation of modalities). The synchronization
relationship ensures that:

e Vocal input is returned to both vocalCIOs and graphicalCIOs

e Graphical input updates both vocalCIOs and graphicalCIOs.

For instance, if the user has to fill in his/her name in a zexzField (i.e., a GIC) by
employing the vocal modality (i.e., a vocallnput is employed), the recognized result is
updating the values in both currentl alue attributes of the VIC and of the GIC. In
addition, if the user is typing the name, the introduced value is updating the values in

both currentl alue attributes of the VIC and of the GIC.
Four cases when the synchronization relationship were identified:

o Synchronization between 1 11C and 1 GIC: is defined directly between the VIC (i.e.,
the source) and the GIC (i.e., the target). For instance, if we consider the task of
vocally filling in the name of a person in a text field, the designer has to ensure
the synchronization between the vocallnput and the zextField.

o Synchronization between 1 VIC and n GICs: is defined between the VIC (ie., the
source) and the GC (Le., the target) that embeds the n GICs. For instance, we
consider the task of vocally filling in the date in a form by using three combo
boxes (one for the day, one for the month and one for the year). If the designer
desires to enable the fulfillment of the task all at once (e.g., “5" of May 2006”)
then he/she has to embed all three combo boxes in the same GC (e.g., a groupBox)
that will be synchronized with the voca/lnput recognizing the uset’s input.

o Synchronization between n V1C and 1 GIC: the synchronization will be defined
between the VC (i.e., the source) that embeds the VICs and the GIC (i.e., the
target). For instance, if we consider the task of vocally selecting the date in a date
picker widget by using three separate voca/lnput objects (one for the day, one for

90

3. Conceptual Modeling of Multimodal User Interfaces

the month and one for the year), the designer has to embed all three voca/lnput
objects in the same VC (e.g., voca/Form) that will be synchronized with the GIC.

o Synchronization between n 1'1C and n GIC: implies a decomposition process in order
to reach one of the three situations described above. If the designer wants to
reach the first identified situation where 1 VIC is synchronized with 1 GIC, then
the source and the target of the synchronization relationship will be establish by
the order in which the VICs and GICs appear.

source
&sourceld ; string

- - —1
cuiRelationship
Eid string D/
&narne : string | 1

[1] target

Q‘largetld : string
[[|
vocalRelationship) | cuiDialogControl braphicalReIationshid |synchr0mzati0n|
[] []
[

Ssymbol : string | | | !

- wocalTransition [
vocalAdjacency StansitionType - sting graphical#lignment
SdelayTime : integer &tansitionEffect: string | || SisVertical : boolean

&isHorizontal : boolean
Q‘isR\ghtCentralLeﬂ' string

gocaICDntainmen] Q‘isUpDuwn - string graphicalContainmen

uraphicalEmphasis
——

graphicalTransition

Q‘transitionType :string
StransitionEfiect : string

graphicalAdjacenc

Figure 3-15 Concrete Ul Relationships

3.5 Syntax of UsiXML

As motivated in Section 3.2.2, the selected UIDL to support our ontology is the UsiXML
language. This section specifies its syntax as a support of the semantics of the ontology
introduced in Section 3.4. Syntax is often opposed to semantics: while the latter pertains
to what something means, the former pertains to the formal structure in which
something is expressed.

3.5.1 From Semantics to Concrete Syntax

On the one hand, the semantics of our ontology is defined by employing UML class
diagrams. On the other hand, the syntax of the UsiXML language has an XMIL-based
format structure which allows to describe sets of data with a tree-like structure. Figure
3-16 illustates how the ontological concepts defined in the previous section are
transformed in a UsiXML specification which considers XML Schemas [W3CO01] for the
definition of valid XML elements. For this purpouse manual transformations (T1) are
applied in order to produce UsiXML XML Schemas from the UML class diagram
description. Objects resulting from the instantiations of class diagram concepts are
further transformed (T2) into UsiXML specification. Finally, the UsiXML specification is
validated by the corresponding XML Schema.

91

3. Conceptual Modeling of Multimodal User Interfaces

Semantics : Syntax
Class is submitted to _i___,/T—‘I\ generates UsiXML
Diagram Concepts ~ XML Schema
is instantjated in Is W“%ﬁﬂed by

is submitted to

@ generates) UsiXML
oz specifications

Objects

Figure 3-16 Generation of UsiXML specification

In the following figures we illustrate how instances of a set of class diagram concepts are

submitted to transformations T2 in order to obtain UsiXML specification.

A class becomes an XML element and class attributes become XMI. attributes: Figure
3-17 exemplifies how an instance of the wocalMenn class is mapped into an XML
element with the associated attributes.

vocalllenu
&id = VM1 <vocalMenn id="VM1"” name=""Gender"
& name = Gender - i ”
& defaultContent = Please say your gender defaultContent="Flease say your gender”/>

Figure 3-17 Transforming of a class to into UsiXML specification

A relationship class and the associated source/ taget classes are transformed as follows: an
XML element specitying the name of the relationship and source and target XML elements
corresponding to the source and the target of relationship, respectively. Figure 3-18
exemplifies how a graphica/Transition relationship between two elements (i.e., a source
represented by a button and a target represented by a window) is transformed into
UsiXML specification.

source
&sourceld = Mext_button

1 — <graphicalTransition transitionType="activate =
graphicalTransition el ﬂ <source sourceld="Next_button” /=
EtransitionType = activate 1 <target target]d=""Window 2" /=
: —— target <graphicalTransition/>

1 |&targetld = Window_2

Figure 3-18 Transformation of a relationship class into UsiXML specification

Inheritance relationship class is transformed into an XML element for which the value of
the #pe attribute takes the name of the subclass. In addition, the attributes of the
subclass become XML attributes of the created element. Figure 3-19 presents two
objects of two different classes (i.e., znput and outpu?) that inherit attributes from the
same superclass (i.e., facef). For each object an XML element named facet is created.
The attributes of the subclass instances (i.e., the wmputDataType and ountputContent)
become XML attributes of the corresponding facet element.

92

3. Conceptual Modeling of Multimodal User Interfaces

facet

&id

&name
&actionType
IQ}actionltam

<facet id="F1" name="facet 1" type="input” actionType=""create”
‘ actionltem="‘element” inputDataType=*“String” />

<facet id="F2" name="facet 2" type="‘output” action Type="‘convey"

[-r\

actionltern="element” outputContent="http:/ /resources/content.xt” /=

input

output

&inpulnataType = String E}autpulContem = http:/fresources/content.txt

Figure 3-19 Transformation of the inheritance relationship into UsiXML specification

" Aggregate relationship corresponds to an XML structure where the client class and the
supplier class are transformed into XML elements according to the example provided
in Figure 3-17. The XML element generated from the client class embeds the XML

element generated
of a client class

from the supplier class. Figure 3-20 exemplifies how an instance
(.e., vocalMenn) and two instances of a supplier class (Le.,

vocalMenultemss) are transformed into XML elements. The wvocalMenn element will
embed the two wvocalMenultems elements. UsiXML takes advantage of the XML
document structure and allows to derive implicit relationships between objects. For
instance, the structure of UsiXML syntax allows to infer two wocalContainment

relationships: the
respectively.

vocalMenu 1M1 embeds the wvocalMenulterss 1VMIT and VMI2,

wacalldenu

&hid = Vi
Spname = Gender

&defauliContent = Please say your gender

16
{2
vocalMenuliems
&id

Q)name
SpdefautContent

<wocalMenu id="VM1" name ="“Gender”’ defaultContent="Please say your gender” >
- “wocalMenulem 1d="YMI1" name =“(Gender 1 defmlrContern="Male™ />

“wocalhenulem 1d=*YMI2* name =“Gender 2* defanltContenmt="Female" />
< fvocalMenu’

implicit
relationship

¥

<wocalContainment=
<source sourcel d="Vh1" />
“target targed d=“VMI1” /=
< /wocalContainmert™>

“wocalContainment™
<source sourcel d="V¥h1" />
<target targed d=""VMI2" />
< /wocalContainmert™>

Figure 3-20 Transformation of the aggregation relationship into UsiXML specification

3.5.2 Concrete Syntax of Interaction Objects

In this section we provide the UsiXML syntax for a series of graphical, vocal and MM
CIOs. Our methodology aims to cover the CARE properties (Requirement 3. Support

for CARE properties

concerning the input/output modalities). The Complementarity and

the Redundancy in input properties require the system to perform data fusion for input
modalities or data fission for output modalities which are both out of the scope of the
current thesis (Section 1.4.3). Therefore, only the Assignment, Equivalence and Redundancy in
output properties will be addressed.

93

3. Conceptual Modeling of Multimodal User Interfaces

Hereafter we present the possible input/output interactions for a label and a text field
widgets that enable users to specify their names (second widget in Table 3-7):

» Input:

o Graphical interaction: only graphical CIOs are involved.

o Vocal interaction: only vocal CIOs are involved.
o Multimodal interaction with vocal assignment: synchronization between VICs and GICs
is required. In addition, isEditable attribute of the GIC set to false in order to
disable the graphical input.
o Multimodal interaction with graphical and vocal equivalence: synchronization between
VICs and GICs is required. In addition, isEditable attribute of the GIC is set to
true in order to allow the graphical interaction.

* Qutput interactions:
o Graphical interaction: only graphical CIOs are involved.
o [ocal interaction: only vocal CIOs are involved.
o Multimodal interaction with graphical and vocal redundancy: both graphical and vocal

CIOs are involved.

The input and output interactions identified above are combined together in Table 3-8 in
order to identify a valid set of possible interactions for the considered task.

Loput G v MM with V. | MM with G and V
Output assignement equivalence
MM with V MM with
assignement in input | equivalence in input
G G - . .
and G assignement | and G assignement
in output in output
v V for input and
V for output
MM with G
MM with MM with
MM with G | assignement . Wlt. V . Wl.t .
o assignement in input | equivalence in input
and V in input and - . .
and redundancy in | and redundancy in
redundancy | redundancy
. output output
in output

Table 3-8 Possible combinations of input/output interaction types for a label and a textFiled

For the label and a text field widget each valid combination in the above table is specified
hereafter according to the UsiXML syntax. For the rest of the widgets in Table 3-7 the
specifications is provided in Appendix C.
» Graphical interaction:

<box id="b1" name="Box 1"...>

<outputText id="OT1" name="Output 1" defaultContent="Name".../>
<inputText id="IT1" name="Input 1" isEditable="true" currentValue="8§x".../>

</box>

" MM with G assignement in input and redundancy in ontput:

<box id="b1" name="Box 1"...>

<outputText id="OT1" name="Output 1" defaultContent="Name".../>
<imageComponent id="IC3" name="keyboard_icon" defaultContent="keyboard.jpg".../>
<inputText id="IT1" name="Input 1" isEditable="true" currentValue="§x".../>

94

3. Conceptual Modeling of Multimodal User Interfaces

<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your name is §y".../>
</vocalForm>

<synchronization>
<source sourceld="F1"/>
<target targetld="IT1"/>
</synchronization>

® Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>

<vocallnput id="VI1" name="Input 1"/>

<record id="RE1" name="Record 1" defaultContent="rec_msg".../>

</vocallnput>

<audio id="AU1" name="Audio 1" defaultContent="Your name" audioSource="rec_msg"/>
</vocalForm>

" MM with V" assignement in input and G assignement in output:

<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Name".../>
<imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
<inputText id="IT1" name="Input 1" isEditable="false" currentValue="x".../>

</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
<vocallnput id="VI1" name="Input 1".../>
<record id="RE1" name="Record 1" defaultContent="rec_msg".../>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="IT1"/>
</synchronization>

" MM with V" assignement in input and redundancy in ontput
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Name".../>
<imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
<inputText id="IT1" name="Input 1" isEditable="false" currentValue="x".../>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
<vocallnput id="VI1" name="Input 1".../>
<record id="RE1" name="Record 1" defaultContent="rec_msg".../>
</vocallnput>
<audio id="AU1" name="Audio 1" defaultContent="Your name" audioSource="rec_msg"/>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="IT1"/>
</synchronization>

" MM with equivalence in input and G assignement in output
<box id="b1" name="Box 1"...>

95

3. Conceptual Modeling of Multimodal User Interfaces

<outputText id="OT1" name="Output 1" defaultContent="Name".../>
<imageComponent id="IC1" name="microphone_icon"
defaultContent="microphone.jpg".../>
<imageComponent id="IC1" name="keyboard_icon" defaultContent="keyboard.jpg".../>
<inputText id="IT1" name="Input 1" isEditable="true" currentValue="x".../>

</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
<vocallnput id="VI1" name="Input 1".../>
<record id="RE1" name="Record 1" defaultContent="rec_msg".../>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="IT1"/>
</synchronization>

" MM with equivalence in input and redundancy in output

<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Name".../>
<imageComponent id="IC1" name="microphone_icon"
defaultContent="microphone.jpg".../>
<imageComponent id="IC1" name="keyboard_icon" defaultContent="keyboard.jpg".../>
<inputText id="IT1" name="Input 1" isEditable="true" currentValue="x".../>

</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
<vocallnput id="VI1" name="Input 1".../>
<record id="RE1" name="Record 1" defaultContent="rec_msg".../>
</vocallnput>
<audio id="AU1" name="Audio 1" defaultContent="Your name" audioSource="rec_msg"/>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="IT1"/>
</synchronization>

3.6 Stylistics of interaction objects

The objective of this section is to provide a representation of several vocal objects

composing our ontology in order to: (1) ease the exemplification of the different vocal

concretizations of the design option values composing our design space (Section 4.2) and

(2) facilitate their perception and manipulation when employed by future developed

tools.

Typically, the stylistics of objects can take different forms (e.g., graphical, textual). In this
dissertation we adopted a graphical representation for which we provide a justification of

its components in Table 3-9.

96

3. Conceptual Modeling of Multimodal User Interfaces

Vocal CIO

Graphical
representation

Representation rationale

vocalGroup

As it the
representation is composed of a dashed
the
purposes and a callout symbol to indicate the

acts as a basic container

rectangle to suggest containment

vocal charactet.

vocalForm

As it is a container that enables the dialog
the
representation is composed of a dashed
the

intentions, a user and a system icon next to a

between the user and system the

rectagle to suggest containment

callout symbol.

vocalMenu with
vocalMenultems

As it is a container that enables to select
among different options and by analogy with
the menu provided by the graphical toolkits
the representation is composed of a blue
dashed oval to suggest the containment
purpouses, an overlaying callout symbol to
indicate the vocal aspects and yellow ovals to
indicate the vocal options.

vocalPrompt

W
G

As it is a system output that provides users
with
concretized in questions) the representation

prompt information (usually
is composed of a system icon and a callout

symbol containing a question sign.

vocallnput

@

As it supposes that the system gathers input
from the user by speech recognition or audio
recording the representation is composed of
a user icon next to a callout symbol and a
system icon.

vocalNavigation

As it is used by the system to ensures the
dialog transfer between vocal elements the
representation is composed of a system icon
next to a callout symbol positioned above a
unidirectional arrow suggesting the transfer.

andio

As it is employed to play audio prerecorded
files the representation is composed of a
loudspeaker icon next to a musical note
symbol.

submit

As it is used to send data to the server
and/or to ensure the dialog transfer the
representation is composed of a computer

97

3. Conceptual Modeling of Multimodal User Interfaces

icon suggesting the server adjancent with a
green arrow indicating the data upload, both
positioned above a unidirectional arrow
indicating a potential dialog transfer.

\\\k;

As it conditions the system execution of
certain parts of a document the
representation is composed of a dashed
rectagle suggesting the containment of the
parts to execute that embeds a computer
icon with a set of connected arrows
symbolizing the different decisions out of
which only one will be executed (i.e., the red
one)

},__
O

As it interrupts the execution of the dialog
between the system and the wuser the

break representation is composed of the icon
employed for the wocalluput over which a
cross was applied.
As it terminates the execution of the vocal
ot application the representation is composed

of an open door icon and an arrow inviting
to exit the room.

3.7 Conclusions

Table 3-9 Stylistics for several vocal concrete interaction objects

The current chapter presented an existing ontology that was extended in order to
respond to the requirements of MM applications. In particular, a set of vocal and MM
CIOs and the relationships between them have been introduced along with their
semantics and stylistics. UsiXML, the UIDL selected to support our model based
approach describes the syntax of the object composing the ontology. In Chapter 4 this

ontolgy will serve as support for the design space based-method adopted in the current

thesis.

98

4. A Transformational Method for Producing Multimodal User Interfaces

4 A Transformational Method for
Producing Multimodal User
Interfaces

4.1 Introduction

After describing in Chapter 3 the ontology of our MM framework, Chapter 4 focuses on
the transformational method applied over the previously introduces models. Section 4.2
introduces the design space along with the composing design options that aims to guide
the designer’s decisions during the development life cycle. Section 4.3 introduces the
details of the selected model-to-model transformational approach and emphasizes its
expansion thanks to the introduction of colored transformation rules. In Section 4.4 the
4 steps of the transformational approach are decomposed into sub-steps for which the
corresponding design options supporting them are identified and exemplified.

4.2 Design space for user interfaces

4.2.1 Definition of design space

The capabilities of MM applications are well delineated since they are mainly constrained
by what their underlying language offers, as opposed to hand-made MM applications. As
the experience in developing such MM applications is growing, the need arises to identify
and define major design options of such applications to pave the way to a structured
development life cycle. Any software development life cycle should naturally evolve from
eatly requirements to detailed ones, until a final system is developed and deployed. This
evolution inevitably goes through identifying, defining, analyzing, comparing, and
deciding between different, potentially contradictory, alternatives that may affect the
entire process. The Ul of this software does not escape from the aforementioned
observations [Pala03].

We consider that a design option represents a design feature which effectively and
efficiently supports the progress of the development life cycle towards a final system
while ensuring some form of quality. For each design option, a finite set of design option
values denotes the various alternatives to be considered simultaneously when deciding in
favour of a design option. For instance, a designer confronted with a design decision
concerning the presentation of the Ul typically selects among a set of alternatives such
as: present all the information in one window (e.g., if the Ul is to be rendered on a
desktop PC), separate the information in several different windows presented
sequentially (e.g., if the Ul is to be rendered on a PDA with reduced screen size
capabilities) or render the information vocally to users employing mobile phones.

99

4. A Transformational Method for Producing Multimodal User Interfaces

Design options often involve various stakeholders representing different human
populations (e.g., the end users, the marketing and the development team) with their own
preferences and interests in the development life cycle. When a particular design option
value is assigned to a design option, it is considered that a design decision is taken. These
decisions often result from a process where the various design options are gathered,
examined and ranked until an agreement is reach among stakeholders. The decision
process is intrinsically led by consensus since stakeholders’ interests may diverge and by
trade-off between multiple criteria, which are themselves potentially contradictory.

Therefore, we define a design space as:

A structured combination of design options having assigned a finite set of design option
values that support the stakeholder’s design decisions during the development life cycle
of multimodal user interfaces.

The design space analysis [Limb00] represents a significant effort to streamline and turn
the open, ill-defined and iterative [Rous05| interface design process into a more
formalized process structured around the notion of design option. A design space
consists of an n-dimensional space where each dimension is denoted by a single design
option. For this space to be orthogonal, all dimensions, and therefore all their associated
design options, should be independent of each other. This does not mean that a
dimension cannot be further decomposed into sub-dimensions, case in which the design

space becomes a snowflake model.
4.2.2 Rationale for choosing a design space

4.2.2.a Advantages

Design options present several important advantages:

. When they are explicitly defined, they clarify the development process in a
structured way in terms of options, thus requiring less design effort and striving for
consistent results if similar values are assigned to design options in similar
circumstances.

. Defining a design option facilitates its incorporation in the development life cycle
as an abstraction which is covered by a software, perhaps relying on a model-based
approach. Ultimately, every piece of development should be reflected in a concept
or notion which represents some abstraction with respect to the code level as in a
design option. Conversely, each design option should be defined clearly enough to
drive the implementation without requiring any further interpretation effort. For
example, the design option concerning the presentation of the UI will result in the
generation of a set of widgets that satisfy the corresponding constraints.

. The adoption of a design space supports the tractability of more complex design
problems or for a class of related problems.

100

4. A Transformational Method for Producing Multimodal User Interfaces

4.2.2.b Shortcomings

The design space suffers from set of shortcomings as the design options could be very
numerous, even infinite in theory. But in practice, it is impossible to consider a very large
amount of design options because of several reasons:

. They are too complex or expensive to implement.

. They do not necessarily address users’ needs and requirements.

. They are outside the designer’s scope of understanding, imagination or
background.

- Their decision is not always clear and when it is taken it may violate some usability

principles or guidelines. For example, deciding a particular design option may lead
to a design which is probably feasible to be implemented, but which is likely to be
unusable or inconsistent. Reducing a design to a set of design options may restrict
the designers’ creativity or could be perceived as such. Design options, anyway and
anyhow, will always represents a restriction of the complete design space, the
problem being to identify the relevant ones and leaving out the ones that are too
detailed and that do not affect the Ul quality.

- Not all design options could be discovered or defined in an independent way as
they sometimes appear very intertwined. Moreover, not all the possible values of a
design option may be equal in implementation cost.

4.2.2.c Justification

We consider important to define such a design space for the development of MM
applications (Reguirement 8: Approach based on design space) because of the qualities it
ensures:

. Intrinsic qualities: according to [BeauOO] a design space is by its nature:

o Descriptive: all design options are documented and allow summarizing any design
in terms of design options values. These values have been identified and de-
fined based on observation and abstraction of Uls and by introspection over
the personal knowledge regarding the information systems.

o Comparative: several different designs of MM Uls may be analyzed and com-
pared based on the design options considered in their development so as to as-
sess the design quality in terms of factors like utility, usability, portability, etc.

o Generative: the design space allows to discover potentially new values for the ex-
isting design options or to introduce new design options associated with yet
under explored design aspects.

. Extrinsic qualities:

e Independently of any implementation or tool support, having at hands a design
space where a small, but significant set of design options could be envisaged is
a contribution which could be useful to any designer of MM applications. This
provision helps designers to avoid to replicate the identification and definition
of these design options, while leaving them free to consider other options or to
overwrite the existing ones.

e The languages in which they are implemented restrict the amount of possible
interfaces to obtain as they directly set the CARE properties to assignment,
equivalence, complemetarity or redundancy. Moreover, the interaction styles
[BeauO0] supported by these languages make them appropriate for certain types

101

4. A Transformational Method for Producing Multimodal User Interfaces

of applications (e.g., information systems), but totally inadequate for other
types (e.g., air traffic control) [Macl89]. Therefore, a design space composed of
design options independent of the interaction modality is a solution that offers
designers explicit guidance during the development life cycle by providing
flexibility with respect to the interaction modalities to select and the types of
combination to set among them.

Multimodal applications often employ graphical and vocal interaction
modalities. When used together they multiply the combinations of modality
concretizations assigned to design options values thus complexifying the entire
design space. Sometimes, a design option which was estimated relevant for a
particular modality (e.g., the graphical modality) may become totally irrelevant
for other modalities (e.g., the vocal modality) or for its combination with other
modalities (e.g., multimodality with graphical and vocal interaction). Therefore,
a design space defined with an explicit set of design options and values clarifies
the development process and simplifies the design decisions.

4.2.3 Design options for user interfaces

Our design space (Figure 4-1) is composed of a set of sixteen modality independent

design options introduced hereafter according to a structured schema: each design option

is consistently named, defined, justified through a rationale, and explicited with design

option values. The design options will be specified in rectangles, whereas their associated

values in ovals. Each value is sustained by examples that illustrate its concretization for

the following interaction modalities:

- Graphical: supported by UsiXML graphical CIOs/group of objects.

. Vocal: supported by UsiXML vocal CIOs/group of objects for which the stylistics
introduced in Section 3.6 is used.

. Multimodal: combining together the previously specified interactions taking into

consideration the CARE properties.

Two particular situations have been identified: (1) a design option value does not

necessarily have a correspondent concrete object for all considered interactions; (2) the

same concrete object can be associated to multiple values.

Prompting

Sub-task Support for default Answer Confirmation Answer
guidance value and unit cardinality answer order

Mmedme feedback ‘

Design options for Uls

Simple
output
Sub-task Sub-task Sub-task Navigation Control Navigation and control
triggering presentation | | navigation type type type

Figure 4-1 The design options composing the design space

(1) Sub-task triggering
Definition. It specifies which entity has the initiative to launch and to control the

triggering of the sub-tasks.

102

4. A Transformational Method for Producing Multimodal User Interfaces

Rationale. When considering the interaction between the user and the system as a dialog
between parteners, it is important to consider which partener has the initiative in the
conversation. The system can initiate all dialogs, in which case the user simply responds
to requests for information or action. This dialog is called system-driven because the
system more or less decides which action the user may perform [Gram96]. Alternatively,
the system might react only to user input, in which case the dialog is called user-driven
because the user has more freedom in chosing the next action. Consequently, the
initiative could be also mixt, if either the user or the system may have the initiative.
System-driven dialogs tend to be preemptive as they limit the user’s choice of next
available action, whereas user-driven interaction favors non-preemptiveness. For
instance, a dialog box may prevent the user from interacting with the system in any way
that does not have a direct input to the box, thus preventing user’s flexibility. In general,
designers want to minimize the system’s ability to preempt the user although some
situations may require it for safety reasons. For example, in critical systems in which a
user error would result in serios damage whithout a chance for recovery, it is desirable, or
even necessary, to limit the user’s freedom. [Lars06] shows that in MM Uls a user-driven
dialog and a mixed one may be useful for experienced users, while they are confusing and
inhibiting for novice users.

Consequently, the designer must have a good understanding of the set of tasks to
perform, how those tasks are interrelated and the experience level of the users with those
tasks in order to minimize the likelihood that the users will be prevented from initiating
or advancing some tasks at the time they want to do so.

Values. Even if we identified three types of dialog initiatives, the mixt one is not
considered a possible value as it can be obtained as a result of the combination of the
user and the system intiative:

= System:
. a GUI that automatically changes the focus on the next widget once the user
tinished to fill in the current one.
e inVUL
System: “What is your 3ip code?”
User: “1348”.

System: “Please say your gender.”
User: “Female”.

. User:
. a GUI that enables the user to choose the widget to fill in at any time.
e inVUL

System: “What information would you like to input?”
User: “Gender”.

System: “Please say your gender.”

User: “Female”.

(2) Sub-task presentation

Definition. It specifies the way in which the system is presenting the sub-tasks to the
user.

Rationale. Designers of MM Uls attempt to take into account the relation between the
structure of the tasks to be performed and the manner of presenting it in the Ul Central

103

4. A Transformational Method for Producing Multimodal User Interfaces

to this design issue is the way in which the information is conveyed and cognitively
processed by the end users [Norm86].

If we consider the GUIs, the most obvious and apparent mode of presenting the
information is the physical layout of the display and its functional properties. Here the
user visualises Ul screens containing for instance windows, dialog boxes, selection lists,
tabbed dialog boxes,etc. and information diplayed thereon. Design issues at this level
include, but are not restricted to, the amount of information that can be presented on the
screen, the spatial location of the screens, the linking of information from one screen to
another.

Therefore, in order to expand the amount of information presented to the user, the
physical layout is being split into small chuncks according to the structure of the tasks to
be performed, thus creating multiple screens. These screens could be separate (e.g.,
separated windows) or gathered together on the same screen (Figure 4-2). Furthermore,
the later could be overlaid or fusioned one next to the other. With overlaid screens,
there is no increase in the real amount of information displayed at once. However, there
is an apparent increase in the sense that the users infer that the information is there,
although it is covered up. A real increase in the amount of information is achieved only
with fusioned screens.

In order to expand the utility of the physical layout a number of methods for
coordinating the screens have been proposed and developed [Shne86]. Therefore, a UL
may be structured so that if the user is selecting an item on a working screen, instances of
this item and/or detailed information about the item could be displayed on another
screen without changing the contents on the working screen.

After interpreting and interacting with the physical layout, the user inferes from the
system a cognitive model of what is going on. The result will be a cognitive structure in
the user’s mind with elements and relationships among them that map the elements and
relationships at the UI level. Therefore, the designer should model the layout not only
for efficient communication of information, but also to induce and suggest an
appropriate cognitive layout. One cognitive representation that has a very powerfull
visual impact is the zoom in - zoom out screen. A set of selection items are displayed one
bellow the other and once an item is selected it will zoom in the corresponding
informations by unrolling a screen that finds its place between the selected item and the
one right bellow it. A zoom out concretized in rolling up the screen is possible at any
time either by selecting the current item or any other item in the selection list.

The human perceptual system tends to group objects that are in close proximity or
similar in size, shape, color or orientation. Therefore, different screens fused together
should visually organize information displayed thereon. The organization should take
into account the topology (location) and some graphical characteristics (format) in order
to indicate the relationships between the various information displayed and whether they
belong to a given class or not [Bast93]. The users’ understanding of a screen depends,
among other things, on the ordering, the positioning and the distinction of objects (e.g.,
images, text, commands) that are presented. Users will detect the different items or
groups of items, and learn their relationships more easily if, on the one hand, they are
presented in an organized manner (e.g., alphabetic order, numbered order), and on the
other hand, if the items are presented in formats that indicate their similarities or

104

4. A Transformational Method for Producing Multimodal User Interfaces

differences (e.g., a separation line between information belonging to different classes).
Consequently, the learning and remembering of items will be improved. Moreover,
grouping or distinction of items will lead to a better guidance for the end users.

VUIs are transient [Java 98] so the user doesn’t relay anymore on the persistent visual
support of the screens. Therefore, the temporal aspect will play an important role that
has a powerfull effect on the perceptual grouping and inferred order of information. To
keep from overloading the user’s short-term memory, information presented in a VUI
must generally be more concise than information presented visually. Often, only the
most essential information should be presented initially (e.g., the list of vocal items), with
the opportunity for the user to access detailed information about these items at a lower
level. By analogy with the traditional notion of graphical formatting presented above, we
consider the vocal formatting as a useful technique that increases the bandwidth of vocal
communication by using speech and non-speech cues to ovetlay structural and
contextual information of vocal output. For this purpose [IBMO03a] specifies a set of
recommendations. For instance, buletted list presented in GUI should have as equivalent
in VUI a short sound snippet as an auditory icon at the begging of each item in the list,
graphical bold or italics used to introduce an ordered list of sub-task titles should be
emphasised in VUIs using auditory inflection technique such as changing volume or
pitch. Moreover, for grouping or separating a set of vocal items whether they belong to
the same class or not, designers should consider audio files playing a unique sound or
special tone.

Values. The possible values identified as leaves in Figure 4-2 are by no means exhaustive
and represent a point of departure in the system design meant to stimulate further
thinking about how the user interprets the information presented by the system.

‘ Sub-task presentation ‘

Figure 4-2 Sub-task presentation values

For each value a correspondent vocal and/or graphical concrete object is illustrated
Figure 4-3. Thus, the presentation of the sub-tasks can be:
. Separated: each sub-task is conveyed in different containers (e.g., different screens
each one containing a window in GUIs or different vocalGroups in VUISs).
. Combined: the sub-tasks are conveyed in the same container (e.g., a single screen
containing a window or a dialog box in GUIs or a vocalGroup in VUISs):
o One at once: only one sub-task is presented at a time. The possible values are:
V' Extended task list. in GUIs a selection screen (on the left) containing the
available 7zezzs and their associated overlaid screens presenting the detailed

105

4. A Transformational Method for Producing Multimodal User Interfaces

information (on the right), whereas in VUls a wocalMenn with
vocalMenulterss indicating the name of the possible vocalGroups among
which to choose.

V' Reduced task list: in GUIs a comboBox containing the available iems to select
and their associated overlaid screens presenting the detailed information,
whereas in VUIs a voca/Form composed of a vocaPrompt inviting the user to
select an option and a vocallnput regarding the user’s options that are
further specified in a vocalMenn with vocalMenultems.

V' Tabbed list: in GUls a tabbedDialogBox with tabbedltems in its upper part
and associated overlaid screen presenting the detailed information,
whereas in VUIs the concretization is the same as for extended task list
counterpart.

V' Single expansion list: in GUls a floatWindow containg the floatltems that
enables to zoom in the detailed information displayed in associated fused
screens, whereas in VUIs the concretization is the same as for extended
task list counterpart.

e Many at once: multiple sub-tasks are presented in the same time. The possible
value is multiple expansion list. The graphical concretization is identical to the
single expansion list counterpart, with the difference that multiple surfaces can
be presented simoulatenously. We consider the vocal concretization difficult
to achieve due to temporal constraints.

o Al at once: all sub-tasks are presented simultaneously. The possible values are:
V' Separated list: in GUIs the separation can be ensured by a blank space or

an horizontal line, whereas in VUI the vocalPrompts synthesizing the sub-
tasks are separated by audio elements playing audio files.

V' Grouped list: in GUIs the separation can be ensured by a frame line or
colored background, whereas in VUIs the concretization is the same as
for separated list counterpart.

V' Bulleted list: in GUIs the tasks are introduces by a ®, 0, —, \/, etc., whereas
in VUIs audio elements playing sounds such as beeps, dongs, etc. are
followed by vocalPrompts synthesizing the sub-tasks name using auditory
inflection techniques.

V" Ordered list: in GUIs the sub-tasks are ordered by items such as (1, 2, 3),
(a, b, ©), (1, 1i, iii), (o, B,), etc., whereas in VUIs vocalPrompts synthesizing
the items specified in the graphical example are followed by voca/Prompts
uttering the sub-tasks name using auditory inflection techniques.

106

4. A Transformational Method for Producing Multimodal User Interfaces

5 P, HEF; HCF !
pmmmmmmene eeoececooeoeog i :) T)3»‘ “Sub-task 17 1 P Jo Audio (beep) : : i Jo Audio (<1) e
: b b ;_} “Selectan 111 | HhSE : » HESES » " 8
i Sub-task 1! |7 N option” 111 Jo Audio vh T ssubtask 1) |1 7 “Sub-task 17} -y
----------- i e e || 1 1. oy B
___________ : i }ﬂ my options?? | ' P _:}y “Sub-task 2" : . 3@Au‘}|'° (beep) | ; : i -:9 Audio (<2 7);! =
[oy [: Lo o T :!
L | smmpssmsssssssoee » 0F o Vo ' O
| Subetask2] : o) | IO auvio | - 27 subtask 2t} || @7 “subtask 2] 9
"""""" ; [Substask1] | | oo oo o
——————————— i 1 [Substask 2 AR ».}y “Sub-task 3" | || J® Audio (beep) o ' JO Audio(*3):: c
‘ I | o o :.!'/Sb: ki | i.!7/Sl°t kil §
‘ i o) o « mlonod « ot |
;s._.btaskal.‘g:) ,,,,,,,,,,,,,,,,,,,, i E‘:@ Audio R Hhtas I e i 2
""" A g i @
P o o N
[1
b :

a:::te ' expansmn
list

3 b ; ;
2 Sub-task 1 v [;
i) J i Sub-task 1 : Sub-task 1 T *SubdaskA few
¥ i H i ! — 16
Sub-task 1 |4 ' i Sub-task 2 © eSubask?2 "L o
) 4 i i oo
; ' i ! Sub-task 3 =
—— '.‘ U Subtask2 : Sub-task 3 i ¢ © 2
Sub-task 2 4 L y [sibtaks | hd v ¥ =8
L] Sub-task 1 ‘6 .2
Sub-task 1 v v
. Sub-task 1 1, Sub-task 1 [
Subtask 1| Subitask 2| Subtask 3| | : © o
L ——— Sub-task 2 Cw©
Sub-task 2 Sub-task 2 |’ | 2. Sub-task 2 0 =
Sub-task 3 m Sub-task 3 Q o)
Sub-task 3 B | 1. Subtask 3
'l Subtask3 |

Figure 4-3 Sub-task presentation values and a possible concretization in vocal and graphical

objects

Whenever the designer needs to convey sibling sub-tasks into different presentations, an
approach by problem reduction is applyed, i.e. the simplification to an already solved
problem. This is done by transforming the initial task structure into an equivalent one
where the sibling sub-tasks are placed one level lower and are grouped as sub-tasks of a
newly introduced task.

Sub-task presentation is a design option that is independent of the type of temporal
relationships specified between the sub-tasks. Even if all the current presentations are
valid there are some better suited then others according to IFIP quality properties
[Gram96]. For instance, the extended task list value is better then the reduced task list one
which is at its turn better then the separated value. This is due to the fact that the former
value makes the sub-tasks observable and browsable, the second it is just browsable,
whereas the later is neither observable nor browsable.

(3) Sub-task navigation

Definition. It specifies the manner in which the user is able to browse the sub-tasks
presented in a UL

Rationale. The navigation scheme of a UI should allow users to find and access
information effectively and efficiently when interacting with the system. Navigation is
characterized in [Gram96] by the reachability property which refers to the possibility of
navigating through different system states. This property contributes to the system
quality and must be considered explicitly during the development life cycle. It can be

107

4. A Transformational Method for Producing Multimodal User Interfaces

defined at any level of detail, but our interest is focused mainly on the observable states.
One of the issues of the reachability property is whether the user can navigate from any
given observable state to any other observable state. From the uset’s point of view it may
be useful to distinguish between backward and forward reachability. The user may want
backward reachability in order to get back to some previous state of the interaction, after
having made a mistake or realizing a need for some previous information. Forward
reachability means that the user is able to proceed to any desired interaction state,
independently of previous dialog development.

Synchronization is an issue specific to the MM environment. Since the MM applications

are using navigational scheme that involve both vocal and graphical modalities, they

should always be synchronized [IBMO3b]. For example, while the vocal side of the
application is processing a dialog assigned to sub-task one, the graphical counterpart

should not be directed to the second sub-task unless the vocal side is also making a

transition to that sub-task. If the user forces the transition manually, the VUI should

adjust accordingly by either stopping the process for sub-task one and starting the
process for sub-task two or by playing an error message. The graphical Ul should display
the page to match the vocal response as well.

In Section 3.4.4 we extended the graphicallransition and vocallransition relationships with

the activation and deactivation values. Hereafter we propose a graphical notation assigned to

these values that comes as an extension of [Vand03] dedicated to the navigation between
interaction objects. Thus, the deactivation actions are symbolized with a yellow bulb,
wheras the activation actions are illustrated with a red bulb.

Values. Two design option values were identified, for each one the correspondent vocal

and graphical concrete objects being illustrated (Figure 4-4):

" Sequential (synchronous): enables users to navigate forward and backward in a linear
manner from the current sub-task to a neighbour sub-task only (e.g., in the GUI is
ensured by the group of (PREV/, NEXT) buttons, whereas in the VUI is ensured by
vocalNavigation objects).

» Asynchronous: enables users to navigate forward and backward in a linear or non-
linear manner from the current sub-task to any other desired sub-task, thus
providing users with more flexibility in manipulating the interface (e.g., in the GUI
is ensured by buttons specifying the possible sub-tasks to visit, whereas in the VUI is
ensured by vocalNavigation objects).

108

4. A Transformational Method for Producing Multimodal User Interfaces

(D Sub-task 1 (D Sub-task 2 (D Sub-task 3 (D subtask1 | ®I(D Sub-task 2 (D Sub-task 3

T 1 ' T 1 T 1 FT =l " l b (1 T l
¥4 Y 4 : ¥ 4 : ¥ 4 : ¥ 4 ¥ 4 :
| NN 2’ e ! R Lo 2 L 2’ |
| P E e N ! ! ——-‘;W\ P 2, s '} AN T
pel lprileg | @ e ilep
T e | =13] "‘;'i 2,512 | | Qﬁb sT3 | | =13 [P DS |

[Sub-task 1 DANMN Subtask 2 hMM Sub-task3 DA [Sub-task 1 DARW Subtask2 PN Sub-task3 Jd]
L 4 L 4
A S A T e @
NEXT | PREV | NEXT | PREV sT2 | ST3 |"—\S\T1 | s13 | sT1 | si2 |

‘5’_/‘9 Mv N S S

Figure 4-4 Types of navigation between sub-tasks and a possible concretization in vocal and

graphical objects

(4) Navigation type

Definition. It specifies the type of containment and the cardinality of the objects/logically

grouped set of objects that ensure the navigation (Figure 4-5).

Rationale. The containment refers to the position of the navigation objects with respect

to the information presented by each sub-task. The navigation objects/group of objects

could have an instance in each sub-task presentation or could be concretized in a general

navigational object/group of objects that ensure the browsability among all sub-tasks.

The cardinality specifies the number of objects that ensure the navigation. The traditional

design of a user interaface considers a single object/group of objects that ensure the

navigation between the sub-tasks. However, two or more navigational objects/group of

objects ensuring the same functionality could be conveyed by the system and made

available to the user simoultaneously. These objects might improve the interaction

flexibility and reduce the access time to the navigational functionalities. However, their

redundant character could mislead the user if they are not carefully selected and

conveyed.

Values. From the containment point of view two values are identified:

= Local: each sub-task has a corresponding navigation object (e.g., in GUI a button
embedded in its correspondent groupBox, whereas in VUI a wocalNavigation
embedded in its correspondent vocal/Group).

= Global: all sub-tasks have one common navigation object (e.g., in GUI a button,
whereas in VUI a vocalMenu with vocalMenultes indicating the name of the possible
vocalGroups to visit).

From the cardinality point of view two values are identified:

. Simple: a single object or a single logically grouped set of objects ensures the
navigation (e.g., in the GUI a group of #ab items of a tabbedDilalogBox, whereas in the
VUI a vocalNavigation object embedded in its corresondent vocalGroup).

109

4. A Transformational Method for Producing Multimodal User Interfaces

* Multiple: two or more objects/logically grouped set of objects ensure the navigation
(e.g., in the GUI a group of zabltems in a tabbedDialogBox and the (NEXT,
PREVIOUS) group of buttons, whereas in the VUI a vocalMenn with vocalMenultems
indicating the name of the possible voca/Groups to visit at any time during the dialog

and a vocalNavigation object embedded in its corresponent vocalGroup).

R — m !

Figure 4-5 Navigation type values and a possible concretization in vocal and graphical objects

v 5

[Sub-taskT— |’Suh-task_1— '
= ; Sub-task 1 | Sub-task 2| Sub-task 3) .

¢

(5) Control type

Definition. It specifies the type of containment and the cardinality of the objects/logically
grouped set of objects that ensure the data control (Figure 4-6).

Rationale. By data control we understand any operation in charge with the exchange of
data between the user and the system (e.g., storing data into a database, retriving data
from a database, sending data to the system in order to be processed, canceling one of
the previously specified operations). The containment refers to the position of the
control objects with respect to the information presented by each sub-task. The data
control objects/group of objects could have an instance in each sub-task presentation or
could be concretized in a general object/group of objects that ensure the data control of
the UL The cardinality specifies the number of objects that ensure the data control. The
traditional design of a UI considers a single object/group of objects that ensure the data
control of the application. However, two or more control objects/groups of objects
ensuring the same functionality could be conveyed by the system and made available to
the user simoultaneously. These objects might improve the flexibility of data control and

110

4. A Transformational Method for Producing Multimodal User Interfaces

reduce the access time to the data control functionalities. However their redundant

character could mislead the user if they are not carefully selected and conveyed.

Values. From the containment point of view two values are identified:

Local: each sub-task has a corresponding control object (e.g., in GUI a button
embedded in its correspondent grospBox, whereas in VUI a submit object embedded
in its correspondent vocalForm).

Global: all sub-tasks have one common navigation object (e.g., in GUI a button,
whereas in VUI a submit object).

From the cardinality point of view, two values are identified:

Simple: a single object or a single logically grouped set of objects ensures the data
control (e.g., in the GUI a group of fabltems of a tabbedDilaogBox, whereas in the
VUI a submit object embedded in its corresondent vocalForm).

Multiple: two or mote objects/logically grouped sets of objects ensure the data
control (e.g., in the GUI a group of tabltems in a tabbedDialogBox and an OK button,
whereas in the VUI a general submit object and for each sub-task a vocallorm
embedding a voca/Prompt requesting the user to decide whether the data will be send
to the server or not, a voca/lnput gathering user’s responses and an zf object used to
send the data thanks to the s#bmit object if the condition holds true).

Y :
T T] ;Q:MSub-tasM 5
: 9 ---------- : [D ; i Q 3 : i - “Send data 771 !
i i - =l . A
; ia{Suh-task 1 ; ia{Sub-taskﬂ 3 &;_, Sub-task1§ i P @ “YesINo®
i (‘jf ik ettt i i Pob b
I > 3i"y‘Sub-taskﬂl [—_— 3 [i i
ia————— i o ht [- . i
i | gsub-task 2} | : e 3 : | Bf'Sub-task 2. | [subtask2 L
b i || 47'Sub-task 3! | e : " :
fhF (ﬂ ii | 188 i i (ﬂ | 1 @7 “Send data?”i

*Sub!’taskﬂi (Suh-tash— ‘ I
e
t ¥
1 &

—Sub-tas : (Suh-task'z—
5| (Sub-task'a—
[Sub-task3— | g

Figure 4-6 Control type values and a possible concretization in vocal and graphical objects

(6) Navigation and control type

Definition. It specifies whether the navigation and data control are ensured by the same

object/logically grouped set of objects (Figure 4-7).

111

4. A Transformational Method for Producing Multimodal User Interfaces

Rationale. The navigation and the data control functionalities could be grouped together
in order to be ensured by one single object thus improving the interaction speed between
the system and the user. This design decision has its drawbacks in the sense that the
designer should identify possible errors and recover the system according to the
functionality that generated them. On the other side, a clear separation of the two
functionalities could be ensured by the use of two different objects/groups of objects
which differentiate semantically the triggered actions. The advantage is that the user is
not confused anymore by the meaning of his/her actions.

Values. Two design option values were identified:

- Separated: different objects/logically grouped sets of objects ensure the control and
the navigation between sub-tasks (e.g., in the GUI two buttons, one ensuring the
navigation and one the data control, whereas in the VUI two vocal components, a
vocalNavigation object ensuring the navigation and a swbmit object ensuring just the
data control).

. Combined: the same object/logically grouped set of objects ensures simultaneously
the navigation and the control (e.g., in the GUI the same button ensures the
navigation and the control, whereas in the VUI the submit element ensures both the
navigation (thanks to the nextContainer attribute) and the control).

Figure 4-7 Navigation and control type values and a possible concretization in vocal and graphical

objects

(7) Sub-task guidance

Definition. It specifies whether the end-user is guided with the possible answers to utter.
Rationale. As an application becomes more complex, offering the user more choices,
the need of guidance becomes mandatory. For simple applications with fewer choices,
the user may need guidance only the first time the application is run. Moreover, a novice
user may not know the meaning of a field or the list of valid commands. For all these
situations, the designer should convey the list of choices so that users can be guided with

112

4. A Transformational Method for Producing Multimodal User Interfaces

the possible options to select [Lars06]. However, if the user is likely to know the set of
valid responses as it is obvious (e.g., the gender of a person) or if the list contains long or
nearly infinite set of items, the designer shouldn’t guide the user with the possible
options to select.

Values. Two design option values were identified:

= Guided: the system provides the possible answers to the end-user
o GUI that provides the user with the possible car colors to select (Figure 4-8).
e VUL
System: “Choose between green, red and black”.
User: “Red”.
. Unguided: the system doesn’t provide the user with the possible answers:
o GUL: in order to specify his/her name the user in not guided as there are

numerous values that can be specified (Figure 4-9).

e VUL
System: “What is your name?”
User: “Michael”.

-Car color
i» Green
(» Red
(+ Black First name | Michael
Figure 4-8 Guided sub-task in GUI Figure 4-9 Unguided sub-task in GUI

(8) Support for default value and unit

Definition. It specifies whether the system provides default values to the user and the
corresponding unit for data entry.

Rationale. The workload with respect to the number of actions necessary to accomplish
a task should be one of the concerns of Ul designers. This requires the limitation, as
much as possible, of the number of steps users must go through when interacting with
the Ul. The more numerous and complex the actions necessary to achive a task, the
more the workload will increase and, consequently, the more probable the risk of making
errors. For this purpouse default values and their assigned units should be conveyed to
the users that are dealing with data entry [Bast93]. This will contribute to the
minimization of the number of actions to perform when accomplishing the task.
However, default values and units do not always make sense. For data entries that
involve a high number of choices providing a default value is not appropriated.
Moreover, the default unit might not be necessary when it is obvious as it is frequently
used on a day to day basis. Therefore, in these latter examples no default values or units
should be provided as they will only influence in a negative manner the concision of the
UI [Bast93].

Values. The possible values are:

= With support: the system provides default values and units

113

4. A Transformational Method for Producing Multimodal User Interfaces

e GUI the user has to select the zoom level which is expressed on a scale from
10 to 500 and the unit is expressed in percentage (Figure 4-10).

e VUL the vocal equivalent of the situation described above is:
System: “Please specify the zoom level on a scale from 10 to 500 percentage”.
User: “757.

. Without support: the system provides neither the default values, as there is an infinite
number of choices, nor the unit, as the data entry is not assigned to any metric
e GUIL when the user has to provide his/her first name he/she will type it in the
data entry field (Figure 4-11).

e VUL the vocal equivalent of the situation described above is:
System: “Please specify your first name”.
User: “Michael”.

Zoom level | 100 ~| 85
10

25
50

100
150
200 [T v
500 First name | Michael

Figure 4-10 Ambigous answer in GUI Figure 4-11 Unambigous answer in GUI

(9) Answer cardinality
Definition. It specifies the cardinality of the items composing the user’s answer.
Rationale. When interacting with the system, the user’s input consist either of a single
answer from an undefined range of values or a single/multiple selection of item(s) from a
list of predefined options. In order to support these situations the research literature
recommands specific interaction objects depending on the considered interaction
modality. Thus, in GUIs a single input from a list of undefined options should be
realized in an entry field [John95], whereas multiple inputs should be specified in an entry
field and accumulated in a listbox [Boda94]. The same studies show that for predefined
values in a list of less then seven values, radio buttons should be used for simple
selection and check boxes for multiple selection, whereas for more than eight values,
single selection listbox objects are recommended for simple selection and multiple
selection listbox objects with accumulator for multiple selection. For VUIs the number
of help requests and errors increseases [Enge89] if more than four options are provided
[Goul87, Knol90] or even more than three according to [Deva91]. Moreover, when the
users are unfamiliar with the system, the number of options should be provided in order
to cue them not to respond too soon if uncertainty exists [Schu92].
Values. The possible values are:
. Simple: a single answer from an undefined range of values or the selection of a

single item from a list of predefined options:

e GUI: when asked to fill in the year of birth there is only one value that can be

selected (Figure 4-12).

114

4. A Transformational Method for Producing Multimodal User Interfaces

e VUL the vocal equivalent of the situation described above is:
System: “Which is your year of birth?”
User: “71980".

® Multiple: the selection of multiple items from a list of predefined options:
e GUI: when asked to specify the his/her hobbies, the user may select multiple
items (Figure 4-13).

e VUL The vocal equivalent of the situation described in above is:
System: “Which are your hobbies?”
User: “Sport and music.”

~Hobbies
[~ sport
¥ music
o Y dance
Year of birth 1980 1 u
Figure 4-12 Single answer in GUI Figure 4-13 Multiple answer in GUI

(10) Confirmation answer
Definition. It specifies whether the uset’s response if followed or not by an extra
confirmation question.
Rationale. Like humans, systems that attempt to understand user’s input make mistakes.
However, humans avoid misunderstandings by confirming doubtful input. MM systems
have historically been designed so that they either request confirmation or not at all
[McGe98]. If the system receives input that it finds uncertain, ambiguous or infeasible, or
it its effect might be profound, risky, costly or irreversible, it may want to verify its
interpretation of the command with the user. For instance, a system prepared to execute
the command “Format hard disk” should give the user a chance to change or correct the
command. Otherwise, the cost of such an error is task-dependent and can be
immesurable. [Blan006] argues that designers should use confirmations to ensure the
correctness of a high risk ireversible input.
Therefore, the system should be able to request confirmation of the user’s command, as
humans tend to do. Just like in human-to-human dialog, such confirmations are used to
achive common ground in HCI. Moreover, confirmations are an important way to
reduce miscommunication. In fact, the more likely miscommunication is, the more
frequently designers should introduce confirmations.
As MM Uls combine two or more interaction modalities, choosing the occurrence
moment of the confirmation is another issue. Confirmation could occur for each
modality or be delayed until the modalities have been fussioned. [McGe98] shows that
confirmation after fusion reduces the time to perform manipulation tasks with the UI,
making the interaction faster.
Values. Two values were identified:
= With confirmation: the system requests a confirmation of the previous answer from
the user:

115

4. A Transformational Method for Producing Multimodal User Interfaces

e GUI: when deleting system files a confirmation question is recommended in
order to verify the user’s decision (Figure 4-14).

e VUL
System: “Do you want to delete the file ‘configsys.exe’?”
User: “Yes”.
System: “Your answer was yes. Do you confirm?”.
User: “Yes”.

= Without confirmation: the system doesn’t require any further confirmation:
e GUI the specification of age in a booking flight system is not a critical

information and doesn’t require any confirmation (Figure 4-15).

e VUL
System: “What is your age?”
User: “277.

Browse | /configsys.exe 1|

Confirm delete file Delete dE

Are you sure you want
to delete the file ?

YES | NO | Age 27

Figure 4-14 Confirmation message in GUI Figure 4-15 Non-confirmed message in GUI

(11) Answer order

Definition. It specifies the order in which the users can convey the answers.

Rationale. [Pate97] introduces a formal specification of operators used to specify
temporal relationships among tasks independent of the modality employed to achive
them. Among these operators we identify the enabling operator according to which one
task enables a second one when it terminates. An order-independent operator is also
introduced as a binary operator with the following semantic: at the beginning both tasks
(T1 or T2) can be performed. However, as soon as the first action of task T1 (respective:
T2) has been carried out, the whole task T1 (respective: T2) has to be performed before
enabling the performance of task T2 (respective: T1). Such an operator is suitable when
tasks T1 and T2 have to be sequentially executed, without imposing any restriction over
which task to execute initialy.

In VUIs many factors must be considered when designing if the order in which the
information can be specified by the users is the same as the one requested by the
system’s prompts, but the most important thing is assessing the trade-off between
flexibility and performance. The more designers constrain what user can say to an
application, the less likely they are to encounter recognition errors [Java98]. On the other
hand, allowing users to enter information flexibily can often speed the interaction (if
recognition succeeds), feel more natural, and avoid forcing users to memorize
commands.

Values. Two design option values were identified:

116

4. A Transformational Method for Producing Multimodal User Interfaces

. Order dependent: the user has to convey the information in a predefined order:
e GUIL in Figure 4-16 the user has to fill in first the gender after which the
combobox for specifying the year of birth will be activated.
e VUL the user has to utter the information in a predefined order so as to be

recognized by the system:
System: “What are your gender and birth year?”
Uset: “T am male and 1 was born in 1980.”

. Order independent: the user has the flexibility of conveying the information not
necessarily considering the order in which it is requested by the system:
e GUIL in Figure 4-17 the user can specify the gender and the year of birth in any
order.
e VUL the user has the flexibility of uttering the answers in any order and the

system is in charge of mapping the answers to the correct location:
System: “What are your gender and birth year?”
Usert: “T was born in 1980 and 1 am male”.
System: “Your gender is male and you were born in 1980

Gender femal| Gender femal

Year of birth] Year of birth 1980 I

Figure 4-16 Order dependent answer in GUI Figure 4-17 Order independent answer in GUI

Hereafter we introduce a set of five design options that found their basis in the
ergonomic criteria for the evaluation of human-computer interfaces presented in
[Bast93]. After giving an insight into these criteria we abstracted a subset of them into
design options. The selected criteria apply better with respect to the development process
of ISs, while the rest of them refer to features of the resultant IS that can be checked
only at the end of the development process and consequently they do not represent an
interest for the current work. For instance, the explicit user action criterion refers to the
relationship between the computer processing and the actions of the users. Accordingly,
this relationship must be explicit, i.e. the computer must process only those actions
requested by the users and only when requested to do so. But these actions can be
identified only at run-time.

The subset of selected criteria is adapted for the development of MM Uls. Therefore, the
resultant values specify the interaction type in which the design option can be
concretized. Moreover, we associate to each value the corresponding CARE properties.
The first design option concerns the input modalities, whereas the last four refer to
different aspects of output modalities.

(12) Input

Definition. It specifies the modalities available to the user in order to provide
information to the system.

Rationale. The nature of the task influences the input modality (modalities) selected by
the users to perform them. Several researches demonstrated that tasks that are easy to
perform in one modality may be difficult or even imposible to achieve using other
modalities. For instance, [Meri06] shows that the vocal modality is mostly used in the

117

4. A Transformational Method for Producing Multimodal User Interfaces

case of a precise and short input data. [Lars06] provides a series of suggestions
concerning the input modalities that are more appropriate depending on the nature of
the tasks to achieve, the constraints of the physical device and the working environment
of the user.

Studies made on a set of four basic manipulation tasks (i.e., select objects, enter text,
enter symbols and enter sketches or illustrations) using three traditional input modalities
(i.e., vocal (voice), graphical (keyboard and mouse) and tactile (stylus pen)) reveal the
following observations: (1) object selection is easy with a pen or using voice to specify
the desired object, but more difficult with the keyboard; (2) for entering the text all the
modalities can be used but most users can speak and write easily; (3) entering
mathematical equations, special characters and signatures is easy with a pen, awkward
and time consuming with a mouse and most difficult with speech; (4) drawing simple
illustrations and maps is easy with a pen, awkward with a mouse and nearly impossible
with speech.

Some physical device constraints (e.g., size, shape, placement of the microphone, size of
display, size of keys in a keypad) could also influence the input modality to be employed
by the user. Therefore, the following suggestions are provided: (1) if user’s hands are
unavailable for use, then make speech available; (2) if user’s eyes are busy or unavailable,
then make speech available; (3) if the user is moving, then make speech available. In
addition, users might work in environments that may not be ideal for some input
modalities. The environment might be noisy or quite, light or dark, moving or stationary
with a variety of distractions and possible dangers. Therefore, two additional suggestions
are made: (4) if the user is in a noisy environment, then use graphical or tactile modality;
(5) if the user’s manual dexterity is impaired, then use speech.

We conclude that each input modality has its strengths and weakness. Consequently, a
useful and efficient MM UI has to use the appropriate modality for each input.

Values. The possible values are:

= Vocal (assignment).

. Graphical (assignment).

- Multimodal (equivalence, complementarity or redundancy).

(13) Simple output

Definition. It specifies the modalities available to the system in order to produce
information that will be further perceived by the user.

Rationale. In our thesis MM Uls consist of both vocal and graphical elements. There is
no absolute need for a one-to-one mapping between them. Some information is better
conveyed in vocal modality, other in graphical, but the majority of designers combine
both modalities in most cases [IBMO3b].

In general, welcome and introductory information can be well conveyed using voice to
catch the user’s attention as soon as the application starts. The elements containing brief
information (i.e., short instructions) are well suited for voice. For instance, in an e-mail
application that can read out loud the e-mail subject, users can individually choose to
read or listen to a particular e-mail rather than browsing each one.

Some information is not easy to present using voice, such as graphics, diagrams and
tables. These are better presented in visual format. If the designer wants to add voice to

118

4. A Transformational Method for Producing Multimodal User Interfaces

these visual elements, they need to give special consideration to the wording of the
speech by emphasizing the key information it depicts. For example, if the designer wants
to convey a pie chart using both graphical and vocal modalities, the application may say:
" when the chart is displayed.
Moreover, [Meri06] shows that the graphical modality is usually preferred by end-users

>

“The biggest segment is ... and the smallest segment is ...

while visualizing the output data as they have the possibility of re-reading them.

Since a MM application enables both vocal and graphical interaction, it is very important
to keep a consistent Sound, Look and Feel of the application. To promote consistency,
designers should use a consistent strategy for determining which information to present
vocally, which to present graphically, and which to present using both modalities.
Moreover, they should try to use the same terminology in both interfaces whenever
possible. For example, the system shouldn’t utter “Let’s get started”, while the visual
interface displays the “Welcome to the car rental system”. Synchronization is an issue
specific to the MM environment. Since MM applications are conveying information to
the user using both vocal and graphical modalities, they should be always synchronized
(IBMO3b]. The designer should avoid long paragraphs of information at one time
because users may easily lose their attention while listening and reading. They should
make paragraphs as brief as possible if they want to convey the information in both
modalities. If they still want to convey the information using a long paragraph, it is better
to convey it visually only so that users can choose to read it at their own speed.

Values. The possible values are:

= Vocal (assignment).

. Graphical (assignment).

- Multimodal (equivalence, complementarity or redundancy).

(14) Prompting

Definition. It specifies the modalities available to the system in order to lead the users to
take specific actions whether it is data entry or other tasks.

Rationale. Good prompting guides the users and saves them from learning a series of
commands [Bast93]. In addition, it allows them to know exactly the current modality,
where they are in the dialogue as well as the actions that resulted in that context.
Therefore, well designed prompts help users navigate in the application, reduce the
errors and ensure a successful interaction with the application.

Deciding on an appropriate prompt with respect to the employed modality depends
greatly on the content and context of the application [Java98]. If privacy is an issue, it is
probably better not to have the computer speak out loud. On the other hand, even a little
bit of spoken output can enable eyes-free interaction and can provide the user with the
sense of having a conversational partener rather than speaking to an inanimate object.
The reflexive principle states that users tend to respond in the same manner and employ
the same modality that they are prompted [Lars06]. Therefore, if the designers want to
urge users to respond vocally they should use vocal prompts, whereas for graphical
responses they should employ graphical prompts. In any case a MM prompt will provide
users with the flexibility of selecting the appropriate modality to use.

Values. The possible values are:

- Vocal (assignment).

119

4. A Transformational Method for Producing Multimodal User Interfaces

" Graphical (assignment).
- Multimodal (equivalence, complementarity or redundancy).

(15) Immediate Feedback

Definition. It specifies the modalities available to the systems in order to provide an
instantaneous reverse for user’s input.

Rationale. The system should respond to each user action and its response should be
explicitly conveyed in order to check the validity of the input [Cole85]. Feedback is also
necessary for users to interpret the responses of the system to their actions. The
feedback quality and rapidity are two important factors for the establishment of user’s
confidence and satisfaction as well as for the understanding of the dialog. These factors
will allow them to gain a better understanding of the system’s functioning. Therefore, the
provided responses should be fast, with appropriate and consistent timing according to
the considered input. The absence of feedback or a delayed feedback can be
disconcerting to the user which may suspect a system failure and may undertake
disruptive actions for the ongoing processes [Bast93].

Values. The possible values are:

= Vocal (assignment).

. Graphical (assignment).

- Multimodal (equivalence, complementarity or redundancy).

(16) Guidance
Definition. It specifies to the modalities available to the system in order to advise,
orient, inform, instruct and guide the users throughout their interactions with the system
thanks to Ul elements such as messages, alarms, labels, icons.
Rationale. A good guidance facilitates learning and use of a system by allowing users to
answer the following questions at any stage in the dialog [Cole85]: Where am I? (e,
what dialog state?), What can I do? (i.e., what options are available?), How did I get here?
(i.e., what sequence of actions brought me to this state?), Where can I go? (i.e., to what
other dialog states can I progress?), How do I get there? (i.e., what control options are
necessay to take me to the desired dialog state?). Ease of learning and ease of use that
follow good guidance lead to better performances and fewer errors [Bast93].
Values. The guidance is sub-divided in:
- Guidance for input: any guidance offered to the user in order to guide him with the
input. The possible values are:
e [Yocal sub-divided into: Acoustic (assignment) and Speech (assignment).
o Graphical sub-divided into:Textual (assignment) and lconic (assignment).
o Multimodal (equivalence, complementarity or redundancy).
For instance, a bell tone is an acoustic guidance which can be used to inform the
user that the system is ready for the user’s input.
. Guidance for immediate feedback: any guidance offered to the user in order to guide
him/her with the feedback:
o VVocal sub-divided into: Aconstic (assignment) and Speech (assignment).
o Graphical sub-divided into:Textual (assignment) and Iconic (assignment).
o Multimodal (equivalence, complementarity or redundancy).

120

4. A Transformational Method for Producing Multimodal User Interfaces

For instance, a percolating coffee pot is an acoustic guidance which can be used to

inform the user that the application system is busy processing.
In order to exemplify the last five design option values, we consider in Figure 4-18 a
design decision for a MM text input where the user has to provide his/her name
[Stan06]. The value of the prompt design option is multimodal as the system indicates in a
redundant manner the task to fulfill by employing two modalities: graphical modality (the
label Name) and vocal modality used by the system to invite the user to input his name
(1). The guidance for input has the type ionic and is composed of two elements (the
microphone icon and the keyboard icon) indicating the available interaction modalities.
User’s input has the type multimodal as it can be provided in an equivalent manner by
employing either the graphical modality (the user is typing his/her name in the text entry)
or the vocal modality (the user is uttering his name using the microphone (2)). The
guidance for feedback has the type zonic and is ensured by the loudspeaker icon, indicating
the vocal feedback. The immediate feedback of the system following the user’s input has the
type multimodal as it is expressed by means of two redundant modalities: graphical (the
result of users’ typing) and vocal (the system is uttering the result of the input recognition

(3)-

Prompt: multimodal Guidance for
__— (vocal + graphical) input: iconic
Please specify — ,/')|r Guidance for
your name l ~a N /—/ feedback: iconic
Name \R_[_‘_.J ___://, /
" Juan (@) O | Juan Gonzalez) &)
Gonzalez) Your answer was:
4. Juan Gonzalez
\ 4 A
_ Input: multimodal | \ Feedback:multimodal /
-~ (vocal + graphical) / ~ (graphical + vocal) —

Figure 4-18 A possible design decision for a multimodal text input

4.2.4 Design space in the context of Design Rationale approach

Design rational is an approach that supports several different alternative solutions for a
given issue along with their justification and evaluation. The main purpose of this
approach is to increase the quality of the designed ISs and their reusability for the
development of future systems.

Several design rationale definitions were proposed in the literature, among which we
adopted the one proposed in [Grub90]:

“A design rationale is an explanation of how and why an artifact, or some portion of it, is designed the
way it is. A design rationale is a description of the reasoning justifying the resulting design - how
Structures achieve functions, why particular structures are chosen over alternatives, what behavior is
expected under what operating conditions. In short, a design rationale explains the “why” of a design by
describing what the artifact is, what it is supposed to do and how it got to be designed that way.”

121

4. A Transformational Method for Producing Multimodal User Interfaces

The approach appears in the context of ISs development where most of the existing

methodologies (i.e., RUP, MERISE, OVID) suffer from a set of shortcomings [Laca05]:

- They do not allow to express the different explored design options, threfore it is
impossible to know if the designers considered different options or not.

- They do not allow to justify the design option decisions, therefore the designer
cannot argue their choices in a rational manner as the constraints that guided their
decisions during the development life cycle are partialy or totally forgot.

= They make it difficult to reuse the results of previuos solutions even if several
software engineering approaches (i.e., objects, components) tend to favour the
code reusability from one project to another. Indeed, the source code remains the
only reusable element whereas the other results obtained during the development
process are usually non reusable for future design solutions.

As a response to the above identified shortcomings, design rationale provides several

advantages [Laca05]:

- Allows to detect consistency and completeness issues early in the initial
development phases [Conk88].

. Allows clarifying the reasons provided by the designers and forcess them to argue
their design decisions. Consequently, this will contribute to an increased quality of
the final solution [Newm91].

= Forces designers to propose multiple solutions so that to enable the exploration of
different potential results.

- Allows to provide a qualitative solution. For instance, if we consider that solution
A is more suited then solutions B and C this does not mean that A is the best
solution ever. The existing methodologies do not allow to assess the final solution
and they provide it without being capable to state if it is a good, the best or the
worst solution. This is the key difference between the current methodolgies and the
design rationale approach. At the end, both propose a solution but only the design
rationale has the power to make explicit, justify and compare the final solutions
with the non adopted ones, while still keeping track of the design decision history.

In order to visualise the dependencies among problems and their potential future
solutions, a set of notations supporting design rationale approach are proposed in the
literature. Among them we selected QOC (Question, Option, Criteria) [Macl91] due to
its ease in generation and reading. It is a semi-formal notation represented as a diagram
(Figure 4-19), decomposed in three columns (i.e., one for each element - questions,
options, criteria) and the links between these elements. For each question (here, design
option) we associate several options (here, design option values) that are further assigned
to different criteria that favour (i.e., wide line) or not (i.e., dotted line) these options. The
adopted options are emphasized in a rectangle. In QOC a question can be divided in
sub-questions (e.g., question 2) in order to connect different diagrams. In addition,
arguments can be assigned to support the evaluation of the links between the options
and the criteria.

122

4. A Transformational Method for Producing Multimodal User Interfaces

Argument 1 Argument 2
Option 1 - <----— Critére 1
-~ Critére 4
Question 1 Option 2 Critére 2 <
-’ Crtére &
Option 3 P~ -—----—-- ™ Critére 3

Figure 4-19 QOC diagram structure

Hereafter, we present the QOC representations by employing the Team tool [Laca05] for
two design options composing our design space, whereas the rest of them are illustrated
in Appendix D.

We are well aware of the fact that the considered criteria are somewhere subjective.
However, we tried to decrease the subjectivity level by considering a set of proven
properties [Gram906] to which any information system should adhere as well as a set of
ergonomic criteria being experimentally assessed and successfully used to evaluate several
types of Uls [Bast97]. The decision in the favour of one option or another is based on
our previous experience with the design of Uls, but different options can be preffered if
the set of criteria is modified (i.e., new criteria are added or the current ones are not
considered important) depending on the context of use of the final solution.

Figure 4-20 presents the considered criteria for the Sub-task guidance design option. The
guided option was selected due to its strong support for all the criteria. For instance, a
good guidance facilitates learning the system and achieving the tasks by allowing users to
be aware at any time which are the possible actions to perform as well as their
consequences. Moreover, a good guidance leads to low number of errors and better
retention over time. In contras, the unguided option offers a weak support to the

ease of

guided [T S A
leam
\ase o e

achievemer

considered critetia.

Sub-task
guidance

] .
. o e rrar
o rate
-
e
-
-

unguided _ _ _ ase of
et human
retention

owert ..,

workload

Figure 4-20 QOC representation of the sub-task guidance design option

123

4. A Transformational Method for Producing Multimodal User Interfaces

Figure 4-21 illustrates the considered criteria for the Confirmation answer design option.
The with confirmation option was selected due to its strong support for error protection and
correction criteria. Indeed, a system is much more robust if it prevents possible user errors
such as accidental inputs and allows identifying them before validation rather then after.
In addition, following error detection, users should be able to make corrections directly
and immediately. However, the without confirmation option strongly supports a minimal
number of actions to perform which results in fastest task achievement.

with errar
onfirmati PlfPtF-'GtIDn

Confirmatio m

2rrar

ananer "
- ccarmection

without 5
confirmatior minimal
actions

Figure 4-21 QOC representation of the sub-task guidance design option

4.3 Specification of transformations

4.3.1 Selection of model-to-model transformational approach

Model-to-model transformation approaches were the subject of several recent research

works that tried to identify a mature foundation for specifying transformations between

models [Varr02, Mell03, Agra03]. The high number of works on model-to-model
transformation is mainly due to the Object Management Group (OMG) proposal on

MDA [Mill03]. Several techniques have been surveyed in the literature [Czar03, Mens06],

while the tools supporting them were analyzed in some works like [Medi07, Scha07].

Hereafter, we present the shortcomings of a couple of existing techniques identified in

[Stan08]:

- Imperative langnages: text-processing languages performing small text transformations
(e.g., Perl, Awk) cannot be considered to specify complex transformation systems
as they force the programmer to focus on very low-level syntactic details.

. Relational approaches: rely on declaration of mappings between source and target
element type along with the conditions in which a mapping must be initiated. Rela-
tional approaches are generally implemented using a logic-based programming lan-
guage and require a clear separation of the source and target models.

. XSL Transformations: is designed to specify transformations between different syn-
tactical types of XML specifications. There are two main shortcomings of XSLT
applied to achieve model-to-model transformations: (1) high complexity and lack
of concision when managing complex sets of transformations rules and (2) lack of

124

4. A Transformational Method for Producing Multimodal User Interfaces

abstraction; progressively constructing the target XML specification entails an in-
clusion, in transformation rules, of syntactic details relative to target specification.

. Common Warehouse Metamodel: is an OMG specification that provides a set of con-
cepts to describe model transformation grouped in transformation tasks, which are
further grouped in transformation activities. A control flow of transformation can
be defined between transformation tasks at this level. Even if transformations allow
a fine-grained mapping between source and target elements, this specification does
not provide us with a predefined language to specify the way elements are trans-
formed one into another.

After identifying the shortcomings of the above transformational approaches we propose

a transformational method based on graph transformation rules [Stan05] in order to

progressively move from the uppermost level (i.e., the Task and Domain Models) to

Abstract Model further refined into a more Concrete Model from which a Final User Interface is

generated (Figure 4-22).
/ ‘ Task & Domain Modem

Transformation
rules

Abstract Model

Transformation
rules

Concrete Model
\ ‘ Final Userlnterface/‘

Figure 4-22 Progressive application of rule-based transformations

Context of use

In the context of this research, we have selected the graph-based transformational
approach. Our decision is motivated by [Czar03] which defines a taxonomy for the
classification of several existing and proposed model transformation approaches. The
taxonomy is described with a features model that makes explicit the different design
choices for model transformations. Figure 4-23 traces the frontier of the features covered
by the selected approach:

125

4. A Transformational Method for Producing Multimodal User Interfaces

e ———r .

.
hY
[Transtormation Rules |

Legend: /
—@ Mandatory feature !
e Optional feature !

g:::}:AIiematiwe features f,’

-‘:Incluswe -OF Teahlles.-’ : /

K |
LHS/RHS | LHSIRHS S)miar:ilc Separation Y |

- / \
S \

Variables

o e, N S T e T e e T
1 //—_
Untyped | \SemanllcallyTyped | Patterns

~

o | T e

(‘nru"rﬁrih '\ | Lintyped |J\\\Q | Semantically Typed]
1 a =

! ——

~
\\‘t]\; Syntactically Typed ll
)
P)
AN
/ ———

Figure 4-23 Identification of transformation rule approach features

(1) Graph-based patterns. To ensure the progressive approach illustrated above,
UsiXML provides a Transformation Model (Section 3.3.6) containing a set of rules
that applies successive transformations to an initial representation. Transformations
are encoded as graph transformation rules performed on the involved models
expressed in their graph equivalent (Requirement 6. Ontological homogeneity). A
set of graph transformation rules, known in the literature as graph rewriting rules, gathered
along with the graph on which they apply (called host graph) define a graph grammar.
The set of graph transformation rules are organized in a transformation catalog (Figure
4-24). The rules in a transformation catalog are structured in development steps. For
instance, transforming a Task Model into an Abstract Model or an Abstract Model into
a Concrete Model are two examples of development sub-steps. The development
steps are further decomposed into development sub-steps. A development sub-step is
realized by a unique fransformation system and a transformation system is realized by a
set of graph transformation rules.

Transformation catalog
Development | isComposedOf | Dayelopment |BRealizedBy Transformation |isCompoesedOf Transformation
step 1.n sub-step 1 1 system 1 1.n rule

Figure 4-24 Structure of a transformation catalog

-

126

4. A Transformational Method for Producing Multimodal User Interfaces

(2) LHS/RHS. The structure of the transformation rules identified in the taxonomy is
composed of the couple (LHS, RHS) which ensures a pattern matching that selects
a sub-graph in a graph structure and applies to this sub-graph any type of
transformation (e.g., adding, deleting or modifying a node or an edge). Our
approach considers conditional transformation rules so that a third graph (i.e., the
NAC) is added to the initial structure. Thus, a transformation rule is defined by the
graph triplet:
| Transformation Rule = (NAC, LHS, RHS) |

where:

o LHS (Left Hand Side) of the rule: expresses a graph pattern that, if it matches
the host graph, will be modified to result in another graph called resultant

graph. A LHS may be seen as a condition under which a transformation rule is
applicable.

o RHS' (Right Hand Side) of the rule: is the graph that will replace the LHS in the
host graph.

o NAC (Negative Application Condition) of the rule: expresses a pre-condition that
have to hold false before trying to match LHS into the host graph. Several
NACs may be associated to a rule.

Figure 4-25 illustrates how a transformation system is applied on G, where G is the

graph representation of the initial UsiXML specification. The application of the

rule implies several steps:

(1) Find an occurrence (called match) of LHS into G. If several occurrences are

identified, one of it is chooses non-deterministically.

(2) Check that NAC does not match into G. If there is a match then skip to

another occurrence of LHS.

(3) Replace LHS by RHS.
G is consequently transformed into G’ (the resultant UsiXML specification). All
elements of G that are not covered by the match are left unchanged.

-

c———————— &

Initial USXML Resuftant UsiXmL
specification specification -
U Match Co-matches

match

NAC&LHSE —— RHS

Transformation Rule 1

Transformation System
A_

| Transformation Rule 2

K | Transformation Rule N

Figure 4-25 Characterization of transformation in UsiXML

(3) Syntactically Typed Patterns. Represent patterns that are associated with meta-
model elements whose instances it can hold. In our case, the typed graphs allow
classifying nodes and edges by attaching types to them. Attaching several nodes (or

127

4. A Transformational Method for Producing Multimodal User Interfaces

edges) to the same types indicates a commonality in terms of properties between
these nodes (or edges). Figure 4-26 illustrates the correspondence between, on one
hand, node and edge types at the model level and, on the other hand, node and
edge defined at the meta-model level.

playsAgainst sofType
. isComposedOf 0. Player
] il Te;am 4 A "[Tnteger: salary Meta-model
J R I)
- Thierry Henry:
' _|Arsenal London : eZ:isComposedOf > Player
Team salary=100.000-}
Instance-model
el:playshgainst | £ ¢ Barcelona : Roglaldlnho:
Team ed:isComposedOf ERET
salary=200.000-1

Figure 4-26 Syntactically typed patterns and variables

(4) Syntactically Typed Variables. Similar to patterns, syntactically typed variables
are variables that are associated with meta-model elements whose instances it can
hold. Figure 4-26 shows the definition of the type of sa/ary variable which is
instantiated in the lower level with the values of the salaries for the two players.

(5) Graphical concrete syntax of the patterns. The graphical concrete syntax of the
transformation rules is based on the graphical formalism employed by Attributed
Graph Grammar (AGG) environment, a generic tool for specifying and executing
graph transformations [Ehri99]. Figure 4-27 illustrates the graphical notations for:
nodes, edges, node and edge types and node and edge attribute values.

NAC LHS RHS

Node Edg\e

5:graphicalAdjancency
1:graphicalContainer 2.graphicalContainer

graphicalRelajonship
type="graphica|Transitior’:"
transitionType= activate”,
4:graphicalContainment !
graphicalRelationship

§:graphicalAdjancency
*«_ |1:araphicalContainer

2:graphicalContainer

graphicalRglationship
type="graphicalTransition”
transitionType="activate"

S:graphicalAdjancency

1:graphicalContainer I—D-| 2:graphicalContainer

type graphicalTransition” "Wap"i‘am\c"’“ai“mgm 4:graphicalChqtainment
trangitionType="deactivate" ¥ J.graphicalindividualComponent
3 qtaphncallndmdualCompoLnent :::;:':f‘;w type="graphicalTransition™
type=button 0 transitionType=*deactivate”
name="NEXT" -~ ke
i i J:graphicallindividualComponent
; Y ’,—’ L type=button
' \ " name="NEXT"
Node attribute Nod Edgetype Cdgeattribute
ode type (attribute=“value”)

(attribute=“value”)

Figure 4-27 Graphical concrete syntax of the patterns

Figure 4-28 decribes one of the rules employed in the transformation from the Task
Model to the Abstract Model: for each task in the Task Model (see LHS) create an AIC in
which it will be executed (see RHS) unless the task is not already executed into an AIC
(NAC). In order to map the corresponding elements of the NAC, LHS and RHS of a

128

4. A Transformational Method for Producing Multimodal User Interfaces

rule, the graph formalism uses numbers in front of mapped nodes and edges (e.g., task 1
described in LHS cortresponds to task 1 from NAC and RHS).

NAC LHS RHS

isExetutedin
1task

abstractindividualComponent

abstractindividualComponent

()

)

®)

©)

Figure 4-28 From Task Model to Abstract Model

Textual concrete syntax of the patterns. The textual concrete syntax of the rules
is embedded in UsiXML. This textual syntax allows storing rules in an XML-based
format. Figure 4-29 offers an example of the equivalent textual syntax of the rule
illustrated in Figure 4-28.

<transformationRule id="Rule5-4" name="Rule1_from_task to abstract">
<nac>
<task ruleSpecificld="N1"/>
<abstractindividualComponent ruleSpecificld="N2"/>
<isExecutedIn>
<source sourceld="N1"/>
<target targetld="N2"/>
</isExecutedIn>
</nac>
<lhs>
<task ruleSpecificld="L1"/>
</lhs>
<rhs>
<task ruleSpecificld="R1"/>
<abstractindividualComponent ruleSpecificld="R2" name="x"/>
<isExecutedIn>
<source sourceld="R1"/>
<target targetld="R2"/>
</isExecutedIn>
</rhs>
<ruleMapping sourceld="L1" targetld="N1"/>
<ruleMapping sourceld="L1" targetld="R1"/>
</transformationRule>

Figure 4-29 Textual syntax for expressing transformation rules

Declarative executable logic. Our graph grammars are based on formally defined
execution semantics and have a declarative logic as they are described by graph
patterns expressions.

LHS/RHS Syntactic Separation. Our implementation of the transformation
rules makes clear distinction between the three components of a rule. Thus, the
rule syntax (Figure 4-29) specifically marks the LHS, RHS and NAC elements.
Bidirectionality. Bidirectionality is achieved by defining two separate
complementary unidirectional rules, one for each direction. [Limb04b] offers
examples of forward and reverse engineering processes where transformation rules
where designed to move forward and backward between different Ul models.

129

4. A Transformational Method for Producing Multimodal User Interfaces

4.3.2 Application strategy of transformation rules

The application strategy of the transformation rules is defined as the order in which they
are applied to the intial graph [Limb04b]. This could be: concurrent, in an order
independent manner or in a controlled sequential way. Two important issues have to be
taken into consideration when deciding the application strategy: confluence and termination.
The confluence property refers to the ability of producing a unique resultant graph, thus
raising the problem of the rule determinism. Parallel independent rules were shown to
ensure the confluent property [Lowe93]. Moreover, the property can be proved
intuitively if the transformation rules do not interfere one which each other, i.e. no rule
deletes or introduces nodes that are needed by another one to match. But, in the current
thesis the intrinsic nature of the process applied to an intial specification model
determines us to we apply transformation rules that realize an incremental consolidation
of it. In most cases, rules are inter-dependent as they rely on the information generated
by the application of a previous rule. Therefore, in order to ensure the confluence
property, we propose a special technique called Programmed Graph Rewriing [Schu97].
This technique uses graph rewriting rules as process units that may be composed
arrbitrarly using a set of pre-defined operators (e.g., sequences, parallel sequences, loops,
tests) so as to obtain a desired algorithmic behaviour.

Our application strategy is presented in Figure 4-30. Once a development step is
externally started, the first transformation system is executed. When it terminates, the
second one is applied and so forth until the execution of the last transformation systems.
Within the transformation system itself the transformation rules are applied following the
same logic. The placement of the transformation rules is determined by the function
played by each one in the corresponding development step, sub-step and transformation
system.

’\, Development Step a

Transformation Transformation Transformation Transformation
System 1 System 2 System ... System n

—> : when source terminates apply target
@—» : execute development step

Figure 4-30 The application strategy of transformation rules

The termination property is satisfied if a transformation rules doesn’t find any matches in
the resultant graph. Consequently, a transformation system is terminated if each rule
composing it is terminated. A development sub-step terminates if each of its

130

4. A Transformational Method for Producing Multimodal User Interfaces

transformation system terminates. A development step terminates if each of its sub-steps
terminates.

Note that the problem of infinite looping may arise due to the non-deleting character of
the rules. This issue is solved by replicating a part of the RHS in the NAC.

4.3.3 Shortcomings of the existing graph-based transformational approaches

By observing the current solutions that adopt a graph-based transformationanal approach

for the model driven engineering of MM UI we have identified a list of shortcomings:

. Many transformation rules share some common parts either in the NAC, LHS or
RHS and only slightly differ from one rule to another. Consequently, wany rules re-
peat common parts without any connection between them and without factoring them
out. Thus, many rules duplicate some significant portions of their NAC, LHS, and
RHS.

= Due to this repetition, the transformation system that consists of the whole sez of
transformation rules easily becomes huge and no longer scalable. In addition, a static analysis
of common portions of rules becomes a challenging task.

. The designer responsible for writing the rules to be fired by the transformation en-
gine may only have limited means, formal or informal, to control the consistency of
those rules that are similar, thus increasing #he risk _for human error and redundancy.

= The scalability of a transformation set for multi-target systems largely depends on its
structure: if transformation rules are properly organized, then adding, removing or
modifying a rule remains acceptable. But when this structure is poot, it is almost
impossible to add new rules for another target without affecting significantly the
rest of the rules in the same set.

4.3.4 Expanded model-to-model transformational approach

In the research literature the notion of co/or is used as a feature attached to tokens in High
level Petri nets and used to distinguish between different data types carried throughout
the network [Jens98]. In [Ehri99], the notion of color is currently defined at the level of
type graph as a particular feature of the labels and enables to assign colors to nodes and
edges. This imposes a set of restrictions as the color does not have any specific semantic
meaning that allows manipulating and reasoning about graph transformations. Moreover,
all nodes/edges of the same type must have the same color. Therefore, in order to cope
with the shortcomings identified above, we expand the existing model-based approach by
introducing the co/or as an explicit feature associated to the involved models that will add
semantic to the transformation rules manipulating the elements of these models [Stan08].
The advantage of our contribution lies in the reusability, partially or entirely, of the
transformation rules for developing Uls for target platforms that enable different
interaction modalities than those previously available on the source platform.

4.3.4.a.1 Colored UsiXML concepts

The notion of color will make a distinction (Table 4-1) between the concepts
corresponding to modality independent models (i.e., the Task, Domain, Mapping and

131

4. A Transformational Method for Producing Multimodal User Interfaces

Abstract Models) and those describing the modality dependent aspects (i.e., the Concrete
Model):

The concepts of the Task, Domain, Abstract and Mapping Models are represented
in black. The selection was based on the analogy between the neutral character of
the color and the neutral character of the above models with respect to the
modality.

The monomodal aspects of the Concrete Model consider a particular color for each
modality: red for graphical modality and blue for vocal modality. Thus, the
graphical concepts are represented in red, whereas the vocal concepts in blue. The
relationships that reflect the monomodal aspects of the Concrete Model are said to
be monocolored as they inherit their color from the common color of the source
and target elements. The association of a particular color for each considered
modality provides flexibility when extending the Concrete Model with concepts
belonging to eventually newly introduced modalities as they can be associated to
colors that haven’t been used so far.

The MM aspects of the Concrete Model consider the c#DialogControl and synchroni-
zation relationships. These relationships are said to be multicolored as they inherit
their color from the source element. For instance, a cuiDialogControl relationship
that connects two graphical elements will be red, whereas its color becomes blue if
the relationship connects two vocal elements. The synchronization relationship has
associated the blue color as the source element is always a vocal element, but one
can imagine the synchronization between an element belonging to a newly intro-
duced modality (e.g., tactile) and a vocal element. In this case the color of the rela-
tionship will be the color associated to the new modality.

UsiXML
Models

Elements Relationships Associated

Concepts
p color

Modality Modality
dependent independent

Task

decomposition
task - Black
temporal

Domain domainClass domainRelationship - Black

Abstract abstractContainment

AIO abstractAdjacency - Black
auiDialogControl

Mapping manipulates

triggers

- updates - Black

isExecutedIn
isReifiedBy

Concrete

graphicalContainment
GIO graphical Adjacency - Red

graphicalTransition

Monomod
al
Graphical

132

4. A Transformational Method for Producing Multimodal User Interfaces

vocalContainmemnt
— vocalAdjacency
% VIO o - Blue
8 vocalTransition
>
The
relationship

cuiDialogControl))
- inherits the

aspects

synchronization
color of the

Multimodal

source object

Table 4-1 Color associated to the UsiXML model concepts

4.3.4.a.2 Colored graphs

In [Limb04b] the graph structure (see Definitionl) used as an abstract syntax for defining
the underlying formalism of a model-to-model transformational approach is
progressively consolidated into a single graph category called (Identified, Labeled,
Constrained, Typed)-Graph.

Definition 1. A graph g is defined by a quadruple (V, E, source,, target,) such that:

1. Vis a finite set of vertices

2. Eis a finite set of edges

3. source,: E — V, is an injective function that assigns a source vertex to every edge
from E;

4. target,: E — V, is an injective function that assigns a target vertex to every edge
from E.

Hereafter we extend this category with the concept of colored graph (Definition 2), as a
graph in which a color is assigned to all its components.

Definition 2. Let COL= (NodeColor, EdgeColor) be a pair of disjoint and finite sets

of predefined colors. g is said to be a (COL)-Graph iff g is a pair (g, Col) such that:

1. gisa graph (see definition 1)

2. Col is a pair of total functions attaching a color to each node and edge of the
graph: Col = (Col,, Col.), where Col,: V — NodeColor and Col.: E — EdgeColor

Depending on the level of abstraction on which it is defined, the properties of these
functions are different. If the graph structure is exploited to describe the model level
(Table 4-1), the color functions (i.e., Col, and Col,) are surjective (i.e., each color is
assigned to a graph component). If the graph structure is exploited to describe the
instance level then different graph components may share the same color. Depending on
the number of non-neutral color (i.e., different of black color) with respect to the
interaction modality, the (COL)-Graph can be specialized into:
= Monocolored (Definition 3): the graph has at most one color in the codomain of Col,
that is different of the black color. This implies that the cardinality of the image of
Col, could be: 0 if the graph has a single vertex, 1 if the edge describes the mapping
relationship between an abstract and a concrete element, or 2 if the mapping ap-
plies over two concrete elements.

133

4. A Transformational Method for Producing Multimodal User Interfaces

Definition 3. g is said to be a (MONOCOL)-Graph iff:

1. gisa(COL)-Graph

2. 1L |Im(Col,)|£2

3. 0| Im(Cole)|S2

4. d!c eNodeColor\{black}

Multicolored (Definition4): the graph has at least two colors in the codomain of Col,
that are different one of each other and different of the black color.

Definition 4. g is said to be a (MULTICOL)-Graph iff:
1. gisa (COL)-Graph

2. |Im(Coly)|22

3. dcl, c2 €NodeColor\{black} | cl # c2

The graph category identified in [Limb04b] as (I, L, C, TY)-Graph is consolidated with
the newly introduced feature into a new single graph category called (Identified, Labeled,
Constrained, Typed, Colored)-Graph, in short (I, L, C, TY, COL)-Graph.

Definition 5. g is an (Identified, Labeled, Constrained, Typed, Colored)-Graph iff:
1. gis a graph (Definition 1)

g is an identified graph

g is a labeled graph

g is a constrained graph

g is a typed graph

g is a colored graph (Definition 2)

oA N

The advantage of this new consolidation relies on its modularity feature which allows to
form other graph categories by combining the features “a la carte”.

4.3.4.a.3 Operations over colored graphs

The previously introduced notions allow us to define two operations over colored

graphs:

. Merging operation (Definition 6): a (MULTICOL)-Graph results by merging two
(COL)-Graphs (g, h). The color functions (Col, and Col,) of these graphs are re-
strictions of the colored functions (Col,,, Col.,) of the resultant graph r to the
domain values of the initial graphs, respectively.

Definition 6. Let g and h be two (COL)-Graphs defined by (V,, E,, source,, target,) and
(V1, En, sourcey, targety), respectively. The result of the merging operation defined be-
tween g and h (g M| h=r) is a graph r, where:
1. risa (MULTICOL)-Graph
2. Colyn:Vg U Vi — NodeColor, |J NodeColory,

Cole:Eg U En — EdgeColor, |J EdgeColory,

Colyp|vg(v) = Colyg) (V) Colyy|vn(v) = Col v (V)

Colemeg(€) = Col ¢(g) (€) Colem|en(e) = Col ¢m) (€)

- Splitting operation (Definition 7): a (MONOCOL)-Graph g results by splitting a
(MULTICOL)-Graph r upon one color from the set of vertices colors different

134

4. A Transformational Method for Producing Multimodal User Interfaces

from black. The color functions (Col,, Col,,) of the resultant graph are restric-
tions of the colored functions (Col ,, and Col) to the domain values of the ini-
tial graph, respectively.

Definition 7. Let r be a (MULTICOL)-Graph defined by (V,, E,, source;, target,) and
¢ a color where ¢ € NodeColor; \ {black}. The result of the splitting operation of the
graph r upon the color ¢ (r ;= g) is a graph g defined by (V,, E,, source,, target,),
where:

1. gisan (MONOCOL)-Graph, with:

NodeColory= {c} U {black} N NodeColor;

EdgeColor, = {c} U {black} M EdgeColor;
2. Vy={v|Coly(v) € NodeColor,}
E, ={e | Coly(e) € EdgeColor,}
source,(€) = sourcey|gg(€), targety(e) = target,|g,q(€)
3. Col yg): Vg — NodeColor,, Col ¢): E; — EdgeColor,
Col y(g) (V) = Col yr)|vg (v) and Col () (€) = Col ¢(n)|Ee (€)

4.3.4.a.4 Colored transformation rules

The integration of the color as a new graph feature of our graph-based transformational

approach allows the introduction of the notion of colored transformation rule ((COL)-TR),

which can be of two types:

- Monocolored transformation rule (Definition 8): is a transformation rule in which at least
one of the components of the rule is a (MONOCOL)-Graph.

Definition 8. Let TR be a transformation rule, with TR=(NAC, LHS, RHS).
TR is said to be (MONOCOL)-TR iff 3 g€ {NAC, LHS, RHS}, where g is a
(MONOCOL)-Graph.

The monocolored transformation rules are employed in the generation of

monomodal Uls. The colors are given by the colors of the concrete concepts
involved in the transformation rule (Table 4-1).

. Multicolored transformation rule (Definition 9): is a transformation rule in which at least
one of the components of the rule is a (MULTICOL)-Graph.

Definition 9. Let TR be a transformation rule, with TR= (NAC, LHS, RHS).
TR is said to be (MULTICOL)-TR iff 3 g€ {NAC, LHS, RHS}, where g is a
(MULTICOL)-Graph.

The multicolored transformation rules are employed in the generation of MM Uls. The

colors are given by the colors of the concrete concepts involved in the transformation

rule (Table 4-1).

By analogy with the merging and splitting operations specified over graphs, we define

hereafter the same operations over transformation rules.

- Merging two or more different colored transformation rules enables to generate
multicolor rules (Definition 10). This operation is the cornerstone of the factoring
out activity.

Definition 10. Let TR, and TR; be two (COL)-TRs, with TR;= (NAC;, LHS;,
RHS;) and TR,= (NAC,, LHS,, RHS;). The result of the merging operation defined
between TR and TR, (TR; |M| TR, = TRj) is a transformation rule TR3;= (NAC;,
LHS;, RHS;), where:

135

4. A Transformational Method for Producing Multimodal User Interfaces

1. TRjis a (MULTICOL)-TR
2. NACs;=NAC,; |M/NAC,

3. LHS;=LHS, M| LHS,

4. RHS;=RHS; M/ RHS,

If NAC1 and NAC2 share a common black element, they are merged in order to

generate the NAC3 of the resultant rule. If not, the two NACs will be aggregated in the

resultant rule giving rise to two NACs. Splitting a multicolored transformation rule upon

one color enables the designer to generate a monocolored rule.

= Splitting a multicolored transformation rule (Definition 11) upon a color enables the
designer to generate a monocolored transformation rule.

Definition 11. Let TR,= (NAC;, LHS;, RHS,) be a (MULTICOL)-TR and

c € {NodeColornac U NodeColor gs U NodeColorrgs}\ {black}. The result of the
splitting operation of the transformation rule TR; upon the color ¢ (TR ;;=TR») is a
transformation rule TR,= (NAC,, LHS,, RHS,), where:

1. TR,isa (MONOCOL)-TR

2. NACz = NAC1 [c]

3. LHSZ = LHSl [c]

4. RHSz = RHS] [c]

As a result of the Definitions 10 and 11, we reached the following conclusion: A4
multicolored transformation rule is the result of the merging operation applied over all its splittings upon
each non-neutral color of the nodes.

4.3.4.a.5 Colored transformation rules at a glance

Thanks to the introduction of colors, the total amount of rules to be specified by the de-
signer is significantly reduced. For a particular widget of a Ul involving two interaction
modalities (e.g., graphical and vocal), two monocolored rules had to be applied so far.
These two rules can now be merged into a single multicolored rule that can be treated as
follows: (1) if the designer needs to ensure both interaction modalities the multicolored
rule has to be applied, (2) if the designer needs to ensure only one type of interaction
(i.e., graphical or vocal) the rule has to be split upon the color assigned to the considered
interaction. The flexibility of the colored rules is illustrated hereafter based on two exam-
ples that show its benefits. The first set of transformation rules are used to generate
graphical and/or vocal containers. Figure 4-28 (a) presents the monocolored rule that is
the result of the splitting operation applied over the rule in Figure 4-28 (c) upon the red
color. It generates groupBox elements that embed an owtputlext (i.e., a label) and an zmage-
Component guiding the user with the available interactions to use (i.e., mouse and key-
board). If the designer wants to ensure the same functionality but enabling just the vocal
interaction, the rule illustrated in Figure 4-28 (b) has to be executed. It is the result of the
splitting operation applied over the rule in Figure 4-28 (c) upon the blue color and is
used to generate voca/Group elements. On the other hand if the designer wants to ensure a
MM interaction the rules in Figure 4-28 (a) and (b) have to be merged. The resultant rule
is illustrated in Figure 4-28 (c) and generates both groupBox and voca/Menu elements.

136

4. A Transformational Method for Producing Multimodal User Interfaces

B f abstractContainment - abstractContainment E me
|2.abst_ractlndlwdualComponent| . _|2:abstractlndividualComponent| - iaarizt:rsctlndmuualc:omponem
|name—v 1:abstractContainer '|name-y - R

isRe|fiedBy isReifiedBy isComﬁosedOf isComposedof
graphicalContainer ~ontainer
S:fIaCEt _ graphicalContainmen xsi_type=inpul
xsi_type=input actionType=select

(@)

actionType=select
actionltem=element

graphicalCgntainment

araphicalAdjacency

actiontem=element

“mraghicalContainment

~h

alComponent

it
mouse_icon

2:abstractindividualComponent
name=y

isReffiedBy

vocalContainer

(b)

abstractContainment

1:ahstractContainer

isReifigdBy

ZiabstractindividualComponent
names=y

isComposedOr

5facet

4wocalContainer
xsi_type=vocalForm

xsi_type=sinput
actionType=selact
actiontem=element

abstractContainmer

J2.abslracIIndwiduaICumpUnem|

1:abstractContainer

>
[name=y

isReif|edBy

vocalContainment

isReLﬂ}d’éy

vocalContainer

4vocalContainer
¥si_type=vocalForm

¥si_type=vocalMenu
currentvalue=:

isCpmposedOf

3

ffacet
xsi_type=input
actionType=select
actionltem=element

2:abstractindividualComponent
name=y

graphicalContainer

vocalContainer

(©)

abstractCantainment

1:abstractContainer

isReifiedBy

8vocalContainer
xsi_type=vocalForm

» 2:abstractindividualComponent

name=y

isComposedOf

Afacet
xsi_type=input
actionType=select
actionltem=element

abstractContainment {2

abstractindividualComponent

1:abstractContainer

name=y
IsReifddBy 1sReifiedBy
isReifizdB
84 Container| [B¥ocalContainer 2 isRe 2dBy
- — | [xsi_type=vocalForm
L = isComposedOf
g|'aph\ca¢‘c-mainn19m £ tainment

vocalContainer
xsi_type=vocallenu | [¥SI_type=input
— currentyalug=x

4facet

actionType=select

glaphlcalﬂt\omamlnim

jalComponent
ext

actionltem=element

—
graphfeadContainment
a\‘_‘ -

vidualComponent

graphicalAdjacency

nt

_mouse_icon

Figure 4-31 Monocolored transformation rule generating: (a) groupBox elements; (b) vocalMenu

4.3.4.a.6 Benefits of colored transformation rules

elements; (c) groupBoxes and vocalMenu elements

We consider that our contribution could be applied in any area where factorization could
be a solution for rules with a significant portion of the NAC, LHS or RHS that is dupli-
cated. Therefore, the following benefits could be obtained:
. Reduced number of rules to be specified and applied: thanks to the introduction of the

colors, each pair of graphical/vocal rules can be merged into a single one, reducing

thus the number of rules to apply to half. In addition, as more interaction types are
considered, the more benefit will be gained thanks to the multicolored

transformation rules

- High scalability: if the need for a new modality arise (e.g., tactile modality) a new

monocolored transformation rule that is duplicating the common part of its modal-
ity counterparts rules (i.e., the abstract elements represented in black) had to be de-
veloped. Thanks to the colored transformation rules, the development of a new

rule, and thus of the duplicating elements, is avoided. A simple integration of the

new concepts assigned to the introduced modality and their mapping to the ab-

stract elements in the already existing multicolored rule is sufficient to achieve a di-

rect modification. As a result, a new multicolored rule is obtained which can be ap-

plied in the generation of MM Uls considering graphical vocal and tactile interac-

tions.

137

4. A Transformational Method for Producing Multimodal User Interfaces

4.3.5 Transformation rule catalog

4.3.5.a Structure of the transformation rule catalog

In the current dissertation, the introduced design space is supported by a
transformational approach that applies transformational rules over the involved models.
Based on a theoretical analysis of the development sub-steps previously illustrated and
due to their great number, the transformation rules were gathered in a Transformation
Rule Catalog (Appendix B) in order to offer a complete and systematic arrangement with
the following structure:

L. Transformation rules that support design options: for each design option value we provide
the rule that supports the generation of the abstract elements. Further we provide the
multicolored rule that concretizes these elements into graphical and vocal elements.
Depending on the type of interaction to ensure, the multicolored rule ca be directly
aplied (i.e., for MM interaction) or splitted upon the color assigned to the desired
modality

II. _Additional transformation rules: is composed of a set of transformation rules that
provides supplementary support for the sub-steps that are not coverd, totally or partially
by the design space (e.g., Sub-step: Transformation rules for the selection of AICs).

4.3.5.b Design space coverage

Based on the draw up Transformation Rule Catalog we identify hereafter the mappings
between each design value and the transformation rule(s) supporting it. Thus, Figures 4-
29 to 4-35 specify the corresponding rule number in the catalog (i.e., R). Figure 4-35
describes the set of design options for which a stylistics was not required and considers
the following notations: V=Vocal, G=Graphical, MM=Multimodal, T=Textual,
I=Iconic, A=Acoustic, S=Speech.

‘ Sub-task presentation ‘

R1 R3.R4

Figure 4-32 Transformation rules supporting sub-task presentation

138

4. A Transformational Method for Producing Multimodal User Interfaces

syoalqo |esiydea
uj ujol13ez|38I2U0)

]
|
[
[
P
s
-]
' o
| ™
[T
=]
o>
g
i e
-]
e
1, @
[|
A
(] E
(]
T
[=
i o
1
X
ordered
list

- | Sl - -~ ™
o (] Sy 3 =
g * [ls- !
£z i | 111
< ¢ = g 113
. 128G /3 5 % 3
) 8 K gE .
............................ = R N nin] 5 g
|| J | -
|| : oo o o I (] w s
g------ g------ I iy | 3 -twum g &
11301 B L1 { (3
i ~.
2 g 25 32 | o g
& T 6 T & g ~| 8 |-
H M H M H R Im
?J.\M?J.nﬁ B 2 m_
||||||||||||||||||||||||||||| “ =
|
|
|

NEXT |
MM'

Figure 4-34 Transformation rules supporting sub-task navigation values for graphical and vocal

4
[}
[+
%
0
3
[}
Sy
5]
=]
5]
=
3]
N
=
5]
Bl
Q
g
9]
Q
p—
[+
Q
vt
=
]
3=
&n
s °
=] —_—
AT s 3 3§ § 8 -
/I e (I (I s
% m o o = m > .._..m
> g _m
| v .8 s
= -
o - = < oy
= — - o
=2 o a0
28 3 g § e i S - B
@ @ i ‘0 ®» o i []
E v o boem 'y | o
o 8 = i | g2 =
. o & P g w A
- m o [™, 1y
@ 5 P B I..J_? —
i @ 2 m ey
3 k3 R A
g [- -
g “q--l_mu....u. et iy m
i
g Ly £ el =
< _-m_ =] _.._..__“ — o
m [S, ™, (. = Y
i = rE L | e = w
| o~ = it A 1y g : @ o
| - 7] _D _ﬂ@ (i “_ =
| -] o w L= it ittt — ._ Mu
i E 8 &]
il A1 H [4
i I 4 4 4 j 2 R S
AW 533 o I !
_ _ N R oy
roTTen rotwT o roTen L BN B E) mmm Iy m“
S JERENE SRR 1 [E | - S 5 v 4 I
i . “ i = imimemmimmm It t---» BB = [T iy
o] TR] i i &0 i _mum 1
- S I A -3 gl =/ 18 H 3 = Py Lt i
Qg Qg Qg ANV 4 & - A |
IIIII b [, | | L) 0

 J

¥

concretization
139

4. A Transformational Method for Producing Multimodal User Interfaces

o O O
O subtask1 e : 'O Subtask1 |
@i Subtask 1 @
- - i

R, R32, R33 R36;

”Subfmr Sub:ask"l—
] ————

_¢ |

; i
Sbtask 1] Subtask 2| Sub-task 3}

Sub-task
Sub-task

& |

Subtask 3 L‘
e

Figure 4-35 Transformation rules supporting navigation type values for graphical and vocal

concretization
i : e
e ! 9] o
| {¥Sub-task 1! i @¥'subtask 1| : ' sub-task 1!
i 1
D
—.dj e p— _.(ﬂ
___________ | (3¢'Sub-task 2| T
{i¥Sub-task 2 [{3¢Sub-task 2
\TIIIIIziiio
dj | ji¥'subtask 3| (ﬂ
_____ == i___________: —
A¥Sub-task 3 dj ¢'Sub-task 3
R —
i N ! s
------ T ' R B

Subtask T | I:Suh-taslr‘l—
i
Subtask2 |
Subtask? |
i

Cardinality

T.

I:Suh-taslrs— &

Subtask 3 |
M 4|

iO 4 Subtask 1
r
| 37 asend data 7

27 “Send data ?*
P “Yes /Ho”

2 subtask 3 !
27 “Send data 7
AP “Yes /Ho”

T
4

8|

Figure 4-36 Transformation rules supporting control type values for graphical and vocal

concretization

140

4. A Transformational Method for Producing Multimodal User Interfaces

5| 48

Figure 4-37 Transformation rules supporting navigation and control type values for graphical and

vocal concretization

CSinpie) Clnuive

R53 R54
Sub-task Answer Confirmation Answer
guidance cardinality answer order

Femainig set of design options

Immediate
feedback

Immediate

S Y feedhack

Figure 4-38 Transformation rules supporting the remaining set of design options for which a

stylistics was not assigned

4.4 The four steps of the transformational approach

Our transformational approach involves a method which consists of a forward
engineering process composed of four steps [Stan05] illustrated in Figure 4-39.

141

4. A Transformational Method for Producing Multimodal User Interfaces

Step 1: Construct the Task and Domain Models: the task and domain models are specified
first so as to initiate the forward engineering process.

Step 2: From Task and Domain Models to Abstract User Interface Model: consists of
producing one or many AUIs from the previously specified models.

Step 3: From Abstract User Interface Model to Concrete User Interface Model: from each AUI
Model obtained in the previous step, different CUIs Models specifiying graphical,
vocal and MM Uls are derived.

Step 4: From Concrete User Interface Model to Final User Interface: from each CUI, a
corresponding FUI can be produced by automated model-to-code generation. Thus,
for GUIs we generate XHTML code, for vocal Uls we produce VoiceXML code,
while MM Uls are specified using X+V language.

The approach is not addressing only the incremental aspects of the development process
where the FUI is reached starting from a Task and Domain Models that are sequentially
reified into more concrete models. It also supports an iteratif approach related to any

software development process, where intial requirements are continously updated

according to end-user requests. Therefore, two situation can be encountered:

If the starting point of our process (i.e., the Task and Domain models) requires
updates, then transformation rules can be performed over these models so that to
respond to the requested requirements

If an intermediate model (e.g.,, the Abstract Model) requires updates, then
transformation rules can be performed over the model itself and over the upper
models so that to ensure consistency with the requested requirements.

Figure 4-39 General development scenario of Ul

In [LimbO4b] steps 2 and 3 are further decomposed into sub-steps which consist of
transformation systems applied in order to generate GUIs. The VUIs are also addresed

but in a lower degree. The current thesis defines transformation systems by associating

142

4. A Transformational Method for Producing Multimodal User Interfaces

the design options defined in Section 4.2 to the different identified sub-steps of the

transformational process (Figure 4-40). Thanks to the extended ontology of models

described in [USIX07] we add more focus on vocal Uls and expand the coverage area to

MM Uls, as well.

Step 1

Task & Domain Models

Step 2

Step 3

Rules that generate GUI

4.3.3 3 Reification of AZ into CC

4330 Selection of CICs

4.3.3.c Arrangement of CliCs

4.3.3.d Mavigation definition

433 e Concrete dialog control
definition

433 f Derivation of CUI to domain
relationship

k.

Concrete Model
-graphical Ul -

Rules that generate AUl Model

4.3.2.a Rules for the identification of AUl structure
4.32.b Rules for the selection of AlCs

4.3 2.c Hules for spatic-temporal arrangement of AlOs

4.3 2.d Rules for the definition of abstract dialog control
4.3 2 e Rules for the derivation of AUl to domain mappings

'
Abstract Ul Model

434 a Reification of AC into CC

434 b Selection of ClCs

434 ¢ Arrangement of CIiCs

4.3.4.d Mavigation definition

4.3 4 .e Concrete dialog control
definition

434 f Derivation of CU| to domain

relationship

Concrete Model
- vocal Ul -

Rules that generate MMUI

4.3.5a Relfication of AC into CC

4.35b Selection of ClCs

435 c Synchronization of CICs

4.35d Arrangement of CICs

4.3 5 e Mavigation definition

435 f Concrete dialog control
definition

43.5g Dervation of CUIto domain

relationship

_f//

Concrete Model
- multimodal Ul -

Figure 4-40 Sub-steps of the transformational approach

4.4.1 Step 1: The Task and Domain Models

The initial development step consists of specifying the Task and Domain Models which

requires first the identification of the interactive tasks along with their associated

attributes and second the specification of the relationships between the tasks. The

Domain Model consists of identifying the classes and their corresponding attributes and

methods manipulated by the user while interacting with the system. Domain relationships

between classes are further established by specifying their role names and cardinalities.

Once the Task and Domain Models are specified, the mappings between them can be

identified. Each task from the Task Model will be mapped into a corresponding element

from the Domain Model.

4.4.2 Step 2: From Task and Domain Models to Abstract User Interface Model

The second transformation step involves a transformation system containing rules

applied in order to realize the transition from the Task and Domain Models to Abstract
UI Model. It consists of the five development sub-steps illustrated in Figure 4-40 applied

in top-down logical order.

143

4. A Transformational Method for Producing Multimodal User Interfaces

4.4.2.a Rules for the identification of AUI structure

This sub-step consists of defining groups of AIOs that correspond to groups of tasks

tightly coupled together (e.g., the children of the same task can be considered as a group

of tightly coupled tasks). For this purpose, the following design options are considered:

Sub-task presentation. Enables the identification of the ACs depending on the

following design decision:

- Separated (Figure 4-41): Rule 1 generates an AC for each sub-task of the root task
(AC11, AC12 and AC13).

. Combined (Figure 4-42): Rule 1 creates the AC (AC1) in which the root task is
executed and Rule 3 generates an AC for each sub-task of the root task (AC11,
AC12 and AC13).

AC11 AC12 AC13

AC11 AC12 AC13 AC1

Figure 4-41 Separated sub-task presentation Figure 4-42 Combined sub-task presentation

Navigation type. Considers the containment and the cardinality of the AICs ensuring

the navigation according to the following values:

= Local (Figure 4-43): Rules 27, 28 and 29 generate one/two AICs that ensute the
navigation depending on the position of the AC in the abstract tree structure
(AIC111, AIC121, AIC122, AIC131). Each AIC is embedded into the
corresponding AC (i.e., AC1, AC2 and AC3).

- Global (Figure 4-44): Rule 34 generates two global placed AICs (i.e., AIC11, AIC12)

embedded into the top-most AC (i.e., AC1).
The possible values for the cardinality are:

= Simple (Figure 4-43): Rule 37 creates two AlCs.
® Multiple: Rules 38 and 39 generate AICs contained locally and globally in their
corresponding ACs in order to ensure redundant navigation capabilities.

144

4. A Transformational Method for Producing Multimodal User Interfaces

: AC11 AC12 AC13
i [AIC11 | [AIC1Z |
ACA1
Figure 4-43 Local placement for navigation Figure 4-44 Global placement for navigation

Control type. Considers the containment and the cardinality of the AICs ensuring the

control of data. The possible values for the containment are:

= Local (Figure 4-45): Rule 40 generates two AICs (l.e., AIC111, AIC112, AIC121,
AIC122, AIC131 and AIC132) that ensure the control of data for each sub-task
executed into a corresponding AC (i.e., AC1, AC2 and AC3).

. Global (Figure 4-406): Rule 43 generates two global placed AICs (i.e., AIC11, AIC12)
embedded into the top-most AC (i.e., AC1).

The possible values for the cardinality are:

. Simple (Figure 4-45 and Figure 4-46): Rule 46 creates two AICs that will be

concretized in two logically connected buttons (i.e., OK, CANCEL).

Multiple: Rules 47 and 48 create AICs placed locally and globally in their

corresponding ACs in order to ensure redundant control of data.

[AICTIT] || [AICTZT];; [AICT3T]]
JLUSTAp AR L. o 2] | ACTt AC12 _ AC®3
| ACH_ Actz_ ACt o facm) (Ace] |
_________________ act ACH
Figure 4-45 Local placement for control Figure 4-46 Global placement for control

4.4.2.b Rules for the selection of AICs

The goal of this sub-step is to produce the specification of the AICs. As AICs assume
basic interaction functions through facets, our objective is limited to their proper
selection. In order to achieve this goal, we consider the information contained in the

145

4. A Transformational Method for Producing Multimodal User Interfaces

Task and Domain Models, in particular the zas&Type and faskltem attributes of a task along
with the manipulates relationship that offers more information about the domain concepts
manipulated by the task.

Table 4-2 provides the mappings between the types and items manipulated by a task and
their correspondent in the Abstract Model (Figure 3-5). Due to the existance of a great
number of combinations of zas€Types and zaskltems, the table is restricted only to a small
subset used in the current thesis.

Task AIC facet
taskType + taskltem | facet type + (actionType + actionltem)
Start + operation Control + (start + operation)
Start + operation Navigation + (start + operation)
Select + element Input + (select + element)
Create + element Input + (create + element)
Convey + element Output + (convey + element)

Table 4-2 Mappings between tasks types and AIC facets types

The selection of several AICs is supported by the following design options which

identify the type of facets to generate:

Navigation type. Rule 30 creates a navigation facets of type start operation if the task

corresponding to its AIC is of type start operation and manipulates a method from the

Domain Model.

Control type. Rule 41 creates a contro/ facet of type start operation if the task

corresponding to its AIC is of type start operation and manipulates a method from the

Domain Model.

Navigation and control type. Two design values could be considered:

. Separated: Rule 49 endows AICs embedded in the same AC with navigational and
control facets, respectively.

. Combined: Rule 50 generates navigational and control facets for the same AIC.

However the selection of AICs is not always supported by a design option value. This is

the case of Rule 81 which generates an owfput facet of type convey element for each task that

supposes a convey action from the part of the system. The task is manipulating an attribute

from the Domain Model.

4.4.2.c Rules for spatio-temporal arrangement of AIOs

This sub-step ensures the arrangements of objects that populate the AUI by specifying
the layout constraints between the AIOs. These constraints are derived from the Task
Model structure. The order in which the tasks are specified allow designers to determine
the order in which the AIOs are conveyed. For this purpose, the abstractAdjacency
relationship is employed.

For each couple of sister tasks executed into AlIOs, we define abstractAdjacency
relationships between them. As AIOs can be of two types (i.e., ACs or AICs) there are
four possible combination to consider. For each of them a specific rule is applied.
Moreover, in order to perform a complete arrangement, a rule should be defined for each
type of temporal relationships between the tasks. For instance, Rules 87-90 illustrate the

146

4. A Transformational Method for Producing Multimodal User Interfaces

generation of abstractAdjacency relationships between couples of AIOs mapped into sibling
tasks connected by sequential (“>>") temporal relationship.

4.4.2.d Rules for the definition of abstract dialog control

This sub-step is transposing the temporal relationships defined between tasks into
abstract relationships between AIOs. The dialog control [Limb04b] expresses the locus
of control (i.e., availability) for initiating the dialog in a UL It refers to the control of
certain states of the Ul in order to enforce temporal constraints imposed between
elements of the interface.

In order to ensure the abstract dialog control we employ the a#iDialogControl relationship.
For each couple of sibling tasks executed into AlOs, we define an abstractDialogControl
relationship between them that have the same semantics as the temporal relationship
defined between the tasks. As AIOs can be of two types (i.e., ACs or AICs), there are
four possible combinations to consider. For instance, Rules 91-94 illustrate the
generation of auiDialogControl relationships between couples of AIOs mapped into sibling
tasks with temporal dependencies.

4.4.2.e Rules for the derivation of AUI to domain mappings

This sub-step consists of refining the manipulates relationship defined between elements
of the Task Model and elements of the Domain Model into relationships between AICs
from Abstract Model and elements of the Domain Model. The two refined relationship
considered in the current dissertation are #pdates and #riggers.

For instance, Rule 95 is employed in order to refine manipulates relationship between a
task and an attribute from the Domain Model into #pdates relationship between the AIC
in which the task is executed and the above mentioned attribute. Rule 96 is employed in
order to refine manipulates relationship between a task and a method from the Domain
Model into #riggers relationship between the AIC in which the task is executed and the
above mentioned method.

4.4.3 Step 3: From Abstract User Interface Model to Concrete User Interface
Model

The third transformation step consists of a set of development sub-steps that contains
transformation rules applied in order to achieve the transition from the Abstract Ul
Model to the Concrete Ul Model. Depending on the considered interaction modality
different rules have to be applied.

4.4.3.a Selection of modality

The Concrete Ul Model aims to define a Ul that is dependent of the interaction modality

but independent of any software platform. It is now that the designer selects the available

modalities employed in order to enable the interaction between the system and the user.

Therefore, three cases have been identified (Figure 4-39):

. Case 1: From AUI Model to Graphical CUI Model: only the graphical modality is
available in input and in output.

. Case 2: From AUI Model to Vocal CUI Model: only the vocal modality is available

in input and in output.

147

4. A Transformational Method for Producing Multimodal User Interfaces

= Case 3: From AUI Model to Multimodal CUI Model: graphical and/or vocal
modalities are available in input and in output.

4.4.3.b Design option for the selected modality

For each type of Concrete Ul a specific set of transformation sub-steps are considered.
Moreover, for each sub-step we identify hereafter the design options to consider in order
to decide between the different design features of the Uls.

4.4.3.b.1 Case 1: From AUI Model to Graphical CUI Model

The current case derives Graphical Concrete Uls from Abstract Ul specifications by
applying a set of transformation rules structured in six development sub-steps (Figure
4-40). The transformation supporting the current case consider only the abstract and
graphical concrete concepts illustrated din black and red, respectively.

4.4.3.b.1.1 Reification of AC into CC

This sub-step is dedicated to the reification of ACs into GCs. In Section 4.4.2.a the

identification of ACs considered the Sub-task presentation design option. As the

Concrete Model is modality-dependent, their values are concretized in the current section

in graphical objects according to Figure 4-3. Hereafter, we present two design option

values and identify the corresponding rules in the Transformation Catalog:

= Separated: Rule 2 generates for each top-most AC a GC of type window.

. Combined all at once in grouped list: first, Rule 17 reifies the top most AC into a window
containing a box and further Rule 18 generates a groupBox for each AC embedded
into the top-most AC.

4.4.3.b.1.2 Selection of CICs

This sub-step supposes the identification of graphical concrete elements that are suitable
to support the functionalities of AICs ensured by their facets identified in Section 4.4.2.b.
provides mappings between AICs defined by their facets and GICs that reify them. Due
to the great number of combinations of task types and items, Table 4-3 is restricted only
to a small subset used in the current dissertation. The left column identifies the
combinations of actionType and actionltem attributes of AIC facets, the middle column
shows the corresponding GIC, whereas the right column specifies the rule(s) applied to
generate the these GICs.

AIC facet GIC type Transformation rule
facet type + (actionType +
actionltem)
Control + (start + operation) button Rules 42, 45
Navigation + (start + operation) button Rules 31, 32, 33, 36
Input + (select + element) radioButton Rules 99, 100
Input + (select + element) checkBox Rules 101, 102
Input + (select + element) comboBox Rules 97, 98
Input + (select + element) listBox Rules 103, 104
Input + (create + element) inputText Rules 105
Output + (convey + element) outputText Rules 106

Table 4-3 Mappings between facet types and GIC types

148

4. A Transformational Method for Producing Multimodal User Interfaces

For this purpose, the following design options are considered: Prompting, Input, Im-
mediate feedback, Guidance, Sub-task guidance, Answer cardinality, Confirma-
tion answer and Answer order. An exemplification of their values is presented based
on a possible design decision for a text input where the user provides graphically his/her
name. Table 4-4 identifies the rules applied in order to generate the corresponding GICs.

Design option Value GIC Transf:)ltl'renatlon
Prompting Graphical (A) outputText Rule 66
Input Graphical (A) inputText Rule 60
Immediate . .
feedback Graphical (A) inputText Rule 69
Guldance for Textual (A) outputText Rule 71
input
Guidance for
feedback)))
Sub-task guidance Unguided - -
Answer))
cardinality Simple inputText Rule 60
Confirmation Without
answer confirmation - -
Answer order - - -

Table 4-4 Design option values for textInput widget with graphical assignement for input

4.4.3.b.1.3 Arrangement of CICs

This sub-step is applied in order to provide the concrete layout information of the UL It
consists of a transposition of the abstractAdjacency relationship defined between each
couple of AIOs (Section 4.4.2.c) into a graphicalAdjacency relationship between GIOs
reifying them. As AIOs can be of two types (i.e., ACs or AICs), four rules describing the
four possible combinations are considered (Rules 121-124).

4.4.3.b.1.4 Navigation definition
This sub-step aims to specify the navigation structure among the different GCs
populating a Ul In Section 4.4.2.a the generation of AIC that ensures the navigation
between containers was based on the Navigation type design option. In Section
4.3.3.b.1.2 the AICs were reified in their corresponding GIC (i.e., “PREV” and “NEXT”
buttons).
The current sub-step considers the Sub-task navigation design option. It enables to
define the navigation type between GCs by endowing the GICs that ensure the
navigation with graphical transition features. There are two possible values of this option:
. Sequential: for exemplification we consider three sub-tasks executed in separated
windows (Figure 4-47). The navigation between the windows is ensured by the
PREV"and NEXT buttons. Once the user fulfilled the requested information in the
window corresponding to sub-task 1, only sub-task 2 can be activated (navigation
a). From the window associated to sub-task 2, there are two paths: returning to
sub-task 1 window (navigation /) or continuing with sub-task 3 (navigation ¢).

149

4. A Transformational Method for Producing Multimodal User Interfaces

From sub-task 3 window the user can activate only sub-task 2 window (navigation
d). Rule 23 offers the support for this value.

Asynchronous (Figure 4-48): the navigation is ensured by buttons that specify the name
of the sub-task they activate. Once the user fills in the requested information in the
window corresponding to sub-task 1, either sub-task 2 or sub-task 3 can be
activated (navigation « and b, respectively). From the window associated to sub-task
2 the user can navigate back to sub-task 1 (navigation ¢) or continue to fill in the
information requested for sub-task 3 (navigation 4). In the window associated to
sub-task 3, there are two navigational paths: returning to sub-task 2 (navigation e)
or navigating to sub-task 1 (navigation /). Rules 24, 25 and 26 ensure the support

for this value.
Personal information (Sub-task 1) E{ Car information {Sub-task 2) E{ Payment information (Sub-task 3) E{

First name Car class | Credit card =

Last name ? Transmission type il Expiration date | v | |
a 2,
o - o2 @
S
NEXT g BEHES [Next - - PREV |

Figure 4-47 Sequential navigation between sub-tasks presented in separated windows

Personal information (Sub-task 1) |4 {[lll Car information (Sub.task 2) E |Bll payment information (Sub-task3) B4
Car class | Credit card =

? Transmission type hd Expiration date l_ _'I ;I
—m —

| ¢ @ dl ®
p 1
Sub-task 2 L] Sub-task 1 Sub-task 1 J—@
e

@ @
Sub-task 3 Sub-task 3 |— ..’—Ii Sub-task 2

et @ b L

First name

Last name

o

Figure 4-48 Asynchronous navigation between sub-tasks presented in separated windows

4.4.3.b.1.5 Concrete dialog control definition

This sub-step realizes a transposition of au#iDialogControl relationships defined between
each couple of AlOs into cu#iDialogControl relationships between graphicalCIOs reifying
them. As AIOs are of two types (i.e., ACs and AICs), four rules describing the four
possible combinations are considered (Rule 125-128).

4.4.3.b.1.6 Derivation of CUI to domain relationships

This step aims at transposing the relationships defined in Section 4.4.2.e to the concrete
level. Thus, relationships between GICs and domain objects are defined thanks to Rules
129 and 130.

4.4.3.b.2 Case 2: From AUI Model to Vocal CUI Model

The current case aims at deriving Vocal Concrete Uls from Abstract UI specifications by
applying a set of transformation rules structured in six development sub-steps (Figure

150

4. A Transformational Method for Producing Multimodal User Interfaces

4-40). The transformation supporting the current case consider only the abstract and
vocal concrete concepts illustrated in black and blue, respectively.

4.4.3.b.2.1 Reification of AC into CC

This sub-step is dedicated to the reification of AC into VC. By analogy with Section

4.3.3.b.1.1, the current sub-step considers the sub-task presentation design option. As the

Concrete Model is modality-dependent their values are concretized in vocal objects

according to Figure 4-3. Hereafter, we present two design option values and we identify

the corresponding rules in the transformation catalog:

= Separated: Rule 2 generates for each top-most AC a VC of type vocalGroup.

. Combined all at once in grouped list: first, Rule 17 reifies the top most AC into a
vocalGroup containing a voca/Form with a vocallnput and then Rule 18 generates a
vocalGroup and two vocalPrompts for each AC embedded into the top most AC.

4.4.3.b.2.2 Selection of CICs

By analogy with Section 4.4.2.b, we provide in Table 4-5 the mappings between AICs
defined by their facets and the VICs that reify them. The left column identifies the
combinations of actionType and actionltens attributes of AIC facets, the middle column
shows the corresponding VIC type, wheras the right column specifies the transformation
rule to apply in order to generate the VICs.

AIC facet VIC type Transformation rule
facet type + (actionType +
actionltem)
Control + (start + operation) submit Rules 42, 45
Navigation + vocalNavigation Rules 31, 32, 33, 36
(start + operation)
Input + vocallnput + grammar + Rules 97, 98 or Rules 99,
(select + element) part + items 100 or Rules 101, 102 or
Rules 103, 104
Input + vocalPrompt + vocallnput Rule 105
(create + element) + record
Output + vocalPrompt Rule 106
(convey + element)

Table 4-5 Mappings between facet types and VIC types

By analogy with the correspondent sub-step in Case 1, the designer takes into
consideration the following design options: Prompting, Input, Immediate feedback,
Guidance, Sub-task guidance, Answer cardinality, Confirmation answer and An-
swer order.

We exemplify the design options considered in the current sub-step with a possible
design decision for a vocal input that enables users to utter their names. Table 4-6
identifies the rules applied in order to generate the corresponding VICs.

Design option Value VIC Transi(l)ltl'renatlon
Prompting Vocal (A) vocalPrompt Rule 65
Input Vocal (A) vocallnput Rule 59
Immediate Vocal (A) vocalFeedback Rule 68

151

4. A Transformational Method for Producing Multimodal User Interfaces

feedback
Guldance for Speech (A) vocalPrompt Rule 74
input
Guidance for
feedback)))
Sub-task guidance Unguided - -
Ciﬁf:;iy Simple vocallnput Rule 59
Confirmation Without
answer confirmation))
Answer order - - -

Table 4-6 Design option values for vocal assigned input

Note: for the rest of the sub-steps: Arrangement of CICs, Navigation definition,
Concrete dialog control definition, Derivation of CUI to domain relationships, we are
employing the abstract and the vocal concepts of the rules presented in Section 4.4.3.b.1.

4.4.3.b.3 Case 3: From AUI Model to Multimodal CUI Model

The current case derives MM Concrete Uls from Abstract UI specification by applying a
set of transformational rules structured in seven development sub-steps (Figure 4-40).
The transformation supporting the current case consider the abstract and both graphical
and vocal concepts illustrated in black, red and blue, respectively.

4.4.3.b.3.1 Reification of AC into CC

As described in the homologous sub-steps of Cases 1 and 2, the rules that ensure the

current sub-step consider the different possible final representations of the sub-task

presentation design option.

Sub-task presentation. Hereafter, we present two design option values and we identify

the corresponding rules in the transformation catalog:

= Separated- Rule 2 generates for each top-most AC a window and a vocalGroup.

= Combined all at once in grouped list: first, Rule 17 reifies the top most AC into a window
and a vocalGroup containing a woca/Form with a wocalluput and further Rule 18
generates a groupBox, a vocalGroup and two vocalPrompts for each AC embedded into
the top most AC.

4.4.3.b.3.2 Selection of CICs

In order to identify the MM CICs that are the most suitable to support the functionalities
of the AICs ensured by their facets, Table 4-7 provides a series of mappings used in this
thesis.

AIC facet GIC and VIC types Transformation rules
facet type + (actionType +
actionltem)
Control + (start + operation) button + submit Rules 42, 45
Navigation + button + vocalNavigation Rules 31, 32, 33, 36
(start + operation)
Input + radioButton + vocallnput + Rules 99, 100

152

4. A Transformational Method for Producing Multimodal User Interfaces

(select + element) grammar + part + items
Input + checkBox + vocallnput + Rules 101, 102
(select + element) grammar + part + items
Input + comboBox + vocallnput + Rules 97, 98
(select + element) grammar + part + items
Input + listBox + vocallnput + Rules 103, 104
(select + element) grammar + part + items
Input + inputText + vocalPrompt + Rules 105
(create + element) vocallnput + record
Output + outputText + vocalPrompt Rules 106
(convey + element)

Table 4-7 Mappings between facet types and GIC and VIC types

By analogy with the correspondent sub-step in Case 1, the designer takes into
consideration the following design options: Prompting, Input, Immediate feedback,
Guidance, Sub-task guidance, Answer cardinality, Confirmation answer and An-
swer order. An exemplification of their values is presented based on a possible
design decision (Figure 4-18) for a MM text input where the user has to provide
his/her name. Table 4-8 identifies the rules applied in order to generate the
corresponding CICs.

Design option Value CIC Transformation
rule
Prompting Multimodal (R) outputText + vocalPrompt Rule 67
Input Multimodal (E) inputText + vocallnput Rule 61
Immediate Multimodal (R) inputText + vocalFeedback Rule 70
feedback
Guidance for Iconic imageComponents (keyboard Rule 72
input (assignment) icon + microphone icon)
Guidance for Iconic imageComponent Rule 77
feedback (assignment) (speakerlcon)
Sub-task guidance Unguided - -
ci(rtllisr\lx;irty Simple vocallnput Rule 59
Confirmation Without
answer confirmation i i
Answer order - - -

Table 4-8 Design option values for multimodal textInput widget (graphical and vocal equivalence

for input)

4.4.3.b.3.3 Synchronization of CICs

Unlike the previous two cases the current one adds introduces a new sub-step

(Requirement 10. Method extendibility) aiming at ensuring the coordination of vocal and

graphical CIOs by generating a synchronization relationship between them (Section

3.4.4). Hereafter, we identify the rules supporting this sub-step for two examples:

. If the designer wants to enable users to interact with a combobox widget by
employing the vocal modality, then one must ensure the synchronization between
the vocallnput that will gather the input from the user and the comboBox: Rule 116

153

4. A Transformational Method for Producing Multimodal User Interfaces

defines the synchronization between the currentl alue x of the wocalluput and the
currentV alne g of the comboBox.

. The second example corresponds to the designet’s decision of allowing users to
interact vocally with a text field. Thus, synchronization between the vocallnput that
gathers user’s input and the zpufText is ensured by Rule 120 that syncronizes the
currentl alue x of the vocallnput and the currentl alue z of the inmputText.

Note: for the rest of the sub-steps: 4.4.3.b.2.3 Arrangement of CICs, 4.4.3.b.2.4
Navigation definition, 4.4.3.b.2.5 Concrete dialog control definition, 4.4.3.b.2.6
Derivation of CUI to domain relationships, we are employing the abstract, the vocal and
the graphical concepts of the rules presented in Section 4.4.3.b.1.

4.4.4 Step 4: From Concrete User Interface Model to Final User Interface

This step generates the source code of the FUI from each type of CUI considered in the

previous step (i.e., graphical, vocal and MM). Thus, for GUIs we generate XHTML code,

VoiceXML code is considered for VUIs, while MM Uls will be supported be

XHTML+Voice language. Further, we interpret the generated code within a correspond-

ing browser:

® Graphical FUI: any ordinary web browser (e.g., Internet Explorer, Mozilla).

* Vocal FUIs: interpreted with IBM VoiceXML browser.

* Multimodal FUIs: interpreted within Opera browser. With respect to the CARE
properties we consider only Assignment, Equivalence and Redundancy in output. Redundancy
in input and Complementarity in input/ output are not covered as fussion and fission are
not currently supported by the X+V language and consequently we do not have any
control over these aspects. Moreover, they are out of the scope of this thesis (Section

1.4.3).

4.5 Conclusion

This chapter introduced the design space and expanded the selected transformational
approach with the concept of colored transformation rules gathered in a transformation
catalog. Based on the mappings between the design option values and the transformation
rules we were able to identify and exmplify the design options supporting each
development sub-step. Thanks to this identification in Chapter 6 we will prove the
feasability of developing different MM Uls for which a large variety design decisions
were considered.

154

5. Tool support

5 Tool Support

5.1 Introduction

One of the main advantages of our design space is given by the fact that each design
option composing it is independent of any existent method and tool, thus being useful
for any developer of MM Uls. In these circumstances, an explicit support of the
introduced design space offered by a tool that implements the proposed method would
be a real help for designers (Requirement 11. Machine processability of involved models).
Therefore, we consider MultimodaliXML, an assembly of five software modules for
computer-aided design of MM Uls [Stan00] .

The tool is reducing the designer’s set of concerns by limiting the amount of design
decisions to those composing our design space, thus providing a more manageable and
tractable solution [Hoov91l]. Based on the transformational approach general
development scenario we identified the five modules of MultimodaliXML tool over the
steps in which they are employed (Figure 5-1). The tool ensures interoperability as the
result produced by one module can be reused in another module (Requirement 16.
Support for tool interoperability).

Figure 5-1 General development scenario — identification of MultimodaliXML modules

155

5. Tool support

5.2 MultimodaliXML modules

This section presents each module according to the following structured schema: (1) a
detailed description of the features is provided, (2) the implementation characteristics
(e.g., programming language, libraries employed, author) are specified, (3) our
contribution module is emphazised.

521 IdealXML

Description. IdealXML [Mont05] is a tool that is involved in the first step of the
transformational approach and allows designers to describe graphically the Task and
Domain Models and the mappings between them. Moreover, the tool enables to
graphically specify the Abstract UI Model, but due to the fact that the main objective of
UsiXML is to provide a machine processable language and then a human readable
specification, in this dissertation we generate the Abstract Model by employing the
transformational approach. The tool is able to automatically generate the UsiXML
specification of the corresponding models.

The Task Model (Figure 5-2) takes the form of a CTT notation [Pate97]. The Domain
Model (Figure 5-3) has the appearance of a class diagram, while the Mapping Model
(Figure 5-4) is specified by associating graphically elements of the Task Model with
elements of the Domain Model.

¥ ldealXML: Interface Development Environment for AppLications specified Tn usfXML r._|E|m
task model | sbetrack Ul modsl meppig model | conaste Ulmodsl | fod Ulmedel |

2 |deal¥ML: Interface Development Environment for Applications specified i... E”E‘E‘

B—— (\'J}—p—:—; k’

..... Send questiannaine

. [T | Redationships nina madsl cancrete UL model final LI modsl
> g % £ m m T‘”T] T Fask model
= — "o gk o
-] Ecld s HE= T o=+«
= i L1
iy Participation) -
— - o Question Answer

private String namy
private int ZipCocg
private String gen

private String e, private Siring e, private String (e,
-3 k| o] private int percerts

[5]

private String age

PUblic void Seric

BUETTG T Calouidle]

Figure 5-2 Task Model editor

domain madel task model

abstract UT model

mapping model concrete

H

ma ex

ob

Figure 5-3 Domain Model editor

= LI model Final LT madel

up tr re tg ab

domain

task

rabstract Ul model

[=] = abstract UI
= B Participation 1 7 Participate to poll
E name = B sert personal data %
B zipcode B 1nsert name
B gender B Insert zip code
B ageCategory 5 select gendsr
= B questionnaire B select age categary
B title B 3 answer queskion
B sendQuestionnaire = show question
= B question] B select answer
B title § send questionnaire
= B Answer [~
mapping domain task ahstract
manipu miy name (idc0a0) nsert name (taska)
manipu miy [ZinCode (de0at) nsert zip code (faska)
manipulates (dmz) gender (idc0az) Select gender (asks;
manipu m3) ageCategory (dc0a3) Selectage categary (taskr)
manipu) title: (iclc1a0) IEhnw question (taska)
manipu m5) fitle Gidc2a0) Select answer (lask
manipu mE) o naire (ide1mi) |Send questionnaire (task3)

&8 delete mapping

Figure 5-4 Mapping Model editor

Implementation. The tool is implemented in Java language by Francisco Montero.
Contribution. Our contribution to this tool concerns more the conceptual aspects. It
consists of the introduction of an expanded Task Model (Section 3.3.1.b) with features

156

5. Tool support

that respond to the requirements of MM Uls. However, these contributions have not
been implemented in the tool yet.

5.2.2 ‘TransformiXML

Description. The transformation approach is sustained in steps 2 and 3 by
TransformiXMI,, the cote module of the MultimodaliXMI. software that enables the
definition and the application of transformation rules based on design options. The basic
flow of tasks with TransformiXML GUI (Figure 5-5) is the following: after choosing an
input file containing models to transform, the user selects a development path by
choosing a starting point (i.e., the initial model) and the destination point (i.e., the model
to reach). All the steps and sub-steps of the chosen path can be visualized in the
development path explorer frame. By clicking on a sub-step, a set of transformation systems
realizing the chosen sub-step are displayed in the transformation system explorer. Each
transformation system contains the corresponding rules described in the transformation
rule catalog that can be visualized in the #ransformation rule explorer frame. Depending on
the considered design option, the designer will select the correspondent
transformation(s). The designer is also able to edit the rules either in GrafiXML editor or
in AGG tool [Ehri99]. The result of the transformation is then explicitly saved in a
UsiXML file.

TransformiXML o =
Choose File Select development path
siulesculiDesktopidey_path_task_auiusi Add file Starting point ¥ | Destination point hd

Development path explorer Transformation system explorer

B DP_1 Transformation system 1

B3 Step Fram Task and Dormai
[} substep ldentification of
[} substep Selection of Al
D SubStep Spatio-tempors
D SubStep Definition of ab Edit in AGG
D SubStep Derivation of Al

Edit in GrafiXML

Transformation rule explorer

Rule 1 Create an AC for task with task childre
Rule 2 Create an AIC for each leaf tasks
Rule 3 lterative tasks are mapped onto repeti

I Rule 4 Reconstruct containment relationship
Rule 5 Reconstruct containment relationship Save

o [

| Transform | 4z [»

Figure 5-5 TransformiXML — graphical user interface

Implementation. TransformiXML is developed jointly by Quentin Limbourg, Victor
Lopez-Jaquero and Benjamin Michotte in Java programming language by employing the
AGG API that was selected due to our prior experience with the AGG tool. AGG is an
open-source development environment for attributed graph transformation systems sup-
porting an algebraic approach to graph transformation [Ehri99]. The scenario of using
AGG API to perform model-to-model transformations consists of the following phases
(Figure 5-6): the initial specification of a model along with a set of rules both expressed

157

5. Tool support

in UsiXML are processed by the TransformiXML API. A parsing operation is applied
over the UsiXML elements (models and rules) which are transformed into AGG objects.
The set of rules are applied sequentially to the models in order to obtain the resultant
AGG objects. Further, the objects are parsed and transformed into UsiXML resultant

specification.
/ <taskModel ... f= \

<task...f=>. . <ftask>

<task. .= </task=>

=itaskhlodel=
UsiXML specification AGG API
(initial)

<transformationRule. .. =

<abstracthlodel | =
<nac>.. </nac>

<lhs= <flhg= <gbstractCentainer. .. />

<rhs>. .. <frhs>
<abstractindividual Component. . /=

<ftransformationFule>

Transformation rules SetarEaiitadal
\ExpressedinUsiICMl / k WL eprzivaimn J

(resultant)

Figure 5-6 Model-to-model transformation based on AGG API

TransformiXML tool has been tested successfully on a series of examples, but for the
moment it does not support the automatic application of transformation rules for all the
steps and sub-steps involved in the transformational method. However, the feasibility of
the approach was proved to be successful in model-to-model transformation generated
manually with AGG tool. Figure 5-7 provides an example of a transformation rule
applied manually over the initial Task Mode/ (Figure 5-8) in order to generate the resultant
AUI Model (Figure 5-9). The rule is creating AC in which each sub-task of the top-most
task in a Task Mode/ will be executed.
NAC LHS RHS

2task a:decompaosition S:decompositio

4isEecutedin

v

JabstractContainer

EXE: 4isBeecutedin isExedutedin

\
3:abstractContainer abstractContainer

|3:abstractCuntainer|

Figure 5-7 Generate abstract containers for each sub-task of the top-most task

isExecutedin isExecutedin

abstractContainer

|abstractContainer| [abstractContainer]

Figure 5-8 Initial Model Figure 5-9 Resultant model

158

5. Tool support

Contribution. The contributions brought to this module are two fold:

Conceptual contributions: previous to our work the tool was employed in editing
and applying transformation for the generation of GUIs [Limb04b]. This work en-
riches the existing transformational approach method in order to support generation
of vocal and MM Uls. This is made possible thanks to the introduction of new sub-
steps (i.e., Synchronization between CICs in Section 4.4.3.b.3.3) that involve new trans-
formation rules defined over an expanded vocal ontology (Section 3.4.2)
Implementation contribution: we have implemented import and export
functionalities in AGG as part of an incipient project involving TransformiXML tool
[Stan04]. The import functionality allows to represent under the form of a graph the
XML specification corresponding to any level of UsiXML language, whereas the
export functionality enables designers to recover the resultant graph under the form
of XML specification of UsiXML. Moreover, we have ensured the testing phase
during the continous development of the tool which enabled designers to improve its
implementation thanks to the identified bugs.

5.2.3 GrafiXML

Description. GrafiXML is a tool that is involved in Step 4 of the transformational

approach. It allows designers to import the graphical CUI specification obtained in the
previous step and to export it into XHTML code (Figure 5-10). GrafiXML can also be
used to enable the development of CUI Models by designers. For this purpose a specific

editor has been developed where the designers can draw in direct manipulation any GUI

by placing graphicalCIOs and editing their properties in a property sheet. The

correspondent UsiXML specification can be visualized and modified at any moment,

while the changes are being updated immediately into the graphical representation.

W wafian & F B
E ER Ish Qoo Heb
& comn Sl
@ tosnapowr auko

[

racherche cours 1 med 5 | mevd 6
et | XML Edtor | RTF Marager | Contrest L
e
1 Som ks -

Q) Chese cubw

2R T il

A e BEE| | e owmmon =] (Ot o B

ot prcprtes abes |

D culu T
S =T | Al
Camear

Eireds
im0
B mod 13
1 recherche cous 111408

1] [Ta

=2 200G{05]26 ot L4:15:38 CES)
© POOKIOS[6 ot 14:18:38 CEST

Figure 5-10 GrafiXML — export function

Implementation. GrafiXML is developed by Benjamin Michotte in Java language and

requires the following libraries: Java Help jars, mysqljar, Java Web Start jars, jdom.jar,

159

5. Tool support

Castor-x.y.jar, oro.jar, commons-loggingjar, xerces.jar, regexp.ar, Java Media
Framework.

Contribution. We did not bring any contribution to the development of this tool as it
addresses the development of graphical interaction only, whereas our work consisted
more in expanding the the vocal and MM aspects. However, the tool could be extended
in order to support editing vocal and MM CUIs by simply enabling to graphically
manipulate the vocal concepts introduced by our ontology and by defining relationships

with graphical objects.

5.2.4 VoiceXML Generatotr

Description. VoiceXML Generator tool is a module involved in step 4 of the
approach. It VoiceXML
Transformations [Clar99] over the vocal specification of the CUI Model. These

transformational generates code by applying XSL
transformations are capable of creating, inserting, updating, deleting or replacing
fragments of any XML-compliant languages like HTML, XUL, XIML, UIML and of
course UsiXML. Using XSL transformations, rich behavior can be produced in order to
generate the final UL

Implementation and contribution. So far, there is no implementation for this tool.
The transformations were applied manualy by mapping the vocal CIOs into the

corresponding VoiceXML elements. Table 5-1 provides several mapping examples.

UsiXML vocal CIO VoiceXML element
vocalForm form
vocalPrompt block
vocallnput field
vocalMenu menu
vocalMenultem choice
grammar grammar
part rule
vocalNavigation goto

Table 5-1 Mappings between the vocal CIOs and VoiceXML elements

5.2.5 XHTML+Voice Generator

Description. XHTML+Voice Generator tool is a module involved in step 4 of the
transformational approach. It generates XHTML+Voice code by applying XSL
Transformations over the MM specification of the CUI Model.

Implementation and contribution. So far, there is no implementation for this tool.
The transformations were applied manualy by mapping the graphical and vocal CIOs
into the XHTML and VoiceXML elements, respectively. Table 5-1 and Table 5-2 provide
several mapping examples.

UsiXML graphical XHTML element
CI1O
box body
groupBox form

160

5. Tool support

outputText text
inputText input text
radioButton input radio
checkBox input checkbox
comboBox with select option
items
button button

Table 5-2 Mappings between the graphical CIOs and the XHTML elements

5.3 Limitations of current tool support

The current thesis proposes a methodology composed of a set of models gathered in an
ontology over which a method manipulating these models is applied thanks to tools that
implement it. Our contribution concentrated extensively on the ontological and
methodological aspects of the methodology by providing a solution that is independent
of the implementation technology. This solution is concretized in a design space that is
independent of any implmentation language and tool support which represents a
contribution to the development process of MM Uls. As a result any MM UIDL could
be considered for a possible implementation, while the models and the proposed
methodology remain unchanged. Even if these languages didn’t currently have the
semantical power to support our ontology, they could be extended with new elements in
order to reach the required level.
However, with respect to the implementation aspects, this dissertation provides an
explicit support concretized in the MultimodaliXML tool which applies the described
methodology over the ontology implemented in UsiXML language. This technolgical
dependent solution was considered in order to show the feasability and the proof of
concepts without taking into account its usability and performance. For this solution we
have identified the following critics:

*= Some aspects of the methodology are not supported: only the transformation
ensuring the transition from the graphical CUI to the FUI are automated, whereas
those from the vocal and MM CUI to their corresponding FUI are ensured manually.
A software solution that automates these transformations should be based on the
mappings provided in Table 5-1 and Table 5-2.

* When supported, these aspects are not always automated: the transformation rules
are manualy selected and parameterized by the designer depending on the selected
design decision.

= It is not very robust due to the high complexity of issues to be considered:
transformation rules are hard to design, implement and apply; in addition, the high
dependency between the output produced by one rule and the input manipulated by
the next rule to apply determine a very low scalability of the transformational
approach.

* It involves a high number of tools (i.e., five tools) which imposes a high treshold i.e.,

161

5. Tool support

a lot of effort in terms of time and concepts to learn and master before getting
familiar with their manipulation.

* The high number of tools to operate with makes them hardly interoperable: any
change brought to the UsiXML syntax determines a chain impact over the involved
tools as the resultant specification produced by one tool will no longer map the
source specification required by the next tool in the chain.

The graphic illustrated in Figure 5-11 shows the position of our solution with respect to
the tool complexity and application domain specificity aspects. Currently, most of the
tools surveyed in Section 2.4 provide a relative simple solution for problems with a high
level of specificity. At the other side of the axis, we find less complex solutions provided
by a multiple interoperable intergrated tools that address in exchange more generic
aspects of MM UI development. Our approach positions itself somewhere between the
two solutions with a high level of complexity but still covering a large spectrum of MM
application. The ideal approach is given by the break-even point of the two curbes and
consists of a design space-based solution. Its concretization would suppose a single tool
(Figure 5-12) that enables designers to: (1) specify the task and domain models of the
future system, (2) select for each design option the desired design value that will hide
from designers useless details concerning the development steps and sub-steps and the
transformation rules supporting them. Before generating the final specification, a preview
of the final system could be provided in order to validate the design decision.

: Complexity
!
]
]
i
i
]
]
]
]
i
|,
! |
! |
| | |
| break-even ' |
| point | !
]
| i |
! | : |
1 - -
i i : | Specificity
| | : |
| !] |
| o d 1
i] 1]
1 ! ! |
: l l |
One tool Design MultimodaliXML Many
space tools
based tool

Figure 5-11 Multimodal design tools complexity vs. specificity

162

5. Tool support

4Combined all at ance | ¥ i

Figure 5-12 A design space-based tool for development of multimodal Uls

5.4 Conclusions

This chapter presented the software solution supporting the method proposed by the
current thesis. Each module of the MultimodaliXML tool was positioned into the
corresponding development step and detailed according to a structured schema. At the
end of the chapter several critics of the tool have been identified along with its position
among the current MM development tools with respect to the software complexity and
application domain specificity. A mock-up of an ideal system supporting the design space
was presented as a possible future solution.

163

5. Tool support

164

6. Validation

6 Validation

6.1 Introduction

After introducing the design space and the transformational approach governing

the method applied in the context of this dissertation, the current chapter aims at

assessing it validity. We will respond to this issue following two paths:

External validation: based on the software support described in Chapter 5, we
show the feasibility of the approach on three case studies having different
levels of complexity and coverage. Section 6.2 concerns the development of
an on-line polling system, a low complexity web-form application that was
selected in order to facilitate the understanding of the proposed method.
Section 6.3 details a web-form application of medium complexity dedicated to
the development of a car rental system. In Section 6.4 a non-web form
application of medium complexity that enables users to browse a map in order
to identify different objectives is developed. To solve these case studies we
employed the following procedure: (1) Building initial model with their associ-
ated tool, (2) Manual editing of transformation rules, where most of them
have been elicited prior to realizing these case studies and gathered in the
transformation catalog, (3) Manually selecting the transformation rules de-
pending on the design decisions, (4) Automatically applying the selected trans-
formation rules in TransformiXML tool, (5) Transforming the UsiXML speci-
fication provide by TransformiXML in the correspondent final UI thanks to
the software support presented in Chapter 5.

The validation is supported in Section 6.5 by an empirical study conducted
with end users in order to measure the relative usability level provided by dif-
ferent design decisions.

Internal validation: aims at assessing the methodology against the requirements
identified at the begining of this work. For this purpouse, Section 6.6 offers a
discussion of each requirement based on which an estimation of the
methodological coverage is provided.

6.2 Case study 1: Virtual Polling Application

This case study applies our transformational approach for developing a UI on an

opinion polling system aiming at collecting opinions of users regarding a certain

subject. The scenario of this case study (Figure 6-1) is the following: from the

165

6. Validation

Task and Domain Models, an AUI is produced, from which three CUIs are
derived (GUI, VUI and MM Uls). In the last step, from each CUI a
correspondent FUIs is generated.

Concrete User Interface Final User Interface
(graphical) (graphical)
Task and Abstract User .| Concrete User Interface Final User Interface
Domain Interface (vocal) (vocal)
Concrete User Interface Final User Interface
(multimo dal) {mukltimodal)

Figure 6-1 Development scenario for virtual polling application

6.2.1 Step 1: The Task and Domain Models

The Task Model, the Domain Model and the mappings between them are
graphically described using Ideal XML tool. The upper part of Figure 6-2 depicts a
CTT representation of the task model envisioned for the future system. The root
task consists of participating to an opinion poll. The user has to provide the
personal data (i.e., name, zip code, gender, age category). Further, the user
iteratively answers some questions as follows: a system task is showing the title of
the question and thanks to an interactive task the user is able to select one answer
among several proposed ones. Once the questions are answered, the questionnaire
is sent back to its initiator. The bottom part of Figure 6-2 illustrates the Domain
Model: a participant participates to a questionnaire, a questionnaire is made of
several questions and a question is attached to a series of answers.

= ldealXML;: Interface Development Environment for AppLications specified in usiXML @@@

Paticipate to poll

B = N

Irsert personal data Ansuar question® Send questionnaire
v

Inset pame nsertzip code Selectgender Selechage category Snoa\u:ueshon Scject ary&ﬂel

ctUlmodel * | maooinom =
' I dl}fnain maodel e
i ! / e I A
Epeu® R8s 131w \
T ¥ i
- ’ o 5 =
Participgtion S Question | Answer
rvate Siring na ’ f — : — . -
prwate"nt rptodd private Sirng tile, private String fitle; private Siring fille;
: L. S = k> private int percent
frivate Str\ng gend /

»
private String aged* PUBC oI SEndGl PUBEC Tri calculate]

Figure 6-2 Mappings between the Task Model and the Domain Model

166

6. Validation

The dashed arrows between the two models in Figure 6-2 depict the mappings
relationships between the elements of the Task and the Domain Model. The sub-
tasks of Insert personal data task is mapped onto the correspondent attributes of
Participation class (1.e., name, zipCode, gender and ageCategory). Show question is mapped
onto the attribute title of class Question. The task Select answer is mapped onto the
attribute title of the class Answer. Finally, the task Send questionnaire is mapped onto
the method sendQuestionnaire of the class Questionnaire. Figure 6-3 illustrates the
design of the Mapping Model in 1deal XML tool. Each leaf task is mapped on the

corresponding attribute or method of the classes contained in the Domain Model.
CEX

£ IdealML: Interface Development Environment for, AppLications specified in usiXML

domain model task model abstract Ul modsl | mapping model | concrete LI model Final T model

= B Questionnaire

E Select age category

F ma ex ob up tr re tg ah
rtdomain model rtask model rabstract Ul model
[=] » abstract UL
= B Participation = @Part\tipata to poll
H name & B Insert personal data [%
B zipCode B 1nsert name
B gender B Insert zip cods
B ageCategory E-‘y Select gender

B tite = @ Answer question
B sendGuestionnaire = Show question
= B Question W hsalsct answer
B tite ﬁ Send questionnaire
= B answer [+]
mapping damain task abstract

tranipulates ddrmd)
manipulates (idm1)
tnanipulates (dmz)
manipulates (idm3)
rranipulates (dm4
tnanipulates ddrms
manipulates (idm#)

name (idc0al)

ZipCode (idcO0al)

gender (idcdaZ)
ageCatengory (idc0a3)

title (ide1 a0}

[title (ide2a0)
|sendQuesImnna|re fidct mo)

Insert narne (taskd)

Insert zip code (taska)
Select gender dtaske)
Select age category (taskr)
Show question dtask
Select angwer taskd)
Send guestionnaire (task3)

38 delste mapping

Figure 6-3 Mapping Model for the virtual polling system

Ideal XML generates automatically the UsiXML specifications for the Task Model
(Figure 6-4), Domain Model (Figure 6-5) and Mapping Models (Figure 6-0).

167

6. Validation

=taskModel id="TaskModelC51" name="TaskMaodel"=
=task id="Root' name="Participate to pall" importance="5" categor="abstract"=
=task id="T1" name="Insert personal data" importance="3" category="interactive"=
"T11" name="Insert name" taskType="create" taskitern="element' importance categor="interactive"f=
12" name="Insert zip code" taskType="create" faskliem="element’ importance="5" categor="interactive"f=
13" name="Select gender” taskType="select’ taskltern="element’ importance="5" categon="interactive"/»
=tazskid="T14" name="Select age categon taskType="select" taskitern="element" impartance="5" categor="interactive"=
=task=
=task id="T2" name="Answer question" importance=
=taskid="T21" name="Show guestion" taskType
=taskid="T22" name='
=ftask=
=task id="T3" name="Send guestionnaire” taskType="start" taskitem="0peration” importance="3" categor="interactive"r=
=ftask=
=enahling id="e1"=
<g0urce sourceld="T1"f=
=target targetld="T2"=
=fenahling=
=dizabling id="e2"=
=S0UrCE SOUrceld="T2"/=
=target targetld="T3"f=
=ldisabling=
=independentConcurrency id="e11"=
<g0urce sourceld="T11"f=
=target targetld="T12""=
=findependentConcurrency=
=independentConcurrency id="e12"=
=g0urce sourceld="T12"f=
=target targetld="T13"=
=lindependentConcurrency=
=independentConcurrency id="e13"=
<gource sourceld="T13"f=
=target targetld="T14"=
=findependentConcurrency=
=iteration id="e3"=
=gource sourceld="T2"/=
=target targetld="T2"f=
=fiteration=
=enahling id="e21"=
<gource sourceld="T21"f=
=target targetld="T22"=
=lenahling=
=ftaskiodel-

"3 categore="ahstract"=
="create” taskitern="collection of elements’
"Select answer' taskType="select' taskltern="element' importance

importance="8" categor="system"/=
categor="interactive"l=

Figure 6-4 Task Model expressed in UsiXML

168

6. Validation

=domaintodel id="domainModelC52" name="domainmode["»
=domainClass id="DC1" name="Pardicipation"=
=attribute id="A1DC1" name="name" attrihuteDataType="string" attribute Cardmin="1" attribute Cardilax="1"r=
=attribute id="A2DC1" name="zipCode" attrihute DataType="integer" attributeCardMin="1" attrihuteCardmax="1"r=
=attribute id="A3DC1" name="gender" attributeDataType="string" aftributeCardhin="1" attributeCardmax="1"=
=enumeratedyalue name="Male"f=
=enumeratedyalue name="Famala"i=
=fattribute=
=attribute id="A4DC1" name="ageCategony attributeDataType="string" attribute CardMin="1" attribute CardMax="1"=
=enumeratedyalue name="18-35"=
=enumeratedyalue name="35-45"+
=enumeratedyalue name="45+"(=
=fattribute=
=fdomainClass=
=domainClass id="DC2" name="Cuestionnaire"=
=attribute id="A1DC2" narme="title" atttibuteDataType="string" attributeCardmin="1" attribute Cardbax="1"r=
=method id="M1DC2" name="sendGuestionnaire"=
=param id="P1M1DC1" dataType="0uestionnaire" name="gqu" paramType="input'=
=fmethod=
=fdomainClass=
=domainClass id="DC3" name="Question"=
=attribute id="A1DC3" name="title" attributeDataType="string" attributeCardhin="1" attribute Cardhax="1"r=
=fdomainClass=
=domainClass id="DC4" name="Angswer'=
=attribute id="A1DC4" narme="title" atttibuteDataType="string" attributeCardmin="1" attribute Cardbax="1"r=
=attribute id="A2DC4" narme="percentage" attributeDataType="integer" attributeCardMin="0" attribute CardM ax="1"f=
=method id="M1DC4" name="calculateProcentage"=
=param id="P1M1DC4" dataType="0uestion" name="qu" paramType="input'f=
=param id="P2M1DC4" dataType="integer' name="gu" paramType="output'/=
=fmethod=
=fdomainClass=
=adHoc id="DA1" name="paticipation" roleACardmin="0" roleACardmax="n" raleBCardMin="0" roleBCardMax="n"=
=s0urce sourceld="DC1"=
=target targetld="DC2"f=
=fadHaoc=
=aggregation id="DA2" roleACZardMin="1" roleACardMax="n" raleBCardMin="1" roleBCardMax="1"=
=gource sourceld="DC2"=
=target targetld="DC3"f=
=faggregation=
=aggregation id="DA3" raleACardhin="1" roleACardmax="n" roleBCarddin="1" roleBCardhlax="1"=
=s0urce sourceld="DC3"f=
=target targetld="DC4"=
=faggregation=
=idamaintodel=

Figure 6-5 Domain Model expressed in UsiXML

=mappingMaodel id="MappingDomainCs2" name="mappingDamain"=

=manipulates id="mMA1"=
=source sourceld="T11"=
=target targetld="A1DC1"=

=/manipulates=

=manipulates id="Ma2"=
=s0urce sourceld="T12"=
=target targetld="A2DC1"f=

=/manipulates=

=manipulates id="mA3"=
=s50urce sourceld="T13"=
=target targetld="A30DC1""=

=imanipulates=

=manipulates id="mA4"=
=gource sourceld="T14"=
=target targetld="A4DC1"=

=/manipulates=

=manipulates id="Ma5"=
=50urce sourceld="T22"=
=target targetld="A1DC3"i=

=imanipulates=

=manipulates id="mMAE"=
=source sourceld="T23"=
=target targetld="A1DC4" =

=/manipulates=

=manipulates id="MaT"=
=50urce sourceld="T3"f=
=target targetld="M1DC2""=

=/manipulates=

=/mappinghodel=

Figure 6-6 Mapping Model expressed in UsiXML

169

6. Validation

6.2.2 Step 2: From Task and Domain Models to AUI Model

The second transformation step is sub-divided in five sub-steps composed of
transformation rules applied in order to realize the transition from the Task and
Domain Models to the Abstract Model.

6.2.2.a Sub-step 2.1: Rules for the identification of AUI structure

The current case study considers the following design option values supported by
their corresponding rules:

- Sub-task presentations combined all at once: Rule 3 and 4

= Control type with Global containment (Rule 43) and Simple cardinality (Rule 40).
Moreover, Rule 81 is applied in order to create AICs for leaf tasks.

6.2.2.b Sub-step 2.2: Rules for the selection of AICs

The current sub-step generates facets for AICs that support the execution of the

leaf task:

= Input facet of type create element for create name and create 2ipCode tasks: Rule
83

= Input facet of type select element for Select gender, Select ageCategory and Select
Abunswer tasks: Rule 84. For each enumerated value of an attribute, a selection
value with the same name as the enumerated value, will be attached to the
above created facet: Rule 85

= Output facet of type convey element for the AIC assigned to the task Show
Question Title: Rule 86

= As the placement for the control concretization is local Rule 41 is applied in
order to generate a control facet of type start operation for the Send
Questionnaire task.

6.2.2.c Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an
abstractAdjacency relationship between these AIOs. As AIOs can be of two types
(i.e., ACs or AICs), there are four possible rules to be applied (Rule 87-90).

6.2.2.d Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed
into AIOs, we generate an abstractDialogControl relationship between these AIOs
that have the same semantics as the temporal relationship defined between the
tasks. As AIOs can have two types (i.e., ACs or AICs), there are four possible
combination that are considered by Rules 91-94.

170

6. Validation

6.2.2.e Sub-step 2.5: Rules for the derivation of the AUI to domain
mappings

In order to ensure the synchronization between the AICs and attributes of objects

from the Domain Model, Rule 95 generates the #pdates relationship. Moreover,

Rule 96 enables the triggering of methods by AICs through the #uggers

relationship.
The resultant UsiXML specification issued from the application of the above rules

in TransformiXML is illustrated in Figure 6-7.
=aliModel name="AUI1" id="ALI"=
=ahstractContainer id="AC1" name="Patticipate to poll"=
=ahstractContainer id="AZ11" name="Provide Personal Data"=
=abstractindividualComponent id="AIC1 11" name="create name"=
=facet id="FA1111" type="input' name="create hame" actionType="create" actiontern="element’ dataType="5tring"/>
=fahstractindividualComponent=
=abstractindividualComponent id="AIC112" name="create ageCategon=
=facet id="FA1121" type="input' name="create ageCategory" actionType="select’ actionltem="element" dataType="String"=
=gelectionalue name="18-34"=
==zelectionalue name="35-45"=
=gelectionyalue name="45+"f=
=ifacet=
=lahstractindividualComponent=
=abstractindividualComponent id="AIC113" name="create zipCode"=
=facet id="FA1131" type="input' name="create zipCode" actionType="create" actionltern="element" dataType="String"/=
=fahstractindividualComponent=
=abstractindividualComponent id="AIC114" name="select gender'=
=facet id="FA1141" type="input' name="select gender" actionType="select" actionltern="element" dataType="String"=
=selectionyalue name:"male"r>|
=gelectionyalue name="female"j=
=ifacet=
=fahstractindividualComponent=
=fahstractContainer=
=abstractContainer id="AC12" name="answerQuestionnaire" isRepetitive="trua"=
=abstractindividualCampanent id="AIC1 21" name="output question”=
=facet id="FA1211" type="output" name="output guestion" actionType="convey" actionltern="element'/=
=fahstractindividualComponent=
=abstractindividualCamponent id="AIC1 22" name="select answear'=
=facet id="FA1221" type="output' name="zelect answer' actionType="select" actionltern="element" dataType="8tring"’=
=fahstractindividualComponent=
=fahstractContainer=
=abstractindividualComponent id="AIC1 3" name="send guestionnaire"=
=facet id="FA1221" type="control" name="send questionnaire" actionType="start" actionltem="operation" dataType="5tring"i=
=fahstractindividualComponent=
=auilialogControl symhbol="=="=
=source sourceld="AIC111"=
=target targetld="AIC112"=
=fauiDialogControl=
=auibialogCantral symhbal="=="=
=source sourceld="AIC112"=
=target targetld="AIC113""=
=fauiDialogControl=
=auibialogCaontrol symhbol="=="=
=source sourceld="AIC113"=
=target targetld="AIC114"=
=fauiDialogControl=
=auibDialogControl symhbol="=="=
=source saurceld="AC11"=
=target targetld="AC12"/=
=faniDialogCaontrol=
=auibialogCantral symhbal="=="=
=gource sourceld="AIC121"=
=target targetld="AIC1222"=
=faliDialogControl=
=auilialogControl symhbol="=="=
=source sourceld="AC12"=
=target targetld="AIC13"=
=fauiDialogControl=
=fabstractCaontainer=
=fauiModel=

Figure 6-7 AUI Model expressed in UsiXML

171

6. Validation

6.2.3 Step 3: From AUI Model to CUI Model

The third step implies a transformational systems composed of transformation

rules required to transform the AUI into four different CUIs:

. Case 1 - graphical CUI: the modality used to interact with the system is
entirely graphical.

. Case 2 - vocal CUI: the modality used to interact with the system is entirely
vocal.

. Case 3 - multimodal CUI: both the graphical and the vocal modalities are
employed.

6.2.3.a Case 1: generation of graphical CUI

For the generation of GUIs the designer takes into consideration just the abstract
and concrete graphical part of each transformation rule.

6.2.3.a.1 Sub-step 3.1: Reification of AC into CC

For the reification of AC into CC, Rules 15 and 16 are concretizing the separated
list design option into graphical objects.

6.2.3.a.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of

the corresponding AICs based on the set of design options identified in Section

4.4.3.b.1.2. For each task we specify the considered design option value and the

generated CICs:

= Generation of an outpufText and an inputText that enable to insert the name and
the z27pCode: Rule 105 is applied each time an AIC with an input facet of type
create element is encountered (Table 6-1).

Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) inputText
Immediate feedback Graphical (A) inputText
Sub-task guidance Unguided -
Answer cardinality Simple -
Confirmation answer Without confirmation -

Table 6-1 Design option values for inputText

- Generation of a GC of type box that will embed a group of radio buttons and a
GIC of type outputText representing the label associated to this group when
an input facet of type select element is encountered: Rule 99; The radio
buttons associated to this group are created by applying Rule 100. The rules

172

6. Validation

are used in order to select the gender of the user, the ageCategory and also
his/her answers to the questions (Table 6-2).

Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) radioButtons
Immediate feedback Graphical (A) radioButtons
Sub-task guidance Unguided -
Answer cardinality Multiple -
Confirmation answer Without confirmation -

Table 6-2 Design option values for radioButtons

. Generation of a GIC of type outpuflext, each time an output facet of type
create is encountered: Rule 106 is applied in order to display of the Zitles of the
qguestions (Table 6-3).

Design option Value CIC

Prompting Graphical (A) outputText

Table 6-3 Design option values for outputText

= Generation of OK, CANCEL buttons that will ensure the Send guestionnaire
task and the cancellation of the fulfilled data (Table 6-4): Rule 45.
Design option Value CIC

Control type containment Global buttons

Table 6-4 Design option values for control buttons

6.2.3.a.3 Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalCIOs, we define a
graphicalAdjencency relationship between these graphicalCIOs. As AIOs can
have two types (i.e., ACs or AICs), there are four possible combination to take
into account. For each combination a specific rule is considered: Rules 121-124.

6.2.3.a.4 Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case
study as all the sub-tasks of the virtual polling system are presented combined into
the same window.

6.2.3.a.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs that reify them is realized. As AIOs can have
two types (e, ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

173

6. Validation

6.2.3.a.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and triggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.2.3.b Case 2: generation of vocal Ul
For the generation of VUIs the designer takes into consideration just the abstract
and concrete vocal part of each transformation rule.
6.2.3.b.1 Sub-step 3.1: Reification of AC into CC
For the reification of AC into CC, Rules 15 and 16 are concretizing the separated

list design option into vocal objects.

6.2.3.b.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different VICs depending on the type of facets of
the corresponding AICs:

- Generation of a vocalPrompt, a vocallnput and a record element that enable users
to utter their #ame (Table 6-5): Rule 105.
Design option Value CIC
Prompting Vocal (A) vocalPrompt
Input Vocal (A) vocallnput + record

Sub-task guidance Unguided -
Answer cardinality Simple -

Confirmation answer Without confirmation -

Table 6-5 Design option values for vocallnput

= Generation of a wocalPrompt, a vocallnput and a record and a VC of type
vocalConfirmation that enable users to utter and confirm the zpCode (Table

06-6): Rule 55.
Design option Value CIC
Prompting Vocal (A) vocalPrompt
Input Vocal (A) vocallnput + record
Sub-task guidance Unguided -
Answer cardinality Simple -
Confirmation answer With confirmation vocalConfirmation

Table 6-6 Design option values for vocallnput with confirmation

= Generation of a vocallnput, a grammar and the associated part element when
an input facet of type select is encountered: Rule 99. The rule enables users
to specify the gender, the age category and the answers to the questions (Table 6-7).

174

6. Validation

In order to add the corresponding grammar items for each selection value
of the facet, Rule 51 is applied.

Design option Value CIC
Prompting Vocal (A) vocalPrompt
Input Vocal (A) vocallnput
Sub-task guidance Guided vocalPrompt
Answer cardinality Multiple grammar + part +items
Confirmation answer Without confirmation -

Table 6-7 Design option values for vocallnput with grammar items

- Generation of a vocalPrompt when an output facet of type convey element is
identified (Table 6-8): Rule 106 has to be applied in order to ensure the

announcement of the guestionnaire section.

Design option Value CIC

Prompting Vocal (A) vocalPrompt

Table 6-8 Design option values for vocalPrompt

- Generation of a submit element that enables users to send the questionnaire or
to cancel the fulfilled data (Table 6-9): Rule 45 has to be applied each time a
control facet of type start operation is encountered.

Design option Value CIC

Control type containment Global submit

Table 6-9 Design option values for submit element

6.2.3.b.3 Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into vocalCIOs, we define a
vocalAdjencency relationship between these vocalCIOs that specify a delay time
of 1 second. As vocalCIOs can have two types (i.e., VCs or VICs), there are four
possible combination to take into account. For each combination a specific rule is
considered: Rule 121-124.

6.2.3.b.4 Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case
study as all the sub-tasks of the virtual polling system are presented combined into

the same window.

6.2.3.b.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs that reify them is realized. As AIOs can have
two types (e, ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

175

6. Validation

6.2.3.b.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and triggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.2.3.c Case 3: generation of multimodal UI

For the generation of MMUIs the designer takes into consideration the abstract
elements and both the vocal and graphical parts of the transformation rule.

6.2.3.c.1 Sub-step 3.1: Reification of AC into CC

For the reification of AC into CC, Rules 15 and 16 are concretizing the separated
list design option into graphical and vocal objects.

6.2.3.c.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different CICs depending on the type of facets of
the corresponding AICs and on the design options selected by the designer:

= Insert name and Insert zip code tasks: Rule 105 has to be applied in order to
generate a MM zpufText widget that supports the follwing design decisions

(Table 6-10).
Design option Value CIC
Prompting Multimodal (R) outputText +
vocalPrompt
Input Multimodal (E) inputText + vocallnput +
record
Immediate feedback Graphical (A) inputText
Guidance for input Iconic (A) imageComponents
(microphone icon +
keyboard icon)
Sub-task guidance Unguided -
Answer cardinality Simple -
Confirmation answer Without confirmation -

Table 6-10 Design option values for multimodal inputText

- Select gender, Select age category and Answer to the questions tasks: Rules 99 and 100
have to be applied in order to generate MM groups of radio buttons (Table

6-11).
Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Vocal (A) vocallnput + grammar + part
Immediate feedback Graphical (A) radioButton
Guidance for input Iconic (A) imageComponents (microphone

176

6. Validation

icon)
Sub-task guidance Guided radioButton
Answer cardinality Simple -
Confirmation Without confirmation -
answer

Table 6-11 Design option values for multimodal radioButtons

. Generation of OK, CANCEL buttons that will ensure the Send questionnaire
task and the cancellation of the fulfilled data (Table 6-12): Rule 45.

Design option Value CIC

Control type containment Global buttons

Table 6-12 Design option values for outputText

6.2.3.c.3 Sub-step 3.3: Synchronization of CICs

Two rules are used for the synchronization of the previously generated CICs:

. Rule 120 is applied in order to synchronize the vocallnput and the inputText

- Rule 118 is applied in order to synchronize the vocallnput and the GC of type
groupBox that embeds a set of radioButtons

6.2.3.c.4 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.2.3.c.5 Sub-step 3.5: Navigation definition

The rules that ensure the navigation definition are not applied in the current case
study as all the sub-tasks of the virtual polling system are presented combined into
the same window.

6.2.3.c.6 Sub-step 3.6: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs and vocalCIOs that reify them is realized. As
AlIOs can have two types (i.e., ACs and AICs), four rules describing the four
possible combinations are considered: Rules 125-128.

6.2.3.c.7 Sub-step 3.7: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6.2.4 Step 4: From CUI Model to FUI

This step consists of transforming each variant of the CUI into its respective FUI
specification. Hereafter, we illustrate the results of the interpretation of the FUIs

177

6. Validation

with their corresponding browsers. Thus, Figure 6-8 shows the resultant GUI
interpreted with Internet Explorer browser, while Figure 6-9 illustrates a possible
User (i.e., U) system (i.e., S) vocal interaction. The MM FUI is interpreted with

Opera browser (Figure 6-10).

Graphical Polling System - Windows Internet Explorer

@ 5 = 8] D:\ThesisiPRD thesisiCase studyiWirtual poling systemipaling_html bt

@v

e 4| @ craphical Poling System I

Name
Zip code

Gender
O Male
© Female

Age
O 18-35
O 35-45
O 45+

Questionnaire

Questionl: Did you enjoy our teaching course?

O Yes
O No

Question2: Do you think that our teachers are well prepared?

O Yes
O No

Question3: Would you like to attend the next teaching level?

Q Yes
O No

Figure 6-8 Graphical Ul

178

S: Welcome to the wirtual polling system.
S: Please say your name.

U: John Maverick.

S: What iz your zip code?

U: 18

S: Are you sure?

T: Yes.

S: Please say vour gender.

U: Male.

S: Are you sure?

U: Yes

S: How old are you?

u: 32

S: Are you sure?

U: Tes.

S: Please answer to the following questions
S: Did you enjoy cur teaching course?

U: Yes.

S: Do you think that our teachers are well prepared?
U: Yes

S: Would you like to attend the nesxt teaching level?
U: Mo

S: Do you want to send the questionnawe?
T: Tes

S: Are you sure?

U: Tes.

Figure 6-9 Vocal Ul

6. Validation

) Multimodal Polling System - Opera

File Edit View Bookmarks idgets Tools Help

L\E]ﬁiquﬁ:fﬁq/dj'uﬂ

Open Save Print Find Home Panels Tile Cascade Woire
(L] 8 kimadsl Poling System X |
o o« v b D S Fieifiocalhost D: Thesis/PhD%20t hesisiCaset20study Virtust
a P Find next
J<
Name 7

Zip code @r -

Gender @[]

Iale
Fernale

a8

i

1835
35-45
45+

" Questi ire

Gr
Questionl: Did you enjoy owr teaching comse?

Tes
Mo

—
Question2: Do you think that our teachers are well prepared? l[j

Yes
No

—
Question3: Would you like to attend the next teaching level? @

Tes
Mo

Ok | CANCEL

Figure 6-10 Multimodal UI

6.3 Case study 2: Car Rental Application

The second case study is dedicated to an on-line car rental system that allows
users to search, select and pay a car based on a set of preferences. The scenario is
as follows (Figure 6-11): (1) Task and Domain Models are specified, (2) AUI is
generated from these models, (3) three CUIs are derived based on the Input
design option values (i.e., graphical, vocal and MM with graphical and vocal

equivalence) and (4) three FUIs are derived corresponding to each CUI obtained
in the previous step.

179

6. Validation

Concrete User Interface ~ Final User Interface
(graphical input) (graphical inp ut)
Task and | Abstract User Concrete User Interface Final User Interface
Domain | Interface (vocal input) (vocal input)
Concrete User Interface Final User Interface
(multimo dal equivalence) (multimodal e quivalence)

Figure 6-11 Development scenario for car rental application

6.3.1 Step 1: The Task and Domain Models

The root task of the Task Model (Figure 6-12) is decomposed into three basic

sub-tasks:

1. Determine rental preferences (Figure 6-13): the user has to select a series of
information, such as rental location, expected car features, type of insurance.
The task is iterative and the user can interrupt it at any moment.

2. Determine car (Figure 6-14): the system will launch the search of available
cars depending of the preferences established in the previous sub-task. Based
on the search results, the user will select the car. The task is iterative and the
user can interrupt it at any moment.

3. Provide payment information (Figure 6-15): the user provides a set of
personal information, such as name and card details. Then, the system checks
the validity of the card and finally, the user confirms the payment.

&

Brfca

) 0== e’ [== e

Determine rental preferences Determine car Provide payment information

Figure 6-12 The decomposition of Determine rental preferences sub-task

it
Dot et i

e SRt ﬂ"ﬁ':: —_— [
ﬁ: " Miti " —
e __ e e
T = SN AN N

S — P N // \
g 1 e : E — P \\
Sebeaa ek oson tpastarfi i gme s:km,g;u\wmn Spaptiraim.me Semtcarclad Gelmuassmission np &.’, " i

I - ‘..‘\‘._\ 2 , o g SsctnnEncatpe |Seetapsans naen |
BB B —n— b —n— B B —n—8 — R —a—

WAy TMEGSEY jpeoddey Seahmenf Swatoes Seeenky WMOOY goie Spedgmenh Ssesifear

Figure 6-13 The decomposition of Determine rental preferences sub-task

180

6. Validation

Spetiffeart Finish determine car

:!_'!-! g %

Search available cars Selectcar

Figure 6-14 The decomposition of Determine car sub-task

==

-

Check card Caonfirm paiment

E——F ——

Input name Select card type Specify exfpiration date

F—1—8

Specify yvear Specify manth

Figure 6-15 The decomposition of Provide payment information sub-task

An excerpt of the UsiXML specification generated in Ideal XML corresponding to
the Task Model is presented Figure 6-16.

181

6. Validation

=taskhodel id="TaskhModelC51" name="TaskModal"=
=task id="Root' name="Rent car" importance="4" categor="abstract"=
=task id="T1" name="Determine rental preferences” importance="3" category="abstract'=
=taskid="T11" name="Specify rental information” importance="3" categor="interactive"r=
=task id="T111" name="Chose rental location" impaortance="3" categor="interactive"/=
=taskid="T1111" name="8elect pick-up location" importance="3" categor="interactive"=
=task id="T11111" name="Select city' taskType="select' tasklitern="element' importance="3" categon="interactive"/=
=ltask=
=tagk id="T1112" name="Select pick-up date" importance="3" category="interactive"=
=task id="T11121" name="Specify day" taskType="select' taskitern="element' impaorance="3" categor="interactive"i=
=task id="T11122" name="Select month" taskType="select' taskltem="element" importance="3" categor="interactive"i=
=task id="T11123" name="Select vear' taskType="select' taskltern="element’ imporance="3" categor="interactive"r=
=ftask=
=taskid="T1113" name="Select return location" importance="3" categor="interactiva"=
=task id="T11131" name="Select city" taskType="select' taskiterm="element' importance="3" categon="interactive"’=
=itask=
=taskid="T1114" name="Select return date" importance="3" category="interactive"=
=task id="T11141" name="Specify day' taskType="select' taskltern="element" importance="3" categor="interactive"/=
=task id="T11142" name="Select month" taskType="select' taskitern="element' importance="3" categor="interactive"/=
=task id="T11143" name="Selectyear" taskType="select' taskltern="element' importance="3" category="interactive"/=
=ltask=
=fask=
=task id="T112" name="Select car’ importance="3" categor="interactive"=
=taskid="T1121" name="Select car clags" taskType="select’ taskitern="element" importance="3" categor="interactive"i=
=taskid="T1122" name="Selecttransimission type" taskType="select" taskliiern="element' importance="3" categorn="interactiva"f=
=itask=
=task id="T113" name="Selectinsurance" importance="3" categom="interactive"=
=taskid="T1131" name="Select insurance type" taskType="select" tasklitern="element" importance="3" categon="interactive"r=
=taskid="T1132" name="Select optional insurance" taskTvpe="select’ taskitern="element" importance="3" categor="interactive"f>
=ftask=
=task id="T12" name="Finish determine rental preferences" taskType="start" taskltern="operation" importance="3" categor="user"f=
=ftask=
=task id="T2" name="Determine car' importance="5" categor="ahstract'=
=tagk id="T21" narme="Specify car" importance="3" categon="abstract'r=
=task id="T211" name="Search available cars" taskType="start" taskiterm="operation" importance="3" categon="systern"f=
=tagk id="T212" name="Select car" taskType="select' taskitern="element' importance="3" categor="interactive"r=
=taskid="T22" name="Finish determine car' taskTwpe="start" taskiter="operation" importance="3" categon="user=
=ftagk=

Figure 6-16 Excerpt of Task Model expressed in UsiXML

The Domain Model (Figure 6-17) involves 7 classes. Client class describes client’s
characteristics. Car class specifies the features of the car, like car class and type of
transmission. Insurance offers information about the different types of insurances
assigned to each car. Rentallnformation class describes the preferences of the client,
such as departure and arrival coordinates, pick up and return dates. Transaction
class gathers information related to a car rental payment. CreditCard provides
information about credit cards, the only payment modality available in our system.
Coordinates is a class used as data type by Rentallnformation and Client classes.

182

6. Validation

Coordinates Rentallnformation
String strest; departure;

int streetMumkber; atrigval,

String city; <— S SR Date pickUpDate;

int zipCode; Date returnDste;
String country;

n

Client Car Insurance
String name; String carClazs; int insurancehlumber;
address; String transmiszionType; String mandatorylnsuranceType,
searchCar(); String optionallnsuranceType;
CreditCard Transaction @
String cardType, Date date;
int cardMumber; é—— time;
Date expirationDa] accomplishTransaction);
check' alicity();

Figure 6-17 Domain Model for the car rental system

Figure 6-18 illustrates an excerpt of the Domain Model expressed in UsiXML
language.

=damainkodel id="damainModel:32" name="damainMadel"s
=damainClass id="DC1" name="Car"s
=attribute id="A1DC1" name="carClass" attrihuteDataType="string" attributeCardMin="1" attribute CardMax="1"=
=zenumeratedialue name="campact'i=
=enumeratadifalue name="mini Wan'"f=

=enumeratedifalue name="4 Wheel Drive"/=
=fattribute=

=attribute id="A2DCA1" name="transmisssionType" attributeDataType="string" attribute Cardhin="1" attrihute Cardhax="1"»
=enumeratedifalue name="automatic" =

=enumeratadifalue name="manual'f=
=fattribute=
=iomainClass=

=domainClass id="DC2" name="Rental Information"=

=attribute id="A1DC2" name="departure" aftributeDataType="Caoardinates" attributeCardin="1" attributeCardiax="1"r=
=attribute id="A2DC2" name="arrival" attrihuteDataType="Coordinates" attributeCardmMin="1" attribute CardMax="1"r=
=attribute id="A3DC2" name="picklUpDate" attributeDataType="Date" attributeCardhdin="1" attribute Cardhax="1"/=
=attribute id="A4DC2" name="returnDate" aftributeDataType="Date" atiributeCardMin="1" attrihute Cardhax="1"/=

=idamainclasss

=domainClass id="DZ&3" name="Client'=

=attribute id="A1DC3" name="name" attrihuteDataType="string" attribute Cardiin="1" attribute Cardhlax="1"/=
=attribute id="A2DC3" name="address" atiributeDataType="Coordinates" attribute CardMin="1" attribute Cardmax="1"r=
=idamainclasss

=domainClass id="DZ4" name="Insurance"=

=attribute id="A1DC4" name="insuranceMumher' attributeDataType="integer attributeCardin="1" attributeCardhlax="1"/=

=attribute id="A2DC4" name="mandatoryinsuranceType" attributeDataType="string" attrihuteCardmin="0" atiribute Cardilax="1"=
=enumeratedivalue name="standard"i=

=enumeratedyalue name="full coverage"f=
=rattribute=

=attribute id="A3DC4" name="optionallnsuranceType" attributeDataType="string" attributeCardilin="0" attribute Cardhlax="3"»
=enumeratedifalue name="l0ss damage waiver'f=
=enumeratedyalue name="personal accident insurance'f=

=enumeratedialue name="personal effects protection’=
=rattribute=

=iomainClags=

Figure 6-18 Excerpts of Domain Model expressed in UsiXML

The mappings between the Task Model and the Domain Model are summed-up
in Table 6-13.

183

6. Validation

Task Model

Domain Model

Select pick-up city

(select element)

Rentallnformation.departure.city

Specity day (select element) | Rentallnformation.pickUpDate.day
Specify month (select element) | Rentallnformation.pickUpDate.month
Specify year (select element) | Rentallnformation.pickUpDate.year

Select return city

(select element)

Rentallnformation.arrival.city

Specify return day

(select element)

Rentallnformation.return.day

Specify return month

(select element)

Rentallnformation.return.month

Specity return year

(select element)

Rentallnformation.return .year

Select car class

(select element)

Car.carClass

Select transmission type

(select element)

Car.transmissionType

Select insurance type

(select element)

Insurance.mandatorylnsuranceType

Select optional insurance

(select element)

Insurance.optionallnsuranceType

Search available cars (start operation) | Car.searchCar()

Select car (select element) | Return parameter of method
Car.searchCar()

Input name (create element) | Client.name

Select card type (create element) | CreditCard.cardType

Input card number (create element) | CreditCard.cardNumber

Specify the month of

(select element)

CreditCard.expirationDate.month

the expiration date

Specity the year of (select element) | CreditCard.expirationDate.year

the expiration date

Check card (start operation) | CreditCard.checkValidity()

Confirm payment (start operation) | Transaction.accomplishTransaction()

Table 6-13 Mappings between task and domain models

6.3.2 Step 2: From Task and Domain Models to AUI Model

The second step considers the generation of the AUI from the previuosly
specified Task and Domain Models

6.3.2.a Sub-step 2.1: Rules for the identification of the AUI structure

The current sub-step considers the following design option values and their

corresponding rules:

. Sub-task presentation in combine grouped lists: Rule 3 and 4

- Control concretization with Global placement (Rules 43) and Simple cardinality (Rule
40).

In addition, Rule 81 is applied in order to create AICs for leaf tasks.

184

6. Validation

6.3.2.b Sub-step 2.2: Rules for the selection of the AICs

The current sub-step generates facets for AICs that support the execution of the

leaf task:

= Input facet of type select element for the AICs assigned to the following
tasks: select city, select day, select month, select year for pick-up information as well
as for return information, select car class, select transmission type, select insurance
type, select optional insurance, select car, select expiration date of the credit card
(month and year): Rule 84; for each enumerated value of the attribute
manipulated by the tasks that is executed into the AIC, a selection value
with the same name as the enumerated value is attached to the above
created facet: Rule 85

= Input facet of type create element for the AICs assigned to the znput name and
input card number tasks: Rule 83

= Control facets of type start operation for the AICs that ensure the data
control: Rule 44.

6.3.2.c Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an
abstractAdjacency relationship between these AIOs. As AIOs can have two types
(i.e., ACs or AICs), there are four possible rules to be applied (Rule 87-90).

6.3.2.d Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed
into AIOs, we generate an abstractDialogControl relationship between these
AlOs that have the same semantics as the temporal relationship defined between
the tasks. As AIOs can have two types (i.e., ACs or AICs), there are four possible
combination that are considered by Rules 91-94.

6.3.2.e Sub-step 2.5: Rules for the derivation of the AUI to domain
mappings
In order to ensure the synchronization between the AICs and attributes of objects
from the Domain Model, Rule 95 generates the #pdates relationship. Moreover,
Rule 96 enables the triggering of methods by AICs through the #uggers
relationship.

6.3.3 Step 3: From AUI Model to CUI Model

From the AUI obtained in the previuos step, three CUIs will be derived:

. Case 1 — CUI with graphical input: the input modality used to interact
with the system is entirely graphical.

. Case 2 - CUI with vocal input: the input modality used to interact with
the system is entirely vocal.

185

6. Validation

= Case 3 - CUI with multimodal equivalent input: graphical or vocal input
modalities can be selected to interact with the system.

6.3.3.a Case 1: generation of CUI with graphical input
For this sub-case only the graphical elements of the rules are considered.

6.3.3.a.1 Sub-step 3.1: reification of AC into CC
For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical objects.

6.3.3.a.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs and considering the set of design options identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value

and the generated CIC:
- For Input name and Input card number tasks an outpuflText and an s are gener-
ated (Table 6-14): Rule 105
Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) inputText
Immediate feedback Graphical (A) inputText
Sub-task guidance Unguided -
Answer cardinality Simple inputText
Confirmation answer Without confirmation -

Table 6-14 Design option values for inputText

= For each of the following tasks, Select pick-up and return information (city, day,
month, year), Select card type, Select excpiration date (month, year): Rules 97 and 98
enerate a comboBox widgets (Table 6-15).

Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) comboBox
Immediate feedback Graphical (A) comboBox

Sub-task guidance Guided items
Answer cardinality Simple comboBox

Confirmation Without confirmation -
answer

Table 6-15 Design option values for comboBox

= For the Select car class, Select transmission tipe, Select insurance tjpe tasks: Rules 99
and 100 generate radioButtons (Table 6-16).
Design option Value CIC
Prompting Graphical (A) outputText

186

6. Validation

Input Graphical (A) radioButtons
Immediate feedback | Graphical (A) radioButtons
Sub-task guidance | Guided radioButtons
Answer cardinality Simple radioButtons
Confirmation Without confirmation | -

answer

Table 6-16 Design option values for radioButtons

- For the Select optional insurance task: Rules 101 and 102 generate checkBoxes

(Table 6-17).
Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) checkBoxes
Immediate feedback Graphical (A) checkBoxes
Sub-task guidance Guided checkBoxes
Answer cardinality Multiple checkBoxes
Confirmation Without confirmation -
answer

Table 6-17 Design option values for checkBoxes

. For the Select car task, the graphical elements of Rules 103 and 104 generate a
listBox widget (Table 6-18).

Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) listBox
Immediate feedback Graphical (A) listBox
Sub-task guidance Guided items
Answer cardinality Simple listBox
Confirmation Without confirmation -
answer

Table 6-18 Design option values for listBox
. For the Confirm/cancel payment task, Rule 45 generates the cotresponding
buttons.
6.3.3.a.3 Sub-step 3.3: Arrangement of CICs
Rules 121-124 are used to specify the arrangement of graphical CICs.

6.3.3.a.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded

into the same vocalGroup.

187

6. Validation

6.3.3.a.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical CIOs that reify them is realized. As AIOs can have
two types (ie., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.3.3.a.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and #riggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.3.3.b Case 2: generation of CUI with vocal input

6.3.3.b.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into vocal objects.

6.3.3.b.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different VICs depending on the type of facets of
the corresponding AICs based on the set of design options identified in Section
4.4.3.b.1.2. For each task we specify the considered design option value and the

generated CIC:
. For Input name and Input card number tasks (Table 6-19): Rule 60
Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Vocal (A) vocallnput + record
Immediate feedback Graphical (A) inputText
Guidance for input Iconic (A) imageComponent
(microphone icon)
Sub-task guidance Unguided -
Answer cardinality Simple vocallnput
Confirmation answer | Without confirmation -

Table 6-19 Design option values for multimodal inputText

. For each of the following tasks, Sekct pick-up and return information (city, day,
month, year), Select card type, Select expiration date (month, year), Rules 97 and 98
generate a MM comboBox (Table 6-20).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Vocal (A) vocallnput + grammar
Immediate feedback Graphical (A) comboBox

188

6. Validation

Guidance for input Iconic (A) imageComponent (microphone
icon)
Sub-task guidance Guided comboBox items+ vocalPrompt
+ grammar items
Answer cardinality Simple comboBox + part
Confirmation Without confirmation -
answer

Table 6-20 Design option values for multimodal combobox

= For the Select car class, Select transmission type, Select insurance type tasks: Rules 99
and 100 generate MM radjoButtons (Table 6-21).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Vocal (A) vocallnput + grammar
Immediate feedback Graphical (A) radioButtons
Guidance for input Iconic (A) imageComponent (microphone
icon)
Sub-task guidance Guided radioButtons + grammar items
Answer cardinality Simple radioButtons + part
Confirmation Without confirmation -
answer

Table 6-21 Design option values for multimodal radioButtons

. For the Select optional insurance task: Rules 101 and 102 generate MM
checkBoxes (Table 6-22).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Vocal (A) vocallnput + grammar
Immediate feedback Graphical (A) checkBoxes
Guidance for input Iconic (A) imageComponent (microphone
icon)
Sub-task guidance Guided checkBoxes + grammar items
Answer cardinality Multiple checkBoxes + part
Confirmation Without confirmation -
answer

Table 6-22 Design option values for multimodal checkBoxes

- For the Select car task: Rules 103 and 104 generate a MM /iszBox widgets

(Table 6-23).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Vocal (A) vocallnput + grammar
Immediate feedback Graphical (A) listBox
Guidance for input Iconic (A) imageComponent (microphone

189

6. Validation

icon)
Sub-task guidance Guided listBox items + vocalPrompt +
grammar items
Answer cardinality Simple listBox + part
Confirmation Without confirmation -
answer

Table 6-23 Design option values for multimodal listBoxes

" For the Confirm/cancel payment task: Rule 45 generates the corresponding
buttons.

6.3.3.b.3 Sub-step 3.3: Synchronization of CICs

This sub-step is applied in order to ensure the synchronization between vocal

CIOs and graphical CIOs generated in the previous sub-step:

= Rule 120 is applied in order to synchronize the vocallnput and the inputText.

- Rule 116 is applied in order to synchronize the vocallnput and the comboBox.

. Rule 118 is applied in order to synchronize the vocallnput and the groupBox
that embeds a set of radioButtons.

. Rule 117 is applied in order to synchronize the vocallnput and the groupBox
that embeds a set of checkBoxes.

= Rule 119 is applied in order to synchronize the vocallnput and the /istBox.

6.3.3.b.4 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.3.3.b.5 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.3.3.b.6 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.3.3.b.7 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and #riggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

190

6. Validation

6.3.3.c Case 3 : generation CUI with multimodal equivalent input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent MM CUI with
equivalent graphical and vocal input.

6.3.3.c.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical and vocal objects.

6.3.3.c.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs and VICs depending on the type of

facets of the corresponding AICs based on the set of design option identified in

Section 4.4.3.b.1.2. For each task we specify the considered design option value

and the generated CICs:

= For Input name and Input card number tasks a MM inputText is generated (Table
6-24): Rule 105.

Design option Value CIC
Prompting Multimodal (R) outputText+vocalPrompt
Input Multimodal (E) inputText + vocallnput +
record
Immediate feedback Graphical (A) inputText
Guidance for input Iconic (A) imageComponents
(microphone + keyboard
icons)
Sub-task guidance Unguided -
Answer cardinality Simple inputText + vocallnput
Confirmation answer Without confirmation -

Table 6-24 Design option values for multimodal inputText

= For each of the following tasks, Select pick-up and return information (city, day,
month, year), Select card tpe, Select expiration date (month, year): Rule 97 and 98
generate a comboBox (Table 6-25).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Multimodal (E) comboBox + vocallnput +
grammar
Immediate feedback Graphical (A) comboBox
Guidance for input Iconic (A) imageComponents (microphone
+ mouse icons)
Sub-task guidance Guided comboBox items+ vocalPrompt
+ grammar items
Answer cardinality Simple comboBox + part

191

6. Validation

Confirmation
answer

Without confirmation

Table 6-25 Design option values for multimodal combobox

= For the Select car class, Select transmission tipe, Select insurance type tasks: Rules 99
and 100 generate MM radjoButtons (Table 6-20).

Design option

Value

CIC

Prompting Multimodal (R) outputText + vocalPrompt
i + -+
Tnput Multimodal (E) radioButtons + vocallnput
grammar
Immediate feedback Graphical (A) radioButtons
Guidance for input Tconic (A) imageComponent (.rmcrophone
+ keyboard icons)

Sub-task guidance Guided radioButtons + grammar items
Answer cardinality Simple radioButtons + part

Confirmation
answer

Without confirmation

Table 6-26 Design option values for multimodal radioButtons

- For the Select optional insurance task: Rules 101 and 102 generate checkBoxes

(Table 6-27).
Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Multimodal (E) checkBoxes + vocallnput +
grammar
Immediate feedback Graphical (A) checkBoxes
Guidance for input Iconic (A) imageComponent (microphone
icon)
Sub-task guidance Guided checkBoxes + grammar items
Answer cardinality Multiple checkBoxes + part

Confirmation
answer

Without confirmation

Table 6-27 Design option values for multimodal checkBoxes

. For the Select car task: Rules 103 and 104 generate a MM /ZistBox widgets

(Table 6-28).
Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt
Input Multimodal (E) listBox + vocallnput + grammar

Immediate feedback Graphical (A) listBox

Guidance for input Iconic (A) imageComponents
(microphone+keyboard icons)

Sub-task guidance Guided listBox items + vocalPrompt +

grammar items
Answer cardinality Simple listBox + part

192

6. Validation

Confirmation Without confirmation -
answer

Table 6-28 Design option values for multimodal listBoxes
= For the Confirm/cancel payment task, Rule 45 generates the corresponding
buttons and submit elements.
6.3.3.c.3 Sub-step 3.3: Synchronization of CICs
The rules identified in the correspond section of the previuos case are reused in
order to ensure this sub-step.
6.3.3.c.4 Sub-step 3.4: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.3.3.c.5 Sub-step 3.5: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.3.3.c.6 Sub-step 3.6: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.3.3.c.7 Sub-step 3.7: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and #riggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6.3.4 Step 4: From CUI Model to FUI

This step consists of transforming each version of the CUI into its corresponding
FUI specification. The resultant FUIs interpreted with Opera browser are: FUI
enabling graphical input (Figure 6-19), FUI enabling vocal input (Figure 6-20) and
the FUI enabling equivalent graphical and vocal input (Figure 6-21).

193

6. Validation

[uo#
Corade Vo Coscads Voo
| fathar ma I | b
[Hamlpratorincis &
Phck-up infermation Ruturn information:
~Pickeup i [~ Retum o
City: [Cay |= | City: Cby = Cuy: 7 x City: L3
~Pick-ap date ~ Romm date Fiek-up date)
Day: | = Day: 1 = Day: [
Month: January = Month: Janyary = Month; = X
Year: 207 = Year: 207 = Voar =
Car information Insurance iformation

— Car information
+ Transmission type

mitoemate
mamusl

[~ Car elass
compart
reonsmy
sport

[~ Insurante information

[~Tnaursnce bype

standard
fll caverage

-+ Optianal mssrance

jurdie protection
persanal aceideet
personsl efects

S 4

Search availabl cors

Car srl.nninn‘-j

Payment oformation. P
Nama
Card type [=
Card mmber
Espiration date:
Blonth:

Year: .

JL‘:K CANGEL

Figure 6-19 FUI — graphical input

194

Transmissisn type 7
wtomatic
snaciial

1]

Tnsurance type
standard
il coverage

Y

Car elass Optisnal inswarance
compact munche profection
ecanomy pericaal accident
et pericnal ellects

S 4 Search avadabis cam

Car seleetion U

Payment infermntion

Card type L
Cardmunber F

- Expiration date: U

Month:

Figure 6-20 FUI - vocal input

6. Validation

0 &£
Cascade Woice

“hesis/PhD20thesis{User %20kest %20 application/Car20renkal % 20system20case % 20study/Multinodal® 20C ars2rental . 20sys

B ovoce [authorm

~Rental preferences
—Pick-up information————— —Return information:
=% 0 <%

City: Lr% ~ oty & City: \{7% < ity =
Pick-up date l*:fil‘ i 4 Return date ltj' . g
Day: |1 ~ Day: 1 v
Month: | January [~] Month: January |
Year: 2007 v Year: 2007+

Carinformation——————————— Insurance information
B ! n N 8 <
Transmission type [Lnj 7 Insurance type 5 7
avtomatic standard
rmatmal _ full coverage
- o~ . [s] "-f —
Car class lé‘;; 7 Optional insurance 5
compact | juridic protection
economy | personal accident
sport || personal effects

4

Search available cars

Car selection 1&}! -f

r~Payment information

Name ‘?
Card type ﬁ‘ i 4 =
Card number ‘.'j

Expiration date: @r ‘5

Month: r -

Year: 17 -

j DK | CANCEL

Figure 6-21 FUI — equivalent graphical and vocal input

6.4 Case study 3: Map Browsing Application

The third case study considers a non web-form application that allows users to
browse a map in order to identify different objectives. The scenario is as follows

195

6. Validation

(Figure 6-22): (1) Task and Domain Models are specified, (2) AUI is generated
from these models, (3) three CUIs are derived based on the Input design option
values (i.e., graphical, vocal and MM) and (4) three FUIs are derived
corresponding to each CUI obtained in the previous step.

Task and
Domain

| Abstract User

Concrete User Interface

(graphical input)

Final User Interface
(graphical input)

.| Concrete User Interface

Interface

(vocal input)

Final User Interface
(vocal input)

Concrete User Interface

| Final User Interface

(multimodal input)

(multimodal input)

Figure 6-22 Development scenario for the map brosing system

6.4.1 Step 1: The Task and Domain Models

The task (Figure 6-23) consisted in browsing a 3 by 3 grid map for which a

guidance with respect to the structure of the browsing instruction was provided
[Stan07]. This structure was obtained thanks to the support offered by our

ontology to the general structure of an instruction (Section 3.3.3) which enabled

us to specify its components:

= Action: translate, zoom in, zoom out.
. Object: image displaying the map.

= Parameter X: left, center, right.

= Parameter Y: top, center, bottom.

Due to the fact that there is only one map to manipulate, the object became non-

mandatory when specifying the instruction. The selection of the action has to be

followed by the specification of the two parameters which were agregated in order

to provide an easier specification of the browsing direction (e.g., top left, top

richt, bottom left). Once the instruction is conveyed the system is updating the
ght, y y p g

image corresponding to the specified instruction.

[1%

o

FE

Select browesing action

Select browsing direction

i

Show updated map

Figure 6-23 Task Model of the map browsing application

196

6. Validation

The UsiXML specification corresponding to the Task Mode/ generated in
Ideal XML is presented in Figure 6-24.

=taskhodel id="TaskModel 51" name="Taskhodel"=
=taskid="Root' name="Browse map" importance="8" category="ahstract"=
=taskid="T1" name="Specify instruction" importance="3" categone="interactive"=
=task id="T11" name="Select browsing action” taskType="gelect' tasklitem="element" importance="3" category="interactiva"i=

=taskid="T12" name="Select browsing direction" taskType="select' taskitern="element" importance="3" categon="user'f=
=ftask=

=task id="T2" name="Show updated map" importance="5" taskType="convey" taskitern="element' categon="system"’=
=ftask=

=enablingWithinformationPasing id="e1"=
=g0Urce sourceld="T1"f=
=target targetld="T2""=
=fenablingithinformationPasing=
=enabling id="e2"=
=goUtce sourceld="T11"=
=target target/d="T12""=
=lenahling=
=taskModel=

Figure 6-24 Specification of the Task Model in UsiXML

The Domain Model (Figure 6-25) involves four classes: (1) the Iwmage class
specifies the features of the images that can be browsed by the user, (2) the
VizibilityZone class determines the area of the image that is visible for the users, (3)
the ExplorationZone class defines the complete area including the non-visible as
well as the visible part of the image and (4) the Ce// class determines the positions
of the cells composing the exploration and the visibility zones of the image.

ExplorationZone Cell

String action; int posi;

String direction; int posY;

int cimi; |

int clitn’y;

executelnstructiod
VisibilityZone Image @
int dim; int id;
int dim’; String name;
int xOrigin; flost size;
int v Crigin; String resalution;

String format;

Figure 6-25 Domain Model for the map browsing system

Figure 6-26 illustrates an excerpt of the Domain Model expressed in UsiXML.

197

6. Validation

=domaintaodel id="damainModel 32" name="damainMadel"=
=domainClass id="DC1" name="Explorationfone"=

=attribute id="A1DC1" name="action" attribute DataType="string" attribute Cardiin="1" attribute CardMax="1"=
=enumeratedialue name="translate"f=
=enumeratedialue name="zaom in"/>
=enumeratedialue name="zoom out'=

=fatiribute=

=attribute id="A2DC1" name="direction" attributeDataType="string" attributeCardmin="1" attribute CardMax="1"=
=enumeratedivalue name="top left"/=
=enumeratedyvalue name="top"r=
=enumeratedvalue name="top right'/=
=enumeratedialue name="left"/=
=enumeratedialue name="center'f=
=enumeratedivalue name="right'r=
=enumeratedialue name="hottom left'f=
=enumeratedialue name="hottom right"I>|

=laftribute=

=method id="1DCE" name="executelnstruction"=
=param id="P1M1DC1" dataType="action" name="action_param" paramType="input'f=
=patarn id="PZM10C1" dataType="direction" narme="diraction_param" paramType="input'=
=imethod=
=idomainClass=
=domainClass id="DC2" name="visibilityZone"=
=attribute id="A1DC2" name="dimx" attrihuteDataType="integer" attributeCardhdin
=attribute id="A2DC2" name="dimy" attributeDataType="integer" attributeCardhin
=attribute id="A3IDC 2" name="x0rigin" attributeDataType="integer" attribute Cardh
=attribute id="A4DC 2" name="yOrigin" attributeDataTyvpe="integer" attribute CardMin="1" attributeCardhax="1"f=
=idomainClass=
=domainClass id="DC2" name="cell"=
=attribute id="A1DC2" name="posX"' attrihuteDataType="integer" attributeCardhin="1" attribute CardMax="1"r=
=attribute id="A2DC 2" name="posY" attributeDataType="integer" attributeCardhin="1" attribute CardMax="1"r=
=idomainClass=
=domainClass id="DC2" name="image"=
=attribute id="A1DC 2" name="id" attrihuteDataType="integer" attributeCardiin="1" attribute CardMax="1"r=
=attribute id="A2DC 2" name="name" attributeDataType="string" attributeCardMin="1" attribute Cardmax="1"f=
=attribute id="A3DC2" name="size" atiributeDataType="float" attrihute Cardmin="1" attribute Cardhax="1"r=

1" attribute Cardhax="1"=
1" attribute Cardhax="1"f=

" attributeCardhlax="1"f=

=attribute id="A4DC2" name="resolution" attributeDataType="string" attributeCardMin="1" attribute Cardhax="1"f=

=attribute id="A4DC 2" name="format" attributeDataType="string" attributeCardhin="1" attribute CardMax="1"r=
=idomainClass=

=idomainkodel=

Figure 6-26 Excerpts of Domain Model expressed in UsiXML

The mappings between the Task Model and the Domain Model are summed-up

in Table 6-29.

Task Model Domain Model

Select browsing action (select element) | ExplorationZone. action

Select browsing direction (select element) | ExplorationZone. direction

Show updated image (convey element) | ExplorationZone.executelnstruction()

Table 6-29 Mappings between task and domain models

6.4.2 Step 2: From Task and Domain Models to AUI Model

The second step considers the generation of the AUI from the previuosly

specified Task and Domain Models.

6.4.2.a Sub-step 2.1: Rules for the identification of the AUI structure

The current sub-step considers the Sub-task presentation design option that is

conveyed in combined grouped lists: Rule 3 and 4. Moreover, Rule 81 is applied in

order to create AICs for leaf tasks.

198

6. Validation

6.4.2.b Sub-step 2.2: Rules for the selection of the AICs

The current sub-step generates facets for AICs that support the execution of the

leaf task.

= Input facet of type select element for the AICs assigned to the following
tasks: Select browsing action, select browsing direction: Rule 84; for each enumerated
value of the attribute manipulated by the tasks that is executed into the AIC,
a selection value with the same name as the enumerated value is attached to
the above created facet: Rule 85

. Output facet of type convey element for the AIC assigned to the Show updated
map task: Rule 82.

6.4.2.c Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an
abstractAdjacency relationship between these AIOs. As AIOs can have two types
(i.e., ACs or AICs), there are four possible rules to be applied (Rules 87-90).

6.4.2.d Sub-step 2.4: Rules for the definition of abstract dialog control

For each couple of sister tasks executed into AIOs, we generate an
abstractDialogControl relationship between these AIOs that have the same semantics
as the temporal relationship defined between the tasks. As AIOs can have two
types (i.e., ACs or AICs), there are four possible combination that are considered
by Rules 91-94.

6.4.2.d.1 Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

In order to ensure the synchronization between the AICs and attributes of objects
from the Domain Model, Rule 95 generates the #pdates relationship. Moreover,
Rule 96 enables the triggering of methods by AICs through the #uggers
relationship.

6.4.3 Step 3: From AUI Model to CUI Model

For the AUI obtained in the previuos step, three CUI will be derived:

. Case 1 — CUI with graphical input: the input modality used to specify the
instruction is entirely graphical.

= Case 2 - CUI with vocal input: the input modality used to specify the
instruction is entirely vocal.

. Case 3 - CUI with multimodal input: for the specification of the action
the graphical modality is assigned, whereas for the direction the vocal
assignement was considered.

199

6. Validation

6.4.3.a Case 1: generation of CUI with graphical input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent graphical CUI with
graphical assignement for both the browsing action the browsing direction.

6.4.3.a.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical objects.

6.4.3.a.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs and considering the set of design options identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value
and the generated CIC:

. For the Select action task: Rules 99 and 100 generate radioButtons (T'able 6-30).

Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) radioButtons
Immediate feedback Graphical (A) radioButtons
Guidance for input Iconic (A) imageComponent (mouse icon)
Sub-task guidance Guided radioButtons
Answer cardinality Simple radioButtons
Confirmation Without confirmation -
answer

Table 6-30 Design option values for multimodal radioButtons

= For the Select direction task: Rules 109 and 110 generate zzageZones embedded
in imageComponents (Table 6-31).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) imageComponent
Guidance for input Iconic (A) imageComponent (mouse icon)
Sub-task guidance Guided imageZones
Answer cardinality Simple radioButtons

Confirmation Without confirmation -
answer

Table 6-31 Design option values for imageZones

. For display the updated image task: Rule 115 generates an imageComponent.

6.4.3.a.3 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical CICs.

200

6. Validation

6.4.3.a.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window.

6.4.3.a.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical CIOs that reify them is realized. As AIOs can have
two types (e, ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.4.3.2.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and #riggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.4.3.b Case 2 - CUI with vocal input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent MM CUI with vocal
assignement for both the browsing action browsing direction.

6.4.3.b.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical and vocal objects.

6.4.3.b.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs and VICs depending on the type of
facets of the corresponding AICs and considering the set of design options
identified in Section 4.4.3.b.1.2. The select action and the select direction tasks are
expressed in one single utterence, therefore the Rules 111 and 112 have to be
applied (Table 6-32).

Design option Value CIC
Prompting Graphical (A) outputText

Input Vocal (A) vocallnput + grammar + part
Guidance for input Iconic (A) imageComponent (microphone)
Sub-task guidance Guided outputText+ radioButtons
Answer cardinality Simple outputText + radioButtons

Confirmation Without confirmation -
answer

Table 6-32 Design option values for multimodal radioButtons

= For display the updated image task: Rule 115 generates an imageComponent.

201

6. Validation

6.4.3.b.3 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.4.3.b.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.4.3.b.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.4.3.b.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6.4.3.c Case 3 - CUI with multimodal input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent MM CUI with graphical
assignement for the browsing action and vocal assignement for the browsing
direction.

6.4.3.c.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical and vocal objects.

6.4.3.c.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs and considering the set of design options identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value
and the generated CIC:

. For the Select action task: Rules 99 and 100 generate MM radjoButtons (Table

06-33).
Design option Value CIC
Prompting Graphical (A) outputText
Input Graphical (A) radioButtons
Immediate feedback Graphical (A) radioButtons
Guidance for input Iconic (A) imageComponent (mouse icon)

202

6. Validation

Sub-task guidance Guided radioButtons
Answer cardinality Simple radioButtons
Confirmation Without confirmation -
answer

Table 6-33 Design option values for multimodal radioButtons

- For the Select direction task: Rules 113 and 114 generate zmageZones embedded
in smageComponents and grammar items (Table 6-34).

Design option Value CIC
Prompting Graphical (A) outputText
Input Vocal (A) vocallnput + grammar
Guidance for input Iconic (A) imageComponent (microphone
icon)
Sub-task guidance Guided imageZones + items
Answer cardinality Simple imageZones + part
Confirmation Without confirmation -
answer

Table 6-34 Design option values for multimodal radioButtons

- For display the updated image task, Rule 129 generates an imageComponent.

6.4.3.c.3 Sub-step 3.3: Arrangement of CICs

Rules 113-116 are used to specify the arrangement of graphical and vocal CICs.

6.4.3.c.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.4.3.c.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.4.3.c.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the #pdates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

203

6. Validation

6.4.4 Step 4: From CUI Model to FUI

This step consists of transforming each variant of the CUI into its respective FUI
specification. The resultant FUI interpreted with Opera browser is the following:
FUI enabling graphical input (Figure 6-27), FUI enabling vocal input (Figure
6-28), FUI enabling equivalent graphical input for specifying browsing action and
and vocal input for the browsing direction (Figure 6-29).

" Graphical navigational tasks - Opera

File Edt Wiew Bookmarks Widgsts Tools Help

D dBe Q@ v H 0O 4

Open Save Print Find Home Panels Tie Cascade Yoice

[mewtab || | Graphical Car Rental Sysu . | Mukimedal Gar Rental 5., | Lkl i bl | vocalnavigationalbasks [|| Mutimodal navigatiznal .., .

o € v b @ | flesiflacalhostiD: ThesisPhD%20thesis/Userts20test#20application/Mapt20case% 20study-tested 20versian/Graphical%20mapiMain_araphical xml RIS

Q Firdin page sea P Find next @& voce | authormode [Cached images

[~ Browsing actions “?_
@ Translate
Zoom in
Zoorm out

[Browsing directions ‘?

Top | Top | Top
Left Right

Left | Center | Right

Bottom | Bottom | Bottom
Left Right

Figure 6-27 FUI — graphical input

204

6. Validation

1/ Vocal navigational tasks - Opera

Fle Edt view Bockmarks ‘Widgets Tool Help
CHdae Q& v d 0o #
Open Save Print Find

Home Panels Tile Cascade Voice

| Mewtab || | Graphical Car Renital Syse.. L4 | | Multimodal €ar Rental 5., .4 [| Graphical navigationalta,.. (.4
o = S

|| Multimadal navigational k.., ||
|1 File:fflocalhastiD: { Thesis [PhD%20thesis{User % 20test 4 20applicationjMap%s 20c ase% 20study-testeds 20version ¥acal¥s20man Main_vacal ;ml

=
P Find next

& voice s

| Author made = | show images

[Browsing command ﬁ‘

actions
Translate
Zoom in
Zoom out

Top | Top | Top
Left Right

Left | Center | Right

Bottom | Bottom | Bottom
Left Right

Hungary

Figure 6-28 FUI — vocal input

1 Multimodal navigational tasks - Opera
File Edi Wiew Bookmarks ‘Widgets Tools Help
Open Save Print Find Home Pansls Tie Cascade Vaice

] hewtab |1 Graphical Car Rental Sys... (.4 | Multimodal Car Renkal 5., (.4 |_]Graphical navigationalta... .4 |_]Vacal navigational tasks 4 x|
o = | G

7 file:fflacalhost/D: ThesisiPhD%20thesisfUser %20test?2Dapplication/Mape20case % 20study-tested 20versionMultimodal . 20map/Main_multimodal, zml

P Find next

& voce | authormode * B show mages

Emwsing actions J
» Translate
Zoom in
Zoom ot

_Emwsing directions

Top | Top | Top
Left Right

Left | Center | Right

Bottom | Bottom | Bottom
Left Righe

Figure 6-29 FUI — graphical input for browsing action and vocal input for browsing

direction

205

6. Validation

6.5 Empirical validation

6.5.1 Methodology usability assessment

We defined and detailed so far a methodology composed of three dimensions: (1)
the models based on which a (2) development method is applied thanks to the support
of (3) tools. The previous three sections showed the feasbility of generating MM
Uls based on this methodology. This section identifies and discusses the four

levels of assesments that can be conducted over the propsed methodology (Figure
6-30).

Methodology

Models
__Ii?y_e_l_l _________________________ is hased on

Method
Level2 | T supports
Leveis | [To0S

! | generates

Leveld MM Uls

Figure 6-30 Methodology assessment levels

The impact of the development methodology could be assessed by estimating or

computing evaluation criteria that may fall into two categories [Olsi04]:

1.

2.

Qualitative criteria: are typically evaluated in a subjective manner or can be
approximated by quantitative metrics. Such criteria include: security, reliability,
reusability, usability, etc. For instance, usability could be evaluated in a
subjective way through its user subjective satisfaction rate or could be
approximated with Usability Evaluation Methods. Usability could be for
instance approximated via the IBM CSUQ questionnaire with a correlation of
0.94.

Quantitative criteria cover criteria that are typically evaluated in an objective
manner through metrics. A metric is often referred to as a practical
measurement of a product or a process in the software development life cycle
of an interactive system. Such metrics could cover project management (e.g.,
development cost, resources (time, budget, human resources)) and software
development. Several methods exist for this purpose. For instance,
COnstructive Cost Model (COCOMO) is proposed in two versions (I and II).
The first version supports three metrics: source lines of code, function points
[Albr83] and use case points.

206

6. Validation

Ideally, the assesment of an IS development methodology should be conducted
for each of the four levels by considering both types of criteria. However, a set of
level-specific constraints prevent us to follow this assesment plan. Hereafter, we
detail in a structured manner the aims and goals of each level, the proposed
assesment plan and their specific constraints.

6.5.1.a Level 1. Model assesment

Aims and goals. Evaluate the quality of the models that will be further managed
by the method.

Assesment plan. Assesment of the models applied by the methodology should
be carried out with designers of information systems. The plan could involve the
evaluation of the support level offered by the proposed models for software
requirement specification that respond to the set of features (i.e., unambigous,
complete, verifiable, consistent, modifiable, traceable and usable during the
operational phases) identified in [Meye88]. This would help to avoid the seven
sins of the software analyst emphasized in [Meye85].

Constraints. There are two important reasons that prevent us conducting such an
evaluation. First, there is still a lack of MM Uls and consequently there is a small
number of professionals involved in their design. Therefore, they are very
solicited persons and difficult to involve in assesement studies. Second, evaluation
experiments tipically require extended financial resources especially when the
participants are difficult to find.

6.5.1.b Level 2 Method assesment

Aims and goals. Evaluate the understandability (i.e., ease to perceive, ease to
apply, lack of confusion generation) and reproductibility (i.e., if two experts are
provided with the same case study, similar results should be obtained) of the
method.

Assesment plan. Assesment of the method applied by the methodology should
be carried out with designers having prerequisites in applying structured
development methods (i.e., UML or alike). A training session should be ensured
by already experienced proffesionals in order to provide an in-depth
understanding. A subjective estimation time for mastering the different methodo-
logical aspects is provided in Table 6-35.

Methodological aspects Estimated learning time
Task Modeling 1/2 day
Domain Modeling 1/4 day
Mapping Modeling 1/4 day
Selecting and using Design Options 1 day
Performing Transformation Rules 1 day
Total 3 days

Table 6-35 Estimated learning time of the methodological aspects

207

6. Validation

Constraints. In order to be valid the assesment should be carried out with a high
number of designers having different levels of expertise. They should apply the
methodology with and without the help of the proffesionals, over case studies
with different complexity levels (i.e., low, medium and high). The obtained results
should be analysed so that to provide a comparision based on a set of metrics.
This evaluation process is highly complex and therefore is very hard to achieve.
Moreover, the constraints identified in the previous level are perfectly valid in this
context as the assesment of both levels should be conducted with the same
stakeholders (i.e., the designers).

6.5.1.c Level 3. Tool assesment

Aims and goals. Evaluate the integrity of the tool with respect features such as
level of method support, easiness to use the tool, user-friendly related aspects, etc.
Assesment plan. Assesment of the tools should be carried out with a high
number of developers having a proven experience with information systems
development tools.

Constraints. In order to be valid the assesment should be carried out with a high
number of designers by considering criteria such as levels of expertise,
organizations, country [BygsO7]. The test should consider case studies with
different levels of complexity (i.e, low, medium and high) that generate ISs with or
without the tool. Based of a set of metrics (e.g., the function point) a comparision
of the resulting ISs should be achieved. Moreover, acceptance test measures
[Shne98] (i.e., time for users to learn specific functions, speed of task
performance, rate of errors by users, user retention of commands over time,
subjective user satisfaction) could be considered.

However, this evaluation procces implies a high complexity and therefore is very
hard to accomplish. In addition, such experiment would suppose to provide
designers with the assemby of tools presented in Chapter 5 for which a very time-
consuming training session should be foreseen. Moreover, due to rather limited
financial resources at our disposal we find it difficult to involve a sufficient
number of developers that could render our evaluation statistically valid.

6.5.1.d Level 4. Result assesment

Aims and goals. Taking into account the constraints identified in the previous
levels, we decided to asses the results produced by our methodology based on an
empirical study with end-users. The final goal of this evaluation wasn’t to
determine the interaction (combination of interaction) modalities that is the most
preffered by the end-users, but rather to validate the results produced by the
methodology and to provide an idea of the relative usability level generated by
different design option values. Therefore, this section describes the participants to
the experiment (called from now on the subjects), the set up used to conduct the

208

6. Validation

study, whereas the next section will detail the usability assessment process and will
provide a discussion over the obtained results.

The subjects. The test involved 20 non-native English speakers out of which 10
experienced and 10 inexperienced with respect to the alternative means of
interacting with information systems (i.e., speech, tactile screens, joysticks) other
then mouse and keyboard (Table 6-36). The gender was equally assigned so that 5
males and 5 females participated for each category. The average age of the
subjects is 29.

N° Average Gender Multimodal interaction experience
subjects age Male | Female | Experienced | Inexperienced
20 29 10 10 10 10

Table 6-36 Summary of the subject’s demographics and experience level

The tested applications. The subjects were asked to test two types of
applications designed in the English language. In order to avoid the fatigue of the
subjects the experiment took place in two sessions organized in two different days
as follows:
= Session 1 - Web form applications: two applications were tested
according to a predefined scenario:
e Car rental: the case study described in Section 6.3.
o DUVD rental we do not describe the development life cycle of this
application as it has the same complexity level as the car rental system
and considered the same interactions. It enables users to rent a DVD
(Figure 6-31). For this purpouse, a set of data such as rental date and
movie type had to be filled in based on which the application provides
the available movies. Once a movie is selected, the subjects had to
specify the payment information (e.g., owner’s name, credit card type,
number and expiration date).

209

6. Validation

e \oice
D% 20thesisiUser% 20kest % 20application/DVYD%20rental? 20case ¥ 20skudy Multimod al % 20DYD % 20rent sl % 205y ste
a Waice u
—DVD rental preferences
i \.57 .
Rental date]L; o < 1}3" '§—
Movie type
@ achion
Day: 1 = :
—) comedy
drama
Month: -
January ¥ 3 it
Year: 2007~

The lord of the rings
Lost

Home alone

In bed with the enemy

—Payment information

<

Name

Card type ‘L}i ‘.5 WISA

|4

Card number

8

Expiration date: %

Month: |January =

Year: 2007 ~|

‘? Ok CANCEL

Figure 6-31 The multimodal version of the DVD rental application

For both applications the task was considered achieved when the participants
confirmed the payment by clicking on the OK button. The subjects had to test
three types of interaction in a random order.

. Session 2 - Map browsing: is the application described in Section 6.4.
Previously to the experiment, the subjects were submitted to a test
concerning their geographical knowledge about the position of the main
European capitals. The accepted subjects were asked to achive two different
tasks (i.e., searching an European capital on the map) per interaction

modality in a random order:

210

6. Validation

The task was considered achieved when the participants were able to point out on
the map the name of the capital specified by the scenario.

Apparatus and experimental environment. The physical position of the
subjects and apparatus involved in the test are sketched in Figure 6-32. The
notebook used in this study was a PC Dell Latitude D820 equipped with an Intel
Core 2 Duo T7200 (2.0 GHz, 4 Mo cache level 2 memory) processor and 2 GB of
RAM memory. The 157 screen was set to 1280 by 800 pixels resolution, with a
32-bit color palette. The integrated loud speakers were used for voice output,
while Philips SBC 90 microphone fasten on a tripod enabled voice input thanks to
the audion input port of the nootebook. The Microsoft Wireless Notebook
Optical Mouse 4000 was connected to the USB port. A Sony video camera
oriented towards the notebook’s screen was used for video recording.

Notebook’s
loudspeakers Notebook Mouse

/ /
\ /
- _
E! 7 3\
with tripod ,4 - & Tﬁ \\\Instructor

[~ Video

Subject camera

Microphone __ |

Figure 6-32 Physical position of the subjects and experimental apparatus

The tested applications were specified in XHTML v1.0 (for the graphical
interaction), whereas X+V v1.2 language was employed for vocal and MM
interactions. All the applications were interpreted with the Opera browser v9.24
embedded with IBM Multimodal Runtime Environment v4.1.3 using ViaVoice
speech technology.

The instructor welcomed the subjects (Figure 6-33) and provided the instructions
for the evaluation test. He also supervised the good unfolding of the experiment
(e.g., clarifies the upcoming issues, takes notes during the test, unblocks the
subjects if they were unable to complete their task, checks the responses given by
the subjects).

211

6. Validation

Figure 6-33 A subject interacting with the application

6.5.2 Methodology result assesment plan

The plan is split in three phases describing the procedure followed before, during
and after the test.

6.5.2.a Pre-test

Before starting the test, the participants were guided by the instructor with the

testing procedure as follows:

1.

Subjects were given information about the goals of the test. They were
informed that it is not a test of their abilities and that their interaction with the
applications will be video recorded in order to be further analysed. Finally,
they were announced that a tracking number will be assigned to each of them
for identification purpouses during the entire procedure.

Subjects were asked to fill in a demographic questionnaire that gathered
information related to their gender, age, activity field, years of experience.
They also scored their attitude towards technology in general by specifying the
frequency of using a computer and their experience with MM interaction.
Subjects were further advised to try accomplishing the tasks without any
assistance. However, they were allowed to ask for help only if they felt unable
to complete the task on their own.

The instructor responded to the subject’s questions, if any and checked
whether they understood well the instructions or not.

Finally, the subjects were asked to complete the tasks according to the given
instructions. To avoid a possible ceiling effect, there was no time limit to
complete the tasks.

212

6. Validation

6.5.2.b Test

The test was split in two steps:

The first step consisted of a training session assisted by the instructor who
explained how to carry out the task. This enabled subjects to discover the
MM capabilities of the Opera browser and the correct manipulation of the
voice-enabling button. The training application emerged from our
methodology and its UI contained most of the interaction objects (Figure
0-34) that were further present in the tested application. The training session
had no time limit.

Woice
1D%20thesis/User %2 0test % 20application) Training%s20system/training_multimodal, xml
ﬂ Woice u &
—Personal information
. >, =
First name Gender lij i
male
female
Lastname
. Wg'l ‘“57 " iljl -'6 e
Birth day 7 Hobbies 7
L] travels
Day: |1 |+ | music
| sport
Month: | January |v - movies
|| reading
Year: 1960 = L games

[_'? i
Favourite european capital]L}

Paris i
Brussels

Madnd
Rome |=|

S 4 | Ok || CANCEL

Figure 6-34 The training application

In the second step, the subjects were asked to procede with the test
according to a random selection of the scenarios. The task was expected to
be accomplished without any assistance. However, if the subjects got stuck
with one of the tasks and felt unable to continue, they could ask for help.
The instructions given to the users clearly stated that they should only ask
for assistance as a last resort. When the subject asked for help, the instructor
explained the next step that the user needed to take.

213

6. Validation

6.5.2.c DPost-test

At the end of the test, the subjects were interviewed according to a structured
scheme. First, they were asked to rank their preference on a scale from 1
(minimum) to 7 (maximum) for each type of interaction modality. Further, during
a debriefing session, the subjects were asked to specify three positive and three
negative aspects with respect to the employed interaction modalities. For this
purpouse they were able to reuse the applications in order to better explain the
encountered feelings and difficulties during the experiment. At the end of each
session, subjects were given a small reward for their participation.

6.5.3 Results

6.5.3.a Evaluation measures

So far, the reasearch community did not manage to create an authoritative list of

MM usability parameters. Moreover, we are not aware of any hierarchy of

concepts of usability properties whose parameters and values are known.

Therefore, the final purpouse of our experiment was to measure the relative

usability level among the tested interaction modalities thanks to a subset of

usability parameters considered from an empirically collected parameter list

[Bern06]. The subset is composed of six parameters that were considered, entirely

or partially, for the analysis of the interaction modalities employed in the two

types of applications:

1. Task completion time: measures the interaction efficiency.

2. Task percentage completion: measures the effectiveness of the application with
respect to the employed interaction modality.

3. Error rate: measures the interaction efficiency in terms of number of errors per
interaction modality.

4. Learning time: measures the ease of learn of a particular interaction modality.

5. Number of mouse clicks: measures the interaction efficiency in terms of number
of clicks per interaction modality.

6. Interaction modality preference: measures the relative satisfaction among the tested
interaction modalities.

6.5.3.b Web form applications

6.5.3.b.1 Task completion time

The task completion time was computed as a mean (M) time between the two
applications of type form for each interaction modality. Figure 6-35 shows that
the mean time to achieve the tasks using the graphical modality (M= 74.58
seconds) is comparable with the the MM interaction (M= 94.63 seconds). An
important observation is that, for the latter interaction half of the subjects chose a
real MM interaction (i.e., the vocal is combined with the graphical modality), while

214

6. Validation

the other half achieved the task using just the graphical modality. The vocal
modality required a considerable longer time (M= 211.88 seconds), which
represents 228% more then the graphical interaction and 174.2 % more than the

MM interaction.
260,00

200.00

150.00

100.00

50.00

0.00
Graphical Yocal Multirmodal

Figure 6-35 Task completion mean time per interaction modality

6.5.3.b.2 Task procentage completion

The task procentage completion was computed as a mean between the two
applications of type form for each interaction modality (Figure 6-36). While the
completion rate using the graphical and the MM interactions are approximately
equal M= 99.56% and M= 99.68%, respectively), the vocal interaction rate is
slightly lower (M= 96.4%).

100

Graphical “aocal Multirmodal

Figure 6-36 Mean task procentage completion per interaction modality

215

6. Validation

6.5.3.b.3 Error rate

During the usability study, we identified 7 categories of errors that were computed

as a mean between the errors of the two web applications for each interaction

modality (Figure 6-37). All the categories are meaningful for vocal and MM

interaction, while for the graphical interaction only the errors that fall in the 5"

and 6" categories where considered. However, the latter interaction no errors

were observed and, consequently, we don’t illustrate them in the chart. For the

vocal and MM interactions the results are as follows:

1.

Synchronization: errors due to the order violation of the interaction states to
follow when employing the voice-enabling button in Opera browser (M =2.3
errors and M= 0.65 errors, respectively). A correct sequence of the states to
reach by the button is illustrated in Figure 6-38 on a timeline: the button in
the initial state is further pushed in the 2nd state so as to enable the voice
recognition engine in state 3. User’s utterance is afterwards possible. Once
that the utterence is ended the button has to be released in state 5. The voice
recognition is disabled after a short period (state 6). Afterwards, the initial
state is reached again.

Pronunciation: errors due to a bad pronunciation of the commands (M=2.25
errors and M= 0.4 errors, respectively).

No input: errors due to the lack of vocal input once the voie-enabling button
reached the 3" state (M=0.42 errors and M= 0.1 errors, respectively).

No match: errors due to vocal inputs that were correctly pronounced but were
not predicted in the associated grammar as they are not context-meaningful
(M= 0.07 errors and M= 0.05 errors, respectively).

Irrelevant actions: errors due to an incorrect manipulation of the Opera browser
(M= 0.8 errors and M= 0 errors, respectively). For instance, clicking on the
zoom level interaction field before uttering a number in the application, which
determined the modification of the application layout.

System: errors due to a bad design of the Uls (M=0.65 errors and M= 0 errors,
respectively). For instance, an incorrect pronunciation of the available options
to select with vocal interaction, which induced the user to errors (e.g., the
pronunciation of the year 2012 as “twenty twelve”).

Noisy environment: errors due to undesirable sounds produced in the vicinity of
test room while the voice—enabling button was in state 3 (M= 0.02 errors and
M= 0, respectively).

216

6. Validation

oYocal
o hultimodal

d Voice)j Voiﬁ i Liskening [{}Jr ‘ L

nﬁRListening f: Voiﬁ ﬂ Woice
5 0, 0,

—@ @ & & & L Lo
initial voice-enabling voice enabled user's voice-enabling voice disahled initial Timeline
state button pushed state utterence hutton released state state

Figure 6-38 The timeline for a correct voice-enabling button manipulation

6.5.3.b.4 Learning time

During the first test, we measured the task completion time for vocal interaction
in the second application of type form. We asked the subjects to repeat this test
following the same scenario after a couple of days. The results illustrated in Figure
6-39 show that 75% of the subjects improved thier time, 10% had the same
performance, while rest had a longer time. Consequently, the task completion
mean time for the second test (M= 95.50 seconds) is significantly lower than the
first test (M= 131 seconds).

217

6. Validation

mFirst test
m Second test

1 2 3 4 5 B 7 8 9 W0 1 12 13 14 1 B 17 18 19 20

Figure 6-39 Learning time for vocal interaction

6.5.3.b.5 Number of mouse clicks

The mean number of mouse clicks was computed as a mean between the mouse
clicks of the two web form applications for each interaction modality. Figure 6-40
shows that the mean for graphical and MM interactions are aproximately equal
(M= 27 clicks and M= 26 clicks, respectively), whereas the vocal interaction
requires a sensibly greater number of clicks (M= 32 clicks).

35
30
25

20

Graphical “Yocal Multimodal

Figure 6-40 Mean number of mouse clicks per interaction modality

218

6. Validation

6.5.3.b.6 Interaction modality preference

The distribution of the modality preference per subjects illustrated in Figure 6-41
shows that the graphical (M= 6.5) and the MM (M= 6.2) interactions were
approximately equally ranked, whereas the vocal interaction was the less preferred

(M= 3.0).

N
)/
4 V/ . s
/ WAVAY.

Preference

Subject 1D

Figure 6-41 Distribution of the modality preference per subject

6.5.3.c Map browsing application

The current section presents the statistical outcome of the map browsing
application. Due to the fact that the tasks for the three types of interaction were
different in order to avoid the learning effect, the comparision between the
modalities doesn’t make sense. Instead, the differences between the experience
groups with respect to the following usability parameteres considered for the
same interaction modality are analysed.

6.5.3.c.1 Task completion time

The task completion time was computed for each type of interaction as a mean
between the completion time of the two considered tasks. While for the graphical
interaction the mean time between the two groups is not significant, for the vocal
and MM interaction the experienced subjects proved to be faster (Table 6-37).

219

6. Validation

Interaction
modality
Graphical Vocal Multimodal
Experience
group
Experienced 73 83.5 156.75
Unexperienced 74.75 98 192

Table 6-37 Mean task completion time (seconds) per experience group

6.5.3.c.2 Task procentage completion

The task completion procentage was measured for each interaction modality as a
mean completion procentage of the two considered tasks. While for the graphical
interaction there is a 100% succesful rate for both experience groups, for vocal
and MM interaction the experienced subjects proved to have a better completion
rate (Table 6-38).

Interaction
modality
Graphical Vocal Multimodal
Experience
group
Experienced 100 % 97 % 156.75 %
Unexperienced 100 % 85.75 % 192 %

Table 6-38 Mean task procentage completion per experience group

6.5.3.c.3 Number of errors

For the second session we considered the same categories of errors and their
assigned meaning as those described in Section 6.5.5.b.3. The number of errors
was computed as a mean between the errors of the two tasks considered for each
interaction modality. While for the graphical interaction no errors were observed,
for vocal (Figure 6-42) and MM interactions (Figure 6-43) the results show a
relatively higher number of synchronization errors compared to the other error
categories for both experience groups.

220

6. Validation

34

25

O Experienced
W Unexperienced

05

0
Synchronization Pronohciation halnput noMatch Irrelevant Systerm Noigy

Figure 6-42 Mean number of errors per experience group for vocal interaction

o Experienced
W Unexperienced

Synchronization Prononciation nolnput nohtatch Irrelevant Systermn Moisy

Figure 6-43 Mean number of errors per experience group for MM interaction
6.5.4 Interpretation and discussion

6.5.4.a Web form applications

In order to asses and compare the distribution of the time to achieve the task for
the two groups, a box plot graph is illustrated in Figure 6-44. We notice that the
dispersion of time values for MM and vocal interaction is higher than the
graphical one for both groups. The experienced subjects employing the MM
interaction had a dispersion ranging from 65 seconds to 107.5 seconds with more
values situated above the median time of 75 seconds. For vocal interaction, the

221

6. Validation

same group had a higher dispersion within an interval from 131.25 to 243.75

seconds, but still with more values above the median time of 176.25 seconds.
500 1

400+

300 ‘

200+ -

|
L

T T T T T
(o5 § GRAPHICAL MULTIMODAL VOCAL GRAPHICAL MULTIMODAL VOCAL
Experienced Unexperienced

Number of seconds to complete the task

Figure 6-44 Distribution of task completion time per interaction type and experience
group

In order to test if MM interaction experience had a significant influence over the
mean task completion time a t-Test analysis was conducted (Table 6-39). The
results show that this was the case only for the graphical interaction (p= 0.0339).
However, the experimented subjects proved to be faster than the non-experienced
ones (Figure 6-45) for the three types of interaction (M= 61.25 seconds vs. M=
87.90 seconds for graphical, M= 188.0 seconds vs. M= 235.75 seconds for vocal
interaction and M=84.0 seconds vs. 105.25 seconds for MM interaction).

t-Test Significant difference
with respect to MM experience
Graphical p=0.0339 < 0.05
Vocal p=0.1207 > 0.05
Multimodal p=0.0901 > 0.05

Table 6-39 t-Test results for the significant difference in mean task completion time with

respect to MM experience

222

6. Validation

O Experienced
m Mon-experienced

Graphical “ocal Multimaodal

Figure 6-45 Task completion mean time per experience group

The statistical analysis revealed a slower task completion time for both vocal and
MM interactions. This was mainly due to synchronization and pronunciation
errors, resulting from the difficulties of manipulating the voice-enabling button
and from the fact that subjects were non native English speakers. The Pearson
correlation coefficient [Sieg88] between the average of the pronunciation and
synchronization errors and the mean completion time sustains the above
statement for both vocal (Pearson= 0.75) and true MM interactions (Pearson=
0.73). In addition, the same categories of errors are influencing the number of
mouse clicks (Pearson= 0.77 for vocal interaction and Pearson= 0.63 for true MM
interaction) which had a negative impact over the efficiency of the interactions.
However, the t-Test analysis (Table 6-40) revealed that there is no significant
difference in the mean number of pronunciation and synchronization errors
between the two groups of subjects neither for vocal, nor for the MM

interactions.
t-Test Significant difference
with respect to MM experience
Vocal p=0.1603 > 0.05
Multimodal p=0.2459 > 0.05

Table 6-40 t-Test results for the significant difference in mean number of pronunciation

and synchronization errors with respect to MM experience

223

6. Validation

6.5.4.b Map browsing application

As the results in Figure 6-45 show that the experienced subjects were faster than
the unexperienced ones, we examined whether the experience category has a
significant influence over the task completion time thanks to a t-Test analisys. The
results presented in Table 6-41 show no influence whatsoever.

t-Test Significant difference
with respect to experience category
Graphical p= 0.1074 > 0.05
Vocal p=0.2321 > 0.05
Multimodal p=0.1675 > 0.05

Table 6-41 t-Test results for the significant difference in mean completion time with

respect to experience category

In line with the observations made in Section 6.5.6.a, the statistical analysis
revealed a high number of synchronization errors. The Pearson correlation
function between the average number of synchronization errors and the mean
completion time sustains the above statement for both vocal (Pearson= 0.60) and
MM interactions (Pearson= 0.58). In addition, the average between the
synchronization and pronunciation errors influence the task procentage
completion (Pearson= -0.72 for vocal interaction and Pearson= -0.48 for MM
interaction) which leads to a negative impact over the efficiency of the
interactions. However, the t-Test analysis revealed that there is no significant
difference in the mean number of synchronization errors between the two
experience categories neither for the vocal interaction, nor for the MM one.

6.5.4.c Opverall interpretation

Thanks to the debriefing session, we were able to illustrate the modality
preference for each type of application (Figure 6-46). The graphical interaction
was the most preferred interaction for both application types. While for the web
form applications the MM interaction is better ranked, the vocal interaction takes
the lead when it is employed for the map browsing application. This is particullary
due to the structure of the navigational commands employed in the browsing
application. While for the vocal interaction both the action and the parameters are
specified as a whole in one utterance, the complementarity nature of the MM
command where the action is specified graphically and the parameters vocally
requires a modality break that slows down the subjects.

224

6. Validation

mYYeb form
W Map browsing

Graphical “ocal Multimodal

Figure 6-46 Modality interaction preference per application type

The subjects were also asked to specify three positive and three negative aspects
with respect to the tested interaction modalities. The results in Table 6-42 are
specified along with their frequency of appearence. 75 % of the subjects prefered
the graphical interaction as it is a day to day habit, thus enabling a faster and more
intuitive interaction.

Even if the vocal interaction was less preferred, more than 75% of the subjects
appreciated it especially for widgets that required multiple selections at once (e.g.,
the group of three comboboxes that enable to specify the date, groups of
checkboxes) or one single selection that requires a long scroll (e.g., a combobox
or a listbox where the item to select is at the end of a long list). Moreover, 60 %
of the subjects felt attracted by the interaction as it is more natural to use and
closer to the human-to-human interaction. It also urges the user to experiment as
it is seen as an escape from the habitual interaction modalities.

The MM interaction was particulary appreciated by 80% of the subjects for its
flexibility in choosing the appropriate interaction (i.e., either graphical or vocal)
depending on the widget, which enabled to take advantage of the positive aspects
of each interaction type.

In terms of negative aspects, the subjects didn’t have any remarks for the
graphical interaction. Instead, 50% of them complained about the high number of
clicks when employing the vocal interaction which has a negative impact over the
efficiency of the task achievement. They equally pointed out difficulties of
synchronization with the voice-enabling button which affected the effectiveness
of the interaction. Most of them would have like to have a continuously active
recognition engine that eliminates the constraint of pressing the button. They also
confessed that the high pronunciation error rate is probably due to the lack of

225

6. Validation

English pronunciation skills. For the MM interaction the same negative aspects
detailed above where emphasized when the selected interaction was the vocal one.

nteraction Graphical Vocal Multimodal
type interaction interaction interaction
Aspects
Positive e Habit (15) e Tast for multiple selections and for Flexibility to
e Fast (10) single selection in a long list of select the
e Intuitive (3) items (17) approapiate

e Simple (2) °

More natural and human (12)
Urges to experiment it (4)
Out of habit (2)

Fun (1)

Very didactic (1)

modality (16)

Negative .

High number of clicks to specify a
vocal input (10)

Difficult to synchronize with the
the voice-enabling button (10)

When the
vocal
interaction is
employed its

e Pronunciation errors for non native negative
english speakers (4) aspects are
inherited

e Lack of habit (2)

Table 6-42 Subject’s opinion for web form applications

At the end of the second session, the subjects were again asked to provide three
positive and three negative aspects with respect to the tested interactions (Table
06-43). 60% of them considered the graphical interaction a habit that makes the
interaction faster and intuitive.

The vocal interaction was characterized by 75% of them as being fast and
comfortable thanks to the all at once commands that are easy to utter. While the
graphical modality requires to focus on the browsing elements to select, the vocal
interaction escapes from this shortcoming as it enables to focus on the map
details and to think about the next command while uttring the current one. The
MM interaction was particulary appreciated for better recognition probably due to
the shorter commands to utter.

The most important negative aspect claimed by 75% of the subjects is the high
number of clicks required by the graphical interaction which affects the
efffectiveness of the application. For the vocal modality most of the negative
aspects were consistent with those emphasized for the web form applications.
Overall the subjects dislike the MM interaction due to the modality break
encountered while specifying the command’s components. Therefore, 75% of the
subjects conffesed that they would have prefered either the graphical interaction
or the vocal interaction with a lower error rate.

226

6. Validation

nteraction Graphical Vocal Multimodal
type interaction interaction interaction
Aspects
Positive e Habit (12) Fast and comfortable thanks Better
e Fast (6) to all at once commands (15) recognition
e Intuitive (4) Easy to pronounce thanks to
commands (10) shorter
Enables to focus on the map commands to
without paying attention to uteer (8)
the details concerning the Enables to
command’s build up (8) think about
Enables to think about the the direction
next command while uttering to l.)rowse.
the current one (6) while mal?mg
Better guided than the the gr'aphlcal
graphical interaction (5) selection '(6)
Fun (5) Better guided
then the
graphical
interaction (5)
Negative e High Difficult to synchronize with Modality
number of the the voice-enabling button break when
clicks to while relatively long phrases going from
specify the had to be uttered (10) the graphical
commands Pronunciation errors for non selection of
(15) native english speakers (4) the browsing
e Need for Frustrating (5) action to
drag and Dislike presing the voice- VOCQ..I)
drop enabling button (5) specification
support (2) of the

No guidance for the zoom
level and position on the map

2)

direction (15)

6.6 Internal validation

Table 6-43 Subject’s opinion for non web form application

The internal validation of a methodology consists of assessing its characteristics

against a set of selected criteria. The relevant criteria, called requirements, for our

methodology have been elicited and motivated after the state of the art of Chapter

2. This section proposes a discussion for each of these requirements included in

the corresponding dimension of the methodology:

227

6. Validation

Modeling requirements:

Requirement 1. Support for multimodal input/output: states that out
ontology should enable multiple (i.e., at least two different) input/output
interaction modalities. The current requirement is motivated by the definition of
the multimodal systems (Section 1.3.4).

Discussion: This requirement is achieved thanks to the expansion brought to the
existing vocal ontology described in Section 3.4.2.b which provides a larger set of
vocal CIOs that cover the requirements of vocal and MM Uls. Moreover, Section
3.4.4.b introduces the synchronization relationship between the graphical and the
vocal concepts.

Requirement 2. Separation of modalities: states that the concepts and the
specifications corresponding to each modality should be syntactically separated
one from the other. The current requirement is motivated by two aspects: (1)
flexibility in the development process given by the possibility to specify separately
the Ul corresponding to each involved interaction modality and to further
combine them altogether, (2) reusability, totally or partially, of the specification
corresponding to an interaction modality in other applications that employ it. This
requirement contributes to the principle of separation of concerns [Dijk76].

Discussion: this requirement is achieved thanks to the semantic separation of
graphical CIOs (Section 3.4.1) and vocal CIOs (Section 3.4.2) composing our on-
tology. Moreover the UsiXML syntax (Section 3.5) ensures a separate specifica-
tion of graphical and vocal elements describing a MM UL

Requirement 3. Support for CARE properties concerning the input/output
modalities: states that our ontology should ensure the support of the CARE
properties for input/output modalities. This requirement is motivated by the
design facilities offered by the CARE properties when defining the relationships
that can occur between input/output modalities.

Discussion: this requirement is partially achieved:

» Redundancy in input and Complementarity in input/ ontput: not supported due to the
following reasons: (1) they require fusion/fission of modalities which are not
addressed by the current thesis (Section 1.4.3), (2) the target language is X+V
which doesn’t offer support for fusion/fission aspects.

= Assignment. supported by either graphical CIOs or vocal CIOs depending on
the selected interaction modality supported by design decisions.

® Eguivalence: supported by both graphical CIOs and vocal CIOs between which
a synchronization relationship is specified.

» Redundancy in ontput: supported by both graphical CIOs and vocal CIOs which
are employed to provide a redundant output to the user.

228

6. Validation

Requirement 4. Ability to model a user interface independent of any
modality: states that the provided ontology should ensure a level in the
development life cycle that allows to specify a modality-independent UI. This
requirement is motivated by the increasing number of novel devices and
consequently of interaction modalities that will determine the development of
new Uls with new modality capabilities. A modality-independent level will also
enable to avoid the redeployment of Uls from scratch. This requirement
contributes to the principle of separation of concerns [Dijk706].

Discussion: this requirement if fully achieved thanks to the existence of the AUI
Model that gathers modality-independent concepts (Section 3.3.3).

Requirement 5. Extendibility to new modalities: states that the ontology
should allow the extension with new types of interaction modalities. This
requirement is motivated by the constant emergence of new computing platforms,
each of them supporting a new set of interaction modalities. This requirement is a
principle that we would like to cover, but we are well aware that very complex
interactions cannot be supported.

Discussion: this requirement is ensured by the modularity of our ontology where
each model describing a particular aspect of the Ul is defined independently of
the other and by the separation of concepts assigned to different modalities.

Requirement 6. Ontology homogeneity: states that the ontological concepts
should be defined according to a common syntax. The requirement is motivated
by the necessity of defining a single formalism for model concepts in order to
facilitate their integration and processing.

Discussion: this requirement is achieved thanks to the selection of UsiXML lan-
guage (Section 3.2.2) as a unique formalism to support the ontological concepts
considered in this thesis.

Requirement 7. Human readability: states that the proposed ontology should
be legible by human agents. The current requirement is motivated by two aspects:
(1) the need to define in an explicit manner the ontological concepts in order to
ensure their precise comprehension, (2) the necessity of sharing the underlying
concepts among the research community.

Discussion: this requirement is achieved by employing UML class diagrams in order
to specify the semantics of our ontology. Thus, the composing concepts are ex-
pressed through classes and relationships between them by providing detailed
definitions of their attributes. It is out of the scope of this dissertation to discuss
the expressivity of UML notations.

229

6. Validation

Method requirements:

Requirement 8. Approach based on design space: states that our
development life cycle towards a final multimodal UI should be guided by a set of
design options. This requirement is motivated by the need to clarify the
development process in a structured way in terms of options, thus requiring less
design workload.

Discussion: this requirement is achieved thanks to the definition of a design space
composed of design options (Section 4.2) that support the designer’s decisions
during the development life cycle.

Requirement 9. Method explicitness: states that the component steps of our
methodology should define in a comprehensive way their logic and application.
This requirement is motivated by the lack of explicitness of the existing
approaches in describing the proposed transformational process.

Discussion: this requirement is ensured by several factors: (1) human readability of
the ontological is a pre-requisite of methodological explicitness, (2) decomposition
of the transformational approach into development steps and sub-steps (Section
4.4), (3) existence of a well-defined syntax for expressing methodological steps
(Section 3.5).

Requirement 10. Method extendibility: refers to the ability left to the designers
to extend the development steps proposed in a methodology. The current
requirement is motivated by the lack of flexibility in the current methodological
steps that hinders designers to add, delete, modify and reuse these steps.

Discussion: Transformation systems and transformation sub-steps proposed in
Chapter 4 and 6 are only possibilities of producing MM Uls Our methodology
allows the introduction of new development sub-steps and/or new
transformation systems for realizing sub-steps, thus encouraging the alternative
explorations for each sub-step. The introduction of Synchronization between CICs
(Section 4.4.3.b.3.3) as new sub-step of the transformational approach is a proof
of the above statements.

Tool requirements
Requirement 11. Machine processability of involved models: states that the
provided ontology should be proposed in a format that can be legible by a

machine. This requirement is motivated by the necessity of transposing the
ontological concepts into representations that can be processed by machines.

230

6. Validation

Discussion: This requirement is achived by the definition of an XML syntax
enabling the expression of the concepts of our ontology and in compliance with
the graph-based syntax defined for this ontology. The assembly of tools presented
in Chapter 5 that manipulate UsiXML format is an evidence of the machine
processability of this syntax.

Requirement 12. Support for tool interoperability: refers to the possibility of
reusing the output provided by one tool into another. This requirement is
motivated by the lack of explicitness of transformations due to their
heterogeneous formats that prevents the reuse of transformations outside the
context for which they were designed.

Discussion: Support for tool interoperability is positively impacted by a common
UI description language that is shared among tools (UsiXML) and by a large
coverage of UsiXML in order to accommodate multiple tools. When new
concepts corresponding to new interaction modalities need to be introduced in
our ontology, the support of new tools can be maintained by relying on ontological
extendibility to new modalities. However, we are well aware that this requirement is
not easy to achive. As our ontology was continuously evolving in order to better
respond to the requirements of the MM Uls, any change entailed the adaptation
of the tools resulting in a lot of development effort and delays in the support of
modifications brought to the ontology as well. Therefore, coordinating tools in
such context is not an easy task.

6.7 Conclusion

In order to conclude this chapter we provide hereafter a set of conclusions issued
from the internal validation (i.e., a list of strengths and weakness encountered
while developing the case studies and some reflections regarding the empirical
validation) and from the external validation (i.e., the extent to which we have ad-
dressed the requirements identified at the beginning of this work).

6.7.1 Conclusions issued from the external validation

6.7.1.a Observed advantages

We provide hereafter a set of conclusions regarding the strengths and weaknesses
of our methodology by analyzing the three case studies provided in this chapter.
Therefore, the strengths encountered during the development process are:

- Our case studies showed the feasibility of developing a multimo-
dal/monomodal Uls in a principled-based and rigorous manner relying on
explicit design options supported by transformation rules gathered in a cata-
log and selected based on designer’s decisions.

231

6. Validation

The diversity of design decisions highlights the possibility of manipulat-
ing UI related artifacts according to different development scenarios and
pave the way to consider multiple other alternatives. In particular, new de-
velopment scenarios can be developed by refinement (e.g. a more elaborated
scenario), by composition (e.g., a new scenario by composing several exist-
ing scenarios), by transformation (e.g., a newly defined scenario by deriving
other forms of scenarios from existing ones) or by reusing.

The reuse of transformations. Two categories were identified:

o Highly reusable transformations: illustrated when transformation systems
have been straightforwardly reused from the first case study to the
second one and within the same case study for ensuring different
tasks. As so, we avoid the development of ad hoc transformation rules
and enable their capitalization in a consolidated approach while trying
to avoid the proliferation of very similar scenarios.

o Low reusable transformations: illustrated in the third case study that re-
quired the development of opportunistic rules that apply for very spe-
cific design decisions in the context of a reduced number of Uls.

6.7.1.b Observed shortcomings

The weaknesses encountered while realizing these case studies are the following:

Lack of expressivity of models. The fact of decomposing a transforma-
tional development process into steps and sub-steps enables an identifica-
tion of weaknesses of certain models in terms of expressivity. As preciseness
in the expression of transformation grows, some models revealed the need
of enrichment to allow their exploitation for derivation means. For instance
the Task Model had to be expanded with some attributes for a better ex-
pression of the modality-independent aspects. Moreover, the Concrete
Model had to be enriched with various vocal concepts and synchronization
between them and the graphical elements had to be specified. This deter-
mined the introduction of a new sub-step in the development process as
well.

Difficulty in finding an appropriate level of generalization when defin-
ing rules. Conditional graph rewriting offers expressions having no side ef-
fect i.e., a rule only affects parts of the graph defined in its scope. Nonethe-
less, a rule may always have a “wider” scope than planned by its designer. It
therefore affects unexpected graph elements. On the other hand, defining
very precise rules entails defining a collection of rules for realizing a trans-
formation that could be obtained with the application of one single and
more generic rule. An automatic recognition of sets of rules able to be syn-
thesized in one rule would be desirable in this case. This problem is an illus-
tration of the rule composition issue raised in the literature.

232

6. Validation

Difficulty in ordering rules within transformation systems. It happens
that two rules of a same transformation system apply to similar graph nodes.
These rules are referred in the literature as a ¢ritical pair. In this case, the ot-
dering of rules has an impact on the graph resulting from the transformation
system. Critical pair analysis is an algorithmic analysis technique operating on
graph grammars and identifying conflicting rule couples. Nonetheless, once
these pairs are identified, it remains tedious to modify or re-arrange conflict-
ing rule couples.

Difficulty in ordering sub-steps within steps. In a similar manner to
rules, it is not an easy task to order sub-steps within a same step. Each sub-
step, along with its associated transformation system, produces a graph pre-
senting certain characteristic i.e., type of nodes and relationships produced
during the execution of the sub-step. Arranging sub-steps so that the infor-
mation produced by the previous sub-step is not modified afterwards re-
mains an undetermined activity. The help of a formal expression of pre- and
post- condition of each sub-step would certainly improve this aspect.

6.7.1.c Conclusions of the empirical study

With respect to the empirical study we can conclude that:

Even if users have a strong preference for multimodality [Ovia99], there is
no guarantee that they will issue every command to a system multimodally.
For the map browsing application users preferred more the vocal interaction
than the MM one as it proved to be more effective. This conclusion is in
line with [Ovia97] which observed that user’s commands were expressed
multimodally 20% of the time, with the rest expressed vocally or graphically.
Users mix monomodal and multimodal expressions depending on the type
of command to convey [Ovia99] and consequently of the widget(s) sustain-
ing it. For multiple selection widgets or single selection in a long list of op-
tions the vocal modality was preferred as it proved to be more efficient. On
the contrary, for single selection in a group of radio buttons or in a list box
the graphical modality was more employed. Therefore, the designers should
ensure the flexibility of selecting the appropriate modality.

Users have a great capacity to adapt to interaction modalities for which they
had reduced or even no previous experience. The learning time was signifi-
cantly improved when the first test was repeated for the vocal modality
(Figure 6-39). Therefore, the efforts for encouraging them to experience
other interaction modalities than the traditional ones should be enhanced by
all means possible.

The error rate was significantly greater for the vocal modality used alone or
combined. This was mainly due to the weakness of the selected technology
which requires highly demanding user-system synchronization. Conse-

233

6. Validation

quently, more emphasize should be put on the development of ergonomic
technology supporting MM Uls in order to ensure a more robust HCIL.

6.7.2 Conclusions issued from the internal validation

As a conclusion to the discussions offered in the internal validation section,
Figure 6-47 provides a subjective estimation of the extent to which we have
addresed the requirements identified in the context of this thesis. It can be noticed

that these requirements were covered in a great proportion.
120%

100%
80%
60%
40%

20%

0%
[N

ﬁé"

A S P P P S S N
A A A A

Figure 6-47 Requirements coverage rate

234

7. Conclusion

7 Conclusion

7.1 Introduction

This chapter summarizes the contribution brought by the current thesis to the
development process of MM Uls with respect to the following aspects: (1) theoretical
and conceptual contributions related to the definition, usage and validation of some new
original concepts pertaining to the problem, (2) methodological contributions concerned
with the methodological guidance provided to UI designers in order to manipulate the
newly introduced concepts and (3) tool support expressing how the methodological
guidance is supported by a software.

By observing the current state of the art in the field of MM Uls we noticed that most of
the development issues tackel the implementation and usability assesment aspects. In
addition, a high number of such applications are still developed manually and address
very specific problems issued in a particular environment and for a particular category of
users. In response, the developers of MM Uls try to provide a circumstantial solution by
employing one or more particular interactions. But, these specific solutions are difficult
to reuse and modify as they are hard-coded in the implementation. The technologies that
support them are often very complex and resource consuming (e.g., time, processing
power) which makes them even more difficult to reinstall. Moreover, the existing
applications frequently raise extensibility problems when new interaction modalities
supported by the constant emergence of novel devices has to be introduced. The
existing implementations often address solutions for very complex tasks and are rarely
oriented towards information systems.

With respect to these observations, the methodology proposed in the current thesis
aimed to cover a greate variety of MM applications accessible for the public at large by
providing a general-purpose solution for applications that are not necessarily domain or
context-specific.

7.2 Summary of contributions

The contributions of this work can be summarized depending on the aspects composing
the methodology:

7.2.1 Theoretical and conceptual contributions

" Expanded Task Model. In Section 3.3.1.a we identified a series of shortcomings
of the existing Task Model considered for the development of MM applications. In
order to better respond to the requirements imposed by such applications, we
expanded the model by adding/modifying several attributes along with their values.
An extended set of examples involving the newly introduced attributes is offered in
order to support the design at the modality independent level.

235

7. Conclusion

Expanded vocal ontology. In Section 3.4.2.a we identified that the existing
ontology suffers from a series of shortcomings with respect to the vocal aspects.
Therefore, we reinforced the ontology by expanding it with a set of vocal concepts
(Section 3.4.2.b) and relationships (Section 3.4.4b) between them. They were
further formalized in UsiXML language thus enabling to employ them in the
transformational procces for the development of MM Uls.

Structuring a multimodal instruction. In software engineering the structure of
any ordinary instruction is composed of three atomic elements: the action, the
object over which it applies and the parameters characterizing the objects. A MM
instruction is submitted to the same observation, but introduces a new variable in
the equation: the interaction modality(s) employed for the specification of each
element composing the instruction. Moreover, the need of identifying the possible
combinations of elements in terms of their cardinality would be a benefit for the
process of selecting the appropriate interaction modality. Consequently, Section
3.3.3 identified the attributes that support the structure of a MM instruction (i.e.,
actionType and actionltem). Furthermore, four possible general cases of combinations
between the attributes were identified based on their cardinality. As these attributes
are placed in our ontology at the abstract level (i.e., modality-independent), they
enable the designers to choose the most suitable interaction modality according to
their values and purpose.

Synchronization between modalities. In MM Uls the synchronization
represents a key aspect as it enables to correlate the data received/sent from one
modality to another. In order to support this requirement we introduced in Section
3.4.4 the synchronization relationship between graphicalCIOs and vocalCIOs with
four particular instantiations.

Stylistics for vocal CIOs. The need of facilitating the understanding and the
manipulation of vocal objects employed in software tools required the introduction
of a graphical representation associated to some of the introduced vocal concept
(Section 3.0).

7.2.2 Methodological contribution

Design space. The existing development of MM applications involves a manual
process for the generation of Uls and it does not take into consideration any
methodology based on design options. Our work defines a design space (Section
4.2) composed of design options that govern design rules encoded as graph
grammars which are automated in order to ease the development life cycle of MM
Uls. The advantages provided by this approach are three-fold: (1) all design options
are documented and allow summarizing any design in terms of design options
values, (2) several different designs of MM Uls may be compared according to the
design options in order to assess the design quality in terms of factors, such as
utility, usability, portability and (3) the design space allows to discover potential
new design option values or to introduce new design options assigned to yet under
explored design features which could have a positive impact over the facility of
development and quality ergonomics of MM applications.

236

7. Conclusion

The number of design options composing our design space is the result of a trade-

off made in order to ensure:

e Low treshold: a high number of design options ensuring a very high level of
coverage with respect to the design features of the Uls to develop would
prevent designers from a rapid undestanding of the manner in which they are
defined, justified and employed. Contrary to the design space rationale, the
design workload would be increased.

e High ceiling: a reduced number of design options would impose limitations
over the features supported by the generated Uls.

e Wide walls: a few number of design options would prevent designers from
addressing a wide range of explorations with respect to the type of Uls to pro-
duce.

An important aspect concerning the design space is the identification of dependencies
between the composing design options. A design space is said to be orthogonal if all
dimensions are independent of each other. Even if we would like to define an orthogonal
design space, this condition is not fulfilled as dependencies between different design
options have been identified. So far, we have observed the dependencies illustrated in
Table 7-1. The first column specifies the design option values creating the dependencies
and the second column the design option values determined by the dependency.

Design option value causing the coupling Coupled design option value
Sub-task presentation = separated Navigation type containment = local
Sub-task presentation = separated Control type containment = local

Navigation & control type = combined Control type containment = local
+
Navigation type containment = local
Navigation & control type = combined Navigation type containment = local
+
Control type containment = local
Concretization of navigation & control = Control type containment = global
combined
+
Navigation type containment = global
Navigation & control type = combined Navigation type containment = global
+
Control concretization placement = global
Navigation & control type = combined Control type cardinality = multiple
+
Navigation type cardinality = multiple
Navigation & control type = combined Navigation type cardinality = multiple
+
Control type cardinality = multiple
Input = graphic (A) Immediate feedback # vocal (A)
Input = multimodal (E,C,R) Immediate feedback # vocal (A)

Table 7-1 Dependencies between design options

237

7. Conclusion

o Expanded model-to-model transformational approach:

The current thesis introduces in Section 4.3.4 the clor as a new feature of our

transformational approach. Thanks to it, we are able to endow the concepts of our

ontology with more semantic that will progressively enable us to support this
approach with improved concepts and operations defined between them:

e Colored concepts. In order to distinguish between the modality
independent/dependent character of the concepts pertaining to our ontology,
colors have been considered (Section 4.3.4.a.1). Thus, we chose a neutral color
(i.e., black) in order to represent the independent concepts, whereas a specific
non-neutral color is associated to each modality (i.e., red for the graphical
concepts and blue for the vocal ones).

e Colored graphs. We expanded the abstract syntax of our transformational
approach by introducing the notion of colored graphs (Section 4.3.4.a.2) thanks
to a pair of functions that attach to each node and edge of a graph a particular
color. Furthermore, two operations over colored graphs have been defined:
merging and splitting (Section 4.3.4.2.3).

e Colored transformation rules. Thanks to the aforementioned concepts, we
were able to define (Section 4.3.4.a.5) the notion of colored transformation rule
(with two particular concretizations: monocolored or multicorored) and to
introduce two operations that apply over them (i.e., merging and splitting).
Consequently, we will benefit from a series of advantages in terms of flexibility
of their application. Thus, having at hand a multicolored rule, the generation of
an application that enables a particular type of interaction (i.e., monomodal or
multimodal) is done by considering the corresponding colors. Moreover,
multiple monomodal transformation rules supporting particular interaction
modalities can be merged together in order to obtain MM rules that ensure the
generation of MM Uls. Another advantage consists of the fact that the
designers’ decision of generating a particular type of application can be
supported by a tool that could automatically processes the suitable color(s) as
feature(s) of colored transformation rules.

" Transformation rule catalog — support for design space. The graph-based
transformation rules that support our design space were gathered in a complete
and systematic structure: a transformation rule catalog. Based on it, designers could
manualy select the corresponding transformation rule(s) of their design decisions,
thanks to the mapping specified between each design value and transformation
rules (Section 4.3.5). The transformation rules provided by our transformation
catalog are hard to implement and apply, thus being resource consuming in terms
of time to learn to design such rules, time to apply them, etc. However, the way in
which they are structured in transformation systems and development steps allow
designers to reuse their organizational logic for a further different implementation.

. New methodological sub-step. [Limb04] identifies the development sub-steps
for the generation of graphical and vocal Uls. We reuse these sub-steps for MM
Uls but we also add a new one, synchronization between CICs, in order to support the
methodological development process of MM Uls. The newly introduced sub-step

238

7. Conclusion

ensures the coordination of vocalCIOs and the graphicalCIOs by employing the
synchronization relationship.

7.2.3 Tools developed

As the design space introduced in the current dissertation offers the advantage of being
independent of any tool, any developer of MM Uls could take advantage of an explicit
support of the introduced design options. Consequently we considered
MultimodaliXML, an assembly of five software modules synchronized between each
other that aim to reduce the designers’ set of concerns by limiting the amount of design
decisions he could take.

7.3 Future work in prospect

With respect to some shortcomings observed in Section 6.7.1.b future work could

address the folowing concerns:

* Context of use and domain considerations - building a knowledge base of
inference rules that recommands the approapriate design option value to
select. An important aspect to consider when developing MM Uls is the context in
which these applications will be used, as well as the domain they cover. Depending
on the three parameters characterizing the context, different design decisions could
be imagined. Intuitively, a MM UI run on a desktop or notebook PC would consider
a presentation where all tasks are conveyed all at once in grouped lists, wheras on a
PDA platform a separated presentation would be more convinient. A mobile
platform used in a noisy environment would better support a Ul that enables
graphical input/output modalities, whereas used in quite contexts where users have
eyes-busy a vocal input/output interaction would be more suitable. Moreover, for
users employing the system in a domain where the task criticity is high (i.e., air traffic
control) a confirmation of the previously input would be recommanded, whereas for
users with a high device and system experience achieving a less complex task (i.e.,
search the translation of a word in an online dictionary) confirmation wouldn’t be
required. But these intuitions suppose an empirical validation based on which a set of
inference rules recommanding appropriate design option values to select could be
derived and gathered in a knowledge base.

= Extend the methodology to support development of context-aware systems.
Our methodology addresses the development of MM Uls for predefined and con-
stant contexts of use that do not support any dynamic run-time migration from one
modality to another. However, nowadays, the interaction has to be adapted to differ-
ent situations and to a context in constant evolution [Calv03]. This diversity of inter-
action contexts emphasizes the complexity of MM system design for which solutions
should be provided in order to enable systems to have run-time context-aware capa-
bilities [Sott07, Vand08]. Therefore, we would like to analyze a solution that consid-
ers a set of selection rules based on which different CUIs are generated from the
same AUI depending of several context parameters. Such an approach was applied
and described in [Rous05], where a behavioral model formalized by a base of election

239

7. Conclusion

rules allows the selection of the most suitable output modality. This approach could
be extended to input modalities as well.

* Design space improvement. We may want to perform the following activities over
the design space defined so far: (1) reduce the semi-dependent dimensions; (2) intro-
duce more values for each design option; (3) introduce new dimensions while maxi-
mizing the independency between them.

* Extend the methodology to support new interactions. More and more Uls are
supporting nowadays new modalities of interaction. Hereafter, we provide our point
of view over the extension proceess of the methodology when a new interaction
should be considered:

e Ontological extension. We will put into balance the necessity of introducing
new concepts and the possibility to adapt the existing ones in order to support
the new interaction. For instance, the introduction of the tactile interaction will
probably consists only in some physical constraints imposed on the existing
graphical objects. A decision that will consider both aspects could be considered
as well.

e Method extension. This extension will consider two aspects:

(1) The design space: first we will analyze if the existing design options still keep
their modality-independent character with respect to the newly introduced
modality. Second, we will study the opportunity of introducing new design
option values or new design options that could provide more guidance to the
designer when considering the new interaction alone or combined. The valid-
ity of these new options with respect to the concretization of the already
existing interactions should be checked as well.

(2) The transformational method: first, we will analyse if the systematic
development approach proposed in this thesis still keeps its coherece when
confrunted with the new interaction. Second, we will examine the necessity of
introducing new development sub-steps and consequently
adapting/extending the existing transformations rules gathered in the catalog
in order to support the new interaction. The objects over which these rules
are applied will be assigned with a new color in order to benefit from the
advantages provided by the multicolored rules.

e Tool extension. Depending on the extensions operated at the ontological and
methodological levels the supporting software should be adapted acordingly.

* Redesign a brand new UsiXML software support. The purpose of our design
space is to guide the designer during the development life cycle when having to de-
cide between different design alternatives. In line with this goal, a new software con-
cretized in a design space-based tool (Figure 5-12) could be developed. It would en-
able to select design values hiding transformational rules, thus absolving designers
from useless and workloading details. Moreover, it would be useful to present a
graphical preview of the design decision outcome. Thus, a clearer picture of the
presentation (supported by the introduced stylistics) and behavior of the future Uls
could be provided.

" Analyse the possible extensions of the colored transformation rules. We would

240

7. Conclusion

like to analyze whether the introduction of color as a new feature of our ontology is a
conservative extension with respect to the graph grammar properties such as termi-
nation, confluence, parallel and sequential independence.

= Usability evaluation of transformation rules. The aim is to assess the level of
usability covered by applying a set of transformation rules to develop MM Uls.
Specifically, we are interested in answering the following questions: Based on a set of
already identified usability criteria for the evaluation of HCI, what is the level of
coverage of the transformation rules? Are all usability criteria covered? What is the
level of coverage by modality? What is the level of coverage by design option? What
is the level of coverage by transformational level? Which criteria are preserved in all
the transformation levels? Could we generalize this reasoning for a general MDA
approach involving Ul development? The ultimate goal would be to investigate
whether MDA-compliant methods ensure a guaranteed level of usability through
model transformations.

* Evaluation of the MM UI usability based on cognitive psychology principles.
Decision making, as a feature of the cognitive psychology, plays an important role
in the area of HCI by creating the context for defining major design options for
information systems in order to pave the way to a structured development life cycle.
[Mars87] specifies a set of summary qualitative principles derived by usability
psychologists from cognitive psychology and designed to offer detailed guidance for
designers during the development process. Whereas the cognitive psychology offers a
support for the usability of the decision making, the MM UI design studies published
so far in the area of Software engineering and HCI are surprisingly rare. Furthermore,
there are few ongoing works on usability of MM Uls mainly because there are not so
many MM applications. There have been a number of studies (e.g., [LarsO3a]) of the
way designers should conceptualize their MM Uls, but these give little insight into
the way design options are formulated or decisions should be actually reached. Thus,
the usability of the design options for MM applications still remains an uncovered
research area as there are no usability MM applications experiments for this. As so far
we focused on the feasibility of code generation, the next steps will consider usability
experimental studies that will take into account qualitative principles derived from
cognitive psychology and their applicability to the design space.

7.4 Some personal concerns

This section presents some personal reflections and the resulting concerns over the
current dissertation with respect to the connection between the effort made to realize it
and the obtained results.

We base our analyse on the Pareto’s principle which has its roots in an observation made
over the Italian people stating that: §0% of Italy’s wealth was produced by 20% of the population.
This principle has been further validated in other areas of expertise thanks to numerous
empirical studies, thus giving rise to the so called §0 — 20 Ruwl. For instance,
supermarkets noticed that 80% of their stock comes from 20% of their suppliers. Also

241

7. Conclusion

80% of the production is produced by 20% of the company staff and 80% of their

problems are caused by 20% of the staff. Consequently, the rule practically states that

80% of the problem is solved with only 20% of effort. The corollary of this rule is that

for the remaining 20% of the problem, 80% of the effort would be required.

Therefore, we analyzed the extent to which this rule is validated by the methodology em-

ployed in the current research in order to solve the problem of MM UI development. For

this purpose we discuss two points of view:

1. The anthor’s point of view: we examined first the three dimensions of our methodology
(i.e., models, method, tools) by assigning weights depending on their contribution to
the final outcome (Figure 7-1). Thus, even subjective, we consider that the intro-
duced ontology and the method manipulating its elements have a greater rate (i.e.,
around 80 %) than the software support (i.e., around 20%) in the total outcome of
the methodology. This is mainly due to the fact that the introduced ontology, the de-
sign options composing the design space and the highly structured development
process guided by these options are independent of any implementation or tool sup-
port thus providing an output that could be useful to any designer of MM Uls. In a
second step we estimated the effort made during this research in order to reach the
outcomes produced by each of the methodological dimensions. We conclude that
most of these efforts were dedicated to the implementation aspects (i.e., developing
the modules of the MultimodaliXML tool, designing and manually specifying the
transformation, manually applying the XSL Transformations) which proved to be a
highly time and resource-consuming activity.

Effort
rate
00 Yy === =TT e o m s - -—- e
Tool
20% s !
Method i
i
50, | Outcome
Models | ! rate
I T
0 35 5 80 % 100 %
= Expanded task = Development of
model . Multimodal XML
= Expanded vocal * Define design space = Transformation rule
concepts * Concretize design options for G, V design
= Colored cuncems and MM interaction . Strumuring arule
= VIO stylistics = Structure the development process catalog
» MM instruction = Synchronisation between CICs — » Manual application
structure new methodological sub-step of rules

Figure 7-1 Connection between the effort rate and the outcome rate of our methodology

242

7. Conclusion

2. The extern designer point of view: 1f we were to provide the methodology developed in
this thesis to a designer in order to apply it on a different case study than those
presented in Chapter 6, we consider that the introduced ontology and the method
manipulating it should remain unchanged thanks to their independence of the
technology. On the other hand, the transformational approach and the tools
implementing it should be redesigned as the transformations rules proved to be
difficult to manipulate and apply, requiring a high treshold and sometimes the
development of oportunistic rules that can be applied only for several cases.

As a result of these discussions we conclude that the effort involved in providing a valu-
able methodology for the development of MM Uls and the outcome produced by it are
in line with the 80 — 20 Rule. We have identified the 80% of the results for which the
effort involved in the activities producing them was relatively low. As suggested by
several analysts of 80 — 20 Rule from now on the focus should be set on the rest of the
20% of results to produce (in our context, the implementation aspects) for which an 80%
effort rate is required. In line with this observation we consider that a design space-based
tool as the one illustrated in Figure 5-12 could help designers minimize the development
effort when building MM applications.

7.5 Concluding remarks

This thesis introduces a methodology for the development of MM Uls that applies a
transformational approach over a set of models thanks to transformation rules employed
in different development steps in order to offer guidance for coding complete MM
applications. The methodology (as defined in Section 1.4) is delineated by a set of
requirements that are elicited and motivated by the state of the art presented in Chapter
2. The validation of the proposed methodology is achieved by applying it over the case
studies presented in Chapter 6. Their main goal is to show the feasibility of the
methodology and provide designers with some explicit guidance on what to decide for
their future UI, while exploring various design alternatives.

The diversity of the Uls that have been developed based on the design space highlights
the possibility of manipulating related Uls and paves the way to consider multiple other
alternatives. In particular, new types of Uls can be developed by refinement (e.g., more
elaborated Uls obtained by taking into consideration more design option values), by
composition (e.g., new types of Uls obtained by combining several existing design option
values), by transformation (e.g., new Uls obtained by deriving existing Uls based on the
modifications made over the design option values) or by reusing. The possibility of
reusing already developed Uls is a consequence of the reusability feature of the
transformations rules. This feature has been demonstrated straightforwardly when
applied from one case study to another. Thus, we avoid the development of
transformation catalogs that are applied only for a particular case study and consequently
we prevent the proliferation of similar Uls.

243

7. Conclusion

244

References

References

A

[Abra99]
Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S., Shuster, J., UIML: An Appliance-
Independent XMI. User Interface Langnage, in Mendelzon, A. (Ed.), Proceedings of 8t International
World-Wide Web Conference WWW'8 (Toronto, May 11-14, 1999), Elsevier Science Publishers,
Amsterdam, 1999. Available online: http://www8.org/w8-papers/5b-hypertext-media/uiml/
uimlhtml.

[Abra04]
Abrams, M., Helms, J., User Interface Markup Language (UIML) Specification Working Draft 3.1, 11
March 2004. Available online: http://www.oasis-open.otg/committees/download.php/5937/
uiml-core-3.1-draft-01-20040311.pdf.

[Agra03]
Agrawal, A., Metamodel Based Model Transformation Langnage, Proceedings of ACM International
Conference on Object-Oriented Programming Systems, Languages and Applications
OOPSLA2003, (Anaheim, October 26-30, 2003), ACM Press, New York, 2003, pp. 386-387.

[Albr83]
Albrecht, A., J., Gaftney, J.,E., Software Function, Source Lines of Code, and Development Effort Predijction:
A Software Science Validation, IEEE Trans. Software Engineering 9(6), 1983, pp. 639-648.

[Alle83]
Allen, J., F., Maintaining Knowledge about Temporal Intervals, Communications of the ACM, 26(11),
1983, pp. 832-843.

[Aneg04]
Anegg H., Niklfeld G., et al., Multimodal Interfaces in Mobile Devices — The MON.A Project, Proc. of the
Emerging Applications for Wireless and Mobile Access Workshop MobEA’Il (New York, May
18, 2004).

[Awde006]
Awde, A., Hina, M., D., Tadji, C., Ramdane-Cherif, A., Bellik, Y., Information Access in a Multimodal
Multimedia Computing System for Mobile Visually-Impaired Users, Industrial Electronics, 2006 IEEE
International Symposium, Volume4, ISBN 1-4244-0496-7, 9-13 July 2006, pp. 2834-2839.

B

[Barn08]
Barnett, J., et al., State Chart XML (SCXML): State Machine Notation for Control Abstraction, W3C
Wotking Draft, 16 May 2008. Available online: http://www.w3.0rg/TR/2008/WD-scxml-
20080516.

[Bass91]

Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard, R., Szezur, M., R., The Arch model: Seeheim
revisited, User Interface Developer’s workshop version 1.0, 1991.

[Bast97]
Bastien, J., M., C., Scapin, D., L., Ergonomic criteria for evaluating the ergonomic quality of interactive
systems, Behaviour and Information Technology 16, pp 220-231.

[Beau00]
Beaudouin-Lafon, M., Instrumental Interaction: An Interaction Model for Designing Post-WIMP User
Interfaces, Proceedings of the ACM International Conference on Human Factors in Computing
Systems CHI’2000 (The Hague, April 1-6, 2000), ACM Press, New York, 2000, pp. 446-453.

[Bern06]
Bernsen, N., O., Dybkjaer, L., Multimodal Usability MULUS, SIMILAR Multimodal Usability
BOOK, 18.08.2006.

[Bert05]
Berti, S., Paterno, F., Migratory MultiModal interfaces in MultiDevice environments, Proceedings of the
7th International Conference on Multimodal Interfaces, ICMI’2005 (Trento, 4-6 October, 2005),
ACM Press, New York, 2005, pp.92-99.

[Bell92]
Bellik, Y., Teil, D., Les types de multimodalités, Actes des 4™ Journées sur I'Ingénierie des Interfaces

245

References

Homme-Machine IHM’92, Paris, 1992.

[Blan06]
Blanquet, J., Gatefin, J., Cherrier, P., Recommandations ergonomiques, Projet VERBATIM,
Sous-projet 1 — Lot 2, version 2.4, 2006.

[Boda94]
Bodart, F., Vanderdonckt, J., On the Problem of Selecting Interaction Objects, Proceedings of BCS
Conference HCI’94 "People and Computers IX" (Glasgow, 23-26 August 1994), G. Cockton,
S.W. Draper, G.R.S. Weir (eds.), Cambridge University Press, Cambridge, 1994, pp. 163-178.

[Bodn04]
Bodnar, A., Cotbett, R., Nekrasovski, D., AROM.A: Ambient awaReness through Olfaction in a
Messaging Application - Does Olfactory Notification Matke “Scents’, Proceedings of ACM International
Conference of Multimodal Interfaces ICMI’2004 (State College, October 13-15, 2004), ACM
Press, New York, 2004, pp. 183-190.

[Bolt80]
Bolt, R., A., Put-that-there: 1 vice and gesture at the graphics interface, Proceedings of the 7" Annual
Conference on Computer Graphics and Interactive Techniques SIGGRAPH’80 (Seattle, 1980),
pp. 262-270.

[Bouc04a]
Bouchet, J., Nigay, L., Ganille, T., ICARE Software Components for Rapidly Developing Multinodal
Interfaces, Proceedings of the 6 ACM International Conference on Multimodal Intetfaces
ICMI’2004 (State College, 2004), ACM Press, New York, 2004, pp. 251-258

[Bouc00]
Bouchet, J., Ingénierie de l'interaction multimodale en entrée: Approche a composants ICARE, Ph.D. thesis,
Université Joseph Fourier, Grenoble, December 7t, 2006.

[Brew96]
Brewster, S., A., McGookin, D., K., Miller, C., A., Olfoto: Designing a Smell-Based Interaction,
Proceedings of ACM International Conference on Human Aspects in Computing Systems
CHI2006 (Montréal, April 22-27, 2006), ACM Press, New York, 2006, pp. 653 - 662.

[Bygs07]
Bygstad, B., Ghinea, G., Brevik, E., Systems Development Methods and Usability in Norway: An
Industrial Perspective, Usability and Internationalization, HCI and Culture, Lecture Notes in
Computer Science, Springer Berlin, Volume 4559, 2007, ISBN 978-3-540-73286-0, August 24,
2007, pp. 258-266.

C

[Calv03]
Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J., A Unifying
Reference Framework for Multi-Target User Interfaces, Interacting with Computers, 15(3), June 2003, pp.
289-308.

[Clar99]
Clatk., J., XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16 November 1999.
Available online: http://www.w3.0tg/TR/xslt.

[Cohe98]
Cohen, P., R, Johnston, M., The Efficiency of Multimodal Interaction: A Case Study, Proceedings of the
International Conference on Spoken Language Processing ICSLP'98 (Darling Harbour, 1998), pp.
249-252.

[Conk88]
Conklin, J., Begeman, M., L., gIBIS: A Hypertext Tool for Exploratory Policy Discussion, ACM
Transactions on Office Information Systems, 6(4), 1988, pp. 303-331.

[Cole85]
Cole, I, Lansdale, M., Christie, B., Dialogne design guidelines, Human Factors of Information
Technology in the Office, Christies, B. (Ed.), John Wiley, Chichester, 1985.

[Cout92]
Coutaz, J., Multimedia and Multimodal User Interfaces: A Software Engineering Perspective, Proceedings of
the East-West International Conference on Human-Computer Interaction EWHCI92 (St.
Petesburg, 4-8 August, 1992).

[Cout95]
Coutaz, J., Nigay, L., Salber, D, Blanford, A., May, J., Young, R.M., Four easy pieces for assessing the
usability of multimodal interaction: the CARE properties, Proceedings of 5% IFIP TC 13 International
Conference on Human-Computer Interaction INTERACT’95 (Lillehammer, 27-29 June 1995),

246

References

Nordbyn, K., Helmersen, P.H., Gilmore, D.J., Atnesen, S.A. (Eds.), Chapman & Hall, London,
1995, pp. 115-120.

[Crea00]
Crease M., Brewster S., A., Gray P., Caring, sharing widgets: a toolkit of sensitive widget, Proceedings of
14 Annual Conference of the British HCI Group (5-8 September 2000), British Computer
Society conference series, Sunderland, England, pp. 257-270.

[Czar03)]
Czarnecki, K., Helsen, S., Classification of Model Transformation Approaches, Proceedings of the
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture,
anaheim, October 26-30, 2003.

D

[Debo06]
De Boeck, J., Raymacekers, C., Conix, K., Comparing NiMMiT and Data-Driven Notations for Decribing
Multimodal Interaction, Proceedings of 5th International Workshop on Task Models and Diagrams
for User Interface Design TAMODIA’2006, (Hasselt, Belgium, October 23-24, 2006), Lecture
Notes in Computer Science 4385 Springer 2007, ISBN 978-3-540-70815-5, pp. 139-146.

[Deva9l]
Devauchelle, P., User-friendly recommendations for voice services designers, France Telecom.

[Dijk76]
Dijkstra, E. W., The discipline of programming, Prentice Hall, Engelwood Cliffs, NJ, 1976.

E

[Ehti99]
Ehrig, H., Engels, G., Kreowski, H-]., Rozenberg, G., Handbook of Graph Grammars and Computing
by Graph Transformation, Application, Languages and Tools, Vol. 2, The Graph Transformation
Language AGG, World Scientific, Singapore, 1999.

[Enge89]
Engelbeck, G., Roberts, T., The effects of several voice-menu characteristics on menu selection performance,
Technical report ST0401, US West Advanced Technologies, Englewood, CO.

G

[Gait07]
Gaitanis, K., Vybornova M., O., Gemo, M., Macq, B., Multimodal High Level Fusion of Input
Commands as a Semantic Goal-Oriented Cooperative Process, Proceedings of 12th International
Conference Speech and Computer, SPECOM, 2007.

[Gonz06]
Gonzalez C., J., M., A Method for Developing 3D User Interfaces for Information Systems, DEA Thesis,
UCL, Louvain-la-Neuve, June 2006.

[Goul87]
Gould, J., D., Boies, S., J., The 1984 olympic message system: A test of bebaviour principles of system design,
Communications of the ACM, 30, pp. 758-769.

[Gram90]
Gram, C., Cockton, G., Design Principles for Interactive Software, IFIP’s Working Group 2.7, First
edition 1996, Chapman and Hall, ISBN 0-412-72470-7.

[Grub90]
Gruber, T., R., Russell, D., M., Design Knowledge and Design Rationale: A Framework for Representation,
Capture and Use, Knowledge Systems Laboratory, Stanford University, 1990, KSL 90-45.

H

[Hewe90]
Hewett, T., Baecker, R., Carey, T., Gasen, J., Mantei, M., Perlman, G., Strong, G., Verplank, W.,
Curricnla for buman-computer interaction, Technical Report 608920, ACM Special Interest Group on
Computer-Human Interaction Curriculum Development, 1996.

[Hoov91]
Hoover, S., Rindetle, J., Models and Abstractions in Design. Design Studies, Volume 12, Number 4,
October, 1991.

247

References

[Hura03]
Hura, S., L., Owens, R., The truth about multimodal interaction, August 2007. Available online:
http:/ /www.microsoft.com/speech/docs/Intervoice_Multimodal_Article.htm.

|

[IBM93]
IBM, Obyject-Oriented Interface Design, IBM Common User Access Guidelines, IBM document, Que
publishing, March 1993.

[IBMO03a]
IBM, WebSphere Voice Server for Multiplatforms, 1V oiceXMI. Programmer’s Guide, Version 4.2,
September 2003.

[IBMO3b]

IBM White Paper, Multimodal Application Design Issues, December 2003. Available online:
http://www.ibm.com/developerworks/websphere/libraty/techarticles/0312_li/0312_li html#do
wnload.

[IBMO5]
IBM, WebSphere Voice Toolkit Getting Started 1V ersion 6.0., Second Edition, November, 2005. Available
online:
http://publib.boulder.ibm.com/infocentet/pvevoice/51x/index.jsprtopic=/com.ibm.voicetools.
callflow.doc/ ccfpalette.html.

[IEEE90)]
1EEE society, Glossary of Software Engineering Terminology, IEEE Standard #610.12-1990, IEEE
press, 1990.

J

[Java98]
Java, Java Speech API Programmer’s Guide, Version 1.0, October 26, 1998, Sun Microsystems.
Available online: http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-
guide/UserInterface.html.

[Jens98]
Jensen, K., A brief introduction to colored Petr: nets, Proceedings of the Workshop on the Applicability
of Formal Models (Aarhus, Denmark, 2 June 1998), pp. 55-58.

[John95]
Johnsgard, T., J., Page, S., R., Wilson, R., D., Zeno, R., J., A Comparison of Graphical User Inteface
Widgets for 1 arions Tasks, Proceedings of the Human Factors & Ergonomics Society - 39th Annual
Meeting, Human Factors and Ergonomics Society, Octobre 1995., pp. 287-291.

K

[Kaye0O4]
Kaye, J., Making scents: Aromatic output for Human-Computer Interaction, Interactions, 11(1), 2004.

[Kats03]
Katsurada, K., Nakamura, Y., Yamada, H., Nitta, T., XISL :A4 Language for Describing Multinodal
Interaction Scenarios, Proceedings of the 5th International Conference on Multimodal Interfaces
ICMI’03 (Vancouver, Canada, 2003), ACM Press, New York, 2003, pp.281-284.

[Kawa90]
Kawai S., Aida H., Saito T., Designing interface toolkit with dynamic selectable modality, Proceedings of
the 204 Annual ACM Conference on Assistive Technologies Assets '96 (Vancouver, British
Columbia, Canada, April 11 - 12, 1996), ACM Press, New York, NY, pp. 72-79.

[Kawa03]
Kawamoto, S., Shimodaira, H., Sagayama, S., et al., Galatea: Open-Source Software for Developing
Anthropomorphic Spoken Dialog Agents, Life-Like Characters, Tools, Affective Functions and
Applications, Helmut Prendinger et al.. (Eds.) Springer, November 2003, pp. 187-212.

[KlemO00]
Klemmer, S., R., SUEDE: A Wizard of Oz Prototyping Tool for Speech User Interfaces, in CHI Letters,
Proceedings of 13" Annual ACM Symposium on User Interface Software and Technology
UIST’2000, pp. 1-10.

[Knol90]
Knolls, C., VVoice Messaging User Interface Forum, Specification document, April, 1990.

248

References

L

[Laca05]
Lacaz, X., Conception rationalisée pour les systémes interactifs, Une notation semi formelle et un environnement

"édition pour nne modélisation des alternatives de conception, PhD Thesis, 20 June 2005. Available online:

htep://liths.irit.fr/lacaze.

[Lars03a]
Larson, J., A., Commonsense Guidelines for Developing Multimodal User Interfaces, Larson Technical
Setvices, 3 April, 2003. Available online: http://www.larson-tech.com/MMGuide.html.

[LarsO3b]
Larson, J., A., Raman, T., V., Raggett, D., W3C Multimodal Interaction Framework, W3C Note 6 May
2003. Available online: http://www.w3.0rg/TR/mmi-framework.

[Lars06]
Larson, J., Intel, Common Sense Suggestions for Developing Multimodal User Interafces, W3C Working
Group Note 11 September, 2006. Availablea online: http://www.w3.0tg/TR/mmi-suggestions.

[Lewio5]
Lewis J., R., Computer Usability Satisfaction Questionnaires: Psychometric Evalution and Instructions for use,
International Journal of Human-Computer Interaction 7(1), 1995, pp. 57-78.

[Limb00]
Limbourg, Q., Vanderdonckt, J., Souchon, N., The Task-Dialog and Task-Presentation Mapping
Problem: Some Preliminary Results, Proceedigs of 7th International Workshop on Design,
Specification, Verification of Interactive Systems DSV-IS2000 (Limerick, 5-6 June 2000), F.
Paterno, Ph. Palanque (eds.), Lecture Notes in Computer Science, Vol. 1946, Springer-Verlag,
Berlin, 2000, pp. 227-246.

[Limb04a]
Limbourg, Q., Vanderdonckt, J., Transformational Development of User Interfaces with Graph
Transformations, Proceedings of 5 International Conference on Computer-Aided Design of User
Interfaces CADUTI'2004 (Madeira, 14-16 January, 2004), Kluwer Academics Publishers,
Dotdrecht, 2004.

[Limb04b]
Limbourg, Q., Multi-Path Development of User Interfaces, PhD thesis, University of Louvain,
November, 2004.

[Lowe93]
Lowe M., Algebraic approach to single-pushout graph transformation in Theoretical Computer Science, Vol. 1,
1993, pp. 181-224.

M

[Macl89]
MacLean, A., Young, R., Moran, T., Design rationale: the argument bebind the artifact, Proceedings of
ACM Conference on Human Aspects in Computing Systems CHI’89 (Austin, 30 April - 4 May
1989), ACM Press, New York, 1989, pp. 247-252.

[Macl91]
MacLean, A., Young, R., Bellotti, V., Moran, T., Questions, Options and Criteria: Elements of Design
Space Analysis, Lawrence Erlbaum Associates, 1991, pp. 201-250.

[Maes03]
Maes, S., H., Saraswat, V., Multimodal Interaction Reguirements, W3C Note 8 January 2003. Available
online: http://www.w3.0rg/TR/mmi-reqs/#Inputmodalityrequirements.

[Mars87]
Marshall C., Nelson C., Gardiner M., Design guidelines. In Applying Cognitive Psychology to User- Interface
Design, M. M. Gardiner and B. Christie (eds), Chichester, Wiley & Sons Ltd, 1987.

[Mart02]
Martin, J.-C., Kipp, M., Annotating and Measuring Multimodal Bebaviour - Tycoon Metrics in the Anvil
Tool, Proceedings of 3rd International Conference on ILanguage Resources and Evaluation
LREC'2002 (Las Palmas, Canary Islands, Spain, 29-31 May 2002).

[Mart01]
Martin, J., C., Grimard, S., Alexandri, K., On the annotation of the multimodal bebavior and computation of
cooperation between modalities, Proceedings of the workshop on Representing, Annotating, and
Evaluating Non-Verbal and Verbal Communicative Acts to Achieve Contextual Embodied
Agents (May 29, 2001, Montreal) in conjunction with the 5% International Conference on
Autonomous Agents, pp 1-7.

249

References

[Mart97]
Martin, J., C., TYCOON: Theoretical Framework and Software Tools for Multimodal Interfaces, Intelligence

and Multimodality in Multimedia Interfaces, AAAI Press, 1997.

[McGe98]
McGee, D., R, Cohen, P. R, Oviatt, S., Confirmation in multimodal systems,
Proceedings of 36" annual meeting on Association for Computational Linguistics, ACL, 1998, pp.
823 — 829.

[Medi07]
Medina, J-L., Chessa, S., Front, A., A Survey of Model Driven Engineering Tools for User Interface Design,
Proceedings of 6" International Workshop on Task Models and Diagrams TAMODIA’2007
(November 7-9, 2007), Springer, Betlin, pp. 84-97.

[Mell03]
Mellor S., J., Clark A. J., Introduction to Model Driven-Development, IEEE. Software 20(5), 2003, pp.
14-18.

[Mens06]
Mens, T., Van Gorp, P., A Taxonomy of Model Transformation, Proceedings of International
Workshop on Graph and Model Transformation GraMoT?2005, Electronic Notes in Theoretical
Computer Science, 152 (2005), pp. 125-142.

[MeriO0]
Merisol, M., Badia, F., Evaluation de la maquette d’un service multimodal de recherché d’itinéraire dans un
résean de bus, Proceedings of 18" International Conference on Association Francophone
d'Interaction Homme-Machine (Montreal, Canada, 2006), pp. 241- 244.

[Meye85]
Meyer, B., On _formalism in specifications, IEEE Software, January 1985.

[Meye88]
Meyer, B., 10 Tips for Getting Useful Information from Users, IEEE Software, Volume 5, Publisher
IEEE Computer Society Press, Issue 4, July 1988, pp. 89-90.

[Mill03]
Millet, J., Muketji, J., MDA Guide Version 1.0.1, Available online: http://www.omg.otg.

[Mont05]
Montero, F., Lopez-Jaquero, V., Vanderdonckt, J., Gonzalez, P., Lozano, M., D., Solving the
Mapping Problem in User Interface Design by Seamless Integration in 1dealXMI., Proc. of DSV-1S’2005,
Springer-Verlag, Berlin, 2005.

[Mori04]
Morti, G., Paterno, F., Santoro, C. , Design and Development of Multidevice User Interfaces through Multiple
Logical Descriptions, IEEE Transactions on Software Engineering, August 2004, pp. 507-520.

[Myer00]
Myers, B., A., Hudson, S., E., Pausch, R., F., Past, present and future of user interface software tools, ACM
Trans. Computer-Human Interaction, Volume 7, No. 1, 2000, pp. 3-28.

N

[Nava06]
Navarre, D., Palanque, P., Dragicevic, P., Bastide, R., An approach integrating two complementary model
based environments for the construction of multimodal interactive applications, Interacting with Computers,
Volume 18 (5), ISSN 0953-5438, Elsevier Science Inc. New York, NY, USA, September 20006, pp.
910-941.

[Newm91]
Newman, S. E., Marshall, C., C., Pushing Toulmin Too Far: Learning Froma an Argument Representation
Scheme, 1991, Xerox Parc Technical Report, No. SS1.-92-45.

[Niel88]

Nielsen, J., Coordinating user interfaces for consistency, Workshop of CHI’88, 15-16 May, 1988.
[Niga94]

Nigay, L., Conception et modélisation. Logicielle des Systemes Interactif : Application aux Interface
Multimodales, Thése de doctorat, Université Joseph Fournier, Grenoble, 1994.

[Niga96]
Nigay, L., Coutaz, |., Espaces conceptuels pour l'interaction multimédia et multimodale, TSI, Multimédia et
Collecticiel,Volume 15, no. 9, 1996, AFCET and Hermes Publishers, pp. 1195-1225.

[Niga97a]
Nigay, L., Coutaz, J., A Generic Platform for Addressing the Multimodal Challenge, Conference on
Human Factors in Computing Systems, Proceedings of the SIGCHI conference on Human

250

References

factors in computing systems (Denver, Colorado, United States, 1995), ISBN 0-201-84705-1, pp.:
98-105.
[Niga97b]
Nigay, L., Coutaz, ., Multifeature Systems: The CARE Properties and Their Impact on Software Design,
1997, Intelligence and Multimodality in Multimedia Interfaces: Research and Applications, AAAI
Press Publ. CD-ROM, J. Lee Edition, 1997.
[Niga97c]
Nigay, L., Coutaz, J., A design space for multimodal systems: Concurrent processing and Data fusion,
Proceedings of 12%- BCS conference on Human Computer Interaction, HCI'97, Springer Verlag.
[Norm86]
Norman, K., L., Weldon, L., J., Shneiderman, B., International Journal on Man-Machine Studies, 1980,
pp- 229-248.

O

[Olsi04]
Olsina, L., Martin., M., Ontology for Software Metrics and Indicators, Journal of Web Engineering 2(4),
2004, pp. 262-281.

[Open07]
OpenlInterface Platform - Component Developer Guide, Draft V0.1. Available online:
http:/ /www.openintetface.org/platform/ tutorial.

[Ovia99]
Oviatt, S., Ten myths of multimodal interaction, Communications of the ACM,
Volume 42, Issue 11, November 1999, ISSN 0001-0782, ACM Press, New York, USA, pp.: 74-
81.

[Ovia97]
Oviatt, S., DeAngeli, A., Kuhn, K., Infegration and synchronization of input modes during multimodal
buman-computer interaction, Proceedings of Conference on Human Factors in Computing Systems,
CHI97 (Atlanta, GA, March 22-27, 1997), ACM Press, New York, pp. 415-422.

P

[Pala03]
Palanque, Ph., Schyn, A., A Model-Based Approach for Engineering Multimodal Interactive, Proceedings
of 9% IFIP TC13 International Conference on Human-Computer Interaction, Interact'’2003
(Zurich, 1-5 September 2003), IOS Press, Amsterdam, 2003, pp. 543-550.

[Pate97]
Paterno, F., Mancini C., Meniconi, S., ConcurTaskTree: A diagrammatic notation for specifying task
models, Proceedings of IFIP TC 13 International Conference on Human-Computer Interaction
Interact'97 (Sydney, July 14-18, 1997), Howatd S., Hammond, J., Lindgaard, G. (Eds.), Kluwer
Academic Publishers, Boston, 1997, pp. 362-369.

[Puer(2al]
Puerta, A., Eisenstein, J., XIML.: A Common Representation for Interaction Data, Proceedings of 6%
International Conference on Intelligent User Interfaces TUI’2002 (San Francisco, USA, January
13-16, 2002,), ACM Press, pp. 214-215.

[Puer02b]
Puerta, A., Eisenstein, J., XIMI.: A Universal Langunage fon User Interfaces, Technical document, 2002.

[Plomp02]
Plomp, J., Kerdnen, H., Nikkola, H., Y, Rantakokko, T, Supporting past, present and future interaction
with home appliances, International ITEA Workshop on Virtual Home Environments (February 20-
21, 2002), Paderborn, Germany.

Q

[QVTO5]
Meta Object Facility (MOF) 2.0 Query/ View/ Transformation Specification, Final Adopted Specification,
November, 2005.

251

References

R

[Rous05]
Rousseau, C., Bellik, Y., Vetnier, F., Multimodal ountput specification/ simulation platform, Proceedings of
7% International Conference on Multimodal Interfaces ICMI’2005 (Trento, 4-6 October 2005),
ACM Press, New York, 2005, pp. 84-91.

S

[Scha07]
Schaffer, R., A Survey on Transformation Tools for Model Based User Interface Development, Proceedings
of HCI'International 2007, J. Jacko (Ed.): Human-Computer Interaction, Part I, LNCS 4550,
Springer, Berlin, pp. 1178-1187.

[Scha006]
Schaefer, R., Steffen, B., Wolfgang, M., Task Models and Diagrams for User Interface Design,
Proceedings of 5% International Workshop, TAMODIA'2006 (Hasselt, Belgium, October 2006),
Lecture Notes in Computer Science, Vol. 4385, Springer Verlag Berlin, 2006, pp. 39-53.

[Schu92]
Schumacher, R., Phone-based interfaces: reaserch and guidelines, Ameritech Services, Inc., Proceedings of
the Human Factor Society, 36t annual meeting, 1992, pp. 1051-1055.

[Schii97]
Schurr, A., Programmed Graph Replacement Systems, Handbook of Graph Grammars and Computing
by Graph Transformation, Rozenberg G. (Ed.), Volume 1: Foundations, World Scientific,
Singapore, 1997, pp. 479-546.

[Schy05]
Schyn, A, Une approche fondée sur les modéles pour Iinginérie des systémes interactif multimodanx, These de
doctorat, Université Toulouse 111, 2005.

[Shne86]
Shneiderman, B., Shafer, P., Simon, R., Weldon, L., J., Display strategies for program browsing: concepts
and experiment, IEEE Software, 3, 1986, pp. 7-15.

[Shne98]
Shneiderman, B., Designing the user interface: strategies for effective human-computer interaction, 34 Edition,
Publisher Addison-Wesley, ISBN 0-201-69497-2, March 1998.

[Shne06]
Shneiderman, B., Fischer, G., Creativity Support Tools: Report From a U.S. National Science Foundation
Sponsored Workshop, International Journal of Human-Computer Interaction, 20(2), pp. 61-77.

[Sieg88]
Siegel, S., Castellan., N., J., Nouparametric Statistics for The Bebavioral Sciences, McGraw-Hill, Inc.,
second edition, 1988.

[SinhO01]
Sinha A., K., Klemmer S., R., Chen, J., Landay J., A., Chen C., SUEDE: Iterative, Informal
Prototyping for Speech Interfaces, Video poster in Extended Abstracts of Human Factors in
Computing Systems CHI 2001 (Seattle, WA, March 31-April 5, 2001), pp. 203-204.

[Sott07]
Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M., Vanderdonckt, J., Stanciulescu, A., Lepreux, S.,
A Language Perspective on the Development of Plastic Multimodal User Interfaces, Journal of Multimodal
User Interfaces, Vol. 1, No. 2, June 2007, pp. 1-12.

[Stan04]
Stanciuluescu, A., Limbourg, Q., Vanderdonckt, J., Graful — modalitate de reprezentare a elementelor
interfetei cu utilizatornl, Proceedings of 15t National Conference on Computer-Human Interaction
ROCHTI’2004 (Bucharest, September 23-24, 2004), Stefan Trausan-Matu, S., Pribeanu, C. (Eds.),
Polytechnic University of Bucharest, Bucharest, 2004.

[Stan05]
Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F., A Transformational
Approach for Multimodal Web User Interfaces based on UsiXMIL., Proceedings of 7% International
Conference on Multimodal Interfaces ICMI’2005 (Trento, 4-6 October, 2005), ACM Press, New
York, 2005, pp. 259-266.

[Stan00]
Stanciulescu, A., Vanderdonckt, J., Design Options for Multimodal Web Applications, Proceedings of
6th International Conference on Computer-Aided

252

References

Design of User Interfaces CADUI'2006 (Bucharest, Romania, 6-8 June 2006), Chapter 4,
Springer-Verlag, Berlin, 2006, pp. 41-56.

[Stan07]
Stanciulescu, A., Vanderdonckt, J., Macq, B., Automatic Usability Assessment of Multimodal User
Interfaces Based on Ergonomic Rules, Proceedings of E-Mode Joint Workshop on Multimodal
Interfaces 2007 (Paris, 27-28 September 2007), S. Praud (ed.).

[Stan08]
Stanciulescu, A., Vanderdonckt, J., Mens, T., Colored Graph Transformation Rules for Model-Driven
Engineering of Multi-Target Systems, Proceedings of 3t International Workshop on Graph and Model
Transformation GraMoT’2008 (Leipzig, May 12, 2008), ACM Press, New York, 2008, pp.37-44.

[Suhm99]
Suhm, B., Myres, B., Waibel, A., Model-based and empirical evaluation of multimodal interactive error
correction, Proceedings of the SIGCHI conference on Human Factors in Computing Systems
(Pittsburgh, Pennsylvania, United States, 1999), pp. 584 — 591.

[Sun07]
Sun, Y., Shi, Y., Chen, F., Chung, V., An efficient unification-based multimodal langnage processor in
multimodal input fusion, Proceedings of 2007 Conference of Computer-Human Interaction, Special
Interest Group (CHISIG) of Australia on Computer-Human Interaction (Adelaide, Australia,
2007), pp. 215 — 218.

T
[Tour02]
Touraine, D., Bourdot, P., Bellik, Y., Bolot, L., A framework to manage multinodal fusion of events for
advanced interactions within Virtual Environments, Proc.eedings of 8% Eurographics Workshop on
Virtual Environments, Eurographics Association Publ., Barcelona, 30-31 May 2002, pp. 159-168.

U

[USIX05]
UsiXML Consortium, UsiXML, a General Purpose XML Compliant User Interface Description Language,
UsiXML V1.6.3, 16 June 2005. Available online: http://www.usixml.org.

[USIX07]
UsiXML Consortium, UsiXMIL, a General Purpose XMI_. Compliant User Interface Description Ianguage,
UsiXML V1.8, 14 February 2007. Available online: http://www.usixml.org.

Vv

[VandO1]
Vanderdonckt, J., Bouillon, L., Souchon, N., Flexible Reverse Engineering of Web Pages with 1 aquita,
Proceedings of WCRE'2001, IEEE 8th Working Conference on Reverse Engineering, Stuttgart,
October, 2001, IEEE Press.

[Vand03]

Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving the Navigational Structure of a User Interface,
Proceedings of 9% IFIP TC 13 International Conference on Human-Computer Interaction
INTERACT’2003 (Zurich, 1-5 September 2003).
[Vand07]
Vanderdonckt, J., Coutaz,]., Calvary, G., Stanciulescu, A., Multimodality for Plastic User Interfaces:
Models, Methods, and Principles, Multimodal User Interfaces: from signals to interaction, D. Tzovaras
(ed.), Chap. 3, Lecture Notes in Electrical Engineering, Springer-Verlag, Berlin, 2007, pp. 79-105.
[Vand08]
Vanderdonckt, J., Calvary, G., Coutaz,]., Multimodality for Plastic User Interfaces: Models, Methods and
Principles, D. Tzovaras (Ed.) Multimodal User Interfaces. Signals and Communication Technology,
Springer-Verlag Betlin Heidelberg 2008, DOI: 10.1007 /978-3-540-78345-9, pp.75-101.
[Varr02]
Varté, D., Vartd, G., Pataricza, A., Designing the Automatic Transformation of Visual Langnages,
Science of Computer Programming, 44, 2002, pp. 205-227.

253

References

W

[WincO8]
Winckler, M., Vanderdonckt, J., Stanciulescu, A., Trindade, F., Cascading Dialog Modeling with
UsiXML., Proceedings of the Design, Specification and Verification of Interactive Systems DSV-
182008 (Ontation, Canada, July 16-18, 2008), T.C.N. Graham and P. Palanque (Eds.), LNCS
5136, Springer-Verlag Berlin Heidelberg 2008, pp. 121-135.

[W3C04a]
W3C consortium, EMMA: Extensible MultiModal Annotation marknp language, W3C Working Draft,
14 December 2004. Available online: http://www.w3.0rg/TR/emma.

[W3C04b]
W3C consortium, Ve Extensible Markup Language (VoiceXML) Version 2.0, W3C
recommendation 16 Match 2004. Available online: http://www.w3.0tg/ TR /voicexml20.

[W3C04c]
W3C consortium, XHTMILA+Voice Profile 1.2, 16 March 2004. Available online:
http:/ /www.voicexml.org/specs/multimodal /x+v/12.

[W3C01]
W3C consortium, XML Schema Specification, W3C Recommendation, 2 May 2001. Available online:
http:/ /www.w3.0org/XML/schema.html.

254

Appendix A UsiXML expanded Task Model

Appendix A. UsiXML expanded
Task Model

A UsiXML Task Model is a hierarchical task structure, where each task is described by:
® An identifier and a name.

= A category, which is determined by the allocation of the task: a task performed by the
user (e.g. a cognitive task) is called a user task. A task completely executed by the
system (e.g. a computation task) has category application task. A task performed by the
user in interaction with the system (e.g. viewing results, selecting items, editing a field,
pushing a button to invoke an application function) is called an znseraction task. Last,
abstraction tasks (e.g. booking a flight) are complex tasks whose performance can not
be univocally allocated and that can be decomposed into simpler tasks (thus, there
must be at least two different task categories among the tasks decomposing an
abstraction task).

= Optional attributes such as the task zzportance ot frequency.
Tasks are linked by two types of relationships:

» Decomposition relationships. Each task can be decomposed into two or more subtasks.
Thus, with the exception of the root task, each task has a mother task from which
the temporal relationships are inherited.

* Temporal relationships. Temporal relationships between the tasks are specified with
temporal operators. The temporal operators are based upon the LOTOS operators.

Temporal relationships are of two types: unary and binary. Unary operators characterize
a single task when binary operators link together two sibling tasks.

There are three unary operators. The first one is the iteration operator (notation: T*),
which means that the task T is repeated until some other task disables it. The second
one, is the finite iteration operator (notation T(n)), used when the designer knows in
advance exactly how many time the task will be performed. The last operator permits
indicating that the performance of a task is optional (notation [T7).

If we consider two generic tasks T1 and T2, the binary temporal operators can be
described as follows:

1. Independent concurrency ot parallelism (T'1 ||| T2): T1 and T2 can be performed in any
order without any constraints. E.g.: filling field 1 and field 2 in a form.

2. Concurrency (or parallelism) with information exchange (IT1 |[]| T2): T1 and T2 can be
performed in any order but they have to synchronize in order to exchange
information. E.g. filling fied1 and field 2 in a form when there is some coherency
check (between a phone number and a city for example).

255

Appendix A UsiXML expanded Task Model

3. Deterministic choice (IT1 [] T2): Once one task is initiated, the other cannot be
accomplished anymore, until the first task is terminated. E.g. log in as a reviewer or
as an author on a conference reviewing system.

4. Non-deterministic choice (T1 m T2): Once one task is finished the other cannot be
accomplished anymore. E.g., saving one's bank statements to one's desktop
computer or printing them in the bank's self-service lobby.

5. Order independency or sequential independence (T1 | =| T2). This operator is equivalent
to (T1>>T2) OR (T2 >>T1) E.g., in a hospital, the human task of taking blood
samples from patients can be done before or after filling the request form for lab
analysis, but both tasks have to be completed before the request is send to the lab.

6. Disabling (T1 [> T2): 'T1 is definitively disabled when T2 (or the first subtask or T2)
has been performed. E.g., sending a form disables all tasks that could be achieved
in this form.

7. Suspend-resume (T1 |> T2): T1 is interrupted when T2 (or its first subtask) is
performed. Once T2 terminated, T1 is reactivated from the state reached before
the interruption. E.g., an alarm message indicating that the battery of the device is
low interrupts any activity on that device, and the activity is reactivated only when
the alarm dialog box is closed.

8. Enabling (T1 >> T2): T2 is enabled when T1 is terminated. For instance, the
authentication of the user allows him/her to access to the restricted area of a web
site.

9. Enabling with information passing (I'1 [|>> T2): T1 enables T2 and provides it some
information. E.g., T1 allows the user to specify a query and T2 displays the search
results related to the information requested in T1.

256

Appendix B Transformation rule catalog

Appendix B. Transformation rule
catalog

I. Transformation rules that support the design options
1. Transformation rules for sub-task triggering: not supported
2. Transformation rules for sub-task presentation:
2.1. Separated

LHS RHS

decorpposition

|ahstractCnntainer|

Rule 1. Generate abstract containers for each sub-task of the same task

Concretization for MM UI:
NAC LHS RHS

abstractContainer

abstractCgntainment
r

1:abstractContainer |1 ‘abstra ctCuntainer|
isReifigdBy isReifiedBy

vocalContainer
¥si_type=vocalGroup

graphicalContainer
¥si_type=window

|g|'a|:-hicalt;-:-ntainer| |\tocaICUntainer|

Rule 2. Generation of a window and a vocalGroup for each top-level AC

2.2.Combined
NAC LHS RHS
decomposition isExefputedin
1:task

|ah5tractCDntainer|

Rule 3. Generate an abstract container for the father task

257

Appendix B Transformation rule catalog

RHS

NAC LHS
A:decomposition
1:1ask 2task
isExetutedin)
4:isExecutedin

ahstractContainer

L
J:abstractContainer

S:decomposition

4:isExpcutedin

h abist

3:abstractContainer

actContainment

abstractContainer

isExequtedin

Rule 4. Generate an abstract container for each sub-task of the father task

e One at once
v' Extended task list:
Concretization for MM UI:
NAC LHS

RHS

abstractContainer

abstractjontainment

1:abstractContainer

|1:ahstractCnntainer

|graphicalContainEl'| |voca|Containel'|

|1 :abstractCnntainer|

is!Ryi‘ﬂfadEly

graphicalContainer

vocalContainer

¥si_type=window

¥si_type=vocalGroup

graphicalContainment
Y

vocalComtainment
L

graphicalContainer

vocalContainer

¥si_type=horderBox

¥Si_type=vocalMenu

is(:nmp';{ser_l

graphicalContainer
¥si_type=leftBox

isComp

i%ﬂﬂgseclﬂf

¥si_type=rightBox

graphicalCaontainer

edOf

graphical
¥Si_type=

Container
centerBox

Rule 5. Reification of the top most AC into a window containing a borderBox (with left, center and

right boxes) and a vocalGroup containing a vocalMenu

abstractContainment)

IsReifigdBy |1:abstractContainerHz_abstractcuniainer| 2.abstracConta|ner
isRapdB i j i eifiedB! isR SiiedB:

y isReifdBy gifldBy i ocalContainment Y

‘g\apmca\cwtame\ | |vuca\Cunlame| ‘

|3:g|'ar.|hica|Container| |5:vocaICDntainer

[xsi_type=window |

|xsi_type=vocalGroup |

graphicalCgntainment

raphicalContainer

vocalCoptainment
GvocalContainer

[3:araphicaicantainer| [5uocalContainer |

. [vacalContainer |

[xsi_type=window Hx5|_1ype=v0caleup|

" |xsi_type=vacalGraup |

araphicalGontainment

4:graphicalContainer

[6:vacalContainer

vocalCpntainment
vocalCgntainment

. [vocalContainer

xsi_type=hordergox

pe=borderBox

oRaposedOf

¥si_type=vocalMenu

" |xsi_type=vacalMenultem |

—— =
|quhﬁpose. Qf graphiealContainment

graphicalContainer

|g|‘aphica\00ntaine

|gl'aphicalContainer|

[xsi_type=centerBox isCal

|¥si_type=IeftBox

|xsi_type=rightBox_|

isCUm’susedoi
Xsi

’—*—‘glapmcal()nmamer graphicalContainment

xsi_type=lefiBox

_ |¥si_type=vocalkenu]

graphicalContainer
wsi_type=hox

Pusi_type=outputText

graphicalindividualComponent

name=tasl_item

Rule 6. Generation of a box, an outputText (task item) a vocalGroup and a vocalMenultem for each AC

embedded into the top most AC

258

Appendix B Transformation rule catalog

v Reduced task list:

Concretization for MM UI:

NAC LHS

abstractContainer

abstractJontainment

1:abstractContainer

graphicalContainer vocalContainer

isRejfiedBy isRzifiedBy

|1:abstractContainer|

vocalContainer

wsi_type=window ¥si_type=vocalGroup

¥si_type=vocalForm

|g|aphicaICUmainE| | |VocaICUntainer|

graphicaI$0ntainmant vocalCDitainmem

graphicalContainer
wsi_type=flowBox
align=left

vocalContainer
xsi_type=vocalMenu

vocalContain

vocalCpntainment

vocallndividualComponent

graphicaICI@v#ﬂainment

¥si_type=vocalPrompt

vocallndividualComponent

graphicallndividualComponent
¥si_type=comhboBox

®5i_type=vocallnput

Rule 7. Reification of the top most AC into a window containing a flowBox with a comboBox and a

vocalGroup containing a vocalMenu and a vocalForm with vocalPrompt and vocallnput

LHS RHS

abstractCon ainment

|1 abstractContamer

1:ahbstractContainer

2: abstractConta|ner|
gifiedBy

vocalContainer

graphicalContainer

ISRedeY\REQiBY

abstractContainmen

isRe
voca\Comammensi

2:abstractContainer

hicalContainer | |‘5 vocalGontainer

| [vocalContainer [

|¥si_type=window

3:graphicalContainer

| |xsi_type=vocalGroup |

'|xsw_type=vucal6mup|

SwocalContainer
J\1rh|c1|0[0nh||mem

¥si_type=window

xsi_type=vocalGroup

vocalCo&amment

vnualCnntainﬂXEm

graphicalContainment

|4 graphicalContainer |

‘ﬁvnca\CDmamel |

vocalContainer |

vocalCo@ainment
[xsi_type=fowBax__ |

|¥si_type=vacalienu |

o xsi_type=vocalMenultem ‘

4:graphicalContainer

GvocalContainer ntainment

\,’frhical

¥si_type=flowBox

isComposedOr |grapl

¥si_type=svocalMenu

graphicalO?ntainmem /

|JI?(|1IC?HH livid \LH|CDH1[DI1~H[}—4HXS| _typ

xsi_type=comboBox

graphicalindividualComponent

/ araphicalContainment

graphicalCaontainer

¥si_type=comboBox

»
xsi_type=hox

Rule 8. Generation of a box, a comboBox item, a vocalGroup and a vocalMenultem for each AC

v" Tabbed list:

embedded into the top most AC

Concretization for MMUISs:

NAC

LHS

RHS

abstractContainer

abstractCpntainment
L

1:abstractContainer

graphicalContainer vucaICnntainer|

[1: abstractCUntalner|

|1 :ahstractCDntainer| graphicalContainer

vocalContainer

¥si_type=window

¥si_type=vocalGroup

graphicalontainment

vocalContainment
 J

graphicalContainer

vocalContainer

¥si_type=tabbed

DialogBox

¥si_type=vocalMenu

Rule 9. Reification of the top most AC into a window containing a tabbedDialogBox and a vocalGroup

containing a vocalMenu

259

Appendix B Transformation rule catalog

LHS

abstractContainment

RHS

ahstractContain

20
2:absiractContainer

|vncaICnnta|ner| RiEsioai
hicalCon

graphicalContainer

|:-mcal$omaimnent

1:abstractContainer

|ca\Contam-'=l'| ‘ﬁ'vnca\onntainer _\voca\oontainer
Hxsi_lype:vocalomup| " |xsi_ype=vocalGroup |

‘1:abstractcomaiﬂerl—b-{2:abstraclcomamer|
isReifEdBy eReifiedBy isRei4dEy iRe
AwocalContainer |3:g|a h
|xsi_ty'pe:'winclnw

[xsi_type=vocalGroup |

vocalCogtainment 'SRERIBY isReiniedBy
vocalCoftainment

graph\calfﬁmtainnwm
A |

vocalConfainment

hicalContainer

| |E:\roca\00ntaimer

vocalContainer
¥si_type=vocalMenultem

GvocalContainer
wsi_type=vocalMenu

icalContainer
=tahbedDialogBox

| -gr
|xsi_type=tabbecDialogBox| |xsi_type=vocalMenu|

ara [:-hEﬂCD‘ntaiJll]k‘

graphicalContainer
xsi_type=tabhedltem

Rule 10. Generation of a tabbedItem, a vocalGroup and a vocalMenultem for each AC embedded into

the top most AC

v' Single expansion list
Concretization for MM UI:

NAC

LHS

RHS

|1 :ahstractCnntainer|

abstractContainer

abstractCpntainment
L

1:abstractContainer

graphicalContainer vocaICnntainer|

|1:abstractCDntainer

isaém{uay is

vocalContainer
¥si_type=vocalGroup

graphicalContainer
¥si_type=window

-;||'aphn:aLantamment vocalContainment

graphicalContainer
usi_type=floatWindow
mutuallyRoll=true

vocalContainer
¥si_type=vocalMenu

Rule 11. Reification of the top most AC into a window containing a floatWindow and a vocalGroup

containing a vocalMenu

abstractContainment ahstractContainmen
2'ahstractCnntainer‘ 1:abstractContainer 2:abstractContainer
i isREifiedBy
vocalContainmen|

‘1 -abstractContainer

isReifiedBy jsReffiedBy

isReiligtiBy iRaifiedBy

\ vocalContainer ‘
" |xsi_type=vocalGroup |

|3'gl'aphicaICnntainEl | |5jvoca\Containe|'

|vucaICUnlainew |

graphicalContainer

|3:.;raphica\Container|

[5wocalContainer
|xsi_type=vocalGroup|

|xsi_type=window | |xsi_type=vacalGroup |

|xsi_type=window
graphical@gontainment

vocalContainment

4.graphicalContainer

Xsi
mutuallyRaoll=true

GwvocalContainer
¥si_type=vocalMenu

floatWindow

glaphica{CDHtammem vocalCoptainment isReifiedBy
vocalConfainment

L|\focaloomain9|
" |xsi_type=vocalMenuitzm |

[6:vacalContainer
|[xsi_type=vocalienu|

4:graphicalContainer
xsi_type=floatWindow
mutuallyRoll=true

grapheslContainment

Rule 12. Generation of a floatltem, a vocalGroup and a vocalMenultem for each AC embedded into the

top most AC

260

Appendix B Transformation rule catalog

e Many at once
v Multiple expansion list:

Conctretization for GUI:
NAC LHS

RHS
|abstractCnntainer| |1:abstractCDntainer|
abstract¢nntainment isReffiedBy

1:ahstractCDntainer|

|1 :abstractCnntainer| graphicalContainer
isReiedEly ¥si_type=window
-;||'aphicalf_:intainment

|g|'aphicalri:nntainer

graphicalContainer
xsi_type=floatWindow
mutuallyRoll=false

Rule 13. Reification of the top most AC into a window containing a floatWindow

NAC LHS RHS
|2 bstractContai abstractContainment ahstractContainment
-abstracton alner| g i : i -
|1 .abs;;r::(:;;;amer'—D-|2.abstract00ntamer| |.1 -abstractContainer 2 ahstractContainer
. y
|sF{eredEl~_.f #
' J.graphicalContainer -
|-:_||'a|:-hicalli:|:|ntainer| graphicalfonfainment ¥si_type=window isReffiedBy
S BIEPIEE I OIaINER graph}paICDntainment
xsi_type=floatWindow \ - . . . N
mutuallyRoli=false ¥ 'JIa[Z-l'IICE|QDI1I3II1I11:I1I‘F
4:graphicalContainer — N —
——— P — o |draphicalContainer
¥si_type=floatWindow P sl toe=foalltem
mutuallyRoll=false _type=Toatle

Rule 14. Generation of a floatItem for each AC embedded into the top most AC

e All at once
v’ Separated list:

Concretization for MM UI:
NAC LHS

RHS
abstractContainer 1:abstractContainer|
abstractCdntainment i i

1:abstractContainer |1ZEHSTTECTCDﬂtEiﬂEF

graphicalContainer
ifidBy ¥si_type=window

yocalContainer
¥si_type=vocalGroup

- - gra[:-hicalg‘nntainment vncalC,&.ntainment
graphicalContainer vocalCuntainer| /
graphicalContainer vocalContainer
¥si_type=hox ¥5i_type=vocalForm
name=mainBox

vucalonbtainment

vocallndividualComponent
¥si_type=vocallnput

Rule 15. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocallnput

261

Appendix B Transformation rule catalog

ahstractContainment abstractContainment S anstaciContamer
T:abstraciContainer |—»{2:abstractContainsr] ., ‘
isReifigdBy. "~ IF e
isReifiedBy g

vocalContainment
SwacalContainer
xsi_type= roup

- xsi_type=vocalGroup
graphicgiContainment vecalCgntainment
vocalContainment
BvocalContainer
graphicalContainer

pifiedB

icalContainer

|g\apl1ica\CUntain-3|| |VUCE|CDntaiﬂE\

vocalContainer

isReifigdt

o |¥ocalindividualComponent
¥si_type=vocalForm =

vacalContainment

xsi_type=vocalPrompt

vocalGgntainment

TwoealindividualCompanent
xsi_type=vacalinput

name=mainBox

vocarGantainment isReifkdBy
7vocallndividualCompanent vocallndividualComponent
xsi_type=vocalinput xsi_type=vocalPrompt
audioSource="C:audio.wav"

graphicateentainms

L

Rule 16. Generation of a box, a space, a vocalGroup and two vocalPrompts for each AC embedded into

the top most AC

v Grouped list:

Conctretization for MM UI:
NAC LHS

RHS
abstractContainer

1:abstractCnntainer|
abstractGontainment i
A4 -
|1:abstractCDnta|ner| graphicalContainer vocalContainer
¥5i_type=window wsi_type=vocalGroup
ifiedBy - - -
-:_||'aphlcal$nnta|nrnent vncalC#tamment
graphicalContainer vucalCDntainer| - : T
graphicalContainer vocalContainer
wsi_type=hox ¥5i_type=vocalForm
name=mainBox

vncalCnbtainment

vocallndividualComponent
¥si_type=vocallnput

Rule 17. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocallnput

NAC LHS

abstractContainment abstractContainment = -
2:abstractContainer 1-abstractContainer 2:abstractCDntainer‘ 1-abstractContainer 2:abstractContainer
3 " isReiffedBy I ifiedBy
isRejff2dBy (o aifiedBy isReifledBy TzRe fiedBy : wocalContainment

|g|aphi|:alc;nmai|19|| |vnca\CnmainE\

graphicalContainer| [GvacalContainer |
findow | \xsw,wpe:voca\emup

= (HOCATL 0TS INE—
. - - vocalConainment
g\a|:-mca\($mamm=m sealContainment

- - — GwvocalContainer o l¥ocalindividualComponent
P e 4:graphicalContainer xsi_type=vocalForm P s fpe=vocalPrompt

vocalCprtainment narme=mainBox vocalContpinment isReifiqdBy

voca tainment
TwocalindividualComponent ‘
xsi_type=vocalinput

GvocalContainer

TwocalindividualGomponent vocallndividualComponent
xsl_type=vocallnput si_type=vocalPrompt
J audioSource="C:audio wav'
graphitalContainment TSRefefBy
— graphicalContainer r
xsi_| groupBox |

Rule 18. Generation of a groupBox, a vocalGroup and two vocalPrompts for each AC embedded into

the top most AC

262

Appendix B Transformation rule catalog

v" Bulleted list:

Concretization for MMUISs:

NAC LHS RHS
abstractContainer 1:abstrac1Cnmainer|
abstractGontainment

¥

graphicalContainer vncalContainel'|

|1 :ahstractCnntainer|

graphicalContainer

vocalContainer

wsi_type=window

¥si_type=vocalGroup

graphical$antainmem

graphicalContainer
¥si_type=hox
name=mainBox

uncalC#tainment

vocalContainer
xsi_type=vocalForm

vncalCnbtainmem

vocallindividualComponent
¥si_type=vocallnput

Rule 19. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocallnput

-3rapmcalc;umammem

itainment

4:graphicalContainer

GvocalContainer
xsi_type=vocalForm

vocalCofjainment

TwocallndividualComponent

xsi_type=vocallnput

LHS RHS
abstractContainment absiractContainment » 2:abstractContainer
] isRelfedBy TsRgifizdBy vocalContainment isReiflseBy \
i) [30 Containsr| [evocalConainer HM ARy
|g,aphmlonmaine,-| |mca|ogmamer| fsfi;zlsinnt:;g:wp \xs_t; window | \xs_rrpe:vocawomup xsi_type=vocalGroup

Container

graphical(fontainment vocalCogtainment
wocalContainment
Tar GvocalContainsr | vocalindividualCompaonent

hox

xsi_type=vocalFoarm

vocalCartainment

xsi_type=vocalPrompt

vocalCeatainment 'SREMEHBY isRelfisdB

vocallndividualCompanent

‘/xsi_type:vucalemm

audioSource="C:heep wav'
isRgife

graphicalContainment
—

graphicalContainme
grqphieateon

calCaontainer

Rule 20. Generation of a box that contains an outputText (bullet), a vocalGroup and two vocalPrompts

v" Ordered list:

for each AC embedded into the top most AC

Concretization for MM UI:

NAC LHS RHS
abstractContainer |1:abstractcnntainer|
abstractGontainment

graphicalContainer vucalCDmainer|

|1 :ahstractCnntainer|

graphicalContainer

yocalContainer

wgi_type=window

wsi_type=vocalGroup

-:_||'aphical$antainmem

graphicalContainer
usi_type=hox
name=mainBox

vncalC#tainment

vocalContainer
wgi_type=vocalForm

vncaICUbtainmem

vacallndividualComponent
xsi_type=vocallnput

Rule 21. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocallnput

263

Appendix B Transformation rule catalog

LHS

RHS

abstractContainment

abstractContainment

2:abstractContainer

isReiflsdBy

1:abstractContainer Z:ahstractContainer

isReiffdBy

SwocalCaontainer
xsi_type=vocalGroup
tainment

1:abstractContainer
isReffjedBy ifledBy vacalContainment
icalContainer| [SwvocalContainer vocalContainer
xsi_type=vocalGroup xsi_type=vocalGroup
SR

3ara
vocalColtainment

A xsi_type=window
|g|a|',|hu:aICDma|nE|| |vm:aICnmamEr| Ciid

graphicalContainment
vocalContainment

vocallndividualComponent
xsi_type=vocalPrompt

graplmal(:*umammem

4:.graphicalContainer
xsi_type=hox
name=mainBox

GyocalContainer
c

GvocalContainer s, alForm

xsi_type=vocalForm
vocalCofjainment

4:graphicalContainer
sl =l

name=mainBox

vocallindividualComponent
xsi_type=vocalPrompt
audioSource="Clorderwav'

TwocallndividualComponent
xsi_type=vocallnput

xsi_type=outputText
name=ardereditemn [

rgphicalContainment

glanhma\CnmammemJSR =
T IContainer

=1

Rule 22. Generation of a box that contains an outputText (orderedItem), a vocalGroup and two

vocalPrompts for each AC embedded into the to most AC

3. Transformation rules for sub-task navigation:
v' Sequential

Concretization for MM UI:
NAC

graphicatindridualCompanant

U

graphicalfransitior
wansitionype

¥

voralagjacency,

18 vocalContainer
. ocalF arm

i voalAd|acency

T
wnealCojntainement
b 3
HvocallndiidualCompansnt
=vucalllavigalion
neatContainar="#"

Rule 23. Generation of a graphicalTransition relationships that endow the (PREV, NEXT) buttons with
activation and deactivation features over adjacent and current GCs, respectively and

vocalNavigation specification to ensure the navigation between sequential vocalForms

v Asynchronous
Concretization for MM UI:
LHS

raphicalAdjacency———
2:graphicalContainer R JwgraphicalContainer

XSi_type=window xsi_type=window
name=y

graphicalAdjacency

graphicalTransition
=deactivate
graphical Containment

graphicalTrarsition
transitionTypg=activate

I

TgraphicalindividualComponent
xsi_type=hutton
name=y

|GvocalContainer |
|xsi_type=vocalForm |

[TvocalContainer |

|xsi_type=vocalForm [

vocalCpntainment

vocalAdjacency

GvocalContainer
wsi_type=vocalForm
id=x

gwocalindividualComponent
[xsi_type=vocalNavigation

vocalGontainment

BwocallndividualComponent
xsi_type=vocalNavigation
nextContainer="#x’

Rule 24. Generation of graphicalTransition relationships for buttons placed in the first GC that ensure
the forward navigation and vocalNavigation placed in the first vocalForm that ensure the

navigation towards the second vocalForm

264

Appendix B Transformation rule catalog

NAC LHS RHS

graphicalAdjacency graphicalAdjacency
e

IContainer
dow

S:graphicalindividualCompanent
xsi_type=hutton
name=y

vocalContainment vocalContainment

12wocalContainer " " 14vocalContainer
P o 13wocalContainer e

e si_type=vocalForm xsi_type=vocalForm
IOSK o=y

vocalContainment vogalContainment

10v0 1 ualComponent
XSi_fyps igation igati
nextContainer="#:"

xsi_typ
nextContainer="#y"

Rule 25. Generation of graphicalTransition relationships for buttons placed in the middle GCs and

vocalNavigation specification in order to ensure the forward and backward navigation and

NAC LHS RHS

graphicalAdjacency
3g Container
xsi_type=window

graphicalTransition
P vy

wgraphicallndividualComponent

graphicalAdjacer

IContainer
incow

3:graphicalContainer
Si_t) window

@lContainment

transitionTypesdeactivate

1:graphicalindividualComponent
—{xsi_type=hutton
name=y

= vocalAdjacenc
GvocalContainer [7vocalContainer

¥si_type=vocalForm "|xsi_type=vocalFarm

id=x -
vocalContainment

vocalAdjacency

TwocalContainer
xsi_type=vocalForm

vocalContainment

GwvocalContainer
xs_type=vocalF orm
id=x

SwocalindividualCompanent
xsi_type=vocalNavigation
nextCaontainer="#"

gvocallndividualComponent
xsi_type=vocalMavigation
nextContainer="#:"

Rule 26. Generation of graphicalTranstion relationships for buttons placed in the last GC and

vocalNavigation specification in order to ensure the backward navigation

4. Transformation rules for navigation type:
4.1. Containment:
4.1.1. Local:
LHS RHS

decomposition decomposition
task 11task

'SExiwmdm isExequtedin

|3:abstractCDntainer|

|3:abstractCDntainer|
abstractCdntainment

|abstractlndividualCnmpnnent|

Rule 27. Generation of one local placed AIC that ensures the navigation between the first AC and the

second one in any type of sub-task presentation (separated or combined)

265

Appendix B Transformation rule catalog

LHS

utedin

J:abstractContainer
jrfment

abstractindividual Component| abs

actContainment

ahstractindividualComponent

isExegutedin

JabstractContainer

|abstractlndividualComponent| abstragiContainment

|abstractlndividualComponent|

Rule 28. Generation of two local placed AICs that ensure the navigation for middle placed ACs in any

NAC

type of sub-task presentation (separated or combined)

LHS

RHS

temporal

decomposition

|task}——b-|1:task|

isExi:utedln

|3:abstractl3|:|ntainer|

decomposition

isExeputedin

|3:abstractCuntainer|
abstractC%tainment

|abstractlndividualCumpnnent|

Rule 29. Generation of one local placed AIC that ensures the navigation between the last AC and the

previous one in any type of sub-task presentation (separated or combined)

NAC

LHS

RHS

|E:abstractIndividuaICDmpunent|

isComposedOf

h 4

1:ask
taskType=start

9:manipulates
8:method

9:manipulates|q task

a:method taskType=start

taskitern=operation
fisExgcutedin

2:abstractContainer

abstractCantainment

|E:abstractlndividualComponent|

facet taskltem=operation

type=navigation
actionType=start
actionitem=operation

SlisExgcutedin

Z:abstractContainer

isCom dof

abstractCagntainment

[:abstractindividualCompanent]

Rule 30. Creation of navigation facets for local placed AICs

Concretization for MM UI:

abstractadjacency i abstractContainment
1 abstractcamamerH—{abmracmnmamer . i P
‘ ‘ 1:abstractContainer |—— Z:abstractindividualCompaonent
abstractCamtainment iSReffiedEy isReifiedBy
i}o«%piseuor
araphicalindividualCompanent |3 al:'lTicalc':'”ta.in":"| ‘83\"053|00m‘3in9r| 4:ra[:9t
graphicalGpntainment vocaloon]ainment type=navigation
vocallndiidualComponen)
actionType=start
phicallr lualComponent IsBetiedBy actionlitem=operation

utton
name="NEXT" |

vocallndividualComponent
¥si_type=vocalMavigation

Rule 31. Generation of “NEXT” button that ensures the navigation between the first GC and the

second GC and vocalNavigation element that ensures the navigation between the first VC and the

second one in any type of sub-task presentation (separated or combined)

266

Appendix B Transformation rule catalog

RHS

Containment

TabshaciCentaing |
IsReifsdRy
RN
. -

oy |
isReinighmy |
|'l i

| istonpasador

/

Rule 32. Generation of “PREV” and “NEXT” buttons that enure the navigation for middle placed GCs

and vocalNavigation elements in any type of sub-task presentation (seprated or combined)

abstractAdjacency = abstractContainment
‘1 abstaciContaner abstaciContainer 1:abstractContainer 2:abstractindividualComponent

abstral itainment

2Z:abstractindividualComponent
isReifiedBy

sReifiedBy

vocallndividualComponent

graphicallndividualCc

actiznismsoperaion)

isReifiedBy

3.graphicalContainer

gra|:-hicalC-:-Ntammem

isComposedOf

4facet
type=navigation
actionType=start
actionitem=operation

vocallndividualComponent

xsi_type=vocallavigation

Rule 33. Generation of “PREV” button that ensures the navigation between the last GC and the

previous one and vocalNavigation element that ensures the navigation between the last VC and the

previous one in any type of sub-task presentation (separated or combined)

4.1.2. Global:

LHS

decomposition

2isExecutedin

|2:abstractt}nntainer|

abstractlndividualCnmpnnent| ahs

actContainment

|abstractlndividualCnmpnnent

Rule 34. Generation of two global placed AICs that ensure the navigation between the sub-tasks

|E:abstractlndividualComponent| 1task g'manipulates grmanipulates[y task
) taskType=start 8:method -‘——taSkTYpFStal‘t
isComposedOf taskitern=operation Tacat taskltem=operation
¥ fisExgcutedin type=navigation SlisExecutedin

2:abstractContainer

abstractCantainment

|E:abstractlndividualComponent|

actionType=start
actionltem=operation

2:abstractContainer

isCom dof

abstractCantainment

|6:abstractlndividuaIComponent|

Rule 35. Creation of navigation facets for global placed AIC

267

Appendix B Transformation rule catalog

Conctretization for MM UI:

NAC _LHS RHS

abstractContanmmeant

1 absiracContainer S.abstracendiidualComponam

[\

[\
.'I .-;c.:\v::.-;-::lor

st abSUAssAEERLy
= e —

2 abshachndsidual Cr

IsReis 945:‘ i
|

SRSy 7 N
/

-
.}qd--nn,- I

13wocalContaner

4 1acet
hype=navigasan

\:;R.-.n 4By |actionType=stan
'.\/ actionitem=operation
>
uall
n

6 facol
type=naigaton

alComponent f

vocalindieduaiComoonant | [wic
TNanigation

xsi_typr=vac:

Rule 36. Generation of “PREV” and “NEXT” buttons and vocalNavigation elements that ensure the

global navigation

4.2.Cardinality
4.2.1. Simple cardinality:
NAC LHS

decomposition FisEkecutedin

|2:abstract00ntainer|

|abstractlndividualCnmpDnent| ahstractContainment

|abstractlndividuaICnmpnnent|

Rule 37. Generation of two AICs that will be concretized in two logically connected buttons (PREV,

NEXT) ensuring the navigation between the sub-tasks

4.2.2. Multiple cardinality:
NAC LHS

utedin

isExegutedin

JabstractContainer

3:abstractContainer
jafnent

actContainment

abstractindividualComponent| abst
abstractindividualComponent

abstractlndividualComponent| abstragiContainment

|abstractlndividualComponent|

Rule 38. Generation of two local placed AICs that will be concretized in two logically connected buttons

(PREV, NEXT) ensuring the navigation between sub-tasks

268

Appendix B Transformation rule catalog

NAC LHS

decomposition FisEkecutedin

|2:abstractt}nntainer|

|abstractlndividuaICnmpDnent| abstactContainment

|abstractlndividualCnmpnnent|

Rule 39. Generation of two global placed AICs that will be concretized in two logically connected

buttons (PREV, NEXT) ensuring the navigation between the sub-tasks

5. Transformation rules for control type:
5.1. Containment:
5.1.1. Local:

NAC LHS RHS
decompaosition decomposition
4task 11ask

isExechtedin

abstractlndividualcomponem| Y
|abstractlndividualComponent| JabstractContainer ahstractContair

|abstractlndividualComponent| ab

trgctContainment

[abstractindividualComponent]

Rule 40. Generation of two local placed AICs that ensure the control of data in any type of sub-task

presentation (separated or combined)

NAC LHS RHS

|3:abstractlndividualCDmpDnent| 1task G:rmanipulates 1task G:manipulates

taskType=start 5'method taskType=stat ————»{&:method]
isComposedOf Lz - -

taskitern=operation taskltem=operation

fisExacutedin
f" p giisExkcutedin
2:abstractContainer EaBSIEEl onisiney type=control

. N . actionType=start
9:abstractContainment actionitem=operation
Y

|3:abstractlndividualonmponem|

|3:abstractlndividualComponent|

Rule 41. Generate control facet for local placed AICs

Conctretization for MM UI:
NAC

[abstrackContainer

sfnimgdiBy Y

Rule 42. Generation of “OK” and “CANCEL” buttons and submit element that ensure the local control
of data

269

Appendix B Transformation rule catalog

5.1.2. Global:
NAC LHS RHS

decomposition isExetutedin isExeputadin

|2:ahstractContainer|
|2:abstractCnntainer| abstractCnWent

|abstractlndividuaICDmpDnent| ab ctContainment

|abstractlndividualCnmpunem

Rule 43. Generation of two global AICs that ensures the control of data

|3:abstractlndividuaICompnnent| 1:task T:manipulates ‘manipulates [1:task
- taskType=start &:method 4:method taskType=start
isComposedOf taskitem=operation P taskitem=operation
h 4 i type=cantral 5.isExegutedin
facet - = actionType=start : -
I__—I Z:abstractContainer actionltern=operation 2:abstractContainer
abstractContainment isComposed0f apstractContainment
|3:abstractlndividualComponent| |3:abstractlndividualComponent|

Rule 44. Creation of control facet for global placed AIC

Concretization for MM UI:
LHS

absiraciC emainment

[abstrackContainer

sl ment

sRaMighEy .
I AY 4 abytracine
[ismdpeasy

A

r

Rule 45. Generation of “OK” and “CANCEL” buttons and submit element that ensure the global

control of data

5.2.Cardinality
5.2.1. Simple cardinality:
NAC LHS RHS
y decompaosition decompaosition

abstractContaingment ah3traciContainment isExecltedin

abstractlndividualoomponent| h
[abstractindividualComponent] 3:ahstractContainer abstractContais

[abstractindividualGomponent]

tgctContainment

|abstractlndividuaICDmponent|

Rule 46. Generation of two AICs that will be concretized in two logically connected buttons (OK,
CANCEL) ensuring the contro of data for each sub-task

270

Appendix B Transformation rule catalog

5.2.2. Multiple cardinality:

NAC LHS RHS
iti decomposition
decomposition
1task
abstractContainent 5o icontainment isExecptedin isExetutadin

3J:abstractContainer

abstlactlndividualoumpunent| L
|abstractlndividualComponent| J:abstractContainer ahstractContair

|abstractlndividualComponent| ab

tractContainment

[abstractindividualGomponent]

Rule 47. Generation of two AICs that will be concretized in two logically connected buttons (OK,
CANCEL) ensuring the control of data for each sub-task

NAC LHS RHS

decomposition isExetutedin isExegutadin

|2:ahstract00ntainer|

|2:ahstractCnntainer| abstractContainfaent

|abstractlndividuaICumpnnent| abStractContainment

|abstractlndividuaICnmpunem|

Rule 48. Generation of two global AICs that will be concretized in two logically connected buttons (OK,

CANCEL) ensuring the contro of data for the root task

6. Transformation rules for navigation and control type:
6.1. Separated:

NAC RHS

1:abstractContainer

TisExegutedin

1:abstractContainer

3:abstractindividualComponent

tractContainment

isComposedOf 2:abstractindividualComponent |2 e o R t| abstragtContainment
i :abstractindividualComponen
|sCom¢usedOf |3:abstract|ndividua|0omponem
isComposedf
facet
type=navigation facet
actionType=start type=control
actionltem=operation actionType=start
actionltem=operation

Rule 49. Generate separated navigation and control facets for AICs

271

Appendix B Transformation rule catalog

6.2.Combined:

1:abstractContainer
T:isExgcutedin
abstractContginment 7isExedutedin :
3 1:abstractContainer
[2:abstractindividual Component] ;
|1 :abstractCnntainer| EbSUasiCUnisinmEnt
isComposgdof
P , ahstractContainment |2:abstractlndividualCompnnent|
isCorosedOf
3 isComposedOf is&omposedOf
|E:abstractlndividualCnmpnnent|
facet facet
type=control type=navigation
actionType=start actionType=starnt
actionltern=operation| |actionlterm=operation

Rule 50. Generate combined navigation and control facets for AICs

7. Transformation rules for sub-task guidance:
7.1. Guided

Concretization for MM UI:

8:selectionvalue
name=x

isReifiedBy

isRaifiedBy

graphicallndividualComponent

vocallndividualComponent

Rule 51. Generate radioButtons and vocal items of a grammar that will guide the user with the possible

options

7.2.Unguided
Conctretization for MM UI:

NAC LHS RHS

e i8R MadEy
isReifletBy iskeifizdBy IsRelfpasy

-
~~TaComposedr ISRaMedEy
woralGantainment

graphicallndividualCompanent

vocallndividualComponent

dvocalContaingr
XSI_typasvocalF ol
IsRaMEany | Sfacet
- YE_tyDe- gt ’
actionTypescrate | [$0calindbidualCompanent
481_type- ingutleit attonfiar- elament Lfypesrecond

vocalContfnmant

Rule 52. Generates inputText and vocallnput elements that do not guide guide the user with the

possible options

272

Appendix B Transformation rule catalog

8. Transformation rules for support for default value and unit: not

supported

9. Transformation rules for answer cardinality:

9.1. Simple
Concretization for MM UI:
NAC LHS

graphicalindivic

vocalindividualComponent

Rule 53. Generation of comboBox items and grammar items that enable single selection among

multiple options

9.2. Multiple

Concretization for MM UI:

NAC

RHS

G:selectionValue

vocallndividualComponent

LHS

axdonTypasseact
axtontem=giemen

Rule 54. Generation of checkBox items and grammar items that enable single selection among multiple

options

10.Transformation rules for confirmation answer:

10.1. With confirmation:

Conctretization for MM UI:

NAC LHS

RHS

abstractContainment

[2:absvacanaiesuaicameanant]

RNy
-

3:abstractCDntamer|—>~|2_abstractlﬂdividualCUmpUﬂenl

\anr‘h&DsedOf

EifiedBy [gfacet

abstraciContainment

Z:abstractContainer 1:abstractindividualComponent
isReifstpy wsWum

3facet
xsi_type=input
actionType=create

SwvocalContainer

sL_type=vocalGroup| vocallndividualCompanent

xsi_type=input
actionType=create
actionitem=element

TwocalContainer |
xsi_type=vocalGroup

[xsi_typ: rompt
isReifiegBy M@mmem

actionftem=elemant

vocalContainer
xsi_typ: I

vocallndividualComponent
xsi_ype=vocallnput

vocallndividualComponent
xsi_type=vocalPrompt

Rule 55. Generation of inputText and vocallnput that require confirmation

273

Appendix B Transformation rule catalog

10.2. Without confirmation

Concretization for MM UI:
NAC LHS

1 abetracanddualCompanant abstractContainment J-abstraciCont. SaciContainment 1:abstr; idualComponent
|2 abstractContainer 1:abstractindividualComponent ELSUACONIE e
.‘Hw ToigeinedDy - o IsReifiddBy
e isRajfledBy sorppose
ocalContaner] [grapnicalinaivdualCompanant

isBpmposedof

isRlifieds SwvocalContainer
4:graphicalContainer 4 3facet xsi_type=vocalGroup 3facet
xsi_type=hox xsi_type=input S xsi_type=input
actionType=create LgraphicalContainer actionType=create
SwvocalContainer actior ent ¥si_type=hox vocalgntainment
xsi_type=vocalGroup

actionltem=element

graphicalChptainment

graphicalindividualComponent
xsi_type=inpuiText

vocallndividualComponent
[xsi_type=vocalinput

isCompopedof

vocallndividualComponent
xsi_type=record

Rule 56. Generation of inputText and vocallnput that do not require confirmation

11. Transformation rules for answer order:
11.1. Order dependent
Concretization for MM UI:
NAC LHS RHS

bamaciCamaismant

1 absraciGonaner S perare

IsRdifiedBy

VOC AN T COMpOn e

Rule 57. Generation of grammar items that require sequential uttering

11.2. Order independent

Conctretization for MM UI:
NAC

T:sslactionalug
name=x

RHS

R
s sTaciConmane—

tndwduslC ormpanar
IR asa gy

sy HRYSeEy
e
IsRdifiedBy

vocandadLalComponant

Rule 58. Generation of grammar items that require asynchronous uttering

274

Appendix B Transformation rule catalog

12.Transformation rules for input
12.1. Vocal

NAC LHS RHS
abstractContainment

[1-abstractContainer [——{2 abstractindividualComponsnt [1:abstractcantainer
UBY isReifiedBy isRei}

abstractContainment

2:abstractindividualComponent

dBy — \sCumpisedOf isReifiedBy isCompos iReifiedBy
isRefiedBy L §
isReifledBy [y aicomainer | 02
|\ SREST xsi_type=vocalForm
xsi_type=input -

actionType=create
actionltem=glement

isReifi

st
» vocalContainer

xsi_type=vocalForm

|graphlca\Cnmamer| ‘vnca\camamer|

4vocalContainer
xsi_type=vocalForm

Sfacet isReifegay vocalCgntainment
xsi_type=input
actionType=create

vocallndividualComponent

actionltem=element xsi_type=vocallnput
curentyalue=x

- graphicalContainer
xsi_ty
)

o
haorizontal

Rule 59. Generation of vocallnput components

12.2. Graphical
NAC LHS RHS

abstractContainment abstractContainment

‘1.abstractCUmamer|—b-(2 abstractindividualComponent 1-abstractContainer 2:abstractindividualComponent

|2:abstractlndwidualoomponent|

isReffiedBy isReifledBy \anmp¢sed0f isReifigdBy isReifisdel isCogposedOf
Sfacet i graphicalContainment Stacet
icalContain %si_type=input graphicalContainer xsi_type=input

actionType=create

actionType=create
actionltem=element

actionltern=element

Wmtammem

graphicallndivi
XSI_type=inputText
currentvalue=y

~ .
graphica€ontainment ar

Rule 60. Generation of inputText components

12.3. Multimodal

NAC LHS RHS

abstractContainment

abstractContainment,
[1:abstraciContainsr 2abstractindividualComponent]
isReifigtBy jshgifiedBy isReiffzdB} isCompgsedof I vocalContaip ISRQedBy
isRgifiedBy isReiflzdBy 4vaocalContainer vocalContainer
|-yraphlca\conlama'| ‘voca\comamer| hicalContainer e [si_type=vocalForm xsi_type=vocalForm
| si_type 3:graphicalContainer isConpesedof
: _type=input s hpesbox | A - voealChntainment
4vocalContainer ‘ actionType=create Sl _type=hox Efacet isReifiddBy
xsi_type=vocalForm | |actionltem=element xsi_type=input —
actionType=create vocallindividualComponent
actionitem=element XSI_ND;:TUCEHH[JLJI
graphicalContainment araphicalContainer | (T AL
— P xsi_ty box
ntal

UI'GIC'WCBIC}ta«ﬂmem grar:-mq\(\lt;umammem

graphicalAdjacenc

graphicalindividualComponent
i_type=inputText
currentvalue=y

A

Rule 61. Generation of vocallnput and inputText components

275

Appendix B Transformation rule catalog

13.Transformation rules for simple output:
13.1. Vocal:

NAC

LHS

RHS

2:abstractindividualComponent

IsReifiedBy o

ifiedBy

abstractContainment

|1 abstractContainer

2:abstract\ndiwdua\cumponem‘

isReifiedBy TomsifisdBy

|glar:-hlcal(;c-mamer

|vocal(30ma|ner‘

AvacalContainer
xsi_type=vocalForm

isComposedof

Sfacet
xsi_type=input
actionType=create
actionltem=element

ahbstractContainment
1:abstractContainer 2:abstractindividualComponent

isReifiedBy

o |vocalContainer
- xsi_type=vocalForm

| [otacat isRyifieds
I xsw‘_tynTe=iﬂDUI . Vo beaichntainment
actionType=create i
|‘ actionltem=gelement vocalCogitainmeryt

graphicalContainme

type=horizontal
-J\ar-\wiigjet'-’maimnent
dualComponent vocallndividualComponent

xsi_type=vocallnput
currentValue=x

Rule 62. Generation of vocalPrompt components

13.2. Graphical:

NAC

LHS

RHS

2:ahstractindividualComponent

isReifig

UBY jsheifiedBy

|-3ramica\c:-ntamer| \voca\camamer|

4vocalContainer
xsi_type=vocalForm

abstractContainment
‘1:abstractcumamer}——p~|2 abstractindividualComponent
isReiffzdBy isCompgsedOf
isReifiedBy
Sfacet
xsi_type=input

actionType=creats
actionltern=element

abstractContainment

1:abstractContainer 2:abstractindividualComponent

vocalContainer
xsi_type=vocalForm

|xsi_type=vocalForm |

\sgpmposeuof

5facet vocd|Containment
xsi_type=input

‘ actionType=create -
actionitem=element vocallindividualComponent
=] [xsi_type=vocallnput

e oo | (currentvalue=x

graphicalContairfent graphitg) £
graphicalAdjacency

currentvalue=sy

isRejffiedBy

graphicalContainment

Rule 63. Generation of graphical prompt (outputText) components

13.3. Multimodal

NAC

LHS

RHS

2:abstractindividualComponent

isReifig

UBY jsheifiedBy

|g\aphica\CDnlame| | ‘vnca\Cumamel |

abstractContainment

‘1:abstractcumamer}——p~|2 abstractindividualComponent

abstractContainment

2:abstractindividualComponent

1:abstractContainer

xsi_type=vocalForm

aBy
S L ‘SC”m‘]iSE”OT isReifedBy [2vacalContainer | e Container
‘xsi_type:vucalFulm \ xsi_type=vocalForm
5facet \EﬁmupUSEdof
xsi_type=input Eacet sReifbdBy vocalGaptainment
4vocalContainer actionType=creats xsi_type=input

actionltem=element

actionType=create vocallndividualComponent
‘ xsi_type=vocallnput

araphicalContainr

graphicalContainer

vocalContainment

€nt graphicalC

graphicalContajr

vocallndividualComponent
q xs

ualComponent

Rule 64. Generation of multimodal prompt (vocalPrompt and outputText) components

276

Appendix B Transformation rule catalog

14.Transformation rules for prompting:
14.1. Vocal

NAC

LHS

abstractContainment

RHS

2:abstractindividualComponent

IsReifiedBy o

ifiedBy

|1 abstractContainer

2:abstract\ndiwdua\cumponem‘

isReifiedBy TomsifisdBy

|g|ar:-h|ca|Comamer

|vocal(30ma|ner‘

hicalContain

AvacalContainer
xsi_type=vocalForm

isComposedof

Sfacet

xsi_type=input
actionType=create
actionltem=element

abstractContainment

1:abstractContainer

Z:abstractindividualComponent

isReifiedBy

o |vocalContainer

Sfacet
xsi_type=input
actionType=create
actionitem=element

isRgifiedBy

- xsi_type=vocalForm

yocalCpntainment

vocalCoptainment

hicalContainment

graphicalContainer

type=horizontal

ar ar-\wiigle'cﬂnaimnent

dualComponent

vocallndividualComponent

xsi_type=vocallnput
currentValue=x

Rule 65. Generation of vocalPrompt components

14.2. Graphic

NAC

LHS

abstractContainment

RHS

2:ahstractindividualComponent

isReifig

UBY jsheifiedBy

‘1:abstractcumamer}——p~|2 abstractindividualComponent

dBy
isReifiedBy

|-m'aphica\f;amamer| \voca\camamer|

\anmpisedOf

Sfacet

4vocalContainer
xsi_type=vocalForm

xsi_type=input
actionType=creats
actionltern=element

abstractContainment
1:abstractContainer

2:abstractindividualComponent

vocalContainer

|xsi_type=vocalForm |

S facet
xsi_type=input

‘ actionType=create
actionitem=element

\sgpmposeuof

isRejffiedBy

xsi_type=vocalForm

vocd|Containment

vocallindividualComponent

graphicalContainment

xsi_type=vocallnput
currentvalue=x

type=horizontal
graphicalContairfent graphitglContainment
graphicalAdjacency

graphicall

currentvalue=sy

ualCompon
inputText

Rule 66. Generation of graphical prompt (outputText) components

14.3. Multimodal

NAC

LHS

RHS

2:abstractindividualComponent

isReifig

UBY jsheifiedBy

abstractContainment

‘1:abstractcumamer}——p~|2 abstractindividualComponent

dBy
isReifiedBy

|g\aphica\Cumame| | ‘vnca\Cumamel |

\anmpisedOf

abstractContainment

1:abstractContainer

2:abstractindividualComponent

isReifjedBy

‘ﬂvn:a\[}nnlalne\ ‘vucalc y"“" 'ﬂvuca\Cuntaine\

|xsi_type=vocalForm |

Sfacet

4vocalContainer
xsi_type=vocalForm

xsi_type=input
actionType=creats
actionltem=element

\sﬁmupusedof

Sfacet
Xsi_type=input
actionType=create

isReiffedBy

xsi_type=vocalForm

vocalCapfainment

vocallndividualComponent
xsi_type=vocallnput

araphicalContainr
arap

graphicalContainer

€nt graphicalC

vocalContainment

graphicalContajr

vocallndividualComponent
q xs

ualComponent

Rule 67. Generation of multimodal prompt (vocalPrompt and outputText) components

277

Appendix B Transformation rule catalog

15.Transformation rules for immediate feedback

15.1. Vocal
NAC

LHS

RHS

abstractContainment

2:abstractindividualComponent

‘1 abstraciContainer 2:abs

tractindividualComponent

abstractContainment

1:abstractContainer 2 anstramlndwidualcampnnem|

iSReifiedBy isComposeddf / isReiliedBy
isReifigdBy i
4wocalContainer » [vocalContainer
[xsi_type=vocalFarm | g

vocalCopainm
xsi_type=vocalForm

isReifigtBy jsheifiedBy isReiffedBy isCompgsedOf
isRgifiedBy
|graphlca\cnmamer| ‘vnca\camamer| \ Sdacet
| xsi_type=input

4vocalContainer
xsi_type=vocalForm

actionType=create
actionltem=glement

3:graphicalContainer

IsRgifiedBy vocalJontainment

Sfacet
xsi_type=input
actionType=create
actionltem=element

vocallndividual Component
xsi_type=vocallnput
currentValue=x

vocalCgntainment

araphicalContainer
xsi_type=hox
type=harizantal

graphicgleBntainment

vocallndividualComponent
usi_type=vocalFesdback

jualComponent

xsi_type=outpuiText

Rule 68. Generation of vocalFeedback components

15.2. Graphical
NAC

LHS

RHS

abstractContainment

2:abstractindividualComponent

‘W:abstractComamer

2Z:abstractindividualComponent

1sReifgtBy isheifiedBy isReifjzdBy isCompgsedof
isReifiedBy
|g\aphica\Cumame| | ‘vnca\Cumamel | 5facet
xsi_type=input

4vocalContainer
xsi_type=vocalForm

actionType=creats
actionltem=glement

abstractContainment
- idualComponent

1:abstractContainer

vacalContainer
xsi_type=vocalForm

vocalCoftainment

vocallndividualComponent

\xsl_type:voca\Fom!/

T i mposedOf
Sfacet
xsi_type=input isReffiedBy
actionType=create
actioniterm=ele ment

graphicalContainer

xsi_type=vocalinput
currentvalue=x

E—]

IContainment

-J\arshiWim ent

graphicalAdjacency
graphicalindividualComponent = graphicalin
xsi_type=outptText

ualComponent
JutText

Rule 69. Generation of inputText components that will ensure the graphical feedback

15.3. Multimodal
NAC

LHS

RHS

abstractContainment

2:abstractindividualComponent

‘1 abstractContainer 2:ab:

stractindividualComponent

isReifigtBy 5

ifiedBy

dB)
isReifiedBy

'aphlca\(:omama'| ‘voca\camamer|

i_type=vocalForm

isCompgsedof

abstractContainment

2:ahstractindividualComponent

o |vocalContainer

5-facet \xsw_wpe:vocalFormL/ " |xsi_type=vocalForm
xsi_type=input icalC i vocalC
actionType=create -77 A-facet isRejfiedBy

actioniterm=elemeant *Si_type=input

vocallndividualComponent
xsi_type=vocallnput
currentvalue=x
vocalCpntainment

actionType=create
actionitern=element

graphicalContainer
xsi_ hox
=horizontal

ent

glaphm'“%\(;ﬂmamm

graphicalindividualCormponent
xsi_type=inpuiText
currentval

Rule 70. Generation of vocalFeedback and inputText components that will ensure the multimodal

feedback

278

Appendix B Transformation rule catalog

16.Transformation rules for guidance for input

16.1. Textual

NAC

LHS

RHS

abstractContainment

2:abstractindividualComponent

‘1 abstraciContainer

2:abstractindividualComponent

1:abstractContainer

isReifi

By isRgifiedBy B} -
isReifiedBy

N

4vocalContainer
xsi_type=vocalForm

|graphlca\Cnmamer| ‘vnca\camamer|

\sCumpisedOf

Sdfacet

nt
> vocalContainer

¥si_type=vocalForm

isReifiedBy
SREMEABY [y pcalContaine

|¥si_type=vocalForm |

xsi_type=input
actionType=create
actionltem=glement

3:graphicalContainer
xsi_type=hbox

Afacet isReifiedBy vocalGontainment

xsi_type=input
actionType=create
actionltem=element

vocallndividual Component
xsi_type=vocallnput
currentvalue=x

graphicalContainment

graphicalContainer
xsi_type=hox
type=harizantal
gra r:-l1ica£,‘aﬁt’amment

dualCompanent
Text
2ase type or utter your nams”

phicalContainment

Rule 71. Generation of outputText components that ensure a textual guidance for input

16.2. Iconic
NAC

LHS

RHS

abstractContainment

2:abstractindividualComponent

‘1 abstractContainer

2:abstractindividualComponent

isReifi

By iskgifiedBy 9B e
isReifiedBy

|-yraphlca\(:ontama‘| ‘voca\camamer|

4wvocalContainer
xsi_type=vocalForm

isCompgsedOf

Sfacet
xsi_type=input
actionType=create
actionltem=glement

abstractContainment

> 2 ividualComponent

,ScDmpW isReifiedBy
vocalCpntainmgnt lvacalContainer
xsw_type:voca\me/ " |xsi_type=vocalForm

&-facet
xsi_type=input
actionType=create
actionltem=element

1:abstractContainer

vocalContainment
isReifledBy
vocallindividualComponent
xsi_type=vocallnput
currentValue=x

Eraﬁlu_EaICnmammém
gainment

gray “ontainment

/g|'aphica|A-:\jacency

onent

>

Rule 72. Generation of imageComponents that ensure an iconic guidance for input

16.3. Acoustic

NAC LHS

RHS

abstractContainment

2:abstractindividualComponent

‘W.Ehstraulcumamer

2:abstractindividualComponent

isReifig

UBY jsheifiedBy

|g\aphica\CDmame| | ‘vnca\Cumamel |

4vocalContainer
xsi_type=vocalForm

isReiffedBy isCompgsedOf
isReifiedBy
aphicalContainer \ Sfacet
xsi_type=input

actionType=creats
actionltem=glement

xsi_type=input
actionType=create
actionltem=element

grapl

isComppsedor

vocallindividualComponent
xsi_type=aud
audioSource="Clbeep.wav"

JalComponent
xsi_type=vocallnput
currentyalue=x

Rule 73. Generation of vocalPrompts that play an audio file in order to ensure an acoustic guidance for

input

279

Appendix B Transformation rule catalog

16.4. Speech
NAC LHS RHS

abstractContainment

Z sustacindividusiComeonent ‘W:abstractComamer}——b{zahstractlndividua\Cnmpnnem

abstraciContainment |

1:abstractContainer ividualCompanent

isReiffedBy isCompgsedOf Iscomp,
isPgifiedBy vocalCoptainmznt [ygcaiContainer
|graphica\camamer| ‘voca\camamer| e "lxsi_type=vocalForm
xsi_type=input aacet isReifledBy vocalCntainment

4vocalContainer
xsi_type=vocalForm

actionType=create
actionitem=element

xsi_type=input
actionType=create
actionitem=element

vocallindividualComponent
xsi_type=vocalPrompt
defaultContent="Please say your name"

graphicalContainer vucalcun%nmem

vocalindividualComponent
xsi_type=vocallnput
currentValue=x

Rule 74. Generation of vocalPrompts synthesizing speech to ensure speech guidance for input

16.5. Multimodal
LHS RHS

abstractContainment
[1:abstractContainer|—— {2 abstractindividualComponant

abstraciC, Tment
2

isReiffzdBy isCompgsedOf
isReifiedBy

3:0raphicalContainer \ Sfacet
= xsi_type=input

|-m'aphica\f;amamer| \voca\camamer|

xsi_type=vocalFor m/

isReifietBy
4 ICont tionT it e 7“
svocalContainer actionType=create xsi_type=input
%S| toe=vocalForm i = - vocallndividualCompanent
xsi_type=vocalForm | |actiontem=element arfionType=create I

xsi_type=vocalPrompt
defaultContent="Please say your nams"

vor@(}omammem

actionitem=element

raphicalCaontainer

vocallndividualComponent
xsi_type=vacallnput
currentValue=x

Rule 75. Generation of vocalPrompts synthesizing speech and of imageComponents to ensure

multimodal (speech and iconic) guidance for input

17. Transformation rules for guidance for immediate feedback
17.1. Textual
NAC LHS RHS

2:abstractindividualComponent

abstractContainment
2:abstractindividual Component ‘1 TR

isReiffedB: isCompgsedOf
isReifiedBy

wocalContainer

|-yraphica\camam-'=|'| \voca\camamer|

»
5-facet ¥5|_Wp9=VDCa|F0W/ xsi_type=vocalForm
xsi_type=input S isRejfiedBy vocalConthinment

4vocalContainer actionType=create xslali; pr

xsi_type=vocalForm | |actiontem=element Lype=inp! vocallndividualComponent

| actionType=create

" xsi_type=vocalPrompt
actionitem=element

defaultContent="Flease sayyour name"

mar-hlhmmawném araphicalContainer SoLSICHNIAnmEnt
> X vocallindividualComponent
horizantal si_type=vocallnput

X:
hizalContainment | rrentyalue=x

graphicalln;
xsi_typ utp
utContent="Your name is + §x"

jualComponent

Rule 76. Generation of outputText components that ensure the textual guidance for feedback

280

Appendix B Transformation rule catalog

17.2. Iconic

LHS

RHS

|-m'aphica\f;amamer| \voca\camamer|

abstractContainment

[1:abstractContainar—— {2 abstractindividualComponent

\anmpisedOf

dBy
isReifiedBy

Efacet
xsi_type=input
actionType=create
actionitem=element

4vocalContainer
xsi_type=vocalForm

1:abstractContainer

abstractContainmen

2:abstractindividualComponent

wocalContainer

>

xsi_typ e:voca\Form/

x¥si_type=vocalForm

5facet

vocalConfainment

xsi_type=input
actionType=create
actionltem=element

isReifigdBy

vocalindividualCompaonent

usi_type=vocallnput
currentvalue=x

hicallndividualCompo

utputText

glaﬁ-l;?i(cumalmﬂem

horizontal

calContainment

/ grap

mageComponent
aker_icon

Rule 77. Generation of imageComponents that ensure the iconic guidance for feedback

17.3. Acoustic

NAC

LHS

RHS

2:abstractindividualComponent

-yraphlca\(:mﬂama‘| ‘voca\camamer|

abstractContainment
Z:abstractindividualComponent

‘W:abstractComainer

isCompgsedof

Sfacet
si_type=control

actionType=start

actionltem=operation

4vocalContainer
i_type=vocalFoarm

abstractContainment

1:abstraciContainer

isReifigdBy 4vocalContal

2:abstractindividualComponent
isRgifiedBy

isComposedat
vocalComainmg

iner ”‘_ vocalContainer

xsl_type:vuca\me‘/ v

Sfacet

vocalConfainment

actionType=:

xsi_type=contral

actionltem=operation

isReffiedBy

start

graphicalContainment

graphicalContainarent
arap tainar

isComppsedOf

shicalContainer

vocallndividualComponent

xsi_type=audio
audioSource="Cipercolating.wav'

vidualComponent

Rule 78. Generation of vocalPrompt components that play an audio file in order to ensure acoustic

guidance for feedback

17.4. Speech
NAC

LHS

RHS

2:abstractindividualComponent

-m'aphica\f;amamer| \voca\camamer|

abstractContainment

‘1:abS!fat!COHIEiﬂer}—P{2:abstract\ndividualcumpunent

isCompgsedof

Sfacet
si_type=control

actionType=start

actionltem=operation

4vocalContainer
xsi_type=vocalForm

abstractCo

1:abstractContainer

4wvacalContainer

2:abstractindividualComponent

isComposeddf

voealCgAtainmaAnt [caicontainst

xsw_Wpe:vocalme/ v

Sfacet

isReifiédBy

xsi_type=control
actionType=start

vocalContainment

actionltem=operation
glapl&l(;mwlamment

graphicalContainer

S—— »

ty
granlma\camipmmn

dividualComponent

xsi_ty

vocallindividualComponent
xsi_type=vocalFeedback
currentValue="The file is being deleted. .please wait.."

Rule 79. Generation of vocalFeedback components synthesizing speech that ensure speech guidance
for feedback

281

Appendix B Transformation rule catalog

17.5. Multimodal

NAC

LHS

RHS

2:ahstractindividualComponent

abstractContainment

‘1 abstractContainer|

F}Z abstr; nmpnneml

isReifligtBy jsheifiedBy

|-3ra|:hica\tc-mamer| \voca\camamer|

isReifiedBy’

- - isReifiedBy
1sCompgse:
sReifiedsy P

1:abstractContainer

abstraciContainmen
2abstractindividualComponent
R

RR(izdBy isC 7,

4vocalContainer | VoealCoatainm

WyocalContainer

Sfacet
si_type=control

xsi_type=vocalForm
vocal

xsi_type=vocalF or ml/

Sifacet

ntainment

4vocalContainer

actionType=start
xsi_type=vocalForm

actionltem=operation

-Ja\:-h\#ilct-n(almnant

\si_type=control
actionType=start

vocalindividualComponent
si_type=vocalPrompt

actionltem=operation

vocalCangginment

vocalindividualComponent
xsi_type=audio
| |audioSource="Cipercolating wav'
voealGpntamment
| 4

vocallndividualComponent
xsi_type=vocalFeedback
currentvalue="The file is being deleted.. please wait.."

Rule 80. Generation of vocalFeedback and vocalPrompt that ensure multimodal (acoustic and speech)

II.

guidance for feedback

Additional transformation rules

1. Transformation rules for the identification of AUI structure

NAC

LHS

RHS

abstractContainer

abstractindividualComponent

Rule 81. Create an AIC for leaf tasks

2. Transformation rules for selection of AICs

NAC

LHS

RHS

|3:abstractlndividualCnmpnnent|

isComppsedOf
Y

facet
actionType=convey
type=output

1:task Amanipulates
userAction=convey 2:attribute

tasklitem=element

4'isExe
k

utedin

3:abstractlndividual(}umpunent|

1task
userAction=convey
taskitem=element

4:isE>$cutedln

A:manipulates

2:attribute

[3:abstractindividualComponent]
isComposedOf

facet
actionType=convey
actionltem=element
type=output

Rule 82. Create an output facet that conveys an element

282

Appendix B Transformation rule catalog

NAC

LHS

RHS

J:abstractindividualComponent

1task

S:manipulates

- userAction=create 2:attribute
'SCDq,pDSEdOf tasklitem=element
facet 4:isExgcutedin

actionType=create

b

1task
userfction=create
taskitem=element

f:manipulates

2:attribute

4isEkecutadin

|3:abstractlndividualCDmpnnent|

type=input 3:ahstract|ndividuaICumpunent| iannﬁmsedOf
facet
actionType=create
actionltem=element
type=input
Rule 83. Create an input facet for AIC executed in tasks of type create
3:abstractlndividualCumponent| 1task G:manipulates Ttask G:manipulates
- userAction=select 2attribute B el 2aattribute
'500r¢3039d0f taskitem=glement faskter, lement isComppsedof
sComposado 5:\sE>$cuteu|n
B is
faCF!t— SlisExecutedin ‘B.absnacllﬂdividua\CUmpUnent||4.enum9|aled\f'alue|
aCtIDI‘?T‘y’pE=SE|ECt A r isoomboseuor
type=input 3:abstract|ndividualComponent| |4:enumerated\-’alue|

facet
actionType=select
actionltem=element
type=input

Rule 84. Create an input facet of type select element when an enumerated value attribute is

encountered

Afacet 1task T:manipulates 1task _ 7:manipulates
actionType=select userAction=select 2:attribute userAction=select 2:attribute

A taskltem=element)
actionltern=element taskitem=element < 101 Py isCombosedof
type=input BrisExdcutedin Is.ompose isExgcutadin : _

isComdosedof L : : — 4:enumeratedvalue

& 3:ahstractlndividualCumpunent| Lenumeratedvalue |3'5”39“ac_t'”d""d“a'componem| name=x
- - isComposedOf
selectionValue 'SCUm#USEUOf name=x _
name=x 5-facet 5facet isComposedOf
actionType=select actionType=select o |selectionValue
LS actionlterm=element " [name=x

actionltem=element
type=input

type=input

Rule 85. Create selection values for facets of type select for each enumerated value of an attribute

RHS

NAC

LHS

JabstractindividualComponent

1:task

isComppsedOf
k 3

facet
actionType=convey
type=output

userAction=convey
tasklitem=element

Amanipulates
2:attribute

4'isExeputedin

b

3:abstractlndividualCumpunent|

1task
userAction=convey
taskitem=element
4:isExpcutedin
N

Smanipulates

2:attribute

|3:abstractlndividualCumpnn

ent|

isComiﬂsedOf

facet
actionType=convey
actionltern=element
type=output

Rule 86. Create an output facet that conveys an element

283

Appendix B Transformation rule catalog

3. Transformation rules for spatio-temporal arrangement of AIOs

NAC

LHS

RHS

|3:abstl'actlndividualCDmpnnent|

ahstractfdjancency
v

|4:abstl'actlndividualCDmpnnent|

temporal
fypa=">="

isExecutedin

L 4
|3:abstractlndividualoompnnent|

|4:abstl'actlndividuaICnmpDnent|

temparal
lype=">>"

isExecptedin

|3:abstractlndividualCompunent|

isExegutedin

ahstractAdjahgency

|4:ahst|‘actlndividualCumpunent|

Rule 87. Generation of Abstract Adjacency relationship between <AIC, AIC> couples

NAC

LHS

RHS

|4:ahstractCnntainer|

abstractpdjancency
r

tempoaral

|3:ahstractlndividualCnmpunent|

|4:abstractCnntainer| isEye

|3:ahstractlndividualCnmpnnent|

temporal

isExecytedin

4:abstractContainer

Rejancency

isExecifedin

|3:abstractlndividuaICnmponent

Rule 88. Generation of Abstract Adjacency relationship between <AC, AIC> couples

NAC

LHS

RHS

[3:abstractindividualComponent|

ahstractddjancency
v

2:abstractContainer

temporal
type="s="

isExe
k4
|3:ahstractlndividualCnmponent| isExecutedin

.abstractContainer

utedin

temporal
type="=="
isExequtedin

|3:abstractlndividualComponent| isExgcutedin

abstractAdiance

S:abstractContainer

Rule 89. Generation of Abstract Adjacency relationship between <AIC, AC> couples

NAC

LHS

RHS

|4:at:ustrau:tCnntainer|

ahstraclﬁ"djancency

tempaoral
bype="=>"

isEkecutedin

isExec‘JtedIn

temporal
pe:"::::"

|4:abstractCDntainer|

isExecutedin

|4:abstl'actCnntainer|

isExecgtedin

|B:abstractCnntainer|

L

|8:abstractContainer|

abstraMy
|8:abstl'actCnntainer|

Rule 90. Generation of Abstract Adjacency relationship between <AC, AC> couples

284

Appendix B Transformation rule catalog

4. Transformation rules for the definition of abstract dialog control

NAC

LHS

RHS

|3:abStractlndividualCumpDnent|

auiDialqgControl
v
|4:abstractlndividualCumpunent|

tempaoral
type=x

isExdcutedin
k 4

temporal

|3:ahstractlndividualCnmpnnent|
isE

cutedin

4:abstractlndividualCnmpnnent|

|4:abstract|ndividua|00mponent|

Rule 91. Generation of Abstract Dialog Control relationship between <AIC, AIC> couples

NAC

LHS

RHS

4:ahstractContainer

auiDialpgControl
r

|3:abstractlndividualCompnnent|

|3:ahstractlndividuaICDmpDnent|

temporal
type=x

isExecytedin

4:-abstractContainer isExecutedin

auiDiamgControl
symbol=x
|3:ahstractlndividuaICDmpDnent

Rule 92. Generation of Abstract Dialog Control between <AC, AIC> couples

NAC

LHS

RHS

|3:abstractlndividualComponent|

auiDialpgControl
Y

4:abstractContainer

temporal
type=x

isExecutedin
k4

|3:abstractlndividualCnmpnnent| is

4:ahstractContainer

ecutedin

temporal

isExedutedin

[3:abstractindividualCompanent| sedecutadin

symbol=x

4:abstractContainer

Rule 93. Generation of Abstract Dialog Control between <AIC, AC> couples

NAC LHS RHS
temporal termpaoral
|3:ahstl'actcnntainer| type=x
auiDialpgControl isExecutedin isExe
r Y . -
|4:ahstractCuntainer| |3:abstractcnntainer| isExecutedin |3:ahstractCDnta|ner| isExecutedin
L
|4:ahstract00ntainer| SLIDIATES AN
symhbol=x

|4:ahstractCnntainer

Rule 94. Generation of Abstract Dialog Control between <AC, AC> couples

285

Appendix B Transformation rule catalog

5. Transformation rules for the derivation of

mappings
NAC

LHS

the AUI to domain

RHS

|E:abstractlndividualCnmpnnent|
updptes

N
Jattribute

Tmanipulates
1task
AlisExecutedin
L

|2:ahstract|ndividuaICDmpDnem|

Jattribute

T.manipulates

3attribute

SisExecutedin upds
A

|z:abstractindividualComponent]

Rule 95. Generation of updates relationships for AICs

NAC LHS RHS
B:method 9:rmanipulates g:manipulates
5 8:method
trigpers AlisByecutedin
Siskgecutedin trighers

3:abstractlndividualCnmpnnent|

|3:ahstractlndividualCnmpnnent|

|3:abstractlndividuaICDmpDnent

Rule 96. Generation of trigger relationships for AICs

6. Transformation rules for the selection of CICs

LHS

abstractContainment

1:abstractContainer

2:abstractindividualComponent
name=y
isCompAsedor

Sfacet
xsi_type=input
actionType=select
actionltem=element

4vocalContainer
xsi_type=vocalForm

[T:aestractGomaines

g -
: L]

Rule 97. Generation of containers that will embed multimodal comboBox items

LHS

RHS

mant |2 abatrmetindsidusiCampanan |

- 4
T aaletbanvaus |3COmpasedor i
name=y

sGathaoseddl
il

>
2 indiidualCempanent
5 hpe=pat

e >IJ al:alraclln:n-mualcnmoanent|
namesy
IsRemeagy ISRYmecEy T |5R‘$nedﬁ‘r
Ll ot alC ot
ingr el i

[IetalContaner ndividualCormpanent|
si_tpe=vocallom

— o) atalinput
smgiedty Compogéhon
&
P,

“armpheador
S facet |

wsi_bypesinpal
actonType-salect
actioniem=glement

IsCamposedof

21 wocalindiigualComponsnt
xsi_tipe=part

|s<.'om:1nsqdu| TsCompakeaot

sRetinaly l isReifieany [fEcalndbidualCompongnt

n
A selectionVialue —% gataunComant-x
name-x

Rule 98. Generation of comboBox items and grammar items for each selection value of a facet of type

select

286

Appendix B Transformation rule catalog

NAC

LHS

RHS

2 abstracindidualComponern)
(nami=y
sFvify

TPy

[araphicalormainer] [socatinaniu

1:absiractContainer

ahstractContainment

4wvocalContainer

N 2:abstractindividualComponent

name=y

isCompasedOf

5facet
xsi_type=input
actionType=select
actionltem=element

absraciCenainment [
Famesy |

1
iwaeﬁrls:
| T

veealontainmant

IsCompgsaatl — ‘b[»o:sllnunlcualcwn:nem]

xsl_trpe=vocalingul
Stacet T T

wsl_hpa=input

[voralindtidualC
#51_type=gramen.
Istomgesedi

vocaindivduabComponent |
r3i_tme=part

gragticalindsidualGomponant

ocalindivdualCompantsi

1:absiactContans |
isRefeiBy ¢
“h

21| [4xocalContainer
x3i_type=vocalf orm)

_ispesenty

1 5vocalindsidualComponant
m3i_hroe=vocain

T inCmggredl

& facel

[15i_npasinpus

T

part

ev_ype

indhduaComponsrs]

16:voealindstdustC omponent

#si_tpe=grammar
TsCompgaeact

17 vocalinamuals

|ss_tmespart |

istnl‘us-}db‘.’

actionType=sibect

IsCom
nent| IsRaifiediy isRaii

Le. selectionvalue
nama=x

38007

o alndhidual Component
trpe=itern
defaultContent=x

Rule 100. Generation of radioButtons and grammar items for each selection value of a facet of type

select

LHS

RHS

IsRuphasy
L3

[rapnizaicontaines

abstractContainment

[2:abstractindividual Compaonent]

isReifieg

1:ahstractContainer

>
[name=y

isCompypsedOf

Sifacet

¥si_type=input
actionType=select

actiontem=element

abwmaciConmnment

| sbaaci oranar TisbelrscindbiusCemocastt

Rule 101. Generation of containers that will embed multimodal checkBoxes

LHS

RHS

bstractContainer

abstractContainment

2:abstractindividualComponent
names=y

i ifiedBy

vocalC
‘3 glaphma\Cnmamell ‘4vucalcuﬂla|ner ‘ y"" "

TwacalContainer

|¥s1_type=box

| [xsi_type=vocal

Form[

xsi_type=vocalMenu

vocalindivdualCompantni

4

graphicalContainment

isComposedOr

xsi_type=groupBox

G:graphicalContain

er

name=x

isComposedof|
a:selectionValue . si_type=input
actionType=select

Sfacet

actionitem=element

sbstrctGonainment o 1

¥ |namasy |
vn:alc-m
- G
// !
‘W |s(.nn2, wdld F .
Statat |si_hype=gram |
rsi_trpe=ingul P
actoriams= stemen I-ucuuuumuual;umgcwm
13i_bype=part
IsCempossd0n T
| ixaifiaa sRaified)
B 1 JalCemeanand
e T

Rule 102. Generation of checkBoxes and grammar items for each selection value of a facet of type select

287

Appendix B Transformation rule catalog

NAC

LHS

RHS

sbacindvidual Component|
ne=y
ISR ehORy

a2y

lraphaGantansr| [vacalindsiduaiGomponem|

abstractCor

T abstraciContaner le:abstract\ndiwdualcamponent‘

name=y

sReifledBy isComposedOf
3:araphicalContainer Sifacet
psi_type=hox xsi_type=input

actionType=select
actionltem=element

4nocalContainer
xsi_type=vocalForm

| abiractCostassmarg | it smpasas|

LHS

rucatndmidualGomporen|

[z ant|
e

[1aauacrcontamer}
Wn,

ZgraphicalCoriaingr

[4ocaiConingr | ¥edCpmanmat

AT wnealisiiszalCampanan
[tpaswocalrom

[_pamvoralingut
IsComplysedor

Sfacat

-
i i
Eanloctiontiaiun | e |l ypas gt
namesx Sct0nTypeseHact

actonhameslamant

[z31_tpe=gramma

1vnralndmasalComponent

AR
> Famacy

TsRafliedsy

wicalGon]a

17 wosalindividual Compengn |

r5i_trpe=voralinpul

rsi_tpesvoraiform | -

-
M«:m
- 5 tacet
xE|_tpesingut
actionTypes salet

isCompogedOf

¥

Campogasr

isComposedOf

[t nmnise a0t

dhvidualt 1

isReibedBy
Ry e ,

name=x

Rule 104. Generation of listBox items and grammar items for each selection value of a facet of type

NAC

select

LHS

iy
wacatindualGomponen

ramie=y

lii?‘ﬂi!'

Cantainge

absfraciContainmen
2:abstractlndi\ridua\Componem|
" name=y |

1:abstractContainer

18R,

isComposedOf

Sifacet
xsi_type=input
actionType=create
actionltem=element

] __-eSalGontanment |
mnm _isComegsestt
=T #{ocalnanidualCompanent
<51 tipa=vorsiinpul
aetonType=erasts i

actionhérsbrmen| /
ﬁf.cml'%.mnl

f

¥81_tpe=vaalf on s apemvocatiomm |
T

[2am
Jxsi_smasinput

i Baganment]

ddualCompandnt
0= 0utpUTT et
detaudtContantsy

rocalindnidudiCompansnt |
[bmamrecor

NAC

Rule 105. Generation of a multimodal inputText

LHS

RHS

|2.abswactndimaEiComponent
{nama=y

abstractContainment
o | 2:abstractindividualComponent|
" |name=y

1:abstractContainer

isCol 0sed0f

Sfacet
¥si_type=output
actionType=convey
actionltem=element

AbENAIC

[ranswactcontainar|
[rame=y

|5W Tnfsfadiy
zainat | [yvoeaiconsaingr |
rsi_tpe=voralfom | -
sl L

Vocal nr'a:]{mnnn

Stacet

TSI_types ouput
actionTypé=convay
actionmemealsment

Rule 106. Generation of a multimodal outputText

288

Appendix B Transformation rule catalog

NAC LHS RHS

2:abstractindrdualComponen

namasy
En.n\f\unr

[rocatnhridustce

ahstractContainment

o |2:abstractindividualComponent
" name=y
sReifiedBy isCompdsedOf

1:absiractContainer
isReified

5facet
xsi_type=input
actionType=select
actionltem=element

Rule 107. Generation of outputText and vocalMenu with feedback
NAC LHS RHS
name=y

abstractContainment

8:selectionvalue

1.:abstractContainer

1:abstractContainer

abstractContainment 5.3 stractindividualComponent
name=y,

. isReifjedBy T o isRej isReifjzdB!
isReffiedBy vocalContainment | SEiMedBy isCompos€dor Y
Ijﬁ\zﬁlzﬁgﬁnmame\ I I:s‘;nti;f:nv?:a;?;nrrm}_ » ?vuca\c_unla\r‘w':r hicalContainer | |4wocalContainer g
|v0callndividualComponent| — — si_type=vocaleny xsi_fype=box xsi_type=vocalForm

ICoRtainment

ComposedOf (5:facet Sfacet
xsi_type=input xsi_type=input
am_\:mTy;g:sgg“ actionType=select
actionltem=element actionltem=element
isCormpgsedof

vocallndividualComponent
xsi_type=vacalMenultem
defaultContant=x

Rule 108. Generation of vocalMenultems for each selection value of an input facet of type select

NAC LHS RHS

[2:abstractindividual Component|
[name=y

abstractContainment

- 2:abstractindividualComponent
isReifledBy K
b |sComiosedOf

3:graphicalContainer
¥si_type=box

— abstractontainment [+ atstractingsidualGompanent|
name=;

ComppsedOf

5facel
T5|_fypesinpis
Tipe=sHact

actinfiem=element]

Sfacet
¥si_type=input
actionType=select
actionltem=element

Rule 109. Generation of graphical containers embedding imageComponent elments

LHS RHS

PTEE e

abstractContainment
1:abstractContainer = -

|2.abstract\ndividua\CumpUﬂent| |'
|name:y

isComphsedol
isReifizdBy isRgifiedBy isComposedor T
x3l_type=input
|graphicallndwidualcunmnnent‘ &facet et antimessiinct
xsi_type=input

glaphica?untaiﬂmem isComposedor actionType=selact

actiontterm=element

|sco‘v‘n‘m_s\eao|
\\

[11:graphicalContainer| [7:selzctionvalus
|xsi_type=groupBox__| |name=x

LHS RHS

I amanma jouna
[isbawacic

1:abstractContainer

k
isReif " HractCumammem
& -
S iner|[8.:abstactindnidualComponent] |2:22shactindividuaiComponent
upBox_[|name=x name=y
- isC of
isReifi£dBy |anm¢nsad0{
f gfacet 4facet
12wocalContainer xsi_type=input xsi_type=input
actionTyp actionType=select
actionitem=gelement actionltern=element

Rule 111. Generation of graphical and vocal containers to support the vocal instruction

289

Appendix B Transformation rule catalog

21} [namesy

mgoneni]

$Fa B

[T -

sComposedst

Tisahciosvalug
[name=t

4

Rule 112. Generation of outputText and grammar item elements to support the vocal instruction

NAC

LHS

RHS

isRey

1:abstractContainer

BvocalContainer

abstractContainment,

2a

bstractindividualComponent]

adBy

name=y

isComposedOf

Afacet
xsi_type=input
actionType=select
actionitern=elemeant

|xsi_type=vacalGraup |

abauaContanTan

FacHamzURCmponent

Rule 113. Generation of graphical and vocal containers to support the vocal input for browsing

directions
Jl“'la(lf.f.rmlnml\miq bal P— 1
basdantini} e s
= —
isReinfdDy (oRm % - .
TNﬁ - —phraCantanement
3 Containar i ! J 14 vcalindsidualComponant
= TSCompygedOr IsCompogaadd
sComposedOr (4facel

1| [Esarecionvaiue <3_typazinput
namesx [rctionTyme=aulec!

Fcbonten=e

]
lemant]

"~ iaComgpasdnt

1EvacatnasidualComponent

w31 _type=pan

Rule 114. Generation of imageZone and grammar items to support the vocal specification of the

NAC

browsing direction

LHS

RHS

|2 abstracllndwidua\Cnmpnﬂem‘
|name=\; ‘
isReifigdBy

graphicalContainer

1:abstractContainer|

abstractContainment

_|2:abstractlndividualComponent|

isH

name=y

eifiedBy

sCompgsedOf

Sifacet

X

actionType=convey
actionltem=element

si_type=output

abstractContainment
o | 2:abstractindividualComponent

1:abstractContainer
name=y

isCgmposedOf

dBy

Sfacet
xsi_type=output
actionType=convey
actionlten=element

graphicalCaptainment

graphicalContainer
xsi_type=hox
type=horizontal

alContainment

graphicalCoptainment

graphicalindividualComponent
xsi_type=imageComponent
name=speaker_icon

graphicalindividualComponent
xsi_type=imageComponent

Rule 115. Generation of an imageComponent that enables to display the map

290

Appendix B Transformation rule catalog

7. Transformation rules for the synchronization of CICs

NAC

LHS

RHS

11vocalindividualCompanent

abstractContainment

¥si_type=vocallnput
currentvalue=x

synchrgnization

G:graphicalindividualComponent
¥si_type=comboBox
currentvalue=z

. 2:abstractlndividualComponent|
" |name=y |

1:abstractContainer
isReifjedBy

isReifiedBy

11 wocalindividualComponent
¥si_type=vocallnput
currentvalue=x

S:graphicalContainer

xsi_type=hox
type=horizontal

ara m\nﬁl‘c;ontainmem

G:graphicalindividualComponent
¥si_type=comhoBox
currentvalue=z

abstractContainment =
1-abstractContainer L|2:abstractlndeuaIComponent|

" |name=y
isReifiedBy

isRaifiedBy
By

11vocalindividualComponent
¥si_type=vocallnput
currentvalue=x

gl'aphica‘ﬁ({ontainment

S.graphicalContainer
*¥si_type=hox
type=horizontal

synchpenization

gl'aphical' Lontainment

GrgraphicallndividualComponent
¥si_type=comboBox
currentValue=z

NAC

LHS

Rule 116. Synchronization between a vocallnput and a comboBox

RHS

11 wocallndividual Component
xsi_type=vocallnput
currentValue=x

ahstractContainment
1:abstractContainer
isReiflgdBy

|2:abstractlndwidualComponent‘
[name=y

[

IContainer isReifiedBy

ahstractContainment
1-abstractContainar L|2:at:|stract\ndividualComponent|

»
[name=y

isReifledBy

ZgraphicalContainer isRe{fiedBy

Xsi_type=hox

11wvocalindividualComponent
xsi_type=vocallnput
currentValue=x

graphtsglContainment

‘IS graphica\lnclwicIuaIConmonent|
[xsi_type=checkBox

11:vocalindividualComponent
¥si_type=currentvalue
currentvalue=x

sypehronization

graphicalCorfainment

|I3:g|ar.|hicallnr.li'u'icILlaICumponent|
|[xsi_type=comboBox

Rule 117. Synchronization between a vocallnput and a groupBox that embeds a set of check boxes

NAC

LHS

RHS

vocalindividualComponent

abstractContainment

abstractContainmer
2:abstractlndividualComponent|

¥si_type=vocallnput
currentvalue=x

synchropization

|2:abstractlndividuaICDmponent|
[name=y

1:abstractContainerl >

1:abstractContainer
isReifiedBy

names=y

isRaifiedBy
hicalContainer

11 wvocallndividualComponent

xsi_type=vocallnput
currentvalue=x

grapfitealContainment
A

‘B'grqr,vhicallntlivit\ualCDmpDnent|
‘XSi_ty'[’.‘ e=radioButton

isReifiedBy

hicalContainer isReifiedBy

graphicalCohfainment

11 :vocallndividualComponent

xsi_type=vocallinput
currentvalue=x

graphicatZontainment

‘5:g|aphicaIlnc\iwr.Iua\CDmponent|
‘xsi_ty'pe:rar.lioBuﬂon

Rule 118. Synchronization between a vocallnput and a groupBox that embeds a set of radioButtons

291

Appendix B Transformation rule catalog

NAC

LHS

RHS

11wocalindividualComponent

cLERETL Tyl |2 abstractlndlwduaIComponent|

xsi_type=vocallnput
currentvalue=x

synchropization

1:abstractContainer| rl =

.hicallnrliviflual(;omponem

Cllll&m‘v‘:ﬂlle—

isReifiedBy

graphicalContainment

11wocallndividualComponent
¥si_type=vocallnput
currentyValue=x

S:graphicalContainer

usi_type=hox
type=horizontal

gl'apl1iE&l£:‘ontainn15nt

G:graphicallndividualCompaonent
xsi_type=listBox
currentyalue=z

abstractContainment
1:abstractContainer

isReifledBy

_Iz abstractindividualComponent]|
" |name=y

alContainer dBy

IsREeiMzdBy

gl'aphicalCu\q\tainment

4 11vocallndividualComponent
S:graphical Container ¥si_type=vocallnput
xsi_type=hox currentvalue=x

type=horizontal
graphicalConginment Wzallﬂﬂ

G:graphicallndividualComponent
xsi_type=listBox
currentvalueg=z

NAC

Rule 119. Synchronization between a vocallnput and a listBox

LHS

RHS

11vocallndividualComponent

ahstractCUmammem

xsi_type=vocallnput
currentyalug=x

synciamzahun

‘2 ahstractlndlwdualCumpUnem‘
[name=y |

isRujfiedBy

1:abstractContainer|
isRelfiedBy

3:graphicalContainer

hicalindividualComponent

¥S_lype=box | sRai 11:vocallndividualComponent

ar
¥si_type=inputText
currentvalue=z

¥si_type=vocallnput
currentvalue=x

graphicalCantainment

S:graphicalContainer
xsi_type=hox
type=horizontal

graphicar@q;tainmem

hicallndividualComponent
pe=inputText
cullent‘u alue=z

abstraciContainment
1:abstractContainer

isReifledBy

_|2:abstractlndividualComponem|
" [name=y

. . isRaifiedBy
hicalContainer isReifietBy

GwvocallndividualComponent
xsi_type=vocallnput
currentValue=x

graphicalCo\u\tainment
4

4:graphicalContainer
¥si_type=hox
type=horizontal

synchronization

gl'aphicalooﬁiinment

S:graphicalindividualComponent
i_type=inputTesxt
currentyalue=z

Rule 120. Synchronization between a vocallnput and an inputText

8. Transformation rules for the arrangement of CICs

NAC

LHS

RHS

4:graphicalContainer

quphlc |Adjacency

1J|’1r1l1w'-||(,nnh||1&|

abstractAdjacency

abstractAdjacency
S:abstractContainer 2:abstract00ntainer|

|5:abstract00ntainer

iSRemeisReiﬂedEly

isR%’ledBy
isReffiedBy

2:abstractContainer

4:graphicalContainer

|1 :graphicalContainer|

JIwvocalContainer

vocalAdjacency

GvocalContainer

isReiféiEly
i JI"-lr‘hIC"-HAﬂJ"-lCE:HCy

3wocalContainer

GvocalContainer

vocalAdjacency IsReffiedBy

delayTime=1
GvocalContainer

3wocalContainer

Rule 121. Generation of Concrete Adjacency relationship for <CC, CC>couples

292

Appendix B Transformation rule catalog

LHS

abstractAdjacency

JrabstractContainer 6:abstractlndlwdualComponent‘

abstractAdjaceng
3:abstractContainer ik abstractlndmdua\oompunent|

iSRem$é\ isReifiedBy

isReifigdBy

1wocalContainer

vocal

djacency

|4:voca\lndwidualoompunent|

2:graphicalContainer

1wocalContainer

|5'-3|'3phicalln-ili'u'i-ilualCmﬂpnnent‘

|4:vocallndividua\Component|

. . isReifiedBy
graphicalAdjacency

—>-|S:Qrar:-hicalln-:\i'v'i-:\ua\Cnmr:-onem|

vocalAdjacency .
delayTime=1 ifizdBy

1wvocalContainer AvocalindividualComponent

Z:graphicalContainer

isReHljedBy isR
isRg

Rule 122. Generation of Concrete Adjacency relationship for <CC, CIC>couples

NAC

LHS

RHS

‘1U.glaphica\In-:\iui[lual(.‘umpaﬂem‘

graphicalAdjacency

T:graphicalContainer

|4:\r0callndividualoomponent|

vocal

diacency

2wocalContainer

ahstractAdJacency
|3 abstractlndwldualComponent B:abstractContainer

isReifig
isReifiedBy

|1 0:gr: '-1[:-hlmIIn-,Ilul-,\LHIC,nmpnngnt‘

4vocalindividualComponent

fiedsy iaReifiedBy

T:graphicalContainer

12wocalContainer

ahstractAdjacency

S:abstractContainer

emedEly

T-.graphicalContainer
vocalAdjacency

|3:abstractlndwldualComponem

isR dBy

isRej
graphical®djacency

‘1D:graphica\ln-:Iiw-:\ualConmon-‘:nt
isRiﬂedBy

delayTime=1

|4voca\Indwidualoomponem

Rule 123. Generation of Concrete Adjacency relationship for <CIC, CC>couples

NAC

LHS

RHS

|1 :g|'a[:-hicaIIn-:Ii\-'iw:\ua\t:ann:-unem‘

graphic:
A

|Adjacency

|2:-3raph\caIInclivi-:lualoonmonem|

4vocallndividualComponent

vocalAdjacency

A
AvocallndividualComponent

abstractAdjacency

3:abstractindividualComponent G:abstractindividualGomponent

abstractAdjacency
|3 abstractindividualComponent GabstractindividualComponent

isReifiedgy isReified@y

|1 graphicalindivic Imll’,umruﬂ-nt‘ | graphicallndivic Imlc,umrununt‘

isR&jfiedBy isReifiedBy
b vnca\\nmwdua\Cnmpnnem 5 vnna\\nmwdua\cumpnnem

ifR}gedElv isReifledBy

graphicalAdjacency
2:graphicalindividualComponent

|1 graphicalindividualComponent

isReifiedBy

SwocalindividualComponent

vocalAdjacency
delayTime=1

4vocalindividualCompongnt

Rule 124. Generation of Concrete Adjacency relationship for <CIC, CIC>couples

9. Transformation rules for Concrete Dialog Control definition
RHS

NAC

LHS

4:graphicalContainer

cuiDialggControl

3
1:graphicalContainer

auiDialogContral

symbol=x
2:abstractContainer

jfiedBy

S:abstractContainer

4:graphicalContainer

isReifie

isReifiedBy

1T:graphicalContainer

JwocalContainer

cuiDialopControl

GwvocalContainer

JwocalContainer

GvocalContainer

auiDialogControl

1:graphicalContainer
isRelfiedBy

cuiDialogControl

symbol=x
GvocalContainer

3wocalContainer

Rule 125. Rule Generation of Concrete Dialog Control Relationship for <CC, CC>couples

293

Appendix B Transformation rule catalog

NAC

LHS

RHS

:graphicalContainer
cuiDialpgControl

|5 glaphicaHn-:liui-:luaICﬂmpunent‘

1wocalContainer

cuiDialogControl

[4vocalindvidualcomponert]

auiDialogControl

auiDialogControl

symhbol=x

3:abstractContainer 3] abstractlndividualCumponent|

isReifiggh isReifiedBy

IsReifigiBy

|52gl'a[ﬁ-hltallﬂ'Ill'v'lilL\3|CDI11[Z'DI1EI1I|

1wocalContainer

[4vocalindividualcompanent]

[3:abstraciContainer | SIMEO=_ple 3 psiractindividualCemponant]
isRAi Gaontrol isRaifie

symbol=x

I 4’{5'g|ar:-h\caIIn-:Iwi-:Iua\CnmpnnEnt|

cuiDialogControl
symbol=x

1 :vucalCDntamerl—b-{ 4'\rncallndwidua\Cnmpmnent|

ifiedBy

Rule 126. Generation Concrete Dialog Control Relationship for <CC, CIC>couples

NAC

LHS

RHS

|3:-y\ar:-h\calln- d |a\Com|ﬁanent|

cuiDialggControl

4:graphicalContainer

|2 vocallndividualoompunent|

cuiDialpgContral

GvocalContainer

auiDialogControl
symbol 5:abstractContainer

i8ReifiedBy

|1 abstractindividualComponent

isReifiedBy

isReifledBy isRelficdBy

[:graphicalindividualCormponent] 4-graphicalContainar

|2:\r0caIIndwiduaIComponent| |6_vucaICUntainel

auiDialogControl

symbal=x
S:abstractContainer

isRejfledBy

|1:abstract\ndwidualcamponent

cuiDialogControl

isReif symhbol=x

cuiDialogContral
symhol=x

2wocallndividual Component GvocalContainer

Rule 127. Generation Concrete Dialog Control Relationship for <CIC, CC>couples

NAC

LHS

RHS

|1 glaphicaHn-:\iwilual(:umpuﬂem‘

auiDialogControl

cuiDialpgControl

[2:oraphicallndividual Compaonent]

3wocalindividualComponent

cuiDialpgContral

1
4vacalindividualComponent

symbaol=x
|Q:abstractlndlwdua\camponemIY—F{ﬁ:abstractlndlwdua\Componem
ReifiedBy

isReifiedBy

isReified@y

2:graphicalindividualComponent
isReifi=dBy

5wocallindividualComponent

1:graphicalindividualComponent

4vocallndividualComponent

auiDialogContral
symbol=x

G:abstractindividualComponent S:abstractindividualComponent

giControl isReifiedBy
symbol=x

‘1 grapmcal\n-:\mclua\Conv:-onem'—.‘l3-'Jlar-‘hiCallﬂ-leiilualcDmponem|

isRejfiedBy

cuiDialogGontral

symbol=x
¥ dyocallndividualComponent

3vocallndividualComponent

Rule 128. Generation of Concrete Dialog Control Relationship for <CIC, CIC>couples

10. Transformation rules for derivation of CUI to domain relationship

NAC

LHS

RHS

|3:-3\ar:-h\calln-:li'u'i-:\ua\campanem| updates updates
|3:ahstractlndividualComponent}—b-|3:attribute| [3:abstractindividualCompanent
. . . isReifiedBy
isREifiedBy wy f
isR&HiedBy

Jattribute

|3:-3|'aphicaIIn-:Ii'u'i-:IuaICampanent|

|4:\tucalIndividuaICDmpDnent|

|3:-3|'aphicalIn-:Ii'u'i-:IualCom[:-onent| upddtes

|4:vocaIIndividuaIComponent|

NAC

Rule 129. Transposition of update relationship

LHS

RHS

|2 g\aph\Eallﬂ-:llul-:\ua\(;ﬂmpuﬂeml

triggers

triggers

&:method
4yocalindividualComponent

|1:abstractlndividuaICumpunem

isReifiedBy

isRelfedBy

|2:g|'ar.-hicaIIn-:li'u'i-:IualC-Jmp-Jnent|

|4:\tncallndividualCumpnnent|

triggers
|1:abstractlndividuaICUmponent

i iedpy IpReifiedBy trigae

|2:g|'aphicaIIn-:Ii'v'i-:IuaICampanent

|4:vnca|lndividualCumpnnent

Rule 130. Transposition of trigger relationship

294

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

Appendix C. UsiXML concrete
syntax for the specification of
different combinations of input
and output modalities

LABEL: due to the fact that a /abe/ widget does not suppose any input from the user,
only the output interactions are considered (i.e., graphical, vocal and multimodal with
redundancy in output):

* Graphical interaction:
<box id="b1" name="Box 1"...>

<outputText id="OT1" name="Output 1" defaultContent="Welcome to the UCL site".../>
</box>

» Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Welcome to the UCL site".../>
</vocalForm>

» MM with redundancy in output:
<vocalForm id="VF1" name="Form 1"...>

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Welcome to the UCL site".../>
</vocalForm>

<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Welcome to the UCL site".../>
<imageComponent id="IC1" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

LABEL + COMBO BOX:

® Graphical interaction:
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>
<item id="IT1" name="Item 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</comboBox>
</box>

» MM with G assignement in input and redundancy in ontput
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>
<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>

295

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

</comboBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
<source sourceld="F1"/>
<target targetld="CB1"/>
</synchronization>

» Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

" MM with V" assignement in input and G assignement in output:
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<comboBox id="CB1" name="Combo 1" isEnabled="false" currentValue="§x"...>
<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</comboBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="CB1"/>
</synchronization>

» MM with V" assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<comboBox id="CB1" name="Combo 1" isEnabled="false" currentValue="§x"...>

296

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="ltem 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="ltem 3" defaultContent="AMERICAN EXPRESS".../>
</comboBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</part>
</grammar>
</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="CB1"/>
</synchronization>

» MM with equivalence in input and G assignement in output
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>
<item id="IT1" name="Item 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</comboBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="CB1"/>

</synchronization>

» MM with equivalence in input and redundancy in ontput

<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>

297

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<item id="IT1" name="ltem 1" defaultContent="VISA".../>
<item id="IT2" name="ltem 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="ltem 3" defaultContent="AMERICAN EXPRESS".../>
</comboBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="VISA".../>
<item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
<item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
</part>
</grammar>
</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="CB1"/>
</synchronization>

GROUP OF RADIO BUTTONS:

* Graphical interaction:
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Gender" currentValue="§x"...>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
<radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
</groupBox>
</box>

» MM with G assignement in input and redundancy in output:
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Gender" currentValue="§x"...>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
<radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
</groupBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
<source sourceld="F1"/>
<target targetld="GB1"/>
</synchronization>

» Uocal interaction:
<vocalForm id="VF1" name="Form 1"...>

298

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="male".../>
<item id="IT2" name="ltem 2" defaultContent="female".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

» MM with V" assignement in input and G assignement in output:
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Gender" currentValue="8§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="false" ...>
<radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="false" ...>
</groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="male".../>
<item id="IT2" name="ltem 2" defaultContent="female".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

» MM with V" assignement in input and redundancy in output
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Gender" currentValue="§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="false" ...>
<radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="false" ...>
</groupBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
<vocallnput id="VI1" name="Input 1" currentValue="8§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="male".../>
<item id="IT2" name="ltem 2" defaultContent="female".../>
</part>
</grammar>

299

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

» MM with equivalence in input and G assignement in output
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<groupBox id="GB1" name="Gender" currentValue="§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
<radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
</groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
<vocallnput id="VI1" name="Input 1" currentValue="8§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="male".../>
<item id="IT2" name="Item 2" defaultContent="female".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

» MM with equivalence in input and redundancy in ontput
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Gender" currentValue="§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
<radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
</groupBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
<vocallnput id="VI1" name="Input 1" currentValue="8§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="male".../>
<item id="IT2" name="ltem 2" defaultContent="female".../>
</part>
</grammar>

300

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

GROUP OF CHECK BOXES:

® Graphical interaction:
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Hobbies" currentValue="8§x"...>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
<checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
<checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>
<checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
</groupBox>
</box>

» MM with G assignement in input and redundancy in ontput
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Hobbies" currentValue="§x"...>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
<checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
<checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>
<checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
</groupBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
<source sourceld="F1"/>
<target targetld="GB1"/>
</synchronization>

Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="asynchronous"...>
<item id="IT1" name="ltem 1" defaultContent="sports".../>
<item id="IT2" name="Item 2" defaultContent="travels".../>
<item id="IT1" name="Item 3" defaultContent="music".../>
<item id="IT2" name="Item 4" defaultContent="movies".../>
</part>

301

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

</grammar>
</vocallnput>
</vocalForm>

» MM with V" assignement in input and G assignement in output:
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Hobbies" currentValue="8§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="false" ...>
<checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="false" ...>
<checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="false" ...>
<checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="false" ...>
</groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="asynchronous"...>
<item id="IT1" name="ltem 1" defaultContent="sports".../>
<item id="IT2" name="Item 2" defaultContent="travels".../>
<item id="IT1" name="Item 3" defaultContent="music".../>
<item id="IT2" name="ltem 4" defaultContent="movies".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

» MM with V" assignement in input and redundancy in ontput:
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Hobbies" currentValue="8§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="false" ...>
<checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="false" ...>
<checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="false" ...>
<checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="false" ...>
</groupBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
<vocallnput id="VI1" name="Input 1" currentValue="8§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="asynchronous"...>
<item id="IT1" name="Item 1" defaultContent="sports".../>
<item id="IT2" name="Item 2" defaultContent="travels".../>

302

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<item id="IT1" name="Item 3" defaultContent="music".../>
<item id="IT2" name="Item 4" defaultContent="movies".../>
</part>
</grammar>
</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

» MM with equivalence in input and G assignement in output
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Card type".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<groupBox id="GB1" name="Hobbies" currentValue="§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
<checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
<checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>
<checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
</groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="asynchronous"...>
<item id="IT1" name="Item 1" defaultContent="sports".../>
<item id="IT2" name="Item 2" defaultContent="travels".../>
<item id="IT1" name="Item 3" defaultContent="music".../>
<item id="IT2" name="Item 4" defaultContent="movies".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

v MM with equivalence in input and redundancy in output/
<box id="b1" name="Box 1"...>
<groupBox id="GB1" name="Hobbies" currentValue="8§x"...>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
<checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
<checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>

303

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
</groupBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose among
the following options: sports, travels, music, movies".../>
<vocallnput id="VI1" name="Input 1" currentValue="8§y">
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="asynchronous"...>
<item id="IT1" name="Item 1" defaultContent="sports".../>
<item id="IT2" name="Item 2" defaultContent="travels".../>
<item id="IT1" name="Item 3" defaultContent="music".../>
<item id="IT2" name="Item 4" defaultContent="movies".../>
</part>
</grammar>
</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="GB1"/>
</synchronization>

LABEL + LIST BOX:

® Graphical interaction:
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Singers".../>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
</listBox>
</box>

» MM with G assignement in input and redundancy in ontput
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Singers".../>
<imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
<listBox id="LB1" name="List 1" isEnabled="true" currentValue="8§x" ...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="ltem 2" defaultContent="Lee Hardy".../>
</listBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
<source sourceld="F1"/>
<target targetld="LB1"/>
</synchronization>

= Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>

<vocallnput id="VI1" name="Input 1" currentValue="§y"/>

304

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="ltem 2" defaultContent="Lee Hardy".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

» MM with V" assignement in input and G assignement in output:
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Singers".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
</listBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="ltem 2" defaultContent="Lee Hardy".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="LB1"/>
</synchronization>

» MM with V" assignement in input and redundancy in ontput:
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Singers".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
</listBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
</part>
</grammar>
</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>

305

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

<source sourceld="VI1"/>
<target targetld="LB1"/>
</synchronization>

» MM with equivalence in input and G assignement in output:
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Singers".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="ltem 2" defaultContent="Lee Hardy".../>
</listBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
<vocallnput id="VI1" name="Input 1" currentValue="§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
</part>
</grammar>
</vocallnput>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="LB1"/>
</synchronization>

» MM with equivalence in input and redundancy in ontput
<box id="b1" name="Box 1"...>
<outputText id="OT1" name="Output 1" defaultContent="Singers".../>
<imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
<imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
<listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
</listBox>
<imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
<vocallnput id="VI1" name="Input 1" currentValue="8§y"/>
<grammar id="GR1" name="Grammar 1"...>
<part id="P1" name="Part 1" structure="choice"...>
<item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
<item id="IT2" name="ltem 2" defaultContent="Lee Hardy".../>
</part>
</grammar>
</vocallnput>
<vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
<source sourceld="VI1"/>
<target targetld="LB1"/>
</synchronization>

306

Appendix D: QOC representation of design space options in TEAM tool

Appendix D. QOC representa-

tion of design space options in
TEAM tool

__non-preemti

Sub-task
triggering

RN

arrar
protection

experienced
TR

Figure D- 1 QOC representation of the Sub-task triggering design option

saparated

\ e
singla
&

panEio
list
Sub-task
presentation =~~~ > Combined - - B> Many at multiple
ance axcpansion
@ @ fist

Figure D- 2 QOC representation of the Sub-task presentation design option

307

Appendix D: QOC representation of design space options in TEAM tool

synchronous™ reachability
ompatibilit
with task
Sub-task struct ...
navigation
i}
~ uakload
—
synchrono

Figure D- 3 QOC representation of the Sub-task navigation design option

local

\\\-\\
fetiza minimal

actions

Containmen

qﬁ

- ; e wordoad

Mavigation
trpe i :
@ L : nm

£ TS simple 3
Cardinali e
i) \\‘\ﬂe'xibility

(=] * to achieve
./the tagg

Figure D- 4 QOC representation of the Navigation type design option

308

Appendix D: QOC representation of design space options in TEAM tool

actions

Containmen

global

a £ = m warkload
Contral
type :
- m Cu
2 .l simple .

Yoy / £l esdibility
to achieve

Cardinali
ardinality e

Figure D- 5 QOC representation of the Control type design option

separated — — _

i minimal
actions
Mawigation
and

control
m type

combined |— _ _ _ I waklaad

——— -

Figure D- 6 QOC representation of the Navigation and control type design option

309

Appendix D: QOC representation of design space options in TEAM tool

nith — concision
support

arrar
Support protection
for default =7
walue and
(]
guidance

without
support
T

- eaze of task
B ——=—" achievemer

Figure D- 7 QOC representation of the Support for default value and unit design option

simple
Anauer /,’/
cardinality
r
multiple

Figure D- 8 QOC representation of the Answer cardinality design option

order Ceeanzasencc @ - flexibility
dependant

easze of
tash

RS chivement

arder

arror
protection

Figure D- 9 QOC representation of the Answer order design option

310

Appendix D: QOC representation of design space options in TEAM tool

wocal
/ Hlesibiliby
Input ~————————— graphical
(]
aze of task
ultimadal achievamear

Figure D- 10 QOC representation of the Input design option

wocal .
/ N flexibility
Simple graphical
output
]
aze of task
p— o hievemer
ultimadal

Figure D- 11 QOC representation of the Simple output design option

wvocal

v

Prompting —————————— draphical

. flexibility

[}

eaze of task

/achievemer

Figure D- 12 QOC representation of the Prompting design option

311

Appendix D: QOC representation of design space options in TEAM tool

wocal

/

— graphical

- flexibility

Immediate
fecdback

]

edse of task

/achievemer

Figure D- 13 QOC representation of the Immediate feedback design option

wiocal

/

Guidange —————— draphical

. flexibility

[}

aase of task

/achievemer

Figure D- 14 QOC representation of the Guidance design option

312

Appendix E: Acronyms

Appendix E. Acronyms

Acronym Meaning
AC Abstract Container
AGG Attributed Graph Grammar
AIC Abstract Individual Component
AIO Abstract Interaction Object
AUI Abstract User Interface
CARE Complementarity, Assignment, Redundancy, Equivalence
CCXML Call Control Markup Language
CIDL Component Interface Description Language
CIO Concrete Interaction Object
COCOMO COnstructive Cost Model
CUI Concrete User Interface
Db Decibel
DISL Dialog and Interface Specification Language
DTMF Dual Tone Multi-Frequency
EMMA Extensible MultiModal Addnotation Markup Language
FUI Final User Interface
GC Graphical Container
GIC Graphical Individual Component
GUI Graphical user Interface
HCI Human-Computer Interaction
HTML Hyper Text Markup Language
ICARE Interaction CARE
IDE Integrated Development Environment
IS Information System
LHS Left Hand Side
MB-IDE Model Based Integrated Development Environment
MDA Model-Driven Architecture
MDD Model-Driven Development
M Mean
MM Multimodal
MONA Mobile multimOdal Next generation Applications
MOST Multimodal Output Specification Platform
NAC Negative Application Condition
PC Personal Computer
PDA Personal Digital Assistant
PDCL Pipeline Description and Configuration Language
QOC Question, Option, Criteria
OMG Object Management Group
RAD Rapid Application Development
RHS Right Hand Side
RUP Rational Unified Process
SSML Speech Synthesis Markup Language
Ul User Interface
USIXML User Interface eXtensible Markup Language
UIDL User Interface Description Language
TYCOON Types of COOperatioN
VC Vocal Container
VIC Vocal Individual Component
VUI Vocal User Interface

313

Appendix E: Acronyms

XIML eXtensible Interface Markup Language
XISL eXtensible Interaction Language
VoiceXML Voice eXtensible Markup Language
WIMP Windows Icons Menu Pointers
WML Wireless Markup Language

314

