

SIMILAR PhD Registration Number:

ISBN 978-2-87463-114-6
Copyright registration D/2008/9964/8
EAN 9782874631146

A Methodology for
Developing Multimodal

User Interfaces of
Information Systems

By Adrian Stanciulescu

A dissertation submitted in fulfillment of the requirements
for the degree of

Doctor of Philosophy in
Management Sciences

of the Université catholique de Louvain

Committee in charge:

Prof. Jean Vanderdonckt, Université catholique Louvain, Advisor

Prof. Benoît Macq, Université catholique Louvain, Examiner
Prof. Manuel Kolp, Université catholique Louvain, Examiner

Prof. Philippe Palanque, Université Paul Sabatier, Reader
Prof. Yacine Bellik, Université Paris XI, Reader

Prof. Alain Vas, Université catolique Louvain, President of Jury

25 June 2008

 i

Acknowledgements

I would like to express my thanks to:

− My advisor, Professor Jean Vanderdonckt, for his constant support and enthusiasm
regarding my work. Collaborating with him was not only a permanently enriching
professional experience, but also an opportunity to work with a person whose human
side I highly appreciate.

− Professors Benoît Macq (Université catolique Louvain, TELE Laboratory, Belgium),
Manuel Kolp (Université catolique Louvain, ISYS unit, Belgium), Philippe Palanque
(LIIHS-IRIT, Université Paul Sabatier, France) and Yacine Bellik (LIMSI-CNRS,
Université Paris XI, France) for accepting to participate to the jury of this thesis.

− My colleagues from the Louvain School of Management (LSM) of Université ca-
tholique de Louvain (UCL) and especially the ones sharing the same office who en-
dured my long, noisy and most of the time annoying vocal tests.

− Familiei mele si in special parintilor mei care au fost cu adevarat alaturi de mine in
momentele de bucurie, dar mai ales in situatiile dificile pe parcursul studiilor
universitare. Un sincer multumesc pentru felul in care ati stiut sa imi indrumati pasii
prin sfaturile si experienta voastra de viata, lasandu-mi in acelasi timp libertatea de a-
mi lua propriile deciziile.

− Prietenei mele Milena, pentru sustinerea si incurajarile continue care mi-au adus un
nou suflu si mi-au permis sa imi regasesc entuziasmul de-a lungul ultimilor ani de
teza. Multumesc pentru optimismul de care dai dovada si pe care ai stiut sa mi-l
insufli atunci cand aveam mai mare nevoie. Atitudinea ta mereu pozitiva m-a ajutat sa
depasesc mai usor momentele dificile si sa-mi clarific deciziile viitoare. Multumesc de
asemenea pentru ajutorul acordat in redactarea tezei.

 ii

This thesis was accomplished thanks to the support of:

− The ISYS research unit of Louvain School of Management.

− The SIMILAR network of excellence, the European research task force creating
human-machine interfaces similar to human-human communication, supported by
the 6th Framework Program of the European Commission, under contract FP6-IST1-
2003-507609 (www.similar.cc).

− The OpenInterface Foundation, supported by the 6th Framework Program of the
European Commission, under the umbrella of SIMILAR network of excellence
(www.openinterface.com).

− The UsiXML Consortium, for User Interface eXtensible Markup Language
(www.usixml.org).

− Philippe Guillaume, Didier Magotteaux and Vincent Wauters (IBM Belgium) for the
grant received for the IBM Multimodal Toolkit™, Software Modeler™, and
WebSphere™, with which this research has been achieved.

 1

Table of Contents
ACKNOWLEDGEMENTS ... I

TABLE OF CONTENTS ... 1

TABLE OF FIGURES... 6

TABLE OF TABLES... 10

1 INTRODUCTION... 13

1.1 Context... 13

1.2 Concerns of multimodal user interfaces ... 14

1.3 Terminology used in this thesis ... 16
1.3.1 Mode... 17
1.3.2 Media .. 17
1.3.3 Modality ... 17
1.3.4 Multimode, multimedia and multimodality.. 18

1.4 Thesis ... 18
1.4.1 Thesis statement ... 18
1.4.2 Definitions of working hypotheses... 19
1.4.3 Scope .. 22

1.5 Reading Map... 24

2 STATE OF THE ART .. 27

2.1 Introduction .. 27

2.2 A structuring theoretical framework.. 27
2.2.1 TYCOON framework ... 28
2.2.2 CARE properties... 29
2.2.3 W3C Multimodal Interaction Framework .. 31
2.2.4 Comparison of theoretical frameworks .. 33

2.3 User Interface Description Languages ... 33
2.3.1 XISL ... 33
2.3.2 XIML.. 34
2.3.3 UIML.. 35
2.3.4 DISL ... 36

 2

2.3.5 VoiceXML.. 36
2.3.6 XHTML+Voice .. 37
2.3.7 TeresaXML... 38
2.3.8 EMMA.. 38

2.4 User interface development tools .. 38
2.4.1 Galatea Interaction Builder... 38
2.4.2 UIML Development Toolkit... 39
2.4.3 WebSphere Voice Toolkit .. 40
2.4.4 Teresa ... 40
2.4.5 MONA.. 41
2.4.6 SUEDE ... 42
2.4.7 CSLU Toolkit ... 43
2.4.8 MOST ... 43
2.4.9 OpenInterface Platform .. 44
2.4.10 A Toolkit of Multimodal Widgets .. 45
2.4.11 FRUIT... 48

2.5 Conclusion ... 50
2.5.1 Summary of the state of the art... 50
2.5.2 Shortcomings .. 54
2.5.3 Requirements .. 55

2.6 Conclusion ... 57

3 CONCEPTUAL MODELING OF MULTIMODAL USER INTERFACES....... 59

3.1 Introduction .. 59

3.2 Selection of a User Interface Description Language ... 59
3.2.1 Towards choosing a suitable UIDL .. 59
3.2.2 UsiXML – the selected UIDL .. 60

3.3 Conceptual contribution .. 61
3.3.1 Task Model ... 62
3.3.2 Domain Model.. 65
3.3.3 Abstract User Interface Model ... 66
3.3.4 Concrete User Interface Model... 71
3.3.5 Mapping Model .. 72
3.3.6 Transformation Model.. 72

3.4 Semantics of the multimodal interaction objects... 74
3.4.1 Semantics of the Graphical Concrete Interaction Objects 74
3.4.2 Semantics of the Vocal Concrete Interaction Objects 76
3.4.3 Semantics of the Multimodal Concrete Interaction Objects........................... 84
3.4.4 Semantics of the Concrete User Interface Relationships................................ 89

3.5 Syntax of UsiXML .. 91

 3

3.5.1 From Semantics to Concrete Syntax .. 91
3.5.2 Concrete Syntax of Interaction Objects.. 93

3.6 Stylistics of interaction objects .. 96

3.7 Conclusions ... 98

4 A TRANSFORMATIONAL METHOD FOR PRODUCING MULTIMODAL
USER INTERFACES.. 99

4.1 Introduction .. 99

4.2 Design space for user interfaces .. 99
4.2.1 Definition of design space .. 99
4.2.2 Rationale for choosing a design space.. 100
4.2.3 Design options for user interfaces .. 102
4.2.4 Design space in the context of Design Rationale approach.......................... 121

4.3 Specification of transformations ... 124
4.3.1 Selection of model-to-model transformational approach 124
4.3.2 Application strategy of transformation rules .. 130
4.3.3 Shortcomings of the existing graph-based transformational approaches 131
4.3.4 Expanded model-to-model transformational approach 131
4.3.5 Transformation rule catalog.. 138

4.4 The four steps of the transformational approach.. 141
4.4.1 Step 1: The Task and Domain Models ... 143
4.4.2 Step 2: From Task and Domain Models to Abstract User Interface Model .143
4.4.3 Step 3: From Abstract User Interface Model to Concrete User Interface Model
 147
4.4.4 Step 4: From Concrete User Interface Model to Final User Interface.......... 154

4.5 Conclusion ... 154

5 TOOL SUPPORT .. 155

5.1 Introduction .. 155

5.2 MultimodaliXML modules .. 156
5.2.1 IdealXML ... 156
5.2.2 TransformiXML ... 157
5.2.3 GrafiXML... 159
5.2.4 VoiceXML Generator... 160
5.2.5 XHTML+Voice Generator ... 160

5.3 Limitations of current tool support .. 161

5.4 Conclusions ... 163

 4

6 VALIDATION .. 165

6.1 Introduction .. 165

6.2 Case study 1: Virtual Polling Application.. 165
6.2.1 Step 1: The Task and Domain Models ... 166
6.2.2 Step 2: From Task and Domain Models to AUI Model 170
6.2.3 Step 3: From AUI Model to CUI Model .. 172
6.2.4 Step 4: From CUI Model to FUI .. 177

6.3 Case study 2: Car Rental Application .. 179
6.3.1 Step 1: The Task and Domain Models ... 180
6.3.2 Step 2: From Task and Domain Models to AUI Model 184
6.3.3 Step 3: From AUI Model to CUI Model .. 185
6.3.4 Step 4: From CUI Model to FUI .. 193

6.4 Case study 3: Map Browsing Application .. 195
6.4.1 Step 1: The Task and Domain Models ... 196
6.4.2 Step 2: From Task and Domain Models to AUI Model 198
6.4.3 Step 3: From AUI Model to CUI Model .. 199
6.4.4 Step 4: From CUI Model to FUI .. 204

6.5 Empirical validation ... 206
6.5.1 Methodology usability assessment ... 206
6.5.2 Methodology result assesment plan.. 212
6.5.3 Results .. 214
6.5.4 Interpretation and discussion .. 221

6.6 Internal validation .. 227

6.7 Conclusion ... 231
6.7.1 Conclusions issued from the external validation .. 231
6.7.2 Conclusions issued from the internal validation... 234

7 CONCLUSION .. 235

7.1 Introduction .. 235

7.2 Summary of contributions ... 235
7.2.1 Theoretical and conceptual contributions... 235
7.2.2 Methodological contribution .. 236
7.2.3 Tools developed.. 239

7.3 Future work in prospect... 239

7.4 Some personal concerns ... 241

7.5 Concluding remarks ... 243

 5

REFERENCES ... 245

APPENDIX A. USIXML EXPANDED TASK MODEL 255

APPENDIX B. TRANSFORMATION RULE CATALOG 257

APPENDIX C. USIXML CONCRETE SYNTAX FOR THE SPECIFICATION OF
DIFFERENT COMBINATIONS OF INPUT AND OUTPUT MODALITIES......... 295

APPENDIX D. QOC REPRESENTATION OF DESIGN SPACE OPTIONS IN
TEAM TOOL…... 307

APPENDIX E. ACRONYMS .. 313

 6

Table of Figures

Figure 1-1 “Put that there” multimodal system .. 14
Figure 1-2 Benefits of the identified concerns of multimodal UIs..................................... 16
Figure 1-3 The human five senses.. 17
Figure 1-4 Capabilities vs. resources for producing a user interface 21
Figure 1-5 Thesis structure ... 24
Figure 2-1 General schema for state of the art analysis.. 27
Figure 2-2 W3C Multimodal Interaction Framework .. 32
Figure 2-3 Multimodal X+V application interpreted with Opera browser......................... 37
Figure 2-4 The Interaction Builder graphical user interface .. 39
Figure 2-5 UIML Development Tool ... 39
Figure 2-6 IBM WebSphere Voice Toolkit – communication flow builder perspective ...40
Figure 2-7 Authoring a multimodal UI with Teresa... 41
Figure 2-8 MONA editor with real time GUI previews ... 41
Figure 2-9 Design mode in SUEDE ... 42
Figure 2-10 CSLU toolkit - the graphical authoring editor .. 43
Figure 2-11 Interaction component editor in MOST.. 44
Figure 2-12 Integration of heterogenous components in OpenInterface 45
Figure 2-13 Multimodal toolkit architecture .. 47
Figure 2-14 The toolkit architecture –button feedback to mouse-over event..................... 48
Figure 2-15 The architecture of a FRUIT system... 50
Figure 3-1 Cameleon Reference Framework for multi-target UIs 60
Figure 3-2 Meta-model of the Task Model .. 63
Figure 3-3 Meta-model of the Domain Model ... 66
Figure 3-4 Meta-model of the AUI Model ... 67
Figure 3-5 Abstract attribute values inheriting Task attribute values................................. 68
Figure 3-6 The general structure of an instruction in ISs ... 68
Figure 3-7 Excerpt of the CUI Meta-model ... 71
Figure 3-8 Meta-model of the Mapping Model.. 72
Figure 3-9 Meta-model of the Transformation Model ... 74
Figure 3-10 Graphical containers ... 75
Figure 3-11 Several Graphical Individual Components ... 76
Figure 3-12 Vocal Concrete Interaction Objects .. 82
Figure 3-13 VocalCIOs involved in the fulfillment of Provide age task............................ 83
Figure 3-14 VocalCIOs used for a vocal application of a Phone line company................. 84
Figure 3-15 Concrete UI Relationships .. 91
Figure 3-16 Generation of UsiXML specification.. 92
Figure 3-17 Transforming of a class to into UsiXML specification 92
Figure 3-18 Transformation of a relationship class into UsiXML specification............... 92
Figure 3-19 Transformation of the inheritance relationship into UsiXML specification..93
Figure 3-20 Transformation of the aggregation relationship into UsiXML specification..93
Figure 4-1 The design options composing the design space .. 102

 7

Figure 4-2 Sub-task presentation values... 105
Figure 4-3 Sub-task presentation values and a possible concretization in vocal and

graphical objects ... 107
Figure 4-4 Types of navigation between sub-tasks and a possible concretization in vocal

and graphical objects .. 109
Figure 4-5 Navigation type values and a possible concretization in vocal and graphical

objects... 110
Figure 4-6 Control type values and a possible concretization in vocal and graphical objects

.. 111
Figure 4-7 Navigation and control type values and a possible concretization in vocal and

graphical objects ... 112
Figure 4-8 Guided sub-task in GUI Figure 4-9 Unguided sub-task in GUI ... 113
Figure 4-10 Ambigous answer in GUI Figure 4-11 Unambigous answer in GUI...... 114
Figure 4-12 Single answer in GUI Figure 4-13 Multiple answer in GUI.115
Figure 4-14 Confirmation message in GUI Figure 4-15 Non-confirmed message

in GUI... 116
Figure 4-16 Order dependent answer in GUI Figure 4-17 Order independent answer in

GUI ... 117
Figure 4-18 A possible design decision for a multimodal text input................................ 121
Figure 4-19 QOC diagram structure... 123
Figure 4-20 QOC representation of the sub-task guidance design option........................ 123
Figure 4-21 QOC representation of the sub-task guidance design option........................ 124
Figure 4-22 Progressive application of rule-based transformations 125
Figure 4-23 Identification of transformation rule approach features................................ 126
Figure 4-24 Structure of a transformation catalog.. 126
Figure 4-25 Characterization of transformation in UsiXML.. 127
Figure 4-26 Syntactically typed patterns and variables.. 128
Figure 4-27 Graphical concrete syntax of the patterns... 128
Figure 4-28 From Task Model to Abstract Model ... 129
Figure 4-29 Textual syntax for expressing transformation rules...................................... 129
Figure 4-30 The application strategy of transformation rules .. 130
Figure 4-31 Monocolored transformation rule generating: (a) groupBox elements; (b)

vocalMenu elements; (c) groupBoxes and vocalMenu elements 137
Figure 4-32 Transformation rules supporting sub-task presentation................................ 138
Figure 4-33 Transformation rules supporting the vocal and graphical concretization of

sub-task presentation values ... 139
Figure 4-34 Transformation rules supporting sub-task navigation values for graphical and

vocal concretization.. 139
Figure 4-35 Transformation rules supporting navigation type values for graphical and

vocal concretization.. 140
Figure 4-36 Transformation rules supporting control type values for graphical and vocal

concretization ... 140
Figure 4-37 Transformation rules supporting navigation and control type values for

graphical and vocal concretization ... 141
Figure 4-38 Transformation rules supporting the remaining set of design options for which

a stylistics was not assigned ... 141
Figure 4-39 General development scenario of UI .. 142

 8

Figure 4-40 Sub-steps of the transformational approach.. 143
Figure 4-41 Separated sub-task presentation Figure 4-42 Combined sub-task

presentation... 144
Figure 4-43 Local placement for navigation Figure 4-44 Global placement for

navigation ... 145
Figure 4-45 Local placement for control Figure 4-46 Global placement for

control... 145
Figure 4-47 Sequential navigation between sub-tasks presented in separated windows..150
Figure 4-48 Asynchronous navigation between sub-tasks presented in separated windows

.. 150
Figure 5-1 General development scenario – identification of MultimodaliXML modules

.. 155
Figure 5-2 Task Model editor Figure 5-3 Domain Model editor

.. 156
Figure 5-4 Mapping Model editor .. 156
Figure 5-5 TransformiXML – graphical user interface .. 157
Figure 5-6 Model-to-model transformation based on AGG API...................................... 158
Figure 5-7 Generate abstract containers for each sub-task of the top-most task 158
Figure 5-8 Initial Model Figure 5-9 Resultant model...... 158
Figure 5-10 GrafiXML – export function... 159
Figure 5-11 Multimodal design tools complexity vs. specificity 162
Figure 5-12 A design space-based tool for development of multimodal UIs................... 163
Figure 6-1 Development scenario for virtual polling application 166
Figure 6-2 Mappings between the Task Model and the Domain Model 166
Figure 6-3 Mapping Model for the virtual polling system ... 167
Figure 6-4 Task Model expressed in UsiXML... 168
Figure 6-5 Domain Model expressed in UsiXML.. 169
Figure 6-6 Mapping Model expressed in UsiXML .. 169
Figure 6-7 AUI Model expressed in UsiXML.. 171
Figure 6-8 Graphical UI Figure 6-9 Vocal UI ... 178
Figure 6-10 Multimodal UI .. 179
Figure 6-11 Development scenario for car rental application .. 180
Figure 6-12 The decomposition of Determine rental preferences sub-task...................... 180
Figure 6-13 The decomposition of Determine rental preferences sub-task...................... 180
Figure 6-14 The decomposition of Determine car sub-task ... 181
Figure 6-15 The decomposition of Provide payment information sub-task 181
Figure 6-16 Excerpt of Task Model expressed in UsiXML ... 182
Figure 6-17 Domain Model for the car rental system... 183
Figure 6-18 Excerpts of Domain Model expressed in UsiXML....................................... 183
Figure 6-19 FUI – graphical input Figure 6-20 FUI – vocal input 194
Figure 6-21 FUI – equivalent graphical and vocal input.. 195
Figure 6-22 Development scenario for the map brosing system 196
Figure 6-23 Task Model of the map browsing application... 196
Figure 6-24 Specification of the Task Model in UsiXML ... 197
Figure 6-25 Domain Model for the map browsing system... 197
Figure 6-26 Excerpts of Domain Model expressed in UsiXML....................................... 198
Figure 6-27 FUI – graphical input .. 204

 9

Figure 6-28 FUI – vocal input .. 205
Figure 6-29 FUI – graphical input for browsing action and vocal input for browsing

direction.. 205
Figure 6-30 Methodology assessment levels... 206
Figure 6-31 The multimodal version of the DVD rental application 210
Figure 6-32 Physical position of the subjects and experimental apparatus 211
Figure 6-33 A subject interacting with the application .. 212
Figure 6-34 The training application .. 213
Figure 6-35 Task completion mean time per interaction modality................................... 215
Figure 6-36 Mean task procentage completion per interaction modality 215
Figure 6-37 Mean number of errors per category... 217
Figure 6-38 The timeline for a correct voice-enabling button manipulation.................... 217
Figure 6-39 Learning time for vocal interaction .. 218
Figure 6-40 Mean number of mouse clicks per interaction modality............................... 218
Figure 6-41 Distribution of the modality preference per subject 219
Figure 6-42 Mean number of errors per experience group for vocal interaction 221
Figure 6-43 Mean number of errors per experience group for MM interaction 221
Figure 6-44 Distribution of task completion time per interaction type and experience

group... 222
Figure 6-45 Task completion mean time per experience group 223
Figure 6-46 Modality interaction preference per application type 225
Figure 6-47 Requirements coverage rate.. 234
Figure 7-1 Connection between the effort rate and the outcome rate of our methodology

.. 242

 10

Table of Tables

Table 2-1 Comparison of the surveyed user interface description languages 53
Table 3-1 Definition of existing values for the userAction attribute.................................. 62
Table 3-2 Definitions of existing values for the taskItem attribute 62
Table 3-3 Definition of newly identified values for the taskType attributes...................... 64
Table 3-4 Synonyms for the taskType values .. 64
Table 3-5 Definitions of newly identified values for the taskItem attribute....................... 64
Table 3-6 Examples of combinations between values of taskType and taskItem attributes

.. 65
Table 3-7 Correspondence between popular widgets and CIOs of different modalities 88
Table 3-8 Possible combinations of input/output interaction types for a label and a

textFiled..94
Table 3-9 Stylistics for several vocal concrete interaction objects..................................... 98
Table 4-1 Color associated to the UsiXML model concepts.. 133
Table 4-2 Mappings between tasks types and AIC facets types....................................... 146
Table 4-3 Mappings between facet types and GIC types ... 148
Table 4-4 Design option values for textInput widget with graphical assignement for input

.. 149
Table 4-5 Mappings between facet types and VIC types ... 151
Table 4-6 Design option values for vocal assigned input.. 152
Table 4-7 Mappings between facet types and GIC and VIC types................................... 153
Table 4-8 Design option values for multimodal textInput widget (graphical and vocal

equivalence for input)... 153
Table 5-1 Mappings between the vocal CIOs and VoiceXML elements 160
Table 5-2 Mappings between the graphical CIOs and the XHTML elements 161
Table 6-1 Design option values for inputText.. 172
Table 6-2 Design option values for radioButtons... 173
Table 6-3 Design option values for outputText.. 173
Table 6-4 Design option values for control buttons ... 173
Table 6-5 Design option values for vocalInput .. 174
Table 6-6 Design option values for vocalInput with confirmation................................... 174
Table 6-7 Design option values for vocalInput with grammar items 175
Table 6-8 Design option values for vocalPrompt ... 175
Table 6-9 Design option values for submit element... 175
Table 6-10 Design option values for multimodal inputText .. 176
Table 6-11 Design option values for multimodal radioButtons 177
Table 6-12 Design option values for outputText.. 177
Table 6-13 Mappings between task and domain models.. 184
Table 6-14 Design option values for inputText.. 186
Table 6-15 Design option values for comboBox.. 186
Table 6-16 Design option values for radioButtons... 187
Table 6-17 Design option values for checkBoxes .. 187
Table 6-18 Design option values for listBox.. 187
Table 6-19 Design option values for multimodal inputText .. 188

 11

Table 6-20 Design option values for multimodal combobox ... 189
Table 6-21 Design option values for multimodal radioButtons 189
Table 6-22 Design option values for multimodal checkBoxes... 189
Table 6-23 Design option values for multimodal listBoxes ... 190
Table 6-24 Design option values for multimodal inputText .. 191
Table 6-25 Design option values for multimodal combobox ... 192
Table 6-26 Design option values for multimodal radioButtons 192
Table 6-27 Design option values for multimodal checkBoxes... 192
Table 6-28 Design option values for multimodal listBoxes ... 193
Table 6-29 Mappings between task and domain models.. 198
Table 6-30 Design option values for multimodal radioButtons 200
Table 6-31 Design option values for imageZones.. 200
Table 6-32 Design option values for multimodal radioButtons 201
Table 6-33 Design option values for multimodal radioButtons 203
Table 6-34 Design option values for multimodal radioButtons 203
Table 6-35 Estimated learning time of the methodological aspects 207
Table 6-36 Summary of the subject’s demographics and experience level...................... 209
Table 6-37 Mean task completion time (seconds) per experience group 220
Table 6-38 Mean task procentage completion per experience group 220
Table 6-39 t-Test results for the significant difference in mean task completion time with

respect to MM experience .. 222
Table 6-40 t-Test results for the significant difference in mean number of pronunciation

and synchronization errors with respect to MM experience..................................... 223
Table 6-41 t-Test results for the significant difference in mean completion time with

respect to experience category.. 224
Table 6-42 Subject’s opinion for web form applications ... 226
Table 6-43 Subject’s opinion for non web form application.. 227
Table 7-1 Dependencies between design options... 237

 12

1. Introduction

 13

1 Introduction

1.1 Context

The most prevailing type of User Interface (UI) in today’s interactive applications is the
Graphical User Interface (GUI). Since GUIs restrict the Human-Computer Interaction
(HCI) mainly to the visual mode, they do not allow end users to communicate in ways
they naturally do with other human beings [Klem00]. More particularly, the standard
GUI does not work well for some users (e.g., users having limited literacy or typing
skills), in some circumstances (e.g., when users are moving around, when their hands or
their eyes are busy with other tasks), when the environment is constrained (e.g., the
keyboard and the mouse are not available) or when the end user is interacting with
another person. In order to go beyond the GUI imposed limitations, a new UI paradigm
is needed. Multimodal (MM) UIs is one of these paradigms having the expected
capabilities.

The aforementioned problems also arise on the Internet, where an ever increasing
portion of the user population is carrying out interactive tasks with more advanced
interaction devices (e.g., mobile phones, smart phones, Personal Digital Assistants –
PDAs). As this population portion is increasing, new specific needs should be addressed.
As interaction devices become smaller, means of input other than keyboard or tap screen
become necessary. Indeed these devices benefit nowadays of enough processing power
to handle multiple and complex tasks. This situation also leads to considering a new
application technology called multimodal, where multiple methods of communication
between the end user and interaction devices are considered simultaneously. These
methods include, but are not limited to: keypad, tap screen, tactile screen, handwriting
recognition, speech synthesis, voice recognition, and gesture recognition.

MM UIs represent a research-level paradigm shift away from conventional windows-
icons-menus-pointers (WIMP) interfaces towards providing users with great expressive
power, naturalness, flexibility and portability [Ovia99]. Such flexibility makes it possible
for users to alternate modalities so that physical overexertion is avoided for any
individual modality. It also permits substantial error avoidance and easier error recovery.
The flexibility of a MM interface can accommodate a wide range of users, tasks and
environments. For example, users who are temporarily or permanently disabled, tasks
which were not possible to carry out before and environments in adverse or very
constrained settings (e.g., noisy environments, mobile conditions) when a single mode
may not suffice. In many of these real-world examples, integrated MM UIs exhibit the
potential to support entirely new capabilities that have not been envisioned by previous
traditional systems based on GUIs.

1. Introduction

 14

MM UIs have been viewed as an attractive area for HCI research since Bolt’s seminal
“Put That There” system [Bolt80] where graphical objects are created and moved on a
wall screen using speech recognition and finger pointing (Figure 1-1).

Figure 1-1 “Put that there” multimodal system

Since then, the promise of MM UIs to deliver a more natural and efficient interaction has
not been discontinued [Cohe98]. MM UIs are expanding both in popularity due to the
increasing accuracy of perceptual input systems (e.g., voice recognition, handwriting
recognition, vision recognition) and the increasing ubiquity of heterogeneous computing
platforms (e.g., mobile telephones, handheld devices, laptops, whiteboards) and in the
range of information systems they support:
 Accessing business information, support desks, order tracking, airline arrival and

departure information, cinema and theater booking services and home banking.
 Accessing public information, including community information such as weather,

traffic conditions, school closures, directions and events; local, national and
international news; national and international stock market information; and
business and e-commerce transactions.

 Accessing personal information, including calendars, address and telephone lists,
to-do lists, shopping lists and calorie counters.

Since more and more people have access to the Internet, MM UIs promise to enable
anyone to access web based information systems from any online computing platform,
mobile or stationary, from anywhere and at anytime (e.g., at work, at home, on the move
between).

1.2 Concerns of multimodal user interfaces

In the context of this thesis we identify hereafter a set of concerns that are considered
important for developing MM information systems:
 Concern 1. Lack of support for multiple input/output modalities: end users are not able to

flexibly choose the most suitable interaction modality for their task, as its
achievement depends on several aspects: the environment (e.g., noisy), the context
of use (e.g., driving in a car), the task complexity (e.g., directory assistance), the

1. Introduction

 15

device capabilities (e.g., small displays), the users’ disabilities (e.g., visual
impairment) [Awde06].

 Concern 2. Lack of separation of modalities: most of the existing model-based approach
do not provide a separation of concepts assigned to different modalities. This could
enable designers to specify separately the UI corresponding to each modality and
to further connect them altogether. Moreover, they could reuse, partially or totally,
the specification corresponding to an interaction modality in other applications that
employ it.

 Concern 3. Lack of combination of modalities: the existing MM systems do not always
provide a faster and more robust interaction as they rarely take advantage of the
combination capabilities of interaction modalities characterizing such systems. For
instance, they do not consider multiple modalities enabling parallel independent or
complemetar input in order to achive the tasks. Moreover, the users are rarely able
to select between two or more equivalent modalities the one they consider the
fastest for the task to achieve.

 Concern 4. Lack of modality-independent model: existing model-based approaches suffer
from a lack of a modality-independent model in the development life cycle
[Limb04b]. Due to the continously increasing number of new interaction devices
and as a consequence of interaction modalities that will determine the development
of new UIs with new modality capabilities, such model could enable to avoid their
redeployment from scratch. In addition, it could contribute to the principle of
separation of concerns [Dijk76].

 Concern 5. Lack of extensibility for new modalities: nowadays, the constant emergence of
new computing platforms supporting new sets of interaction modalities requires
the intergration of new model concepts manipulated by methods. Currently, these
concepts are difficult to extend therefore preventing the adaptation of methodolo-
gies for covering new interaction modalities.

 Concern 6. Lack of human readability of the ontology: few methods define in an explicit
manner their underlying concepts which are generally bounded to tools or meth-
odological recommendations, thus preventing a designer to grasp the conceptual
foundations of a methodology [Limb04b]. Moreover, research teams tend to con-
duct their researches and developments on their own models which make concep-
tual consolidation across methods difficult. Cross-method understanding is a tedi-
ous and time-consuming activity because it requires understanding the peculiarities
of each method and establishing correspondence between them. As a consequence,
communication among researchers becomes complex.

 Concern 7. Lack of a structuring framework for the development of MM UIs: we are not
aware of any development framework of MM UIs that structures the development
life cycle in terms of options to select by designers. Currently, the designer’s
decisions are not explicitly defined and do not clarify the development of such
systems which therefore requires more design workload.

 Concern 8. Lack of method explicitness: existing approaches seriously lack explicitness in
the way they propose their catalog of model-to-model and model-to-code trans-
formations both to the designer and to researchers [Limb04b]. The transformation
catalogs are often implicitly maintained in the head of developers and designers

1. Introduction

 16

and/or hard-coded in supporting software. Consequently, the transformational
processes proposed in the literature consist essentially of black boxes. This lack of
explicitness dramatically hampers methodological guidance.

 Concern 9. Lack of method extendibility: developing UIs consists of making heuristic
decisions in a vast design space. Transformations have consequently an inherent
heuristic nature as they try to translate into algorithms part of these design deci-
sions. Proposed methods offer very little possibilities to the designer to modify
built-in heuristics: adding, deleting, modifying, reusing transformations is almost
impossible [Limb04b].

 Concern 10. Lack of support for tool interoperability: consequently to the lack of explicit-
ness, the exchange of knowledge regarding transformation catalogs can hardly be
achieved [Limb04b]. Even when transformation catalogs are made explicit in tools,
their heterogeneous formats prevents the reuse of transformations outside the con-
text for which they were designed.

Under the light shad by the above set of concerns we benefit from a twofold result
(Figure 1-2): (1) the statement of the current thesis is defined in Section 1.4.1, (2) a set of
features of MM UIs are employed in Section 2.5.1 in order to analyse the user interface
description languages (UIDLs) surveyed in the state of the art (Section 2.3).

Figure 1-2 Benefits of the identified concerns of multimodal UIs

1.3 Terminology used in this thesis

In order to precisely identify the object of concern of this thesis, three fundamental
terms often employed in the context of MM UIs are defined: mode, modality, media. The
scientific community has now debated definitions and uses of these terms for more than
twenty years without reaching clear consensus [Vand07]. For instance, the concepts of
modality and multimodality mean different things to different stakeholders. In cognitive
psychology, a modality denotes a human sense (e.g., vision, audition, taste, etc.) whereas
in Human-Computer Interaction, multimodality corresponds more or less to interaction
techniques that involve multiple human senses simultaneously. Much depends on the
perspective, e.g., from a user or a system point of view, or on the degree of precision
needed to solve or discuss a particular problem. In this section, we present our choices
using a system perspective.

1. Introduction

 17

1.3.1 Mode

The human body has five major senses which operate to gather information from the
world around us (Figure 1-3): sight, hearing, smell, taste, and touch. Any stimulus to one
of the sense areas is detected by sensory nerves and is sent to the brain for interpretation.
The communication “mode” corresponds to the senses belonging to the motor and
sensorial system of the user [Bell92] as it refers to the communication channel used by
the two entities that interact [Schy05]. Consequently, two input modes exist that
correspond to two motor and sensorial human systems: the oral mode from the hearing
sense and the gesture mode from the touch sense. Similarly, five output modes correspond
to the five senses: visual (sight), auditive (hearing), tactile (touch), olfactive (smell) and
gustatory (taste) modes. By expanding this classification, four types of input communication
modes are identified based on the implied sensorial system: graphical, vocal, tactile and
gesture. Similarly, six output communication modes could be identified based on implied
sensorial and motor systems: graphical, vocal, tactile, olfactory, gustatory, and gesture. A
communication mode determines an interaction type between the user and the system.
Thus, each communication mode has an associated interaction type. For instance, if the
communication mode between the user and the system is graphical, the interaction is said
to be graphical by analogy.

Figure 1-3 The human five senses

1.3.2 Media

Most of the authors agree in defining “media” as a technical support for information. In
[Niga94], “media” is defined as a physical device that allows storing, retrieving or
communicating information. Consequently, the definition is valid for all input devices
(e.g., mouse, keyboard, microphone), for all output devices (e.g., screen, loud speakers) as
well as for the devices storing the information (e.g., CD Rom, DVD) [Schy05].
Therefore, “media” is interpreted as being more than a “physical device” even if these
two terms are used very often alternatively.

1.3.3 Modality

Regarding the term “modality”, Nigay’s definition [Niga97a] has been adopted because it
clearly differentiates modalities by examining their intrinsic properties and because an
extensive definition in terms of properties has been introduced in a meta-model of
modalities [Bouc06]. The interaction modality is seen as a couple of a physical device d
and an interaction language L : <d, L>. A physical device is a system artifact that
acquires (input devices) information (e.g., microphone, keyboard, or mouse) or delivers
(output device) information (e.g., screen or loud speakers). An interaction language
defines a set of conventional assembly of symbols that convey meaning (e.g., restricted
natural language, direct manipulation, unrestricted natural language). The symbols are

1. Introduction

 18

generated by actions applied on physical devices. According to this definition, typical
examples of interacton modalities include:
 A graphical input modality described as the couple <mouse, direct manipulation>.
 A vocal input modality modeled as <microphone, pseudo-natural language NL>, where

NL is defined by a specifc grammar.
 A tactile input modality specified as the couple <tactile screen, tactile commands>.
 A graphical output modality modeled as the couple <screen, graphics language>.
 A vocal output modality described as the couple <loud speakers, pseudo natural

language NL>.

1.3.4 Multimode, multimedia and multimodality

In this thesis, the definition of multimodality relies on a system-centered view. Thus, a
MM system is a system having the capability to communicate with the end users through
different types of communication modes and to extract and convey meaning
automatically [Niga97c]. Thus, a monomodal, respectively multimodal system is referred to as
any system that supports communication with the end user through a single modality,
respectively multiple modalities. Multimodality refers to output as well as to input
modalities: input, respectively output multimodal systems are employing at least two
different input, respectively output, modalities.
Since the prefix “multi” implies the use of more than one suffix, a monomedia, respectively
multimedia, system is referred to as any system that involves a single media, respectively
multiple media. But multimedia systems also involve multiple types of communication
modes. Consequently, what is the difference between a multimodal system and a
multimedia system? A multimedia system allows the acquisition, the storage and the
distribution of data, while a multimodal system is capable of acquiring and interpreting
data, as well as storing and distributing these interpretations [Cout92]. Therefore, a
multimodal system is a system with multimedia capabilities that enables semantic data
handling.
Similarly, a monomode, respectively multimode system is any system relying on a single mode,
respectively multiple modes, to support communication with the end user. A system can
therefore be multimodal while being monomode (e.g., two modalities that are used in the
same mode). Conversely, a multimode system subsumes its multimodality since at least
two different modes are exploited.
Having defined these terms, we are now ready to define the central objective of this
thesis and the working hypotheses it underlines.

1.4 Thesis

1.4.1 Thesis statement

In this thesis we argue that developing multimodal UIs is an activity that would benefit
from the application of a methodology which is typically composed of: (1) a set of
models gathered in an ontology, (2) a method manipulating the involved models and (3)
tools that implement the defined method.

1. Introduction

 19

Therefore, we will defend the following thesis statement:
Define a design space-based method that is supported by model-to-model colored trans-
formations in order to obtain multimodal user interfaces of information systems from a
task and a domain models.

The concepts introduced above are reviewed and defined in the next section.

1.4.2 Definitions of working hypotheses

1.4.2.a.1 The models

Model-based tools have been investigated since the late 1980’s. The goal of these tools is to
allow designers to specify the UI at an implementation independent level. The
specification is usually shared between a set of components, called models, each model
representing a facet of the interface characteristics. The number and type of these models
is different from one approach to another. Our approach, for instance, considers the task
and domain models since the initial design stage in order to encourage the user-centered
design. Therefore, Chapter 3 will be dedicated to a precise description of the concepts
involved in the considered models.

The model-based approach has been the target of some major criticisms [Myer00, Puer96,
Shne06, Szek96]. The main shortcomings commonly cited are:

(1) High threshold: the designers need to learn a new language in order to express the
specifications of the UI.

(2) Low ceiling: each model-based systems has strict limitations on the kind of UIs they
can produce and the generated UIs are generally not as good as those that could be
created with conventional techniques.

(3) Wide walls: model-based systems do not support a wide range of possible
explorations [Shne06].

(4) Unpredictability: it is difficult to understand and control how the specifications are
connected with the final UI. Therefore, the results may be unpredictable.

(5) Lack of propagation of modifications: changes made to one model or to the final UI are
generally not propagated to the other levels of specification.

(6) System dependent and private models: a lot of models are strongly tied to their associated
model-based system and can not be exported. Furthermore, some model
specifications are neither publicly available, nor obtainable via a license.

Most of these problems could be addressed:

(1) High threshold: most models can be built graphically in a design environment, which
prevents users from learning the specification language. Even if the designers have
to learn the specification language, the automation of a portion of the development
should reduce the development effort.

(2) Low ceiling: we believe that this criticism holds only for a specific kind of model-
based generation tool, which generates the UI starting from very high level models

1. Introduction

 20

(Task Model and/or Domain Model).

(3) Wide walls: our approach considers a design space that benefits from a generative
intrinsec quality. This enables designers to add design options or new values for
the existing ones thus offering the possibility to extend the range of exploration.

(4) Unpredictability: our approach relies on an explicit set of rules, fully documented and
accessible. It offers the designer full control on the selection of those rules. The
results of the application of a rule may be previewed.

(5) Lack of propagation of modifications: although the problem of the impact of a
modification made on a given model over the other models remains a tricky one,
we will attempt to determine the side effects on the other models entailed by the
application of a given rule.

(6) System dependent and private models: we will make use of a UI description language
publicly and freely available.

It is expected that the capabilities and the quality of automatically generated UIs and
interactive applications will be expanding step by step and that in the future, perhaps a
point will be reached where the capabilities of an interface builder as included in an
Integrated Development Environment (IDE) and a Model-Driven Architecture (MDA)-
compliant environment will become comparable.
The following definition was approved unanimously by 17 participants of the ORMSC
plenary session meeting in Montreal on 23-26 August 2004.

The stated purpose of these two paragraphs was to provide principles to be followed in
the revision of the MDA guide:
”MDA is an OMG initiative that proposes to define a set of non-proprietary standards that will specify
interoperable technologies with which to realize model-driven development with
automated transformations. Not all of these technologies will directly concern the
transformation involved in MDA.
MDA does not necessarily rely on the UML, but, as a specialized kind of MDD (Model Driven De-
velopment), MDA necessarily involves the use of model(s) in development, which entails that at least one
modeling language must be used. Any modeling language used in MDA must
be described in terms of the MOF language to enable the metadata to be understood in a
standard manner, which is a precondition for any activity to perform automated
transformation.”

Myers, Hudson, and Pausch [Myer00] argue that a model-based design tool will become
successful from the moment that a low threshold and a high ceiling will be possible. A
low threshold means that the designer or the developer does not need much to start
developing a UI and that a simple UI could be obtained easily. In contrast, a high ceiling
means that the tool has enough capabilities to produce sophisticated UIs while
maintaining moderate the resources required for obtaining this UI.
Typically, UIs produced in interface builders and IDEs require some significant amount
of resources (in terms of time, experience, skills), probably more than model-based
IDEs, but their coverage is maximum (Figure 1-4): they exhibit a low threshold and a

1. Introduction

 21

high ceiling. In contrast, first-generation model-based IDEs suffered from a high
threshold and a low ceiling: they forced designers and developers to learn a new language
(the one of the models), but once this effort is made, the resources required to produce
the UI are low. However, only some limited UIs could be obtained. The second
generation of model-based IDEs has expanded this coverage and the trend is now
pursued by MDA-compliant softwares. It is worth to notice that such softwares are
assumed to require less effort for learning the models since these models are already part
of general purpose development methods like UML. We therefore hope that the
coverage of such tools will progressively reach the coverage of traditional tools, but
always with less resources involved.

C
ap

ab
ilit

ie
s

Resources (time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

Se
co

nd
 g

en
er

at
io

n

M
D

A
C

AS
E

to
ol

s

In
te

rfa
ce

 b
ui

ld
er

s
an

d
in

te
gr

at
ed

en
vi

ro
nm

en
tsC
ap

ab
ilit

ie
s

Resources (time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

Se
co

nd
 g

en
er

at
io

n

M
D

A
C

AS
E

to
ol

s

In
te

rfa
ce

 b
ui

ld
er

s
an

d
in

te
gr

at
ed

en
vi

ro
nm

en
ts

Figure 1-4 Capabilities vs. resources for producing a user interface

Model-based interfaces have also recognized advantages [Puer97]:
(1) Advantages in terms of methodology:

 It is a widely accepted software engineering principle to start a software
development cycle with a specification stage [Ghez01].

 The model-based approach supports a user-centred and UI-centred
development life cycle: it lets designers work with tasks, users and domain
concepts instead of thinking in engineering terms.

(2) Advantages in terms of reusability:

 In a multiplatform context, model-based tools can provide automatic
portability across the different devices.

 The availability of a complete description of the interface in a declarative form
allows the reuse of some interface components.

(3) Advantages in terms of consistency:

 This approach ensures some form of consistency between the early phases of
the development cycle (requirements analysis, specification) and the final
product.

 In a multiplatform context, it also guarantees a minimal consistency between

1. Introduction

 22

the UI generated for different target platforms. This is not always possible
when using traditional techniques where the development of each version of
the UI is likely to be performed separately.

1.4.2.a.2 The method

The considered method consists of an integrated approach where all stages of the software
development life cycle are covered in a principled way, from early requirements to
prototyping and coding. This approach will benefit from a design space which will explicitly
guide the designer in choosing values of design options that are appropriate to the MM
UIs depending on parameters. In order to support these aspects our approach is also
transformational, i.e. based on a catalogue of transformation rules. Similarly to the concept
of schema transformation in database engineering [Hain02], we can define a
transformation between source model M and target model M’ as an operator which
replaces a construct C in M by a construct C’ in M’, or inserts a new construct into M’, or
removes an existing construct, while preserving a set P of properties of M. The set P of
properties we want to preserve includes:

 The usability of the UI.

 The cross-platform consistency of the whole information system, i.e. the consistency
between the various versions of the UI.

1.4.2.a.3 The tool

Besides being model-based and transformational, our approach is also computer-assisted by
automating, partially or totally, some repetitive tasks while offering some level of control
to the designer. In order to conciliate computer-support and human control, we adopt a
semi-automatic approach where:

(1) Transformation rules are manually selected and parameterized by the designer, with
a possibility to modify this configuration at any time.

(2) Transformation rules are then automatically applied to reduce the design workload.

1.4.3 Scope

The current thesis basically concentrates on the following aspects:

 Engineering of Interactive Systems and in particular reactive systems that enable
to interact with humans [Schy05]. On one hand, these systems imply that the inputs
are not provided by another system, but by users who’s behaviour cannot be
predictable. On the other hand, reactive systems suppose that their outputs can be
perceivable and easily interpretable by humans. Amongs these particulat type of
Interactive Systems we target Information Systems (ISs) defined as “a set of
interrelated components that collect (or retrieve), process, store and distribute
information” [Laud06]. This information is typically stored in databases. The
importance of these ISs is vital in nearly all types of organizations. ISs can be
distinguished depending on the level they serve in the organization (i.e., strategic,
management or operational level) and on their major functional areas (e.g., sales

1. Introduction

 23

and marketing, manufacturing and production, finance and accounting, and human
resources). Typical examples of ISs (or subsystems) are a payroll system, a
registration system or a sales order system. Examples of applications outside the
category of ISs are entertainment applications, embedded systems or supervision
systems.

 Graphical, vocal and multimodal interaction resulting from their combination.
As specified in Section 1.3.1 the human body has five main senses to perceive out-
side stimuli. Of these senses, only three have been successfully used in Human-
Computer Interaction. Sight and hearing are the most common modes of convey-
ing information to a user. Touch has been used for silent vibration modes in mo-
bile computing, but is not as common as the other two. Smelling and tasting output
devices have been investigated and very few practical applications have been found
interesting in an interaction context, because users find it impossible to rapidly per-
ceive the information conveyed by these modes. For instance, smel-based
interactions still found in their infancy [Kaye04, Brew06] show that olfactive
feedback has been shown less effective than its graphical counterpart, but less
disruptive [Bodn04]. Therefore, the former interaction remains less frequent in
actual ISs. Apart from the basic senses, there are additional ones like thermo-
reception or the sense of balance, but so far these cannot be used for interaction.
Therefore, only sight and hearing are considered in this thesis as they are useful for
information systems. By language abuse, we sometimes refer to interaction modali-
ties (Section 1.3.3) by their corresponding communication mode.

 The methodology addresses the development of MM UIs for predefined and
constant contexts of use specified at design time. Therefore any dynamic
migration from one modality to another at run time is not supported.

 As our interest concerns the development of a general method for producing MM
UIs based on a design space independent of the employed interaction modalities,
the fusion and fission aspects of these interactions, althought important, will not
be addressed. Moreover, there are already a lot of research works dedicated to this
particular area [Tour02], [Gait07], [Sun07].

 The scope of this work is limited to multimodal UIs of IS, which are familiar
to the vast majority of users and available on almost every platform. Hence,
we do not consider other families of UIs such as 3D UIs or tangible UIs.

 Consequently, other aspects related to other layers of interaction application
(e.g., functional core, physical interaction) as they are defined by different system
architecture (e.g., ARCH [Bass91], PAC-Amodeus [Niga94], W3C Multimodal
Interaction Framework [Lars03b]) are not addressed in this thesis. In addition,
multimodal formal notations such ICO [Nava06], SCXML [Barn08] or NiMMiT
[Debo06] are out of the scope of this thesis.

 The primary goal of this thesis consists in defining a methodology that eases the
design’s workload when developing MMUIs. We take for granted the benefits
and shortcomings of these type of applications. Therefore, the question of

1. Introduction

 24

usability and accessibility of UI resulting from this methodology, althought
important, will not be addressed explicitly in this thesis.

 The target audience of this thesis is, on the one hand, the HCI research
community and, on the other hand, the professionals involved in the design
and development of multimodal UIs. In the remainder of this manuscript, we
refer to these actors as “designers” or “developers”. The ultimate target is the end
user for whom the benefit of MM UIs should become obvious.

1.5 Reading Map

The remainder of this thesis is structured according to Figure 1-5.

Figure 1-5 Thesis structure

Chapter 1 defines the thesis statement based on a set of concerns of MM UIs consider
important for developing MM UIs. In addition, we have identified, defined and justified
the terminology that will be further employed in this dissertation.

Chapter 2 is dedicated to the state of the art in the area of MM UIs. First, a description
and a comparison between three significant conceptual MM frameworks are provided.
Furthermore, the features of a set of UIDLs and MM UI develoment tools are detailed.
We conclude with a summary of the state of the art that enables to establish a list of
shortcomings of current UIDLs. Based on these shortcomings a set of requirements of
MM UIs that argue the thesis statement are identified and will further be employed in the
validation process of the results provided by our methodology.

Chapter 3 concerns the ontological aspects of our methodology. First, we justify the
selection of the framework that will serve as a cornerstone of the thesis. Then, the
composing models are detailed by emphasizing our conceptual contribution. Further, the

1. Introduction

 25

semantics of our ontology is presented along with the supporting syntax and stylistics.

Chapter 4 is dedicated to the transformational method employed in the current thesis.
The design space supporting this method and guiding the designer during the
development proccess of graphical, vocal and MM UIs is defined, justified and detailed.
Further, the selected graph-based transformational approach is expanded with the
concept of colored transformation rules. The four steps of the transformational
approach are identified and exemplyfied based on the design option composing the
aforementioned design space.

Chapter 5 concerns the implementation aspects of our methodology. The tool
supporting our method is introduced and each of the composing software modules are
detailed by identifying their role in the corresponding transformational step.

Chapter 6 will address the external and internal validation of the methodology. The
external validation consists of three case studies with different level of complexity: (1) an
on-line polling system, (2) a car rental system and (3) a map browsing system. Further, we
describe, analyse and interpret the results of an empirical validation with users thanks to a
comparative study of MM UIs resulting from various designed options supported by
transformations. For this purpouses, three systems were employed: the second case
study, a DVD rental sytem that is not described in the dissertation as it has the same level
of complexity as the previous one and the map browsing system. The internal validation
consists of reflections that aim to asses the characteristics of our methodology based on
the set of considered requirements.

Chapter 7 concludes this dissertation by identifying its contribution to the three
dimensions of the proposed methodology: models, method and tool implementation. In
addition, the chapter presents several possible extension paths for future work and
provides some personal reflexions with respect to the work presented in the current
thesis.

1. Introduction

 26

 .

2. State of the Art

 27

2 State of the Art

2.1 Introduction

After a survey of the research literature, the current chapter presents the state of the art
issued from the real world MM UIs development solutions (Figure 2-1) that were considered
to bring a significant contribution to the development of the methodology defined in Section
1.4.1. The considered aspects of the current chapter do not take into account MM related
issues such as system architecture, fusion and fission mechanisms or MM formal notations
that are out of the scope of this dissertation according to Section 1.4.3. Consequently,
Section 2.2 provides a description of three conceptual MM frameworks and a comparison
between them. In Section 2.3 the features of a set of eight UIDLs surveyed in the literature
are presented along with their interest for our work. Further, Section 2.4 analysis some of
the existing UI development tools considered important for us. The set of concerns
identified in Section 1.2 are used to provide a set of features based on which the surveyed
languages will be analysed in Section 2.5. As a result, a list of shortcomings will be identified
so that to further help us establish the requirements addressed by the current thesis.

Figure 2-1 General schema for state of the art analysis

2.2 A structuring theoretical framework

This section details the features of three conceptual frameworks considered important for
us, as they enable to manage different interaction modalities between the user and the system
and the cooperation established between them. In conclusion we provide a comparison over
the different points of view proposed by the frameworks.

2. State of the Art

 28

2.2.1 TYCOON framework

The TYCOON (TYypes of COOperatioN) framework holds an interest for our work as it
enables to observe, evaluate and specify different types of cooperation among interaction
modalities [Mart01].
In [Mart97] a modality is defined as a process which analysis and produces chunks of
information. The TYCOON approach is based on the notions of types and goals of cooperation
between modalities. As a result of a study made in domains such as Psychology, Artificial
Intelligence, Human-Computer Interaction, five basic types of cooperation between
modalities were distinguished:
(1) Transfer. Specifies that a chunk of information produced by a modality is used by

another modality. The transfer can appear either between two input/output modalities,
or between an input and an output modality. The goals of this cooperation type are:

 Translation: for instance, in hypermedia interfaces a mouse click generates the
display of an image, or in information retrieval application, the user may express a
request in one modality (e.g., speech) and get relevant information in other
modality (e.g., video).

 Improve recognition (e.g., mouse click detection may be transferred to speech
modality in order to ease the recognition of predictable words (e.g., here, that).

 Enable a faster interaction: when a part of an uttered sentence has been
misrecognized, it can be edited using a keyboard so that the user doesn’t have to
type/utter again the whole sentence.

(2) Equivalence. Two modalities are said to be equivalent if a chunk of information may
be processed as an alternative, by either of the modalities. The goals of this type of
cooperation are:

 Improve recognition command: for instance, when a speech recognizer engine is
not working accurately (e.g., in a noisy environment), the user can select the
command with a stylus.

 Adaptation to the user by customization: the user is allowed to select the modality
he prefers.

 Faster interaction: allows the system/user to select the fastest modality.
(3) Specialisation. Indicates that a specific kind of information is always processed by the

same modality. The goals of this cooperation type are:
 Interpretation: the user is helped to interpret the events produced by the system.
 Improve recognition: it enables an easier processing and it improves the accuracy

of the speech recognizer since the search space is smaller.
 Faster interaction: it decreases the duration of the integration and modality

selection process.
(4) Redundancy. Several modalities cooperate redundantly when they are processing the

same information (e.g., the display of a confirmation dialog is replaced by two
redundant user actions: typing “quit” and uttering “quit”, thus enabling a faster
interaction). Some benefits of redundancy have been observed:

2. State of the Art

 29

 Support for users’ natural acting: a case study revealed that sometimes users select
their options (e.g., the town) both by speech and touch of tactile screen.

 Increase of learnability: a redundant MM output involving both visual display of a
text and speech utterance of the same text enables faster graphical interface
learning.

(5) Complementarity. Considers several modalities each one processing different chunks
of information that are merged afterwards. The goals of this type of cooperation are:

 Faster interaction: as the two modalities can be used simultaneously and convey
shorter messages better recognized than the longer ones.

 Improve interpretation: for an expert the graphical output is sufficient, but for
novice users a textual output is needed as well.

COMIT is a tool based on TYCOON framework that allows users to interact multimodality
with the system in order to build GUIs. COMIT is defined by a command language which is
used to specify several types of cooperation between speech recognition, keyboard and
mouse interaction.

2.2.2 CARE properties

The CARE (Complementarity, Assignment, Redundancy and Equivalence) properties hold
an interest for our work as it is a more advanced framework enabling to characterize the
possible relationships occurring among different interaction modalities available in MM UIs.
A modality is described as a couple of a physical device d and an interaction language L: <d,
L> (Section 1.3.3). In order to give a formal definition of the CARE properties some
parameters have been defined in [Cout95]:
 State: is a set of properties that can be measured at a particular time to characterize a

situation.
 Goal: is a state that an agent intends to reach.
 Agent: is an entity capable of initiating the performance of actions (e.g., a user or a

system).
 Modality: is an interaction method that an agent can use to reach a goal.
 Temporal relationship: characterizes the use over time of a set of modalities. The use

of these modalities may occur simultaneously or in sequence within a temporal
window, that is, a time interval.

Based on the above parameters, the following formal definitions of the CARE properties are
specified:
(1) Equivalence (E). Modalities of a set M are equivalent for reaching state s' from state s,

if it is necessary and sufficient to use any of the modalities. M is assumed to contain at
least two modalities:

Equivalence (s, M, s') ⇔ (Card(M) >1) ∧ (∀m∈M Reach(s, m, s'))
E.g.: If we consider the following parameters:
• Modalities:
 m1 = speech input <microphone, restricted vocabulary-oriented natural language>,

2. State of the Art

 30

 m2 = written natural language <keyboard, command language>.
• States:
 s = a multimodal user interface with an unfilled text field widget,
 s’ = a multimodal user interface in which the text field widget from state s is filled.
• Goal = reach stat s’ from s.
• Agent = user.
Then an example of equivalent use of modalities is: the user can fill in the text field by
employing any of the modalities m1 or m2.

(2) Assignment (A). Modality m is said to be assigned to reach state s’ from state s, if no
other modality is used to reach s' from s:

Assignment (s, m, s') ⇔ Reach (s, m, s') ∧ (∀m' ∈M. Reach(s, m', s') ⇒m'=m)
E.g.: If we consider the following parameters:
• Modality:
 m = written natural language <keyboard, command language>.
• States:
 s = a multimodal user interface with an unfilled text field widget,

s’ =a multimodal user interface in which the text field widget from state s is filled.
• Goal = reach stat s’ from s.
• Agent = user.
Then an example of an assigned modality is: the user can fill in the text field only by
employing the modality m. No other modality can be used to reach the state s’.

(3) Redundancy (R). Modalities of a set M are used redundantly to reach state s' from state
s, if they have the same expressive power (they are equivalent) and if all of them are
used within the same temporal window, tw:

Redundancy (s, M, s', tw) ⇔ Equivalence (s, M, s') ∧ (Sequential (M, tw)∨ Parallel
(M,tw))

E.g.: If we consider the following parameters:
• Modalities:

 m1= speech input <microphone, restricted vocabulary-oriented natural language>,
 m2 = graphic input <mouse, direct manipulation>.

• States:
 s = a multimodal user interface with an unfilled combo box widget,

s’ = a multimodal user interface in which the combo box widget from state s is filled.
• Goal = reach stat s’ from s.
• Agent = user.
Then an example of redundant use of modalities is: a combo box can be filled in by a
user either by employing modalities m1 and m2 in parallel, or by using them
sequentially but in the same temporal window (i.e., the user must act in a very short
time interval so as the inputs can be treated as if they were parallel).

2. State of the Art

 31

(4) Complementarity (C). Modalities of a set M are used in a complementary way to
reach state s' from state s within a temporal window, if all of them must be used to reach
s' from s, (i.e., none of them taken individually cannot cover the target state):

Complementarity (s, M, s', tw) ⇔ (Card(M) >1) ∧ (Duration(tw) ∞≠) ∧
(∀M' ∈PM (M'≠ M ⇒ ¬REACH (s, M’, s'))) ∧ REACH (s, M, s') ∧
(Sequential (M, tw) ∨ Parallel (M, tw)).

E.g.: If we consider the following parameters:
• Modalities:

m1= speech input <microphone, restricted vocabulary-oriented natural language>,
m2 = written natural language: <keyboard, command language>.

• States:
s = a multimodal user interface with an unfilled text field widget allowing
 to input the name,
s’ = a multimodal user interface in which the text field widget from state s is filled.

• Goal = reach stat s’ from s.
• Agent = user.
Then an example of complementary use of modalities is: modality m1 is employed by
the user to utter his/her first name, while m2 is used to fill in the last name. None of
the modalities taken individually can not be used to reach state s’.

ICARE (Interaction CARE) [Bouc04] is a component-based approach for the design and
development of MM UIs, composed of elementary components. An elementary component
supports a pure modality (e.g., speech only, graphics only). A graphical editor enables
designers to graphically assemble the components according to the CARE properties. This
assembly is afterwards transformed automatically into executable code. However, at run-
time, this code is unable to adapt dynamically to the context of use. In addition,
multimodality is limited to inputs.

2.2.3 W3C Multimodal Interaction Framework

The interest of our work in the W3C Multimodal Interaction Framework [Lars03b] identifies
with its objectives:
 Identifying basic components of MM systems.
 Specifying markup languages used to describe information required by components.
 Ensuring data flowing among components.

The framework describes input and output modes widely used today and can be extended to
include additional modes of user input and output as they become available. Figure 2-2
illustrates the basic components of the framework:
 End-user: enters input into the system and observes and hears information presented

by the system.

2. State of the Art

 32

 Input component: contains multiple input modes such as audio, speech, handwriting
and keyboarding. EMMA [W3C04a] may be used to identify the semantics of data that
represent the user’s input.

 Output component: supposes multiple output modes such as speech, text, graphics,
audio files and animation. The output component is supported by the following
languages: SSML (Speech Synthesis Markup Language) used to describe how the words
should be pronounced, XHTML, XHTML Basic or SVG used to describe how the
graphics should be rendered and SMIL employed for the coordination of multimedia
output.

 Interaction manager: is the logical component that coordinates data and manages
execution flow from various input and output modalities. It maintains the interaction
state and context of the application and responds to inputs from component interface
objects and changes in the system and environment.

 Session component: provides an interface to the interaction manager to support state
management and temporary and persistent sessions for MM applications.

 System and environment components: enable the interaction manager to find out
about and respond to changes in device capabilities, user preferences and
environmental conditions (e.g., which of the available modes the user wishes to use,
the resolution of the display, if the display supports color or not).

Figure 2-2 W3C Multimodal Interaction Framework

MM interaction requirements for MM interaction specifications are described in [Maes03].
Three increasing difficulty order levels for the management of input interaction are
established:
(1) Sequential multimodal input: corresponds to an input received from a single modality

which may change over time. For this level it must be possible to specify which
modality or device to use for input and hint or enforce modality switches.

(2) Simultaneous multimodal input: implies that the inputs from several modalities are
interpreted one after another in the receiving order, instead of being combined before
interpretation.

(3) Composite multimodal input: corresponds to an input received from multiple modalities at
the same time and treated as a single, integrated compound input by downstream
processes.

2. State of the Art

 33

2.2.4 Comparison of theoretical frameworks

A first difference among the frameworks results from the way they are defining the notion
of modality. While in TYCOON a modality is defined as a process which analysis and
produces chunks of information, in CARE a modality is a couple of a physical device d with
an interaction language L : <d, L>. The W3C Framework defines modality as a type of
communication channel used for interaction. The modality also covers the way an idea is
expressed or perceived, or the manner in which an action is performed (e.g., voice, gesture,
handwriting, typing).
Another difference encountered at the conceptual level is the existence of the transfer type of
cooperation in TYCOON, concept that is missing in the case of CARE. Moreover, due to
the fact that in several existing systems sounds are somehow specialized in notification errors
(e.g., forbidden commands are signaled with a beep), in TYCOON a clear distinction of the
type of specialization is being made:
 Modality-relative specialization: if sounds are used only to convey notification errors.
 Data-relative specialization: if errors only produce sounds and no graphics or text.

While CARE properties [Niga97b] define the relationships among devices and interaction
languages, interaction languages and tasks, or among different modalities, in TYCOON the
properties are used in a more restrictive way as they are describing only various types of
cooperation among modalities. Another contrast concerns the manner of treating the
interaction between the system and the user. With CARE it is possible to define cooperation
between different modalities from both the system point of view (system CARE properties) and
user’s point of view (user CARE properties). The user CARE properties refer to the user’s
preferences that affect their choice for input modalities. With TYCOON only the system
point of view is considered.
Some similarities can be identified among the frameworks. The Redundancy property defined
in TYCOON and CARE frameworks could be expressed by employing modalities
sequentially or in parallel which corresponds, respectively, to sequential and simultaneous
MM input identified by W3C framework. Moreover, the Complementarity property supposes
either a sequential or a parallel use of modalities treated as a single which corresponds,
respectively, to sequential and composite MM input defined by the W3C framework.

2.3 User Interface Description Languages

This section presents a set of eight UIDLs surveyed in the literature that will further serve as
a basis for identifying the shortcomings of the state of the art.

2.3.1 XISL

XISL (eXtensible Interaction Scenario Language) [Kats03] holds an interest for our work as
it is the only web-based language that is supported by a tool enabling the development of
MM UIs based on interaction scenarios between the user and the system.

2. State of the Art

 34

The goal of XISL is to provide a common language supporting MM interaction that is
characterized by three main features:
 Control dialog flow/transition: feature employed from VoiceXML
 Synchronize input/output modalities: feature employed from SMIL
 Modality-extensibility: ensured by XISL.

For this purpouse, the language ensures the separation of the content (stored in
XML/HTML files) from the interaction (described in XISL documents). This provides
advantages in terms of: (1) reusability of the content and/or interaction, (2) improvement of
specification’s readability. Moreover, it supports the following types of cooperation between
modalities: parallel input/output, sequential input/output, alternative input. The user, system
or mixed initiative are supported by XISL for all the compliant devices: (i.e., PCs, mobile
phones, PDAs). New devices could also be considered thanks to the use of non strict values
of the elements specifying the input/output.

2.3.2 XIML

XIML (eXtensible Interface Markup Language) [Puer02a] represents an interest for our work
as it provides a modality-independent level in the development life cycle from which final
languages could be targeted. The main goal of the language is to enable a framework for the
definition and interrelation of interaction data. Interaction data refers to the data that defines
and links all relevant elements of a UI. From the structure point of view, XIML language
includes the following representational units:
 Components: organized collection of interface elements categorized in major interface

components found in interface models:
 User tasks: define a hierarchical decomposition of tasks in subtasks and the

relationships between them.
 Domain objects: is an organized collection of data objects and classes of objects

that is structured into a hierarchy.
 User types: categorized in a hierarchy of users.
 Presentation elements: a hierarchy of interaction elements made of concrete

objects which communicate with users.
 Dialog elements: structured collection of elements that determine the actions

available to the users.
 Relations: definition or statement than links two or more XIML elements inside the

same component or between different components.
 Attributes: features or properties of elements.

XIML allows the development of UIs that must be displayed in a variety of devices. XIML
can be used to effectively display a single interface definition on any number of target
devices. This is made possible by the strict separation that XIML makes between the
definition of a UI and the rendering of that interface which is left up to the target device to
handle. There are a number of converters [Puer02b] used to transform a XIML specification

2. State of the Art

 35

to popular target languages (e.g., HTML, WML). XIML is also supported by a series of tools
such as: XIML Validator, XIML Editor and XIML Viewer.

2.3.3 UIML

UIML [Abra04] is an XML-based language that holds an interest for our work as it provides:
(1) a device-independent method to describe a UI, (2) a modality-independent method to
specify a UI.
UIML allows describing the appearance, the interaction and the connection of the UI with
the application logic. The following four key concepts underlie UIML:
(1) UIML is a meta-language: UIML defines a small set of tags (e.g., used to describe a part

of a UI) that are modality-independent, target platform-independent (e.g., PC, phone)
and target language-independent (e.g., Java, VoiceXML). The specification of a UI is
done through a toolkit vocabulary that specifies a set of classes of parts and properties
of the classes. Different groups of people can define different vocabularies: one group
might define a vocabulary whose classes have a 1-to-1 correspondence to UI widgets
in a particular language (e.g., Java Swing API), whereas another group might define a
vocabulary whose classes match abstractions used by a UI designer

(2) UIML separates the elements of a UI and identifies: (a) which parts are composing the UI
and the presentation style, (b) the content of each part (e.g., text, sounds, images) and
binding of content to external resources, (c) the behavior of parts expressed as a set of
rules with conditions and actions and (d) the definition of the vocabulary of part
classes.

(3) UIML groups logically the UI in a tree of UI parts that changes over the lifetime of the interface.
During the lifetime of a UI the initial tree of parts may dynamically change shape by
adding or deleting parts. UIML provides elements to describe the initial tree structure
and to dynamically modify the structure.

(4) UIML allows UI parts and part-trees to be packaged in templates: these templates may then be
reused in various interface designs.

To create multiplatform UIs, concept 1 is used to create a vocabulary of part classes (e.g., a
class Button) and concept 2 is used to separately define the vocabulary by specifying a
mapping of the classes to target languages (e.g., mapping class Button to class java.awt.Button
for Java and to the tag <button> for HTML 4.0). To create MM UIs, a multiplatform UI
should be created and then each part is annotated with its mode (e.g., which target platforms
uses that part). The behavior section from concept 2 is then used to keep the interface
modalities synchronized. For example, it might be defined a UIML part class called Prompt,
the mapping of Prompt parts to VoiceXML and HTML, and the behavior that synchronizes a
VoiceXML and HTML UI to simultaneously prompt the user for input.

2. State of the Art

 36

2.3.4 DISL

DISL (Dialog and Interface Specification Language) [Scha06] is a UIML subset that holds an
interest for our work as it extends the language in order to enable generic and modality
independent dialog descriptions.
Modifications to UIML mainly concerned the description of generic widgets and improvements
to the behavioral aspects. Generic widgets are introduced in order to separate the
presentation from the structure and behavior, i.e., mainly to separate user- and device-
specific properties and modalities from a modality-independent presentation. The use of
generic widget attribute enables to assign each widget to a particular type of functionallity it
ensures (e.g., command, variable field, text field, etc.). Further, a DISL rendering engine can
use this information to create interface components appropriated to the interaction modality
(i.e., graphical, vocal) in which the widget will operate.
The global DISL structure consists of an optional head element for meta information and a
collection of templates and interfaces from which one interface is considered to be active at
one time. Interfaces are used to describe the dialog structure, style, and behavior, whereas
templates only describe structure and style in order to be reusable by other dialog
components.
Current implementations of DISL language include media players application for playing
mp3 files on mobile devices with limited resources or players run on PCs but controlled
remotely from mobile phones.

2.3.5 VoiceXML

VoiceXML holds an interest for our work as it is the only standardized language [W3C04b]
enabling vocal interaction extensively used in industry applications.
Its main goal is to provide web development and content delivery to voice applications, and
to free the authors of such applications from low-level programming and resource
management. It enables integration of voice services with data services using the traditional
client-server paradigm. A voice service is viewed as a sequence of interaction dialogs
between a user and an implementation platform. The dialogs are provided by document
servers, which may be external to the implementation platform. Document servers maintain
overall service logic, perform database and legacy system operations, and produce dialogs. A
VoiceXML document specifies each interaction dialog to be conducted by a VoiceXML
interpreter. User input affects dialog interpretation and is collected into requests submitted
to a document server. The document server replies with another VoiceXML document to
continue the user's session with other dialogs.
VoiceXML provides language features to support complex dialogs:
 Output of synthesized speech (text-to-speech)
 Output of audio files
 Recognition of spoken input
 Recognition of DTMF input
 Recording of spoken input

2. State of the Art

 37

 Telephony features.

2.3.6 XHTML+Voice

XHTML+Voice, or X+V for short, holds an interest for our work as it is the only
standardized web-based language [W3C04b] where traditional graphical interaction (i.e.,
keyboard, mouse) can be combined with vocal and tactile interactions (i.e., human finger,
stylus pen).
The language is based on XHTML for graphical interaction, a simplified subset of
VoiceXML for vocal interaction and XML events for synchronizing them. The three
interactions available offer users the flexibility to select the modality that is the most suitable
for achieving their tasks depending on the context (e.g., level of noise, availability of the
hands). As X+V can afford a subset of the CARE properties (i.e., Assignment, Equivalence and
Redundancy just for output), the user can combine the different interaction types available.
X+V applications can be developed either manually or by employing the IBM Multimodal
Toolkit. The resultant specification is composed of: (1) graphical elements specifying the
presentation and the behavior of the GUI, (2) vocal elements specifying the exchange of
vocal information between the user and the system and (3) synchronization elements
between the two previous elements. The graphical and vocal engine included in the
multimodal browsers interpret separately the correspondent components. Currently, there
are only two multimodal X+V browsers: Opera (Figure 2-3) and NetFront.

Figure 2-3 Multimodal X+V application interpreted with Opera browser

2. State of the Art

 38

2.3.7 TeresaXML

TeresaXML holds an interest for our work as it is employed in a model-based,
transformational approach for the development of MM and multi-device UIs.
The model-based approach [Mori04] is composed of the following steps: the initial task
model for the envisioned system is transformed into a system task model that is specific to
the target MM platform. The system task model is in turn transformed into an abstract UI, a
concrete UI and then into the code of the final UI (i.e., X+V specifications).

2.3.8 EMMA

EMMA (Extensible MultiModal Addnotation Markup Language) holds an interest for our
work as it is a markup language used to contain and annotate information automatically
extracted from the input of users which manipulate MM UIs.
The language [W3C04a] is capable to convey meaning for different types of single input (i.e.,
text, speech, handwriting) and combinations of any previous modalities. These combinations
are compliant with the W3C Interaction Framework (Section 2.2.3) (i.e., sequential,
simoultaneous and composite).
The language is used as a standard data interchange format between components of a MM
system. EMMA is intended to be automatically generated by interpretation components used
to represent the semantics (not directly authored by developers) of the users' inputs. The
language does not represent a specification language and does not contain any
transformational approach that initiates a progressive development from different models.

2.4 User interface development tools

This section provides the description of a set of monomodal and multimodal UI devel-
opment tools considered important in the context of this dissertation.

2.4.1 Galatea Interaction Builder

Galatea Interaction Builder is a rapid-prototyping tool that supports XISL language [Kawa03].
It runs on PCs and can handle the following input modalities: speech, direct manipulation
(mouse) and written natural language (keyboard) as well as output modalities such as: speech
(text-to-speech), facial expression and graphic output. The tool provides a GUI design for
domain-specific prototyping (Figure 2-4). The interaction scenario is presented under the
form of a state transition diagram. Nodes of the diagram or MM interaction components,
which correspond to XISL tags, are connected with links. The toolbar on the right side of
the window provides the components used to specify the employed modalities (e.g.,
microphone for speech input, loud speaker for vocal output, a face symbolizing the output
provided by an avatar).

2. State of the Art

 39

Figure 2-4 The Interaction Builder graphical user interface

2.4.2 UIML Development Toolkit

UIML Development Toolkit (Figure 2-5) provides support for the UIML language by
allowing designers to generate high fidelity interfaces and production code. The tool is a
plug-in for the Eclipse IDE and is supported by LiquidUI, a tool that integrates a set of
converters for different software platforms (e.g., Java, HTML, WML, VoiceXML, C++).

Figure 2-5 UIML Development Tool

2. State of the Art

 40

2.4.3 WebSphere Voice Toolkit

IBM WebSphere Voice Toolkit supports the VoiceXML language and offers one of the
most complete set of features required to deploy vocal-based applications. Powered by
Eclipse technology, the toolkit eases the development of VoiceXML applications as it does
not require in depth knowledge of voice technology. It offers a full-featured voice
development environment including: (1) Graphical communication flow builder (Figure 2-6),
(2) VoiceXML development and debugging, (3) Grammar development and debugging, (4)
Pronunciation builder, (5) Call Control extensible Markup Language (CCXML)
development.

Figure 2-6 IBM WebSphere Voice Toolkit – communication flow builder perspective

2.4.4 Teresa

Teresa (Figure 2-7) is a transformation-based environment that supports the development of
MM UI in TeresaXML language according to the steps identified in Section 2.3.7. However,
the transformation process uses parameters that are not related into a coherent and explicit
set of design options. In addition, Teresa transformations are hard coded and embedded into
the code.

2. State of the Art

 41

Figure 2-7 Authoring a multimodal UI with Teresa

2.4.5 MONA

MONA (Mobile multimOdal Next generation Applications) [Aneg04] holds an interest for
our work as it is a complete environment for producing web-based MM applications (Figure
2-8).
The tool involves a presentation server for a wide range of mobile devices using wireless
LAN and mobile phone networks that generates graphical or MM (i.e., graphical and vocal)
UI able to dynamically adapt to different devices: WAP-phones, Symbian-based smart
phones or PocketPC and PDAs. The application design process is based on use cases that
allow, for each device, the refinement and validation of the design of MM UI prototypes.
These prototypes are further submitted to a heuristic evaluation performed by evaluators
with design experience.

Figure 2-8 MONA editor with real time GUI previews

2. State of the Art

 42

2.4.6 SUEDE

SUEDE holds an interest for our work as it is a speech interface prototyping tool that
enables rapid and iterative creation of prompt-response vocal interfaces [Anno01].
SUEDE couples a simple prompt/response card model with the Wizard of Oz technique.
There are four types of cards: start card, prompt card, response card and group card. The
Wizard of Oz technique enables unimplemented technology to be evaluated by using a
human to simulate the response of a system. Wizard of Oz methodologies have a long
tradition in the design of vocal systems as well as the ability to suggest functionality before
the implementation of the system. The Wizard simulates dialog transition as a computer
would, reads the system prompts to the participants and process their response.
The iterative steps supported in SUEDE are: design, test and analysis. In design mode
(Figure 2-9), the speech designer begins to create dialog script examples. After constructing
several scrip examples, the designer begins to construct a design graph that represents a
more general design solution. In the test phase, the designer tries out a design with target
users. Due to the fact that the wizard recognizes user’s responses, no speech recognition or
speech synthesis is necessary to test Suede prototypes. During the analysis, designers
examine collected test data, deciding how this should influence the next design iteration in
order to obtain a more appropriate flow of the UI.

Figure 2-9 Design mode in SUEDE

2. State of the Art

 43

2.4.7 CSLU Toolkit

CSLU Toolkit holds an interest for our work as it provides a basic framework and the tools
to build, investigate and use MM applications involving the following capabilities: speech
recognition, natural language understanding, speech synthesis and facial animation
technologies.
The toolkit is used for developing applications in Tcl/TK and C programming languages:
 RAD (Rapid Application Developer): is an easy to use graphical authoring tool (Figure

2-10) that enables the creation of structured dialogues applications and a wide variety
of interactive programs that run both over the telephone and on desktop PCs. RAD
component allows to drag and drop dialogue states onto a canvas, interconnect them
together, and configure them to play audio files, create animated text-to-speech,
recognize spoken language or display images.

 Baldi: is an animated, anatomically correct head that can be used from within RAD and
in other applications to provide a synchronized visual speech source. It allows the
configuration of many aspects of the face and the saving of these customized
configurations for later use.

 Baldi Sync: allows users to record a phrase and then animate Baldi with the user’s voice.
 Festival: is the text-to-speech component of the toolkit.

Figure 2-10 CSLU toolkit - the graphical authoring editor

2.4.8 MOST

MOST (Multimodal Output Specification Platform) platform [Rous05] holds an interest for
our work as it enables the design of output MM systems (i.e., graphical, vocal and tactile
modalities) based on a three-step process: analysis, specification and simulation.

2. State of the Art

 44

In the analysis phase the output interaction components (i.e., mode, modality and medium)
are identified (Figure 2-11). The specification phase formalizes the results of the previous
phase based on a series of attributes and criteria assigned to each specific output interaction
component. Depending on the current state of the interaction context, a behavioral model
allows the identification of the most suitable output form that can be further used in order
to present each interaction component. The behavioral model is composed of a set of
selection rules that produces the appropriate MM presentation. Finally, the simulation phase
is based on the WWHT conceptual model which aims to answer the following questions:
 What is the information to present?
 Which modality/modalities should be used to present this information?
 How to present the information using this/these modality/modalities?
 Then, how to handle the evolution of the resulting presentation?

 This model is supported by a tool that enables to develop a prototype of the complete
system as well.

Figure 2-11 Interaction component editor in MOST

2.4.9 OpenInterface Platform

OpenInterface [Open07] holds an interest for our work as it aims to provide an open source
platform for the design and rapid development of MM prototyped applications as a central
tool for an iterative user-centered process.

2. State of the Art

 45

The basic objects manipulated by the OpenInterface platform are called components (Figure
2-12). Each one represents a bundled piece of software that provides a set of
services/functionalities ranging from input devices driver, signal-treatment algorithm,
network module, graphical interface, etc. To be able to manipulate a component, the
OpenInterface platform requires the description of the component’s interface. This
description is specified in CIDL (Component Interface Description Language). Once the
CIDL is specified, the component can then be reused easily in any OpenInterface
application. OpenInterface components can be composed together to create a network of
components managing some advanced task. Such an inter-connection of components is
called a pipeline. In order to be manipulated by the OpenInterface platform, a pipeline must
be specified in the PDCL (Pipeline Description and Configuration Language). A PDCL
description defines the components that are used in the pipeline and the way they are
interconnected. The platform benefits from a set of advantages:
 It allows seamless integration of heterogeneous software. The platform manages the

translation/communication of the data among the different programming languages
using existing tools. The currently supported languages are C/C++, Java and Matlab, but
support of other languages can be added rather easily.

 It allows rapid prototyping of MM applications thanks to the bundled generic fission and
fusion mechanism and the easy software connection.

 The delivered software is a reusable independent unit.

Figure 2-12 Integration of heterogenous components in OpenInterface

2.4.10 A Toolkit of Multimodal Widgets

The toolkit holds an interest for our work as it aims to ease the development of MM UIs by
fulfilling the following four requirements [Crea00]: (1) each widget should be capable of
producing feedback in multiple modalities with no preference given to any particular

2. State of the Art

 46

modality, (2) the widgets should be capable of using the most suitable modality or limiting
the use of a modality which has reduced resources, (3) it should be easy to change the
feedback produced by a widget in one or more modalities without any effect over the rest of
the modalities, (4) the produced feedback should be consistent, both between widgets and
between modalities.
These requirements are inffered from observations made over HCI that migth be different
depending on the context in which the interaction is taking place (i.e., indoor/outdoor,
noisy/quite environment, alone/a group). Therefore, the authors of the toolkit identify the
necessity of conveying the interfaces to the users by employing different output modalities,
refered here as sensory modalities (i.e., all auditory output is one sensory modality and all
visual output is another modality).
Figure 2-13 shows the architecture of the toolkit. The feedback controller ensures requirement
(1). It translates the external events into requests for feedback independent of the modality,
which are further transmitted to the modality mapper. The resource manager ensures
requirement (2). It receives the input from three sources: the control panel that allows the
users to set the weight for a particular modality, the output modules that indicate if the
resources are sufficient to render the widgets in a particular modality taking into account the
weight set by the user, and the external applications that can use the resource manager’s API
to influence the weight of different modalities. Requirement (3) is ensured by both the output
modules and the control panel. Because the widget behaviour does not encapsulate the feedback
given by the widget, it is simply a matter of changing the feedback of the widgets. To replace
one feedback with another, a simple switch between the existing output module and another
module should be operated. To supplement the existing feedback with another one in a
different modality, a new output module should be added to the toolkit. For all widgets, any
option set in the control panel is added to the request made for the feedback in the modality
mapper. There is a modality mapper for each output module the widget uses. The rendering
manager ensures requirement (4). It detects if a widget’s feedback clashes (e.g., two similar
sounds that are being played at the same time, thus interfering with each other and rendering
the conveyed information unintelligible) with the feedback from other widget and suggest a
change in the feedback.

2. State of the Art

 47

Figure 2-13 Multimodal toolkit architecture

A concrete example of how the toolkit can be used for a standard button is illustrated in
Figure 2-14. The programming language offered by the toolkit is very close to Java Swing so
that the knowledge overload of the developers is practily unexistent as the MM rendering of
the UIs is ensured by the system. Currently, the toolkit has been implemented with two
widgets, a button and a progress bar using two modalities: graphical and audio.

2. State of the Art

 48

Figure 2-14 The toolkit architecture –button feedback to mouse-over event

2.4.11 FRUIT

This system holds an interest for our work as it separates the traditional widgets in two
classes[Kawa96]: abstract widgets that are used to manage the semantical features and concrete
widgets that are employed for rendering purpouses in graphical and vocal modalities. This

2. State of the Art

 49

separation is the result of the observations made over the development of current systems
where widgets manage both the semantical and presentational aspects of a UI.
The abstract widgets are classified in three main classes:
 Base abstract widgets: basic unit interaction objects (e.g., pushbutton, text entry).
 Container abstract widgets: objects that organize abstract widgets and control focusing

policy.
 Compound abstract widgets: a group of abstract widgets which behave in a specific way

(e.g., file selection boxes are composed of several widgets and may have specific
interaction protocol).

The base widgets are sub-grouped in four main classe: (1) command: usually rendered in GUIs
as push buttons, they can also be keyboard entries or uttered commands in VUIs, (2) selection:
rendered in GUIs as list boxes, group of radio buttons, menus, whereas in VUIs they can be
concretized in words and numbers in VUIs, (3) valuator: rendered in GUIs as slidebars, (4)
TextDisplay, TextInput: rendered in GUIs as labels, wheras in VUIs they support the any
vocal output system or user input. The abstract widget container is grouped in three main
classes as well: (1) shell: rendered in GUIs as top level widgets (i.e., usually the windows), (2)
menu: is a type of shell that takes temporally the focus, (3) group: manages the foucus
dispatching among the contained abstract widgets.
A FRUIT system is composed of three parts (Figure 2-15):
 The rendered widgets are dispatched in one or multiple interaction shells. Usually, the

designer choses a single shell (e.g., vocal), but multiple shells can be triggered (e.g.,
graphical) for completion purpouses.

 The abstract widgets centralize the application logic. They provide an interpretation at the
application level of the operations triggered over the rendered widgets..

 The session manager runs on each host as a daemon to manage FRUIT applications.
The designer develops the UI by manipulating the abstract widgets. The end-user interacts
with the rendered widgets in one or multiple interaction shells (e.g., graphical, vocal). The
redered widgets communicate to the abstract widgets the operations to trigger via an
interaction protocol. The session manager component manages the FRUIT application. One
of the shortcomings of the system consists of the fact that the choice for the presentation of
a widget belongs to a black box that takes the decision depending on the assigned abstract
widget in the interaction shell. Thus, the designer’s decision is practically inexistent as the
choice of the interaction object belongs entirely to the system.

2. State of the Art

 50

Figure 2-15 The architecture of a FRUIT system

2.5 Conclusion

2.5.1 Summary of the state of the art

As illustrated in Figure 1-2 a set of features that will enable to determine the constraints of
the MM languages surveyed in the current chapter (Table 2-1) are inffered from the concerns
regarding MM UIs identified in Section 1.2:
 Input modalities: specify the input modalities that can be employed by the end-user while

interacting with the system. As there is a real need for more modality interaction
flexibility that enables users to select the most suitable one for their task (Concern 1)
the employed input modalities are identified:

 Graphical: specifies the interaction devices (e.g., keyboard, mouse).
 Vocal: specifies the type of vocal input (e.g., speech recognition).
 DTMF (Dual Tone Multi-Frequency): is the system used by the touch-tone

telephones that consist in assigning a specific frequency to each key so that it can
easily be identified.

 Output modalities: specify the output modalities employed by the system when providing
information to the users. This feature is also infered from Concern 1 as multiple
modalities should be made available so as to enable the interaction flexibility in output:

 Graphical: specifies the output device (e.g., PC screen, GSM screen).
 Vocal: specifies the type of output (e.g., speech synthesis, text-to-speech).
 Avatar: is an animated face that behaves like humans; it is endowed with gesture

features and is able to make speech conversation with humans.

2. State of the Art

 51

 Separation of modalities: specifies if the language specifications for the involved modalities
are separated or combined (Concern 2).

 CARE properties support for input modalities: specify which of the CARE properties are
supported for input modalities. This feature is inffered from Concern 3 (the CARE
properties are used to identify and characterize the different types of modality
combinations) and from the need to enhance the device effectiveness.

 CARE properties support for output modalities: specify which of the CARE properties are
supported for the output modalities. By analogy with the previous paragraph this
feature is inffered from Concern 3 and from the need to enhance the device
effectiveness.

 Independence of modality: specifies the existence in the development life cycle of a
modality-independent level for language specification (Concern 4).

 Extensibility for new modalities: identifies if the language enables to be extensible with new
input and output modalities (Concern 5).

 Design options: identifies the existence of design options in the development process of
UIs (Concern 7).

 Model-to-model transformational approach: indicates the existence of a transformational
approach between the models involved in the development process. This feature is
motivated by the need to provide a model-driven engineering approach where model-
to-model and model-to-code transformations are applied in order to produce the final
MM UI.

 Development tools: specifies the name(s) of the development tool(s). This feature is
motivated by the reduced number of MM UIs which migth be due to the lack of
development tools. It allows to investigate the existence of these tools enabling the
automatic development of MM UIs.

 Interpretation/Rendering/Converter tools: identifies the name(s) of the
interpretation/rendering tools. Some languages converters where developed to target
already standardized languages. This feature is justified by the need to investigate the
existence of tools that could interpret/render/convert the eventually target languages
of our methodology.

2. State of the Art

 52

 Language

Features

XISL XIML UIML + DISL VoiceXML X+V TeresaXML EMMA

Input modalities Graphical
 keyboard
 mouse
 touch screen

Vocal
 speech
recognition

DTMF

Graphical
 keyboard
 mouse

DTMF

Graphical
 keyboard
 mouse

Vocal
 speech

 recognition
DTMF

Vocal
 speech

DTMF

Graphical
 keyboard
 mouse
 stylus pen
 touch screen

Vocal
 speech recognition

Graphical
 keyboard
 mouse
 stylus pen
 touch screen

Vocal
 speech
recognition

DTMF

Graphical
 keyboard
 mouse

Vocal
 speech
recognition

Output
modalities

Graphical
 PC screen
 PDA screen

Vocal
 speech
synthesis
 text-to-speech
 audio

Avatar

Graphical
 PC screen
 GSM screen

Graphical
 PC screen
 GSM screen

Vocal
 speech
synthesis
 text-to-
speech
 audio

Vocal
 speech
synthesis
 text-to-
speech
 audio

Graphical
 PC screen
 handheld devices
screen

Vocal
 speech synthesis
 text-to-speech
 audio

Graphical
 PC screen
 handheld

 devices screen
Vocal

 speech
synthesis
 text-to-speech
 audio

-

Separation of
modalities No - Yes - Yes Yes -

CARE
properties
support for
input modalities

A, E - A, E - A, E, R A, E, R -

CARE
properties
support for
output
modalities

A, E, R - A, E, R - A, E, R A, E, R -

2. State of the Art

 53

Independence
of modality No - Yes - No Yes -

Extensibility for
new modalities Yes No Yes No No Yes Yes

Design options No No No No No Yes No
Model-to-model
transformational
approach

No Yes No No No Yes No

Development
tool

Galatea Interaction
Builder

XIML Validator,
Editor, Viewer

tools

UIML
development tool

IBM
WebSphere

Voice Toolkit

IBM Multimodal
Toolkit Teresa No

Interpretation/
Renderer/Conv
erter tools

Internet Explorer 6
with multimodal
software support

components,
Anthropomorphic

spoken dialog agent
toolkit

Converters to
HTML, WML

LiquidUI
(converter for
HTML, WML,

VoiceXML, Java,
etc.)

IBM
VoiceXML

browser

Opera browser,
NetFront browser

Teresa (generation
of X+V

specification)
No

Table 2-1 Comparison of the surveyed user interface description languages

2. State of the Art

 54

2.5.2 Shortcomings

We identified the following shortcomings that serve as incentives to consider this topic
an important, original, yet unsolved and challenging research problem by observing the
current practice of MM UI usage:
 Shortcoming 1. Lack of a fast interaction: the different input/output monomodal

interactions enabled by most of the current applications hinders users to take
benefit of their natural multimodal interaction skills. Therefore, the users are
slowed down when responding/accessing to the delivered information.

 Shortcoming 2. High incidence of errors and difficult error recovery: even if multiple
interactions are available, there is a lack of systems enabling to switch between
interaction modalities in order to select the most suited one for the achievement of
the task. This results in an increasing error rate and difficulties to recover from
errors [Suhm99].

 Shortcoming 3. Lack of genuine platform mobility: most of the current mobile platforms
do not allow users to take full advantage of their capabilities as they lack the ability
to switch between interaction modalities (e.g., eyes-free, hands-free, audio-only)
[Bert05].

 Shortcoming 4. Lack of usable multimodal UIs: even if multiple interactions are available,
there is a lack of systems that convey information using the modalities that are
most appropriate to the end users and their tasks [Rous05].

 Shortcoming 5. Lack of robust systems: the traditional GUIs are sometimes less robust
then the multimodal systems which benefit from a less complex syntax, higher
fluency and doubtless debit [Ovia99].

 Shortcoming 6. Lack of device effectiveness: as devices continue to get smaller, the lack of
multimodal capabilities decreases the quality of interaction [Ovia99].

 Shortcoming 7. Lack of multimodal experience: with the continously growing number of
new devices, there is a lack of experience with the employed multimodal
interactions [Hura03]. Therefore, the use of such interactions should be increased
by all means possible and encouraged to be accepted widely.

 Shortcoming 8. Lack of multimodal applications deployment: although several real MM
systems have been built, most of them are:
• Difficult to generate due to the multitude of devices and their different capa-

bilities and hard to implement as creating a MM UI is more difficult than de-
signing for voice or graphics alone [Aneg04].

• Too specific to a particular issue.
• Rarely oriented towards information systems.
• Often providing solutions to very complex tasks.
• The result of a manual implementation, which is very specific, non reusable and

hard to reinstal.
Moreover, their number is still reduced compared to the high frequency of existent
monomodal applications. Therefore, a high number of users are not aware of the
existence of such systems and the benefits they could bring to the HCI.

2. State of the Art

 55

2.5.3 Requirements

Our methodology, as defined in Section 1.4.1, is delineated by a set of requirements that
are elicited and motivated by: on the one hand, the concerns identified in Section 1.2 and
on the other hand, by the shortcomings emphasized in Section 2.5.2. which lead us to
conclude that the development of MM UIs can be improved along several dimensions.
These requirements are defined hereafter in a decreasing order of importance for each
dimension of the methodology: (1) Modeling requirements, (2) Method requirements and
(3) Tool requirements.

Modeling requirements:

Requirement 1. Support for multimodal input/output: states that our ontology
should enable multiple (i.e., at least two different) input/output interaction modalities.
The current requirement is motivated by the definition of the multimodal systems
(Section 1.3.4).

Requirement 2. Separation of modalities: states that the concepts and the
specifications corresponding to each modality should be syntactically separated one from
the other. The current requirement is motivated by two aspects: (1) flexibility in the
development process given by the possibility to specify separately the UI corresponding
to each involved interaction modality and to further combine them altogether, (2)
reusability, totally or partially, of the specification corresponding to an interaction
modality in other applications that employ it. This requirement contributes to the
principle of separation of concerns [Dijk76].

Requirement 3. Support for CARE properties concerning the input/output
modalities: states that our ontology should ensure the support of the CARE properties
for input/output modalities. This requirement is motivated by the design facilities
offered by the CARE properties when defining the relationships that can occur between
input/output modalities.

Requirement 4. Ability to model a user interface independent of any modality:
states that the provided ontology should ensure a level in the development life cycle that
allows to specify a modality-independent UI. This requirement is motivated by the
increasing number of novel devices and consequently of interaction modalities that will
determine the development of new UIs with new modality capabilities. A modality-
independent level will also enable to avoid the redeployment of UIs from scratch. This
requirement contributes to the principle of separation of concerns [Dijk76].

Requirement 5. Extendibility to new modalities: states that the ontology structure
should allow the extension with new types of interaction modalities. This requirement is
motivated by the constant emergence of new computing platforms, each of them
supporting a new set of interaction modalities. This requirement is a principle that we

2. State of the Art

 56

would like to cover, but we are well aware that very complex interactions cannot be
supported.

Requirement 6. Ontology homogeneity: states that the ontological concepts should
be defined according to a common syntax. The requirement is motivated by the necessity
of defining a single formalism for model concepts in order to facilitate their integration
and processing.

Requirement 7. Human readability: states that the proposed ontology should be
legible by human agents. The current requirement is motivated by two aspects: (1) the
need to define in an explicit manner the ontological concepts in order to ensure their
precise comprehension, (2) the necessity of sharing the underlying concepts among the
research community.

Method requirements:

Requirement 8. Approach based on design space: states that our development life
cycle towards a final multimodal UI should be guided by a set of design options. This
requirement is motivated by the need to clarify the development process in a structured
way in terms of options, thus requiring less design workload.

Requirement 9. Method explicitness: states that the component steps of our
methodology should define in a comprehensive way their logic and application. This
requirement is motivated by the lack of explicitness of the existing approaches in
describing the proposed transformational process.

Requirement 10. Method extendibility: refers to the ability left to the designers to
extend the development steps proposed in a methodology. The current requirement is
motivated by the lack of flexibility in the current methodological steps that hinders
designers to add, delete, modify and reuse these steps.

Tool requirements

Requirement 11. Machine processability of involved models: states that the
provided ontology should be proposed in a format that can be legible by a machine. This
requirement is motivated by the necessity of transposing the ontological concepts into
representations that can be processed by machines.

Requirement 12. Support for tool interoperability: refers to the possibility of reusing
the output provided by one tool into another. This requirement is motivated by the lack
of explicitness of transformations due to their heterogeneous formats that prevents the
reuse of transformations outside the context for which they were designed.

2. State of the Art

 57

2.6 Conclusion

This chapter presented the existing multimodal frameworks, UIDLs and tools that were
considered to bring a signifiant contribution to the current thesis. The characteristics of
a set of languages surveyed in the literature were sumed-up and compared in Table 2-1.
As a result twelve requirements were elicited that will further argue the thesis statement
and validate the results provided by our methodology (Figure 2-1).

2. State of the Art

 58

3. Conceptual Modeling of Multimodal Web User Interfaces

 59

3 Conceptual Modeling of
Multimodal User Interfaces

3.1 Introduction

After identifying the requirements of MM applications in Chapter 2, the current chapter
introduces the concepts of our framework. Section 3.2 presents the selection of the UIDL,
whereas Sections 3.3, 3.4 and 3.5 describe the semantics, the syntax and the stylistics of the
selected language, respectively.

3.2 Selection of a User Interface Description Language

The objective of the current dissertation is supported by a model-based approach that is
intended to offer designers the capability of developing MM UIs of ISs. In software
engineering, model-based approaches relay on the power of models to construct and reason
about ISs. The goal of these approaches is to propose a set of abstractions, development
processes and tools that further enable an engineering approach for UI development. In
order to achieve this goal a UIDL is desirable.

3.2.1 Towards choosing a suitable UIDL

For this purpouse two solution were considered: (1) introducing a new specification
language or (2) reusing or expanding an already existing UI description language.
Starting from scratch with a specification language requires a lot of efforts before reaching a
significant level of interest. Thus, the first solution appears to be time-consuming. With
respect to the second solution, we have considered several existing MM languages for which
a set of shortcomings have been identified:
 X+V:

 Is an implementation language and not a UI Description Language. As such, X+V
will be used in the current dissertation as a target language and not as a specification
language.

 There is no modality-independent level (Requirement 4. Ability to model a UI
independent of any modality).

 There are no design options in the development life cycle (Requirement 8. Approach
based on design space).

 XISL:
 There is no modality-independent level (Requirement 4. Ability to model a UI

independent of any modality).

3. Conceptual Modeling of Multimodal Web User Interfaces

 60

 The specification language does not specify the interaction modalities separately
(Requirement 2. Separation of modalities).

 There are no design options in the development life cycle (Requirement 8. Approach
based on design space).

 TeresaXML:
 Is based on a design space approach but it is limited in terms of alternatives of

design options.
 The tool is based on a transformational approach, but the transformations are

precomputed and hard-coded. Thus, modifiability and extendibility are not
supported (Requirement 10. Method extendibility).

 As the transformations are hard-coded, they are not expressed in the same language
as the specification language (Requirement 6. Ontology homogeneity).

To the above identified shortcomings a more general one is added: whenever we would like
to submit an extension of an existing language there is no guarantee that the Consortium in
charge with that language will consider it.

3.2.2 UsiXML – the selected UIDL

After identifying the shortcomings for the above MM languages we also considered UsiXML
(USer Interface eXtensible Markup Language), a UIDL that allows the specification of
various types of UIs such as GUIs, VUIs and 3D UIs. This language was selected to support
our model-driven approach due to the folowing motivations:
 UsiXML is structured according to the four basic levels of abstraction (Figure 3-1)

defined by the Cameleon reference framework [Calv03]. The framework represents a
reference for classifying UIs supporting multiple target platforms and multiple contexts
of use and enables to structure the development life cycle into four levels of abstraction:
task and concepts, abstract UI (AUI), concrete UI (CUI) and final UI (FUI). The
identification of the four levels and their hierarchical organization is built upon their
independence with respect to the context in which the FUI is used. Thus, the Task and
Concepts level is computational-independent, the AUI level is modality-independent and
the CUI level is toolkit-independent.

Figure 3-1 Cameleon Reference Framework for multi-target UIs

3. Conceptual Modeling of Multimodal Web User Interfaces

 61

 UsiXML relies on a transformational approach that progressively moves from the Task
and Concept level to the FUI

 The steps of the transformational approach define in a comprehensive way their logic
and application (Requirement 9. Method explicitness).

 The transformational methodology of UsiXML allows the modification of the
development sub-steps, thus ensuring various alternatives for the existing sub-steps to be
explored and/or expanded with new sub-steps (Requirement 10. Method extendibility).

 UsiXML has a unique underlying abstract formalism represented under the form of a
graph-based syntax (Requirement 6. Ontology homogeneity).

 UsiXML allows reusing parts of previously specified UIs in order to develop new
applications. This facility is provided by the underlying XML syntax of UsiXML which
allows the exchange of any specification. Moreover, the ability to transform these
specifications thanks to a set of transformation rules increases their reusability.

 The progressive development of UsiXML levels is based on a transformational approach
represented under the form of a graph-based graphical syntax. This syntax proved to be
efficient for specifying transformation rules [Limb04b] and an appropriate formalism for
human use (Requirement 7. Human readability).

 UsiXML ensures the independence of modality (Requirement 4. Ability to model a UI
independent of any modality) thanks to the AUI level which enables the specification of UIs
that remains independent of any interaction modality such as graphical, vocal or 3D
interaction

 UsiXML supports the incorporation of new interaction modalities thanks to the
modularity of the framework where each model is defined independently and to the
structured character of the models ensured by the underlying graph formalism
(Requirement 5. Extendibility to new modalities).

 UsiXML is supported by a collection of tools that allow processing its format
(Requirement 11. Machine processability of involved models)

 UsiXML allows cross-toolkit development of interactive application thanks to its
common UI description format (Requirement 12. Support for toolkit interoperability).

3.3 Conceptual contribution

The current section emphazises our ontological contribution defined according to UsiXML
v1.8 [USIX07] which integrates the improvements and the expansions accomplished by the
present thesis in order to adapt the UsiXML models to the requirements of MM UIs. For
each model a discusion of its suitability with respect to our MM interaction goals is carried
out and solutions are offered whenever shortcomings of the existing ontology defined
according to UsiXML v1.6.3 [USIX05] are identified. For the semantics of our ontology
UML class diagrams are employed .

3. Conceptual Modeling of Multimodal Web User Interfaces

 62

3.3.1 Task Model

The existing Task Model defined in [USIX05] is an extended version of ConcurTaskTree
notation defined in [Pate97]. Due to the consideration of MM UIs, we expanded the existing
Task Model in order to better respond to the requirements imposed by these applications
(Section 2.5.3). A complete description of the expanded Task Model can be found in
Appendix A.

3.3.1.a Existing Task Model

The Task Model describes the interactive tasks as viewed by the end user while interacting
with the system. It is composed of tasks and task relationships (Figure 3-2). Tasks are, notably,
described with attributes such as name and type. The name of the task is generally expressed as
a combination of a verb and a substantive (e.g., consult patient file). The type attribute
identifies one of the four basic task types: user, interactive, system or abstract.
Leaf tasks are described by two additional attributes (i.e., userAction and taskItem) that enable
a refined expression of the task nature. This expression is based on the taxonomy introduced
by [Cons03] that allows qualifying a UI in terms of the abstract actions it supports. The
taxonomy is twofold: a verb describes the type of activity at hand and an expression
designates the type of object on which the action is operated. By combining these two
dimensions a derivation of interaction objects that are supposed to support a task becomes
possible.
The userAction attribute refers to verbs that indicate the actions required to perform the task
(Table 3-1), while the taskItem attribute refers to an object type or subject of an action (Table
3-2). The existing values where identified based on Constantine’s taxonomy.

userAction Definition
start Specifies that an action is triggered
stop Specifies that an action is ended
select Specifies a selection between multiple items
create Specifies the creation of an item
delete Specifies the deletion of an item
modify Specifies the modification of an item
move Specifies the movement of an item

duplicate Specifies the duplication of an item
toggle Specifies the toggle between different items
view Specifies that an item is shown to the user

Table 3-1 Definition of existing values for the userAction attribute

taskItem Definition
element Specifies that the item has a single characteristic

container Specifies that the item is an aggregation of elements
operation Specifies that the item is a function
collection Specifies that the item is composed multiple elements

Table 3-2 Definitions of existing values for the taskItem attribute

3. Conceptual Modeling of Multimodal Web User Interfaces

 63

Figure 3-2 Meta-model of the Task Model

3.3.1.b Expanded Task Model for Multimodal User Interfaces

The userAction attribute refers to verbs that identify actions from the user point of view.
Taking into acount the values identified in Section 3.3.1.a, this definition is not generally
true. For instance, the view value specifies an action from the system’s perspective (i.e., the
system displays an item). Consequently, we replaced the name of the attribute with taskType,
a name that remains independent of the entity that accomplishes the task (i.e., the user or the
system). In order to avoid the confusion with the attribute type, the latter was renamed
category while keeping the previously specified semantics.
Moreover, we have added/modified several values of this attribute (Table 3-3). Thus, the
view value suggests the idea of visualisation of items, while the Task Model should remain
modality-independent. Consequently, we replaced it with convey, a value which doesn’t make
any reference to the employed modality. In addition, the delete value specifies that an item is
removed, but there is no value specifying that an item is reinitialized (e.g., setting to blank
the values of a text filed widget). For this purpose the erase value was added. Other taskType
values that address the requirements of 3D UIs are introduced and defined in [Gonz06].

taskType Definition
convey The item is conveyed to the user
erase The value of an item is reinitialized

3. Conceptual Modeling of Multimodal Web User Interfaces

 64

Table 3-3 Definition of newly identified values for the taskType attributes

The developer should consider the values of the taskType attribute identified in Table 3-1 and
Table 3-3 only if the Task Model is employed for further reification processes towards the
generation of more concrete UI models. Otherwise, the values are not mandatory. Table 3-4
provides a set of possible synonyms that can be used in parallel with the existing ones.

taskType Synonyms
start go/to/initiate
stop end/exit/finish/complete
select choose
create input/encode/enter
delete Eliminate
erase Efface

modify change/alter/transform
move relocate

duplicate clone/twin/reproduce
toggle switch
convey communicate/transmit

Table 3-4 Synonyms for the taskType values

The collection value of the taskItem attribute identified in Table 3-2 specifies that an item is
composed of multiple elements, while a collection could be composed of a series of
containers as well. For instance, one container specifying the list of books of an author and
another specifying some features for each book (i.e., title, publisher and price) can be
grouped into the same collection. Therefore, we split the collection value into collection of
elements and collection of containers (Table 3-5).

taskItem Definition
collection of

elements
Specifies that the item is

composed of a list of elements
collection of
containers

Specifies that an item is
composed of a list of containers

Table 3-5 Definitions of newly identified values for the taskItem attribute

By combining the taskType and taskItem attributes a series of possible situations could occur
(Table 3-6).
taskType taskItem Example

start operation Start to look for the definition of a word in an online
dictionary

select element Select the gender of a person
create element Input an email address in a form

element Convey the result of a computational operation (the
result can be expressed graphically by displaying it on

the screen or vocally by system utterance)

 container Convey the starting date of a conference (the day,

3. Conceptual Modeling of Multimodal Web User Interfaces

 65

month and year can be displayed on the screen or can
be uttered by the system)

collection of elements Convey the list of authors of a book (the list of
authors can be displayed or can be uttered by the

system)

convey

collection of
containers

Convey the list of books of an author, by specifying
for each one the title, the editor, the publisher, the
price, etc. (each feature can be displayed or can be

uttered by the system)

Table 3-6 Examples of combinations between values of taskType and taskItem attributes

3.3.2 Domain Model

The Domain Model described in [USIX05] did not benefit from any conceptual contribution as
its specification is suitable for the requirements imposed by the development of MM UIs.
This model is a description of the classes of objects manipulated by a user while interacting
with the system (Figure 3-3). It consists of one or more domainClasses, and potentially one or
more domainRelationships between these classes.
A class describes the characteristics of a set of objects sharing a set of common properties.
The concepts identified at the class level are: attributes, methods and objects. An attribute is a
particular characteristic of a class that is described by several features: attributeDataType refers
to basic data types as string, integer, real, boolean or enumerated (enumerated describes an
attribute that has a value from a set of enumerated items). The attributeCardMin and
attributeCardMax describes, respectively, the lower and upper bound of the attribute
cardinality (0 for a not mandatory attribute and 1 for a mandatory one). A method is the
description of a process able to change the system's state and is described by its signature
(i.e., name and input and output parameter(s)). An object is an instance of a class composed of
attribute instances that are able to call methods.
A domainRelationship describes various types of relationships between classes and can have
three types: generalization, aggregation or ad hoc. Class relationships are described thanks to
several attributes that enable to specify their role names and cardinalities.

3. Conceptual Modeling of Multimodal Web User Interfaces

 66

Figure 3-3 Meta-model of the Domain Model

3.3.3 Abstract User Interface Model

The Abstract User Interface Model described in [USIX05] did not benefit from any conceptual
contribution as its specification is suitable for the requirements imposed by the development
of multimodal UIs. This model represents a canonical expression of the renderings and
manipulations of the domain concepts and functions in a way that is independent of any
interaction modality and computing platform. Threfore, there is no information regarding
the maner in which this abstract specification will be concretized: graphical, vocal or
multimodal. This concretization is achieved in the next level.
The AUI Model (Figure 3-4) is populated with Abstract Interaction Objects (AIOs) between
which Abstract User Interface Relationships have been defined.

3. Conceptual Modeling of Multimodal Web User Interfaces

 67

Figure 3-4 Meta-model of the AUI Model

AIOs are abstraction of widgets found in most of the popular graphical toolkits (e.g.,
windows, buttons) and vocal toolkits (e.g., prompts, vocal menus). They can have two types:
Abstract Individual Components (AICs) or Abstract Containers (ACs).
An AIC is any individual element populating an AC. An AIC assumes at least one basic
system interaction function described as a facet in the UI. As AICs are composed of multiple
facets, we call them multi-faceted. Each facet describes a particular function an AIC may
assume. We identify four main facets:
1. Input facet: specifies that an input information is accepted by the AIC.
2. Output facet: specifies that an output data is conveyed to the user by the AIC.
3. Navigation facet: specifies that the AIC enables a container transition.
4. Control facet: specifies that the AIC enables to trigger methods from the Domain Model.
An AIC may assume several facets simultaneously. For instance, an AIC may display an
output while accepting an input from a user or trigger a container transition and a method
defined in the Domain Model.
The actionType attribute of a facet enables the specification of the type of action an AIC
allows to perform. The actionItem attribute characterizes the item manipulated by the AIC. As
the AUI Model and the Task Model are both modality-independent, the values of actionType
and actionItem of the former model can be inherited (Figure 3-5) from the taskType and
taskItem attributes defined in the Task Model, respectively.

3. Conceptual Modeling of Multimodal Web User Interfaces

 68

Figure 3-5 Abstract attribute values inheriting Task attribute values

Even if there is no conceptual contribution brought to this level of specification, an
identification of the different types of structures an instruction can have and their
specification according to the AUI Model has been made. This will help us determine the
components of an instruction and the possible cardinalities of their instances at a level that is
still modality-independent. In addtion, each of these components could be further
concretized in a particular modality or combination of modalities giving rise to a MM
instruction.
We started our research taking into account the general structure of an instruction in ISs.
According to [IBM93] natural languages typically have significantly more nouns than verbs,
and a graphical UI typically contains more objects then actions. Just as the same verb can be
applied to many nouns, the same action can be applied to many objects, independent of the
type of UI, be it graphical, vocal, MM, etc. Therefore, the action/object paradigm is defined
as a pattern for interaction in which a user selects an action and an object to apply it to. But
objects are usually endowed with features which help us characterize them. Therefore, in ISs
these features were transposed into parameters assigned to objects. Consequently, the
general structure of an instruction is composed of three elements (Figure 3-6) that could
have single or multiple cardinality or even could be optional depending on the context in
which the instruction is used:

Instruction:= {Action, Object, Parameter}

Figure 3-6 The general structure of an instruction in ISs

The models composing our ontology support this structure as follows: the actionType
attribute identifies the type of action(s) the instruction applies, the actionItem specifies the
type of object(s) on which the action is applied, whereas the parameter(s) describing the
object(s) are feature(s) stored in the Domain Model.
Based on these observations, four types of instructions have been identified. For each type
we provide two MM examples: (1) consists of vocal fulfillment of form-based UI and (2)
allows users to interact vocally and graphically in order to manipulate different objects on a
map. It is worth noticeing that whenever multiple actionTypes are applied on the same
actionItem the considered object can be identified:
 Directly: by re-specifying it for each actionType (E.g., “Create a blue lake. Select the blue lake

and move the blue lake under the green park”.

3. Conceptual Modeling of Multimodal Web User Interfaces

 69

 Indirectly: by using deictic words in order to avoid multiple occurrences of the same object.
For instance, words like this, that, it, there, here can be employed to substitute objects
which have been previously introduced (e.g., “Create a blue lake. Select this (pointing
gesture towards the blue lake) and move it under the green park”.

1. 1 actionType applied to 1 actionItem (element)
Example 1 (form-based UI):
C: “What is your name?”
U: “My name is Peter.”

Example 2 (direct manipulation UI):
U: “Create a green forest.”

2. 1 actionType applied to N actionItems (elements)

Example 1 (form-based UI):
 C: “Please specify your birthday.”
 U: “My birthday is on 8th of February 1986.”

Example 2 (direct manipulation UI):
U: “Delete the red hospital and the green cinema.”

3. N actionTypes applied to 1 actionItem (element)
Example 1 (form-based UI):

 C: “Please say your email address.”
 U: “My email is johnson@yahoo.com. Select this e-mail.”

3. Conceptual Modeling of Multimodal Web User Interfaces

 70

Example 2 (direct manipulation UI):
U: “Move the hospital next to the police office and select it.”

4. N actionTypes applied to N actionItems (elements)

Example 1 (form-based UI):
 U: “Erase the email address and modify the zip code to 1020.”

Example 2 (direct manipulation UI):
U: “Delete the red cinema and create a green forest in its place.”

AUI Relationships are abstract relationships among AUI objects. Relationships may have
multiple sources and multiple targets. There are a couple of types of relationships, among
which:
 AbstractAdjacency: allows to specify an adjacency constraint between two AIOs
 AbstractContainment: allows to specify that an AC embeds one or more ACs or one or

more AICs
 AuiDialogControl: enables the specification of the dialog control in terms of LOTOS

operators between AIOs.

3. Conceptual Modeling of Multimodal Web User Interfaces

 71

3.3.4 Concrete User Interface Model

The Concrete User Interface Model described in [USIX05] benefit from a conceptual contribution
as its specification was not suitable for the requirements imposed by the development of
MM UIs. The benefits consist mainly in improved and expanded definitions of the vocal UI
description.
This model allows both the specification of the presentation and the behavior of an UI with
elements that can be perceived by the users [Limb04b]. The CUI abstracts a FUI in a
definition that is independent of programming toolkit peculiarities.
CUI Model (Figure 3-7) concretizes the AUI for a given context of use into Concrete
Interaction Objects/Components (CIOs/Components) and Concrete User Interface Relationships so as to
define layout and/or interface navigation of 2D graphical and/or vocal widgets.
CIOs realize an abstraction of widget sets found in popular graphical and vocal toolkits (e.g.,
Java AWT/Swing, HTML 4.0, Flash DRK 6, VoiceXML). A CIO is defined as an entity
(e.g., window, push button, text field, check box, vocal output, vocal input, vocal menu) that
can be perceived and/or manipulated by the users. Due to the graphical and vocal
consideration of UsiXML, CIOs are further divided into: graphicalCIOs and vocalCIOs. Details
regarding the types of graphicalCIOs, vocalCIOs and Concrete User Interface Relationships are
provided in the folowing section.

Figure 3-7 Excerpt of the CUI Meta-model

3. Conceptual Modeling of Multimodal Web User Interfaces

 72

3.3.5 Mapping Model

The Mapping Model described in [USIX05] did not benefit from any conceptual contribution
as its specification is suitable for the requirements imposed by the development of MM UIs.
This model contains a series of related mappings between models or elements of the models
(Figure 3-8). A Mapping Model serves to gather a set of pre-defined, inter-model
relationships that are semantically related. It consists of one to more interModelRelationships, a
part of them being used throughout the steps of the transformational approach:
 Manipulates: maps a task onto a domain concept (i.e., a class, an attribute, a method or

any combination of these types).
 Updates: is a mapping between any AUI or CUI component and a domain attribute or

run time instantiated attribute. It enables to specify that a UI component provides a
value for the related domain concept.

 Triggers: indicates a connection between a method of the Domain Model and a AUI or
CUI individual component.

 IsExecutedIn: indicates that a task is performed through one or several ACs and AICs.
 IsReifiedBy: maps the elements of the AUI onto elements of the CUI. This relationship

specifies the manner in which any AIO can be reified by a CIO.

Figure 3-8 Meta-model of the Mapping Model

3.3.6 Transformation Model

The Transformation Model described in [USIX05] did not benefit from any conceptual
contribution as its specification is suitable for the requirements imposed by the
development of MM UIs.
This model (Figure 3-9) is conceptualizing rules that enable the transformation of a model
specification (at a certain level of abstraction) into another or adapting this specification for a
new context of use. A transformation rule realizes a unit transformation operation on a
model and is composed of:
 LHS (Left Hand Side): models the pattern that will be matched in the host model.
 RHS (Right Hand Side): models the part that will replace the LHS in the host model.
 NAC (Negative Application Condition): models the condition that has to hold false before

trying to match LHS into the host model.

3. Conceptual Modeling of Multimodal Web User Interfaces

 73

 AttributeCondition: is a textual expression indicating a condition scoping on element
attributes of the lhs of a transformation rule.

 RuleMapping: defines the source and the target models of the transformation rule. For
instance, a rule may establish a mapping between a Task Model and an Abstract Model. In
this case, the source indicates the source model of the mapping, while the target indicates
the target model.

Transformation rules are applied in order to develop UIs following a specific development
path (e.g., forward engineering, reverse engineering, adaptation to context of use). A
development path is composed of development steps that can imply three types of
transformations depending on the development direction:
 Reification: consists in the derivation of the next lower model in our reference framework
 Abstraction: consists in the derivation of the next upper model in our reference

framework
 Translation: is a type of model transformation adapting a set of UI models to a target

context of use.
A development step is decomposed into development sub-steps. A development sub-step is
always realized by a single transformation system. A transformation system is composed of a
set of sequentially applied transformation rules. One transformation system applies one sub-
derivation unit [Limb04]. A sub-derivation unit is defined as a collection of derivation rules
that realize a basic development activity. A basic development activity has been identified to
sub-goals assumed by the developer while constructing a system (e.g., choosing widgets,
defining navigation structure).

3. Conceptual Modeling of Multimodal Web User Interfaces

 74

Figure 3-9 Meta-model of the Transformation Model

3.4 Semantics of the multimodal interaction objects

Semantics (in Latin letters semantikós, or significant meaning, derived from sema, translated as sign)
is the study of meaning, in some sense of a term. Hereafter we provide the semantics of the
CIOs composing the CUI Model and of the relationships defined between them.

3.4.1 Semantics of the Graphical Concrete Interaction Objects

No modifications were brought to the semantics of the Graphical CIOs described according
to [USIX05]. These objects are divided into Containers and Individual Components.
Graphical Containers (GCs) (Figure 3-10) contain a collection of CIOs (either GICs or GCs)
that support the execution of a set of logically/semantically connected tasks. Hereafter we
define the semantics of a couple of containers used in the current thesis:
 Window: is a container that can be found in almost all 2D graphical toolkits. A window

may contain other GCs.
 Box: is a container that enables an unambiguous structuring of GICs within a window, a

tabbedItem, a dialogBox. Boxes are embedded one into the other. Their type may be:
main (i.e., the topmost box in a container), horizontal or vertical.

3. Conceptual Modeling of Multimodal Web User Interfaces

 75

 GroupBox: allows to group a set of GICs. A group of option buttons is a typical use of a
groupBox. Normally a groupBox does not contain any other GC.

 TabbedDialogBox: is a group of dialogBoxes where each dialogBox is accessible via a tab
mechanism. A tabbed dialogBox is composed of tabbedItems.

 Toolbar: is a bar containing a series of selectable buttons that give the user an easy way to
select different items.

 MenuPopUp: is a menu of commands or options displayed when an item is selected. The
selected item is generally at the top of the display screen and the menu is displayed just
below it.

Figure 3-10 Graphical containers

Graphical Individual Components (GICs) are objects contained in GCs. Figure 3-11 illustrates a
part of GICs defined in [USIX05] for which we offer the semantics:
 InputText: is a GIC specialized in handling input textual content.
 OutputText: is a GIC specialized in handling output textual content.
 Button: is alternatively called trigger button as it aims to trigger any kind of action

available in the system.
 Checkbox: enables a boolean choice by checking a square box aside of a label.
 RadioButton: enables a boolean choice by checking a circle aside of a label. A group of

optionButtons differentiates from a group of checkBoxes by its mutuall exclusive
selection feature.

3. Conceptual Modeling of Multimodal Web User Interfaces

 76

 ComboBox: enables a direct selection over a collection of sequentially, predefined items. It
might also enable editing new items.

 ImageComponent: is a GIC specialized in handling image content.

Figure 3-11 Several Graphical Individual Components

3.4.2 Semantics of the Vocal Concrete Interaction Objects

3.4.2.a Existing semantics of the Vocal Concrete Interaction Objects

The existing vocal ontology described in [USIX05] consists of concepts that support the
vocal interaction thanks to Auditory Interaction Objects and Auditory relationships. The former can
be Auditory Containers representing a logical grouping of other containers or Auditory Individual
Components. These individual concepts can have two types: auditoryOutput supporting music,
voice or a simple earcon (i.e., an auditory icon) or auditoryInput which is a mere time slot
allowing users to provide an auditory input using their voice or any other physical device
able to produce sound. Auditory relationships can have two types:
 AuditoryTransition: enable to specify a transition between two auditory containers.
 AuditoryAdjancency: indicates the time adjancency between two auditory components.

By observing the current ontology described in [USIX05] we were able to identify that the
semantics of the vocal concrete interaction objects suffers from a set of shortcomings:

3. Conceptual Modeling of Multimodal Web User Interfaces

 77

 It does not provide a specialized container that enables a dialog between the system and
the end-user (i.e., synthesize/collect data from the system/user). This might prove to be
useful in order to better distinguish between containers that support a user/system
interaction and those that act just as basic containers used for grouping purpouses.

 It does not provide a specialized vocal container that allows users to choose between
different options. This is extremely useful as a traditional vocal dialog often consists of
multiple choice questions.

 It does not allow to identify the elements of an instruction: the utterances identified in
the grammar specify the tasks as a whole without mapping them with a corresponding
part (i.e., action, object). As a consequence, the grammar content cannot be reused.

 It does not allow to define the element’s order of utterance: there are no means to
specify an alternative between two or more utterances, a sequence of utterances or a
particular order of utterances. Consequently, all possible combinations between the
elements of an instruction have to be explicitly specified in the grammar. This will result
in a high number of possible combinations that will further increase with the growing of
the number of elements.

 It does not allow to specify the visibility of the grammar: grammars could be made
visible only in the current vocal forms or to other forms in the current document.

 It does not allow to specify the cardinality of an element utterance: for instance one user
would like to utter “Select the ship” while some others: “Select and delete the ship”. It
can be observed that in the first utterance there is only one action defined (i.e., “select”),
whereas in the second one there are two actions (i.e., “select and delete”).

 It does not allow to specify the language in which the utterances have to be pronounced
in order to be recognized by the system (e.g., English, French)

 It does specify explicitly the type of the system’s output. The output could provide the
user with synthesized prompt information or with some feedback following a previously
processed input.

 It does not allow to play audio pre-recorded files or to record user’s vocal messages
 It does not allow to interrupt the execution of the current container or of the entire

application. For instance the end-user would like to put end to a dialog which does not
provide any useful information or to stop interacting with the application due to an
unexpected outer system task.

3.4.2.b Expanded semantics of the Vocal Concrete Interaction Objects

Based on the shortcomings identified above, [USIX07] expands the existing vocal ontology
offering a larger set of vocalCIOs (Figure 3-12) that cover the requirements of vocal and
MM UIs (Requirement 1. Support for multimodal input/output). By analogy with the
graphicalCIOs, the vocalCIOs are divided into Containers and Individual Components.
Vocal Containers (VCs) represents a logical grouping of other VCs or VICs and inherit the
isOrderIndependent attribute which indicates if the inputs of the container can be filled in any
order or not:

3. Conceptual Modeling of Multimodal Web User Interfaces

 78

 VocalGroup: is the root element of all vocalCIOs. Acts as a basic container for all VCs
and VICs.

 VocalForm: enables a dialog whose purpose is to synthesize/collect data from the
system/user.

 VocalMenu: allows to choose among different vocalMenuItems. The currentValue attribute
is employed to store user’s input.

 VocalConfirmation: requests from the user a confirmation of a previous input. It is
composed of a vocalPrompt that solicits the confirmation followed by a vocalInput gathering
the user's input. For instance, "Do you want to delete this file? Say Yes or No."

VocalIndividualComponents (VICs) are vocalCIOs contained in a VCs. All VICs inherit the
attribute keyboardShortcut that is the DTMF representation of the output, where the possible
values are {0-9, #, *}. The following VICs were introduced:
 VocalOutput: is an object used to synthesize data to the user. This data is specified in the

attribute defaultContent inherited from the CIO class. The volume attribute specifies the
sound volume expressed in Db (decibel). The intonation attribute expresses the dominant
tone according to which the vocalOutput will be synthesized: positive, negative,
interrogative, exclamative. Pitch is the perceptual attribute of a vocalOutput which
enables the user to locate the sound on a scale from low (1) to high (5). An attribute
isInterruptible specifies if the vocalPrompt can be interrupted by a user’s utterance. A
vocalOutput can be further sub-devided into:
• VocalFeedback: provides users with some feedback following a previously processed

vocalInput. For example: "Your answer was: male".
• VocalPrompt: provides users with prompt information that will be synthesized. If

there is an audio file to be played, the attribute audioSource specifies its URI.
• VocalMenuItem: specifies a menu item belonging to a vocalMenu. The DTMF sequence

corresponding to this item is specified by the dtmf attribute. For example: the
sequence of strokes 1-3-5 will select directly this vocal item. The attached attribute
specifies the reference to the next document (an external reference expressed as an
uri) or to the next vocalContainer in the current document (its id expressed as a string)
attached to this item.

• Audio: is employed to play audio prerecorded files. The audioSource attribute specifies
the URI of the audio file to be played or the name of the reference where the re-
corded file is stored. The errorMessage attribute indicated the synthesized error mes-
sage to be played by the system if the audio file is not technically available.

 VocalInput: is an object used to gather input from the user by speech recognition or audio
recording. The elapsedTime attribute is the time frame expressed in seconds during which
the user is allowed to utter the input. The recognized input is stored in the currentValue
attribute. The defaultContent attribute replaces the use of a grammar for the following val-
ues:

3. Conceptual Modeling of Multimodal Web User Interfaces

 79

• Boolean: used for Yes and No answers. For DTMF inputs, 1 stands for affirmative and
2 for negative.

• Date: used for input that specifies a date (i.e., four digits for the year, two digits for
the month and two digits for the day) are allowed.

• Digits: used for input that specifies digits from 0 through 9.
• Currency: used for input that specifies amounts (the format may include a decimal

point) and the used currency. The format is: currency name, amount, eventually fol-
lowed by an amount after the decimal point (e.g., euros fifty point twenty).

• Number: used for input that specifies numbers (e.g., one hundred fifty-four).
• Phone: used for input that specifies a phone number.
• Time: used for input that specifies a time (i.e., the hours and the minutes). The format

is: hour, minute followed by AM or PM (e.g., nine twenty five AM)
 Grammar: is an structured and compacted enumeration of a set of utterances (i.e., words

and phrases) that constitute the acceptable user input for a given vocalInput. The
grammar can be internal (i.e., it is specified within the document) or external (i.e., it is
specified in an external file whos URI is specified by the defaultContent attribute). The
version attribute indicates which version of the grammar specification is being used (the
current version is 1.0). The language attribute indicates according to which language the
utterance has to be pronounced in order to be recognized by the system. The
specification of the language takes the form of the couple: the name of the language
followed by the country in which it is used (e.g.: English-UK). The mainPart attribute is
the first part of the grammar that will be treated by the system. The mode attribute
specifies the available interaction type. The default type is voice for voice-based
interaction, whereas for phone-based interaction the value is dtmf. The visibility attribute
specifies the visibility of the grammar. If set to document the grammar is active throughout
the current document. If set to form (the default value) the grammar is active throughout
the current vocalForm.

 Part: contains other part elements or available input items. The structure attribute specifies
how the user’s inputs should be uttered in order to be recognized by the system. There
are three possible values: choice (i.e., the grammar items are alternative inputs), sequential
(i.e., sequence of grammar items that have to be uttered one after another in the order of
their appearance) or asynchronous (i.e., sequence of grammar items in which the items do
not have any particular order of utterance). The visibility attribute specifies the visibility of
the part component. If set to private (the default value) the part component can be used
only by the containing grammar. If set to public the part component can be referenced by
other grammars. The multiplicity attribute indicates how many times the enclosed items
may be repeated. The default value is 1. The multiplicity is defined as follows:
• X (where X>0): the items are repeated exactly X times.
• X-Y (where 0≤X<Y): the items are repeated between X and Y times (inclusive).
• X- (where X≥0): the items are repeated X or more times.
The language attribute indicates in which language the items have to be pronounced in
order to be recognized by the system. The specification of the language takes the form

3. Conceptual Modeling of Multimodal Web User Interfaces

 80

of the couple: the name of the language followed by the country in which it is used (e.g.,
French-CA). If it is not specified, it inherits the value from the language attribute of the
embedding grammar element.

 Item: enables to specify a grammar input or to reference another part element. The
grammar input is specified by the defaultContent attribute. The same attribute is used to
specify the referenced part as a string containing the “#“symbol followed by the name of
the part element. The language attribute indicates in which language the item has to be
pronounced in order to be recognized by the system. The specification of the language
takes the form of the couple: the name of the language followed by the country in which
it is used (e.g.: French-CA). The attribute allows to mix multiple languages in the same
grammar. If it is not specified, it inherits the value from the language attribute of the
embedding part element.

 VocalNavigation: ensures the dialog transfer between vocal CIOs. The nextContainer attrib-
ute transfers the dialog to a VC embedded either in the current document or in another
document. The value of the attribute is composed of # followed by the id of the VC.
The nextComponent attribute transfers the dialog to another VIC in the current VC. The
value of the attribute is composed of # followed by the id of the VIC. The evalContainer
attribute evaluates an ECMA Script expression that yields the document to which the
dialog will be transferred. If the expression is evaluated to TRUE, the first choice is con-
sidered, while if it is FALSE the second choice is considered. The evalComponent attribute
evaluates an ECMA Script expression that yields the VIC from the current VC to which
the dialog will be transferred. If the expression is evaluated to TRUE, the first choice is
considered, while if it is FALSE the second choice is considered. The isBridgeable
attribute indicates if the source document remains active during the navigation.

 Connect: enables to connect a grammar element to a dialog transition. The nextContainer
attribute transfers the dialog to a VC embedded either in the current document or in an-
other document. The value of the attribute is composed of # followed by the id of the
vocalGroup. The evalContainer attribute contains an ECMA Script expression that is
evaluated to determine the name of the VC to which the dialog is transferred. The VC is
embedded either in the current document or in another document.

 Record: is an object used to record a vocal message of the user. The defaultContent attribute
contains the URI of the recorded audio file or the name of the reference to this file that
can be further played using the audio element. If the beep attribute is set to TRUE, an
acoustic beep is emitted by the system announcing the availability of the recording. If set
to false (the default value) no beep is emitted and the user can start to record
immediately after the prompt. The elapsedTime attribute specifies the maximum time
period during which the user is allowed to record the message. It is expressed in
miliseconds or seconds (e.g., "100ms" or "2s"). The silenceTime attribute is the silence
time period that determines the record to be stopped. It is expressed in milliseconds or
seconds. If the dtmfEnabled attribute is set to TRUE (i.e., the default value), it enables the
users to press a key in order to stop the recording.

3. Conceptual Modeling of Multimodal Web User Interfaces

 81

 Submit: is employed in order to send data to the server and/or to ensure the dialog trans-
fer between vocal CIOs. The defaultContent attribute specifies the URI of the file towards
which the information should be send. The expr attribute specifies an ECMA script ex-
pression that is evaluated to determine dynamically the URI of the reference file. The
varList attribute contains the list of variables to submit. When the list is not specified, all
the variables of the vocalInputs in the current vocalForm are submitted. When specified, the
list may contain individual variable names of vocalInputs and/or declared variables. The
audioFetch attribute contains the URI of the audio clip to play while the submit element is
being processed. The timeoutFetch attribute specifies the interval to wait for the content to
be returned before throwing an error event. This interval can be expressed in millisec-
onds or seconds. The nextContainer attribute transfers the dialog to a VC embedded either
in the current document or in another document. The value of the attribute is composed
of # followed by the id of the VC.

 vocalVar: used to declare a variable. The defaultContent attribute contains the name of the
variable that will hold the result. The currentValue attribute specifies the initial value of
the variable. If no initial value is provided, the variable will hold the value undefined.

 setVar: used to set a previously declared variable to a specific value. The defaultContent at-
tribute specifies the name of the variable to set, while the currentValue attribute indicates
the new value of the variable.

 resetVar: used to clear a previously declared variable. The defaultContent attribute specifies
the list of variables to be reset. When it is not specified, all variables in the current vocal-
Form are reset.

 If: it conditions the execution of certain parts of the document. The guard attribute is a
condition that has to hold true in order to execute the instructions coming after the if
element.

 Else: is an optional element embedded in the if element. It allows executing the instruc-
tions coming after it if the guard condition did not hold true.

 Elseif: optional element embedded in the if element. It is used to test more then two pos-
sible results. The guard attribute is a condition that has to hold true in order to execute
the instructions coming after the if element.

 Break: interrupts the execution of the current VC.
 Exit: terminates the execution of the vocal application.

There are four possible values of event types that can be associated to vocalCIOs. These
values are specified by the eventType attribute of the event element:
 Error: catches all events of type error.
 Help: catches a help event.
 NoInput: catches a no input event.
 NoMatch: catches a no match event.

3. Conceptual Modeling of Multimodal Web User Interfaces

 82

Figure 3-12 Vocal Concrete Interaction Objects

For a better understanding of the concepts defined above we exemplify graphically two
vocal interactions between the system (S) and the user (U). The first dialog (Figure 3-13)
describes the fulfillment of the Provide age task by an end-user. The involved vocal CIOs are
described in the order of dialog flow:
 VocalGroup: is the upper most VC that contains all vocalCIOs involved in the dialog.
 VocalForm: is the VC that contains all the vocalCIOs involved in the dialog.
 VocalPrompt: is the VIC employed to invite the user to input the age.
 VocalInput: is the VIC that gathers the user’s input (the age) by speech recognition with

the defaultContent attribute set to number.
 VocalConfirmation: is the VC which requires the confirmation of the recognized input.
 VocalFeedback: is the VIC that provides the user with the feedback regarding the

previously recognized input.
 VocalPrompt: is the VIC inviting the user to confirm the previously provided feedback.
 VocalInput: is the VIC that gathers the user’s confirmation by speech recognition with the

defaultContent attribute set to boolean.

3. Conceptual Modeling of Multimodal Web User Interfaces

 83

Figure 3-13 VocalCIOs involved in the fulfillment of Provide age task

The second dialog (Figure 3-14) describes a vocal application of a phone line company
where users can select among different options. It consists of two sub-tasks: first the user
provides the name to the system and then selects among three proposed options in a menu.
The involved vocalCIOs are described in the order of dialog flow:
 VocalGroup: is the upper most VC that contains all vocalCIOs involved in the dialog.
 VocalForm: is the VC containing the vocalCIOs involved in the fulfillment of the first

sub-task.
 VocalPrompt: is the VIC used to welcome the user to the vocal application of the phone

line company and invites to input the name.
 Record: is the VIC that records the user’s input (i.e., the name). The name of the reference

to the recorderd file is stored in the defaultContent attribute.
 VocalMenu: is the VC that allows to select among different options. The selected option

recognized by the system is stored in the currentValue attribute.
 VocalMenuItem1: is the VIC used to modify the personal info. For this purpouse it is

connected to a vocalForm specified by the attached attribute
 VocalMenuItem2: is the VIC used to select the move-out line option. For this purpouse it

is connected to a vocalForm specified by the attached attribute.
 VocalMenuItem3: is the VIC used to require bill info. For this purpouse it is connected to

a vocalForm specified by the attached attribute.
 VocalFeedback: is the VIC that provides the user with the feedback regarding the

recognized input. Based on this input the dialog continues with the corresponding
vocalForm.

3. Conceptual Modeling of Multimodal Web User Interfaces

 84

Figure 3-14 VocalCIOs used for a vocal application of a Phone line company

3.4.3 Semantics of the Multimodal Concrete Interaction Objects

MultimodalCIOs are obtained by combining graphicalCIOs and vocalCIOs. For a set of popular
widgets, Table 3-7 identifies a possible correspondence with the proposed CIOs for three
types of interactions: graphical, vocal and MM. A correspondent rendering for each one of
them is illustrated as well. For graphical and MM UIs, we consider the imageComponent
element consisting of representative icons that enable to guide the user with available types
of interaction or to specify the type of vocal feedback provided by the system:
1. Label:

 G: ensured by outputText.
 V: ensured by vocalPrompt.

E.g.: System (vocalPrompt): “Welcome to the UCL web site”
 MM: ensured by outputText, vocalPrompt and imageCompmonent (loud speaker icon).

E.g.:
System displays the welcome message (outputText): Welcome to the UCL web
site.
System welcomes the user vocally (vocalPrompt): “Welcome to the UCL site”.

2. Label + Text field:
 G: ensured by outputText, inputText and imageComponent (keyboard icon).
 V: ensured by vocalPrompt and vocalInput.

E.g.
System (vocalPrompt): “Please say your name”.
User’s input (vocalInput) is recorded in a file (record): “John Smith”.

 MM: ensured by outputText, inputText, vocalPrompt, record, audio and imageComponent
(microphone and keyboard icons to specify the available input interactions and loud
speaker icon to indicate the vocal feedback).
E.g.:

User clicks on the Name label (outputText).
System (vocalPrompt): “Please say your name”.
User’s input (vocalInput) is recorded in a file (record): “John Smith”.
System displays the recorded input (inputText): John Smith.

3. Conceptual Modeling of Multimodal Web User Interfaces

 85

System plays the recorded file (audio): “Your name is John Smith”.
3. Label + Combo box:

 G: ensured by outputText, comboBox with items and imageComponent (mouse and
keyboard icons).

 V: ensured by vocalPrompt, vocalInput and grammar with items.
E.g.:

System (vocalPrompt): “Select the credit card type. Choose between Visa,
MasterCard or American Express”.
User selects among the different proposed credit card types (grammar with items)
the desired one (vocalInput): “Visa”.

 MM: ensured by outputText, comboBox with items, vocalPrompt, vocalInput, grammar with
items, vocalFeedback and imageComponent (microphone and keyboard icons to specify the
available input interactions and loud speaker icon to indicate the vocal feedback).
E.g.:

User clicks on the Credit Card label (outputText).
System invites the user to choose between different credit cards (vocalPrompt):
“Select the credit card type. Choose between Visa, MasterCard and American
Express.”
User selects among the different proposed credit card types (grammar with items)
the desired one (vocalInput): “Visa”.
System displays the recognized input (comboBox): Visa.
System (vocalFeedback): “Your choice is: Visa.”.

4. Group of radio buttons:
 G: ensured by a groupBox embedding a set of radioButtons and imageComponent (mouse

icon).
 V: ensured by vocalPrompt, vocalInput and grammar with items.

E.g.:
System (vocalPrompt): “Please say your gender. Choose between male and female”.
User selects among the different options (grammar with items) the gender
(vocalInput): “Male”.

 MM: ensured by a groupBox embedding a set of radioButtons, vocalPrompt, vocalInput,
grammar with items and imageComponent (microphone and mouse icons to specify the
available input interactions).
E.g.:

User clicks on the Gender label (groupBox label).
System invites the user to select the gender (vocalPrompt): “Please say your gender.
Choose between male and female”.
User selects among the different options (grammar with items) the gender
(vocalInput): “Male”.
System displays the recognized input by checking the corresponding item
(radioButton): male.

5. Group of check boxes:
 G: ensured by a groupBox embedding a set of checkBoxes and imageComponent (mouse

icon).
 V: ensured by vocalPrompt, vocalInput and grammar with items.

3. Conceptual Modeling of Multimodal Web User Interfaces

 86

E.g.:
System (vocalPrompt): “Please select your hobbies. Choose among the following
options: sports, travels, music, movies”.
User selects among the different options options (grammar with items) the
preffered hobbies (vocalInput): “Sport and music”.

 MM: ensured by a groupBox embedding a set of checkBoxes, vocalPrompt, vocalInput,
grammar with items and imageComponent (microphone and keyboard icons to specify the
available input interactions).
E.g.:

User clicks on the Hobbies label (groupBox label).
System invites the user to select the hobbies (vocalPrompt): “Please select your
hobbies. Choose among the following options: sports, travels, music, movies”.
User selects among the different options options (grammar with items) the
preffered hobbies (vocalInput): “Sport and music”.
System displays the recognized input by checking the corresponding items
(checkboxes): sports and music.

6. Label + List box:
 G: ensured by an outputText, listBox with items and imageComponent (mouse icon).
 V: vocalPrompt, vocalInput and grammar with items..

E.g.:
System (vocalPrompt): “Please choose your favorite singers: Chris Hay, Lee Hardy,
Paul Sheerin,...”.
User select among the different options (grammar with items) the favourite singer
(vocalInput): “Lee Hardy”.

 MM: ensured by outputText, listBox with items, vocalPrompt, vocalInput, grammar with
items and imageComponent (microphone and mouse icons to specify the available input
interactions).
E.g.:

User clicks on the Singers label (outputText).
System invites the user to select the singers (vocalPrompt): “Please choose your
favorite singer: Chris Hay, Lee Hardy, Paul Sheerin,...”.
User select among the different options (grammar with items) the favourite singer
(vocalInput): “Lee Hardy”.
System displays the recognized input by selecting the corresponding item (listbox
item): Lee Hardy.

3. Conceptual Modeling of Multimodal Web User Interfaces

 87

User Interface type
Widgets Graphical interaction Vocal interaction Multimodal (graphical and

vocal) interaction

1. Label

outputText

Welcome to the UCL web
site

vocalPrompt

outputText + vocalPrompt +
imageComponent

2.Label + Text
field

outputText + inputText +
imageComponent

vocalPrompt + vocalInput + record

outputText + inputText +
vocalPrompt + record + audio +
imageComponent

3. Label + Combo
Box

outputText + comboBox +
items

vocalPrompt + vocalInput + grammar + items

outputText + comboBox + items +
vocalPrompt + vocalInput +
grammar + items + vocalFeedback
+ imageComponent

4. Group of radio

buttons

groupBox + radioButtons

vocalPrompt + vocalInput + grammar + items

groupBox + radioButtons +
vocalPrompt + vocalInput +
grammar + items +

3. Conceptual Modeling of Multimodal Web User Interfaces

 88

imageComponent

5. Group of check

boxes

groupBox + checkBoxes +
imageComponent

vocalPrompt + vocalInput + grammar + items

groupBox + checkBoxes +
vocalPrompt + vocalInput +
grammar + items +
imageComponent

6. Label + List
Box

outputText + listBox +
items + imageComponent

vocalPrompt + vocalInput + grammar + items

outputText + listBox + items +
vocalPrompt + vocalInput +
grammar + items +
imageComponent

Table 3-7 Correspondence between popular widgets and CIOs of different modalities

3. Conceptual Modeling of Multimodal User Interfaces

 89

3.4.4 Semantics of the Concrete User Interface Relationships

3.4.4.a Existing semantics of the Concrete User Interface relationships
The Concrete User Interface Relationships described in [USIX05] map two or more CIOs.
These relationships always have at least one source object and at least one target object.
There are three types of relationships:
1. GraphicalRelationship: maps two or more graphicalCIOs and is sub-divided in:

 GraphicalTransition: maps one or several GCs by specifying a navigation structure
among the different containers populating a CUI Model. The transitionType
attribute identifies the following values: open, close, minimize, maximize,
suspend/resume. The transitionEffect attribute defines the animation type to be used
when a graphical transition is ensured from a source container to a target
container (e.g., wipe, box in, box out, fade in, fade out, dissolve, split).

 GraphicalAdjacency: enables to specify an adjacency constraint between two
graphicalCIOs. An adjacency relationship is inferred from the order in which
components are place into horizontal and vertical boxes. Consequently, it is
never explicitly stated in the specification.

 GraphicalContainment: enables to specify that a GC embeds one or more GCs or
one or more GICs. The relationship is particularly useful for adding or deleting
GICs from a GC.

 GraphicalAlignament: specifies an alignment constraint between two GICs.
 GraphicalEmphasis: enables to specify that two or more GICs are differentiated in

some way (e.g., with different color attributes).
2. VocalRelationship: maps two or more vocalCIOs and is sub-divided in:

 VocalTransition: enables to specify a transition between two VCs. The transitionType
attribute determines the type of transition (e.g., open, mute, reduce volume,
restore volume). By analogy with the graphical conterpart relationship we extend
the existing set of values with two new ones: activate and deactivate. The
transitionEffect attribute allows a specification of an auditory effect to the transition
(e.g.: fade-out, fade-in).

 VocalAdjacency: enables to specify an adjacency constraint between two vocal
CIOs. The delayTime attribute expresses a delay in milliseconds between two vocal
elements.

 VocalContainment: allows to specify that a VC embeds one or more VCs/VICs.
This relationship is particularly useful for adding or deleting VICs from VCs.

3. CuiDialogControl: enables the specification of the dialog control in terms of LOTOS
operators between any types of CIOs, be it graphical, vocal or combined. In the
current thesis we adopt this specification, but some other techniques, such as the
notation proposed in [Winc08], could be considered. In MM UIs, one has to give a
special attention to the dialog control between elements [IBM03b]. For instance, if
the voice control moves from a text field to a list box, the designer should make sure
that the visual focus is also moved from the text field to the list box. Conversely, if
the visual focus initiates the transition, the voice should respond accordingly.

3. Conceptual Modeling of Multimodal User Interfaces

 90

3.4.4.b Expanded semantics of the Concrete User Interface Relationships

By observing the existing ontology described in [USIX05] we were able to identify that
the semantics of the CUI relationships suffers from a set of shortcomings. Therefore an
expansion illustrated in Figure 3-15 Concrete UI Relationships is provided according to
[USIX07]:
 When navigating between two sub-tasks the designer tipically considers two

simoultaneous actions that seem to appear natural during the HCI: deactivate the GC
in which the source sub-task is executed and activate the GC in which the target sub-
task will be executed. However, these actions are not explicitly specified by [USIX05].
Therefore, in order to offer a more precise identification of transition types between
GCs we extend the existing set of values by introducing two new ones: activate and
deactivate.

 The existing ontology did not allowed to specify the synchronization between the
graphical and the vocal components. Synchronization is an issue specific to the MM
environments. Since the current work consideres MM applications using both vocal
and graphical interactions, they should always be synchronized [IBM03b]. Therefore,
we introduce hereafter the synchronization relationship which synchronizes the
information manipulated by the vocalCIOs and graphicalCIOs in a MM UIs. The
two types of interaction objects specified in our ontology are syntactically separated
one from the other (Requirement 2. Separation of modalities). The synchronization
relationship ensures that:
• Vocal input is returned to both vocalCIOs and graphicalCIOs
• Graphical input updates both vocalCIOs and graphicalCIOs.
For instance, if the user has to fill in his/her name in a textField (i.e., a GIC) by
employing the vocal modality (i.e., a vocalInput is employed), the recognized result is
updating the values in both currentValue attributes of the VIC and of the GIC. In
addition, if the user is typing the name, the introduced value is updating the values in
both currentValue attributes of the VIC and of the GIC.
Four cases when the synchronization relationship were identified:
• Synchronization between 1 VIC and 1 GIC: is defined directly between the VIC (i.e.,

the source) and the GIC (i.e., the target). For instance, if we consider the task of
vocally filling in the name of a person in a text field, the designer has to ensure
the synchronization between the vocalInput and the textField.

• Synchronization between 1 VIC and n GICs: is defined between the VIC (i.e., the
source) and the GC (i.e., the target) that embeds the n GICs. For instance, we
consider the task of vocally filling in the date in a form by using three combo
boxes (one for the day, one for the month and one for the year). If the designer
desires to enable the fulfillment of the task all at once (e.g., “5th of May 2006”)
then he/she has to embed all three combo boxes in the same GC (e.g., a groupBox)
that will be synchronized with the vocalInput recognizing the user’s input.

• Synchronization between n VIC and 1 GIC: the synchronization will be defined
between the VC (i.e., the source) that embeds the VICs and the GIC (i.e., the
target). For instance, if we consider the task of vocally selecting the date in a date
picker widget by using three separate vocalInput objects (one for the day, one for

3. Conceptual Modeling of Multimodal User Interfaces

 91

the month and one for the year), the designer has to embed all three vocalInput
objects in the same VC (e.g., vocalForm) that will be synchronized with the GIC.

• Synchronization between n VIC and n GIC: implies a decomposition process in order
to reach one of the three situations described above. If the designer wants to
reach the first identified situation where 1 VIC is synchronized with 1 GIC, then
the source and the target of the synchronization relationship will be establish by
the order in which the VICs and GICs appear.

Figure 3-15 Concrete UI Relationships

3.5 Syntax of UsiXML

As motivated in Section 3.2.2, the selected UIDL to support our ontology is the UsiXML
language. This section specifies its syntax as a support of the semantics of the ontology
introduced in Section 3.4. Syntax is often opposed to semantics: while the latter pertains
to what something means, the former pertains to the formal structure in which
something is expressed.

3.5.1 From Semantics to Concrete Syntax

On the one hand, the semantics of our ontology is defined by employing UML class
diagrams. On the other hand, the syntax of the UsiXML language has an XML-based
format structure which allows to describe sets of data with a tree-like structure. Figure
3-16 illustates how the ontological concepts defined in the previous section are
transformed in a UsiXML specification which considers XML Schemas [W3C01] for the
definition of valid XML elements. For this purpouse manual transformations (T1) are
applied in order to produce UsiXML XML Schemas from the UML class diagram
description. Objects resulting from the instantiations of class diagram concepts are
further transformed (T2) into UsiXML specification. Finally, the UsiXML specification is
validated by the corresponding XML Schema.

3. Conceptual Modeling of Multimodal User Interfaces

 92

Figure 3-16 Generation of UsiXML specification

In the following figures we illustrate how instances of a set of class diagram concepts are
submitted to transformations T2 in order to obtain UsiXML specification.
 A class becomes an XML element and class attributes become XML attributes: Figure

3-17 exemplifies how an instance of the vocalMenu class is mapped into an XML
element with the associated attributes.

Figure 3-17 Transforming of a class to into UsiXML specification

 A relationship class and the associated source/taget classes are transformed as follows: an
XML element specifying the name of the relationship and source and target XML elements
corresponding to the source and the target of relationship, respectively. Figure 3-18
exemplifies how a graphicalTransition relationship between two elements (i.e., a source
represented by a button and a target represented by a window) is transformed into
UsiXML specification.

Figure 3-18 Transformation of a relationship class into UsiXML specification

 Inheritance relationship class is transformed into an XML element for which the value of
the type attribute takes the name of the subclass. In addition, the attributes of the
subclass become XML attributes of the created element. Figure 3-19 presents two
objects of two different classes (i.e., input and output) that inherit attributes from the
same superclass (i.e., facet). For each object an XML element named facet is created.
The attributes of the subclass instances (i.e., the inputDataType and outputContent)
become XML attributes of the corresponding facet element.

3. Conceptual Modeling of Multimodal User Interfaces

 93

Figure 3-19 Transformation of the inheritance relationship into UsiXML specification

 Aggregate relationship corresponds to an XML structure where the client class and the
supplier class are transformed into XML elements according to the example provided
in Figure 3-17. The XML element generated from the client class embeds the XML
element generated from the supplier class. Figure 3-20 exemplifies how an instance
of a client class (i.e., vocalMenu) and two instances of a supplier class (i.e.,
vocalMenuItems) are transformed into XML elements. The vocalMenu element will
embed the two vocalMenuItems elements. UsiXML takes advantage of the XML
document structure and allows to derive implicit relationships between objects. For
instance, the structure of UsiXML syntax allows to infer two vocalContainment
relationships: the vocalMenu VM1 embeds the vocalMenuItems VMI1 and VMI2,
respectively.

Figure 3-20 Transformation of the aggregation relationship into UsiXML specification

3.5.2 Concrete Syntax of Interaction Objects

In this section we provide the UsiXML syntax for a series of graphical, vocal and MM
CIOs. Our methodology aims to cover the CARE properties (Requirement 3. Support
for CARE properties concerning the input/output modalities). The Complementarity and
the Redundancy in input properties require the system to perform data fusion for input
modalities or data fission for output modalities which are both out of the scope of the
current thesis (Section 1.4.3). Therefore, only the Assignment, Equivalence and Redundancy in
output properties will be addressed.

3. Conceptual Modeling of Multimodal User Interfaces

 94

Hereafter we present the possible input/output interactions for a label and a text field
widgets that enable users to specify their names (second widget in Table 3-7):
 Input:
• Graphical interaction: only graphical CIOs are involved.
• Vocal interaction: only vocal CIOs are involved.
• Multimodal interaction with vocal assignment: synchronization between VICs and GICs

is required. In addition, isEditable attribute of the GIC set to false in order to
disable the graphical input.

• Multimodal interaction with graphical and vocal equivalence: synchronization between
VICs and GICs is required. In addition, isEditable attribute of the GIC is set to
true in order to allow the graphical interaction.

 Output interactions:
• Graphical interaction: only graphical CIOs are involved.
• Vocal interaction: only vocal CIOs are involved.
• Multimodal interaction with graphical and vocal redundancy: both graphical and vocal

CIOs are involved.
The input and output interactions identified above are combined together in Table 3-8 in
order to identify a valid set of possible interactions for the considered task.

Input

Output
G V

MM with V
assignement

MM with G and V
equivalence

G G -

MM with V
assignement in input
and G assignement

in output

MM with
equivalence in input
and G assignement

in output

V - V for input and
V for output - -

MM with G
and V

redundancy

MM with G
assignement
in input and
redundancy
in output

-

MM with V
assignement in input
and redundancy in

output

MM with
equivalence in input
and redundancy in

output

Table 3-8 Possible combinations of input/output interaction types for a label and a textFiled

For the label and a text field widget each valid combination in the above table is specified
hereafter according to the UsiXML syntax. For the rest of the widgets in Table 3-7 the
specifications is provided in Appendix C.
 Graphical interaction:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue="§x".../>
</box>

 MM with G assignement in input and redundancy in output:

 <box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC3" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue="§x".../>

3. Conceptual Modeling of Multimodal User Interfaces

 95

 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your name is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="F1"/>
 <target targetId="IT1"/>
</synchronization>

 Vocal interaction:

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1"/>
 <record id="RE1" name="Record 1" defaultContent="rec_msg".../>
 </vocalInput>
 <audio id="AU1" name="Audio 1" defaultContent="Your name" audioSource="rec_msg"/>
</vocalForm>

 MM with V assignement in input and G assignement in output:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="false" currentValue="x".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1".../>
 <record id="RE1" name="Record 1" defaultContent="rec_msg".../>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="IT1"/>
</synchronization>

 MM with V assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="false" currentValue="x".../>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1".../>
 <record id="RE1" name="Record 1" defaultContent="rec_msg".../>
 </vocalInput>
 <audio id="AU1" name="Audio 1" defaultContent="Your name" audioSource="rec_msg"/>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="IT1"/>
</synchronization>

 MM with equivalence in input and G assignement in output

<box id="b1" name="Box 1"...>

3. Conceptual Modeling of Multimodal User Interfaces

 96

 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC1" name="microphone_icon"
 defaultContent="microphone.jpg".../>
 <imageComponent id="IC1" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue="x".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1".../>
 <record id="RE1" name="Record 1" defaultContent="rec_msg".../>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="IT1"/>
</synchronization>

 MM with equivalence in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC1" name="microphone_icon"
 defaultContent="microphone.jpg".../>
 <imageComponent id="IC1" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue="x".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1".../>
 <record id="RE1" name="Record 1" defaultContent="rec_msg".../>
 </vocalInput>
 <audio id="AU1" name="Audio 1" defaultContent="Your name" audioSource="rec_msg"/>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="IT1"/>
</synchronization>

3.6 Stylistics of interaction objects

The objective of this section is to provide a representation of several vocal objects
composing our ontology in order to: (1) ease the exemplification of the different vocal
concretizations of the design option values composing our design space (Section 4.2) and
(2) facilitate their perception and manipulation when employed by future developed
tools.
Typically, the stylistics of objects can take different forms (e.g., graphical, textual). In this
dissertation we adopted a graphical representation for which we provide a justification of
its components in Table 3-9.

3. Conceptual Modeling of Multimodal User Interfaces

 97

Vocal CIO
Graphical

representation
Representation rationale

vocalGroup

As it acts as a basic container the
representation is composed of a dashed
rectangle to suggest the containment
purposes and a callout symbol to indicate the
vocal character.

vocalForm

As it is a container that enables the dialog
between the user and the system the
representation is composed of a dashed
rectagle to suggest the containment
intentions, a user and a system icon next to a
callout symbol.

vocalMenu with
vocalMenuItems

As it is a container that enables to select
among different options and by analogy with
the menu provided by the graphical toolkits
the representation is composed of a blue
dashed oval to suggest the containment
purpouses, an overlaying callout symbol to
indicate the vocal aspects and yellow ovals to
indicate the vocal options.

vocalPrompt

As it is a system output that provides users
with prompt information (usually
concretized in questions) the representation
is composed of a system icon and a callout
symbol containing a question sign.

vocalInput

As it supposes that the system gathers input
from the user by speech recognition or audio
recording the representation is composed of
a user icon next to a callout symbol and a
system icon.

vocalNavigation

As it is used by the system to ensures the
dialog transfer between vocal elements the
representation is composed of a system icon
next to a callout symbol positioned above a
unidirectional arrow suggesting the transfer.

audio

As it is employed to play audio prerecorded
files the representation is composed of a
loudspeaker icon next to a musical note
symbol.

submit

As it is used to send data to the server
and/or to ensure the dialog transfer the
representation is composed of a computer

3. Conceptual Modeling of Multimodal User Interfaces

 98

icon suggesting the server adjancent with a
green arrow indicating the data upload, both
positioned above a unidirectional arrow
indicating a potential dialog transfer.

if

As it conditions the system execution of
certain parts of a document the
representation is composed of a dashed
rectagle suggesting the containment of the
parts to execute that embeds a computer
icon with a set of connected arrows
symbolizing the different decisions out of
which only one will be executed (i.e., the red
one)

break

As it interrupts the execution of the dialog
between the system and the user the
representation is composed of the icon
employed for the vocalInput over which a
cross was applied.

exit

As it terminates the execution of the vocal
application the representation is composed
of an open door icon and an arrow inviting
to exit the room.

Table 3-9 Stylistics for several vocal concrete interaction objects

3.7 Conclusions

The current chapter presented an existing ontology that was extended in order to
respond to the requirements of MM applications. In particular, a set of vocal and MM
CIOs and the relationships between them have been introduced along with their
semantics and stylistics. UsiXML, the UIDL selected to support our model based
approach describes the syntax of the object composing the ontology. In Chapter 4 this
ontolgy will serve as support for the design space based-method adopted in the current
thesis.

4. A Transformational Method for Producing Multimodal User Interfaces

 99

4 A Transformational Method for
Producing Multimodal User
Interfaces

4.1 Introduction

After describing in Chapter 3 the ontology of our MM framework, Chapter 4 focuses on
the transformational method applied over the previously introduces models. Section 4.2
introduces the design space along with the composing design options that aims to guide
the designer’s decisions during the development life cycle. Section 4.3 introduces the
details of the selected model-to-model transformational approach and emphasizes its
expansion thanks to the introduction of colored transformation rules. In Section 4.4 the
4 steps of the transformational approach are decomposed into sub-steps for which the
corresponding design options supporting them are identified and exemplified.

4.2 Design space for user interfaces

4.2.1 Definition of design space

The capabilities of MM applications are well delineated since they are mainly constrained
by what their underlying language offers, as opposed to hand-made MM applications. As
the experience in developing such MM applications is growing, the need arises to identify
and define major design options of such applications to pave the way to a structured
development life cycle. Any software development life cycle should naturally evolve from
early requirements to detailed ones, until a final system is developed and deployed. This
evolution inevitably goes through identifying, defining, analyzing, comparing, and
deciding between different, potentially contradictory, alternatives that may affect the
entire process. The UI of this software does not escape from the aforementioned
observations [Pala03].
We consider that a design option represents a design feature which effectively and
efficiently supports the progress of the development life cycle towards a final system
while ensuring some form of quality. For each design option, a finite set of design option
values denotes the various alternatives to be considered simultaneously when deciding in
favour of a design option. For instance, a designer confronted with a design decision
concerning the presentation of the UI typically selects among a set of alternatives such
as: present all the information in one window (e.g., if the UI is to be rendered on a
desktop PC), separate the information in several different windows presented
sequentially (e.g., if the UI is to be rendered on a PDA with reduced screen size
capabilities) or render the information vocally to users employing mobile phones.

4. A Transformational Method for Producing Multimodal User Interfaces

 100

Design options often involve various stakeholders representing different human
populations (e.g., the end users, the marketing and the development team) with their own
preferences and interests in the development life cycle. When a particular design option
value is assigned to a design option, it is considered that a design decision is taken. These
decisions often result from a process where the various design options are gathered,
examined and ranked until an agreement is reach among stakeholders. The decision
process is intrinsically led by consensus since stakeholders’ interests may diverge and by
trade-off between multiple criteria, which are themselves potentially contradictory.

Therefore, we define a design space as:
A structured combination of design options having assigned a finite set of design option
values that support the stakeholder’s design decisions during the development life cycle
of multimodal user interfaces.

The design space analysis [Limb00] represents a significant effort to streamline and turn
the open, ill-defined and iterative [Rous05] interface design process into a more
formalized process structured around the notion of design option. A design space
consists of an n-dimensional space where each dimension is denoted by a single design
option. For this space to be orthogonal, all dimensions, and therefore all their associated
design options, should be independent of each other. This does not mean that a
dimension cannot be further decomposed into sub-dimensions, case in which the design
space becomes a snowflake model.

4.2.2 Rationale for choosing a design space

4.2.2.a Advantages

Design options present several important advantages:
 When they are explicitly defined, they clarify the development process in a

structured way in terms of options, thus requiring less design effort and striving for
consistent results if similar values are assigned to design options in similar
circumstances.

 Defining a design option facilitates its incorporation in the development life cycle
as an abstraction which is covered by a software, perhaps relying on a model-based
approach. Ultimately, every piece of development should be reflected in a concept
or notion which represents some abstraction with respect to the code level as in a
design option. Conversely, each design option should be defined clearly enough to
drive the implementation without requiring any further interpretation effort. For
example, the design option concerning the presentation of the UI will result in the
generation of a set of widgets that satisfy the corresponding constraints.

 The adoption of a design space supports the tractability of more complex design
problems or for a class of related problems.

4. A Transformational Method for Producing Multimodal User Interfaces

 101

4.2.2.b Shortcomings

The design space suffers from set of shortcomings as the design options could be very
numerous, even infinite in theory. But in practice, it is impossible to consider a very large
amount of design options because of several reasons:
 They are too complex or expensive to implement.
 They do not necessarily address users’ needs and requirements.
 They are outside the designer’s scope of understanding, imagination or

background.
 Their decision is not always clear and when it is taken it may violate some usability

principles or guidelines. For example, deciding a particular design option may lead
to a design which is probably feasible to be implemented, but which is likely to be
unusable or inconsistent. Reducing a design to a set of design options may restrict
the designers’ creativity or could be perceived as such. Design options, anyway and
anyhow, will always represents a restriction of the complete design space, the
problem being to identify the relevant ones and leaving out the ones that are too
detailed and that do not affect the UI quality.

 Not all design options could be discovered or defined in an independent way as
they sometimes appear very intertwined. Moreover, not all the possible values of a
design option may be equal in implementation cost.

4.2.2.c Justification

We consider important to define such a design space for the development of MM
applications (Requirement 8: Approach based on design space) because of the qualities it
ensures:
 Intrinsic qualities: according to [Beau00] a design space is by its nature:

• Descriptive: all design options are documented and allow summarizing any design
in terms of design options values. These values have been identified and de-
fined based on observation and abstraction of UIs and by introspection over
the personal knowledge regarding the information systems.

• Comparative: several different designs of MM UIs may be analyzed and com-
pared based on the design options considered in their development so as to as-
sess the design quality in terms of factors like utility, usability, portability, etc.

• Generative: the design space allows to discover potentially new values for the ex-
isting design options or to introduce new design options associated with yet
under explored design aspects.

 Extrinsic qualities:
• Independently of any implementation or tool support, having at hands a design

space where a small, but significant set of design options could be envisaged is
a contribution which could be useful to any designer of MM applications. This
provision helps designers to avoid to replicate the identification and definition
of these design options, while leaving them free to consider other options or to
overwrite the existing ones.

• The languages in which they are implemented restrict the amount of possible
interfaces to obtain as they directly set the CARE properties to assignment,
equivalence, complemetarity or redundancy. Moreover, the interaction styles
[Beau00] supported by these languages make them appropriate for certain types

4. A Transformational Method for Producing Multimodal User Interfaces

 102

of applications (e.g., information systems), but totally inadequate for other
types (e.g., air traffic control) [Macl89]. Therefore, a design space composed of
design options independent of the interaction modality is a solution that offers
designers explicit guidance during the development life cycle by providing
flexibility with respect to the interaction modalities to select and the types of
combination to set among them.

• Multimodal applications often employ graphical and vocal interaction
modalities. When used together they multiply the combinations of modality
concretizations assigned to design options values thus complexifying the entire
design space. Sometimes, a design option which was estimated relevant for a
particular modality (e.g., the graphical modality) may become totally irrelevant
for other modalities (e.g., the vocal modality) or for its combination with other
modalities (e.g., multimodality with graphical and vocal interaction). Therefore,
a design space defined with an explicit set of design options and values clarifies
the development process and simplifies the design decisions.

4.2.3 Design options for user interfaces

Our design space (Figure 4-1) is composed of a set of sixteen modality independent
design options introduced hereafter according to a structured schema: each design option
is consistently named, defined, justified through a rationale, and explicited with design
option values. The design options will be specified in rectangles, whereas their associated
values in ovals. Each value is sustained by examples that illustrate its concretization for
the following interaction modalities:
 Graphical: supported by UsiXML graphical CIOs/group of objects.
 Vocal: supported by UsiXML vocal CIOs/group of objects for which the stylistics

introduced in Section 3.6 is used.
 Multimodal: combining together the previously specified interactions taking into

consideration the CARE properties.
Two particular situations have been identified: (1) a design option value does not
necessarily have a correspondent concrete object for all considered interactions; (2) the
same concrete object can be associated to multiple values.

Figure 4-1 The design options composing the design space

(1) Sub-task triggering
Definition. It specifies which entity has the initiative to launch and to control the
triggering of the sub-tasks.

4. A Transformational Method for Producing Multimodal User Interfaces

 103

Rationale. When considering the interaction between the user and the system as a dialog
between parteners, it is important to consider which partener has the initiative in the
conversation. The system can initiate all dialogs, in which case the user simply responds
to requests for information or action. This dialog is called system-driven because the
system more or less decides which action the user may perform [Gram96]. Alternatively,
the system might react only to user input, in which case the dialog is called user-driven
because the user has more freedom in chosing the next action. Consequently, the
initiative could be also mixt, if either the user or the system may have the initiative.
System-driven dialogs tend to be preemptive as they limit the user’s choice of next
available action, whereas user-driven interaction favors non-preemptiveness. For
instance, a dialog box may prevent the user from interacting with the system in any way
that does not have a direct input to the box, thus preventing user’s flexibility. In general,
designers want to minimize the system’s ability to preempt the user although some
situations may require it for safety reasons. For example, in critical systems in which a
user error would result in serios damage whithout a chance for recovery, it is desirable, or
even necessary, to limit the user’s freedom. [Lars06] shows that in MM UIs a user-driven
dialog and a mixed one may be useful for experienced users, while they are confusing and
inhibiting for novice users.
Consequently, the designer must have a good understanding of the set of tasks to
perform, how those tasks are interrelated and the experience level of the users with those
tasks in order to minimize the likelihood that the users will be prevented from initiating
or advancing some tasks at the time they want to do so.
Values. Even if we identified three types of dialog initiatives, the mixt one is not
considered a possible value as it can be obtained as a result of the combination of the
user and the system intiative:
 System:

• a GUI that automatically changes the focus on the next widget once the user
finished to fill in the current one.

• in VUI:
System: “What is your zip code?”
User: “1348”.
System: “Please say your gender.”
User: “Female”.

 User:
• a GUI that enables the user to choose the widget to fill in at any time.
• in VUI:

System: “What information would you like to input?”
User: “Gender”.
System: “Please say your gender.”
User: “Female”.

(2) Sub-task presentation
Definition. It specifies the way in which the system is presenting the sub-tasks to the
user.
Rationale. Designers of MM UIs attempt to take into account the relation between the
structure of the tasks to be performed and the manner of presenting it in the UI. Central

4. A Transformational Method for Producing Multimodal User Interfaces

 104

to this design issue is the way in which the information is conveyed and cognitively
processed by the end users [Norm86].
If we consider the GUIs, the most obvious and apparent mode of presenting the
information is the physical layout of the display and its functional properties. Here the
user visualises UI screens containing for instance windows, dialog boxes, selection lists,
tabbed dialog boxes,etc. and information diplayed thereon. Design issues at this level
include, but are not restricted to, the amount of information that can be presented on the
screen, the spatial location of the screens, the linking of information from one screen to
another.
Therefore, in order to expand the amount of information presented to the user, the
physical layout is being split into small chuncks according to the structure of the tasks to
be performed, thus creating multiple screens. These screens could be separate (e.g.,
separated windows) or gathered together on the same screen (Figure 4-2). Furthermore,
the later could be overlaid or fusioned one next to the other. With overlaid screens,
there is no increase in the real amount of information displayed at once. However, there
is an apparent increase in the sense that the users infer that the information is there,
although it is covered up. A real increase in the amount of information is achieved only
with fusioned screens.
In order to expand the utility of the physical layout a number of methods for
coordinating the screens have been proposed and developed [Shne86]. Therefore, a UI
may be structured so that if the user is selecting an item on a working screen, instances of
this item and/or detailed information about the item could be displayed on another
screen without changing the contents on the working screen.
After interpreting and interacting with the physical layout, the user inferes from the
system a cognitive model of what is going on. The result will be a cognitive structure in
the user’s mind with elements and relationships among them that map the elements and
relationships at the UI level. Therefore, the designer should model the layout not only
for efficient communication of information, but also to induce and suggest an
appropriate cognitive layout. One cognitive representation that has a very powerfull
visual impact is the zoom in - zoom out screen. A set of selection items are displayed one
bellow the other and once an item is selected it will zoom in the corresponding
informations by unrolling a screen that finds its place between the selected item and the
one right bellow it. A zoom out concretized in rolling up the screen is possible at any
time either by selecting the current item or any other item in the selection list.
The human perceptual system tends to group objects that are in close proximity or
similar in size, shape, color or orientation. Therefore, different screens fused together
should visually organize information displayed thereon. The organization should take
into account the topology (location) and some graphical characteristics (format) in order
to indicate the relationships between the various information displayed and whether they
belong to a given class or not [Bast93]. The users’ understanding of a screen depends,
among other things, on the ordering, the positioning and the distinction of objects (e.g.,
images, text, commands) that are presented. Users will detect the different items or
groups of items, and learn their relationships more easily if, on the one hand, they are
presented in an organized manner (e.g., alphabetic order, numbered order), and on the
other hand, if the items are presented in formats that indicate their similarities or

4. A Transformational Method for Producing Multimodal User Interfaces

 105

differences (e.g., a separation line between information belonging to different classes).
Consequently, the learning and remembering of items will be improved. Moreover,
grouping or distinction of items will lead to a better guidance for the end users.

VUIs are transient [Java 98] so the user doesn’t relay anymore on the persistent visual
support of the screens. Therefore, the temporal aspect will play an important role that
has a powerfull effect on the perceptual grouping and inferred order of information. To
keep from overloading the user’s short-term memory, information presented in a VUI
must generally be more concise than information presented visually. Often, only the
most essential information should be presented initially (e.g., the list of vocal items), with
the opportunity for the user to access detailed information about these items at a lower
level. By analogy with the traditional notion of graphical formatting presented above, we
consider the vocal formatting as a useful technique that increases the bandwidth of vocal
communication by using speech and non-speech cues to overlay structural and
contextual information of vocal output. For this purpose [IBM03a] specifies a set of
recommendations. For instance, buletted list presented in GUI should have as equivalent
in VUI a short sound snippet as an auditory icon at the begging of each item in the list,
graphical bold or italics used to introduce an ordered list of sub-task titles should be
emphasised in VUIs using auditory inflection technique such as changing volume or
pitch. Moreover, for grouping or separating a set of vocal items whether they belong to
the same class or not, designers should consider audio files playing a unique sound or
special tone.
Values. The possible values identified as leaves in Figure 4-2 are by no means exhaustive
and represent a point of departure in the system design meant to stimulate further
thinking about how the user interprets the information presented by the system.

Figure 4-2 Sub-task presentation values

For each value a correspondent vocal and/or graphical concrete object is illustrated
Figure 4-3. Thus, the presentation of the sub-tasks can be:
 Separated: each sub-task is conveyed in different containers (e.g., different screens

each one containing a window in GUIs or different vocalGroups in VUIs).
 Combined: the sub-tasks are conveyed in the same container (e.g., a single screen

containing a window or a dialog box in GUIs or a vocalGroup in VUIs):
• One at once: only one sub-task is presented at a time. The possible values are:

 Extended task list: in GUIs a selection screen (on the left) containing the
available items and their associated overlaid screens presenting the detailed

4. A Transformational Method for Producing Multimodal User Interfaces

 106

information (on the right), whereas in VUIs a vocalMenu with
vocalMenuItems indicating the name of the possible vocalGroups among
which to choose.

 Reduced task list: in GUIs a comboBox containing the available items to select
and their associated overlaid screens presenting the detailed information,
whereas in VUIs a vocalForm composed of a vocaPrompt inviting the user to
select an option and a vocalInput regarding the user’s options that are
further specified in a vocalMenu with vocalMenuItems.

 Tabbed list: in GUIs a tabbedDialogBox with tabbedItems in its upper part
and associated overlaid screen presenting the detailed information,
whereas in VUIs the concretization is the same as for extended task list
counterpart.

 Single expansion list: in GUIs a floatWindow containg the floatItems that
enables to zoom in the detailed information displayed in associated fused
screens, whereas in VUIs the concretization is the same as for extended
task list counterpart.

• Many at once: multiple sub-tasks are presented in the same time. The possible
value is multiple expansion list. The graphical concretization is identical to the
single expansion list counterpart, with the difference that multiple surfaces can
be presented simoulatenously. We consider the vocal concretization difficult
to achieve due to temporal constraints.

• All at once: all sub-tasks are presented simultaneously. The possible values are:
 Separated list: in GUIs the separation can be ensured by a blank space or

an horizontal line, whereas in VUI the vocalPrompts synthesizing the sub-
tasks are separated by audio elements playing audio files.

 Grouped list: in GUIs the separation can be ensured by a frame line or
colored background, whereas in VUIs the concretization is the same as
for separated list counterpart.

 Bulleted list: in GUIs the tasks are introduces by a ●, □, →, √, etc., whereas
in VUIs audio elements playing sounds such as beeps, dongs, etc. are
followed by vocalPrompts synthesizing the sub-tasks name using auditory
inflection techniques.

 Ordered list: in GUIs the sub-tasks are ordered by items such as (1, 2, 3),
(a, b, c), (i, ii, iii), (α, β, γ), etc., whereas in VUIs vocalPrompts synthesizing
the items specified in the graphical example are followed by vocalPrompts
uttering the sub-tasks name using auditory inflection techniques.

4. A Transformational Method for Producing Multimodal User Interfaces

 107

Figure 4-3 Sub-task presentation values and a possible concretization in vocal and graphical

objects

Whenever the designer needs to convey sibling sub-tasks into different presentations, an
approach by problem reduction is applyed, i.e. the simplification to an already solved
problem. This is done by transforming the initial task structure into an equivalent one
where the sibling sub-tasks are placed one level lower and are grouped as sub-tasks of a
newly introduced task.
Sub-task presentation is a design option that is independent of the type of temporal
relationships specified between the sub-tasks. Even if all the current presentations are
valid there are some better suited then others according to IFIP quality properties
[Gram96]. For instance, the extended task list value is better then the reduced task list one
which is at its turn better then the separated value. This is due to the fact that the former
value makes the sub-tasks observable and browsable, the second it is just browsable,
whereas the later is neither observable nor browsable.

(3) Sub-task navigation
Definition. It specifies the manner in which the user is able to browse the sub-tasks
presented in a UI.
Rationale. The navigation scheme of a UI should allow users to find and access
information effectively and efficiently when interacting with the system. Navigation is
characterized in [Gram96] by the reachability property which refers to the possibility of
navigating through different system states. This property contributes to the system
quality and must be considered explicitly during the development life cycle. It can be

4. A Transformational Method for Producing Multimodal User Interfaces

 108

defined at any level of detail, but our interest is focused mainly on the observable states.
One of the issues of the reachability property is whether the user can navigate from any
given observable state to any other observable state. From the user’s point of view it may
be useful to distinguish between backward and forward reachability. The user may want
backward reachability in order to get back to some previous state of the interaction, after
having made a mistake or realizing a need for some previous information. Forward
reachability means that the user is able to proceed to any desired interaction state,
independently of previous dialog development.
Synchronization is an issue specific to the MM environment. Since the MM applications
are using navigational scheme that involve both vocal and graphical modalities, they
should always be synchronized [IBM03b]. For example, while the vocal side of the
application is processing a dialog assigned to sub-task one, the graphical counterpart
should not be directed to the second sub-task unless the vocal side is also making a
transition to that sub-task. If the user forces the transition manually, the VUI should
adjust accordingly by either stopping the process for sub-task one and starting the
process for sub-task two or by playing an error message. The graphical UI should display
the page to match the vocal response as well.
In Section 3.4.4 we extended the graphicalTransition and vocalTransition relationships with
the activation and deactivation values. Hereafter we propose a graphical notation assigned to
these values that comes as an extension of [Vand03] dedicated to the navigation between
interaction objects. Thus, the deactivation actions are symbolized with a yellow bulb,
wheras the activation actions are illustrated with a red bulb.
Values. Two design option values were identified, for each one the correspondent vocal
and graphical concrete objects being illustrated (Figure 4-4):
 Sequential (synchronous): enables users to navigate forward and backward in a linear

manner from the current sub-task to a neighbour sub-task only (e.g., in the GUI is
ensured by the group of (PREV, NEXT) buttons, whereas in the VUI is ensured by
vocalNavigation objects).

 Asynchronous: enables users to navigate forward and backward in a linear or non-
linear manner from the current sub-task to any other desired sub-task, thus
providing users with more flexibility in manipulating the interface (e.g., in the GUI
is ensured by buttons specifying the possible sub-tasks to visit, whereas in the VUI is
ensured by vocalNavigation objects).

4. A Transformational Method for Producing Multimodal User Interfaces

 109

Figure 4-4 Types of navigation between sub-tasks and a possible concretization in vocal and

graphical objects

(4) Navigation type
Definition. It specifies the type of containment and the cardinality of the objects/logically
grouped set of objects that ensure the navigation (Figure 4-5).
Rationale. The containment refers to the position of the navigation objects with respect
to the information presented by each sub-task. The navigation objects/group of objects
could have an instance in each sub-task presentation or could be concretized in a general
navigational object/group of objects that ensure the browsability among all sub-tasks.
The cardinality specifies the number of objects that ensure the navigation. The traditional
design of a user interaface considers a single object/group of objects that ensure the
navigation between the sub-tasks. However, two or more navigational objects/group of
objects ensuring the same functionality could be conveyed by the system and made
available to the user simoultaneously. These objects might improve the interaction
flexibility and reduce the access time to the navigational functionalities. However, their
redundant character could mislead the user if they are not carefully selected and
conveyed.
Values. From the containment point of view two values are identified:
 Local: each sub-task has a corresponding navigation object (e.g., in GUI a button

embedded in its correspondent groupBox, whereas in VUI a vocalNavigation
embedded in its correspondent vocalGroup).

 Global: all sub-tasks have one common navigation object (e.g., in GUI a button,
whereas in VUI a vocalMenu with vocalMenuItems indicating the name of the possible
vocalGroups to visit).

From the cardinality point of view two values are identified:
 Simple: a single object or a single logically grouped set of objects ensures the

navigation (e.g., in the GUI a group of tab items of a tabbedDilalogBox, whereas in the
VUI a vocalNavigation object embedded in its corresondent vocalGroup).

4. A Transformational Method for Producing Multimodal User Interfaces

 110

 Multiple: two or more objects/logically grouped set of objects ensure the navigation
(e.g., in the GUI a group of tabItems in a tabbedDialogBox and the (NEXT,
PREVIOUS) group of buttons, whereas in the VUI a vocalMenu with vocalMenuItems
indicating the name of the possible vocalGroups to visit at any time during the dialog
and a vocalNavigation object embedded in its corresponent vocalGroup).

Figure 4-5 Navigation type values and a possible concretization in vocal and graphical objects

(5) Control type
Definition. It specifies the type of containment and the cardinality of the objects/logically
grouped set of objects that ensure the data control (Figure 4-6).
Rationale. By data control we understand any operation in charge with the exchange of
data between the user and the system (e.g., storing data into a database, retriving data
from a database, sending data to the system in order to be processed, canceling one of
the previously specified operations). The containment refers to the position of the
control objects with respect to the information presented by each sub-task. The data
control objects/group of objects could have an instance in each sub-task presentation or
could be concretized in a general object/group of objects that ensure the data control of
the UI. The cardinality specifies the number of objects that ensure the data control. The
traditional design of a UI considers a single object/group of objects that ensure the data
control of the application. However, two or more control objects/groups of objects
ensuring the same functionality could be conveyed by the system and made available to
the user simoultaneously. These objects might improve the flexibility of data control and

4. A Transformational Method for Producing Multimodal User Interfaces

 111

reduce the access time to the data control functionalities. However their redundant
character could mislead the user if they are not carefully selected and conveyed.
Values. From the containment point of view two values are identified:
 Local: each sub-task has a corresponding control object (e.g., in GUI a button

embedded in its correspondent groupBox, whereas in VUI a submit object embedded
in its correspondent vocalForm).

 Global: all sub-tasks have one common navigation object (e.g., in GUI a button,
whereas in VUI a submit object).

From the cardinality point of view, two values are identified:
 Simple: a single object or a single logically grouped set of objects ensures the data

control (e.g., in the GUI a group of tabItems of a tabbedDilaogBox, whereas in the
VUI a submit object embedded in its corresondent vocalForm).

 Multiple: two or more objects/logically grouped sets of objects ensure the data
control (e.g., in the GUI a group of tabItems in a tabbedDialogBox and an OK button,
whereas in the VUI a general submit object and for each sub-task a vocalForm
embedding a vocalPrompt requesting the user to decide whether the data will be send
to the server or not, a vocalInput gathering user’s responses and an if object used to
send the data thanks to the submit object if the condition holds true).

Figure 4-6 Control type values and a possible concretization in vocal and graphical objects

(6) Navigation and control type
Definition. It specifies whether the navigation and data control are ensured by the same
object/logically grouped set of objects (Figure 4-7).

4. A Transformational Method for Producing Multimodal User Interfaces

 112

Rationale. The navigation and the data control functionalities could be grouped together
in order to be ensured by one single object thus improving the interaction speed between
the system and the user. This design decision has its drawbacks in the sense that the
designer should identify possible errors and recover the system according to the
functionality that generated them. On the other side, a clear separation of the two
functionalities could be ensured by the use of two different objects/groups of objects
which differentiate semantically the triggered actions. The advantage is that the user is
not confused anymore by the meaning of his/her actions.
Values. Two design option values were identified:
 Separated: different objects/logically grouped sets of objects ensure the control and

the navigation between sub-tasks (e.g., in the GUI two buttons, one ensuring the
navigation and one the data control, whereas in the VUI two vocal components, a
vocalNavigation object ensuring the navigation and a submit object ensuring just the
data control).

 Combined: the same object/logically grouped set of objects ensures simultaneously
the navigation and the control (e.g., in the GUI the same button ensures the
navigation and the control, whereas in the VUI the submit element ensures both the
navigation (thanks to the nextContainer attribute) and the control).

Figure 4-7 Navigation and control type values and a possible concretization in vocal and graphical

objects

(7) Sub-task guidance
Definition. It specifies whether the end-user is guided with the possible answers to utter.
Rationale. As an application becomes more complex, offering the user more choices,
the need of guidance becomes mandatory. For simple applications with fewer choices,
the user may need guidance only the first time the application is run. Moreover, a novice
user may not know the meaning of a field or the list of valid commands. For all these
situations, the designer should convey the list of choices so that users can be guided with

4. A Transformational Method for Producing Multimodal User Interfaces

 113

the possible options to select [Lars06]. However, if the user is likely to know the set of
valid responses as it is obvious (e.g., the gender of a person) or if the list contains long or
nearly infinite set of items, the designer shouldn’t guide the user with the possible
options to select.
Values. Two design option values were identified:
 Guided: the system provides the possible answers to the end-user

• GUI that provides the user with the possible car colors to select (Figure 4-8).
• VUI:

System: “Choose between green, red and black”.
User: “Red”.

 Unguided: the system doesn’t provide the user with the possible answers:
• GUI: in order to specify his/her name the user in not guided as there are

numerous values that can be specified (Figure 4-9).
• VUI:

 System: “What is your name?”
User: “Michael”.

 Figure 4-8 Guided sub-task in GUI Figure 4-9 Unguided sub-task in GUI

(8) Support for default value and unit
Definition. It specifies whether the system provides default values to the user and the
corresponding unit for data entry.
Rationale. The workload with respect to the number of actions necessary to accomplish
a task should be one of the concerns of UI designers. This requires the limitation, as
much as possible, of the number of steps users must go through when interacting with
the UI. The more numerous and complex the actions necessary to achive a task, the
more the workload will increase and, consequently, the more probable the risk of making
errors. For this purpouse default values and their assigned units should be conveyed to
the users that are dealing with data entry [Bast93]. This will contribute to the
minimization of the number of actions to perform when accomplishing the task.
However, default values and units do not always make sense. For data entries that
involve a high number of choices providing a default value is not appropriated.
Moreover, the default unit might not be necessary when it is obvious as it is frequently
used on a day to day basis. Therefore, in these latter examples no default values or units
should be provided as they will only influence in a negative manner the concision of the
UI [Bast93].
Values. The possible values are:
 With support: the system provides default values and units

4. A Transformational Method for Producing Multimodal User Interfaces

 114

• GUI: the user has to select the zoom level which is expressed on a scale from
10 to 500 and the unit is expressed in percentage (Figure 4-10).

• VUI: the vocal equivalent of the situation described above is:
System: “Please specify the zoom level on a scale from 10 to 500 percentage”.
User: “75”.

 Without support: the system provides neither the default values, as there is an infinite
number of choices, nor the unit, as the data entry is not assigned to any metric
• GUI: when the user has to provide his/her first name he/she will type it in the

data entry field (Figure 4-11).
• VUI: the vocal equivalent of the situation described above is:

System: “Please specify your first name”.
User: “Michael”.

 Figure 4-10 Ambigous answer in GUI Figure 4-11 Unambigous answer in GUI

(9) Answer cardinality
Definition. It specifies the cardinality of the items composing the user’s answer.
Rationale. When interacting with the system, the user’s input consist either of a single
answer from an undefined range of values or a single/multiple selection of item(s) from a
list of predefined options. In order to support these situations the research literature
recommands specific interaction objects depending on the considered interaction
modality. Thus, in GUIs a single input from a list of undefined options should be
realized in an entry field [John95], whereas multiple inputs should be specified in an entry
field and accumulated in a listbox [Boda94]. The same studies show that for predefined
values in a list of less then seven values, radio buttons should be used for simple
selection and check boxes for multiple selection, whereas for more than eight values,
single selection listbox objects are recommended for simple selection and multiple
selection listbox objects with accumulator for multiple selection. For VUIs the number
of help requests and errors increseases [Enge89] if more than four options are provided
[Goul87, Knol90] or even more than three according to [Deva91]. Moreover, when the
users are unfamiliar with the system, the number of options should be provided in order
to cue them not to respond too soon if uncertainty exists [Schu92].
Values. The possible values are:
 Simple: a single answer from an undefined range of values or the selection of a

single item from a list of predefined options:
• GUI: when asked to fill in the year of birth there is only one value that can be

selected (Figure 4-12).

4. A Transformational Method for Producing Multimodal User Interfaces

 115

• VUI: the vocal equivalent of the situation described above is:
System: “Which is your year of birth?”
User: “1980”.

 Multiple: the selection of multiple items from a list of predefined options:
• GUI: when asked to specify the his/her hobbies, the user may select multiple

items (Figure 4-13).
• VUI: The vocal equivalent of the situation described in above is:

System: “Which are your hobbies?”
User: “Sport and music.”

 Figure 4-12 Single answer in GUI Figure 4-13 Multiple answer in GUI

(10) Confirmation answer
Definition. It specifies whether the user’s response if followed or not by an extra
confirmation question.
Rationale. Like humans, systems that attempt to understand user’s input make mistakes.
However, humans avoid misunderstandings by confirming doubtful input. MM systems
have historically been designed so that they either request confirmation or not at all
[McGe98]. If the system receives input that it finds uncertain, ambiguous or infeasible, or
if its effect might be profound, risky, costly or irreversible, it may want to verify its
interpretation of the command with the user. For instance, a system prepared to execute
the command “Format hard disk” should give the user a chance to change or correct the
command. Otherwise, the cost of such an error is task-dependent and can be
immesurable. [Blan06] argues that designers should use confirmations to ensure the
correctness of a high risk ireversible input.
Therefore, the system should be able to request confirmation of the user’s command, as
humans tend to do. Just like in human-to-human dialog, such confirmations are used to
achive common ground in HCI. Moreover, confirmations are an important way to
reduce miscommunication. In fact, the more likely miscommunication is, the more
frequently designers should introduce confirmations.
As MM UIs combine two or more interaction modalities, choosing the occurrence
moment of the confirmation is another issue. Confirmation could occur for each
modality or be delayed until the modalities have been fussioned. [McGe98] shows that
confirmation after fusion reduces the time to perform manipulation tasks with the UI,
making the interaction faster.
Values. Two values were identified:
 With confirmation: the system requests a confirmation of the previous answer from

the user:

4. A Transformational Method for Producing Multimodal User Interfaces

 116

• GUI: when deleting system files a confirmation question is recommended in
order to verify the user’s decision (Figure 4-14).

• VUI:
System: “Do you want to delete the file ‘configsys.exe’?”
User: “Yes”.
System: “Your answer was yes. Do you confirm?”.
User: “Yes”.

 Without confirmation: the system doesn’t require any further confirmation:
• GUI: the specification of age in a booking flight system is not a critical

information and doesn’t require any confirmation (Figure 4-15).
• VUI:

System: “What is your age?”
User: “27”.

 Figure 4-14 Confirmation message in GUI Figure 4-15 Non-confirmed message in GUI

(11) Answer order
Definition. It specifies the order in which the users can convey the answers.
Rationale. [Pate97] introduces a formal specification of operators used to specify
temporal relationships among tasks independent of the modality employed to achive
them. Among these operators we identify the enabling operator according to which one
task enables a second one when it terminates. An order-independent operator is also
introduced as a binary operator with the following semantic: at the beginning both tasks
(T1 or T2) can be performed. However, as soon as the first action of task T1 (respective:
T2) has been carried out, the whole task T1 (respective: T2) has to be performed before
enabling the performance of task T2 (respective: T1). Such an operator is suitable when
tasks T1 and T2 have to be sequentially executed, without imposing any restriction over
which task to execute initialy.
In VUIs many factors must be considered when designing if the order in which the
information can be specified by the users is the same as the one requested by the
system’s prompts, but the most important thing is assessing the trade-off between
flexibility and performance. The more designers constrain what user can say to an
application, the less likely they are to encounter recognition errors [Java98]. On the other
hand, allowing users to enter information flexibily can often speed the interaction (if
recognition succeeds), feel more natural, and avoid forcing users to memorize
commands.
Values. Two design option values were identified:

4. A Transformational Method for Producing Multimodal User Interfaces

 117

 Order dependent: the user has to convey the information in a predefined order:
• GUI: in Figure 4-16 the user has to fill in first the gender after which the

combobox for specifying the year of birth will be activated.
• VUI: the user has to utter the information in a predefined order so as to be

recognized by the system:
System: “What are your gender and birth year?”
User: “I am male and I was born in 1980.”

 Order independent: the user has the flexibility of conveying the information not
necessarily considering the order in which it is requested by the system:
• GUI: in Figure 4-17 the user can specify the gender and the year of birth in any

order.
• VUI: the user has the flexibility of uttering the answers in any order and the

system is in charge of mapping the answers to the correct location:
System: “What are your gender and birth year?”
User: “I was born in 1980 and I am male”.
System: “Your gender is male and you were born in 1980”.

 Figure 4-16 Order dependent answer in GUI Figure 4-17 Order independent answer in GUI

Hereafter we introduce a set of five design options that found their basis in the
ergonomic criteria for the evaluation of human-computer interfaces presented in
[Bast93]. After giving an insight into these criteria we abstracted a subset of them into
design options. The selected criteria apply better with respect to the development process
of ISs, while the rest of them refer to features of the resultant IS that can be checked
only at the end of the development process and consequently they do not represent an
interest for the current work. For instance, the explicit user action criterion refers to the
relationship between the computer processing and the actions of the users. Accordingly,
this relationship must be explicit, i.e. the computer must process only those actions
requested by the users and only when requested to do so. But these actions can be
identified only at run-time.
The subset of selected criteria is adapted for the development of MM UIs. Therefore, the
resultant values specify the interaction type in which the design option can be
concretized. Moreover, we associate to each value the corresponding CARE properties.
The first design option concerns the input modalities, whereas the last four refer to
different aspects of output modalities.

(12) Input
Definition. It specifies the modalities available to the user in order to provide
information to the system.
Rationale. The nature of the task influences the input modality (modalities) selected by
the users to perform them. Several researches demonstrated that tasks that are easy to
perform in one modality may be difficult or even imposible to achieve using other
modalities. For instance, [Meri06] shows that the vocal modality is mostly used in the

4. A Transformational Method for Producing Multimodal User Interfaces

 118

case of a precise and short input data. [Lars06] provides a series of suggestions
concerning the input modalities that are more appropriate depending on the nature of
the tasks to achieve, the constraints of the physical device and the working environment
of the user.
Studies made on a set of four basic manipulation tasks (i.e., select objects, enter text,
enter symbols and enter sketches or illustrations) using three traditional input modalities
(i.e., vocal (voice), graphical (keyboard and mouse) and tactile (stylus pen)) reveal the
following observations: (1) object selection is easy with a pen or using voice to specify
the desired object, but more difficult with the keyboard; (2) for entering the text all the
modalities can be used but most users can speak and write easily; (3) entering
mathematical equations, special characters and signatures is easy with a pen, awkward
and time consuming with a mouse and most difficult with speech; (4) drawing simple
illustrations and maps is easy with a pen, awkward with a mouse and nearly impossible
with speech.
Some physical device constraints (e.g., size, shape, placement of the microphone, size of
display, size of keys in a keypad) could also influence the input modality to be employed
by the user. Therefore, the following suggestions are provided: (1) if user’s hands are
unavailable for use, then make speech available; (2) if user’s eyes are busy or unavailable,
then make speech available; (3) if the user is moving, then make speech available. In
addition, users might work in environments that may not be ideal for some input
modalities. The environment might be noisy or quite, light or dark, moving or stationary
with a variety of distractions and possible dangers. Therefore, two additional suggestions
are made: (4) if the user is in a noisy environment, then use graphical or tactile modality;
(5) if the user’s manual dexterity is impaired, then use speech.
We conclude that each input modality has its strengths and weakness. Consequently, a
useful and efficient MM UI has to use the appropriate modality for each input.
Values. The possible values are:
 Vocal (assignment).
 Graphical (assignment).
 Multimodal (equivalence, complementarity or redundancy).

(13) Simple output
Definition. It specifies the modalities available to the system in order to produce
information that will be further perceived by the user.
Rationale. In our thesis MM UIs consist of both vocal and graphical elements. There is
no absolute need for a one-to-one mapping between them. Some information is better
conveyed in vocal modality, other in graphical, but the majority of designers combine
both modalities in most cases [IBM03b].
In general, welcome and introductory information can be well conveyed using voice to
catch the user’s attention as soon as the application starts. The elements containing brief
information (i.e., short instructions) are well suited for voice. For instance, in an e-mail
application that can read out loud the e-mail subject, users can individually choose to
read or listen to a particular e-mail rather than browsing each one.
Some information is not easy to present using voice, such as graphics, diagrams and
tables. These are better presented in visual format. If the designer wants to add voice to

4. A Transformational Method for Producing Multimodal User Interfaces

 119

these visual elements, they need to give special consideration to the wording of the
speech by emphasizing the key information it depicts. For example, if the designer wants
to convey a pie chart using both graphical and vocal modalities, the application may say:
“The biggest segment is … and the smallest segment is …” when the chart is displayed.
Moreover, [Meri06] shows that the graphical modality is usually preferred by end-users
while visualizing the output data as they have the possibility of re-reading them.
Since a MM application enables both vocal and graphical interaction, it is very important
to keep a consistent Sound, Look and Feel of the application. To promote consistency,
designers should use a consistent strategy for determining which information to present
vocally, which to present graphically, and which to present using both modalities.
Moreover, they should try to use the same terminology in both interfaces whenever
possible. For example, the system shouldn’t utter “Let’s get started”, while the visual
interface displays the “Welcome to the car rental system”. Synchronization is an issue
specific to the MM environment. Since MM applications are conveying information to
the user using both vocal and graphical modalities, they should be always synchronized
[IBM03b]. The designer should avoid long paragraphs of information at one time
because users may easily lose their attention while listening and reading. They should
make paragraphs as brief as possible if they want to convey the information in both
modalities. If they still want to convey the information using a long paragraph, it is better
to convey it visually only so that users can choose to read it at their own speed.
Values. The possible values are:
 Vocal (assignment).
 Graphical (assignment).
 Multimodal (equivalence, complementarity or redundancy).

(14) Prompting
Definition. It specifies the modalities available to the system in order to lead the users to
take specific actions whether it is data entry or other tasks.
Rationale. Good prompting guides the users and saves them from learning a series of
commands [Bast93]. In addition, it allows them to know exactly the current modality,
where they are in the dialogue as well as the actions that resulted in that context.
Therefore, well designed prompts help users navigate in the application, reduce the
errors and ensure a successful interaction with the application.
Deciding on an appropriate prompt with respect to the employed modality depends
greatly on the content and context of the application [Java98]. If privacy is an issue, it is
probably better not to have the computer speak out loud. On the other hand, even a little
bit of spoken output can enable eyes-free interaction and can provide the user with the
sense of having a conversational partener rather than speaking to an inanimate object.
The reflexive principle states that users tend to respond in the same manner and employ
the same modality that they are prompted [Lars06]. Therefore, if the designers want to
urge users to respond vocally they should use vocal prompts, whereas for graphical
responses they should employ graphical prompts. In any case a MM prompt will provide
users with the flexibility of selecting the appropriate modality to use.
Values. The possible values are:
 Vocal (assignment).

4. A Transformational Method for Producing Multimodal User Interfaces

 120

 Graphical (assignment).
 Multimodal (equivalence, complementarity or redundancy).

(15) Immediate Feedback
Definition. It specifies the modalities available to the systems in order to provide an
instantaneous reverse for user’s input.
Rationale. The system should respond to each user action and its response should be
explicitly conveyed in order to check the validity of the input [Cole85]. Feedback is also
necessary for users to interpret the responses of the system to their actions. The
feedback quality and rapidity are two important factors for the establishment of user’s
confidence and satisfaction as well as for the understanding of the dialog. These factors
will allow them to gain a better understanding of the system’s functioning. Therefore, the
provided responses should be fast, with appropriate and consistent timing according to
the considered input. The absence of feedback or a delayed feedback can be
disconcerting to the user which may suspect a system failure and may undertake
disruptive actions for the ongoing processes [Bast93].
Values. The possible values are:
 Vocal (assignment).
 Graphical (assignment).
 Multimodal (equivalence, complementarity or redundancy).

(16) Guidance
Definition. It specifies to the modalities available to the system in order to advise,
orient, inform, instruct and guide the users throughout their interactions with the system
thanks to UI elements such as messages, alarms, labels, icons.
Rationale. A good guidance facilitates learning and use of a system by allowing users to
answer the following questions at any stage in the dialog [Cole85]: Where am I? (i.e.,
what dialog state?), What can I do? (i.e., what options are available?), How did I get here?
(i.e., what sequence of actions brought me to this state?), Where can I go? (i.e., to what
other dialog states can I progress?), How do I get there? (i.e., what control options are
necessay to take me to the desired dialog state?). Ease of learning and ease of use that
follow good guidance lead to better performances and fewer errors [Bast93].
Values. The guidance is sub-divided in:
 Guidance for input: any guidance offered to the user in order to guide him with the

input. The possible values are:
• Vocal sub-divided into: Acoustic (assignment) and Speech (assignment).
• Graphical sub-divided into:Textual (assignment) and Iconic (assignment).
• Multimodal (equivalence, complementarity or redundancy).
For instance, a bell tone is an acoustic guidance which can be used to inform the
user that the system is ready for the user’s input.

 Guidance for immediate feedback: any guidance offered to the user in order to guide
him/her with the feedback:
• Vocal sub-divided into: Acoustic (assignment) and Speech (assignment).
• Graphical sub-divided into:Textual (assignment) and Iconic (assignment).
• Multimodal (equivalence, complementarity or redundancy).

4. A Transformational Method for Producing Multimodal User Interfaces

 121

For instance, a percolating coffee pot is an acoustic guidance which can be used to
inform the user that the application system is busy processing.

In order to exemplify the last five design option values, we consider in Figure 4-18 a
design decision for a MM text input where the user has to provide his/her name
[Stan06]. The value of the prompt design option is multimodal as the system indicates in a
redundant manner the task to fulfill by employing two modalities: graphical modality (the
label Name) and vocal modality used by the system to invite the user to input his name
(1). The guidance for input has the type iconic and is composed of two elements (the
microphone icon and the keyboard icon) indicating the available interaction modalities.
User’s input has the type multimodal as it can be provided in an equivalent manner by
employing either the graphical modality (the user is typing his/her name in the text entry)
or the vocal modality (the user is uttering his name using the microphone (2)). The
guidance for feedback has the type iconic and is ensured by the loudspeaker icon, indicating
the vocal feedback. The immediate feedback of the system following the user’s input has the
type multimodal as it is expressed by means of two redundant modalities: graphical (the
result of users’ typing) and vocal (the system is uttering the result of the input recognition
(3)).

Figure 4-18 A possible design decision for a multimodal text input

4.2.4 Design space in the context of Design Rationale approach

Design rational is an approach that supports several different alternative solutions for a
given issue along with their justification and evaluation. The main purpose of this
approach is to increase the quality of the designed ISs and their reusability for the
development of future systems.
Several design rationale definitions were proposed in the literature, among which we
adopted the one proposed in [Grub90]:
“A design rationale is an explanation of how and why an artifact, or some portion of it, is designed the
way it is. A design rationale is a description of the reasoning justifying the resulting design - how
structures achieve functions, why particular structures are chosen over alternatives, what behavior is
expected under what operating conditions. In short, a design rationale explains the “why” of a design by
describing what the artifact is, what it is supposed to do and how it got to be designed that way.”

4. A Transformational Method for Producing Multimodal User Interfaces

 122

The approach appears in the context of ISs development where most of the existing
methodologies (i.e., RUP, MERISE, OVID) suffer from a set of shortcomings [Laca05]:
 They do not allow to express the different explored design options, threfore it is

impossible to know if the designers considered different options or not.
 They do not allow to justify the design option decisions, therefore the designer

cannot argue their choices in a rational manner as the constraints that guided their
decisions during the development life cycle are partialy or totally forgot.

 They make it difficult to reuse the results of previuos solutions even if several
software engineering approaches (i.e., objects, components) tend to favour the
code reusability from one project to another. Indeed, the source code remains the
only reusable element whereas the other results obtained during the development
process are usually non reusable for future design solutions.

As a response to the above identified shortcomings, design rationale provides several
advantages [Laca05]:
 Allows to detect consistency and completeness issues early in the initial

development phases [Conk88].
 Allows clarifying the reasons provided by the designers and forcess them to argue

their design decisions. Consequently, this will contribute to an increased quality of
the final solution [Newm91].

 Forces designers to propose multiple solutions so that to enable the exploration of
different potential results.

 Allows to provide a qualitative solution. For instance, if we consider that solution
A is more suited then solutions B and C this does not mean that A is the best
solution ever. The existing methodologies do not allow to assess the final solution
and they provide it without being capable to state if it is a good, the best or the
worst solution. This is the key difference between the current methodolgies and the
design rationale approach. At the end, both propose a solution but only the design
rationale has the power to make explicit, justify and compare the final solutions
with the non adopted ones, while still keeping track of the design decision history.

In order to visualise the dependencies among problems and their potential future
solutions, a set of notations supporting design rationale approach are proposed in the
literature. Among them we selected QOC (Question, Option, Criteria) [Macl91] due to
its ease in generation and reading. It is a semi-formal notation represented as a diagram
(Figure 4-19), decomposed in three columns (i.e., one for each element - questions,
options, criteria) and the links between these elements. For each question (here, design
option) we associate several options (here, design option values) that are further assigned
to different criteria that favour (i.e., wide line) or not (i.e., dotted line) these options. The
adopted options are emphasized in a rectangle. In QOC a question can be divided in
sub-questions (e.g., question 2) in order to connect different diagrams. In addition,
arguments can be assigned to support the evaluation of the links between the options
and the criteria.

4. A Transformational Method for Producing Multimodal User Interfaces

 123

Figure 4-19 QOC diagram structure

Hereafter, we present the QOC representations by employing the Team tool [Laca05] for
two design options composing our design space, whereas the rest of them are illustrated
in Appendix D.
We are well aware of the fact that the considered criteria are somewhere subjective.
However, we tried to decrease the subjectivity level by considering a set of proven
properties [Gram96] to which any information system should adhere as well as a set of
ergonomic criteria being experimentally assessed and successfully used to evaluate several
types of UIs [Bast97]. The decision in the favour of one option or another is based on
our previous experience with the design of UIs, but different options can be preffered if
the set of criteria is modified (i.e., new criteria are added or the current ones are not
considered important) depending on the context of use of the final solution.
Figure 4-20 presents the considered criteria for the Sub-task guidance design option. The
guided option was selected due to its strong support for all the criteria. For instance, a
good guidance facilitates learning the system and achieving the tasks by allowing users to
be aware at any time which are the possible actions to perform as well as their
consequences. Moreover, a good guidance leads to low number of errors and better
retention over time. In contras, the unguided option offers a weak support to the
considered criteria.

Figure 4-20 QOC representation of the sub-task guidance design option

4. A Transformational Method for Producing Multimodal User Interfaces

 124

Figure 4-21 illustrates the considered criteria for the Confirmation answer design option.
The with confirmation option was selected due to its strong support for error protection and
correction criteria. Indeed, a system is much more robust if it prevents possible user errors
such as accidental inputs and allows identifying them before validation rather then after.
In addition, following error detection, users should be able to make corrections directly
and immediately. However, the without confirmation option strongly supports a minimal
number of actions to perform which results in fastest task achievement.

Figure 4-21 QOC representation of the sub-task guidance design option

4.3 Specification of transformations

4.3.1 Selection of model-to-model transformational approach

Model-to-model transformation approaches were the subject of several recent research
works that tried to identify a mature foundation for specifying transformations between
models [Varr02, Mell03, Agra03]. The high number of works on model-to-model
transformation is mainly due to the Object Management Group (OMG) proposal on
MDA [Mill03]. Several techniques have been surveyed in the literature [Czar03, Mens06],
while the tools supporting them were analyzed in some works like [Medi07, Scha07].
Hereafter, we present the shortcomings of a couple of existing techniques identified in
[Stan08]:
 Imperative languages: text-processing languages performing small text transformations

(e.g., Perl, Awk) cannot be considered to specify complex transformation systems
as they force the programmer to focus on very low-level syntactic details.

 Relational approaches: rely on declaration of mappings between source and target
element type along with the conditions in which a mapping must be initiated. Rela-
tional approaches are generally implemented using a logic-based programming lan-
guage and require a clear separation of the source and target models.

 XSL Transformations: is designed to specify transformations between different syn-
tactical types of XML specifications. There are two main shortcomings of XSLT
applied to achieve model-to-model transformations: (1) high complexity and lack
of concision when managing complex sets of transformations rules and (2) lack of

4. A Transformational Method for Producing Multimodal User Interfaces

 125

abstraction; progressively constructing the target XML specification entails an in-
clusion, in transformation rules, of syntactic details relative to target specification.

 Common Warehouse Metamodel: is an OMG specification that provides a set of con-
cepts to describe model transformation grouped in transformation tasks, which are
further grouped in transformation activities. A control flow of transformation can
be defined between transformation tasks at this level. Even if transformations allow
a fine-grained mapping between source and target elements, this specification does
not provide us with a predefined language to specify the way elements are trans-
formed one into another.

After identifying the shortcomings of the above transformational approaches we propose
a transformational method based on graph transformation rules [Stan05] in order to
progressively move from the uppermost level (i.e., the Task and Domain Models) to
Abstract Model further refined into a more Concrete Model from which a Final User Interface is
generated (Figure 4-22).

Figure 4-22 Progressive application of rule-based transformations

In the context of this research, we have selected the graph-based transformational
approach. Our decision is motivated by [Czar03] which defines a taxonomy for the
classification of several existing and proposed model transformation approaches. The
taxonomy is described with a features model that makes explicit the different design
choices for model transformations. Figure 4-23 traces the frontier of the features covered
by the selected approach:

4. A Transformational Method for Producing Multimodal User Interfaces

 126

Figure 4-23 Identification of transformation rule approach features

(1) Graph-based patterns. To ensure the progressive approach illustrated above,

UsiXML provides a Transformation Model (Section 3.3.6) containing a set of rules
that applies successive transformations to an initial representation. Transformations
are encoded as graph transformation rules performed on the involved models
expressed in their graph equivalent (Requirement 6. Ontological homogeneity). A
set of graph transformation rules, known in the literature as graph rewriting rules, gathered
along with the graph on which they apply (called host graph) define a graph grammar.
The set of graph transformation rules are organized in a transformation catalog (Figure
4-24). The rules in a transformation catalog are structured in development steps. For
instance, transforming a Task Model into an Abstract Model or an Abstract Model into
a Concrete Model are two examples of development sub-steps. The development
steps are further decomposed into development sub-steps. A development sub-step is
realized by a unique transformation system and a transformation system is realized by a
set of graph transformation rules.

Figure 4-24 Structure of a transformation catalog

4. A Transformational Method for Producing Multimodal User Interfaces

 127

(2) LHS/RHS. The structure of the transformation rules identified in the taxonomy is
composed of the couple (LHS, RHS) which ensures a pattern matching that selects
a sub-graph in a graph structure and applies to this sub-graph any type of
transformation (e.g., adding, deleting or modifying a node or an edge). Our
approach considers conditional transformation rules so that a third graph (i.e., the
NAC) is added to the initial structure. Thus, a transformation rule is defined by the
graph triplet:

Transformation Rule = (NAC, LHS, RHS)
where:
 LHS (Left Hand Side) of the rule: expresses a graph pattern that, if it matches

the host graph, will be modified to result in another graph called resultant
graph. A LHS may be seen as a condition under which a transformation rule is
applicable.

 RHS (Right Hand Side) of the rule: is the graph that will replace the LHS in the
host graph.

 NAC (Negative Application Condition) of the rule: expresses a pre-condition that
have to hold false before trying to match LHS into the host graph. Several
NACs may be associated to a rule.

Figure 4-25 illustrates how a transformation system is applied on G, where G is the
graph representation of the initial UsiXML specification. The application of the
rule implies several steps:
(1) Find an occurrence (called match) of LHS into G. If several occurrences are

identified, one of it is chooses non-deterministically.
(2) Check that NAC does not match into G. If there is a match then skip to

another occurrence of LHS.
(3) Replace LHS by RHS.
G is consequently transformed into G’ (the resultant UsiXML specification). All
elements of G that are not covered by the match are left unchanged.

Figure 4-25 Characterization of transformation in UsiXML

(3) Syntactically Typed Patterns. Represent patterns that are associated with meta-

model elements whose instances it can hold. In our case, the typed graphs allow
classifying nodes and edges by attaching types to them. Attaching several nodes (or

4. A Transformational Method for Producing Multimodal User Interfaces

 128

edges) to the same types indicates a commonality in terms of properties between
these nodes (or edges). Figure 4-26 illustrates the correspondence between, on one
hand, node and edge types at the model level and, on the other hand, node and
edge defined at the meta-model level.

Figure 4-26 Syntactically typed patterns and variables

(4) Syntactically Typed Variables. Similar to patterns, syntactically typed variables

are variables that are associated with meta-model elements whose instances it can
hold. Figure 4-26 shows the definition of the type of salary variable which is
instantiated in the lower level with the values of the salaries for the two players.

(5) Graphical concrete syntax of the patterns. The graphical concrete syntax of the
transformation rules is based on the graphical formalism employed by Attributed
Graph Grammar (AGG) environment, a generic tool for specifying and executing
graph transformations [Ehri99]. Figure 4-27 illustrates the graphical notations for:
nodes, edges, node and edge types and node and edge attribute values.

Figure 4-27 Graphical concrete syntax of the patterns

Figure 4-28 decribes one of the rules employed in the transformation from the Task
Model to the Abstract Model: for each task in the Task Model (see LHS) create an AIC in
which it will be executed (see RHS) unless the task is not already executed into an AIC
(NAC). In order to map the corresponding elements of the NAC, LHS and RHS of a

4. A Transformational Method for Producing Multimodal User Interfaces

 129

rule, the graph formalism uses numbers in front of mapped nodes and edges (e.g., task 1
described in LHS corresponds to task 1 from NAC and RHS).
 NAC LHS RHS

Figure 4-28 From Task Model to Abstract Model

(6) Textual concrete syntax of the patterns. The textual concrete syntax of the rules
is embedded in UsiXML. This textual syntax allows storing rules in an XML-based
format. Figure 4-29 offers an example of the equivalent textual syntax of the rule
illustrated in Figure 4-28.

 <transformationRule id="Rule5-4" name="Rule1_from_task_to_abstract">
 <nac>
 <task ruleSpecificId="N1"/>
 <abstractIndividualComponent ruleSpecificId="N2"/>
 <isExecutedIn>
 <source sourceId="N1"/>
 <target targetId="N2"/>
 </isExecutedIn>
 </nac>
 <lhs>
 <task ruleSpecificId="L1"/>
 </lhs>
 <rhs>
 <task ruleSpecificId="R1"/>
 <abstractIndividualComponent ruleSpecificId="R2" name="x"/>
 <isExecutedIn>
 <source sourceId="R1"/>
 <target targetId="R2"/>
 </isExecutedIn>
 </rhs>
 <ruleMapping sourceId="L1" targetId="N1"/>
 <ruleMapping sourceId="L1" targetId="R1"/>
 </transformationRule>

Figure 4-29 Textual syntax for expressing transformation rules

(7) Declarative executable logic. Our graph grammars are based on formally defined
execution semantics and have a declarative logic as they are described by graph
patterns expressions.

(8) LHS/RHS Syntactic Separation. Our implementation of the transformation
rules makes clear distinction between the three components of a rule. Thus, the
rule syntax (Figure 4-29) specifically marks the LHS, RHS and NAC elements.

(9) Bidirectionality. Bidirectionality is achieved by defining two separate
complementary unidirectional rules, one for each direction. [Limb04b] offers
examples of forward and reverse engineering processes where transformation rules
where designed to move forward and backward between different UI models.

4. A Transformational Method for Producing Multimodal User Interfaces

 130

4.3.2 Application strategy of transformation rules

The application strategy of the transformation rules is defined as the order in which they
are applied to the intial graph [Limb04b]. This could be: concurrent, in an order
independent manner or in a controlled sequential way. Two important issues have to be
taken into consideration when deciding the application strategy: confluence and termination.
The confluence property refers to the ability of producing a unique resultant graph, thus
raising the problem of the rule determinism. Parallel independent rules were shown to
ensure the confluent property [Lowe93]. Moreover, the property can be proved
intuitively if the transformation rules do not interfere one which each other, i.e. no rule
deletes or introduces nodes that are needed by another one to match. But, in the current
thesis the intrinsic nature of the process applied to an intial specification model
determines us to we apply transformation rules that realize an incremental consolidation
of it. In most cases, rules are inter-dependent as they rely on the information generated
by the application of a previous rule. Therefore, in order to ensure the confluence
property, we propose a special technique called Programmed Graph Rewriing [Schu97].
This technique uses graph rewriting rules as process units that may be composed
arrbitrarly using a set of pre-defined operators (e.g., sequences, parallel sequences, loops,
tests) so as to obtain a desired algorithmic behaviour.
Our application strategy is presented in Figure 4-30. Once a development step is
externally started, the first transformation system is executed. When it terminates, the
second one is applied and so forth until the execution of the last transformation systems.
Within the transformation system itself the transformation rules are applied following the
same logic. The placement of the transformation rules is determined by the function
played by each one in the corresponding development step, sub-step and transformation
system.

Rule n

Transformation
System 1

Rule 1

Rule 2

…

Rule n

Transformation
System 2

Rule 1

Rule 2

…

Rule n

Transformation
System ...

Rule 1

Rule 2

…

Rule n

Transformation
System n

Rule 1

Rule 2

…

: when source terminates apply target

: execute development step

Development Step α

Rule n

Transformation
System 1

Rule 1

Rule 2

…

Rule n

Transformation
System 2

Rule 1

Rule 2

…

Rule n

Transformation
System ...

Rule 1

Rule 2

…

Rule n

Transformation
System n

Rule 1

Rule 2

…

: when source terminates apply target

: execute development step

Development Step α

Figure 4-30 The application strategy of transformation rules

The termination property is satisfied if a transformation rules doesn’t find any matches in
the resultant graph. Consequently, a transformation system is terminated if each rule
composing it is terminated. A development sub-step terminates if each of its

4. A Transformational Method for Producing Multimodal User Interfaces

 131

transformation system terminates. A development step terminates if each of its sub-steps
terminates.
Note that the problem of infinite looping may arise due to the non-deleting character of
the rules. This issue is solved by replicating a part of the RHS in the NAC.

4.3.3 Shortcomings of the existing graph-based transformational approaches

By observing the current solutions that adopt a graph-based transformationanal approach
for the model driven engineering of MM UI we have identified a list of shortcomings:
 Many transformation rules share some common parts either in the NAC, LHS or

RHS and only slightly differ from one rule to another. Consequently, many rules re-
peat common parts without any connection between them and without factoring them
out. Thus, many rules duplicate some significant portions of their NAC, LHS, and
RHS.

 Due to this repetition, the transformation system that consists of the whole set of
transformation rules easily becomes huge and no longer scalable. In addition, a static analysis
of common portions of rules becomes a challenging task.

 The designer responsible for writing the rules to be fired by the transformation en-
gine may only have limited means, formal or informal, to control the consistency of
those rules that are similar, thus increasing the risk for human error and redundancy.

 The scalability of a transformation set for multi-target systems largely depends on its
structure: if transformation rules are properly organized, then adding, removing or
modifying a rule remains acceptable. But when this structure is poor, it is almost
impossible to add new rules for another target without affecting significantly the
rest of the rules in the same set.

4.3.4 Expanded model-to-model transformational approach

In the research literature the notion of color is used as a feature attached to tokens in High
level Petri nets and used to distinguish between different data types carried throughout
the network [Jens98]. In [Ehri99], the notion of color is currently defined at the level of
type graph as a particular feature of the labels and enables to assign colors to nodes and
edges. This imposes a set of restrictions as the color does not have any specific semantic
meaning that allows manipulating and reasoning about graph transformations. Moreover,
all nodes/edges of the same type must have the same color. Therefore, in order to cope
with the shortcomings identified above, we expand the existing model-based approach by
introducing the color as an explicit feature associated to the involved models that will add
semantic to the transformation rules manipulating the elements of these models [Stan08].
The advantage of our contribution lies in the reusability, partially or entirely, of the
transformation rules for developing UIs for target platforms that enable different
interaction modalities than those previously available on the source platform.

4.3.4.a.1 Colored UsiXML concepts

The notion of color will make a distinction (Table 4-1) between the concepts
corresponding to modality independent models (i.e., the Task, Domain, Mapping and

4. A Transformational Method for Producing Multimodal User Interfaces

 132

Abstract Models) and those describing the modality dependent aspects (i.e., the Concrete
Model):
 The concepts of the Task, Domain, Abstract and Mapping Models are represented

in black. The selection was based on the analogy between the neutral character of
the color and the neutral character of the above models with respect to the
modality.

 The monomodal aspects of the Concrete Model consider a particular color for each
modality: red for graphical modality and blue for vocal modality. Thus, the
graphical concepts are represented in red, whereas the vocal concepts in blue. The
relationships that reflect the monomodal aspects of the Concrete Model are said to
be monocolored as they inherit their color from the common color of the source
and target elements. The association of a particular color for each considered
modality provides flexibility when extending the Concrete Model with concepts
belonging to eventually newly introduced modalities as they can be associated to
colors that haven’t been used so far.

 The MM aspects of the Concrete Model consider the cuiDialogControl and synchroni-
zation relationships. These relationships are said to be multicolored as they inherit
their color from the source element. For instance, a cuiDialogControl relationship
that connects two graphical elements will be red, whereas its color becomes blue if
the relationship connects two vocal elements. The synchronization relationship has
associated the blue color as the source element is always a vocal element, but one
can imagine the synchronization between an element belonging to a newly intro-
duced modality (e.g., tactile) and a vocal element. In this case the color of the rela-
tionship will be the color associated to the new modality.

Relationships
 Concepts

UsiXML
Models

Elements

Modality
dependent

Modality
independent

Associated
color

Task
task

decomposition
temporal

- Black

Domain domainClass domainRelationship - Black
Abstract

AIO
abstractContainment

abstractAdjacency
auiDialogControl

- Black

Mapping

-

manipulates
triggers
updates

isExecutedIn
isReifiedBy

- Black

C
on

cr
et

e

M
on

om
od

al

G
ra

p
h

ic
al

GIO
graphicalContainment

graphicalAdjacency
graphicalTransition

- Red

4. A Transformational Method for Producing Multimodal User Interfaces

 133

V
oc

al

VIO

vocalContainmemnt
vocalAdjacency
vocalTransition

- Blue
M

u
lt

im
od

al

as
p

ec
ts

- -
cuiDialogControl
synchronization

The
relationship
inherits the
color of the

source object

Table 4-1 Color associated to the UsiXML model concepts

4.3.4.a.2 Colored graphs

In [Limb04b] the graph structure (see Definition1) used as an abstract syntax for defining
the underlying formalism of a model-to-model transformational approach is
progressively consolidated into a single graph category called (Identified, Labeled,
Constrained, Typed)-Graph.
Definition 1. A graph g is defined by a quadruple (V, E, sourceg, targetg) such that:
1. V is a finite set of vertices
2. E is a finite set of edges
3. sourceg: E → V, is an injective function that assigns a source vertex to every edge

from E;
4. targetg: E → V, is an injective function that assigns a target vertex to every edge

from E.

Hereafter we extend this category with the concept of colored graph (Definition 2), as a
graph in which a color is assigned to all its components.
Definition 2. Let COL= (NodeColor, EdgeColor) be a pair of disjoint and finite sets
of predefined colors. g is said to be a (COL)-Graph iff g is a pair (g, Col) such that:
1. g is a graph (see definition 1)
2. Col is a pair of total functions attaching a color to each node and edge of the

graph: Col = (Colv, Cole), where Colv: V → NodeColor and Cole: E → EdgeColor

Depending on the level of abstraction on which it is defined, the properties of these
functions are different. If the graph structure is exploited to describe the model level
(Table 4-1), the color functions (i.e., Colv and Cole) are surjective (i.e., each color is
assigned to a graph component). If the graph structure is exploited to describe the
instance level then different graph components may share the same color. Depending on
the number of non-neutral color (i.e., different of black color) with respect to the
interaction modality, the (COL)-Graph can be specialized into:
 Monocolored (Definition 3): the graph has at most one color in the codomain of Colv

that is different of the black color. This implies that the cardinality of the image of
Cole could be: 0 if the graph has a single vertex, 1 if the edge describes the mapping
relationship between an abstract and a concrete element, or 2 if the mapping ap-
plies over two concrete elements.

4. A Transformational Method for Producing Multimodal User Interfaces

 134

Definition 3. g is said to be a (MONOCOL)-Graph iff:
1. g is a (COL)-Graph
2. 1≤ |Im(Colv)|≤ 2
3. 0≤ | Im(Cole)|≤ 2
4. ∃ !c ∈NodeColor\{black}

 Multicolored (Definition4): the graph has at least two colors in the codomain of Colv

that are different one of each other and different of the black color.

Definition 4. g is said to be a (MULTICOL)-Graph iff:
1. g is a (COL)-Graph
2. |Im(Colv)|≥ 2
3. ∃ c1, c2 ∈NodeColor\{black} | c1 ≠ c2

The graph category identified in [Limb04b] as (I, L, C, TY)-Graph is consolidated with
the newly introduced feature into a new single graph category called (Identified, Labeled,
Constrained, Typed, Colored)-Graph, in short (I, L, C, TY, COL)-Graph.
Definition 5. g is an (Identified, Labeled, Constrained, Typed, Colored)-Graph iff:

1. g is a graph (Definition 1)
2. g is an identified graph
3. g is a labeled graph
4. g is a constrained graph
5. g is a typed graph
6. g is a colored graph (Definition 2)

The advantage of this new consolidation relies on its modularity feature which allows to
form other graph categories by combining the features “a la carte”.

4.3.4.a.3 Operations over colored graphs

The previously introduced notions allow us to define two operations over colored
graphs:
 Merging operation (Definition 6): a (MULTICOL)-Graph results by merging two

(COL)-Graphs (g, h). The color functions (Colg and Colh) of these graphs are re-
strictions of the colored functions (Colv(r), Cole(r)) of the resultant graph r to the
domain values of the initial graphs, respectively.

Definition 6. Let g and h be two (COL)-Graphs defined by (Vg, Eg, sourceg, targetg) and
(Vh, Eh, sourceh, targeth), respectively. The result of the merging operation defined be-
tween g and h (g M h=r) is a graph r, where:
1. r is a (MULTICOL)-Graph
2. Colv(r):Vg U Vh → NodeColorg UNodeColorh,

Cole(r):Eg U Eh → EdgeColorg U EdgeColorh,
Colv(r)|Vg(v) = Colv(g) (v) Colv(r)|Vh(v) = Col v(h) (v)
Cole(r)|Eg(e) = Col e(g) (e) Cole(r)|Eh(e) = Col e(h) (e)

 Splitting operation (Definition 7): a (MONOCOL)-Graph g results by splitting a

(MULTICOL)-Graph r upon one color from the set of vertices colors different

4. A Transformational Method for Producing Multimodal User Interfaces

 135

from black. The color functions (Colv(g), Cole(g)) of the resultant graph are restric-
tions of the colored functions (Col v(r) and Col e(r)) to the domain values of the ini-
tial graph, respectively.

Definition 7. Let r be a (MULTICOL)-Graph defined by (Vr, Er, sourcer, targetr) and
c a color where c∈ NodeColorr \ {black}. The result of the splitting operation of the
graph r upon the color c (r [c] = g) is a graph g defined by (Vg, Eg, sourceg, targetg),
where:
1. g is an (MONOCOL)-Graph, with:

NodeColorg= {c} U {black} ∩ NodeColorr
EdgeColorg = {c} U {black} ∩ EdgeColorr

2. Vg ={v|Colg(v) ∈ NodeColorg}
Eg ={e | Colg(e) ∈ EdgeColorg}
sourceg(e) = sourcer|Eg(e), targetg(e) = targetr|Eg(e)

3. Col v(g): Vg → NodeColorg, Col e(g): Eg → EdgeColorg
Col v(g) (v) = Col v(r)|Vg (v) and Col e(g) (e) = Col e(r)|Eg (e)

4.3.4.a.4 Colored transformation rules

The integration of the color as a new graph feature of our graph-based transformational
approach allows the introduction of the notion of colored transformation rule ((COL)-TR),
which can be of two types:
 Monocolored transformation rule (Definition 8): is a transformation rule in which at least

one of the components of the rule is a (MONOCOL)-Graph.

Definition 8. Let TR be a transformation rule, with TR= (NAC, LHS, RHS).
TR is said to be (MONOCOL)-TR iff ∃ g∈{NAC, LHS, RHS}, where g is a
(MONOCOL)-Graph.

The monocolored transformation rules are employed in the generation of
monomodal UIs. The colors are given by the colors of the concrete concepts
involved in the transformation rule (Table 4-1).

 Multicolored transformation rule (Definition 9): is a transformation rule in which at least
one of the components of the rule is a (MULTICOL)-Graph.

Definition 9. Let TR be a transformation rule, with TR= (NAC, LHS, RHS).
TR is said to be (MULTICOL)-TR iff ∃ g∈{NAC, LHS, RHS}, where g is a
(MULTICOL)-Graph.

The multicolored transformation rules are employed in the generation of MM UIs. The
colors are given by the colors of the concrete concepts involved in the transformation
rule (Table 4-1).
By analogy with the merging and splitting operations specified over graphs, we define
hereafter the same operations over transformation rules.
 Merging two or more different colored transformation rules enables to generate

multicolor rules (Definition 10). This operation is the cornerstone of the factoring
out activity.

Definition 10. Let TR1 and TR2 be two (COL)-TRs, with TR1= (NAC1, LHS1,
RHS1) and TR2= (NAC2, LHS2, RHS2). The result of the merging operation defined
between TR1 and TR2 (TR1 M TR2 = TR3) is a transformation rule TR3= (NAC3,
LHS3, RHS3), where:

4. A Transformational Method for Producing Multimodal User Interfaces

 136

1. TR3 is a (MULTICOL)-TR
2. NAC3 = NAC1 M NAC2
3. LHS3 = LHS1 M LHS2
4. RHS3 = RHS1 M RHS2

If NAC1 and NAC2 share a common black element, they are merged in order to
generate the NAC3 of the resultant rule. If not, the two NACs will be aggregated in the
resultant rule giving rise to two NACs. Splitting a multicolored transformation rule upon
one color enables the designer to generate a monocolored rule.
 Splitting a multicolored transformation rule (Definition 11) upon a color enables the

designer to generate a monocolored transformation rule.
Definition 11. Let TR1= (NAC1, LHS1, RHS1) be a (MULTICOL)-TR and
c∈{NodeColorNAC U NodeColorLHS U NodeColorRHS}\ {black}. The result of the
splitting operation of the transformation rule TR1 upon the color c (TR1 [c] = TR2) is a
transformation rule TR2= (NAC2, LHS2, RHS2), where:
1. TR2 is a (MONOCOL)-TR
2. NAC2 = NAC1 [c]
3. LHS2 = LHS1 [c]
4. RHS2 = RHS1 [c]

As a result of the Definitions 10 and 11, we reached the following conclusion: A
multicolored transformation rule is the result of the merging operation applied over all its splittings upon
each non-neutral color of the nodes.

4.3.4.a.5 Colored transformation rules at a glance

Thanks to the introduction of colors, the total amount of rules to be specified by the de-
signer is significantly reduced. For a particular widget of a UI involving two interaction
modalities (e.g., graphical and vocal), two monocolored rules had to be applied so far.
These two rules can now be merged into a single multicolored rule that can be treated as
follows: (1) if the designer needs to ensure both interaction modalities the multicolored
rule has to be applied, (2) if the designer needs to ensure only one type of interaction
(i.e., graphical or vocal) the rule has to be split upon the color assigned to the considered
interaction. The flexibility of the colored rules is illustrated hereafter based on two exam-
ples that show its benefits. The first set of transformation rules are used to generate
graphical and/or vocal containers. Figure 4-28 (a) presents the monocolored rule that is
the result of the splitting operation applied over the rule in Figure 4-28 (c) upon the red
color. It generates groupBox elements that embed an outputText (i.e., a label) and an image-
Component guiding the user with the available interactions to use (i.e., mouse and key-
board). If the designer wants to ensure the same functionality but enabling just the vocal
interaction, the rule illustrated in Figure 4-28 (b) has to be executed. It is the result of the
splitting operation applied over the rule in Figure 4-28 (c) upon the blue color and is
used to generate vocalGroup elements. On the other hand if the designer wants to ensure a
MM interaction the rules in Figure 4-28 (a) and (b) have to be merged. The resultant rule
is illustrated in Figure 4-28 (c) and generates both groupBox and vocalMenu elements.

4. A Transformational Method for Producing Multimodal User Interfaces

 137

 NAC LHS RHS

(a)

(b)

(c)

Figure 4-31 Monocolored transformation rule generating: (a) groupBox elements; (b) vocalMenu

elements; (c) groupBoxes and vocalMenu elements

4.3.4.a.6 Benefits of colored transformation rules

We consider that our contribution could be applied in any area where factorization could
be a solution for rules with a significant portion of the NAC, LHS or RHS that is dupli-
cated. Therefore, the following benefits could be obtained:
 Reduced number of rules to be specified and applied: thanks to the introduction of the

colors, each pair of graphical/vocal rules can be merged into a single one, reducing
thus the number of rules to apply to half. In addition, as more interaction types are
considered, the more benefit will be gained thanks to the multicolored
transformation rules

 High scalability: if the need for a new modality arise (e.g., tactile modality) a new
monocolored transformation rule that is duplicating the common part of its modal-
ity counterparts rules (i.e., the abstract elements represented in black) had to be de-
veloped. Thanks to the colored transformation rules, the development of a new
rule, and thus of the duplicating elements, is avoided. A simple integration of the
new concepts assigned to the introduced modality and their mapping to the ab-
stract elements in the already existing multicolored rule is sufficient to achieve a di-
rect modification. As a result, a new multicolored rule is obtained which can be ap-
plied in the generation of MM UIs considering graphical vocal and tactile interac-
tions.

4. A Transformational Method for Producing Multimodal User Interfaces

 138

4.3.5 Transformation rule catalog

4.3.5.a Structure of the transformation rule catalog

In the current dissertation, the introduced design space is supported by a
transformational approach that applies transformational rules over the involved models.
Based on a theoretical analysis of the development sub-steps previously illustrated and
due to their great number, the transformation rules were gathered in a Transformation
Rule Catalog (Appendix B) in order to offer a complete and systematic arrangement with
the following structure:
I. Transformation rules that support design options: for each design option value we provide
the rule that supports the generation of the abstract elements. Further we provide the
multicolored rule that concretizes these elements into graphical and vocal elements.
Depending on the type of interaction to ensure, the multicolored rule ca be directly
aplied (i.e., for MM interaction) or splitted upon the color assigned to the desired
modality
II. Additional transformation rules: is composed of a set of transformation rules that
provides supplementary support for the sub-steps that are not coverd, totally or partially
by the design space (e.g., Sub-step: Transformation rules for the selection of AICs).

4.3.5.b Design space coverage

Based on the draw up Transformation Rule Catalog we identify hereafter the mappings
between each design value and the transformation rule(s) supporting it. Thus, Figures 4-
29 to 4-35 specify the corresponding rule number in the catalog (i.e., Ri). Figure 4-35
describes the set of design options for which a stylistics was not required and considers
the following notations: V=Vocal, G=Graphical, MM=Multimodal, T=Textual,
I=Iconic, A=Acoustic, S=Speech.

Figure 4-32 Transformation rules supporting sub-task presentation

4. A Transformational Method for Producing Multimodal User Interfaces

 139

Figure 4-33 Transformation rules supporting the vocal and graphical concretization of sub-task

presentation values

Figure 4-34 Transformation rules supporting sub-task navigation values for graphical and vocal

concretization

4. A Transformational Method for Producing Multimodal User Interfaces

 140

Figure 4-35 Transformation rules supporting navigation type values for graphical and vocal

concretization

Figure 4-36 Transformation rules supporting control type values for graphical and vocal

concretization

4. A Transformational Method for Producing Multimodal User Interfaces

 141

Figure 4-37 Transformation rules supporting navigation and control type values for graphical and

vocal concretization

Figure 4-38 Transformation rules supporting the remaining set of design options for which a

stylistics was not assigned

4.4 The four steps of the transformational approach

Our transformational approach involves a method which consists of a forward
engineering process composed of four steps [Stan05] illustrated in Figure 4-39.

4. A Transformational Method for Producing Multimodal User Interfaces

 142

1. Step 1: Construct the Task and Domain Models: the task and domain models are specified
first so as to initiate the forward engineering process.

2. Step 2: From Task and Domain Models to Abstract User Interface Model: consists of
producing one or many AUIs from the previously specified models.

3. Step 3: From Abstract User Interface Model to Concrete User Interface Model: from each AUI
Model obtained in the previous step, different CUIs Models specifiying graphical,
vocal and MM UIs are derived.

4. Step 4: From Concrete User Interface Model to Final User Interface: from each CUI, a
corresponding FUI can be produced by automated model-to-code generation. Thus,
for GUIs we generate XHTML code, for vocal UIs we produce VoiceXML code,
while MM UIs are specified using X+V language.

The approach is not addressing only the incremental aspects of the development process
where the FUI is reached starting from a Task and Domain Models that are sequentially
reified into more concrete models. It also supports an iteratif approach related to any
software development process, where intial requirements are continously updated
according to end-user requests. Therefore, two situation can be encountered:
 If the starting point of our process (i.e., the Task and Domain models) requires

updates, then transformation rules can be performed over these models so that to
respond to the requested requirements

 If an intermediate model (e.g., the Abstract Model) requires updates, then
transformation rules can be performed over the model itself and over the upper
models so that to ensure consistency with the requested requirements.

Figure 4-39 General development scenario of UI

In [Limb04b] steps 2 and 3 are further decomposed into sub-steps which consist of
transformation systems applied in order to generate GUIs. The VUIs are also addresed
but in a lower degree. The current thesis defines transformation systems by associating

4. A Transformational Method for Producing Multimodal User Interfaces

 143

the design options defined in Section 4.2 to the different identified sub-steps of the
transformational process (Figure 4-40). Thanks to the extended ontology of models
described in [USIX07] we add more focus on vocal UIs and expand the coverage area to
MM UIs, as well.

Figure 4-40 Sub-steps of the transformational approach

4.4.1 Step 1: The Task and Domain Models

The initial development step consists of specifying the Task and Domain Models which
requires first the identification of the interactive tasks along with their associated
attributes and second the specification of the relationships between the tasks. The
Domain Model consists of identifying the classes and their corresponding attributes and
methods manipulated by the user while interacting with the system. Domain relationships
between classes are further established by specifying their role names and cardinalities.
Once the Task and Domain Models are specified, the mappings between them can be
identified. Each task from the Task Model will be mapped into a corresponding element
from the Domain Model.

4.4.2 Step 2: From Task and Domain Models to Abstract User Interface Model

The second transformation step involves a transformation system containing rules
applied in order to realize the transition from the Task and Domain Models to Abstract
UI Model. It consists of the five development sub-steps illustrated in Figure 4-40 applied
in top-down logical order.

4. A Transformational Method for Producing Multimodal User Interfaces

 144

4.4.2.a Rules for the identification of AUI structure

This sub-step consists of defining groups of AIOs that correspond to groups of tasks
tightly coupled together (e.g., the children of the same task can be considered as a group
of tightly coupled tasks). For this purpose, the following design options are considered:
Sub-task presentation. Enables the identification of the ACs depending on the
following design decision:
 Separated (Figure 4-41): Rule 1 generates an AC for each sub-task of the root task

(AC11, AC12 and AC13).
 Combined (Figure 4-42): Rule 1 creates the AC (AC1) in which the root task is

executed and Rule 3 generates an AC for each sub-task of the root task (AC11,
AC12 and AC13).

Figure 4-41 Separated sub-task presentation Figure 4-42 Combined sub-task presentation

Navigation type. Considers the containment and the cardinality of the AICs ensuring
the navigation according to the following values:
 Local (Figure 4-43): Rules 27, 28 and 29 generate one/two AICs that ensure the

navigation depending on the position of the AC in the abstract tree structure
(AIC111, AIC121, AIC122, AIC131). Each AIC is embedded into the
corresponding AC (i.e., AC1, AC2 and AC3).

 Global (Figure 4-44): Rule 34 generates two global placed AICs (i.e., AIC11, AIC12)
embedded into the top-most AC (i.e., AC1).

The possible values for the cardinality are:
 Simple (Figure 4-43): Rule 37 creates two AICs.
 Multiple: Rules 38 and 39 generate AICs contained locally and globally in their

corresponding ACs in order to ensure redundant navigation capabilities.

4. A Transformational Method for Producing Multimodal User Interfaces

 145

Figure 4-43 Local placement for navigation Figure 4-44 Global placement for navigation

Control type. Considers the containment and the cardinality of the AICs ensuring the
control of data. The possible values for the containment are:
 Local (Figure 4-45): Rule 40 generates two AICs (i.e., AIC111, AIC112, AIC121,

AIC122, AIC131 and AIC132) that ensure the control of data for each sub-task
executed into a corresponding AC (i.e., AC1, AC2 and AC3).

 Global (Figure 4-46): Rule 43 generates two global placed AICs (i.e., AIC11, AIC12)
embedded into the top-most AC (i.e., AC1).

The possible values for the cardinality are:
 Simple (Figure 4-45 and Figure 4-46): Rule 46 creates two AICs that will be

concretized in two logically connected buttons (i.e., OK, CANCEL).
 Multiple: Rules 47 and 48 create AICs placed locally and globally in their

corresponding ACs in order to ensure redundant control of data.

Figure 4-45 Local placement for control Figure 4-46 Global placement for control

4.4.2.b Rules for the selection of AICs

The goal of this sub-step is to produce the specification of the AICs. As AICs assume
basic interaction functions through facets, our objective is limited to their proper
selection. In order to achieve this goal, we consider the information contained in the

4. A Transformational Method for Producing Multimodal User Interfaces

 146

Task and Domain Models, in particular the taskType and taskItem attributes of a task along
with the manipulates relationship that offers more information about the domain concepts
manipulated by the task.
Table 4-2 provides the mappings between the types and items manipulated by a task and
their correspondent in the Abstract Model (Figure 3-5). Due to the existance of a great
number of combinations of taskTypes and taskItems, the table is restricted only to a small
subset used in the current thesis.

Task
taskType + taskItem

AIC facet
facet type + (actionType + actionItem)

Start + operation Control + (start + operation)
Start + operation Navigation + (start + operation)
Select + element Input + (select + element)
Create + element Input + (create + element)
Convey + element Output + (convey + element)

Table 4-2 Mappings between tasks types and AIC facets types

The selection of several AICs is supported by the following design options which
identify the type of facets to generate:
Navigation type. Rule 30 creates a navigation facets of type start operation if the task
corresponding to its AIC is of type start operation and manipulates a method from the
Domain Model.
Control type. Rule 41 creates a control facet of type start operation if the task
corresponding to its AIC is of type start operation and manipulates a method from the
Domain Model.
Navigation and control type. Two design values could be considered:
 Separated: Rule 49 endows AICs embedded in the same AC with navigational and

control facets, respectively.
 Combined: Rule 50 generates navigational and control facets for the same AIC.

However the selection of AICs is not always supported by a design option value. This is
the case of Rule 81 which generates an output facet of type convey element for each task that
supposes a convey action from the part of the system. The task is manipulating an attribute
from the Domain Model.

4.4.2.c Rules for spatio-temporal arrangement of AIOs

This sub-step ensures the arrangements of objects that populate the AUI by specifying
the layout constraints between the AIOs. These constraints are derived from the Task
Model structure. The order in which the tasks are specified allow designers to determine
the order in which the AIOs are conveyed. For this purpose, the abstractAdjacency
relationship is employed.
For each couple of sister tasks executed into AIOs, we define abstractAdjacency
relationships between them. As AIOs can be of two types (i.e., ACs or AICs) there are
four possible combination to consider. For each of them a specific rule is applied.
Moreover, in order to perform a complete arrangement, a rule should be defined for each
type of temporal relationships between the tasks. For instance, Rules 87-90 illustrate the

4. A Transformational Method for Producing Multimodal User Interfaces

 147

generation of abstractAdjacency relationships between couples of AIOs mapped into sibling
tasks connected by sequential (“>>”) temporal relationship.

4.4.2.d Rules for the definition of abstract dialog control

This sub-step is transposing the temporal relationships defined between tasks into
abstract relationships between AIOs. The dialog control [Limb04b] expresses the locus
of control (i.e., availability) for initiating the dialog in a UI. It refers to the control of
certain states of the UI in order to enforce temporal constraints imposed between
elements of the interface.
In order to ensure the abstract dialog control we employ the auiDialogControl relationship.
For each couple of sibling tasks executed into AIOs, we define an abstractDialogControl
relationship between them that have the same semantics as the temporal relationship
defined between the tasks. As AIOs can be of two types (i.e., ACs or AICs), there are
four possible combinations to consider. For instance, Rules 91-94 illustrate the
generation of auiDialogControl relationships between couples of AIOs mapped into sibling
tasks with temporal dependencies.

4.4.2.e Rules for the derivation of AUI to domain mappings

This sub-step consists of refining the manipulates relationship defined between elements
of the Task Model and elements of the Domain Model into relationships between AICs
from Abstract Model and elements of the Domain Model. The two refined relationship
considered in the current dissertation are updates and triggers.
For instance, Rule 95 is employed in order to refine manipulates relationship between a
task and an attribute from the Domain Model into updates relationship between the AIC
in which the task is executed and the above mentioned attribute. Rule 96 is employed in
order to refine manipulates relationship between a task and a method from the Domain
Model into triggers relationship between the AIC in which the task is executed and the
above mentioned method.

4.4.3 Step 3: From Abstract User Interface Model to Concrete User Interface
Model

The third transformation step consists of a set of development sub-steps that contains
transformation rules applied in order to achieve the transition from the Abstract UI
Model to the Concrete UI Model. Depending on the considered interaction modality
different rules have to be applied.

4.4.3.a Selection of modality
The Concrete UI Model aims to define a UI that is dependent of the interaction modality
but independent of any software platform. It is now that the designer selects the available
modalities employed in order to enable the interaction between the system and the user.
Therefore, three cases have been identified (Figure 4-39):
 Case 1: From AUI Model to Graphical CUI Model: only the graphical modality is

available in input and in output.
 Case 2: From AUI Model to Vocal CUI Model: only the vocal modality is available

in input and in output.

4. A Transformational Method for Producing Multimodal User Interfaces

 148

 Case 3: From AUI Model to Multimodal CUI Model: graphical and/or vocal
modalities are available in input and in output.

4.4.3.b Design option for the selected modality

For each type of Concrete UI a specific set of transformation sub-steps are considered.
Moreover, for each sub-step we identify hereafter the design options to consider in order
to decide between the different design features of the UIs.

4.4.3.b.1 Case 1: From AUI Model to Graphical CUI Model

The current case derives Graphical Concrete UIs from Abstract UI specifications by
applying a set of transformation rules structured in six development sub-steps (Figure
4-40). The transformation supporting the current case consider only the abstract and
graphical concrete concepts illustrated din black and red, respectively.

4.4.3.b.1.1 Reification of AC into CC
This sub-step is dedicated to the reification of ACs into GCs. In Section 4.4.2.a the
identification of ACs considered the Sub-task presentation design option. As the
Concrete Model is modality-dependent, their values are concretized in the current section
in graphical objects according to Figure 4-3. Hereafter, we present two design option
values and identify the corresponding rules in the Transformation Catalog:
 Separated: Rule 2 generates for each top-most AC a GC of type window.
 Combined all at once in grouped list: first, Rule 17 reifies the top most AC into a window

containing a box and further Rule 18 generates a groupBox for each AC embedded
into the top-most AC.

4.4.3.b.1.2 Selection of CICs
This sub-step supposes the identification of graphical concrete elements that are suitable
to support the functionalities of AICs ensured by their facets identified in Section 4.4.2.b.
provides mappings between AICs defined by their facets and GICs that reify them. Due
to the great number of combinations of task types and items, Table 4-3 is restricted only
to a small subset used in the current dissertation. The left column identifies the
combinations of actionType and actionItem attributes of AIC facets, the middle column
shows the corresponding GIC, whereas the right column specifies the rule(s) applied to
generate the these GICs.

AIC facet
facet type + (actionType +

actionItem)

GIC type Transformation rule

Control + (start + operation) button Rules 42, 45
Navigation + (start + operation) button Rules 31, 32, 33, 36

Input + (select + element) radioButton Rules 99, 100
Input + (select + element) checkBox Rules 101, 102
Input + (select + element) comboBox Rules 97, 98
Input + (select + element) listBox Rules 103, 104
Input + (create + element) inputText Rules 105

Output + (convey + element) outputText Rules 106

Table 4-3 Mappings between facet types and GIC types

4. A Transformational Method for Producing Multimodal User Interfaces

 149

For this purpose, the following design options are considered: Prompting, Input, Im-
mediate feedback, Guidance, Sub-task guidance, Answer cardinality, Confirma-
tion answer and Answer order. An exemplification of their values is presented based
on a possible design decision for a text input where the user provides graphically his/her
name. Table 4-4 identifies the rules applied in order to generate the corresponding GICs.

Design option Value GIC
Transformation

rule
Prompting Graphical (A) outputText Rule 66

Input Graphical (A) inputText Rule 60
Immediate
feedback Graphical (A) inputText Rule 69

Guidance for
input Textual (A) outputText Rule 71

Guidance for
feedback - - -

Sub-task guidance Unguided - -
Answer

cardinality Simple inputText Rule 60

Confirmation
answer

Without
confirmation - -

Answer order - - -

Table 4-4 Design option values for textInput widget with graphical assignement for input

4.4.3.b.1.3 Arrangement of CICs
This sub-step is applied in order to provide the concrete layout information of the UI. It
consists of a transposition of the abstractAdjacency relationship defined between each
couple of AIOs (Section 4.4.2.c) into a graphicalAdjacency relationship between GIOs
reifying them. As AIOs can be of two types (i.e., ACs or AICs), four rules describing the
four possible combinations are considered (Rules 121-124).

4.4.3.b.1.4 Navigation definition
This sub-step aims to specify the navigation structure among the different GCs
populating a UI. In Section 4.4.2.a the generation of AIC that ensures the navigation
between containers was based on the Navigation type design option. In Section
4.3.3.b.1.2 the AICs were reified in their corresponding GIC (i.e., “PREV” and “NEXT”
buttons).
The current sub-step considers the Sub-task navigation design option. It enables to
define the navigation type between GCs by endowing the GICs that ensure the
navigation with graphical transition features. There are two possible values of this option:
 Sequential: for exemplification we consider three sub-tasks executed in separated

windows (Figure 4-47). The navigation between the windows is ensured by the
PREV and NEXT buttons. Once the user fulfilled the requested information in the
window corresponding to sub-task 1, only sub-task 2 can be activated (navigation
a). From the window associated to sub-task 2, there are two paths: returning to
sub-task 1 window (navigation b) or continuing with sub-task 3 (navigation c).

4. A Transformational Method for Producing Multimodal User Interfaces

 150

From sub-task 3 window the user can activate only sub-task 2 window (navigation
d). Rule 23 offers the support for this value.

 Asynchronous (Figure 4-48): the navigation is ensured by buttons that specify the name
of the sub-task they activate. Once the user fills in the requested information in the
window corresponding to sub-task 1, either sub-task 2 or sub-task 3 can be
activated (navigation a and b, respectively). From the window associated to sub-task
2 the user can navigate back to sub-task 1 (navigation c) or continue to fill in the
information requested for sub-task 3 (navigation d). In the window associated to
sub-task 3, there are two navigational paths: returning to sub-task 2 (navigation e)
or navigating to sub-task 1 (navigation f). Rules 24, 25 and 26 ensure the support
for this value.

Figure 4-47 Sequential navigation between sub-tasks presented in separated windows

Figure 4-48 Asynchronous navigation between sub-tasks presented in separated windows

4.4.3.b.1.5 Concrete dialog control definition
This sub-step realizes a transposition of auiDialogControl relationships defined between
each couple of AIOs into cuiDialogControl relationships between graphicalCIOs reifying
them. As AIOs are of two types (i.e., ACs and AICs), four rules describing the four
possible combinations are considered (Rule 125-128).

4.4.3.b.1.6 Derivation of CUI to domain relationships
This step aims at transposing the relationships defined in Section 4.4.2.e to the concrete
level. Thus, relationships between GICs and domain objects are defined thanks to Rules
129 and 130.

4.4.3.b.2 Case 2: From AUI Model to Vocal CUI Model

The current case aims at deriving Vocal Concrete UIs from Abstract UI specifications by
applying a set of transformation rules structured in six development sub-steps (Figure

4. A Transformational Method for Producing Multimodal User Interfaces

 151

4-40). The transformation supporting the current case consider only the abstract and
vocal concrete concepts illustrated in black and blue, respectively.

4.4.3.b.2.1 Reification of AC into CC
This sub-step is dedicated to the reification of AC into VC. By analogy with Section
4.3.3.b.1.1, the current sub-step considers the sub-task presentation design option. As the
Concrete Model is modality-dependent their values are concretized in vocal objects
according to Figure 4-3. Hereafter, we present two design option values and we identify
the corresponding rules in the transformation catalog:
 Separated: Rule 2 generates for each top-most AC a VC of type vocalGroup.
 Combined all at once in grouped list: first, Rule 17 reifies the top most AC into a

vocalGroup containing a vocalForm with a vocalInput and then Rule 18 generates a
vocalGroup and two vocalPrompts for each AC embedded into the top most AC.

4.4.3.b.2.2 Selection of CICs
By analogy with Section 4.4.2.b, we provide in Table 4-5 the mappings between AICs
defined by their facets and the VICs that reify them. The left column identifies the
combinations of actionType and actionItem attributes of AIC facets, the middle column
shows the corresponding VIC type, wheras the right column specifies the transformation
rule to apply in order to generate the VICs.

AIC facet
facet type + (actionType +

actionItem)

VIC type Transformation rule

Control + (start + operation) submit Rules 42, 45
Navigation +

(start + operation)
vocalNavigation Rules 31, 32, 33, 36

Input +
(select + element)

vocalInput + grammar +
part + items

Rules 97, 98 or Rules 99,
100 or Rules 101, 102 or

Rules 103, 104
Input +

(create + element)
vocalPrompt + vocalInput

+ record
Rule 105

Output +
(convey + element)

vocalPrompt Rule 106

Table 4-5 Mappings between facet types and VIC types

By analogy with the correspondent sub-step in Case 1, the designer takes into
consideration the following design options: Prompting, Input, Immediate feedback,
Guidance, Sub-task guidance, Answer cardinality, Confirmation answer and An-
swer order.
We exemplify the design options considered in the current sub-step with a possible
design decision for a vocal input that enables users to utter their names. Table 4-6
identifies the rules applied in order to generate the corresponding VICs.

Design option Value VIC
Transformation

rule
Prompting Vocal (A) vocalPrompt Rule 65

Input Vocal (A) vocalInput Rule 59
Immediate Vocal (A) vocalFeedback Rule 68

4. A Transformational Method for Producing Multimodal User Interfaces

 152

feedback
Guidance for

input Speech (A) vocalPrompt Rule 74

Guidance for
feedback - - -

Sub-task guidance Unguided - -
Answer

cardinality Simple vocalInput Rule 59

Confirmation
answer

Without
confirmation - -

Answer order - - -

Table 4-6 Design option values for vocal assigned input

Note: for the rest of the sub-steps: Arrangement of CICs, Navigation definition,
Concrete dialog control definition, Derivation of CUI to domain relationships, we are
employing the abstract and the vocal concepts of the rules presented in Section 4.4.3.b.1.

4.4.3.b.3 Case 3: From AUI Model to Multimodal CUI Model

The current case derives MM Concrete UIs from Abstract UI specification by applying a
set of transformational rules structured in seven development sub-steps (Figure 4-40).
The transformation supporting the current case consider the abstract and both graphical
and vocal concepts illustrated in black, red and blue, respectively.

4.4.3.b.3.1 Reification of AC into CC
As described in the homologous sub-steps of Cases 1 and 2, the rules that ensure the
current sub-step consider the different possible final representations of the sub-task
presentation design option.
Sub-task presentation. Hereafter, we present two design option values and we identify
the corresponding rules in the transformation catalog:
 Separated: Rule 2 generates for each top-most AC a window and a vocalGroup.
 Combined all at once in grouped list: first, Rule 17 reifies the top most AC into a window

and a vocalGroup containing a vocalForm with a vocalInput and further Rule 18
generates a groupBox, a vocalGroup and two vocalPrompts for each AC embedded into
the top most AC.

4.4.3.b.3.2 Selection of CICs
In order to identify the MM CICs that are the most suitable to support the functionalities
of the AICs ensured by their facets, Table 4-7 provides a series of mappings used in this
thesis.

AIC facet
facet type + (actionType +

actionItem)

GIC and VIC types Transformation rules

Control + (start + operation) button + submit Rules 42, 45
Navigation +

(start + operation)
button + vocalNavigation Rules 31, 32, 33, 36

Input + radioButton + vocalInput + Rules 99, 100

4. A Transformational Method for Producing Multimodal User Interfaces

 153

(select + element) grammar + part + items
Input +

(select + element)
checkBox + vocalInput +
grammar + part + items

Rules 101, 102

Input +
(select + element)

comboBox + vocalInput +
grammar + part + items

Rules 97, 98

Input +
(select + element)

listBox + vocalInput +
grammar + part + items

Rules 103, 104

Input +
(create + element)

inputText + vocalPrompt +
vocalInput + record

Rules 105

Output +
(convey + element)

outputText + vocalPrompt Rules 106

Table 4-7 Mappings between facet types and GIC and VIC types

By analogy with the correspondent sub-step in Case 1, the designer takes into
consideration the following design options: Prompting, Input, Immediate feedback,
Guidance, Sub-task guidance, Answer cardinality, Confirmation answer and An-
swer order. An exemplification of their values is presented based on a possible
design decision (Figure 4-18) for a MM text input where the user has to provide
his/her name. Table 4-8 identifies the rules applied in order to generate the
corresponding CICs.

Design option Value CIC Transformation
rule

Prompting Multimodal (R) outputText + vocalPrompt Rule 67
Input Multimodal (E) inputText + vocalInput Rule 61

Immediate
feedback

Multimodal (R) inputText + vocalFeedback Rule 70

Guidance for
input

Iconic
(assignment)

imageComponents (keyboard
icon + microphone icon)

Rule 72

Guidance for
feedback

Iconic
(assignment)

imageComponent
(speakerIcon)

Rule 77

Sub-task guidance Unguided - -
Answer

cardinality Simple vocalInput Rule 59

Confirmation
answer

Without
confirmation - -

Answer order - - -

Table 4-8 Design option values for multimodal textInput widget (graphical and vocal equivalence

for input)

4.4.3.b.3.3 Synchronization of CICs
Unlike the previous two cases the current one adds introduces a new sub-step
(Requirement 10. Method extendibility) aiming at ensuring the coordination of vocal and
graphical CIOs by generating a synchronization relationship between them (Section
3.4.4). Hereafter, we identify the rules supporting this sub-step for two examples:
 If the designer wants to enable users to interact with a combobox widget by

employing the vocal modality, then one must ensure the synchronization between
the vocalInput that will gather the input from the user and the comboBox: Rule 116

4. A Transformational Method for Producing Multimodal User Interfaces

 154

defines the synchronization between the currentValue x of the vocalInput and the
currentValue z of the comboBox.

 The second example corresponds to the designer’s decision of allowing users to
interact vocally with a text field. Thus, synchronization between the vocalInput that
gathers user’s input and the inputText is ensured by Rule 120 that syncronizes the
currentValue x of the vocalInput and the currentValue z of the inputText.

Note: for the rest of the sub-steps: 4.4.3.b.2.3 Arrangement of CICs, 4.4.3.b.2.4
Navigation definition, 4.4.3.b.2.5 Concrete dialog control definition, 4.4.3.b.2.6
Derivation of CUI to domain relationships, we are employing the abstract, the vocal and
the graphical concepts of the rules presented in Section 4.4.3.b.1.

4.4.4 Step 4: From Concrete User Interface Model to Final User Interface

This step generates the source code of the FUI from each type of CUI considered in the
previous step (i.e., graphical, vocal and MM). Thus, for GUIs we generate XHTML code,
VoiceXML code is considered for VUIs, while MM UIs will be supported be
XHTML+Voice language. Further, we interpret the generated code within a correspond-
ing browser:
 Graphical FUI: any ordinary web browser (e.g., Internet Explorer, Mozilla).
 Vocal FUIs: interpreted with IBM VoiceXML browser.
 Multimodal FUIs: interpreted within Opera browser. With respect to the CARE

properties we consider only Assignment, Equivalence and Redundancy in output. Redundancy
in input and Complementarity in input/output are not covered as fussion and fission are
not currently supported by the X+V language and consequently we do not have any
control over these aspects. Moreover, they are out of the scope of this thesis (Section
1.4.3).

4.5 Conclusion
This chapter introduced the design space and expanded the selected transformational
approach with the concept of colored transformation rules gathered in a transformation
catalog. Based on the mappings between the design option values and the transformation
rules we were able to identify and exmplify the design options supporting each
development sub-step. Thanks to this identification in Chapter 6 we will prove the
feasability of developing different MM UIs for which a large variety design decisions
were considered.

5. Tool support

 155

5 Tool Support

5.1 Introduction

One of the main advantages of our design space is given by the fact that each design
option composing it is independent of any existent method and tool, thus being useful
for any developer of MM UIs. In these circumstances, an explicit support of the
introduced design space offered by a tool that implements the proposed method would
be a real help for designers (Requirement 11. Machine processability of involved models).
Therefore, we consider MultimodaliXML, an assembly of five software modules for
computer-aided design of MM UIs [Stan06] .
The tool is reducing the designer’s set of concerns by limiting the amount of design
decisions to those composing our design space, thus providing a more manageable and
tractable solution [Hoov91]. Based on the transformational approach general
development scenario we identified the five modules of MultimodaliXML tool over the
steps in which they are employed (Figure 5-1). The tool ensures interoperability as the
result produced by one module can be reused in another module (Requirement 16.
Support for tool interoperability).

Figure 5-1 General development scenario – identification of MultimodaliXML modules

5. Tool support

 156

5.2 MultimodaliXML modules

This section presents each module according to the following structured schema: (1) a
detailed description of the features is provided, (2) the implementation characteristics
(e.g., programming language, libraries employed, author) are specified, (3) our
contribution module is emphazised.

5.2.1 IdealXML

Description. IdealXML [Mont05] is a tool that is involved in the first step of the
transformational approach and allows designers to describe graphically the Task and
Domain Models and the mappings between them. Moreover, the tool enables to
graphically specify the Abstract UI Model, but due to the fact that the main objective of
UsiXML is to provide a machine processable language and then a human readable
specification, in this dissertation we generate the Abstract Model by employing the
transformational approach. The tool is able to automatically generate the UsiXML
specification of the corresponding models.
The Task Model (Figure 5-2) takes the form of a CTT notation [Pate97]. The Domain
Model (Figure 5-3) has the appearance of a class diagram, while the Mapping Model
(Figure 5-4) is specified by associating graphically elements of the Task Model with
elements of the Domain Model.

 Figure 5-2 Task Model editor Figure 5-3 Domain Model editor

Figure 5-4 Mapping Model editor

Implementation. The tool is implemented in Java language by Francisco Montero.
Contribution. Our contribution to this tool concerns more the conceptual aspects. It
consists of the introduction of an expanded Task Model (Section 3.3.1.b) with features

5. Tool support

 157

that respond to the requirements of MM UIs. However, these contributions have not
been implemented in the tool yet.

5.2.2 TransformiXML

Description. The transformation approach is sustained in steps 2 and 3 by
TransformiXML, the core module of the MultimodaliXML software that enables the
definition and the application of transformation rules based on design options. The basic
flow of tasks with TransformiXML GUI (Figure 5-5) is the following: after choosing an
input file containing models to transform, the user selects a development path by
choosing a starting point (i.e., the initial model) and the destination point (i.e., the model
to reach). All the steps and sub-steps of the chosen path can be visualized in the
development path explorer frame. By clicking on a sub-step, a set of transformation systems
realizing the chosen sub-step are displayed in the transformation system explorer. Each
transformation system contains the corresponding rules described in the transformation
rule catalog that can be visualized in the transformation rule explorer frame. Depending on
the considered design option, the designer will select the correspondent
transformation(s). The designer is also able to edit the rules either in GrafiXML editor or
in AGG tool [Ehri99]. The result of the transformation is then explicitly saved in a
UsiXML file.

Figure 5-5 TransformiXML – graphical user interface

Implementation. TransformiXML is developed jointly by Quentin Limbourg, Victor
Lopez-Jaquero and Benjamin Michotte in Java programming language by employing the
AGG API that was selected due to our prior experience with the AGG tool. AGG is an
open-source development environment for attributed graph transformation systems sup-
porting an algebraic approach to graph transformation [Ehri99]. The scenario of using
AGG API to perform model-to-model transformations consists of the following phases
(Figure 5-6): the initial specification of a model along with a set of rules both expressed

5. Tool support

 158

in UsiXML are processed by the TransformiXML API. A parsing operation is applied
over the UsiXML elements (models and rules) which are transformed into AGG objects.
The set of rules are applied sequentially to the models in order to obtain the resultant
AGG objects. Further, the objects are parsed and transformed into UsiXML resultant
specification.

Figure 5-6 Model-to-model transformation based on AGG API

TransformiXML tool has been tested successfully on a series of examples, but for the
moment it does not support the automatic application of transformation rules for all the
steps and sub-steps involved in the transformational method. However, the feasibility of
the approach was proved to be successful in model-to-model transformation generated
manually with AGG tool. Figure 5-7 provides an example of a transformation rule
applied manually over the initial Task Model (Figure 5-8) in order to generate the resultant
AUI Model (Figure 5-9). The rule is creating AC in which each sub-task of the top-most
task in a Task Model will be executed.
 NAC LHS RHS

Figure 5-7 Generate abstract containers for each sub-task of the top-most task

 Figure 5-8 Initial Model Figure 5-9 Resultant model

5. Tool support

 159

Contribution. The contributions brought to this module are two fold:
 Conceptual contributions: previous to our work the tool was employed in editing

and applying transformation for the generation of GUIs [Limb04b]. This work en-
riches the existing transformational approach method in order to support generation
of vocal and MM UIs. This is made possible thanks to the introduction of new sub-
steps (i.e., Synchronization between CICs in Section 4.4.3.b.3.3) that involve new trans-
formation rules defined over an expanded vocal ontology (Section 3.4.2)

 Implementation contribution: we have implemented import and export
functionalities in AGG as part of an incipient project involving TransformiXML tool
[Stan04]. The import functionality allows to represent under the form of a graph the
XML specification corresponding to any level of UsiXML language, whereas the
export functionality enables designers to recover the resultant graph under the form
of XML specification of UsiXML. Moreover, we have ensured the testing phase
during the continous development of the tool which enabled designers to improve its
implementation thanks to the identified bugs.

5.2.3 GrafiXML

Description. GrafiXML is a tool that is involved in Step 4 of the transformational
approach. It allows designers to import the graphical CUI specification obtained in the
previous step and to export it into XHTML code (Figure 5-10). GrafiXML can also be
used to enable the development of CUI Models by designers. For this purpose a specific
editor has been developed where the designers can draw in direct manipulation any GUI
by placing graphicalCIOs and editing their properties in a property sheet. The
correspondent UsiXML specification can be visualized and modified at any moment,
while the changes are being updated immediately into the graphical representation.

Figure 5-10 GrafiXML – export function

Implementation. GrafiXML is developed by Benjamin Michotte in Java language and
requires the following libraries: Java Help jars, mysql.jar, Java Web Start jars, jdom.jar,

5. Tool support

 160

Castor-x.y.jar, oro.jar, commons-logging.jar, xerces.jar, regexp.jar, Java Media
Framework.
Contribution. We did not bring any contribution to the development of this tool as it
addresses the development of graphical interaction only, whereas our work consisted
more in expanding the the vocal and MM aspects. However, the tool could be extended
in order to support editing vocal and MM CUIs by simply enabling to graphically
manipulate the vocal concepts introduced by our ontology and by defining relationships
with graphical objects.

5.2.4 VoiceXML Generator

Description. VoiceXML Generator tool is a module involved in step 4 of the
transformational approach. It generates VoiceXML code by applying XSL
Transformations [Clar99] over the vocal specification of the CUI Model. These
transformations are capable of creating, inserting, updating, deleting or replacing
fragments of any XML-compliant languages like HTML, XUL, XIML, UIML and of
course UsiXML. Using XSL transformations, rich behavior can be produced in order to
generate the final UI.
Implementation and contribution. So far, there is no implementation for this tool.
The transformations were applied manualy by mapping the vocal CIOs into the
corresponding VoiceXML elements. Table 5-1 provides several mapping examples.

UsiXML vocal CIO VoiceXML element
vocalForm form

vocalPrompt block
vocalInput field
vocalMenu menu

vocalMenuItem choice
grammar grammar

part rule
vocalNavigation goto

Table 5-1 Mappings between the vocal CIOs and VoiceXML elements

5.2.5 XHTML+Voice Generator

Description. XHTML+Voice Generator tool is a module involved in step 4 of the
transformational approach. It generates XHTML+Voice code by applying XSL
Transformations over the MM specification of the CUI Model.
Implementation and contribution. So far, there is no implementation for this tool.
The transformations were applied manualy by mapping the graphical and vocal CIOs
into the XHTML and VoiceXML elements, respectively. Table 5-1 and Table 5-2 provide
several mapping examples.

UsiXML graphical
CIO

XHTML element

box body
groupBox form

5. Tool support

 161

outputText text
inputText input text

radioButton input radio
checkBox input checkbox

comboBox with
items

select option

button button

Table 5-2 Mappings between the graphical CIOs and the XHTML elements

5.3 Limitations of current tool support

The current thesis proposes a methodology composed of a set of models gathered in an
ontology over which a method manipulating these models is applied thanks to tools that
implement it. Our contribution concentrated extensively on the ontological and
methodological aspects of the methodology by providing a solution that is independent
of the implementation technology. This solution is concretized in a design space that is
independent of any implmentation language and tool support which represents a
contribution to the development process of MM UIs. As a result any MM UIDL could
be considered for a possible implementation, while the models and the proposed
methodology remain unchanged. Even if these languages didn’t currently have the
semantical power to support our ontology, they could be extended with new elements in
order to reach the required level.
However, with respect to the implementation aspects, this dissertation provides an
explicit support concretized in the MultimodaliXML tool which applies the described
methodology over the ontology implemented in UsiXML language. This technolgical
dependent solution was considered in order to show the feasability and the proof of
concepts without taking into account its usability and performance. For this solution we
have identified the following critics:
 Some aspects of the methodology are not supported: only the transformation

ensuring the transition from the graphical CUI to the FUI are automated, whereas
those from the vocal and MM CUI to their corresponding FUI are ensured manually.
A software solution that automates these transformations should be based on the
mappings provided in Table 5-1 and Table 5-2.

 When supported, these aspects are not always automated: the transformation rules
are manualy selected and parameterized by the designer depending on the selected
design decision.

 It is not very robust due to the high complexity of issues to be considered:
transformation rules are hard to design, implement and apply; in addition, the high
dependency between the output produced by one rule and the input manipulated by
the next rule to apply determine a very low scalability of the transformational
approach.

 It involves a high number of tools (i.e., five tools) which imposes a high treshold i.e.,

5. Tool support

 162

a lot of effort in terms of time and concepts to learn and master before getting
familiar with their manipulation.

 The high number of tools to operate with makes them hardly interoperable: any
change brought to the UsiXML syntax determines a chain impact over the involved
tools as the resultant specification produced by one tool will no longer map the
source specification required by the next tool in the chain.

The graphic illustrated in Figure 5-11 shows the position of our solution with respect to
the tool complexity and application domain specificity aspects. Currently, most of the
tools surveyed in Section 2.4 provide a relative simple solution for problems with a high
level of specificity. At the other side of the axis, we find less complex solutions provided
by a multiple interoperable intergrated tools that address in exchange more generic
aspects of MM UI development. Our approach positions itself somewhere between the
two solutions with a high level of complexity but still covering a large spectrum of MM
application. The ideal approach is given by the break-even point of the two curbes and
consists of a design space-based solution. Its concretization would suppose a single tool
(Figure 5-12) that enables designers to: (1) specify the task and domain models of the
future system, (2) select for each design option the desired design value that will hide
from designers useless details concerning the development steps and sub-steps and the
transformation rules supporting them. Before generating the final specification, a preview
of the final system could be provided in order to validate the design decision.

Figure 5-11 Multimodal design tools complexity vs. specificity

5. Tool support

 163

Figure 5-12 A design space-based tool for development of multimodal UIs

5.4 Conclusions

This chapter presented the software solution supporting the method proposed by the
current thesis. Each module of the MultimodaliXML tool was positioned into the
corresponding development step and detailed according to a structured schema. At the
end of the chapter several critics of the tool have been identified along with its position
among the current MM development tools with respect to the software complexity and
application domain specificity. A mock-up of an ideal system supporting the design space
was presented as a possible future solution.

5. Tool support

 164

6. Validation

 165

6 Validation

6.1 Introduction

After introducing the design space and the transformational approach governing
the method applied in the context of this dissertation, the current chapter aims at
assessing it validity. We will respond to this issue following two paths:
 External validation: based on the software support described in Chapter 5, we

show the feasibility of the approach on three case studies having different
levels of complexity and coverage. Section 6.2 concerns the development of
an on-line polling system, a low complexity web-form application that was
selected in order to facilitate the understanding of the proposed method.
Section 6.3 details a web-form application of medium complexity dedicated to
the development of a car rental system. In Section 6.4 a non-web form
application of medium complexity that enables users to browse a map in order
to identify different objectives is developed. To solve these case studies we
employed the following procedure: (1) Building initial model with their associ-
ated tool, (2) Manual editing of transformation rules, where most of them
have been elicited prior to realizing these case studies and gathered in the
transformation catalog, (3) Manually selecting the transformation rules de-
pending on the design decisions, (4) Automatically applying the selected trans-
formation rules in TransformiXML tool, (5) Transforming the UsiXML speci-
fication provide by TransformiXML in the correspondent final UI thanks to
the software support presented in Chapter 5.

The validation is supported in Section 6.5 by an empirical study conducted
with end users in order to measure the relative usability level provided by dif-
ferent design decisions.

 Internal validation: aims at assessing the methodology against the requirements
identified at the begining of this work. For this purpouse, Section 6.6 offers a
discussion of each requirement based on which an estimation of the
methodological coverage is provided.

6.2 Case study 1: Virtual Polling Application

This case study applies our transformational approach for developing a UI on an
opinion polling system aiming at collecting opinions of users regarding a certain
subject. The scenario of this case study (Figure 6-1) is the following: from the

6. Validation

 166

Task and Domain Models, an AUI is produced, from which three CUIs are
derived (GUI, VUI and MM UIs). In the last step, from each CUI a
correspondent FUIs is generated.

Figure 6-1 Development scenario for virtual polling application

6.2.1 Step 1: The Task and Domain Models

The Task Model, the Domain Model and the mappings between them are
graphically described using IdealXML tool. The upper part of Figure 6-2 depicts a
CTT representation of the task model envisioned for the future system. The root
task consists of participating to an opinion poll. The user has to provide the
personal data (i.e., name, zip code, gender, age category). Further, the user
iteratively answers some questions as follows: a system task is showing the title of
the question and thanks to an interactive task the user is able to select one answer
among several proposed ones. Once the questions are answered, the questionnaire
is sent back to its initiator. The bottom part of Figure 6-2 illustrates the Domain
Model: a participant participates to a questionnaire, a questionnaire is made of
several questions and a question is attached to a series of answers.

Figure 6-2 Mappings between the Task Model and the Domain Model

6. Validation

 167

The dashed arrows between the two models in Figure 6-2 depict the mappings
relationships between the elements of the Task and the Domain Model. The sub-
tasks of Insert personal data task is mapped onto the correspondent attributes of
Participation class (i.e., name, zipCode, gender and ageCategory). Show question is mapped
onto the attribute title of class Question. The task Select answer is mapped onto the
attribute title of the class Answer. Finally, the task Send questionnaire is mapped onto
the method sendQuestionnaire of the class Questionnaire. Figure 6-3 illustrates the
design of the Mapping Model in IdealXML tool. Each leaf task is mapped on the
corresponding attribute or method of the classes contained in the Domain Model.

Figure 6-3 Mapping Model for the virtual polling system

IdealXML generates automatically the UsiXML specifications for the Task Model
(Figure 6-4), Domain Model (Figure 6-5) and Mapping Models (Figure 6-6).

6. Validation

 168

Figure 6-4 Task Model expressed in UsiXML

6. Validation

 169

Figure 6-5 Domain Model expressed in UsiXML

Figure 6-6 Mapping Model expressed in UsiXML

6. Validation

 170

6.2.2 Step 2: From Task and Domain Models to AUI Model

The second transformation step is sub-divided in five sub-steps composed of
transformation rules applied in order to realize the transition from the Task and
Domain Models to the Abstract Model.

6.2.2.a Sub-step 2.1: Rules for the identification of AUI structure

The current case study considers the following design option values supported by
their corresponding rules:
 Sub-task presentations combined all at once: Rule 3 and 4
 Control type with Global containment (Rule 43) and Simple cardinality (Rule 46).

Moreover, Rule 81 is applied in order to create AICs for leaf tasks.

6.2.2.b Sub-step 2.2: Rules for the selection of AICs

The current sub-step generates facets for AICs that support the execution of the
leaf task:
 Input facet of type create element for create name and create zipCode tasks: Rule

83
 Input facet of type select element for Select gender, Select ageCategory and Select

Answer tasks: Rule 84. For each enumerated value of an attribute, a selection
value with the same name as the enumerated value, will be attached to the
above created facet: Rule 85

 Output facet of type convey element for the AIC assigned to the task Show
Question Title: Rule 86

 As the placement for the control concretization is local Rule 41 is applied in
order to generate a control facet of type start operation for the Send
Questionnaire task.

6.2.2.c Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an
abstractAdjacency relationship between these AIOs. As AIOs can be of two types
(i.e., ACs or AICs), there are four possible rules to be applied (Rule 87-90).

6.2.2.d Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed
into AIOs, we generate an abstractDialogControl relationship between these AIOs
that have the same semantics as the temporal relationship defined between the
tasks. As AIOs can have two types (i.e., ACs or AICs), there are four possible
combination that are considered by Rules 91-94.

6. Validation

 171

6.2.2.e Sub-step 2.5: Rules for the derivation of the AUI to domain
mappings

In order to ensure the synchronization between the AICs and attributes of objects
from the Domain Model, Rule 95 generates the updates relationship. Moreover,
Rule 96 enables the triggering of methods by AICs through the triggers
relationship.
The resultant UsiXML specification issued from the application of the above rules
in TransformiXML is illustrated in Figure 6-7.

Figure 6-7 AUI Model expressed in UsiXML

6. Validation

 172

6.2.3 Step 3: From AUI Model to CUI Model

The third step implies a transformational systems composed of transformation
rules required to transform the AUI into four different CUIs:
 Case 1 - graphical CUI: the modality used to interact with the system is

entirely graphical.
 Case 2 - vocal CUI: the modality used to interact with the system is entirely

vocal.
 Case 3 - multimodal CUI: both the graphical and the vocal modalities are

employed.

6.2.3.a Case 1: generation of graphical CUI

For the generation of GUIs the designer takes into consideration just the abstract
and concrete graphical part of each transformation rule.

6.2.3.a.1 Sub-step 3.1: Reification of AC into CC

For the reification of AC into CC, Rules 15 and 16 are concretizing the separated
list design option into graphical objects.

6.2.3.a.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs based on the set of design options identified in Section
4.4.3.b.1.2. For each task we specify the considered design option value and the
generated CICs:
 Generation of an outputText and an inputText that enable to insert the name and

the zipCode: Rule 105 is applied each time an AIC with an input facet of type
create element is encountered (Table 6-1).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) inputText
Immediate feedback Graphical (A) inputText
Sub-task guidance Unguided -
Answer cardinality Simple -

Confirmation answer Without confirmation -

 Table 6-1 Design option values for inputText

 Generation of a GC of type box that will embed a group of radio buttons and a
GIC of type outputText representing the label associated to this group when
an input facet of type select element is encountered: Rule 99; The radio
buttons associated to this group are created by applying Rule 100. The rules

6. Validation

 173

are used in order to select the gender of the user, the ageCategory and also
his/her answers to the questions (Table 6-2).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) radioButtons
Immediate feedback Graphical (A) radioButtons
Sub-task guidance Unguided -
Answer cardinality Multiple -

Confirmation answer Without confirmation -

 Table 6-2 Design option values for radioButtons

 Generation of a GIC of type outputText, each time an output facet of type
create is encountered: Rule 106 is applied in order to display of the titles of the
questions (Table 6-3).

Design option Value CIC
Prompting Graphical (A) outputText

 Table 6-3 Design option values for outputText

 Generation of OK, CANCEL buttons that will ensure the Send questionnaire
task and the cancellation of the fulfilled data (Table 6-4): Rule 45.

Design option Value CIC
Control type containment Global buttons

Table 6-4 Design option values for control buttons

6.2.3.a.3 Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalCIOs, we define a
graphicalAdjencency relationship between these graphicalCIOs. As AIOs can
have two types (i.e., ACs or AICs), there are four possible combination to take
into account. For each combination a specific rule is considered: Rules 121-124.

6.2.3.a.4 Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case
study as all the sub-tasks of the virtual polling system are presented combined into
the same window.

6.2.3.a.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs that reify them is realized. As AIOs can have
two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6. Validation

 174

6.2.3.a.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.2.3.b Case 2: generation of vocal UI

For the generation of VUIs the designer takes into consideration just the abstract
and concrete vocal part of each transformation rule.

6.2.3.b.1 Sub-step 3.1: Reification of AC into CC

For the reification of AC into CC, Rules 15 and 16 are concretizing the separated
list design option into vocal objects.

6.2.3.b.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different VICs depending on the type of facets of
the corresponding AICs:
 Generation of a vocalPrompt, a vocalInput and a record element that enable users

to utter their name (Table 6-5): Rule 105.
Design option Value CIC

Prompting Vocal (A) vocalPrompt
Input Vocal (A) vocalInput + record

Sub-task guidance Unguided -
Answer cardinality Simple -

Confirmation answer Without confirmation -

 Table 6-5 Design option values for vocalInput

 Generation of a vocalPrompt, a vocalInput and a record and a VC of type
vocalConfirmation that enable users to utter and confirm the zipCode (Table
6-6): Rule 55.
Design option Value CIC

Prompting Vocal (A) vocalPrompt
Input Vocal (A) vocalInput + record

Sub-task guidance Unguided -
Answer cardinality Simple -

Confirmation answer With confirmation vocalConfirmation

Table 6-6 Design option values for vocalInput with confirmation

 Generation of a vocalInput, a grammar and the associated part element when
an input facet of type select is encountered: Rule 99. The rule enables users
to specify the gender, the age category and the answers to the questions (Table 6-7).

6. Validation

 175

In order to add the corresponding grammar items for each selection value
of the facet, Rule 51 is applied.
Design option Value CIC

Prompting Vocal (A) vocalPrompt
Input Vocal (A) vocalInput

Sub-task guidance Guided vocalPrompt
Answer cardinality Multiple grammar + part +items

Confirmation answer Without confirmation -

Table 6-7 Design option values for vocalInput with grammar items

 Generation of a vocalPrompt when an output facet of type convey element is
identified (Table 6-8): Rule 106 has to be applied in order to ensure the
announcement of the questionnaire section.
Design option Value CIC

Prompting Vocal (A) vocalPrompt

Table 6-8 Design option values for vocalPrompt

 Generation of a submit element that enables users to send the questionnaire or
to cancel the fulfilled data (Table 6-9): Rule 45 has to be applied each time a
control facet of type start operation is encountered.
Design option Value CIC

Control type containment Global submit

 Table 6-9 Design option values for submit element

6.2.3.b.3 Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into vocalCIOs, we define a
vocalAdjencency relationship between these vocalCIOs that specify a delay time
of 1 second. As vocalCIOs can have two types (i.e., VCs or VICs), there are four
possible combination to take into account. For each combination a specific rule is
considered: Rule 121-124.

6.2.3.b.4 Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not applied in the current case
study as all the sub-tasks of the virtual polling system are presented combined into
the same window.

6.2.3.b.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs that reify them is realized. As AIOs can have
two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6. Validation

 176

6.2.3.b.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.2.3.c Case 3: generation of multimodal UI

For the generation of MMUIs the designer takes into consideration the abstract
elements and both the vocal and graphical parts of the transformation rule.

6.2.3.c.1 Sub-step 3.1: Reification of AC into CC

For the reification of AC into CC, Rules 15 and 16 are concretizing the separated
list design option into graphical and vocal objects.

6.2.3.c.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different CICs depending on the type of facets of
the corresponding AICs and on the design options selected by the designer:
 Insert name and Insert zip code tasks: Rule 105 has to be applied in order to

generate a MM inputText widget that supports the follwing design decisions
(Table 6-10).

Design option Value CIC
Prompting Multimodal (R) outputText +

vocalPrompt
Input Multimodal (E) inputText + vocalInput +

record
Immediate feedback Graphical (A) inputText
Guidance for input Iconic (A) imageComponents

(microphone icon +
keyboard icon)

Sub-task guidance Unguided -
Answer cardinality Simple -

Confirmation answer Without confirmation -

Table 6-10 Design option values for multimodal inputText

 Select gender, Select age category and Answer to the questions tasks: Rules 99 and 100
have to be applied in order to generate MM groups of radio buttons (Table
6-11).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Vocal (A) vocalInput + grammar + part
Immediate feedback Graphical (A) radioButton
Guidance for input Iconic (A) imageComponents (microphone

6. Validation

 177

icon)
Sub-task guidance Guided radioButton
Answer cardinality Simple -

Confirmation
answer

Without confirmation -

 Table 6-11 Design option values for multimodal radioButtons

 Generation of OK, CANCEL buttons that will ensure the Send questionnaire
task and the cancellation of the fulfilled data (Table 6-12): Rule 45.

Design option Value CIC
Control type containment Global buttons

 Table 6-12 Design option values for outputText

6.2.3.c.3 Sub-step 3.3: Synchronization of CICs

Two rules are used for the synchronization of the previously generated CICs:
 Rule 120 is applied in order to synchronize the vocalInput and the inputText
 Rule 118 is applied in order to synchronize the vocalInput and the GC of type

groupBox that embeds a set of radioButtons

6.2.3.c.4 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.2.3.c.5 Sub-step 3.5: Navigation definition

The rules that ensure the navigation definition are not applied in the current case
study as all the sub-tasks of the virtual polling system are presented combined into
the same window.

6.2.3.c.6 Sub-step 3.6: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs and vocalCIOs that reify them is realized. As
AIOs can have two types (i.e., ACs and AICs), four rules describing the four
possible combinations are considered: Rules 125-128.

6.2.3.c.7 Sub-step 3.7: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6.2.4 Step 4: From CUI Model to FUI

This step consists of transforming each variant of the CUI into its respective FUI
specification. Hereafter, we illustrate the results of the interpretation of the FUIs

6. Validation

 178

with their corresponding browsers. Thus, Figure 6-8 shows the resultant GUI
interpreted with Internet Explorer browser, while Figure 6-9 illustrates a possible
User (i.e., U) system (i.e., S) vocal interaction. The MM FUI is interpreted with
Opera browser (Figure 6-10).

 Figure 6-8 Graphical UI Figure 6-9 Vocal UI

6. Validation

 179

Figure 6-10 Multimodal UI

6.3 Case study 2: Car Rental Application

The second case study is dedicated to an on-line car rental system that allows
users to search, select and pay a car based on a set of preferences. The scenario is
as follows (Figure 6-11): (1) Task and Domain Models are specified, (2) AUI is
generated from these models, (3) three CUIs are derived based on the Input
design option values (i.e., graphical, vocal and MM with graphical and vocal
equivalence) and (4) three FUIs are derived corresponding to each CUI obtained
in the previous step.

6. Validation

 180

Figure 6-11 Development scenario for car rental application

6.3.1 Step 1: The Task and Domain Models

The root task of the Task Model (Figure 6-12) is decomposed into three basic
sub-tasks:
1. Determine rental preferences (Figure 6-13): the user has to select a series of

information, such as rental location, expected car features, type of insurance.
The task is iterative and the user can interrupt it at any moment.

2. Determine car (Figure 6-14): the system will launch the search of available
cars depending of the preferences established in the previous sub-task. Based
on the search results, the user will select the car. The task is iterative and the
user can interrupt it at any moment.

3. Provide payment information (Figure 6-15): the user provides a set of
personal information, such as name and card details. Then, the system checks
the validity of the card and finally, the user confirms the payment.

Figure 6-12 The decomposition of Determine rental preferences sub-task

Figure 6-13 The decomposition of Determine rental preferences sub-task

6. Validation

 181

Figure 6-14 The decomposition of Determine car sub-task

Figure 6-15 The decomposition of Provide payment information sub-task

An excerpt of the UsiXML specification generated in IdealXML corresponding to
the Task Model is presented Figure 6-16.

6. Validation

 182

 Figure 6-16 Excerpt of Task Model expressed in UsiXML

The Domain Model (Figure 6-17) involves 7 classes. Client class describes client’s
characteristics. Car class specifies the features of the car, like car class and type of
transmission. Insurance offers information about the different types of insurances
assigned to each car. RentalInformation class describes the preferences of the client,
such as departure and arrival coordinates, pick up and return dates. Transaction
class gathers information related to a car rental payment. CreditCard provides
information about credit cards, the only payment modality available in our system.
Coordinates is a class used as data type by RentalInformation and Client classes.

6. Validation

 183

Figure 6-17 Domain Model for the car rental system

Figure 6-18 illustrates an excerpt of the Domain Model expressed in UsiXML
language.

Figure 6-18 Excerpts of Domain Model expressed in UsiXML

The mappings between the Task Model and the Domain Model are summed-up
in Table 6-13.

6. Validation

 184

Task Model Domain Model
Select pick-up city (select element) RentalInformation.departure.city
Specify day (select element) RentalInformation.pickUpDate.day
Specify month (select element) RentalInformation.pickUpDate.month
Specify year (select element) RentalInformation.pickUpDate.year
Select return city (select element) RentalInformation.arrival.city
Specify return day (select element) RentalInformation.return.day
Specify return month (select element) RentalInformation.return.month
Specify return year (select element) RentalInformation.return .year
Select car class (select element) Car.carClass
Select transmission type (select element) Car.transmissionType
Select insurance type (select element) Insurance.mandatoryInsuranceType
Select optional insurance (select element) Insurance.optionalInsuranceType
Search available cars (start operation) Car.searchCar()
Select car (select element) Return parameter of method

Car.searchCar()
Input name (create element) Client.name
Select card type (create element) CreditCard.cardType
Input card number (create element) CreditCard.cardNumber
Specify the month of (select element)
the expiration date

CreditCard.expirationDate.month

Specify the year of (select element)
the expiration date

CreditCard.expirationDate.year

Check card (start operation) CreditCard.checkValidity()
Confirm payment (start operation) Transaction.accomplishTransaction()

 Table 6-13 Mappings between task and domain models

6.3.2 Step 2: From Task and Domain Models to AUI Model

The second step considers the generation of the AUI from the previuosly
specified Task and Domain Models

6.3.2.a Sub-step 2.1: Rules for the identification of the AUI structure

The current sub-step considers the following design option values and their
corresponding rules:
 Sub-task presentation in combine grouped lists: Rule 3 and 4
 Control concretization with Global placement (Rules 43) and Simple cardinality (Rule

46).
In addition, Rule 81 is applied in order to create AICs for leaf tasks.

6. Validation

 185

6.3.2.b Sub-step 2.2: Rules for the selection of the AICs

The current sub-step generates facets for AICs that support the execution of the
leaf task:
 Input facet of type select element for the AICs assigned to the following

tasks: select city, select day, select month, select year for pick-up information as well
as for return information, select car class, select transmission type, select insurance
type, select optional insurance, select car, select expiration date of the credit card
(month and year): Rule 84; for each enumerated value of the attribute
manipulated by the tasks that is executed into the AIC, a selection value
with the same name as the enumerated value is attached to the above
created facet: Rule 85

 Input facet of type create element for the AICs assigned to the input name and
input card number tasks: Rule 83

 Control facets of type start operation for the AICs that ensure the data
control: Rule 44.

6.3.2.c Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an
abstractAdjacency relationship between these AIOs. As AIOs can have two types
(i.e., ACs or AICs), there are four possible rules to be applied (Rule 87-90).

6.3.2.d Sub-step 2.4: Rules for the definition of abstract dialog control

By analogy with the previous sub-step, for each couple of sister tasks executed
into AIOs, we generate an abstractDialogControl relationship between these
AIOs that have the same semantics as the temporal relationship defined between
the tasks. As AIOs can have two types (i.e., ACs or AICs), there are four possible
combination that are considered by Rules 91-94.

6.3.2.e Sub-step 2.5: Rules for the derivation of the AUI to domain
mappings

In order to ensure the synchronization between the AICs and attributes of objects
from the Domain Model, Rule 95 generates the updates relationship. Moreover,
Rule 96 enables the triggering of methods by AICs through the triggers
relationship.

6.3.3 Step 3: From AUI Model to CUI Model

From the AUI obtained in the previuos step, three CUIs will be derived:
 Case 1 – CUI with graphical input: the input modality used to interact

with the system is entirely graphical.
 Case 2 - CUI with vocal input: the input modality used to interact with

the system is entirely vocal.

6. Validation

 186

 Case 3 - CUI with multimodal equivalent input: graphical or vocal input
modalities can be selected to interact with the system.

6.3.3.a Case 1: generation of CUI with graphical input

For this sub-case only the graphical elements of the rules are considered.

6.3.3.a.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical objects.

6.3.3.a.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs and considering the set of design options identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value
and the generated CIC:
 For Input name and Input card number tasks an outputText and an s are gener-

ated (Table 6-14): Rule 105
Design option Value CIC

Prompting Graphical (A) outputText
Input Graphical (A) inputText

Immediate feedback Graphical (A) inputText
Sub-task guidance Unguided -
Answer cardinality Simple inputText

Confirmation answer Without confirmation -

 Table 6-14 Design option values for inputText

 For each of the following tasks, Select pick-up and return information (city, day,
month, year), Select card type, Select expiration date (month, year): Rules 97 and 98
generate a comboBox widgets (Table 6-15).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) comboBox
Immediate feedback Graphical (A) comboBox
Sub-task guidance Guided items
Answer cardinality Simple comboBox

Confirmation
answer

Without confirmation -

 Table 6-15 Design option values for comboBox

 For the Select car class, Select transmission type, Select insurance type tasks: Rules 99
and 100 generate radioButtons (Table 6-16).

Design option Value CIC
Prompting Graphical (A) outputText

6. Validation

 187

Input Graphical (A) radioButtons
Immediate feedback Graphical (A) radioButtons
Sub-task guidance Guided radioButtons
Answer cardinality Simple radioButtons
Confirmation
answer

Without confirmation -

 Table 6-16 Design option values for radioButtons

 For the Select optional insurance task: Rules 101 and 102 generate checkBoxes
(Table 6-17).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) checkBoxes
Immediate feedback Graphical (A) checkBoxes
Sub-task guidance Guided checkBoxes
Answer cardinality Multiple checkBoxes

Confirmation
answer

Without confirmation -

 Table 6-17 Design option values for checkBoxes

 For the Select car task, the graphical elements of Rules 103 and 104 generate a
listBox widget (Table 6-18).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) listBox
Immediate feedback Graphical (A) listBox
Sub-task guidance Guided items
Answer cardinality Simple listBox

Confirmation
answer

Without confirmation -

 Table 6-18 Design option values for listBox

 For the Confirm/cancel payment task, Rule 45 generates the corresponding
buttons.

6.3.3.a.3 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical CICs.

6.3.3.a.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6. Validation

 188

6.3.3.a.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical CIOs that reify them is realized. As AIOs can have
two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.3.3.a.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.3.3.b Case 2: generation of CUI with vocal input

6.3.3.b.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into vocal objects.

6.3.3.b.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different VICs depending on the type of facets of
the corresponding AICs based on the set of design options identified in Section
4.4.3.b.1.2. For each task we specify the considered design option value and the
generated CIC:
 For Input name and Input card number tasks (Table 6-19): Rule 60

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Vocal (A) vocalInput + record
Immediate feedback Graphical (A) inputText
Guidance for input Iconic (A) imageComponent

(microphone icon)
Sub-task guidance Unguided -
Answer cardinality Simple vocalInput

Confirmation answer Without confirmation -

 Table 6-19 Design option values for multimodal inputText

 For each of the following tasks, Select pick-up and return information (city, day,
month, year), Select card type, Select expiration date (month, year), Rules 97 and 98
generate a MM comboBox (Table 6-20).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Vocal (A) vocalInput + grammar
Immediate feedback Graphical (A) comboBox

6. Validation

 189

Guidance for input Iconic (A) imageComponent (microphone
icon)

Sub-task guidance Guided comboBox items+ vocalPrompt
+ grammar items

Answer cardinality Simple comboBox + part
Confirmation

answer
Without confirmation -

 Table 6-20 Design option values for multimodal combobox

 For the Select car class, Select transmission type, Select insurance type tasks: Rules 99
and 100 generate MM radioButtons (Table 6-21).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Vocal (A) vocalInput + grammar
Immediate feedback Graphical (A) radioButtons
Guidance for input Iconic (A) imageComponent (microphone

icon)
Sub-task guidance Guided radioButtons + grammar items
Answer cardinality Simple radioButtons + part

Confirmation
answer

Without confirmation -

 Table 6-21 Design option values for multimodal radioButtons

 For the Select optional insurance task: Rules 101 and 102 generate MM
checkBoxes (Table 6-22).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Vocal (A) vocalInput + grammar
Immediate feedback Graphical (A) checkBoxes
Guidance for input Iconic (A) imageComponent (microphone

icon)
Sub-task guidance Guided checkBoxes + grammar items
Answer cardinality Multiple checkBoxes + part

Confirmation
answer

Without confirmation -

 Table 6-22 Design option values for multimodal checkBoxes

 For the Select car task: Rules 103 and 104 generate a MM listBox widgets
(Table 6-23).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Vocal (A) vocalInput + grammar
Immediate feedback Graphical (A) listBox
Guidance for input Iconic (A) imageComponent (microphone

6. Validation

 190

icon)
Sub-task guidance Guided listBox items + vocalPrompt +

grammar items
Answer cardinality Simple listBox + part

Confirmation
answer

Without confirmation -

 Table 6-23 Design option values for multimodal listBoxes

 For the Confirm/cancel payment task: Rule 45 generates the corresponding
buttons.

6.3.3.b.3 Sub-step 3.3: Synchronization of CICs

This sub-step is applied in order to ensure the synchronization between vocal
CIOs and graphical CIOs generated in the previous sub-step:
 Rule 120 is applied in order to synchronize the vocalInput and the inputText.
 Rule 116 is applied in order to synchronize the vocalInput and the comboBox.
 Rule 118 is applied in order to synchronize the vocalInput and the groupBox

that embeds a set of radioButtons.
 Rule 117 is applied in order to synchronize the vocalInput and the groupBox

that embeds a set of checkBoxes.
 Rule 119 is applied in order to synchronize the vocalInput and the listBox.

6.3.3.b.4 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.3.3.b.5 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.3.3.b.6 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.3.3.b.7 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6. Validation

 191

6.3.3.c Case 3 : generation CUI with multimodal equivalent input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent MM CUI with
equivalent graphical and vocal input.

6.3.3.c.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical and vocal objects.

6.3.3.c.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs and VICs depending on the type of
facets of the corresponding AICs based on the set of design option identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value
and the generated CICs:
 For Input name and Input card number tasks a MM inputText is generated (Table

6-24): Rule 105.
Design option Value CIC

Prompting Multimodal (R) outputText+vocalPrompt
Input Multimodal (E) inputText + vocalInput +

record
Immediate feedback Graphical (A) inputText
Guidance for input Iconic (A) imageComponents

(microphone + keyboard
icons)

Sub-task guidance Unguided -
Answer cardinality Simple inputText + vocalInput

Confirmation answer Without confirmation -

 Table 6-24 Design option values for multimodal inputText

 For each of the following tasks, Select pick-up and return information (city, day,
month, year), Select card type, Select expiration date (month, year): Rule 97 and 98
generate a comboBox (Table 6-25).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Multimodal (E) comboBox + vocalInput +
grammar

Immediate feedback Graphical (A) comboBox
Guidance for input Iconic (A) imageComponents (microphone

+ mouse icons)
Sub-task guidance Guided comboBox items+ vocalPrompt

+ grammar items
Answer cardinality Simple comboBox + part

6. Validation

 192

Confirmation
answer

Without confirmation -

 Table 6-25 Design option values for multimodal combobox

 For the Select car class, Select transmission type, Select insurance type tasks: Rules 99
and 100 generate MM radioButtons (Table 6-26).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Multimodal (E) radioButtons + vocalInput +
grammar

Immediate feedback Graphical (A) radioButtons

Guidance for input Iconic (A) imageComponent (microphone
+ keyboard icons)

Sub-task guidance Guided radioButtons + grammar items
Answer cardinality Simple radioButtons + part

Confirmation
answer Without confirmation -

 Table 6-26 Design option values for multimodal radioButtons

 For the Select optional insurance task: Rules 101 and 102 generate checkBoxes
(Table 6-27).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Multimodal (E) checkBoxes + vocalInput +
grammar

Immediate feedback Graphical (A) checkBoxes
Guidance for input Iconic (A) imageComponent (microphone

icon)
Sub-task guidance Guided checkBoxes + grammar items
Answer cardinality Multiple checkBoxes + part

Confirmation
answer

Without confirmation -

 Table 6-27 Design option values for multimodal checkBoxes

 For the Select car task: Rules 103 and 104 generate a MM listBox widgets
(Table 6-28).

Design option Value CIC
Prompting Multimodal (R) outputText + vocalPrompt

Input Multimodal (E) listBox + vocalInput + grammar
Immediate feedback Graphical (A) listBox
Guidance for input Iconic (A) imageComponents

(microphone+keyboard icons)
Sub-task guidance Guided listBox items + vocalPrompt +

grammar items
Answer cardinality Simple listBox + part

6. Validation

 193

Confirmation
answer

Without confirmation -

 Table 6-28 Design option values for multimodal listBoxes

 For the Confirm/cancel payment task, Rule 45 generates the corresponding
buttons and submit elements.

6.3.3.c.3 Sub-step 3.3: Synchronization of CICs

The rules identified in the correspond section of the previuos case are reused in
order to ensure this sub-step.

6.3.3.c.4 Sub-step 3.4: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.3.3.c.5 Sub-step 3.5: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.3.3.c.6 Sub-step 3.6: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.3.3.c.7 Sub-step 3.7: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6.3.4 Step 4: From CUI Model to FUI

This step consists of transforming each version of the CUI into its corresponding
FUI specification. The resultant FUIs interpreted with Opera browser are: FUI
enabling graphical input (Figure 6-19), FUI enabling vocal input (Figure 6-20) and
the FUI enabling equivalent graphical and vocal input (Figure 6-21).

6. Validation

 194

 Figure 6-19 FUI – graphical input Figure 6-20 FUI – vocal input

6. Validation

 195

Figure 6-21 FUI – equivalent graphical and vocal input

6.4 Case study 3: Map Browsing Application

The third case study considers a non web-form application that allows users to
browse a map in order to identify different objectives. The scenario is as follows

6. Validation

 196

(Figure 6-22): (1) Task and Domain Models are specified, (2) AUI is generated
from these models, (3) three CUIs are derived based on the Input design option
values (i.e., graphical, vocal and MM) and (4) three FUIs are derived
corresponding to each CUI obtained in the previous step.

Figure 6-22 Development scenario for the map brosing system

6.4.1 Step 1: The Task and Domain Models

The task (Figure 6-23) consisted in browsing a 3 by 3 grid map for which a
guidance with respect to the structure of the browsing instruction was provided
[Stan07]. This structure was obtained thanks to the support offered by our
ontology to the general structure of an instruction (Section 3.3.3) which enabled
us to specify its components:
 Action: translate, zoom in, zoom out.
 Object: image displaying the map.
 Parameter X: left, center, right.
 Parameter Y: top, center, bottom.

Due to the fact that there is only one map to manipulate, the object became non-
mandatory when specifying the instruction. The selection of the action has to be
followed by the specification of the two parameters which were agregated in order
to provide an easier specification of the browsing direction (e.g., top left, top
right, bottom left). Once the instruction is conveyed the system is updating the
image corresponding to the specified instruction.

Figure 6-23 Task Model of the map browsing application

6. Validation

 197

The UsiXML specification corresponding to the Task Model generated in
IdealXML is presented in Figure 6-24.

Figure 6-24 Specification of the Task Model in UsiXML

The Domain Model (Figure 6-25) involves four classes: (1) the Image class
specifies the features of the images that can be browsed by the user, (2) the
VizibilityZone class determines the area of the image that is visible for the users, (3)
the ExplorationZone class defines the complete area including the non-visible as
well as the visible part of the image and (4) the Cell class determines the positions
of the cells composing the exploration and the visibility zones of the image.

Figure 6-25 Domain Model for the map browsing system

Figure 6-26 illustrates an excerpt of the Domain Model expressed in UsiXML.

6. Validation

 198

Figure 6-26 Excerpts of Domain Model expressed in UsiXML

The mappings between the Task Model and the Domain Model are summed-up
in Table 6-29.

Task Model Domain Model
Select browsing action (select element) ExplorationZone. action
Select browsing direction (select element) ExplorationZone. direction
Show updated image (convey element) ExplorationZone.executeInstruction()

 Table 6-29 Mappings between task and domain models

6.4.2 Step 2: From Task and Domain Models to AUI Model

The second step considers the generation of the AUI from the previuosly
specified Task and Domain Models.

6.4.2.a Sub-step 2.1: Rules for the identification of the AUI structure

The current sub-step considers the Sub-task presentation design option that is
conveyed in combined grouped lists: Rule 3 and 4. Moreover, Rule 81 is applied in
order to create AICs for leaf tasks.

6. Validation

 199

6.4.2.b Sub-step 2.2: Rules for the selection of the AICs

The current sub-step generates facets for AICs that support the execution of the
leaf task.
 Input facet of type select element for the AICs assigned to the following

tasks: Select browsing action, select browsing direction: Rule 84; for each enumerated
value of the attribute manipulated by the tasks that is executed into the AIC,
a selection value with the same name as the enumerated value is attached to
the above created facet: Rule 85

 Output facet of type convey element for the AIC assigned to the Show updated
map task: Rule 82.

6.4.2.c Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

For each couple of sister tasks executed into AIOs, we generate an
abstractAdjacency relationship between these AIOs. As AIOs can have two types
(i.e., ACs or AICs), there are four possible rules to be applied (Rules 87-90).

6.4.2.d Sub-step 2.4: Rules for the definition of abstract dialog control

For each couple of sister tasks executed into AIOs, we generate an
abstractDialogControl relationship between these AIOs that have the same semantics
as the temporal relationship defined between the tasks. As AIOs can have two
types (i.e., ACs or AICs), there are four possible combination that are considered
by Rules 91-94.

6.4.2.d.1 Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

In order to ensure the synchronization between the AICs and attributes of objects
from the Domain Model, Rule 95 generates the updates relationship. Moreover,
Rule 96 enables the triggering of methods by AICs through the triggers
relationship.

6.4.3 Step 3: From AUI Model to CUI Model

For the AUI obtained in the previuos step, three CUI will be derived:
 Case 1 – CUI with graphical input: the input modality used to specify the

instruction is entirely graphical.
 Case 2 - CUI with vocal input: the input modality used to specify the

instruction is entirely vocal.
 Case 3 - CUI with multimodal input: for the specification of the action

the graphical modality is assigned, whereas for the direction the vocal
assignement was considered.

6. Validation

 200

6.4.3.a Case 1: generation of CUI with graphical input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent graphical CUI with
graphical assignement for both the browsing action the browsing direction.

6.4.3.a.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical objects.

6.4.3.a.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs and considering the set of design options identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value
and the generated CIC:
 For the Select action task: Rules 99 and 100 generate radioButtons (Table 6-30).
Design option Value CIC

Prompting Graphical (A) outputText
Input Graphical (A) radioButtons

Immediate feedback Graphical (A) radioButtons
Guidance for input Iconic (A) imageComponent (mouse icon)
Sub-task guidance Guided radioButtons
Answer cardinality Simple radioButtons

Confirmation
answer

Without confirmation -

 Table 6-30 Design option values for multimodal radioButtons

 For the Select direction task: Rules 109 and 110 generate imageZones embedded
in imageComponents (Table 6-31).

Design option Value CIC
Prompting Graphical (A) outputText

Input Graphical (A) imageComponent
Guidance for input Iconic (A) imageComponent (mouse icon)
Sub-task guidance Guided imageZones
Answer cardinality Simple radioButtons

Confirmation
answer

Without confirmation -

 Table 6-31 Design option values for imageZones

 For display the updated image task: Rule 115 generates an imageComponent.

6.4.3.a.3 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical CICs.

6. Validation

 201

6.4.3.a.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window.

6.4.3.a.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical CIOs that reify them is realized. As AIOs can have
two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.4.3.a.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs with attributes
and methods from the Domain Model.

6.4.3.b Case 2 - CUI with vocal input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent MM CUI with vocal
assignement for both the browsing action browsing direction.

6.4.3.b.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical and vocal objects.

6.4.3.b.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs and VICs depending on the type of
facets of the corresponding AICs and considering the set of design options
identified in Section 4.4.3.b.1.2. The select action and the select direction tasks are
expressed in one single utterence, therefore the Rules 111 and 112 have to be
applied (Table 6-32).
Design option Value CIC

Prompting Graphical (A) outputText
Input Vocal (A) vocalInput + grammar + part

Guidance for input Iconic (A) imageComponent (microphone)
Sub-task guidance Guided outputText+ radioButtons
Answer cardinality Simple outputText + radioButtons

Confirmation
answer

Without confirmation -

 Table 6-32 Design option values for multimodal radioButtons

 For display the updated image task: Rule 115 generates an imageComponent.

6. Validation

 202

6.4.3.b.3 Sub-step 3.3: Arrangement of CICs

Rules 121-124 are used to specify the arrangement of graphical and vocal CICs.

6.4.3.b.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.4.3.b.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.4.3.b.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6.4.3.c Case 3 - CUI with multimodal input

The current case contains transformation rules applied on the AUI produced in
the previous step, in order to generate the correspondent MM CUI with graphical
assignement for the browsing action and vocal assignement for the browsing
direction.

6.4.3.c.1 Sub-step 3.1: reification of AC into CC

For the reification of AC into CC, Rules 17 and 18 are concretizing the combined
grouped list into graphical and vocal objects.

6.4.3.c.2 Sub-step 3.2: Selection of CICs

The current sub-step generates different GICs depending on the type of facets of
the corresponding AICs and considering the set of design options identified in
Section 4.4.3.b.1.2. For each task we specify the considered design option value
and the generated CIC:
 For the Select action task: Rules 99 and 100 generate MM radioButtons (Table

6-33).
Design option Value CIC

Prompting Graphical (A) outputText
Input Graphical (A) radioButtons

Immediate feedback Graphical (A) radioButtons
Guidance for input Iconic (A) imageComponent (mouse icon)

6. Validation

 203

Sub-task guidance Guided radioButtons
Answer cardinality Simple radioButtons

Confirmation
answer

Without confirmation -

 Table 6-33 Design option values for multimodal radioButtons

 For the Select direction task: Rules 113 and 114 generate imageZones embedded
in imageComponents and grammar items (Table 6-34).

Design option Value CIC

Prompting Graphical (A) outputText
Input Vocal (A) vocalInput + grammar

Guidance for input Iconic (A) imageComponent (microphone
icon)

Sub-task guidance Guided imageZones + items
Answer cardinality Simple imageZones + part

Confirmation
answer

Without confirmation -

 Table 6-34 Design option values for multimodal radioButtons

 For display the updated image task, Rule 129 generates an imageComponent.

6.4.3.c.3 Sub-step 3.3: Arrangement of CICs

Rules 113-116 are used to specify the arrangement of graphical and vocal CICs.

6.4.3.c.4 Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case
are presented into the same window and all the vocal components are embedded
into the same vocalGroup.

6.4.3.c.5 Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphical and vocal CIOs that reify them is realized. As AIOs
can have two types (i.e., ACs and AICs), four rules describing the four possible
combinations are considered: Rules 125-128.

6.4.3.c.6 Sub-step 3.6: Derivation of CUI to Domain Relationship

Rules 129 and 130 are used to transpose the updates and triggers relationships from
the abstract to the concrete level. These relationships map GICs and VICs with
attributes and methods from the Domain Model.

6. Validation

 204

6.4.4 Step 4: From CUI Model to FUI

This step consists of transforming each variant of the CUI into its respective FUI
specification. The resultant FUI interpreted with Opera browser is the following:
FUI enabling graphical input (Figure 6-27), FUI enabling vocal input (Figure
6-28), FUI enabling equivalent graphical input for specifying browsing action and
and vocal input for the browsing direction (Figure 6-29).

Figure 6-27 FUI – graphical input

6. Validation

 205

Figure 6-28 FUI – vocal input

Figure 6-29 FUI – graphical input for browsing action and vocal input for browsing

direction

6. Validation

 206

6.5 Empirical validation

6.5.1 Methodology usability assessment

We defined and detailed so far a methodology composed of three dimensions: (1)
the models based on which a (2) development method is applied thanks to the support
of (3) tools. The previous three sections showed the feasbility of generating MM
UIs based on this methodology. This section identifies and discusses the four
levels of assesments that can be conducted over the propsed methodology (Figure
6-30).

Figure 6-30 Methodology assessment levels

The impact of the development methodology could be assessed by estimating or
computing evaluation criteria that may fall into two categories [Olsi04]:
1. Qualitative criteria: are typically evaluated in a subjective manner or can be

approximated by quantitative metrics. Such criteria include: security, reliability,
reusability, usability, etc. For instance, usability could be evaluated in a
subjective way through its user subjective satisfaction rate or could be
approximated with Usability Evaluation Methods. Usability could be for
instance approximated via the IBM CSUQ questionnaire with a correlation of
0.94.

2. Quantitative criteria cover criteria that are typically evaluated in an objective
manner through metrics. A metric is often referred to as a practical
measurement of a product or a process in the software development life cycle
of an interactive system. Such metrics could cover project management (e.g.,
development cost, resources (time, budget, human resources)) and software
development. Several methods exist for this purpose. For instance,
COnstructive Cost Model (COCOMO) is proposed in two versions (I and II).
The first version supports three metrics: source lines of code, function points
[Albr83] and use case points.

6. Validation

 207

Ideally, the assesment of an IS development methodology should be conducted
for each of the four levels by considering both types of criteria. However, a set of
level-specific constraints prevent us to follow this assesment plan. Hereafter, we
detail in a structured manner the aims and goals of each level, the proposed
assesment plan and their specific constraints.

6.5.1.a Level 1. Model assesment

Aims and goals. Evaluate the quality of the models that will be further managed
by the method.
Assesment plan. Assesment of the models applied by the methodology should
be carried out with designers of information systems. The plan could involve the
evaluation of the support level offered by the proposed models for software
requirement specification that respond to the set of features (i.e., unambigous,
complete, verifiable, consistent, modifiable, traceable and usable during the
operational phases) identified in [Meye88]. This would help to avoid the seven
sins of the software analyst emphasized in [Meye85].
Constraints. There are two important reasons that prevent us conducting such an
evaluation. First, there is still a lack of MM UIs and consequently there is a small
number of professionals involved in their design. Therefore, they are very
solicited persons and difficult to involve in assesement studies. Second, evaluation
experiments tipically require extended financial resources especially when the
participants are difficult to find.

6.5.1.b Level 2 Method assesment

Aims and goals. Evaluate the understandability (i.e., ease to perceive, ease to
apply, lack of confusion generation) and reproductibility (i.e., if two experts are
provided with the same case study, similar results should be obtained) of the
method.
Assesment plan. Assesment of the method applied by the methodology should
be carried out with designers having prerequisites in applying structured
development methods (i.e., UML or alike). A training session should be ensured
by already experienced proffesionals in order to provide an in-depth
understanding. A subjective estimation time for mastering the different methodo-
logical aspects is provided in Table 6-35.

Methodological aspects Estimated learning time
Task Modeling 1/2 day

Domain Modeling 1/4 day
Mapping Modeling 1/4 day

Selecting and using Design Options 1 day
Performing Transformation Rules 1 day

Total 3 days

Table 6-35 Estimated learning time of the methodological aspects

6. Validation

 208

Constraints. In order to be valid the assesment should be carried out with a high
number of designers having different levels of expertise. They should apply the
methodology with and without the help of the proffesionals, over case studies
with different complexity levels (i.e., low, medium and high). The obtained results
should be analysed so that to provide a comparision based on a set of metrics.
This evaluation process is highly complex and therefore is very hard to achieve.
Moreover, the constraints identified in the previous level are perfectly valid in this
context as the assesment of both levels should be conducted with the same
stakeholders (i.e., the designers).

6.5.1.c Level 3. Tool assesment

Aims and goals. Evaluate the integrity of the tool with respect features such as
level of method support, easiness to use the tool, user-friendly related aspects, etc.
Assesment plan. Assesment of the tools should be carried out with a high
number of developers having a proven experience with information systems
development tools.
Constraints. In order to be valid the assesment should be carried out with a high
number of designers by considering criteria such as levels of expertise,
organizations, country [Bygs07]. The test should consider case studies with
different levels of complexity (i.e, low, medium and high) that generate ISs with or
without the tool. Based of a set of metrics (e.g., the function point) a comparision
of the resulting ISs should be achieved. Moreover, acceptance test measures
[Shne98] (i.e., time for users to learn specific functions, speed of task
performance, rate of errors by users, user retention of commands over time,
subjective user satisfaction) could be considered.
However, this evaluation procces implies a high complexity and therefore is very
hard to accomplish. In addition, such experiment would suppose to provide
designers with the assemby of tools presented in Chapter 5 for which a very time-
consuming training session should be foreseen. Moreover, due to rather limited
financial resources at our disposal we find it difficult to involve a sufficient
number of developers that could render our evaluation statistically valid.

6.5.1.d Level 4. Result assesment

Aims and goals. Taking into account the constraints identified in the previous
levels, we decided to asses the results produced by our methodology based on an
empirical study with end-users. The final goal of this evaluation wasn’t to
determine the interaction (combination of interaction) modalities that is the most
preffered by the end-users, but rather to validate the results produced by the
methodology and to provide an idea of the relative usability level generated by
different design option values. Therefore, this section describes the participants to
the experiment (called from now on the subjects), the set up used to conduct the

6. Validation

 209

study, whereas the next section will detail the usability assessment process and will
provide a discussion over the obtained results.
The subjects. The test involved 20 non-native English speakers out of which 10
experienced and 10 inexperienced with respect to the alternative means of
interacting with information systems (i.e., speech, tactile screens, joysticks) other
then mouse and keyboard (Table 6-36). The gender was equally assigned so that 5
males and 5 females participated for each category. The average age of the
subjects is 29.

Gender Multimodal interaction experience N°
subjects

Average
age Male Female Experienced Inexperienced

20 29 10 10 10 10

Table 6-36 Summary of the subject’s demographics and experience level

The tested applications. The subjects were asked to test two types of
applications designed in the English language. In order to avoid the fatigue of the
subjects the experiment took place in two sessions organized in two different days
as follows:
 Session 1 - Web form applications: two applications were tested

according to a predefined scenario:
• Car rental: the case study described in Section 6.3.
• DVD rental: we do not describe the development life cycle of this

application as it has the same complexity level as the car rental system
and considered the same interactions. It enables users to rent a DVD
(Figure 6-31). For this purpouse, a set of data such as rental date and
movie type had to be filled in based on which the application provides
the available movies. Once a movie is selected, the subjects had to
specify the payment information (e.g., owner’s name, credit card type,
number and expiration date).

6. Validation

 210

Figure 6-31 The multimodal version of the DVD rental application

For both applications the task was considered achieved when the participants
confirmed the payment by clicking on the OK button. The subjects had to test
three types of interaction in a random order.
 Session 2 - Map browsing: is the application described in Section 6.4.

Previously to the experiment, the subjects were submitted to a test
concerning their geographical knowledge about the position of the main
European capitals. The accepted subjects were asked to achive two different
tasks (i.e., searching an European capital on the map) per interaction
modality in a random order:

6. Validation

 211

The task was considered achieved when the participants were able to point out on
the map the name of the capital specified by the scenario.
Apparatus and experimental environment. The physical position of the
subjects and apparatus involved in the test are sketched in Figure 6-32. The
notebook used in this study was a PC Dell Latitude D820 equipped with an Intel
Core 2 Duo T7200 (2.0 GHz, 4 Mo cache level 2 memory) processor and 2 GB of
RAM memory. The 15” screen was set to 1280 by 800 pixels resolution, with a
32-bit color palette. The integrated loud speakers were used for voice output,
while Philips SBC 90 microphone fasten on a tripod enabled voice input thanks to
the audion input port of the nootebook. The Microsoft Wireless Notebook
Optical Mouse 4000 was connected to the USB port. A Sony video camera
oriented towards the notebook’s screen was used for video recording.

Figure 6-32 Physical position of the subjects and experimental apparatus

The tested applications were specified in XHTML v1.0 (for the graphical
interaction), whereas X+V v1.2 language was employed for vocal and MM
interactions. All the applications were interpreted with the Opera browser v9.24
embedded with IBM Multimodal Runtime Environment v4.1.3 using ViaVoice
speech technology.
The instructor welcomed the subjects (Figure 6-33) and provided the instructions
for the evaluation test. He also supervised the good unfolding of the experiment
(e.g., clarifies the upcoming issues, takes notes during the test, unblocks the
subjects if they were unable to complete their task, checks the responses given by
the subjects).

6. Validation

 212

Figure 6-33 A subject interacting with the application

6.5.2 Methodology result assesment plan

The plan is split in three phases describing the procedure followed before, during
and after the test.

6.5.2.a Pre-test

Before starting the test, the participants were guided by the instructor with the
testing procedure as follows:
1. Subjects were given information about the goals of the test. They were

informed that it is not a test of their abilities and that their interaction with the
applications will be video recorded in order to be further analysed. Finally,
they were announced that a tracking number will be assigned to each of them
for identification purpouses during the entire procedure.

2. Subjects were asked to fill in a demographic questionnaire that gathered
information related to their gender, age, activity field, years of experience.
They also scored their attitude towards technology in general by specifying the
frequency of using a computer and their experience with MM interaction.

3. Subjects were further advised to try accomplishing the tasks without any
assistance. However, they were allowed to ask for help only if they felt unable
to complete the task on their own.

4. The instructor responded to the subject’s questions, if any and checked
whether they understood well the instructions or not.

5. Finally, the subjects were asked to complete the tasks according to the given
instructions. To avoid a possible ceiling effect, there was no time limit to
complete the tasks.

6. Validation

 213

6.5.2.b Test

The test was split in two steps:
 The first step consisted of a training session assisted by the instructor who

explained how to carry out the task. This enabled subjects to discover the
MM capabilities of the Opera browser and the correct manipulation of the
voice-enabling button. The training application emerged from our
methodology and its UI contained most of the interaction objects (Figure
6-34) that were further present in the tested application. The training session
had no time limit.

Figure 6-34 The training application

 In the second step, the subjects were asked to procede with the test

according to a random selection of the scenarios. The task was expected to
be accomplished without any assistance. However, if the subjects got stuck
with one of the tasks and felt unable to continue, they could ask for help.
The instructions given to the users clearly stated that they should only ask
for assistance as a last resort. When the subject asked for help, the instructor
explained the next step that the user needed to take.

6. Validation

 214

6.5.2.c Post-test

At the end of the test, the subjects were interviewed according to a structured
scheme. First, they were asked to rank their preference on a scale from 1
(minimum) to 7 (maximum) for each type of interaction modality. Further, during
a debriefing session, the subjects were asked to specify three positive and three
negative aspects with respect to the employed interaction modalities. For this
purpouse they were able to reuse the applications in order to better explain the
encountered feelings and difficulties during the experiment. At the end of each
session, subjects were given a small reward for their participation.

6.5.3 Results

6.5.3.a Evaluation measures

So far, the reasearch community did not manage to create an authoritative list of
MM usability parameters. Moreover, we are not aware of any hierarchy of
concepts of usability properties whose parameters and values are known.
Therefore, the final purpouse of our experiment was to measure the relative
usability level among the tested interaction modalities thanks to a subset of
usability parameters considered from an empirically collected parameter list
[Bern06]. The subset is composed of six parameters that were considered, entirely
or partially, for the analysis of the interaction modalities employed in the two
types of applications:
1. Task completion time: measures the interaction efficiency.
2. Task percentage completion: measures the effectiveness of the application with

respect to the employed interaction modality.
3. Error rate: measures the interaction efficiency in terms of number of errors per

interaction modality.
4. Learning time: measures the ease of learn of a particular interaction modality.
5. Number of mouse clicks: measures the interaction efficiency in terms of number

of clicks per interaction modality.
6. Interaction modality preference: measures the relative satisfaction among the tested

interaction modalities.

6.5.3.b Web form applications

6.5.3.b.1 Task completion time

The task completion time was computed as a mean (M) time between the two
applications of type form for each interaction modality. Figure 6-35 shows that
the mean time to achieve the tasks using the graphical modality (M= 74.58
seconds) is comparable with the the MM interaction (M= 94.63 seconds). An
important observation is that, for the latter interaction half of the subjects chose a
real MM interaction (i.e., the vocal is combined with the graphical modality), while

6. Validation

 215

the other half achieved the task using just the graphical modality. The vocal
modality required a considerable longer time (M= 211.88 seconds), which
represents 228% more then the graphical interaction and 174.2 % more than the
MM interaction.

Figure 6-35 Task completion mean time per interaction modality

6.5.3.b.2 Task procentage completion

The task procentage completion was computed as a mean between the two
applications of type form for each interaction modality (Figure 6-36). While the
completion rate using the graphical and the MM interactions are approximately
equal (M= 99.56% and M= 99.68%, respectively), the vocal interaction rate is
slightly lower (M= 96.4%).

Figure 6-36 Mean task procentage completion per interaction modality

6. Validation

 216

6.5.3.b.3 Error rate

During the usability study, we identified 7 categories of errors that were computed
as a mean between the errors of the two web applications for each interaction
modality (Figure 6-37). All the categories are meaningful for vocal and MM
interaction, while for the graphical interaction only the errors that fall in the 5th
and 6th categories where considered. However, the latter interaction no errors
were observed and, consequently, we don’t illustrate them in the chart. For the
vocal and MM interactions the results are as follows:
1. Synchronization: errors due to the order violation of the interaction states to

follow when employing the voice-enabling button in Opera browser (M =2.3
errors and M= 0.65 errors, respectively). A correct sequence of the states to
reach by the button is illustrated in Figure 6-38 on a timeline: the button in
the initial state is further pushed in the 2nd state so as to enable the voice
recognition engine in state 3. User’s utterance is afterwards possible. Once
that the utterence is ended the button has to be released in state 5. The voice
recognition is disabled after a short period (state 6). Afterwards, the initial
state is reached again.

2. Pronunciation: errors due to a bad pronunciation of the commands (M=2.25
errors and M= 0.4 errors, respectively).

3. No input: errors due to the lack of vocal input once the voie-enabling button
reached the 3rd state (M=0.42 errors and M= 0.1 errors, respectively).

4. No match: errors due to vocal inputs that were correctly pronounced but were
not predicted in the associated grammar as they are not context-meaningful
(M= 0.07 errors and M= 0.05 errors, respectively).

5. Irrelevant actions: errors due to an incorrect manipulation of the Opera browser
(M= 0.8 errors and M= 0 errors, respectively). For instance, clicking on the
zoom level interaction field before uttering a number in the application, which
determined the modification of the application layout.

6. System: errors due to a bad design of the UIs (M=0.65 errors and M= 0 errors,
respectively). For instance, an incorrect pronunciation of the available options
to select with vocal interaction, which induced the user to errors (e.g., the
pronunciation of the year 2012 as “twenty twelve”).

7. Noisy environment: errors due to undesirable sounds produced in the vicinity of
test room while the voice–enabling button was in state 3 (M= 0.02 errors and
M= 0, respectively).

6. Validation

 217

Figure 6-37 Mean number of errors per category

Figure 6-38 The timeline for a correct voice-enabling button manipulation

6.5.3.b.4 Learning time

During the first test, we measured the task completion time for vocal interaction
in the second application of type form. We asked the subjects to repeat this test
following the same scenario after a couple of days. The results illustrated in Figure
6-39 show that 75% of the subjects improved thier time, 10% had the same
performance, while rest had a longer time. Consequently, the task completion
mean time for the second test (M= 95.50 seconds) is significantly lower than the
first test (M= 131 seconds).

6. Validation

 218

Figure 6-39 Learning time for vocal interaction

6.5.3.b.5 Number of mouse clicks

The mean number of mouse clicks was computed as a mean between the mouse
clicks of the two web form applications for each interaction modality. Figure 6-40
shows that the mean for graphical and MM interactions are aproximately equal
(M= 27 clicks and M= 26 clicks, respectively), whereas the vocal interaction
requires a sensibly greater number of clicks (M= 32 clicks).

Figure 6-40 Mean number of mouse clicks per interaction modality

6. Validation

 219

6.5.3.b.6 Interaction modality preference

The distribution of the modality preference per subjects illustrated in Figure 6-41
shows that the graphical (M= 6.5) and the MM (M= 6.2) interactions were
approximately equally ranked, whereas the vocal interaction was the less preferred
(M= 3.6).

Figure 6-41 Distribution of the modality preference per subject

6.5.3.c Map browsing application

The current section presents the statistical outcome of the map browsing
application. Due to the fact that the tasks for the three types of interaction were
different in order to avoid the learning effect, the comparision between the
modalities doesn’t make sense. Instead, the differences between the experience
groups with respect to the following usability parameteres considered for the
same interaction modality are analysed.

6.5.3.c.1 Task completion time

The task completion time was computed for each type of interaction as a mean
between the completion time of the two considered tasks. While for the graphical
interaction the mean time between the two groups is not significant, for the vocal
and MM interaction the experienced subjects proved to be faster (Table 6-37).

6. Validation

 220

 Interaction
 modality

Experience
group

Graphical Vocal Multimodal

Experienced 73 83.5 156.75
Unexperienced 74.75 98 192

Table 6-37 Mean task completion time (seconds) per experience group

6.5.3.c.2 Task procentage completion

The task completion procentage was measured for each interaction modality as a
mean completion procentage of the two considered tasks. While for the graphical
interaction there is a 100% succesful rate for both experience groups, for vocal
and MM interaction the experienced subjects proved to have a better completion
rate (Table 6-38).

 Interaction
 modality

Experience
group

Graphical Vocal Multimodal

Experienced 100 % 97 % 156.75 %
Unexperienced 100 % 85.75 % 192 %

Table 6-38 Mean task procentage completion per experience group

6.5.3.c.3 Number of errors

For the second session we considered the same categories of errors and their
assigned meaning as those described in Section 6.5.5.b.3. The number of errors
was computed as a mean between the errors of the two tasks considered for each
interaction modality. While for the graphical interaction no errors were observed,
for vocal (Figure 6-42) and MM interactions (Figure 6-43) the results show a
relatively higher number of synchronization errors compared to the other error
categories for both experience groups.

6. Validation

 221

Figure 6-42 Mean number of errors per experience group for vocal interaction

 Figure 6-43 Mean number of errors per experience group for MM interaction

6.5.4 Interpretation and discussion

6.5.4.a Web form applications

In order to asses and compare the distribution of the time to achieve the task for
the two groups, a box plot graph is illustrated in Figure 6-44. We notice that the
dispersion of time values for MM and vocal interaction is higher than the
graphical one for both groups. The experienced subjects employing the MM
interaction had a dispersion ranging from 65 seconds to 107.5 seconds with more
values situated above the median time of 75 seconds. For vocal interaction, the

6. Validation

 222

same group had a higher dispersion within an interval from 131.25 to 243.75
seconds, but still with more values above the median time of 176.25 seconds.

Figure 6-44 Distribution of task completion time per interaction type and experience

group

In order to test if MM interaction experience had a significant influence over the
mean task completion time a t-Test analysis was conducted (Table 6-39). The
results show that this was the case only for the graphical interaction (p= 0.0339).
However, the experimented subjects proved to be faster than the non-experienced
ones (Figure 6-45) for the three types of interaction (M= 61.25 seconds vs. M=
87.90 seconds for graphical, M= 188.0 seconds vs. M= 235.75 seconds for vocal
interaction and M=84.0 seconds vs. 105.25 seconds for MM interaction).

t-Test Significant difference
with respect to MM experience

Graphical p=0.0339 < 0.05
Vocal p=0.1207 > 0.05

Multimodal p=0.0901 > 0.05

Table 6-39 t-Test results for the significant difference in mean task completion time with

respect to MM experience

6. Validation

 223

Figure 6-45 Task completion mean time per experience group

The statistical analysis revealed a slower task completion time for both vocal and
MM interactions. This was mainly due to synchronization and pronunciation
errors, resulting from the difficulties of manipulating the voice-enabling button
and from the fact that subjects were non native English speakers. The Pearson
correlation coefficient [Sieg88] between the average of the pronunciation and
synchronization errors and the mean completion time sustains the above
statement for both vocal (Pearson= 0.75) and true MM interactions (Pearson=
0.73). In addition, the same categories of errors are influencing the number of
mouse clicks (Pearson= 0.77 for vocal interaction and Pearson= 0.63 for true MM
interaction) which had a negative impact over the efficiency of the interactions.
However, the t-Test analysis (Table 6-40) revealed that there is no significant
difference in the mean number of pronunciation and synchronization errors
between the two groups of subjects neither for vocal, nor for the MM
interactions.

t-Test Significant difference
with respect to MM experience

Vocal p=0.1603 > 0.05
Multimodal p=0.2459 > 0.05

Table 6-40 t-Test results for the significant difference in mean number of pronunciation

and synchronization errors with respect to MM experience

6. Validation

 224

6.5.4.b Map browsing application

As the results in Figure 6-45 show that the experienced subjects were faster than
the unexperienced ones, we examined whether the experience category has a
significant influence over the task completion time thanks to a t-Test analisys. The
results presented in Table 6-41 show no influence whatsoever.

t-Test Significant difference
with respect to experience category

Graphical p= 0.1074 > 0.05
Vocal p= 0.2321 > 0.05

Multimodal p= 0.1675 > 0.05

Table 6-41 t-Test results for the significant difference in mean completion time with

respect to experience category

In line with the observations made in Section 6.5.6.a, the statistical analysis
revealed a high number of synchronization errors. The Pearson correlation
function between the average number of synchronization errors and the mean
completion time sustains the above statement for both vocal (Pearson= 0.60) and
MM interactions (Pearson= 0.58). In addition, the average between the
synchronization and pronunciation errors influence the task procentage
completion (Pearson= -0.72 for vocal interaction and Pearson= -0.48 for MM
interaction) which leads to a negative impact over the efficiency of the
interactions. However, the t-Test analysis revealed that there is no significant
difference in the mean number of synchronization errors between the two
experience categories neither for the vocal interaction, nor for the MM one.

6.5.4.c Overall interpretation

Thanks to the debriefing session, we were able to illustrate the modality
preference for each type of application (Figure 6-46). The graphical interaction
was the most preferred interaction for both application types. While for the web
form applications the MM interaction is better ranked, the vocal interaction takes
the lead when it is employed for the map browsing application. This is particullary
due to the structure of the navigational commands employed in the browsing
application. While for the vocal interaction both the action and the parameters are
specified as a whole in one utterance, the complementarity nature of the MM
command where the action is specified graphically and the parameters vocally
requires a modality break that slows down the subjects.

6. Validation

 225

Figure 6-46 Modality interaction preference per application type

The subjects were also asked to specify three positive and three negative aspects
with respect to the tested interaction modalities. The results in Table 6-42 are
specified along with their frequency of appearence. 75 % of the subjects prefered
the graphical interaction as it is a day to day habit, thus enabling a faster and more
intuitive interaction.
Even if the vocal interaction was less preferred, more than 75% of the subjects
appreciated it especially for widgets that required multiple selections at once (e.g.,
the group of three comboboxes that enable to specify the date, groups of
checkboxes) or one single selection that requires a long scroll (e.g., a combobox
or a listbox where the item to select is at the end of a long list). Moreover, 60 %
of the subjects felt attracted by the interaction as it is more natural to use and
closer to the human-to-human interaction. It also urges the user to experiment as
it is seen as an escape from the habitual interaction modalities.
The MM interaction was particulary appreciated by 80% of the subjects for its
flexibility in choosing the appropriate interaction (i.e., either graphical or vocal)
depending on the widget, which enabled to take advantage of the positive aspects
of each interaction type.
In terms of negative aspects, the subjects didn’t have any remarks for the
graphical interaction. Instead, 50% of them complained about the high number of
clicks when employing the vocal interaction which has a negative impact over the
efficiency of the task achievement. They equally pointed out difficulties of
synchronization with the voice-enabling button which affected the effectiveness
of the interaction. Most of them would have like to have a continuously active
recognition engine that eliminates the constraint of pressing the button. They also
confessed that the high pronunciation error rate is probably due to the lack of

6. Validation

 226

English pronunciation skills. For the MM interaction the same negative aspects
detailed above where emphasized when the selected interaction was the vocal one.

 Interaction
type

Aspects

Graphical
interaction

Vocal
interaction

Multimodal
interaction

Positive • Habit (15)
• Fast (10)
• Intuitive (3)
• Simple (2)

• Fast for multiple selections and for
single selection in a long list of
items (17)

• More natural and human (12)
• Urges to experiment it (4)
• Out of habit (2)
• Fun (1)
• Very didactic (1)

• Flexibility to
select the
approapiate
modality (16)

Negative

-

• High number of clicks to specify a
vocal input (10)

• Difficult to synchronize with the
the voice-enabling button (10)

• Pronunciation errors for non native
english speakers (4)

• Lack of habit (2)

• When the
vocal
interaction is
employed its
negative
aspects are
inherited

Table 6-42 Subject’s opinion for web form applications

At the end of the second session, the subjects were again asked to provide three
positive and three negative aspects with respect to the tested interactions (Table
6-43). 60% of them considered the graphical interaction a habit that makes the
interaction faster and intuitive.
The vocal interaction was characterized by 75% of them as being fast and
comfortable thanks to the all at once commands that are easy to utter. While the
graphical modality requires to focus on the browsing elements to select, the vocal
interaction escapes from this shortcoming as it enables to focus on the map
details and to think about the next command while uttring the current one. The
MM interaction was particulary appreciated for better recognition probably due to
the shorter commands to utter.
The most important negative aspect claimed by 75% of the subjects is the high
number of clicks required by the graphical interaction which affects the
efffectiveness of the application. For the vocal modality most of the negative
aspects were consistent with those emphasized for the web form applications.
Overall the subjects dislike the MM interaction due to the modality break
encountered while specifying the command’s components. Therefore, 75% of the
subjects conffesed that they would have prefered either the graphical interaction
or the vocal interaction with a lower error rate.

6. Validation

 227

 Interaction
type

Aspects

Graphical
interaction

Vocal
interaction

Multimodal
interaction

Positive • Habit (12)
• Fast (6)
• Intuitive (4)

• Fast and comfortable thanks
to all at once commands (15)

• Easy to pronounce
commands (10)

• Enables to focus on the map
without paying attention to
the details concerning the
command’s build up (8)

• Enables to think about the
next command while uttering
the current one (6)

• Better guided than the
graphical interaction (5)

• Fun (5)

• Better
recognition
thanks to
shorter
commands to
utter (8)

• Enables to
think about
the direction
to browse
while making
the graphical
selection (6)

• Better guided
then the
graphical
interaction (5)

Negative • High
number of
clicks to
specify the
commands
(15)

• Need for
drag and
drop
support (2)

• Difficult to synchronize with
the the voice-enabling button
while relatively long phrases
had to be uttered (10)

• Pronunciation errors for non
native english speakers (4)

• Frustrating (5)
• Dislike presing the voice-

enabling button (5)
• No guidance for the zoom

level and position on the map
(2)

• Modality
break when
going from
the graphical
selection of
the browsing
action to
vocal
specification
of the
direction (15)

Table 6-43 Subject’s opinion for non web form application

6.6 Internal validation

The internal validation of a methodology consists of assessing its characteristics
against a set of selected criteria. The relevant criteria, called requirements, for our
methodology have been elicited and motivated after the state of the art of Chapter
2. This section proposes a discussion for each of these requirements included in
the corresponding dimension of the methodology:

6. Validation

 228

Modeling requirements:

Requirement 1. Support for multimodal input/output: states that our
ontology should enable multiple (i.e., at least two different) input/output
interaction modalities. The current requirement is motivated by the definition of
the multimodal systems (Section 1.3.4).

Discussion: This requirement is achieved thanks to the expansion brought to the
existing vocal ontology described in Section 3.4.2.b which provides a larger set of
vocal CIOs that cover the requirements of vocal and MM UIs. Moreover, Section
3.4.4.b introduces the synchronization relationship between the graphical and the
vocal concepts.

Requirement 2. Separation of modalities: states that the concepts and the
specifications corresponding to each modality should be syntactically separated
one from the other. The current requirement is motivated by two aspects: (1)
flexibility in the development process given by the possibility to specify separately
the UI corresponding to each involved interaction modality and to further
combine them altogether, (2) reusability, totally or partially, of the specification
corresponding to an interaction modality in other applications that employ it. This
requirement contributes to the principle of separation of concerns [Dijk76].

Discussion: this requirement is achieved thanks to the semantic separation of
graphical CIOs (Section 3.4.1) and vocal CIOs (Section 3.4.2) composing our on-
tology. Moreover the UsiXML syntax (Section 3.5) ensures a separate specifica-
tion of graphical and vocal elements describing a MM UI.

Requirement 3. Support for CARE properties concerning the input/output
modalities: states that our ontology should ensure the support of the CARE
properties for input/output modalities. This requirement is motivated by the
design facilities offered by the CARE properties when defining the relationships
that can occur between input/output modalities.

Discussion: this requirement is partially achieved:
 Redundancy in input and Complementarity in input/output: not supported due to the

following reasons: (1) they require fusion/fission of modalities which are not
addressed by the current thesis (Section 1.4.3), (2) the target language is X+V
which doesn’t offer support for fusion/fission aspects.

 Assignment: supported by either graphical CIOs or vocal CIOs depending on
the selected interaction modality supported by design decisions.

 Equivalence: supported by both graphical CIOs and vocal CIOs between which
a synchronization relationship is specified.

 Redundancy in output: supported by both graphical CIOs and vocal CIOs which
are employed to provide a redundant output to the user.

6. Validation

 229

Requirement 4. Ability to model a user interface independent of any
modality: states that the provided ontology should ensure a level in the
development life cycle that allows to specify a modality-independent UI. This
requirement is motivated by the increasing number of novel devices and
consequently of interaction modalities that will determine the development of
new UIs with new modality capabilities. A modality-independent level will also
enable to avoid the redeployment of UIs from scratch. This requirement
contributes to the principle of separation of concerns [Dijk76].

Discussion: this requirement if fully achieved thanks to the existence of the AUI
Model that gathers modality-independent concepts (Section 3.3.3).

Requirement 5. Extendibility to new modalities: states that the ontology
should allow the extension with new types of interaction modalities. This
requirement is motivated by the constant emergence of new computing platforms,
each of them supporting a new set of interaction modalities. This requirement is a
principle that we would like to cover, but we are well aware that very complex
interactions cannot be supported.

Discussion: this requirement is ensured by the modularity of our ontology where
each model describing a particular aspect of the UI is defined independently of
the other and by the separation of concepts assigned to different modalities.

Requirement 6. Ontology homogeneity: states that the ontological concepts
should be defined according to a common syntax. The requirement is motivated
by the necessity of defining a single formalism for model concepts in order to
facilitate their integration and processing.

Discussion: this requirement is achieved thanks to the selection of UsiXML lan-
guage (Section 3.2.2) as a unique formalism to support the ontological concepts
considered in this thesis.

Requirement 7. Human readability: states that the proposed ontology should
be legible by human agents. The current requirement is motivated by two aspects:
(1) the need to define in an explicit manner the ontological concepts in order to
ensure their precise comprehension, (2) the necessity of sharing the underlying
concepts among the research community.

Discussion: this requirement is achieved by employing UML class diagrams in order
to specify the semantics of our ontology. Thus, the composing concepts are ex-
pressed through classes and relationships between them by providing detailed
definitions of their attributes. It is out of the scope of this dissertation to discuss
the expressivity of UML notations.

6. Validation

 230

Method requirements:

Requirement 8. Approach based on design space: states that our
development life cycle towards a final multimodal UI should be guided by a set of
design options. This requirement is motivated by the need to clarify the
development process in a structured way in terms of options, thus requiring less
design workload.

Discussion: this requirement is achieved thanks to the definition of a design space
composed of design options (Section 4.2) that support the designer’s decisions
during the development life cycle.

Requirement 9. Method explicitness: states that the component steps of our
methodology should define in a comprehensive way their logic and application.
This requirement is motivated by the lack of explicitness of the existing
approaches in describing the proposed transformational process.

Discussion: this requirement is ensured by several factors: (1) human readability of
the ontological is a pre-requisite of methodological explicitness, (2) decomposition
of the transformational approach into development steps and sub-steps (Section
4.4), (3) existence of a well-defined syntax for expressing methodological steps
(Section 3.5).

Requirement 10. Method extendibility: refers to the ability left to the designers
to extend the development steps proposed in a methodology. The current
requirement is motivated by the lack of flexibility in the current methodological
steps that hinders designers to add, delete, modify and reuse these steps.

Discussion: Transformation systems and transformation sub-steps proposed in
Chapter 4 and 6 are only possibilities of producing MM UIs Our methodology
allows the introduction of new development sub-steps and/or new
transformation systems for realizing sub-steps, thus encouraging the alternative
explorations for each sub-step. The introduction of Synchronization between CICs
(Section 4.4.3.b.3.3) as new sub-step of the transformational approach is a proof
of the above statements.

Tool requirements

Requirement 11. Machine processability of involved models: states that the
provided ontology should be proposed in a format that can be legible by a
machine. This requirement is motivated by the necessity of transposing the
ontological concepts into representations that can be processed by machines.

6. Validation

 231

Discussion: This requirement is achived by the definition of an XML syntax
enabling the expression of the concepts of our ontology and in compliance with
the graph-based syntax defined for this ontology. The assembly of tools presented
in Chapter 5 that manipulate UsiXML format is an evidence of the machine
processability of this syntax.

Requirement 12. Support for tool interoperability: refers to the possibility of
reusing the output provided by one tool into another. This requirement is
motivated by the lack of explicitness of transformations due to their
heterogeneous formats that prevents the reuse of transformations outside the
context for which they were designed.

Discussion: Support for tool interoperability is positively impacted by a common
UI description language that is shared among tools (UsiXML) and by a large
coverage of UsiXML in order to accommodate multiple tools. When new
concepts corresponding to new interaction modalities need to be introduced in
our ontology, the support of new tools can be maintained by relying on ontological
extendibility to new modalities. However, we are well aware that this requirement is
not easy to achive. As our ontology was continuously evolving in order to better
respond to the requirements of the MM UIs, any change entailed the adaptation
of the tools resulting in a lot of development effort and delays in the support of
modifications brought to the ontology as well. Therefore, coordinating tools in
such context is not an easy task.

6.7 Conclusion

In order to conclude this chapter we provide hereafter a set of conclusions issued
from the internal validation (i.e., a list of strengths and weakness encountered
while developing the case studies and some reflections regarding the empirical
validation) and from the external validation (i.e., the extent to which we have ad-
dressed the requirements identified at the beginning of this work).

6.7.1 Conclusions issued from the external validation

6.7.1.a Observed advantages

We provide hereafter a set of conclusions regarding the strengths and weaknesses
of our methodology by analyzing the three case studies provided in this chapter.
Therefore, the strengths encountered during the development process are:
 Our case studies showed the feasibility of developing a multimo-

dal/monomodal UIs in a principled-based and rigorous manner relying on
explicit design options supported by transformation rules gathered in a cata-
log and selected based on designer’s decisions.

6. Validation

 232

 The diversity of design decisions highlights the possibility of manipulat-
ing UI related artifacts according to different development scenarios and
pave the way to consider multiple other alternatives. In particular, new de-
velopment scenarios can be developed by refinement (e.g. a more elaborated
scenario), by composition (e.g., a new scenario by composing several exist-
ing scenarios), by transformation (e.g., a newly defined scenario by deriving
other forms of scenarios from existing ones) or by reusing.

 The reuse of transformations. Two categories were identified:
• Highly reusable transformations: illustrated when transformation systems

have been straightforwardly reused from the first case study to the
second one and within the same case study for ensuring different
tasks. As so, we avoid the development of ad hoc transformation rules
and enable their capitalization in a consolidated approach while trying
to avoid the proliferation of very similar scenarios.

• Low reusable transformations: illustrated in the third case study that re-
quired the development of opportunistic rules that apply for very spe-
cific design decisions in the context of a reduced number of UIs.

6.7.1.b Observed shortcomings

The weaknesses encountered while realizing these case studies are the following:
 Lack of expressivity of models. The fact of decomposing a transforma-

tional development process into steps and sub-steps enables an identifica-
tion of weaknesses of certain models in terms of expressivity. As preciseness
in the expression of transformation grows, some models revealed the need
of enrichment to allow their exploitation for derivation means. For instance
the Task Model had to be expanded with some attributes for a better ex-
pression of the modality-independent aspects. Moreover, the Concrete
Model had to be enriched with various vocal concepts and synchronization
between them and the graphical elements had to be specified. This deter-
mined the introduction of a new sub-step in the development process as
well.

 Difficulty in finding an appropriate level of generalization when defin-
ing rules. Conditional graph rewriting offers expressions having no side ef-
fect i.e., a rule only affects parts of the graph defined in its scope. Nonethe-
less, a rule may always have a “wider” scope than planned by its designer. It
therefore affects unexpected graph elements. On the other hand, defining
very precise rules entails defining a collection of rules for realizing a trans-
formation that could be obtained with the application of one single and
more generic rule. An automatic recognition of sets of rules able to be syn-
thesized in one rule would be desirable in this case. This problem is an illus-
tration of the rule composition issue raised in the literature.

6. Validation

 233

 Difficulty in ordering rules within transformation systems. It happens
that two rules of a same transformation system apply to similar graph nodes.
These rules are referred in the literature as a critical pair. In this case, the or-
dering of rules has an impact on the graph resulting from the transformation
system. Critical pair analysis is an algorithmic analysis technique operating on
graph grammars and identifying conflicting rule couples. Nonetheless, once
these pairs are identified, it remains tedious to modify or re-arrange conflict-
ing rule couples.

 Difficulty in ordering sub-steps within steps. In a similar manner to
rules, it is not an easy task to order sub-steps within a same step. Each sub-
step, along with its associated transformation system, produces a graph pre-
senting certain characteristic i.e., type of nodes and relationships produced
during the execution of the sub-step. Arranging sub-steps so that the infor-
mation produced by the previous sub-step is not modified afterwards re-
mains an undetermined activity. The help of a formal expression of pre- and
post- condition of each sub-step would certainly improve this aspect.

6.7.1.c Conclusions of the empirical study

With respect to the empirical study we can conclude that:
 Even if users have a strong preference for multimodality [Ovia99], there is

no guarantee that they will issue every command to a system multimodally.
For the map browsing application users preferred more the vocal interaction
than the MM one as it proved to be more effective. This conclusion is in
line with [Ovia97] which observed that user’s commands were expressed
multimodally 20% of the time, with the rest expressed vocally or graphically.

 Users mix monomodal and multimodal expressions depending on the type
of command to convey [Ovia99] and consequently of the widget(s) sustain-
ing it. For multiple selection widgets or single selection in a long list of op-
tions the vocal modality was preferred as it proved to be more efficient. On
the contrary, for single selection in a group of radio buttons or in a list box
the graphical modality was more employed. Therefore, the designers should
ensure the flexibility of selecting the appropriate modality.

 Users have a great capacity to adapt to interaction modalities for which they
had reduced or even no previous experience. The learning time was signifi-
cantly improved when the first test was repeated for the vocal modality
(Figure 6-39). Therefore, the efforts for encouraging them to experience
other interaction modalities than the traditional ones should be enhanced by
all means possible.

 The error rate was significantly greater for the vocal modality used alone or
combined. This was mainly due to the weakness of the selected technology
which requires highly demanding user-system synchronization. Conse-

6. Validation

 234

quently, more emphasize should be put on the development of ergonomic
technology supporting MM UIs in order to ensure a more robust HCI.

6.7.2 Conclusions issued from the internal validation

As a conclusion to the discussions offered in the internal validation section,
Figure 6-47 provides a subjective estimation of the extent to which we have
addresed the requirements identified in the context of this thesis. It can be noticed
that these requirements were covered in a great proportion.

Figure 6-47 Requirements coverage rate

7. Conclusion

 235

7 Conclusion

7.1 Introduction

This chapter summarizes the contribution brought by the current thesis to the
development process of MM UIs with respect to the following aspects: (1) theoretical
and conceptual contributions related to the definition, usage and validation of some new
original concepts pertaining to the problem, (2) methodological contributions concerned
with the methodological guidance provided to UI designers in order to manipulate the
newly introduced concepts and (3) tool support expressing how the methodological
guidance is supported by a software.
By observing the current state of the art in the field of MM UIs we noticed that most of
the development issues tackel the implementation and usability assesment aspects. In
addition, a high number of such applications are still developed manually and address
very specific problems issued in a particular environment and for a particular category of
users. In response, the developers of MM UIs try to provide a circumstantial solution by
employing one or more particular interactions. But, these specific solutions are difficult
to reuse and modify as they are hard-coded in the implementation. The technologies that
support them are often very complex and resource consuming (e.g., time, processing
power) which makes them even more difficult to reinstall. Moreover, the existing
applications frequently raise extensibility problems when new interaction modalities
supported by the constant emergence of novel devices has to be introduced. The
existing implementations often address solutions for very complex tasks and are rarely
oriented towards information systems.
With respect to these observations, the methodology proposed in the current thesis
aimed to cover a greate variety of MM applications accessible for the public at large by
providing a general-purpose solution for applications that are not necessarily domain or
context-specific.

7.2 Summary of contributions

The contributions of this work can be summarized depending on the aspects composing
the methodology:

7.2.1 Theoretical and conceptual contributions

 Expanded Task Model. In Section 3.3.1.a we identified a series of shortcomings
of the existing Task Model considered for the development of MM applications. In
order to better respond to the requirements imposed by such applications, we
expanded the model by adding/modifying several attributes along with their values.
An extended set of examples involving the newly introduced attributes is offered in
order to support the design at the modality independent level.

7. Conclusion

 236

 Expanded vocal ontology. In Section 3.4.2.a we identified that the existing
ontology suffers from a series of shortcomings with respect to the vocal aspects.
Therefore, we reinforced the ontology by expanding it with a set of vocal concepts
(Section 3.4.2.b) and relationships (Section 3.4.4.b) between them. They were
further formalized in UsiXML language thus enabling to employ them in the
transformational procces for the development of MM UIs.

 Structuring a multimodal instruction. In software engineering the structure of
any ordinary instruction is composed of three atomic elements: the action, the
object over which it applies and the parameters characterizing the objects. A MM
instruction is submitted to the same observation, but introduces a new variable in
the equation: the interaction modality(s) employed for the specification of each
element composing the instruction. Moreover, the need of identifying the possible
combinations of elements in terms of their cardinality would be a benefit for the
process of selecting the appropriate interaction modality. Consequently, Section
3.3.3 identified the attributes that support the structure of a MM instruction (i.e.,
actionType and actionItem). Furthermore, four possible general cases of combinations
between the attributes were identified based on their cardinality. As these attributes
are placed in our ontology at the abstract level (i.e., modality-independent), they
enable the designers to choose the most suitable interaction modality according to
their values and purpose.

 Synchronization between modalities. In MM UIs the synchronization
represents a key aspect as it enables to correlate the data received/sent from one
modality to another. In order to support this requirement we introduced in Section
3.4.4 the synchronization relationship between graphicalCIOs and vocalCIOs with
four particular instantiations.

 Stylistics for vocal CIOs. The need of facilitating the understanding and the
manipulation of vocal objects employed in software tools required the introduction
of a graphical representation associated to some of the introduced vocal concept
(Section 3.6).

7.2.2 Methodological contribution

 Design space. The existing development of MM applications involves a manual
process for the generation of UIs and it does not take into consideration any
methodology based on design options. Our work defines a design space (Section
4.2) composed of design options that govern design rules encoded as graph
grammars which are automated in order to ease the development life cycle of MM
UIs. The advantages provided by this approach are three-fold: (1) all design options
are documented and allow summarizing any design in terms of design options
values, (2) several different designs of MM UIs may be compared according to the
design options in order to assess the design quality in terms of factors, such as
utility, usability, portability and (3) the design space allows to discover potential
new design option values or to introduce new design options assigned to yet under
explored design features which could have a positive impact over the facility of
development and quality ergonomics of MM applications.

7. Conclusion

 237

The number of design options composing our design space is the result of a trade-
off made in order to ensure:
• Low treshold: a high number of design options ensuring a very high level of

coverage with respect to the design features of the UIs to develop would
prevent designers from a rapid undestanding of the manner in which they are
defined, justified and employed. Contrary to the design space rationale, the
design workload would be increased.

• High ceiling: a reduced number of design options would impose limitations
over the features supported by the generated UIs.

• Wide walls: a few number of design options would prevent designers from
addressing a wide range of explorations with respect to the type of UIs to pro-
duce.

An important aspect concerning the design space is the identification of dependencies
between the composing design options. A design space is said to be orthogonal if all
dimensions are independent of each other. Even if we would like to define an orthogonal
design space, this condition is not fulfilled as dependencies between different design
options have been identified. So far, we have observed the dependencies illustrated in
Table 7-1. The first column specifies the design option values creating the dependencies
and the second column the design option values determined by the dependency.
Design option value causing the coupling Coupled design option value

Sub-task presentation = separated Navigation type containment = local
Sub-task presentation = separated Control type containment = local

Navigation & control type = combined
+

Navigation type containment = local

Control type containment = local

Navigation & control type = combined
+

Control type containment = local

Navigation type containment = local

Concretization of navigation & control =
combined

+
Navigation type containment = global

Control type containment = global

Navigation & control type = combined
+

Control concretization placement = global

Navigation type containment = global

Navigation & control type = combined
+

Navigation type cardinality = multiple

Control type cardinality = multiple

Navigation & control type = combined
+

Control type cardinality = multiple

Navigation type cardinality = multiple

Input = graphic (A) Immediate feedback ≠ vocal (A)
Input = multimodal (E,C,R) Immediate feedback ≠ vocal (A)

Table 7-1 Dependencies between design options

7. Conclusion

 238

 Expanded model-to-model transformational approach:
The current thesis introduces in Section 4.3.4 the color as a new feature of our
transformational approach. Thanks to it, we are able to endow the concepts of our
ontology with more semantic that will progressively enable us to support this
approach with improved concepts and operations defined between them:
• Colored concepts. In order to distinguish between the modality

independent/dependent character of the concepts pertaining to our ontology,
colors have been considered (Section 4.3.4.a.1). Thus, we chose a neutral color
(i.e., black) in order to represent the independent concepts, whereas a specific
non-neutral color is associated to each modality (i.e., red for the graphical
concepts and blue for the vocal ones).

• Colored graphs. We expanded the abstract syntax of our transformational
approach by introducing the notion of colored graphs (Section 4.3.4.a.2) thanks
to a pair of functions that attach to each node and edge of a graph a particular
color. Furthermore, two operations over colored graphs have been defined:
merging and splitting (Section 4.3.4.a.3).

• Colored transformation rules. Thanks to the aforementioned concepts, we
were able to define (Section 4.3.4.a.5) the notion of colored transformation rule
(with two particular concretizations: monocolored or multicorored) and to
introduce two operations that apply over them (i.e., merging and splitting).
Consequently, we will benefit from a series of advantages in terms of flexibility
of their application. Thus, having at hand a multicolored rule, the generation of
an application that enables a particular type of interaction (i.e., monomodal or
multimodal) is done by considering the corresponding colors. Moreover,
multiple monomodal transformation rules supporting particular interaction
modalities can be merged together in order to obtain MM rules that ensure the
generation of MM UIs. Another advantage consists of the fact that the
designers’ decision of generating a particular type of application can be
supported by a tool that could automatically processes the suitable color(s) as
feature(s) of colored transformation rules.

 Transformation rule catalog – support for design space. The graph-based
transformation rules that support our design space were gathered in a complete
and systematic structure: a transformation rule catalog. Based on it, designers could
manualy select the corresponding transformation rule(s) of their design decisions,
thanks to the mapping specified between each design value and transformation
rules (Section 4.3.5). The transformation rules provided by our transformation
catalog are hard to implement and apply, thus being resource consuming in terms
of time to learn to design such rules, time to apply them, etc. However, the way in
which they are structured in transformation systems and development steps allow
designers to reuse their organizational logic for a further different implementation.

 New methodological sub-step. [Limb04] identifies the development sub-steps
for the generation of graphical and vocal UIs. We reuse these sub-steps for MM
UIs but we also add a new one, synchronization between CICs, in order to support the
methodological development process of MM UIs. The newly introduced sub-step

7. Conclusion

 239

ensures the coordination of vocalCIOs and the graphicalCIOs by employing the
synchronization relationship.

7.2.3 Tools developed

As the design space introduced in the current dissertation offers the advantage of being
independent of any tool, any developer of MM UIs could take advantage of an explicit
support of the introduced design options. Consequently we considered
MultimodaliXML, an assembly of five software modules synchronized between each
other that aim to reduce the designers’ set of concerns by limiting the amount of design
decisions he could take.

7.3 Future work in prospect

 With respect to some shortcomings observed in Section 6.7.1.b future work could
address the folowing concerns:
 Context of use and domain considerations - building a knowledge base of

inference rules that recommands the approapriate design option value to
select. An important aspect to consider when developing MM UIs is the context in
which these applications will be used, as well as the domain they cover. Depending
on the three parameters characterizing the context, different design decisions could
be imagined. Intuitively, a MM UI run on a desktop or notebook PC would consider
a presentation where all tasks are conveyed all at once in grouped lists, wheras on a
PDA platform a separated presentation would be more convinient. A mobile
platform used in a noisy environment would better support a UI that enables
graphical input/output modalities, whereas used in quite contexts where users have
eyes-busy a vocal input/output interaction would be more suitable. Moreover, for
users employing the system in a domain where the task criticity is high (i.e., air traffic
control) a confirmation of the previously input would be recommanded, whereas for
users with a high device and system experience achieving a less complex task (i.e.,
search the translation of a word in an online dictionary) confirmation wouldn’t be
required. But these intuitions suppose an empirical validation based on which a set of
inference rules recommanding appropriate design option values to select could be
derived and gathered in a knowledge base.

 Extend the methodology to support development of context-aware systems.
Our methodology addresses the development of MM UIs for predefined and con-
stant contexts of use that do not support any dynamic run-time migration from one
modality to another. However, nowadays, the interaction has to be adapted to differ-
ent situations and to a context in constant evolution [Calv03]. This diversity of inter-
action contexts emphasizes the complexity of MM system design for which solutions
should be provided in order to enable systems to have run-time context-aware capa-
bilities [Sott07, Vand08]. Therefore, we would like to analyze a solution that consid-
ers a set of selection rules based on which different CUIs are generated from the
same AUI depending of several context parameters. Such an approach was applied
and described in [Rous05], where a behavioral model formalized by a base of election

7. Conclusion

 240

rules allows the selection of the most suitable output modality. This approach could
be extended to input modalities as well.

 Design space improvement. We may want to perform the following activities over
the design space defined so far: (1) reduce the semi-dependent dimensions; (2) intro-
duce more values for each design option; (3) introduce new dimensions while maxi-
mizing the independency between them.

 Extend the methodology to support new interactions. More and more UIs are
supporting nowadays new modalities of interaction. Hereafter, we provide our point
of view over the extension proceess of the methodology when a new interaction
should be considered:

• Ontological extension. We will put into balance the necessity of introducing
new concepts and the possibility to adapt the existing ones in order to support
the new interaction. For instance, the introduction of the tactile interaction will
probably consists only in some physical constraints imposed on the existing
graphical objects. A decision that will consider both aspects could be considered
as well.

• Method extension. This extension will consider two aspects:
(1) The design space: first we will analyze if the existing design options still keep

their modality-independent character with respect to the newly introduced
modality. Second, we will study the opportunity of introducing new design
option values or new design options that could provide more guidance to the
designer when considering the new interaction alone or combined. The valid-
ity of these new options with respect to the concretization of the already
existing interactions should be checked as well.

(2) The transformational method: first, we will analyse if the systematic
development approach proposed in this thesis still keeps its coherece when
confrunted with the new interaction. Second, we will examine the necessity of
introducing new development sub-steps and consequently
adapting/extending the existing transformations rules gathered in the catalog
in order to support the new interaction. The objects over which these rules
are applied will be assigned with a new color in order to benefit from the
advantages provided by the multicolored rules.

• Tool extension. Depending on the extensions operated at the ontological and
methodological levels the supporting software should be adapted acordingly.

 Redesign a brand new UsiXML software support. The purpose of our design
space is to guide the designer during the development life cycle when having to de-
cide between different design alternatives. In line with this goal, a new software con-
cretized in a design space-based tool (Figure 5-12) could be developed. It would en-
able to select design values hiding transformational rules, thus absolving designers
from useless and workloading details. Moreover, it would be useful to present a
graphical preview of the design decision outcome. Thus, a clearer picture of the
presentation (supported by the introduced stylistics) and behavior of the future UIs
could be provided.

 Analyse the possible extensions of the colored transformation rules. We would

7. Conclusion

 241

like to analyze whether the introduction of color as a new feature of our ontology is a
conservative extension with respect to the graph grammar properties such as termi-
nation, confluence, parallel and sequential independence.

 Usability evaluation of transformation rules. The aim is to assess the level of
usability covered by applying a set of transformation rules to develop MM UIs.
Specifically, we are interested in answering the following questions: Based on a set of
already identified usability criteria for the evaluation of HCI, what is the level of
coverage of the transformation rules? Are all usability criteria covered? What is the
level of coverage by modality? What is the level of coverage by design option? What
is the level of coverage by transformational level? Which criteria are preserved in all
the transformation levels? Could we generalize this reasoning for a general MDA
approach involving UI development? The ultimate goal would be to investigate
whether MDA-compliant methods ensure a guaranteed level of usability through
model transformations.

 Evaluation of the MM UI usability based on cognitive psychology principles.
Decision making, as a feature of the cognitive psychology, plays an important role
in the area of HCI by creating the context for defining major design options for
information systems in order to pave the way to a structured development life cycle.
[Mars87] specifies a set of summary qualitative principles derived by usability
psychologists from cognitive psychology and designed to offer detailed guidance for
designers during the development process. Whereas the cognitive psychology offers a
support for the usability of the decision making, the MM UI design studies published
so far in the area of Software engineering and HCI are surprisingly rare. Furthermore,
there are few ongoing works on usability of MM UIs mainly because there are not so
many MM applications. There have been a number of studies (e.g., [Lars03a]) of the
way designers should conceptualize their MM UIs, but these give little insight into
the way design options are formulated or decisions should be actually reached. Thus,
the usability of the design options for MM applications still remains an uncovered
research area as there are no usability MM applications experiments for this. As so far
we focused on the feasibility of code generation, the next steps will consider usability
experimental studies that will take into account qualitative principles derived from
cognitive psychology and their applicability to the design space.

7.4 Some personal concerns

This section presents some personal reflections and the resulting concerns over the
current dissertation with respect to the connection between the effort made to realize it
and the obtained results.
We base our analyse on the Pareto’s principle which has its roots in an observation made
over the Italian people stating that: 80% of Italy’s wealth was produced by 20% of the population.
This principle has been further validated in other areas of expertise thanks to numerous
empirical studies, thus giving rise to the so called 80 – 20 Rule. For instance,
supermarkets noticed that 80% of their stock comes from 20% of their suppliers. Also

7. Conclusion

 242

80% of the production is produced by 20% of the company staff and 80% of their
problems are caused by 20% of the staff. Consequently, the rule practically states that
80% of the problem is solved with only 20% of effort. The corollary of this rule is that
for the remaining 20% of the problem, 80% of the effort would be required.
Therefore, we analyzed the extent to which this rule is validated by the methodology em-
ployed in the current research in order to solve the problem of MM UI development. For
this purpose we discuss two points of view:
1. The author’s point of view: we examined first the three dimensions of our methodology

(i.e., models, method, tools) by assigning weights depending on their contribution to
the final outcome (Figure 7-1). Thus, even subjective, we consider that the intro-
duced ontology and the method manipulating its elements have a greater rate (i.e.,
around 80 %) than the software support (i.e., around 20%) in the total outcome of
the methodology. This is mainly due to the fact that the introduced ontology, the de-
sign options composing the design space and the highly structured development
process guided by these options are independent of any implementation or tool sup-
port thus providing an output that could be useful to any designer of MM UIs. In a
second step we estimated the effort made during this research in order to reach the
outcomes produced by each of the methodological dimensions. We conclude that
most of these efforts were dedicated to the implementation aspects (i.e., developing
the modules of the MultimodaliXML tool, designing and manually specifying the
transformation, manually applying the XSL Transformations) which proved to be a
highly time and resource-consuming activity.

Figure 7-1 Connection between the effort rate and the outcome rate of our methodology

7. Conclusion

 243

2. The extern designer point of view: If we were to provide the methodology developed in
this thesis to a designer in order to apply it on a different case study than those
presented in Chapter 6, we consider that the introduced ontology and the method
manipulating it should remain unchanged thanks to their independence of the
technology. On the other hand, the transformational approach and the tools
implementing it should be redesigned as the transformations rules proved to be
difficult to manipulate and apply, requiring a high treshold and sometimes the
development of oportunistic rules that can be applied only for several cases.

As a result of these discussions we conclude that the effort involved in providing a valu-
able methodology for the development of MM UIs and the outcome produced by it are
in line with the 80 – 20 Rule. We have identified the 80% of the results for which the
effort involved in the activities producing them was relatively low. As suggested by
several analysts of 80 – 20 Rule from now on the focus should be set on the rest of the
20% of results to produce (in our context, the implementation aspects) for which an 80%
effort rate is required. In line with this observation we consider that a design space-based
tool as the one illustrated in Figure 5-12 could help designers minimize the development
effort when building MM applications.

7.5 Concluding remarks

This thesis introduces a methodology for the development of MM UIs that applies a
transformational approach over a set of models thanks to transformation rules employed
in different development steps in order to offer guidance for coding complete MM
applications. The methodology (as defined in Section 1.4) is delineated by a set of
requirements that are elicited and motivated by the state of the art presented in Chapter
2. The validation of the proposed methodology is achieved by applying it over the case
studies presented in Chapter 6. Their main goal is to show the feasibility of the
methodology and provide designers with some explicit guidance on what to decide for
their future UI, while exploring various design alternatives.
The diversity of the UIs that have been developed based on the design space highlights
the possibility of manipulating related UIs and paves the way to consider multiple other
alternatives. In particular, new types of UIs can be developed by refinement (e.g., more
elaborated UIs obtained by taking into consideration more design option values), by
composition (e.g., new types of UIs obtained by combining several existing design option
values), by transformation (e.g., new UIs obtained by deriving existing UIs based on the
modifications made over the design option values) or by reusing. The possibility of
reusing already developed UIs is a consequence of the reusability feature of the
transformations rules. This feature has been demonstrated straightforwardly when
applied from one case study to another. Thus, we avoid the development of
transformation catalogs that are applied only for a particular case study and consequently
we prevent the proliferation of similar UIs.

7. Conclusion

 244

References

 245

References

A
[Abra99]

Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S., Shuster, J., UIML: An Appliance-
Independent XML User Interface Language, in Mendelzon, A. (Ed.), Proceedings of 8th International
World-Wide Web Conference WWW'8 (Toronto, May 11-14, 1999), Elsevier Science Publishers,
Amsterdam, 1999. Available online: http://www8.org/w8-papers/5b-hypertext-media/uiml/
uiml.html.

[Abra04]
Abrams, M., Helms, J., User Interface Markup Language (UIML) Specification Working Draft 3.1, 11
March 2004. Available online: http://www.oasis-open.org/committees/download.php/5937/
uiml-core-3.1-draft-01-20040311.pdf.

[Agra03]
Agrawal, A., Metamodel Based Model Transformation Language, Proceedings of ACM International
Conference on Object-Oriented Programming Systems, Languages and Applications
OOPSLA’2003, (Anaheim, October 26-30, 2003), ACM Press, New York, 2003, pp. 386-387.

[Albr83]
Albrecht, A., J., Gaffney, J.,E., Software Function, Source Lines of Code, and Development Effort Prediction:
A Software Science Validation, IEEE Trans. Software Engineering 9(6), 1983, pp. 639-648.

[Alle83]
Allen, J., F., Maintaining Knowledge about Temporal Intervals, Communications of the ACM, 26(11),
1983, pp. 832–843.

 [Aneg04]
Anegg H., Niklfeld G., et al., Multimodal Interfaces in Mobile Devices – The MONA Project, Proc. of the
Emerging Applications for Wireless and Mobile Access Workshop MobEA’II (New York, May
18, 2004).

[Awde06]
Awde, A., Hina, M., D., Tadji, C., Ramdane-Cherif, A., Bellik, Y., Information Access in a Multimodal
Multimedia Computing System for Mobile Visually-Impaired Users, Industrial Electronics, 2006 IEEE
International Symposium, Volume4, ISBN 1-4244-0496-7, 9-13 July 2006, pp. 2834-2839.

B
[Barn08]

Barnett, J., et al., State Chart XML (SCXML): State Machine Notation for Control Abstraction, W3C
Working Draft, 16 May 2008. Available online: http://www.w3.org/TR/2008/WD-scxml-
20080516.

[Bass91]
Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard, R., Szezur, M., R., The Arch model: Seeheim
revisited, User Interface Developer’s workshop version 1.0, 1991.

[Bast97]
Bastien, J., M., C., Scapin, D., L., Ergonomic criteria for evaluating the ergonomic quality of interactive
systems, Behaviour and Information Technology 16, pp 220-231.

[Beau00]
Beaudouin-Lafon, M., Instrumental Interaction: An Interaction Model for Designing Post-WIMP User
Interfaces, Proceedings of the ACM International Conference on Human Factors in Computing
Systems CHI’2000 (The Hague, April 1-6, 2000), ACM Press, New York, 2000, pp. 446-453.

[Bern06]
Bernsen, N., O., Dybkjaer, L., Multimodal Usability MULUS, SIMILAR Multimodal Usability
BOOK, 18.08.2006.

[Bert05]
Berti, S., Paterno, F., Migratory MultiModal interfaces in MultiDevice environments, Proceedings of the
7th International Conference on Multimodal Interfaces, ICMI’2005 (Trento, 4-6 October, 2005),
ACM Press, New York, 2005, pp.92-99.

[Bell92]
Bellik, Y., Teil, D., Les types de multimodalités, Actes des 4èmes Journées sur l’Ingénierie des Interfaces

References

 246

Homme-Machine IHM’92, Paris, 1992.
[Blan06]

Blanquet, J., Gatefin, J., Cherrier, P., Recommandations ergonomiques, Projet VERBATIM,
Sous-projet 1 – Lot 2, version 2.4, 2006.

[Boda94]
Bodart, F., Vanderdonckt, J., On the Problem of Selecting Interaction Objects, Proceedings of BCS
Conference HCI’94 "People and Computers IX" (Glasgow, 23-26 August 1994), G. Cockton,
S.W. Draper, G.R.S. Weir (eds.), Cambridge University Press, Cambridge, 1994, pp. 163-178.

[Bodn04]
Bodnar, A., Corbett, R., Nekrasovski, D., AROMA: Ambient awaReness through Olfaction in a
Messaging Application - Does Olfactory Notification Make ’Scents’, Proceedings of ACM International
Conference of Multimodal Interfaces ICMI’2004 (State College, October 13-15, 2004), ACM
Press, New York, 2004, pp. 183–190.

[Bolt80]
Bolt, R., A., Put-that-there: Voice and gesture at the graphics interface, Proceedings of the 7th Annual
Conference on Computer Graphics and Interactive Techniques SIGGRAPH’80 (Seattle, 1980),
pp. 262-270.

[Bouc04a]
Bouchet, J., Nigay, L., Ganille, T., ICARE Software Components for Rapidly Developing Multimodal
Interfaces, Proceedings of the 6th ACM International Conference on Multimodal Interfaces
ICMI’2004 (State College, 2004), ACM Press, New York, 2004, pp. 251–258

 [Bouc06]
Bouchet, J., Ingénierie de l’interaction multimodale en entrée: Approche à composants ICARE, Ph.D. thesis,
Université Joseph Fourier, Grenoble, December 7th, 2006.

[Brew96]
Brewster, S., A., McGookin, D., K., Miller, C., A., Olfoto: Designing a Smell-Based Interaction,
Proceedings of ACM International Conference on Human Aspects in Computing Systems
CHI’2006 (Montréal, April 22-27, 2006), ACM Press, New York, 2006, pp. 653 - 662.

[Bygs07]
Bygstad, B., Ghinea, G., Brevik, E., Systems Development Methods and Usability in Norway: An
Industrial Perspective, Usability and Internationalization, HCI and Culture, Lecture Notes in
Computer Science, Springer Berlin, Volume 4559, 2007, ISBN 978-3-540-73286-0, August 24,
2007, pp. 258-266.

C
 [Calv03]

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J., A Unifying
Reference Framework for Multi-Target User Interfaces, Interacting with Computers, 15(3), June 2003, pp.
289–308.

[Clar99]
Clark., J., XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16 November 1999.
Available online: http://www.w3.org/TR/xslt.

[Cohe98]
Cohen, P., R., Johnston, M., The Efficiency of Multimodal Interaction: A Case Study, Proceedings of the
International Conference on Spoken Language Processing ICSLP'98 (Darling Harbour, 1998), pp.
249–252.

[Conk88]
Conklin, J., Begeman, M., L., gIBIS: A Hypertext Tool for Exploratory Policy Discussion, ACM
Transactions on Office Information Systems, 6(4), 1988, pp. 303-331.

[Cole85]
Cole, I., Lansdale, M., Christie, B., Dialogue design guidelines, Human Factors of Information
Technology in the Office, Christies, B. (Ed.), John Wiley, Chichester, 1985.

[Cout92]
Coutaz, J., Multimedia and Multimodal User Interfaces: A Software Engineering Perspective, Proceedings of
the East-West International Conference on Human-Computer Interaction EWHCI’92 (St.
Petesburg, 4-8 August, 1992).

[Cout95]
Coutaz, J., Nigay, L., Salber, D, Blanford, A., May, J., Young, R.M., Four easy pieces for assessing the
usability of multimodal interaction: the CARE properties, Proceedings of 5th IFIP TC 13 International
Conference on Human-Computer Interaction INTERACT’95 (Lillehammer, 27-29 June 1995),

References

 247

Nordbyn, K., Helmersen, P.H., Gilmore, D.J., Arnesen, S.A. (Eds.), Chapman & Hall, London,
1995, pp. 115–120.

[Crea00]
Crease M., Brewster S., A., Gray P., Caring, sharing widgets: a toolkit of sensitive widget, Proceedings of
14th Annual Conference of the British HCI Group (5-8 September 2000), British Computer
Society conference series, Sunderland, England, pp. 257-270.

[Czar03]
Czarnecki, K., Helsen, S., Classification of Model Transformation Approaches, Proceedings of the
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture,
anaheim, October 26-30, 2003.

D
[Debo06]
 De Boeck, J., Raymaekers, C., Conix, K., Comparing NiMMiT and Data-Driven Notations for Decribing

Multimodal Interaction, Proceedings of 5th International Workshop on Task Models and Diagrams
for User Interface Design TAMODIA’2006, (Hasselt, Belgium, October 23-24, 2006), Lecture
Notes in Computer Science 4385 Springer 2007, ISBN 978-3-540-70815-5, pp. 139-146.

[Deva91]
 Devauchelle, P., User-friendly recommendations for voice services designers, France Telecom.
[Dijk76]

Dijkstra, E. W., The discipline of programming, Prentice Hall, Engelwood Cliffs, NJ, 1976.

E
[Ehri99]

Ehrig, H., Engels, G., Kreowski, H-J., Rozenberg, G., Handbook of Graph Grammars and Computing
by Graph Transformation, Application, Languages and Tools, Vol. 2, The Graph Transformation
Language AGG, World Scientific, Singapore, 1999.

[Enge89]
Engelbeck, G., Roberts, T., The effects of several voice-menu characteristics on menu selection performance,
Technical report ST0401, US West Advanced Technologies, Englewood, CO.

G
[Gait07]

Gaitanis, K., Vybornova M., O., Gemo, M., Macq, B., Multimodal High Level Fusion of Input
Commands as a Semantic Goal-Oriented Cooperative Process, Proceedings of 12th International
Conference Speech and Computer, SPECOM, 2007.

 [Gonz06]
Gonzalez C., J., M., A Method for Developing 3D User Interfaces for Information Systems, DEA Thesis,
UCL, Louvain-la-Neuve, June 2006.

[Goul87]
Gould, J., D., Boies, S., J., The 1984 olympic message system: A test of behaviour principles of system design,
Communications of the ACM, 30, pp. 758-769.

[Gram96]
Gram, C., Cockton, G., Design Principles for Interactive Software, IFIP’s Working Group 2.7, First
edition 1996, Chapman and Hall, ISBN 0-412-72470-7.

[Grub90]
Gruber, T., R., Russell, D., M., Design Knowledge and Design Rationale: A Framework for Representation,
Capture and Use, Knowledge Systems Laboratory, Stanford University, 1990, KSL 90-45.

H
[Hewe96]

Hewett, T., Baecker, R., Carey, T., Gasen, J., Mantei, M., Perlman, G., Strong, G., Verplank, W.,
Curricula for human-computer interaction, Technical Report 608920, ACM Special Interest Group on
Computer-Human Interaction Curriculum Development, 1996.

[Hoov91]
Hoover, S., Rinderle, J., Models and Abstractions in Design. Design Studies, Volume 12, Number 4,
October, 1991.

References

 248

[Hura03]
Hura, S., L., Owens, R., The truth about multimodal interaction, August 2007. Available online:
http://www.microsoft.com/speech/docs/Intervoice_Multimodal_Article.htm.

I
[IBM93]

IBM, Object-Oriented Interface Design, IBM Common User Access Guidelines, IBM document, Que
publishing, March 1993.

[IBM03a]
IBM, WebSphere Voice Server for Multiplatforms, VoiceXML Programmer’s Guide, Version 4.2,
September 2003.

[IBM03b]
IBM White Paper, Multimodal Application Design Issues, December 2003. Available online:
http://www.ibm.com/developerworks/websphere/library/techarticles/0312_li/0312_li.html#do
wnload.

[IBM05]
IBM, WebSphere Voice Toolkit Getting Started Version 6.0., Second Edition, November, 2005. Available
online:
http://publib.boulder.ibm.com/infocenter/pvcvoice/51x/index.jsp?topic=/com.ibm.voicetools.
callflow.doc/ccfpalette.html.

[IEEE90]
 IEEE society, Glossary of Software Engineering Terminology, IEEE Standard #610.12-1990, IEEE

press, 1990.

J
[Java98]

Java, Java Speech API Programmer’s Guide, Version 1.0, October 26, 1998, Sun Microsystems.
Available online: http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-
guide/UserInterface.html.

[Jens98]
Jensen, K., A brief introduction to colored Petri nets, Proceedings of the Workshop on the Applicability
of Formal Models (Aarhus, Denmark, 2 June 1998), pp. 55-58.

[John95]
Johnsgard, T., J., Page, S., R., Wilson, R., D., Zeno, R., J., A Comparison of Graphical User Inteface
Widgets for Various Tasks, Proceedings of the Human Factors & Ergonomics Society - 39th Annual
Meeting, Human Factors and Ergonomics Society, Octobre 1995., pp. 287-291.

K
[Kaye04]

Kaye, J., Making scents: Aromatic output for Human-Computer Interaction, Interactions, 11(1), 2004.
[Kats03]

Katsurada, K., Nakamura, Y., Yamada, H., Nitta, T., XISL :A Language for Describing Multimodal
Interaction Scenarios, Proceedings of the 5th International Conference on Multimodal Interfaces
ICMI’03 (Vancouver, Canada, 2003), ACM Press, New York, 2003, pp.281-284.

[Kawa96]
Kawai S., Aida H., Saito T., Designing interface toolkit with dynamic selectable modality, Proceedings of
the 2nd Annual ACM Conference on Assistive Technologies Assets '96 (Vancouver, British
Columbia, Canada, April 11 - 12, 1996), ACM Press, New York, NY, pp. 72-79.

[Kawa03]
Kawamoto, S., Shimodaira, H., Sagayama, S., et al., Galatea: Open-Source Software for Developing
Anthropomorphic Spoken Dialog Agents, Life-Like Characters, Tools, Affective Functions and
Applications, Helmut Prendinger et al.. (Eds.) Springer, November 2003, pp. 187-212.

 [Klem00]
Klemmer, S., R., SUEDE: A Wizard of Oz Prototyping Tool for Speech User Interfaces, in CHI Letters,
Proceedings of 13th Annual ACM Symposium on User Interface Software and Technology
UIST’2000, pp. 1-10.

[Knol90]
 Knolls, C., Voice Messaging User Interface Forum, Specification document, April, 1990.

References

 249

L
[Laca05]

Lacaz, X., Conception rationalisée pour les systèmes interactifs, Une notation semi formelle et un environnement
d'édition pour une modélisation des alternatives de conception, PhD Thesis, 20 June 2005. Available online:
http://liihs.irit.fr/lacaze.

[Lars03a]
Larson, J., A., Commonsense Guidelines for Developing Multimodal User Interfaces, Larson Technical
Services, 3 April, 2003. Available online: http://www.larson-tech.com/MMGuide.html.

 [Lars03b]
Larson, J., A., Raman, T., V., Raggett, D., W3C Multimodal Interaction Framework, W3C Note 6 May
2003. Available online: http://www.w3.org/TR/mmi-framework.

[Lars06]
Larson, J., Intel, Common Sense Suggestions for Developing Multimodal User Interafces, W3C Working
Group Note 11 September, 2006. Availablea online: http://www.w3.org/TR/mmi-suggestions.

[Lewi95]
Lewis J., R., Computer Usability Satisfaction Questionnaires: Psychometric Evalution and Instructions for use,
International Journal of Human-Computer Interaction 7(1), 1995, pp. 57–78.

[Limb00]
Limbourg, Q., Vanderdonckt, J., Souchon, N., The Task-Dialog and Task-Presentation Mapping
Problem: Some Preliminary Results, Proceedigs of 7th International Workshop on Design,
Specification, Verification of Interactive Systems DSV-IS’2000 (Limerick, 5-6 June 2000), F.
Paternò, Ph. Palanque (eds.), Lecture Notes in Computer Science, Vol. 1946, Springer-Verlag,
Berlin, 2000, pp. 227-246.

[Limb04a]
 Limbourg, Q., Vanderdonckt, J., Transformational Development of User Interfaces with Graph

Transformations, Proceedings of 5th International Conference on Computer-Aided Design of User
Interfaces CADUI’2004 (Madeira, 14-16 January, 2004), Kluwer Academics Publishers,
Dordrecht, 2004.

[Limb04b]
Limbourg, Q., Multi-Path Development of User Interfaces, PhD thesis, University of Louvain,
November, 2004.

[Löwe93]
Löwe M., Algebraic approach to single-pushout graph transformation in Theoretical Computer Science, Vol. 1,
1993, pp. 181-224.

M
 [Macl89]

MacLean, A., Young, R., Moran, T., Design rationale: the argument behind the artifact, Proceedings of
ACM Conference on Human Aspects in Computing Systems CHI’89 (Austin, 30 April - 4 May
1989), ACM Press, New York, 1989, pp. 247-252.

[Macl91]
MacLean, A., Young, R., Bellotti, V., Moran, T., Questions, Options and Criteria: Elements of Design
Space Analysis, Lawrence Erlbaum Associates, 1991, pp. 201-250.

[Maes03]
Maes, S., H., Saraswat, V., Multimodal Interaction Requirements, W3C Note 8 January 2003. Available
online: http://www.w3.org/TR/mmi-reqs/#Inputmodalityrequirements.

[Mars87]
Marshall C., Nelson C., Gardiner M., Design guidelines. In Applying Cognitive Psychology to User- Interface
Design, M. M. Gardiner and B. Christie (eds), Chichester, Wiley & Sons Ltd, 1987.

[Mart02]
Martin, J.-C., Kipp, M., Annotating and Measuring Multimodal Behaviour - Tycoon Metrics in the Anvil
Tool, Proceedings of 3rd International Conference on Language Resources and Evaluation
LREC'2002 (Las Palmas, Canary Islands, Spain, 29-31 May 2002).

[Mart01]
Martin, J., C., Grimard, S., Alexandri, K., On the annotation of the multimodal behavior and computation of
cooperation between modalities, Proceedings of the workshop on Representing, Annotating, and
Evaluating Non-Verbal and Verbal Communicative Acts to Achieve Contextual Embodied
Agents (May 29, 2001, Montreal) in conjunction with the 5th International Conference on
Autonomous Agents, pp 1-7.

References

 250

[Mart97]
Martin, J., C., TYCOON: Theoretical Framework and Software Tools for Multimodal Interfaces, Intelligence
and Multimodality in Multimedia Interfaces, AAAI Press, 1997.

 [McGe98]
McGee, D., R., Cohen, P., R., Oviatt, S., Confirmation in multimodal systems,
Proceedings of 36th annual meeting on Association for Computational Linguistics, ACL, 1998, pp.
823 – 829.

[Medi07]
Medina, J-L., Chessa, S., Front, A., A Survey of Model Driven Engineering Tools for User Interface Design,
Proceedings of 6th International Workshop on Task Models and Diagrams TAMODIA’2007
(November 7-9, 2007), Springer, Berlin, pp. 84–97.

[Mell03]
Mellor S., J., Clark A. J., Introduction to Model Driven-Development, IEEE Software 20(5), 2003, pp.
14-18.

[Mens06]
Mens, T., Van Gorp, P., A Taxonomy of Model Transformation, Proceedings of International
Workshop on Graph and Model Transformation GraMoT’2005, Electronic Notes in Theoretical
Computer Science, 152 (2005), pp. 125–142.

[Meri06]
Merisol, M., Badia, F., Evaluation de la maquette d’un service multimodal de recherché d’itinéraire dans un
réseau de bus, Proceedings of 18th International Conference on Association Francophone
d'Interaction Homme-Machine (Montreal, Canada, 2006), pp. 241- 244.

[Meye85]
Meyer, B., On formalism in specifications, IEEE Software, January 1985.

[Meye88]
Meyer, B., 10 Tips for Getting Useful Information from Users, IEEE Software, Volume 5, Publisher
IEEE Computer Society Press, Issue 4, July 1988, pp. 89-90.

[Mill03]
Miller, J., Mukerji, J., MDA Guide Version 1.0.1, Available online: http://www.omg.org.

[Mont05]
Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P., Lozano, M., D., Solving the
Mapping Problem in User Interface Design by Seamless Integration in IdealXML, Proc. of DSV-IS’2005,
Springer-Verlag, Berlin, 2005.

[Mori04]
Mori, G., Paternò, F., Santoro, C. , Design and Development of Multidevice User Interfaces through Multiple
Logical Descriptions, IEEE Transactions on Software Engineering, August 2004, pp. 507-520.

 [Myer00]
Myers, B., A., Hudson, S., E., Pausch, R., F., Past, present and future of user interface software tools, ACM
Trans. Computer-Human Interaction, Volume 7, No. 1, 2000, pp. 3-28.

N
[Nava06]

 Navarre, D., Palanque, P., Dragicevic, P., Bastide, R., An approach integrating two complementary model
based environments for the construction of multimodal interactive applications, Interacting with Computers,
Volume 18 (5), ISSN 0953-5438, Elsevier Science Inc. New York, NY, USA, September 2006, pp.
910-941.

[Newm91]
 Newman, S. E., Marshall, C., C., Pushing Toulmin Too Far: Learning Froma an Argument Representation

Scheme, 1991, Xerox Parc Technical Report, No. SSL-92-45.
[Niel88]
 Nielsen, J., Coordinating user interfaces for consistency, Workshop of CHI’88, 15-16 May, 1988.
[Niga94]
 Nigay, L., Conception et modélisation. Logicielle des Systèmes Interactif : Application aux Interface

Multimodales, Thèse de doctorat, Université Joseph Fournier, Grenoble, 1994.
[Niga96]

Nigay, L., Coutaz, J., Espaces conceptuels pour l'interaction multimédia et multimodale, TSI, Multimédia et
Collecticiel,Volume 15, no. 9, 1996, AFCET and Hermes Publishers, pp. 1195-1225.

[Niga97a]
Nigay, L., Coutaz, J., A Generic Platform for Addressing the Multimodal Challenge, Conference on
Human Factors in Computing Systems, Proceedings of the SIGCHI conference on Human

References

 251

factors in computing systems (Denver, Colorado, United States, 1995), ISBN 0-201-84705-1, pp.:
98-105.

[Niga97b]
Nigay, L., Coutaz, J., Multifeature Systems: The CARE Properties and Their Impact on Software Design,
1997, Intelligence and Multimodality in Multimedia Interfaces: Research and Applications, AAAI
Press Publ. CD-ROM, J. Lee Edition, 1997.

[Niga97c]
Nigay, L., Coutaz, J., A design space for multimodal systems: Concurrent processing and Data fusion,
Proceedings of 12th- BCS conference on Human Computer Interaction, HCI'97, Springer Verlag.

[Norm86]
Norman, K., L., Weldon, L., J., Shneiderman, B., International Journal on Man-Machine Studies, 1986,
pp. 229-248.

O
[Olsi04]

Olsina, L., Martin., M., Ontology for Software Metrics and Indicators, Journal of Web Engineering 2(4),
2004, pp. 262-281.

[Open07]
OpenInterface Platform - Component Developer Guide, Draft V0.1. Available online:
http://www.openinterface.org/platform/tutorial.

[Ovia99]
Oviatt, S., Ten myths of multimodal interaction, Communications of the ACM,
Volume 42, Issue 11, November 1999, ISSN 0001-0782, ACM Press, New York, USA, pp.: 74-
81.

[Ovia97]
Oviatt, S., DeAngeli, A., Kuhn, K., Integration and synchronization of input modes during multimodal
human-computer interaction, Proceedings of Conference on Human Factors in Computing Systems,
CHI‘97 (Atlanta, GA, March 22-27, 1997), ACM Press, New York, pp. 415–422.

P
[Pala03]

Palanque, Ph., Schyn, A., A Model-Based Approach for Engineering Multimodal Interactive, Proceedings
of 9th IFIP TC13 International Conference on Human-Computer Interaction, Interact'2003
(Zurich, 1-5 September 2003), IOS Press, Amsterdam, 2003, pp. 543-550.

[Pate97]
Paternò, F., Mancini C., Meniconi, S., ConcurTaskTree: A diagrammatic notation for specifying task
models, Proceedings of IFIP TC 13 International Conference on Human-Computer Interaction
Interact'97 (Sydney, July 14-18, 1997), Howard S., Hammond, J., Lindgaard, G. (Eds.), Kluwer
Academic Publishers, Boston, 1997, pp. 362-369.

 [Puer02a]
Puerta, A., Eisenstein, J., XIML: A Common Representation for Interaction Data, Proceedings of 6th
International Conference on Intelligent User Interfaces IUI’2002 (San Francisco, USA, January
13-16, 2002,), ACM Press, pp. 214-215.

[Puer02b]
Puerta, A., Eisenstein, J., XIML: A Universal Language fou User Interfaces, Technical document, 2002.

[Plomp02]
Plomp, J., Keränen, H., Nikkola, H., Y, Rantakokko, T, Supporting past, present and future interaction
with home appliances, International ITEA Workshop on Virtual Home Environments (February 20-
21, 2002), Paderborn, Germany.

Q
[QVT05]

Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Final Adopted Specification,
November, 2005.

References

 252

R
[Rous05]

Rousseau, C., Bellik, Y., Vernier, F., Multimodal output specification/simulation platform, Proceedings of
7th International Conference on Multimodal Interfaces ICMI’2005 (Trento, 4-6 October 2005),
ACM Press, New York, 2005, pp. 84-91.

S
[Scha07]

Schaffer, R., A Survey on Transformation Tools for Model Based User Interface Development, Proceedings
of HCI’International 2007, J. Jacko (Ed.): Human-Computer Interaction, Part I, LNCS 4550,
Springer, Berlin, pp. 1178–1187.

[Scha06]
Schaefer, R., Steffen, B., Wolfgang, M., Task Models and Diagrams for User Interface Design,
Proceedings of 5th International Workshop, TAMODIA'2006 (Hasselt, Belgium, October 2006),
Lecture Notes in Computer Science, Vol. 4385, Springer Verlag Berlin, 2006, pp. 39-53.

[Schu92]
Schumacher, R., Phone-based interfaces: reaserch and guidelines, Ameritech Services, Inc., Proceedings of
the Human Factor Society, 36th annual meeting, 1992, pp. 1051-1055.

[Schü97]
Schürr, A., Programmed Graph Replacement Systems, Handbook of Graph Grammars and Computing
by Graph Transformation, Rozenberg G. (Ed.), Volume 1: Foundations, World Scientific,
Singapore, 1997, pp. 479-546.

 [Schy05]
Schyn, A, Une approche fondée sur les modèles pour l’inginérie des systèmes interactif multimodaux, Thèse de
doctorat, Université Toulouse III, 2005.

[Shne86]
Shneiderman, B., Shafer, P., Simon, R., Weldon, L., J., Display strategies for program browsing: concepts
and experiment, IEEE Software, 3, 1986, pp. 7-15.

[Shne98]
Shneiderman, B., Designing the user interface: strategies for effective human-computer interaction, 3rd Edition,
Publisher Addison-Wesley, ISBN 0-201-69497-2, March 1998.

[Shne06]
Shneiderman, B., Fischer, G., Creativity Support Tools: Report From a U.S. National Science Foundation
Sponsored Workshop, International Journal of Human-Computer Interaction, 20(2), pp. 61–77.

[Sieg88]
Siegel, S., Castellan., N., J., Nonparametric Statistics for The Behavioral Sciences, McGraw-Hill, Inc.,
second edition, 1988.

[Sinh01]
Sinha A., K., Klemmer S., R., Chen, J., Landay J., A., Chen C., SUEDE: Iterative, Informal
Prototyping for Speech Interfaces, Video poster in Extended Abstracts of Human Factors in
Computing Systems CHI 2001 (Seattle, WA, March 31-April 5, 2001), pp. 203-204.

[Sott07]
Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M., Vanderdonckt, J., Stanciulescu, A., Lepreux, S.,
A Language Perspective on the Development of Plastic Multimodal User Interfaces, Journal of Multimodal
User Interfaces, Vol. 1, No. 2, June 2007, pp. 1-12.

[Stan04]
Stanciuluescu, A., Limbourg, Q., Vanderdonckt, J., Graful – modalitate de reprezentare a elementelor
interfeţei cu utilizatorul, Proceedings of 1st National Conference on Computer-Human Interaction
ROCHI’2004 (Bucharest, September 23-24, 2004), Ştefan Trăuşan-Matu, S., Pribeanu, C. (Eds.),
Polytechnic University of Bucharest, Bucharest, 2004.

[Stan05]
Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F., A Transformational
Approach for Multimodal Web User Interfaces based on UsiXML, Proceedings of 7th International
Conference on Multimodal Interfaces ICMI’2005 (Trento, 4-6 October, 2005), ACM Press, New
York, 2005, pp. 259-266.

[Stan06]
Stanciulescu, A., Vanderdonckt, J., Design Options for Multimodal Web Applications, Proceedings of
6th International Conference on Computer-Aided

References

 253

Design of User Interfaces CADUI´2006 (Bucharest, Romania, 6-8 June 2006), Chapter 4,
Springer-Verlag, Berlin, 2006, pp. 41-56.

[Stan07]
Stanciulescu, A., Vanderdonckt, J., Macq, B., Automatic Usability Assessment of Multimodal User
Interfaces Based on Ergonomic Rules, Proceedings of E-Mode Joint Workshop on Multimodal
Interfaces 2007 (Paris, 27-28 September 2007), S. Praud (ed.).

[Stan08]
Stanciulescu, A., Vanderdonckt, J., Mens, T., Colored Graph Transformation Rules for Model-Driven
Engineering of Multi-Target Systems, Proceedings of 3rd International Workshop on Graph and Model
Transformation GraMoT’2008 (Leipzig, May 12, 2008), ACM Press, New York, 2008, pp.37-44.

[Suhm99]
Suhm, B., Myres, B., Waibel, A., Model-based and empirical evaluation of multimodal interactive error
correction, Proceedings of the SIGCHI conference on Human Factors in Computing Systems
(Pittsburgh, Pennsylvania, United States, 1999), pp. 584 – 591.

 [Sun07]
Sun, Y., Shi, Y., Chen, F., Chung, V., An efficient unification-based multimodal language processor in
multimodal input fusion, Proceedings of 2007 Conference of Computer-Human Interaction, Special
Interest Group (CHISIG) of Australia on Computer-Human Interaction (Adelaide, Australia,
2007), pp. 215 – 218.

T
[Tour02]

Touraine, D., Bourdot, P., Bellik, Y., Bolot, L., A framework to manage multimodal fusion of events for
advanced interactions within Virtual Environments, Proc.eedings of 8th Eurographics Workshop on
Virtual Environments, Eurographics Association Publ., Barcelona, 30-31 May 2002, pp. 159-168.

U
[USIX05]
 UsiXML Consortium, UsiXML, a General Purpose XML Compliant User Interface Description Language,

UsiXML V1.6.3, 16 June 2005. Available online: http://www.usixml.org.
[USIX07]
 UsiXML Consortium, UsiXML, a General Purpose XML Compliant User Interface Description Language,

UsiXML V1.8, 14 February 2007. Available online: http://www.usixml.org.

V
[Vand01]

Vanderdonckt, J., Bouillon, L., Souchon, N., Flexible Reverse Engineering of Web Pages with Vaquita,
Proceedings of WCRE'2001, IEEE 8th Working Conference on Reverse Engineering, Stuttgart,
October, 2001, IEEE Press.

[Vand03]
Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving the Navigational Structure of a User Interface,
Proceedings of 9th IFIP TC 13 International Conference on Human-Computer Interaction
INTERACT’2003 (Zurich, 1-5 September 2003).

[Vand07]
Vanderdonckt, J., Coutaz, J., Calvary, G., Stanciulescu, A., Multimodality for Plastic User Interfaces:
Models, Methods, and Principles, Multimodal User Interfaces: from signals to interaction, D. Tzovaras
(ed.), Chap. 3, Lecture Notes in Electrical Engineering, Springer-Verlag, Berlin, 2007, pp. 79-105.

[Vand08]
Vanderdonckt, J., Calvary, G., Coutaz, J., Multimodality for Plastic User Interfaces: Models, Methods and
Principles, D. Tzovaras (Ed.) Multimodal User Interfaces. Signals and Communication Technology,
Springer-Verlag Berlin Heidelberg 2008, DOI: 10.1007/978-3-540-78345-9, pp.75-101.

[Varr02]
Varró, D., Varró, G., Pataricza, A., Designing the Automatic Transformation of Visual Languages,
Science of Computer Programming, 44, 2002, pp. 205–227.

References

 254

W
[Winc08]

Winckler, M., Vanderdonckt, J., Stanciulescu, A., Trindade, F., Cascading Dialog Modeling with
UsiXML, Proceedings of the Design, Specification and Verification of Interactive Systems DSV-
IS’2008 (Ontarion, Canada, July 16-18, 2008), T.C.N. Graham and P. Palanque (Eds.), LNCS
5136, Springer-Verlag Berlin Heidelberg 2008, pp. 121–135.

[W3C04a]
W3C consortium, EMMA: Extensible MultiModal Annotation markup language, W3C Working Draft,
14 December 2004. Available online: http://www.w3.org/TR/emma.

[W3C04b]
W3C consortium, Voice Extensible Markup Language (VoiceXML) Version 2.0, W3C
recommendation 16 March 2004. Available online: http://www.w3.org/TR/voicexml20.

[W3C04c]
W3C consortium, XHTML+Voice Profile 1.2, 16 March 2004. Available online:
http://www.voicexml.org/specs/multimodal/x+v/12.

[W3C01]
W3C consortium, XML Schema Specification, W3C Recommendation, 2 May 2001. Available online:
http://www.w3.org/XML/schema.html.

Appendix A UsiXML expanded Task Model

 255

Appendix A. UsiXML expanded
Task Model

A UsiXML Task Model is a hierarchical task structure, where each task is described by:

 An identifier and a name.

 A category, which is determined by the allocation of the task: a task performed by the
user (e.g. a cognitive task) is called a user task. A task completely executed by the
system (e.g. a computation task) has category application task. A task performed by the
user in interaction with the system (e.g. viewing results, selecting items, editing a field,
pushing a button to invoke an application function) is called an interaction task. Last,
abstraction tasks (e.g. booking a flight) are complex tasks whose performance can not
be univocally allocated and that can be decomposed into simpler tasks (thus, there
must be at least two different task categories among the tasks decomposing an
abstraction task).

 Optional attributes such as the task importance or frequency.

Tasks are linked by two types of relationships:

 Decomposition relationships. Each task can be decomposed into two or more subtasks.
Thus, with the exception of the root task, each task has a mother task from which
the temporal relationships are inherited.

 Temporal relationships. Temporal relationships between the tasks are specified with
temporal operators. The temporal operators are based upon the LOTOS operators.

Temporal relationships are of two types: unary and binary. Unary operators characterize
a single task when binary operators link together two sibling tasks.

There are three unary operators. The first one is the iteration operator (notation: T*),
which means that the task T is repeated until some other task disables it. The second
one, is the finite iteration operator (notation T(n)), used when the designer knows in
advance exactly how many time the task will be performed. The last operator permits
indicating that the performance of a task is optional (notation [T]).

If we consider two generic tasks T1 and T2, the binary temporal operators can be
described as follows:

1. Independent concurrency or parallelism (T1 ||| T2): T1 and T2 can be performed in any
order without any constraints. E.g.: filling field 1 and field 2 in a form.

2. Concurrency (or parallelism) with information exchange (T1 |[]| T2): T1 and T2 can be
performed in any order but they have to synchronize in order to exchange
information. E.g. filling fied1 and field 2 in a form when there is some coherency
check (between a phone number and a city for example).

Appendix A UsiXML expanded Task Model

 256

3. Deterministic choice (T1 [] T2): Once one task is initiated, the other cannot be
accomplished anymore, until the first task is terminated. E.g. log in as a reviewer or
as an author on a conference reviewing system.

4. Non-deterministic choice (T1 π T2): Once one task is finished the other cannot be
accomplished anymore. E.g., saving one's bank statements to one's desktop
computer or printing them in the bank's self-service lobby.

5. Order independency or sequential independence (T1 |=| T2). This operator is equivalent
to (T1>>T2) OR (T2 >>T1) E.g., in a hospital, the human task of taking blood
samples from patients can be done before or after filling the request form for lab
analysis, but both tasks have to be completed before the request is send to the lab.

6. Disabling (T1 [> T2): T1 is definitively disabled when T2 (or the first subtask or T2)
has been performed. E.g., sending a form disables all tasks that could be achieved
in this form.

7. Suspend-resume (T1 |> T2): T1 is interrupted when T2 (or its first subtask) is
performed. Once T2 terminated, T1 is reactivated from the state reached before
the interruption. E.g., an alarm message indicating that the battery of the device is
low interrupts any activity on that device, and the activity is reactivated only when
the alarm dialog box is closed.

8. Enabling (T1 >> T2): T2 is enabled when T1 is terminated. For instance, the
authentication of the user allows him/her to access to the restricted area of a web
site.

9. Enabling with information passing (T1 []>> T2): T1 enables T2 and provides it some
information. E.g., T1 allows the user to specify a query and T2 displays the search
results related to the information requested in T1.

Appendix B Transformation rule catalog

 257

Appendix B. Transformation rule
catalog

I. Transformation rules that support the design options
1. Transformation rules for sub-task triggering: not supported
2. Transformation rules for sub-task presentation:

2.1. Separated

 NAC LHS RHS

Rule 1. Generate abstract containers for each sub-task of the same task

Concretization for MM UI:

 NAC LHS RHS

Rule 2. Generation of a window and a vocalGroup for each top-level AC

2.2. Combined

 NAC LHS RHS

Rule 3. Generate an abstract container for the father task

Appendix B Transformation rule catalog

 258

 NAC LHS RHS

Rule 4. Generate an abstract container for each sub-task of the father task

• One at once
 Extended task list:

Concretization for MM UI:
NAC LHS RHS

Rule 5. Reification of the top most AC into a window containing a borderBox (with left, center and

right boxes) and a vocalGroup containing a vocalMenu

 NAC LHS RHS

Rule 6. Generation of a box, an outputText (task item) a vocalGroup and a vocalMenuItem for each AC

embedded into the top most AC

Appendix B Transformation rule catalog

 259

 Reduced task list:
Concretization for MM UI:

 NAC LHS RHS

Rule 7. Reification of the top most AC into a window containing a flowBox with a comboBox and a

vocalGroup containing a vocalMenu and a vocalForm with vocalPrompt and vocalInput

NAC LHS RHS

Rule 8. Generation of a box, a comboBox item, a vocalGroup and a vocalMenuItem for each AC

embedded into the top most AC

 Tabbed list:

Concretization for MMUIs:
 NAC LHS RHS

Rule 9. Reification of the top most AC into a window containing a tabbedDialogBox and a vocalGroup

containing a vocalMenu

Appendix B Transformation rule catalog

 260

 NAC LHS RHS

Rule 10. Generation of a tabbedItem, a vocalGroup and a vocalMenuItem for each AC embedded into

the top most AC

 Single expansion list

Concretization for MM UI:
NAC LHS RHS

Rule 11. Reification of the top most AC into a window containing a floatWindow and a vocalGroup

containing a vocalMenu

NAC LHS RHS

Rule 12. Generation of a floatItem, a vocalGroup and a vocalMenuItem for each AC embedded into the

top most AC

Appendix B Transformation rule catalog

 261

• Many at once
 Multiple expansion list:

Concretization for GUI:
 NAC LHS RHS

Rule 13. Reification of the top most AC into a window containing a floatWindow

 NAC LHS RHS

Rule 14. Generation of a floatItem for each AC embedded into the top most AC

• All at once

 Separated list:
Concretization for MM UI:

 NAC LHS RHS

Rule 15. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocalInput

Appendix B Transformation rule catalog

 262

 NAC LHS RHS

Rule 16. Generation of a box, a space, a vocalGroup and two vocalPrompts for each AC embedded into

the top most AC

 Grouped list:

Concretization for MM UI:
 NAC LHS RHS

Rule 17. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocalInput

NAC LHS RHS

Rule 18. Generation of a groupBox, a vocalGroup and two vocalPrompts for each AC embedded into

the top most AC

Appendix B Transformation rule catalog

 263

 Bulleted list:
Concretization for MMUIs:

 NAC LHS RHS

Rule 19. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocalInput

NAC LHS RHS

Rule 20. Generation of a box that contains an outputText (bullet), a vocalGroup and two vocalPrompts

for each AC embedded into the top most AC

 Ordered list:

Concretization for MM UI:
 NAC LHS RHS

Rule 21. Reification of the top most AC into a window containing a box and a vocalGroup containing a

vocalForm with a vocalInput

Appendix B Transformation rule catalog

 264

 NAC LHS RHS

Rule 22. Generation of a box that contains an outputText (orderedItem), a vocalGroup and two

vocalPrompts for each AC embedded into the to most AC

3. Transformation rules for sub-task navigation:

 Sequential
Concretization for MM UI:

NAC LHS RHS

Rule 23. Generation of a graphicalTransition relationships that endow the (PREV, NEXT) buttons with

activation and deactivation features over adjacent and current GCs, respectively and

vocalNavigation specification to ensure the navigation between sequential vocalForms

 Asynchronous
Concretization for MM UI:

NAC LHS RHS

Rule 24. Generation of graphicalTransition relationships for buttons placed in the first GC that ensure

the forward navigation and vocalNavigation placed in the first vocalForm that ensure the

navigation towards the second vocalForm

Appendix B Transformation rule catalog

 265

NAC LHS RHS

Rule 25. Generation of graphicalTransition relationships for buttons placed in the middle GCs and

vocalNavigation specification in order to ensure the forward and backward navigation and

NAC LHS RHS

Rule 26. Generation of graphicalTranstion relationships for buttons placed in the last GC and

vocalNavigation specification in order to ensure the backward navigation

4. Transformation rules for navigation type:

4.1. Containment:
4.1.1. Local:

 NAC LHS RHS

Rule 27. Generation of one local placed AIC that ensures the navigation between the first AC and the

second one in any type of sub-task presentation (separated or combined)

Appendix B Transformation rule catalog

 266

NAC LHS RHS

Rule 28. Generation of two local placed AICs that ensure the navigation for middle placed ACs in any

type of sub-task presentation (separated or combined)

NAC LHS RHS

Rule 29. Generation of one local placed AIC that ensures the navigation between the last AC and the

previous one in any type of sub-task presentation (separated or combined)

 NAC LHS RHS

Rule 30. Creation of navigation facets for local placed AICs

Concretization for MM UI:
NAC LHS RHS

Rule 31. Generation of “NEXT” button that ensures the navigation between the first GC and the

second GC and vocalNavigation element that ensures the navigation between the first VC and the

second one in any type of sub-task presentation (separated or combined)

Appendix B Transformation rule catalog

 267

NAC LHS RHS

Rule 32. Generation of “PREV” and “NEXT” buttons that enure the navigation for middle placed GCs

and vocalNavigation elements in any type of sub-task presentation (seprated or combined)

NAC LHS RHS

Rule 33. Generation of “PREV” button that ensures the navigation between the last GC and the

previous one and vocalNavigation element that ensures the navigation between the last VC and the

previous one in any type of sub-task presentation (separated or combined)

4.1.2. Global:

NAC LHS RHS

Rule 34. Generation of two global placed AICs that ensure the navigation between the sub-tasks

NAC LHS RHS

Rule 35. Creation of navigation facets for global placed AIC

Appendix B Transformation rule catalog

 268

Concretization for MM UI:
 NAC LHS RHS

Rule 36. Generation of “PREV” and “NEXT” buttons and vocalNavigation elements that ensure the

global navigation

4.2. Cardinality

4.2.1. Simple cardinality:
 NAC LHS RHS

Rule 37. Generation of two AICs that will be concretized in two logically connected buttons (PREV,

NEXT) ensuring the navigation between the sub-tasks

4.2.2. Multiple cardinality:

NAC LHS RHS

Rule 38. Generation of two local placed AICs that will be concretized in two logically connected buttons

(PREV, NEXT) ensuring the navigation between sub-tasks

Appendix B Transformation rule catalog

 269

 NAC LHS RHS

Rule 39. Generation of two global placed AICs that will be concretized in two logically connected

buttons (PREV, NEXT) ensuring the navigation between the sub-tasks

5. Transformation rules for control type:

5.1. Containment:
5.1.1. Local:

NAC LHS RHS

Rule 40. Generation of two local placed AICs that ensure the control of data in any type of sub-task

presentation (separated or combined)

NAC LHS RHS

Rule 41. Generate control facet for local placed AICs

Concretization for MM UI:

 NAC LHS RHS

Rule 42. Generation of “OK” and “CANCEL” buttons and submit element that ensure the local control

of data

Appendix B Transformation rule catalog

 270

5.1.2. Global:
 NAC LHS RHS

Rule 43. Generation of two global AICs that ensures the control of data

NAC LHS RHS

Rule 44. Creation of control facet for global placed AIC

Concretization for MM UI:

NAC LHS RHS

Rule 45. Generation of “OK” and “CANCEL” buttons and submit element that ensure the global

control of data

5.2. Cardinality

5.2.1. Simple cardinality:
NAC LHS RHS

Rule 46. Generation of two AICs that will be concretized in two logically connected buttons (OK,

CANCEL) ensuring the contro of data for each sub-task

Appendix B Transformation rule catalog

 271

5.2.2. Multiple cardinality:
NAC LHS RHS

Rule 47. Generation of two AICs that will be concretized in two logically connected buttons (OK,

CANCEL) ensuring the control of data for each sub-task

NAC LHS RHS

Rule 48. Generation of two global AICs that will be concretized in two logically connected buttons (OK,

CANCEL) ensuring the contro of data for the root task

6. Transformation rules for navigation and control type:

6.1. Separated:
 NAC LHS RHS

Rule 49. Generate separated navigation and control facets for AICs

Appendix B Transformation rule catalog

 272

6.2. Combined:
NAC LHS RHS

Rule 50. Generate combined navigation and control facets for AICs

7. Transformation rules for sub-task guidance:

7.1. Guided
Concretization for MM UI:

 NAC LHS RHS

Rule 51. Generate radioButtons and vocal items of a grammar that will guide the user with the possible

options

7.2. Unguided
Concretization for MM UI:

 NAC LHS RHS

Rule 52. Generates inputText and vocalInput elements that do not guide guide the user with the

possible options

Appendix B Transformation rule catalog

 273

8. Transformation rules for support for default value and unit: not
supported

9. Transformation rules for answer cardinality:
9.1. Simple
Concretization for MM UI:

 NAC LHS RHS

Rule 53. Generation of comboBox items and grammar items that enable single selection among

multiple options

9.2. Multiple
Concretization for MM UI:

 NAC LHS RHS

Rule 54. Generation of checkBox items and grammar items that enable single selection among multiple

options

10.Transformation rules for confirmation answer:

10.1. With confirmation:
Concretization for MM UI:

NAC LHS RHS

Rule 55. Generation of inputText and vocalInput that require confirmation

Appendix B Transformation rule catalog

 274

10.2. Without confirmation
Concretization for MM UI:

 NAC LHS RHS

Rule 56. Generation of inputText and vocalInput that do not require confirmation

11. Transformation rules for answer order:

11.1. Order dependent
Concretization for MM UI:

 NAC LHS RHS

Rule 57. Generation of grammar items that require sequential uttering

11.2. Order independent
Concretization for MM UI:

 NAC LHS RHS

Rule 58. Generation of grammar items that require asynchronous uttering

Appendix B Transformation rule catalog

 275

12.Transformation rules for input
12.1. Vocal

NAC LHS RHS

Rule 59. Generation of vocalInput components

12.2. Graphical

NAC LHS RHS

Rule 60. Generation of inputText components

12.3. Multimodal

NAC LHS RHS

Rule 61. Generation of vocalInput and inputText components

Appendix B Transformation rule catalog

 276

13.Transformation rules for simple output:
13.1. Vocal:

NAC LHS RHS

Rule 62. Generation of vocalPrompt components

13.2. Graphical:

 NAC LHS RHS

Rule 63. Generation of graphical prompt (outputText) components

13.3. Multimodal

 NAC LHS RHS

Rule 64. Generation of multimodal prompt (vocalPrompt and outputText) components

Appendix B Transformation rule catalog

 277

14.Transformation rules for prompting:
14.1. Vocal

 NAC LHS RHS

Rule 65. Generation of vocalPrompt components

14.2. Graphic

NAC LHS RHS

Rule 66. Generation of graphical prompt (outputText) components

14.3. Multimodal

 NAC LHS RHS

Rule 67. Generation of multimodal prompt (vocalPrompt and outputText) components

Appendix B Transformation rule catalog

 278

15.Transformation rules for immediate feedback
15.1. Vocal

 NAC LHS RHS

Rule 68. Generation of vocalFeedback components

15.2. Graphical

 NAC LHS RHS

Rule 69. Generation of inputText components that will ensure the graphical feedback

15.3. Multimodal

 NAC LHS RHS

Rule 70. Generation of vocalFeedback and inputText components that will ensure the multimodal

feedback

Appendix B Transformation rule catalog

 279

16.Transformation rules for guidance for input
16.1. Textual

 NAC LHS RHS

Rule 71. Generation of outputText components that ensure a textual guidance for input

16.2. Iconic

 NAC LHS RHS

Rule 72. Generation of imageComponents that ensure an iconic guidance for input

16.3. Acoustic

 NAC LHS RHS

Rule 73. Generation of vocalPrompts that play an audio file in order to ensure an acoustic guidance for

input

Appendix B Transformation rule catalog

 280

16.4. Speech
 NAC LHS RHS

Rule 74. Generation of vocalPrompts synthesizing speech to ensure speech guidance for input

16.5. Multimodal

NAC LHS RHS

Rule 75. Generation of vocalPrompts synthesizing speech and of imageComponents to ensure

multimodal (speech and iconic) guidance for input

17.Transformation rules for guidance for immediate feedback

17.1. Textual
 NAC LHS RHS

Rule 76. Generation of outputText components that ensure the textual guidance for feedback

Appendix B Transformation rule catalog

 281

17.2. Iconic
NAC LHS RHS

Rule 77. Generation of imageComponents that ensure the iconic guidance for feedback

17.3. Acoustic

 NAC LHS RHS

Rule 78. Generation of vocalPrompt components that play an audio file in order to ensure acoustic

guidance for feedback

17.4. Speech

 NAC LHS RHS

Rule 79. Generation of vocalFeedback components synthesizing speech that ensure speech guidance

for feedback

Appendix B Transformation rule catalog

 282

17.5. Multimodal
 NAC LHS RHS

Rule 80. Generation of vocalFeedback and vocalPrompt that ensure multimodal (acoustic and speech)

guidance for feedback

II. Additional transformation rules

1. Transformation rules for the identification of AUI structure
 NAC LHS RHS

Rule 81. Create an AIC for leaf tasks

2. Transformation rules for selection of AICs

 NAC LHS RHS

Rule 82. Create an output facet that conveys an element

Appendix B Transformation rule catalog

 283

 NAC LHS RHS

Rule 83. Create an input facet for AIC executed in tasks of type create

 NAC LHS RHS

Rule 84. Create an input facet of type select element when an enumerated value attribute is

encountered

 NAC LHS RHS

Rule 85. Create selection values for facets of type select for each enumerated value of an attribute

 NAC LHS RHS

Rule 86. Create an output facet that conveys an element

Appendix B Transformation rule catalog

 284

3. Transformation rules for spatio-temporal arrangement of AIOs
 NAC LHS RHS

Rule 87. Generation of Abstract Adjacency relationship between <AIC, AIC> couples

 NAC LHS RHS

Rule 88. Generation of Abstract Adjacency relationship between <AC, AIC> couples

 NAC LHS RHS

Rule 89. Generation of Abstract Adjacency relationship between <AIC, AC> couples

 NAC LHS RHS

Rule 90. Generation of Abstract Adjacency relationship between <AC, AC> couples

Appendix B Transformation rule catalog

 285

4. Transformation rules for the definition of abstract dialog control
 NAC LHS RHS

Rule 91. Generation of Abstract Dialog Control relationship between <AIC, AIC> couples

NAC LHS RHS

Rule 92. Generation of Abstract Dialog Control between <AC, AIC> couples

 NAC LHS RHS

Rule 93. Generation of Abstract Dialog Control between <AIC, AC> couples

 NAC LHS RHS

Rule 94. Generation of Abstract Dialog Control between <AC, AC> couples

Appendix B Transformation rule catalog

 286

5. Transformation rules for the derivation of the AUI to domain
mappings

 NAC LHS RHS

Rule 95. Generation of updates relationships for AICs

 NAC LHS RHS

Rule 96. Generation of trigger relationships for AICs

6. Transformation rules for the selection of CICs
 NAC LHS RHS

Rule 97. Generation of containers that will embed multimodal comboBox items

 NAC LHS RHS

Rule 98. Generation of comboBox items and grammar items for each selection value of a facet of type

select

Appendix B Transformation rule catalog

 287

NAC LHS RHS

Rule 99. Generation of containers that will embed multimodal radioButtons

 NAC LHS RHS

Rule 100. Generation of radioButtons and grammar items for each selection value of a facet of type

select

 NAC LHS RHS

Rule 101. Generation of containers that will embed multimodal checkBoxes

 NAC LHS RHS

Rule 102. Generation of checkBoxes and grammar items for each selection value of a facet of type select

Appendix B Transformation rule catalog

 288

NAC LHS RHS

Rule 103. Generation of containers that will embed multimodal listBox items

NAC LHS RHS

Rule 104. Generation of listBox items and grammar items for each selection value of a facet of type

select

NAC LHS RHS

Rule 105. Generation of a multimodal inputText

 NAC LHS RHS

Rule 106. Generation of a multimodal outputText

Appendix B Transformation rule catalog

 289

 NAC LHS RHS

Rule 107. Generation of outputText and vocalMenu with feedback

NAC LHS RHS

Rule 108. Generation of vocalMenuItems for each selection value of an input facet of type select

NAC LHS RHS

Rule 109. Generation of graphical containers embedding imageComponent elments

NAC LHS RHS

Rule 110. Generation of imageZone elements

NAC LHS RHS

Rule 111. Generation of graphical and vocal containers to support the vocal instruction

Appendix B Transformation rule catalog

 290

NAC LHS RHS

Rule 112. Generation of outputText and grammar item elements to support the vocal instruction

NAC LHS RHS

Rule 113. Generation of graphical and vocal containers to support the vocal input for browsing

directions

NAC LHS RHS

Rule 114. Generation of imageZone and grammar items to support the vocal specification of the

browsing direction

NAC LHS RHS

Rule 115. Generation of an imageComponent that enables to display the map

Appendix B Transformation rule catalog

 291

7. Transformation rules for the synchronization of CICs

 NAC LHS RHS

Rule 116. Synchronization between a vocalInput and a comboBox

 NAC LHS RHS

Rule 117. Synchronization between a vocalInput and a groupBox that embeds a set of check boxes

 NAC LHS RHS

Rule 118. Synchronization between a vocalInput and a groupBox that embeds a set of radioButtons

Appendix B Transformation rule catalog

 292

 NAC LHS RHS

Rule 119. Synchronization between a vocalInput and a listBox

 NAC LHS RHS

Rule 120. Synchronization between a vocalInput and an inputText

8. Transformation rules for the arrangement of CICs
 NAC LHS RHS

Rule 121. Generation of Concrete Adjacency relationship for <CC, CC>couples

Appendix B Transformation rule catalog

 293

 NAC LHS RHS

Rule 122. Generation of Concrete Adjacency relationship for <CC, CIC>couples

 NAC LHS RHS

Rule 123. Generation of Concrete Adjacency relationship for <CIC, CC>couples

 NAC LHS RHS

Rule 124. Generation of Concrete Adjacency relationship for <CIC, CIC>couples

9. Transformation rules for Concrete Dialog Control definition
 NAC LHS RHS

Rule 125. Rule Generation of Concrete Dialog Control Relationship for <CC, CC>couples

Appendix B Transformation rule catalog

 294

 NAC LHS RHS

Rule 126. Generation Concrete Dialog Control Relationship for <CC, CIC>couples

 NAC LHS RHS

Rule 127. Generation Concrete Dialog Control Relationship for <CIC, CC>couples

 NAC LHS RHS

Rule 128. Generation of Concrete Dialog Control Relationship for <CIC, CIC>couples

10. Transformation rules for derivation of CUI to domain relationship

NAC LHS RHS

Rule 129. Transposition of update relationship

NAC LHS RHS

Rule 130. Transposition of trigger relationship

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 295

Appendix C. UsiXML concrete
syntax for the specification of
different combinations of input
and output modalities

LABEL: due to the fact that a label widget does not suppose any input from the user,
only the output interactions are considered (i.e., graphical, vocal and multimodal with
redundancy in output):
 Graphical interaction:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Welcome to the UCL site".../>
</box>

 Vocal interaction:

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Welcome to the UCL site".../>
</vocalForm>

 MM with redundancy in output:

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Welcome to the UCL site".../>
</vocalForm>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Welcome to the UCL site".../>
 <imageComponent id="IC1" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

LABEL + COMBO BOX:
 Graphical interaction:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
</box>

 MM with G assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 296

 </comboBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
 <source sourceId="F1"/>
 <target targetId="CB1"/>
</synchronization>

 Vocal interaction:

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

 MM with V assignement in input and G assignement in output:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="false" currentValue="§x"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="CB1"/>
</synchronization>

 MM with V assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="false" currentValue="§x"...>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 297

 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </part>
 </grammar>
 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="CB1"/>
</synchronization>

 MM with equivalence in input and G assignement in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="CB1"/>
</synchronization>
 MM with equivalence in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§x"...>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 298

 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Select the credit card type. Choose be-
tween VISA, MASTERCARD, AMERICAN EXPRESS".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </part>
 </grammar>
 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="CB1"/>
</synchronization>

GROUP OF RADIO BUTTONS:
 Graphical interaction:

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Gender" currentValue="§x"...>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
 </groupBox>
</box>

 MM with G assignement in input and redundancy in output:

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Gender" currentValue="§x"...>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
 </groupBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
 <source sourceId="F1"/>
 <target targetId="GB1"/>
</synchronization>

 Vocal interaction:

<vocalForm id="VF1" name="Form 1"...>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 299

 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="male".../>
 <item id="IT2" name="Item 2" defaultContent="female".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

 MM with V assignement in input and G assignement in output:

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Gender" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="false" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="false" ...>
 </groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="male".../>
 <item id="IT2" name="Item 2" defaultContent="female".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

 MM with V assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Gender" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="false" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="false" ...>
 </groupBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="male".../>
 <item id="IT2" name="Item 2" defaultContent="female".../>
 </part>
 </grammar>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 300

 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

 MM with equivalence in input and G assignement in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <groupBox id="GB1" name="Gender" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
 </groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="male".../>
 <item id="IT2" name="Item 2" defaultContent="female".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

 MM with equivalence in input and redundancy in output

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Gender" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male" default-
State="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female" de-
faultState="false" isEnabled="true" ...>
 </groupBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your gender. Choose be-
tween male and female".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="male".../>
 <item id="IT2" name="Item 2" defaultContent="female".../>
 </part>
 </grammar>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 301

 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

GROUP OF CHECK BOXES:
 Graphical interaction:

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Hobbies" currentValue="§x"...>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
 </groupBox>
</box>

 MM with G assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Hobbies" currentValue="§x"...>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
 </groupBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
 <source sourceId="F1"/>
 <target targetId="GB1"/>
</synchronization>

 Vocal interaction:

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="asynchronous"...>
 <item id="IT1" name="Item 1" defaultContent="sports".../>
 <item id="IT2" name="Item 2" defaultContent="travels".../>
 <item id="IT1" name="Item 3" defaultContent="music".../>
 <item id="IT2" name="Item 4" defaultContent="movies".../>
 </part>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 302

 </grammar>
 </vocalInput>
</vocalForm>

 MM with V assignement in input and G assignement in output:

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Hobbies" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="false" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="false" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="false" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="false" ...>
 </groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="asynchronous"...>
 <item id="IT1" name="Item 1" defaultContent="sports".../>
 <item id="IT2" name="Item 2" defaultContent="travels".../>
 <item id="IT1" name="Item 3" defaultContent="music".../>
 <item id="IT2" name="Item 4" defaultContent="movies".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

 MM with V assignement in input and redundancy in output:

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Hobbies" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="false" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="false" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="false" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="false" ...>
 </groupBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="asynchronous"...>
 <item id="IT1" name="Item 1" defaultContent="sports".../>
 <item id="IT2" name="Item 2" defaultContent="travels".../>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 303

 <item id="IT1" name="Item 3" defaultContent="music".../>
 <item id="IT2" name="Item 4" defaultContent="movies".../>
 </part>
 </grammar>
 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

 MM with equivalence in input and G assignement in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Card type".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <groupBox id="GB1" name="Hobbies" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
 </groupBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose
among the following options: sports, travels, music, movies".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="asynchronous"...>
 <item id="IT1" name="Item 1" defaultContent="sports".../>
 <item id="IT2" name="Item 2" defaultContent="travels".../>
 <item id="IT1" name="Item 3" defaultContent="music".../>
 <item id="IT2" name="Item 4" defaultContent="movies".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

 MM with equivalence in input and redundancy in output/

<box id="b1" name="Box 1"...>
 <groupBox id="GB1" name="Hobbies" currentValue="§x"...>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports" default-
State="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel" default-
State="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music" default-
State="true" isEnabled="true" ...>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 304

 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies" default-
State="true" isEnabled="true" ...>
 </groupBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please select your hobbies. Choose among
the following options: sports, travels, music, movies".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y">
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="asynchronous"...>
 <item id="IT1" name="Item 1" defaultContent="sports".../>
 <item id="IT2" name="Item 2" defaultContent="travels".../>
 <item id="IT1" name="Item 3" defaultContent="music".../>
 <item id="IT2" name="Item 4" defaultContent="movies".../>
 </part>
 </grammar>
 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

LABEL + LIST BOX:
 Graphical interaction:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
</box>

 MM with G assignement in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC3" name="mouse_icon" defaultContent="mouse.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalGroup id="VG1" name="Group 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §x".../>
</vocalGroup>

<synchronization>
 <source sourceId="F1"/>
 <target targetId="LB1"/>
</synchronization>

 Vocal interaction:

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 305

 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

 MM with V assignement in input and G assignement in output:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="LB1"/>
</synchronization>

 MM with V assignement in input and redundancy in output:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </part>
 </grammar>
 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>

Appendix C: UsiXML concrete syntax for the specification of different combina-
tions of input and output modalities

 306

 <source sourceId="VI1"/>
 <target targetId="LB1"/>
</synchronization>

 MM with equivalence in input and G assignement in output:

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </part>
 </grammar>
 </vocalInput>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="LB1"/>
</synchronization>

 MM with equivalence in input and redundancy in output

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC3" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC4" name="mouse_icon" defaultContent="mouse.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§x" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
 <imageComponent id="IC4" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please choose your favourite singer:
Chris Hay, Lee Hardy, ...".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§y"/>
 <grammar id="GR1" name="Grammar 1"...>
 <part id="P1" name="Part 1" structure="choice"...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </part>
 </grammar>
 </vocalInput>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your choice is §y".../>
</vocalForm>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="LB1"/>
</synchronization>

Appendix D: QOC representation of design space options in TEAM tool

 307

Appendix D. QOC representa-
tion of design space options in
TEAM tool

Figure D- 1 QOC representation of the Sub-task triggering design option

Figure D- 2 QOC representation of the Sub-task presentation design option

Appendix D: QOC representation of design space options in TEAM tool

 308

Figure D- 3 QOC representation of the Sub-task navigation design option

Figure D- 4 QOC representation of the Navigation type design option

Appendix D: QOC representation of design space options in TEAM tool

 309

Figure D- 5 QOC representation of the Control type design option

Figure D- 6 QOC representation of the Navigation and control type design option

Appendix D: QOC representation of design space options in TEAM tool

 310

Figure D- 7 QOC representation of the Support for default value and unit design option

Figure D- 8 QOC representation of the Answer cardinality design option

Figure D- 9 QOC representation of the Answer order design option

Appendix D: QOC representation of design space options in TEAM tool

 311

Figure D- 10 QOC representation of the Input design option

Figure D- 11 QOC representation of the Simple output design option

Figure D- 12 QOC representation of the Prompting design option

Appendix D: QOC representation of design space options in TEAM tool

 312

Figure D- 13 QOC representation of the Immediate feedback design option

Figure D- 14 QOC representation of the Guidance design option

Appendix E: Acronyms

 313

Appendix E. Acronyms

Acronym Meaning
AC Abstract Container

AGG Attributed Graph Grammar
AIC Abstract Individual Component
AIO Abstract Interaction Object
AUI Abstract User Interface

CARE Complementarity, Assignment, Redundancy, Equivalence
CCXML Call Control Markup Language

CIDL Component Interface Description Language
CIO Concrete Interaction Object

COCOMO COnstructive Cost Model
CUI Concrete User Interface
Db Decibel

DISL Dialog and Interface Specification Language
DTMF Dual Tone Multi-Frequency
EMMA Extensible MultiModal Addnotation Markup Language

FUI Final User Interface
GC Graphical Container
GIC Graphical Individual Component
GUI Graphical user Interface
HCI Human-Computer Interaction

HTML Hyper Text Markup Language
ICARE Interaction CARE

IDE Integrated Development Environment
IS Information System

LHS Left Hand Side
MB-IDE Model Based Integrated Development Environment

MDA Model-Driven Architecture
MDD Model-Driven Development

M Mean
MM Multimodal

MONA Mobile multimOdal Next generation Applications
MOST Multimodal Output Specification Platform
NAC Negative Application Condition
PC Personal Computer

PDA Personal Digital Assistant
PDCL Pipeline Description and Configuration Language
QOC Question, Option, Criteria
OMG Object Management Group
RAD Rapid Application Development
RHS Right Hand Side
RUP Rational Unified Process
SSML Speech Synthesis Markup Language

UI User Interface
USIXML User Interface eXtensible Markup Language

UIDL User Interface Description Language
TYCOON Types of COOperatioN

VC Vocal Container
VIC Vocal Individual Component
VUI Vocal User Interface

Appendix E: Acronyms

 314

XIML eXtensible Interface Markup Language
XISL eXtensible Interaction Language

VoiceXML Voice eXtensible Markup Language
WIMP Windows Icons Menu Pointers
WML Wireless Markup Language

