
Colored Graph Transformation Rules for
Model-Driven Engineering of Multi-Target Systems
Adrian Stanciulescu

Université catholique de Louvain
Louvain School of Management (LSM)

Belgian Laboratory of Computer-Human
Interaction (BCHI)

1, Place des Doyens,
1348 Louvain-la-Neuve (Belgium)

+32 10 47 83 49
adrian.stanciulescu@uclouvain.be

Jean Vanderdonckt
Université catholique de Louvain

Louvain School of Management (LSM)
Belgian Laboratory of Computer-Human

Interaction (BCHI)
1, Place des Doyens,

1348 Louvain-la-Neuve (Belgium)
+32 10 47 85 25

jean.vanderdonckt@uclouvain.be

Tom Mens
Université de Mons-Hainaut
Software Engineering Lab.

6, Av. du Champ de Mars
7000 Mons (Belgium)

+32 65 37 34 53
tom.mens@umh.ac.be

ABSTRACT
Multi-target systems are interactive systems that are aimed at cov-
ering multiple contexts of use: by enabling users to carry out their
tasks thanks to different input and output interaction modalities,
these systems should support multiple computing platforms, mul-
tiple users, and multiple environments. This paper introduces a
model-driven engineering method for developing user interfaces
for such multi-target systems. It relies on a transformational ap-
proach that applies graph transformation rules on a graph repre-
sentation of the models in order to support model-to-model trans-
formation. In order to factor out parts that are common in trans-
formation rules used for similar contexts of use, the notion of col-
ored graph transformation is introduced. Each model element is
assigned to a specific color depending on the desired target, here
the interaction modality involved. Colored transformation rules
based on these colored model elements can be therefore specified
and applied in order to produce various user interfaces with dif-
ferent modalities of interaction, depending on the context of use.
For this purpose, operations over colored transformation rules are
defined: a monocolored transformation rule produces a monomo-
dal user interface for a single context of use (single-target system)
while multicolored rules embed capabilities for producing a mul-
timodal user interface for multiple contexts of use (multi-target
system). The benefits of using multicolored transformation rules
over monocolored ones are obtained in terms of number of rules
to specify and to apply, in terms of performance of applying these
rules and degree of scalability when a new rule corresponding to a
new interaction modality should be introduced.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User interfaces. E.1 [Data Structures]: Graphs and networks,
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User interfaces – Graphical user interfaces, Voice I/O. I.3.6
[Computer Graphics]: Methodology and Techniques – Interac-
tion techniques.

General Terms
Design, Human Factors, Languages.

Keywords
Colored transformation rules, Graph transformation rules, Model-
driven engineering, Monocolored transformation rule, Multicol-
ored transformation rule, Multi-target systems, Multimodal user
interfaces, User Interface Description Language.

1. INTRODUCTION
Nowadays, an ever increasing proportion of the information sys-
tem users is carrying out interactive tasks with a wide variety of
computational devices ranging from already traditional notebooks
and desktop PCs to advanced interaction devices (e.g., mobile
phones, PDAs, pocket PCs, handheld PCs, tablet PCs). This in-
creasing proliferation of fixed and mobile devices raises new chal-
lenges with respect to the development of multiple versions of the
same application that will be run on multiple devices and to their
ability to be adapted according to the constraints imposed by the
context of use. For example, when the user switches from a desk-
top platform to a mobile one, the user interface (UI) may need to
be adapted in order to rely on a different set of I/O interaction
modalities than those previously available on the initial platform.

To address these new requirements, the notion of multi-target sys-
tems has been introduced [2] that considers the diversity of con-
texts of use by adaptation. The context of use [16] includes a
model of the user who is intended to use the system, the social and
physical environments where the interaction is supposed to take
place, and the hardware-software platform to be used. From the
granularity point of view, two types of context of use are distin-
guished: (1) predictive contexts of use that are foreseen at design
time when developing the UI and (2) effective contexts of use that
occur at run time.

In our approach the target systems are the results of a model-
driven engineering process which considers the task and domain
models since the initial design stage in order to encourage the
user-centered design of the final UI [13]. This approach benefits
from a couple of advantages in the context of multi-target sys-
tems: (1) reusability thanks to the model-based tools that can pro-
vide automatic portability across the different devices; (2) a guar-
anteed minimal consistency between the UIs generated for differ-
ent target platforms.

In order to respond to the requirements of multi-target systems
that adapt their UI developed for a source context into a new one
that is tailored for a target context, it is desirable to apply a series
of transformations in order to adapt it to the final context of use.
Therefore, a transformational approach was adopted that applies a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
GraMot’08, May 12, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-033-3/08/05…$5.00.

37

set of transformations encoded as graph transformation rules on
the involved models expressed in their graph equivalent. These
rules are composed of three graphs: (1) NAC (Negative Applica-
tion Condition): is a structure in the host graph that has to be ab-
sent before the application of a rule; (2) LHS (Left Hand Side): is
a graph pattern that, if it matches on the host graph, will be re-
placed by another graph; (3) RHS (Right Hand Side): is the graph
that will replace the LHS in the host graph.

In order to support this approach we introduce the concept of col-
ored graph transformation rules. This concept offers several ad-
vantages, as we observed that:

 In multi-target systems, many transformation rules share some
common parts either in the NAC, LHS or RHS and only
slightly differ from one rule to another one. Consequently,
many rules repeat common parts without any connection be-
tween them and without factoring them out. Thus, many rules
duplicate some significant portions of their NAC, LHS, and
RHS.

 Due to this repetition, the transformation system that consists of
the whole set of transformation rules easily becomes huge
and no longer scalable. In addition, a static analysis of common
portions of rules becomes a challenging task.

 The designer responsible for writing the rules to be fired by the
transformation engine may only have limited means, formal or
informal, to control the consistency of those rules that are simi-
lar, thus increasing the risk for human error and redun-
dancy.

 The scalability of a transformation set for multi-target systems
largely depends on its structure: if transformation rules are
properly organized, then adding, removing or modifying a rule
remains acceptable. But when this structure is poor, it is almost
impossible to add new rules for another target without affecting
significantly the rest of the rules in the same set. For instance, if
we have a large set of rules for graphical UIs, adding rules that
support a tactile interaction poses the risk of perturbating the
stability of the previously existing set of rules since tactile in-
teraction is first graphical.

Consequently, this paper focuses on multi-target systems that are
able to cover at least two predictive contexts of use by enabling
users to interact graphically and/or vocally with the UI.

2. RELATED WORK
In order to cope with color variability, feature-based model tem-
plates [3] could consider some well-formedness criteria to be sat-
isfied by the allowed combinations of different colored regions
[5]. However, we applied feature-based models for adaptive UIs
[15]. Model-to-model transformational approaches were the sub-
ject of several recent research works that tried to identify a mature
foundation for specifying transformations between models
[1,10,17]. The high number of works on model-to-model trans-
formation is mainly due to the OMG proposal on Model Driven
Architecture (MDA) [11]. Several techniques have been surveyed
in the literature [4,12], while the tools supporting them were ana-
lyzed in some works like [9,14]. Hereafter we present the short-
comings of a couple of existing techniques identified in [8]:
 Imperative languages: text-processing languages performing

small text transformations (e.g., Perl, Awk) cannot be consid-
ered to specify complex transformation systems as they force
the programmer to focus on very low-level syntactic details

 Relational approaches: rely on declaration of mappings be-

tween source and target element type along with the conditions
in which a mapping must be initiated. Relational approaches are
generally implemented using a logic-based programming lan-
guage and require a clear separation of the source and target
models

 XSL Transformations: is designed to specify transformations
between different syntactical types of XML specifications.
There are two main shortcomings of XSLT applied to achieve
model-to-model transformations: (1) high complexity and lack
of concision when managing complex sets of transformations
rules and (2) lack of abstraction; progressively constructing the
target XML specification entails an inclusion, in transformation
rules, of syntactic details relative to target specification

 Common Warehouse Metamodel: is an OMG specification that
provides a set of concepts to describe model transformation
grouped in transformation tasks, which are further grouped in
transformation activities. A control flow of transformation can
be defined between transformation tasks at this level. Even if
transformations allow a fine-grained mapping between source
and target elements, this specification does not provide us with
a predefined language to specify the way elements are trans-
formed one to another.

3. TRANSFORMATIONAL APPROACH
After identifying the shortcomings of the existing techniques we
propose a transformational approach [16] that progressively
moves from the initial models (i.e., the Task and Domain Models)
to an interaction modality independent model (i.e., Abstract
Model) and further to a platform independent model (i.e., Con-
crete Model) that enables the specification of graphical, vocal and
multimodal UIs before reaching the corresponding final UI (Fig-
ure 1). The foundation of our transformational approach for multi-
target systems is that all the information pertaining to the models
describing the future UI and the transformation rules that support
the development life cycle are specified in UsiXML (User Inter-
face eXtensible Markup Language – www.usixml.org) [18].

Figure 1. Transformational approach based on graph trans-

formation rules
The graph transformation rules are organized in a transformation
catalog [16] and structured in development steps (Fig. 2). Going
from Task Model to Abstract Model is an example of a develop-
ment step. The development steps are further decomposed into

38

development sub-steps. A development sub-step is realized by a
unique transformation system which is composed of a set of graph
transformation rules.

Figure 2. Structure of a transformation catalog

The graphical abstract syntax of the transformation rules is based
on the graphical formalism employed by the Attributed Graph
Grammar (AGG) system [6]. Figure 3 illustrates the NAC, LHS
and RHS of a UsiXML transformation rule at the concrete level,
where: the nodes identify the UsiXML concrete interaction ob-
jects, the edges identify the UsiXML relationships between the
objects and the attributes identify the features of the objects and
relationships thanks to the assigned values.

Figure 3 Graphical abstract syntax of the transformation

rules

4. COLORED TRANSFORMATION RULES
In the research literature the notion of color is used as a feature at-
tached to tokens in High level Petri nets and used to distinguish
between different data types carried throughout the network [7].
In AGG, the notion of color is currently defined at the level of
type graph as a particular feature of the labels and enables to as-
sign colors to nodes and edges. This imposes a set of restrictions
as the color does not have any specific semantic meaning that al-
lows manipulating and reasoning about graph transformations.
Moreover, all nodes/edges of the same type must have the same
color. In order to deal with the observations emphasized in Sec-
tion 1 and to overcome the shortcomings illustrated above, we ex-
pand the existing model-based approach by introducing the color
as an explicit feature associated to the involved models that will
add semantic to the transformation rules manipulating the ele-
ments of these models. The advantage of our contribution stays in
the reusability, partially or entirely, of the transformation rules for
developing target platforms that enable different interaction mo-
dalities than those previously available on the source platform.

4.1 Coloring Model Concepts
The notion of color will make a distinction (Table 1) between the
concepts corresponding to modality independent models (i.e., the
Task, Domain, Mapping and Abstract Models) and those describ-
ing the modality dependent aspects (i.e., the Concrete Model):
 The concepts of the Task, Domain, Abstract and Mapping

Models are represented in black. The selection was based on
the analogy between the neutral character of the color and the
neutral character of the above models with respect to the mo-
dality.

 The monomodal aspects of the Concrete Model consider a par-
ticular color for each modality: red for graphical modality and
blue for vocal modality. Thus, the graphical concepts are repre-
sented in red, whereas the vocal concepts in blue. The relation-
ships that reflect the monomodal aspects of the Concrete Model
are said to be monocolored as they inherit their color from the
common color of the source and target elements. The associa-
tion of a particular color for each considered modality provides
flexibility when extending the Concrete Model with concepts
belonging to eventually newly introduced modalities as they
can be associated to colors that haven’t been used so far.

 The multimodal aspects of the Concrete Model consider the
cuiDialogControl and synchronization relationships. These re-
lationships are said to be multicolored as they inherit their color
from the source element. For instance, a cuiDialogControl rela-
tionship that connects two graphical elements will be red,
whereas its color becomes blue if the relationship connects two
vocal elements. The synchronization relationship has associated
the blue color as the source element is always a vocal element,
but one can imagine the synchronization between an element
belonging to a newly introduced modality (e.g., tactile) and a
vocal element. In this case the color of the relationship will be
the color associated to the new modality.

4.2 Colored graphs
In this paper we employ the following definition of graph:
Definition 1. A graph g is defined by a quadruple (V, E, sourceg,
targetg) such that:
1. V is a finite set of vertices
2. E is a finite set of edges
3. sourceg: E → V, is an injective function that assigns a source

vertex to every edge from E;
4. targetg: E → V, is an injective function that assigns a target

vertex to every edge from E.

This graph structure is used as an abstract syntax for defining the
underlying formalism of the transformational approach. For this
purpose [8] progressively consolidates it into a single graph cate-
gory called (Identified, Labeled, Constrained, Typed)-Graph.
Hereafter we extend this category with the concept of colored
graph (i.e., (COL)-Graph), as a graph for which all its components
have assigned a color.
Definition 2. Let COL= (NodeColor, EdgeColor) be a pair of dis-
joint and finite sets of predefined colors. g is said to be a (COL)-
Graph iff g is a pair (g, Col) such that:
1. g is a graph (see definition 1)
2. Col is a pair of total functions attaching a color to each node

and edge of the graph: Col = (Colv, Cole), where
Colv: V → NodeColor and Cole: E → EdgeColor
Depending on the level of abstraction on which it is defined, the
properties of these functions are different. If the graph structure is
exploited to describe the model level (Table 1), the color func-
tions (i.e., Colv and Cole) are surjective (i.e., each color is assigned
to a graph component).

39

Table 1. Colors associated to the UsiXML model concepts

Relationships
 Concepts

UsiXML
Models

Elements

Modality
independent

Modality
dependent

Assigned color

Task task decomposition
temporal operator - Black

Domain domainClass domainRelationship - Black
Abstract Abstract Interac-

tion Object

abstractContainment
abstractAdjacency
auiDialogControl

- Black

Mapping - manipulates, triggers, updates
isExecutedIn, isReifiedBy - Black

G
ra

ph
ic

al

Graphical Inter-
action Object

graphicalContainment
graphicalAdjacency
graphicalTransition

- Red

M
on

om
od

al

as
pe

ct
s

V
oc

al
 Vocal Interaction

Object

vocalContainmemnt
vocalAdjacency
vocalTransition

- Blue

C
on

cr
et

e

M
ul

tim
o-

da
l

as
pe

ct
s

- - cuiDialogControl
synchronization

The relationship
inherits the
color of the

source object

If the graph structure is exploited to describe the instance level
then different graph components may share the same color. De-
pending on the number of non-neutral color (i.e., different of
black color) with respect to the interaction modality, the (COL)-
Graph can be specialized into:
 Monocolored: the graph has at most one color in the codo-

main of Colv that is different of the black color. This implies
that the cardinality of the image of Cole could be: 0 if the
graph has a single vertex, 1if the edge describes the mapping
relationship between an abstract and a concrete element, or 2
if the mapping applies over two concrete elements.

Definition 3. g is said to be a (MONOCOL)-Graph iff:
1. g is a (COL)-Graph
2. 1≤ |Im(Colv)|≤ 2
3. 0≤ | Im(Cole)|≤ 2
4. ∃ !c ∈NodeColor\{black}

 Multicolored: the graph has at least two colors in the codo-
main of Colv that are different one of each other and different
of the black color.

Definition 4. g is said to be a (MULTICOL)-Graph iff:
1. g is a (COL)-Graph

2. |Im(Colv)|≥ 2
3. ∃ c1, c2 ∈NodeColor\{black} | c1 ≠ c2

4.3 Operations over colored graphs
The previously introduced notions allow us to define two opera-
tions over colored graphs:

 Merging operation: a (MULTICOL)-Graph results by
merging two (COL)-Graphs. The color functions (Colv(r),
Cole(r)) of the resultant graph are a restriction of the colored
functions (Colg and Colh) of the merged graphs to their do-
main of values, respectively.

Definition 5. Let g and h be two (COL)-Graphs defined by (Vg,
Eg, sourceg, targetg) and (Vh, Eh, sourceh, targeth), respectively.
The result of the merging operation defined between g and h
(g M h=r) is a graph r, where:

1. r is a (MULTICOL)-Graph
2. Colv(r):Vg U Vh → NodeColorg U NodeColorh,

Cole(r):Eg U Eh → EdgeColorg U EdgeColorh,

Colv(r)|Vg(v) = Colv(g) (v) Colv(r)|Vh(v) = Col v(h) (v)
Cole(r)|Eg(e) = Col e(g) (e) Cole(r)|Eh(e) = Col e(h) (e)

 Splitting operation: a (MONOCOL)-Graph results by split-
ting a (MULTICOL)-Graph upon a color from the set of ver-
tices colors different of black. . The color functions (Colv(g),
Cole(g)) of the resultant graph are a restriction of the colored
functions (Col (v)g and Col e(g)) of the initial graph to its do-
main of values, respectively.

Definition 6. Let r be a (MULTICOL)-Graph defined by (Vr, Er,
sourcer, targetr) and c a color where c∈ NodeColorr \ {black}.
The result of the splitting operation of the graph r upon the color
c (r [c] = g) is a graph g defined by (Vg, Eg, sourceg, targetg),
where:
1. g is an (MONOCOL)-Graph, with:

40

NodeColorg= {c} U {black} ∩ NodeColorr

EdgeColorg = {c} U {black} ∩ EdgeColorr

2. Vg ={v|Colg(v) ∈ NodeColorg}
Eg ={e | Colg(e) ∈ EdgeColorg}
sourceg(e) = sourcer|Eg(e), targetg(e) = targetr|Eg(e)

3. Col v(g): Vg → NodeColorg, Col e(g): Eg → EdgeColorg
Col v(g) (v) = Col v(r)|Vg (v) and Col e(g) (e) = Col e(r)|Eg (e)

4.4 Colored transformation rules
The integration of the color as a new graph feature enables the in-
troduction of the notion of colored transformation rule (i.e.,
(COL)-TR), which can be specialized into:
 Monocolored transformation rule: is a rule in which at

least one component of the rule is a (MONOCOL)-Graph.

Definition 7. Let TR be a transformation rule, with TR= (NAC,
LHS, RHS). TR is said to be (MONOCOL)-TR iff ∃ g∈{NAC,
LHS, RHS}, where g is a (MONOCOL)-Graph.
 Multicolored transformation rule: is a rule in which at

least one of the components of the rule is a (MULTICOL)-
Graph.

Definition 8. Let TR be a transformation rule, with TR= (NAC,
LHS, RHS). TR is said to be (MULTICOL)-TR iff ∃ g∈{NAC,
LHS, RHS}, where g is a (MULTICOL)-Graph.

4.5 Operations over transformation rules
By analogy with the merging and splitting operations specified
over graphs, we define hereafter the same operation over trans-
formation rules. Merging two or more different colored transfor-
mation rules enables to generate multicolor rules. This operation
is the cornerstone of the factoring out activity.

Definition 9. Let TR1 and TR2 be two (COL)-TRs, with TR1=
(NAC1, LHS1, RHS1) and TR2= (NAC2, LHS2, RHS2). The result
of the merging operation defined between TR1 and TR2
(TR1 M TR2 = TR3) is a transformation rule TR3= (NAC3, LHS3,
RHS3), where:

1. TR3 is a (MULTICOL)-TR

2. NAC3 = NAC1 M NAC2

3. LHS3 = LHS1 M LHS2

4. RHS3 = RHS1 M RHS2

If NAC1 and NAC2 share a common black element, they are
merged in order to generate the NAC3 of the resultant rule. If not,
the two NACs will be aggregated in the resultant rule giving rise
to two NACs. Splitting a multicolored transformation rule upon
one color enables the designer to generate a monocolored rule.
Definition 10. Let TR1= (NAC1, LHS1, RHS1) be a (MULTI-

COL)-TR and c∈{NodeColorNAC U NodeColorLHS U Node-
ColorRHS}\ {black}. The result of the splitting operation of the
transformation rule TR1 upon the color c (TR1 [c] = TR2) is a trans-
formation rule TR2= (NAC2, LHS2, RHS2), where:
1. TR2 is a (MONOCOL)-TR
2. NAC2 = NAC1 [c]
3. LHS2 = LHS1 [c]
4. RHS2 = RHS1 [c]

5. SOFTWARE SUPPORT
AGG software provides [6]: (1) a graphical editor for specifying
graph transformation rules and (2) a customizable interpreter ena-
bling their application through the API. Fig. 4 illustrates a
UsiXML colored transformation grammar specified in AGG.
Frame 1 presents the transformation catalog explorer that contains
so far around 150 rules, frame 2 and 3 the colored node types and
edge types available for the current catalog [18], frame 4, 5 and 6
the NAC, LHS, and RHS of the rule, respectively and the host
graph on which the rule will be applied is represented in Frame 7.
Even if in the context of our work the graphical concrete syntax of
the transformation rules is based on the graphical formalism em-
ployed by AGG, the tool suffers from a series of shortcomings
that hinders us to employ it for the colored transformation rules.
In order to overcome these shortcomings an extension of the tool
is proposed for implementation:

• In AGG the color does not have any specific semantic meaning
as it is part of the label. Thus, the extension should enable to
store the color as a different feature then the label that is taken

Figure 4. AGG graphical user interface

41

into consideration when applying the graph transformation
rules

• The color is currently defined only at the level of type graph in
AGG (i.e., the meta-level in our context). Thus, while it is pos-
sible to assign colors to nodes and edges in AGG, there is an
important restriction: all nodes of the same type must have the
same color. This restriction does not satisfy the requirements
imposed by the colored rules as the multimodal aspects of our
concrete model imposes multicolored relationships whose color
may change depending on the color of the source element. Con-
sequently, the extension should enable the specification of the
color at the model level, according to Table 1.

• The extension should support the merging and splitting opera-
tions previously introduced.

6. CASE STUDY
Thanks to the introduction of colors, the total amount of rules to
be specified by the designer is reduced. For a particular widget of
a UI involving two interaction modalities (e.g., graphical and vo-
cal), two monocolored rules had to be applied so far. These two
rules can now be merged into a single multicolored rule that can
be treated as follows: (1) if the designer needs to ensure both in-
teraction modalities the multicolored rule has to be applied, (2) if
the designer needs to ensure only one type of interaction (i.e.,
graphical or vocal) the rule has to be split upon the color assigned
to the considered interaction. The flexibility of the colored rules is
illustrated hereafter based on two examples that show the benefits.
The first set of transformation rules are used to generate graphical
and/or vocal containers. Fig. 5 (a) presents the monocolored rule

that is the result of the splitting operation applied over the rule in
Fig. 5 (c) upon the red color. It generates groupBox elements that
embed an outputText (i.e., a label) and an imageComponent guid-
ing the user with the available interactions to use (i.e., mouse and
keyboard). If the designer wants to ensure the same functionality
but enabling just the vocal interaction, the rule illustrated in Fig. 5
(b) has to be executed. It is the result of the splitting operation ap-
plied over the rule in Fig. 5 (c) upon the blue color and is used to
generate vocalGroup elements. On the other hand if the designer
wants to ensure a multimodal interaction the rules in Fig. 5 (a) and
(b) have to be merged. The resultant rule is illustrated in Fig. 5 (c)
and generates both groupBox and vocalMenu elements. The sec-
ond example concerns the generation of radioButtons and/or vo-
calMenuItems that will be embedded in the groupBox and vocal-
Menu elements previously generated. Figure 6 (a) illustrates a
monocolored rule that is the result of the splitting operation ap-
plied over the rule in Figure 6 (c) upon the red color.The resultant
rule generates radioButton elements for each selection value of a
facet of type input element. In the final UI the user will be able to
select graphically between multiple options. If the designer wants
to ensure the same functionality but employing the vocal interac-
tion he will have to apply the rule illustrated in Figure 6 (b) which
is the result of the splitting operation applied over the rule in Fig-
ure 6 (c) upon the blue color. On the other hand if the designer is
provided with the two monocolored rules described above and has
to ensure the selection of an item between multiple options by
enabling user to do it graphically or vocally, the rules in Fig. 6 (a)
and (b) should be merged. The resulting rule is given in Fig. 6 (c).

 NAC LHS RHS

(a)

(b)

(c)

Figure 5. Monocolored transformation rule generating: (a) groupBox elements; (b) vocalMenu elements; (c) groupBoxes and vo-

calMenu elements

42

NAC LHS RHS

(a)

(b)

(c)

Figure 6. Monocolored transformation rule generating for each selectionValue of a facet of type select: (a) radioButtons elements;

(b) vocalMenuItems elements; (c) radioButton elements and vocalMenuItem elements
After obtaining the concrete UI specified in UsiXML, XSL trans-
formations are applied in order to generate the correspondent final
specification (i.e., XHTML for graphical UI, VoiceXML for vocal
UI and X+V for multimodal UI). Figure 7 illustrates the final mul-
timodal system (i.e., graphical and vocal interactions) specified in
X+V language and run in the Opera browser. The three groups of
radio buttons enabling the user to select graphically or vocally the
transmission type, the insurance type and the car class are the re-
sult of the execution of the multicolored rules specified above.
More information about the tool support and demonstrations can
be found at [18] where several videos recording a demonstration
of the various steps required to obtain a multimodal UI for multi-
ple contexts of use are available. The steps of the methodology
have been defined in [16], which provides more technical details.
In order to correctly apply the transformation sets required to per-
form each step of the model-driven engineering method, a dedi-
cated software, called TransformiXML, has been developed. This
tool enables the designer to select the suitable transformation sys-
tem (Fig. 2) before applying the transformation rules contained in
it. Further, the tool suggests the next transformation system to ap-
ply in order to achieve the next development step of the method.

7. CONCLUSION
As a result of the notion of color introduced and defined in Sec-
tion 4, we have reached to the following conclusion: a multicol-
ored transformation rule is the result of the merging operation ap-
plied over all its splitting upon each non-neutral color of the
nodes. The following benefits are obtained:

 Reduced number of rules to be specified and applied: before
introducing the notion of color the UI illustrated in Figure 7
was the result of the application of a transformation system
composed of 80 rules out of which 40 were used to generate the
concrete graphical elements (i.e., containers, widgets, and the
relationships between). The remaining 40 rules were applied to
generate their vocal counterparts. Thanks to the introduction of
the colors, each pair of graphical/vocal rules can be merged into
a single one, reducing thus to the half the number of rules to
apply. Moreover, as many interaction types are considered, as
much benefit will be gained thanks to the multicolored trans-
formation rules.

 Scalability: if the need for a new modality arise (e.g., tactile
modality) a new monocolored transformation rule that is dupli-
cating the common part of its modality counterparts rules (i.e.,
the abstract elements represented in black) had to be developed.
Thanks to the colored transformation rules the development of
a new rule, and thus of the duplicating elements, is avoided. A
simple integration of the new concepts assigned to the intro-
duced modality and their mapping to the abstract elements in
the already existing multicolored rule is sufficient to achieve a
direct modification. As a result a new multicolored rule is ob-
tained which can be applied in the generation of multimodal
UIs considering graphical, vocal and tactile interactions.

The target audience that could take advantage of the benefits pro-
vided by the colored transformation rules is designers that would
like to improve the performance of the development process while
preserving its consistency. We did not investigate extensively the
generalization of colored transformation rules but we consider that

43

our contribution could be applied in any area where factorization
could be a solution for rules with a significant portion of the
NAC, LHS or RHS that is duplicated.

For future steps we would like to analyze whether the introduction
of color will be a conservative extension with respect to the graph
grammar properties such as termination, confluence, parallel and
sequential independence. Moreover, investigations will be made
with respect to the feasibility of implementing an extension of the
AGG tool with the features identified in Section 5.

Figure 7. Final UI enabling graphical and vocal interaction

8. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the SIMILAR network
of excellence (http://www.similar.cc), the European research task
force creating human-machine interfaces similar to human-human
communication of the European Sixth Framework Programme
(FP6-2002-IST1-507609). The authors would like to greatly thank
the anonymous reviewers for their constructive comments.

9. REFERENCES
[1] Agrawal, A. 2003. Metamodel Based Model Transformation

Language. In Proc. of ACM Int. Conf. on Object-Oriented
Programming Systems, Languages and Applications OOP-
SLA’2003 (Anaheim, Oct. 26-30, 2003). ACM Press, New
York, 386–387.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., and Vanderdonckt, J. 2003. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting with
Computers 15, 3 (June 2003), 289–308.

[3] Czarnecki, K. and Antkiewicz, M. 2005. Mapping features to
models: A template approach based on superimposed vari-
ants. In Proc. of Int. Conf. on Generative Programming and
Component Engineering GPCE’2005. Lecture Notes in
Computer Science, Vol. 3676. Springer, Berlin, 422–437.

[4] Czarnecki, K. and Helsen, S. 2006. Feature-Based Survey of

Model Transformation Approaches. IBM Systems Journal
45, 3 (2006), 621–645.

[5] Czarnecki, K. and Pietroszek, K. 2006. Verifying Feature-
Based Model Templates Against Well-Formedness OCL
Constraints. In Proc. of 5th ACM SIGSOFT/SIGPLAN Int.
Conf. on Generative Programming and Component Engi-
neering GPCE’06. ACM Press, New York, 211–220.

[6] Ehrig, H., Engels, G., Kreowski, H-J., and Rozenberg, G.
(eds.). 1999. Handbook of Graph Grammars and Computing
by Graph Transformation, Application, Languages and
Tools, Vol. 2, Chapter 3, Section 3.6.2 The Graph Transfor-
mation Language AGG. World Scientific, Singapore.

[7] Jensen, K. 1998. A brief introduction to colored Petri nets. In
Proceedings of Workshop on the Applicability of Formal
Models (Aarhus, 2 June 1998), 55–58.

[8] Limbourg, Q. and Vanderdonckt, J. 2004. UsiXML: A User
Interface Description Language Supporting Multiple Levels
of Independence. In Matera, M. (Eds.), Engineering Ad-
vanced Web Applications, Rinton Press, Paramus, 325–338.

[9] Medina, J-L., Chessa, S., and Front, A. 2007. A Survey of
Model Driven Engineering Tools for User Interface Design.
In Proc. of 6th Int. workshop on Task Models and Diagrams
TAMODIA’2007 (Nov. 7-9, 2007). Springer, Berlin, 84–97.

[10] Mellor, S.J. and Clark, A.J. 2003. Introduction to Model
Driven-Development. IEEE Software 20, 5 (2003), 14-18.

[11] Mellor, S.J., Kendall, S., Uhl, A., and Weise, D. 2004. MDA
Distilled – Principles of Model-Driven Architecture. Addi-
son-Wesley, New York.

[12] Mens, T. and Van Gorp, P. 2006. A Taxonomy of Model
Transformation. In: Proc. of International Workshop on
Graph and Model Transformation GraMoT’2005, Electronic
Notes in Theoretical Computer Science, 152 (2005) 125–
142.

[13] Nigay, L. and Coutaz, J. 2005. A Generic Platform for Ad-
dressing the Multimodal Challenge. In Proc. of the ACM
Conf. on Human Factors in Computing Systems CHI’95
(Denver, 1995). ACM Press, New York, 98–105.

[14] Schaffer, R. 2007. A Survey on Transformation Tools for
Model Based User Interface Development. In J. Jacko (Ed.):
Human-Computer Interaction, Part I, Proc. of HCI’Interna-
tional 2007. LNCS 4550, Springer, Berlin, 1178–1187.

[15] Schlee, M. and Vanderdonckt, J. 2004. Generative Program-
ming of Graphical User Interfaces. In Proc. of 7th Int. Work-
ing Conf. on Advanced Visual Interfaces AVI’2004 (Gal-
lipoli, May 25-28, 2004). ACM Press, New York, 403-406.

[16] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., and
Michotte, B. 2005. A Transformational Approach for Multi-
modal Web User Interfaces based on UsiXML. In Proc. of 7th
Int. Conf. on Multimodal Interfaces ICMI'2005 (Trento, 4-6
October, 2005). ACM Press, New York, 259– 266.

[17] Vanderdonckt, J., Coutaz, J., Calvary, G., and Stanciulescu,
A. 2007. Multimodality for Plastic UI: Models, Methods, and
Principles. In D. Tzovaras (ed.), “Multimodal UIs: from sig-
nals to interaction”, Chap. 3. Lecture Notes in Electrical En-
gineering. Springer-Verlag, Berlin, 79– 105.

[18] http://www.usixml.org

44

