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Abstract. In the context of Open Interface project, the UsiXML language is 
currently evolving in order to encompass full multimodal user interfaces so that 
they are compliant with the tools produced by the OpenInterface platform and 
to go beyond multimodal web user interfaces which have been addressed so far. 
Therefore, the goal of this paper consists in extending the UsiXML language 
(www.usixml.org) with new functionalities that explicitly address the behavioral 
features required by the dynamic aspects of multimodal user interfaces, whether 
they are web oriented or not. For this purpose, a real-world large-scale case 
study is investigated so as to test the specification of multimodal user interfaces 
corresponding to the same tasks, but with different modalities, single or 
combined.  

Keywords: multimodal interaction, navigational task instruction, usability 
evaluation rules. 

1   Introduction 

Information visualization [Card99] has become a successful paradigm for human-
computer interaction. Numerous interface techniques have been proposed and an 
increasing number of empirical studies describe the benefits and problems of 
information visualization [Beazr90, Scha96, Horn99, Chen00]. Zoomable user 
interfaces have been extensively discussed in the literature on information 
visualization. Zoomable user interfaces organize information in space and scale, and 
use translation and zooming as their main interaction techniques [Perl93, Bede96]. 
Research prototypes of zoomable user interfaces include interfaces for storytelling 
[Drui97], Web browsing [High98], and browsing of images [Comb99, Bede00]. 
However, few empirical studies have investigated the usability of zoomable user 
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interfaces, and the results of those studies have been inconclusive. While zoomable 
user interfaces have been discussed since at least 1993 [Perl93], no definition of 
zoomable user interface has been generally agreed upon.  

In zoomable user interfaces, space and scale are the fundamental means of 
organizing information [Perl93, Furn95]. The appearances of information objects are 
based on the scale at which they are shown. Most common is geometric zoom, where 
the scale linearly determines the apparent size of the object. Objects may also have a 
more complex relation between appearance and scale, as in so called semantic 
zooming [Perl93, Fran94], which is supported in the zoomable user interface toolkit 
Jazz [Bede00]. Semantic zooming is commonly used with maps, where the same area 
on the map might be shown with different features and amounts of detail depending 
on the scale. The second main characteristic of zoomable user interfaces is that the 
information space is directly visible and manipulable through translation and 
zooming. Translation changes the area of the information space that is visible, and 
zooming changes the scale at which the information space is viewed.  

Usually, translation and zooming are controlled with the mouse or the keyboard, so 
that a change in the input device is linearly related to how much is translated or 
zoomed. In contrast, interfaces for combined spoken and pen-based input may be 
particularly effective for interacting with dynamic map systems, although multimodal 
interfaces that recognize two or more naturally-integrated input streams are still by 
and large in the planning stages. Although research relevant to the design of 
multimodal systems that incorporate speech and pen input is beginning to emerge 
[Ovia94a, Ovia94b], the problem of how to optimize such interfaces for map displays 
has received little attention. [Ovia96] shows that within a visual-spatial domain such 
as maps, clear performance advantages exist for supporting multimodal human-
computer interaction. In comparison with the speech-only input to a map, combined 
use of pen and voice actually was faster, less error-prone, and input involved less 
complex linguistic expressions to be reorganized and parsed. With respect to relative 
efficiency, time required to complete map-based task was shorter during multimodal 
than speech-only input, primarily because location can be designated more precisely, 
rapidly, and with less effort and error using the pen. 

In this article, we will address the followings: 
 Automatic usability assessment of multimodal applications that enable 

navigational tasks over large scale images.  
 Users interact directly with the information space by translation and zooming 
 Interaction modalities are graphical (keyboard, mouse), vocal (speech input) and 

tactile (finger, stylus pen)  
 Composing elements of navigational tasks are specified sequentially or in an 

order-independent manner. 



 3

2   Context of the work 

2.1   OpenInterface platform 

Description. Numerous multimodal laboratory prototypes embedding innovative 
modalities have been developed since R. Bolt’s seminal demonstrator [Bolt80]. While 
scientific understanding and empirical knowledge of multimodal interaction have 
burgeoned, very few devices in everyday life, such as mobile phones, are multimodal.  
The OpenInterface project (www.openinterface.org) aims are: 
1. To provide an open source platform for the design and rapid development of 

multimodal prototyped applications as a central tool for a truly iterative user-
centered process 

2. To ground the development of multimodal interactive systems in a scientific 
understanding of multimodal interaction. This will be achieved through reusable 
software components in the platform that are directly inferred and defined from 
theoretical results on multimodality 

3. To turn the results into industrial standards by way of the platform. 
Components are the basic objects manipulated by the OpenInterface platform. 

Each one represents a bundled piece of software that provides a set of 
services/functionalities ranging from input devices driver, signal-treatment algorithm, 
network module, graphical interface, etc. To be able to manipulate a component, the 
OpenInterface platform requires the description of the interface of the component. 
This description is specified in CIDL description language (Component Interface 
Description Language). Once the CIDL is specified, the component can then be 
reused easily in any OpenInterface application. OpenInterface components can be 
composed together to create a network of components managing some advanced task. 
Such an inter-connection of components is called a pipeline. In order to be 
manipulated by the OpenInterface platform, a pipeline must be specified in the PDCL 
description language (Pipeline Description and Configuration Language). A PDCL 
description defines the components that are used in the pipeline and how they are 
connected together. 
Advantages. The OpenInterface platform benefits from a set of advantages: 
 Allow seamless integration of heterogeneous software. The platform will manage 

the translation and the communication of the data among the different 
programming languages using existing tools. The currently supported languages 
are C/C++, Java and Matlab, but support of other languages can be added rather 
easily 

 Allows rapid prototyping of multimodal applications thanks to the bundled 
generic fission and fusion mechanism and the easy software connection. 

 The delivered software is a reusable independent unit.  
Shortcomings. However the platform suffers from a set of shortcomings: 
 There is no graphical editor that enables designers to specify the components. 

Once a component is created it would be then easy to modify/replace it in order 
to evaluate the designed application 
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 There are no means to assess the usability of the systems at design time. For this 
purpose a new module should be implemented, and therefore the deployment of 
new internal procedures in the source code would be necessary. In this case it 
would be impossible to add/update/delete a usability criteria without modifying 
the code. This is an important shortcoming due to the lack of flexibility in the 
context of the continuous evolution of usability criteria. This evolution is also 
motivated by the appearance of new interaction modalities.  

2.2   UsiXML language 

Description. Many User Interface Description languages have been introduced so far 
that addresses different aspects of a UI: XUL, UIML, XISL, VoiceXML, X+V, 
TeresaXML. Depending on the perspective the UIDL may address portability, device 
independence, support for multiple computing platforms, user-centered design, 
iterative and incremental development to name a few. This proliferation results in 
many XML-compliant dialects that are not (yet) largely used and that do not allow 
interoperability between the tools that have been developed around them. Moreover, 
there has been little or no integration of the various models that address the needs of 
traditional graphical UIs and multimodal UIs, simultaneously.  

In order to cope with the above challenges and others, we have selected and 
expanded UsiXML (User Interface eXtensible Markup Language – see  
www.usixml.org) with new functionalities that explicitly address the behavioral 
features required by the dynamic aspects of multimodal user interfaces, whether they 
are web oriented or not. UsiXML is structured according to the four basic levels of 
abstraction (Figure 1) defined by the Cameleon reference framework identified in 
[Calv03]. This framework is a reference for classifying UIs supporting multiple target 
platforms or multiple contexts of use in the field of context-aware computing and 
structures the development life cycle into four levels of abstraction: task and concepts, 
abstract UI, concrete UI and final UI. The identification of the four levels and their 
hierarchical organization is built on their independence with respect to the context in 
which the final system is used. Thus, the Task and Concepts levels is computation 
independent, the Abstract UI level is modality independent and the Concrete UI level 
is toolkit independent.  

 
Fig. 1. Cameleon Reference Framework for multi-target UIs. 
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Advantages. The selection of the language UsiXML was based on the following 
motivations [Stan06]:  
 Support for multimodal input/output: our ontology is based on a set of models 

that enable multiple input/output interaction modalities. These modalities are: 
graphical, vocal and tactile. 

 Separation of modalities: the concepts corresponding to each modality are 
syntactically separated one from each other. This provides the developer with two 
advantages: (1) flexibility during the development process as the UI 
corresponding to each involved interaction can be specified separately and further 
combine them altogether, (2) reusability of the specification or part of a 
specification corresponding to an interaction modality in other applications that 
involve the use of the same modality. 

 Support for CARE properties:  the concrete model of UsiXML language is 
composed of concrete elements (i.e., graphical/vocal concrete interaction objects) 
that allow the support of CARE properties. For input modalities the supported 
properties are: assignment and equivalence, whereas the for output modalities 
assignment, redundancy and equivalence are supported. 

 Extendibility to new modalities: the proposed ontology allows the extension with 
new types of interaction modalities thanks to the modularity of the framework 
where each model is defined independently of the others. This comes in the spirit 
of the principle of separation of concern adopted when modeling the language. 
Thus, at any time concepts belonging to a new modality could be connected to 
the already existing ontology.  This is a principle that we would like to cover, but 
we are well aware of the fact that very complex interactions can not be supported. 

Shortcomings. While the graphical interaction is well covered by UsiXML thanks to 
the numerous graphical concepts introduced and defined in [USIX06], the vocal 
interaction suffers from a series of shortcomings: 
 The grammar element presents the user’s instructions as a whole, without 

structuring it according to the composing elements of the instruction. For 
instance, in the context of user’s instructions that follow the action-object-
parameter paradigm, the composing elements are not split into chucks and 
assigned to a grammar sub-element. Consequently, the values of the instruction’s 
components can not be reused. 

 The grammar syntax does not enable to define the order of utterance of the 
composing elements: there is no manner of specifying an alternative between two 
or more utterances, a sequence of utterances or order-independent utterances. 
Consequently, all possible combinations between the elements of an instruction 
have to be explicitly specified in the grammar. This will result in a high number 
of possible combinations that will further increase along with the growing of the 
number of elements.  

 There are no means to specify the cardinality of an uttered element: one user 
would like to assign just one action to a specific object of the UI, while some 
others two or more actions. For instance, “Translate top left” vs. “Translate and 
scale top left”. 
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2.3   UsiXML for OpenInterface 

Description. Figure 2 outlines the general schema for testing the usability of 
multimodal applications developed on top of Open Interface platform: 
 Usability evaluation tests are conducted upon the Open Interface Applications 
 A set of  multimodal ergonomic rules will be abstracted from the results of the 

evaluation tests and gathered into a knowledge base 
 Multimodal Open Interface Applications will be abstracted into UsiXML 

specification language 
 A usability adviser tool will check the ergonomic rules upon the UsiXML 

specification in order to ensure a certain level of guidance during the 
development process of the multimodal application. 

So far our knowledge base is composed of evaluation rules that address the 
requirements of GUIs mainly. This knowledge base will be further extended in order 
to cover multimodal applications that involve graphical, vocal and tactile UIs. 
Advantages. The advantages of a usability adviser tool are significant: 
 Real time guidance during the development life cycle when adding, deleting or 

modifying the components of a UI 
 Evolutional knowledge base as it allows adding new ergonomic rules 
 Portability of the knowledge base thanks to a single file that stores the existing 

set of rules 
 Centralizes knowledge base that can be shared between multiple users connected 

to the same network  
 Ergonomic rules are expressed in a formal language close to the natural language 
 Learning the formal language for specifying the ergonomic rules is not 

mandatory as there is a rule specification assistant  
 Multiplatform ergonomic rule validation as the evaluation is based on UsiXML, a 

platform independent language. 
Shortcomings. However, we have identified a set of shortcomings with respect to the 
automatic usability evaluation tools: 
 There is no existing tool that is capable of testing the usability of both web and 

non-web applications 
 The ergonomic rules are most of the time expressed in a natural language, 

whereas the usability tools apply rules expressed in a formal language. But the 
natural language is much more complex and allows expressing more precise 
information then the formal one. Therefore, applying formalized ergonomic rules 
often results in some limitation with respect to the evaluation. 
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Fig. 2. Usability evaluation of OpenInterface applications based on UsiXML 

specifications. 

3   Navigation in large scale images 

3.1 Existing solutions 

We are not aware of any technology that allows production of one piece, high-
quality displays of arbitrary size. Proposed techniques typically involve combining 
multiple smaller displays into a single large display of high pixel count. 

One common solution is to connect two or more computer monitors to a single 
computer, as supported by current operating systems, such as Microsoft Windows. In 
this setup, all connected monitors form a single logical display. This display allows 
large scale images to span multiple displays. However, [Grud01] observed that the 
visible gap between individual monitors discouraged users from having windows span 
multiple displays. His study suggests that users instead use additional monitors to 
separate windows belonging to different tasks. But, when navigating in large scale 
image there are no multiple windows to span as the image is displayed usually in a 
single window. 

In order for large displays to overcome this effect, a substantial amount of research 
has been invested in the creation of seamlessly tiled display systems [Frun00]. Several 
solutions for avoiding the visible seams have been proposed, including the integration 
of up to four identical LCDs by butting them together into a single large LCD (a 9-
megapixel display by IBM-
http://domino.research.ibm.com/comm/pr.nsf/pages/news.20010627_display.html), 
the construction of video walls by assembling back projection modules with small 
borders - http://www.panasonic.com/business/medicalvideo/home.asp2, as well as a 
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series of research prototypes evolving around tiled hi-res projection displays 
[Here00]. Compound displays composed of multiple display units surrounding the 
user have been used in virtual reality, such as flight simulation [Mene00], and in 
immersive environments, such as the CAVE [Cruz92]. These proposed solutions are 
still cost-intensive, space-intensive, or both, which has prevented these technologies 
from reaching the mass market. Consequently, navigational techniques are required in 
order to go beyond the limits of nowadays technology. 

3.2 Proposed solution 

[Carr82] characterizes the instructions for controlling a robot based on two design 
variables: hierarchical structure and congruence. From the hierarchical point of view 
instructions could be hierarchical (verb-object-qualifier, e.g. MOVE ROBOT 
FORWARD) or non-hierarchical (verb-only, e.g. ADVANCE), whereas from the 
congruency perspective the possible values are congruent (meaningful pairs of 
opposites, e.g. RIGHT/LEFT) or non-congruent (non-symmetric pairs, e.g. 
GO/BACK). Usability studies performed over a set of 16 instructions show that the 
subjects disapproved non-hierarchical non-congruent form and gave the highest rating 
for hierarchical congruent form. This is because congruence helped subjects to 
remember the natural pairs of concepts and terms, whereas hierarchical structure 
enabled them to easily master the commands with only one rule of formation (verb-
object-qualifier). Therefore, error rates and retention are dramatically lower for the 
congruent hierarchical forms. 

In order to overcome the drawbacks identified in Section 3.1 and to ease the 
navigation in large scale images we propose the use of the 3X3 overlaying grid 
illustrated in Figure 3. The dimensions of the grid were selected for three different 
reasons: (1) enables the possibility of specifying congruent instructions thanks to 
symmetric pairs (Top /Bottom, Left /Right), (2) enables a hierarchical structure of the 
instruction (Y coordinate – X coordinate), (3) generates one single center column and 
center row enabling users to specify precisely the navigation instructions. 

The small blue arrows indicate the possible directions of translation. The following 
notions were introduce and defined: 
 Visibility zone: is the area of the image that is visible for the user. 
 Exploration zone: is the complete area including the non-visible as well as the 

visible part of the image 
 Zoom factor: is the level of magnification between two views. It is always 

greater or equal to 0. 
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Fig. 3. Cell names for the visibility zone in 3X3 images 

 
Figure 4 illustrates the visibility zone of a large scale image displaying the map of 

the Brussels city surroundings. After the execution of the task Translate Top Left, the 
visibility zone displays the area illustrated in Figure 5. 

 
     Fig. 4. Visibility zone before          Fig. 5. Visibility zone after 
   the execution of a translation task.                 the execution of a translation task 

4   Structure of the navigational task 

4.1 Taxonomy of navigation tasks 

[Plai94] presents a taxonomy of image browsers as a result of a comparison of 
techniques and features related to the presentation and operational aspects. This 
taxonomy allowed us to identify the specific navigational tasks when browsing large 
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scale images. Therefore, we introduce hereafter a taxonomy of navigational tasks that 
was adapted and improved in order to respond to the requirements of navigational 
tasks over 3X3 images. Moreover, the taxonomy has the advantage of being modality-
independent:  
• Translation: top / bottom / left / right / main diagonal up (Bottom Left) / main 

diagonal down (Top Right)/ second diagonal up (Bottom Right)/ second diagonal 
down (Top Left) 

 Translate without specifying a value: the user decides when to stop the      
  translation  

  Translate by specifying the number of grid units 
• Zooming: zoom in / zoom out  

 Zooming without specifying the zoom factor: it is inferred from the      
 selected zoomed area and the  size of the display window 

 Zooming with a zoom factor: 
 Fixed zoom factor: zoom by steps 
 Specified zoom factor: the value is specified by the user 

    Zooming in a single selected grid unit (e.g., zoom in Top Left / zoom in  
   Centre, zoom in Bottom Right) 

    Zooming in multiple selected grid units:  
 Adjacent horizontal grid unit selection: zoom in Horizontal  

Top/ zoom in Horizontal Centre / zoom in Horizontal Bottom 
 Adjacent vertical grid unit selection: zoom in Vertical Left / zoom in 

Vertical Centre / zoom in Vertical Right 
 Diagonal grid unit selection: (e.g., zoom in Left Centre to  

Bottom Right / zoom in Centre to Top Right. 

4.2   Reaching the structure 

Based on the taxonomy introduced before, we started our research concerning the 
structure of a navigational task from the general structure of an instruction in ISs. 
According to [IBM92] natural languages typically have many more nouns than verbs, 
and a graphical UI typically contains more objects then actions. Just as the same verb 
can be applied to many nouns the same action can be applied to many objects, 
independent of the type of UI, be it graphical, vocal, etc. Therefore, the action/object 
paradigm is defined as a pattern for interaction in which a user selects an action and 
an object to apply it.  But objects are usually endowed with features which help us 
characterize them. Therefore, in ISs these features were transposed into parameters 
assigned to objects. Consequently, the general structure of an instruction is composed 
of the following three elements: 

Instruction:= {Action, Object, Parameter} 

 
These elements could have single or multiple cardinality or could be even optional 

depending on the context in which the instruction is used. Therefore, the general 
format of an instruction is:  
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Instruction:= Action 1, Action 2,…,Action n, Object 1 param11 
param12….param1m, Object 2 param21 param22  param2p,….,Object r param r1 
param r2…param rt 

 
For a more clear expression of the general format we present hereafter its Extended 

Backus Naur Form (EBNF): 

Instruction:= {{Action}-  [Object]   [{Parameter}]}- 

 
An instantiation of an instruction is a particular concretization of all the elements 

specifying the instruction (Figure 6): 

 
Figure 6. Instanciation of the general format of a navigational task 

4.3   Working hypothesis 

In this section we present the workspace in which we define the structure of the 
instructions specifying the navigational tasks and their instantiation on various 
combinations of interaction modalities. The workspace is defined by the following 
working hypothesis:  
A. Hypothesis 1: Action applied over 1 optional Object which has 2 

Parameters: is the particular format that will be considered for the instruction of 
a navigation task. The EBNF format of the instruction specified according to this 
hypothesis is: 

 
 

Where: 
Action = user’s command 
[Object] = is optional and specifies that the action is applied over an image 
{Parameter} = {Param1, Param2} 
Param1 = specifies the X coordinate of the target image 
Param2 = specifies the Y coordinate of the target image 

 
Example: Figure 7 illustrate san instantiation of the above instruction, where 

the user is specifying a translation to the top left part of the image:  
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Fig. 7. Instantiation of the Action-Object command 

 
 

B. Hypothesis 2: The Action-Object order: a software engineering paradigm 
The action/object paradigm introduced in Section 4.2 has two instantiations 

depending on the order of specification of elements: 
 Action-object paradigm: the user first selects an action and then selects the 

object. Once the user selected the action he can select the object over which he 
wants to apply it. 

 Object-action paradigm: the user first selects the object and then selects the 
action. Once the user selected the object the system can then present a list of 
actions that can be applied to that object. 

In order to better specify these paradigms in the context of navigational tasks we 
employ the LOTOS operators to introduce two binary operators and their 
corresponding semantics: 
 >> (sequential): the operands on which applies have to be specified in the order 

of appearance. Once the first operand terminates to be specified the specification 
of the second one could be initiated 

 |=| (order-independent): the operands on which applies do not have to be 
specified in a particular order. At the beginning both operands can be specified. 
However as soon as the first operand started to be specify, the entire specification 
has to be finished before enabling to specify the second operand. 

After applying the introduced operators over the two paradigms the results are as 
follows: 
 Action >> Object: the instruction has to specify first the action and then the 

object on which it applies 
 Action |=| Object: the instruction doesn’t have to specify the elements in a 

particular order. 
Due to the fact that the specification of the Object is not mandatory according to 

the Hypothesis A (by default the Object is the image to manipulate) the Action-Object 
paradigm reduces to Action-Parameters paradigm. Thus, two types of possible 
instructions for navigation task can be defined:  
 Sequential instruction: the instruction has to specify first the action and then the 

parameters. 
Instruction: = Action >>  Parameters 

 
 Order-independent instruction: the instruction doesn’t have to specify the action 

and the parameters in a particular order. 
Instruction: = Action |=| Parameters 
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Where the parameters are in number of two: 
X = the coordinate on the Ox axis of the image  
Y = the coordinate on the Oy axis of the image 

 
C. Hypothesis 3: Equivalent navigational instructions: 

A sub-instruction groups one or more elements of an instruction in a structure 
expressed as a whole which is specified by employing the same monomodal or 
multimodal interaction. The element(s) of a sub-instruction are delimited by 
braces. 
An instruction is composed of one or more sub-instructions. Figure 8 illustrates 
all possibilities of grouping the elements of a navigational task in sub-instructions 
taking into account the working hypothesis (A) and (B) defined above. The 
resulting instructions are equivalent. In the context of the current research the 
Equivalence operator (⇔ ) defined between two instructions specifies that 
their corresponding instances generate the same result when executed by the 
system.  

 
Fig. 8. Equivalent instructions of navigational tasks 
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5   UsiXML support for vocal interaction 

5.1 Expanded model 

Based on the shortcoming identified in Section 2.2 we expanded the UsiXML 
model in order to support the navigational task in vocal user interfaces. The following 
objects were introduced and defined: 
 Grammar: is an enumeration, in a structured and compact form, of a set of 

utterances (i.e., words and phrases) that constitute the acceptable user input for a 
given vocalInput. The grammar can be internal (i.e., it is specified within the 
UsiXML document) or external (i.e., it is specified in an external file referenced 
from the UsiXML document by the defaultContent attribute). The attributes are: 

 mainPart: is the first part of the grammar that will be treated by the system. 
 Part: contains other part elements or available input items. The attributes are: 

 structure: specifies how the user’s inputs should be uttered in order to be 
recognized by the system. There are three possible values: choice (i.e., the 
grammar items are alternative inputs), sequential (i.e., sequence of grammar 
items that have to be uttered one after another in the order of their 
appearance) or asynchronous (i.e., sequence of grammar items in which the 
items are uttered in an order-independent manner). 

 multiplicity: indicate how many times the enclosed items may be repeated. 
The default value is 1. The multiplicity is defined as follows:  
 X (where X>0) = the items are repeated exactly X times. 
 X-Y (where 0≤X<Y)= the items are repeated between X and Y times 

(inclusive) 
 X- (where X≥0) = the items are repeated X or more times. 

 Item: enables to specify a grammar input or to reference another part element. 
The grammar input is specified by the defaultContent attribute. The same 
attribute is used to specify the referenced part as a string containing the 
“#“symbol followed by the name of the part element. The attributes are: 

5.2   Results 

According to the expanded UsiXML model we present hereafter (Figure 9) the 
UsiXML specification for a vocal user interface that enables users to utter 
navigational task over large scale images. As specified by the structure attribute of 
the main part of the grammar, the elements composing the instruction have to be 
uttered sequentially in order to be recognized by the system. 
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Figure 9. Expanded UsiXML specification for navigational tasks in VUIs 

 
The expanded UsiXML specification for the description of vocal user interfaces for 

navigational tasks offers a set of advantages in terms of: 
 Flexibility: all the composing elements of an instruction can be specified 

sequentially or asynchronously or a sequence of two elements can be combined 
asynchronously with the third one or an asynchronous combination of two 
elements can be combined sequentially with the third one.  Table 1 illustrates the 
UsiXML specification of the main part of a navigational task grammar for all 
possible structures of elements composing an instruction. The predefined order of 
utterance is the Action followed by the X Coordinate and the Y Coordinate. 
Other structures can be specified by changing the order of appearance of the 
elements within the instruction (e.g., Y Coordinate, Action, X Coordinate). The 
notations in the table are as follows: 

A = Action 
X = X Coordinate 
Y = Y Coordinate 
>> = sequence of two items/parts 
|=| = order-independent between two items/parts 

 Reusability: as a navigational instruction is split into  atomic elements (i.e., 
action, XCoordinate, YCordinate) who’s values are specified in particular part 
elements of a grammar, these values can be reused in other grammars 
independently of the type of sequence between them (i.e., sequential, 
asynchronous, or a combination of them).  
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Structure of 
the instruction 

UsiXML specification 

A >> X >> Y 

 

A |=| X |=| Y 
 

A >> (X |=| Y) 

 

A |=| (X >> Y) 

 

(A |=| X) >> Y 

 

(A >> X) |=| Y 

 

Table 1. UsiXML specification for all possible types of navigational instruction structure 

6 Conclusions and future work 

As the taxonomy introduced in this paper suggests there are a large number of 
choices to make when designing or choosing the available navigational tasks and their 
concretization in a modality or another. Improved design based on controlled usability 
studies could improve the speed, error rates and subjective satisfaction. As the 
guidelines are limited and very few have been validated, the abstraction of  the results 
of these studies into a knowledge base of ergonomic rules applied automatically by a 
tool over interface specifications seems to us a step forward  for the improvement of 
the design process of multimodal interaction with large scale images. This is already 
confirmed by the successful results obtained with graphical user interfaces. 

As future work we will address as well the tactile interaction which proved to be 
very effective especially in combination with the vocal modality. For this purpose we 
intend to expand the UsiXML language in order to respond to the requirements of 
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tactile interaction, as well. Furthermore, we will continue to improve the usability 
adviser tool and the knowledge base be adding new ergonomic rules related to the 
multimodal interaction. 
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