
M. Winckler, H. Johnson, and P. Palanque (Eds.): TAMODIA 2007, LNCS 4849, pp. 112–125, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Method Engineering of
Model-Driven User Interface Development

Kênia Sousa, Hildeberto Mendonça, and Jean Vanderdonckt

Université catholique de Louvain, IAG-Louvain School of Management,
Information Systems Unit (ISYS)

Place de Doyens 1, B-1348 Louvain-La-Neuve (Belgium)
{sousa, mendonca, vanderdonckt}@isys.ucl.ac.be

Abstract. Model-driven user interface development environments and their as-
sociated methodologies have evolved over time to become more explicit, flexi-
ble, and reusable but they still lack to reach a level that allows tailoring a
method to the reality of software development organizations and their projects.
In order to address this shortcoming, method engineering provides strategies to
define and tailor software engineering methods. They should address any us-
ability concerns, which are primordial for the integration of model-driven user
interface development methods in the competitive reality of software organiza-
tions. To address the issues of explicitly defining a flexible method, we defined
a strategy based on method engineering for model-driven user interface devel-
opment that uses usability goals as a starting point. With the application of this
strategy, we aim to help method engineers executing the method with more ef-
ficiency when defining or tailoring methods and facilitate the application of
model-based user interface development methods in software organizations.

Keywords: model-driven user interface development, methodologies, method
engineering, business process modeling, usability.

1 Introduction

Any development method or methodology, whether it is generic or specific for User
Interface (UI) for instance, is usually decomposed into three related axes:

1. Models that capture different facets of the future interactive application.
2. An Approach which governs the actions conducted on the various models.
3. Software that supports executing the approach based on the models.

On the one hand, substantive efforts have been devoted to the definition and the
usage of models, and extensive development of support software has been achieved.
On the other hand, the approach aspect has received less attention over the past dec-
ades. Even though, there are many User Interface Development (UID) methods that
use task models as a starting point to elicit user requirements and more precisely un-
derstand user cognition in order to make UIs more usable. Such a growing interest for
models is due to the need to provide a more systematic approach to UID.

Professionals working in systems development usually follow a defined software de-
velopment process, and when it comes to UID, many professionals do their activities

 Towards Method Engineering of Model-Driven User Interface Development 113

more empirically because there is still resistance to the application of usability method-
ologies in software organizations [26], such as resource constraints and lack of knowl-
edge about usability are the factors that most influence professionals. But, a formal UID
method requires efficiency to be integrated into software development organizations.
Model-based UID comes as a solution to improve efficiency by reusing models, reduc-
ing development efforts, among other benefits [3].

To make model-based UID methods applicable in the competitive reality of soft-
ware development organizations, they need to be explicitly defined with the possibil-
ity of easy adaptation when it is necessary to consider constraints pertaining to
specific projects [27,33]. Software organizations and their projects have specific char-
acteristics, which require methods to be tailored, for instance, the skills and quantity
of professionals affect how the method could be applied. UID is a creative process in
which professionals feel the need for flexibility in their work to address the growing
complexity of interactive systems. Therefore, a rigid method is no longer desired and
there is a need to support method definition and adaptation. In the reality of software
organizations and the need for tailoring the method for specific projects, the possibil-
ity to reuse pre-defined method specifications aids in accomplishing efficiency.

Considering this scenario, our main research question is: How can method engi-
neers define a model-based (or model-driven) UID method appropriate for the reality
of the software organization and its projects?

This research work aims to contribute in supporting the application of model-based
UID methods efficiently by providing flexibility in its definition. Considering that the
existing methods are diffused and applied in different projects around the world, such
knowledge and experience acquired can not be taken for granted. Therefore, it is not
the intention of this work to define a method nor to compare existing methods be-
cause we consider that a more appropriate method is adapted to the problem domain
or context of the project, which has been investigated since the early 90’s [17,27].

Concerning a possible automation for this support, it is important to address issues
related to the creation and maintenance of a method base with propagation of changes
in method specifications; how the model editors are integrated with the method tool;
collaboration between professionals in the creation of models; the automatic or semi-
automatic generation of UIs; coordination of the use of tools; change management of
models; and support coordination of cooperative work. Solutions for these issues are
appropriately addressed by technology for process automation, which allows execut-
ing methods. But such technology requires explaining many details that are not the
focus of this work, but subject for another ongoing work.

This paper compares some existing solutions for the definition of methods and points
out some shortcomings when considering model-based UID. In the upcoming sections,
it proposes an approach for defining a model-based UID method by analyzing goals and
activities, and it concludes by presenting the expected advantages and future work.

2 Related Work

A survey performed on Model-Based User Interface Development Environments (MB-
UIDE) [16] showed that most of them provide a methodology for UI generation. These
environments however support the execution of the methodology by automating some

114 K. Sousa, H. Mendonça, and J. Vanderdonckt

steps to generate a running UI or a specification of the UI; and even though some favor
concurrent work or different sequence possibilities, they do not allow adapting the
methodology according to the context of the project.

There are many MB-UIDEs that follow a formalized method [6,28,32], but their
supporting tools do not provide facilities to change the sequence of the method activi-
ties, thus restricting the possibilities to adapt the method. Fig. 1 depicts the level of
method flexibility of MB-UIDEs over time: oldest systems in the 90s had no method
at all, except perhaps the one induced by the software; old systems like TRIDENT [5]
has a very limited method flexibility since the method is completely coupled to the
software and no tailoring is possible; TEALLACH [16] offers some flexibility since the
design can start from one of the task, domain, and presentation models and evolve to
the other models depending on the project; Cameleon-compliant software [10] are
much more numerous today ([14,17,22,28,30] among others) and provide some adap-
tation of the method they rely on.

2000
Teallach

2005
Cameleon-
compliant

tools

1995
Trident

t

Method
flexibility

low

medium

high

1990
CT-UIMS

none
2000

Teallach
2005

Cameleon-
compliant

tools

1995
Trident

t

Method
flexibility

low

medium

high

1990
CT-UIMS

none

Fig. 1. The evolution of MB-UIDEs

The TEALLACH design process [16] aims to support the flexibility for the designer
lacking in existing environments by providing a variety of routes in the process; from
one entry point, the designer/developer can select any model to design independently
or associate with other models. Even though this is a flexible approach to design UIs,
it still hinders a complete flexibility because it is restrictive to the sequence of ma-
nipulation of models. Its flexibility is not extended enough to address the entire set of
activities, roles, tools, and artifacts. For example, if a software organization aims at
applying a method with such characteristic, it is limited by a set of models and activi-
ties implemented in the environment. Following, we present an overview of the as-
sessment of model-based methodologies considering three main criteria:

Explicitness. Most methodologies have some kind of method definition, but not all
aspects are explicitly defined, such as the association of roles, activities, models, and
tools. For instance, some define the lifecycle as a sequence of transformation between
models [32], some associate activities with the creation of models, but there is no as-
sociation with the role responsible for executing them [6], while others have the
methodology implemented in the environment, but not explicitly defined. Most of

 Towards Method Engineering of Model-Driven User Interface Development 115

them do not mention tool in the lifecycle because their proposal is an environment to
support the lifecycle.

Flexibility. The methodologies that are part of a MB-UIDE are not flexible enough
[16], but TEALLACH comes as a solution to fulfill this need. Even though it provides a
flexible approach, in the point of view of software development organizations, flexi-
bility has a broader sense, which advocates the ability to change any aspect of the
method and integrate with any existing process and tool.

Reuse. Some methodologies in MB-UIDE have a set of activities to be performed,
within them, there is usually a set of activities that are not mandatory and can be exe-
cuted or not, depending on the project’s need. But, the idea of reuse is to offer a larger
set of activities that provide a wider range of possibilities in different types of projects
that could be selected for the method as necessary. This type of strategy is not com-
mon in MB-UIDE since the methodology is composed of a small set of activities tar-
geted at a specific goal, such as in the use of patterns [28].

For application in real projects, existing approaches and their environments require
organizations to start from scratch to apply the methodology available in the envi-
ronment. To enhance the effect of methods, we need to adapt existing methods or cre-
ate a new one that fits to the characteristics of each new project [27].

In a response to this demand, the term method engineering has been introduced as
the “engineering discipline to design, construct and adapt methods, techniques and
tools for the development of information systems.” [7,8]

As an effort to address demands of flexible methods, there are several proposals to
automate method engineering, as one of them, Computer Aided Method Engineering
(CAME) supports building project-specific methods [27]. CAME has two types of
tools; the first one is a method editor that creates a method and the second one is a
generator of model editors based on the method meta-model to support the created
method. This approach to generate CASE tools based on the method description de-
creases the possibilities of applying the newly created method with external tools,
which are currently widely accepted for modeling software systems, as proposed in
[17]. This work does not mention how this proposal applies in projects in which the
software organization already has standardized a set of tools.

MetaEdit+ offers a CAME environment that allows method specification, integra-
tion, management, and maintenance [33]. It focuses on reuse and maintenance aspects
for methodology specifications. It provides five strategies when requirements change
may affect both the generated models and also the methodology. One detected draw-
back is that there is still no feature to support the reuse operation in building relation-
ships between methodologies. We envision that during method specification it is
primordial to allow integration with other methodologies because software organiza-
tions already applying a method may want to accommodate new techniques, in order
not to start from scratch with a brand new method.

Decamerone [19] provides a way to adapt and integrate methods stored in a
method base. Mentor [29] provides patterns for method engineers to easily design the
method. An important aspect is that the generated methods and/or model editors are
aimed for information system development, such as database systems, such editors do
not address the complexity and creativity necessary in model-based UID.

After analyzing some approaches, the major weaknesses in these approaches is
that MB-UIDEs focus on a specific and not so flexible methodology and CAME

116 K. Sousa, H. Mendonça, and J. Vanderdonckt

tools, even though they provide explicitness, flexibility and reuse, they only focus
on system development, letting aside the concerns of usability, therefore not fully
addressing the definition of model-based UID methods. MB-UIDEs do not allow
the definition or adaptation of a method according to the characteristics of the or-
ganization and project, which makes them difficult to introduce certain activities
that support model-based UID, such as version control. CAME tools are limited to
software engineering models and method fragments and since they use a product
meta model to generate model editors, they can profit from a meta model for UI
models. Therefore, there is a need of interaction between MB-UIDEs and method
engineering environments.

In this paper, our goal is to suggest a Model-Based User Interface Method Engi-
neering that can address issues related to method engineering for model-based UID.
We shall investigate model-based UID activities to be performed by designers and
other usability team members to envision how usability goals specified by stake-
holders in the beginning of the project affect the way the usability team works. In
other words, we seek to demonstrate the relationship between model-based UID
method activities and the desired usability goals and how this association helps out-
line a method that best suits the context of the project.

3 UID Activities

Considering the evolution of MB-UIDEs and their methodologies over time, it is no-
ticeable the increase in flexibility, as presented in Fig. 1. The Cameleon Reference
Framework [10] brings a solution that supports the realization of multiples types of
development paths within a single framework. This framework structures a set of
models that provide a support for the current user interaction challenges. This frame-
work has 5 models distributed in 4 levels of abstractions in order to express the UID
life cycle for different contexts of use. These levels of abstraction are aligned with the
model-driven approach, which aims to reduce both the amount of developer effort and
the complexity of the models used [18].

The language UsiXML [22] was created as a XML extension to describe UIs for
multiple contexts of use, such as graphical, auditory and vocal user interfaces, virtual
reality, and multimodal user interfaces. As a language explicitly based on the Came-
leon Reference Framework, it adopts four development steps: 1) Task & Concepts, 2)
Abstract User Interface (AUI), 3) Concrete User Interface (CUI), and 4) Final UI. The
first step generates the task model, domain model and context model, the second step
generates the AUI, and the third step generates the CUI. The language does not con-
sider the Final UI as the framework does. The UsiXML methodology is structured as
presented in Fig. 2 [30].

Fig. 2. The distribution of UsiXML models

 Towards Method Engineering of Model-Driven User Interface Development 117

The UsiXML language will be used to exemplify our proposal in the next sections
since it provides the necessary support to represent models in a structured form and it
supports the flexibility provided by the Cameleon Framework.

There is a suite of tools, automated techniques, and a framework to support the
creation of models, and there is also a running effort to define a detailed model-based
UID method. As follows, we explain how we intend to define such a method and how
to integrate it with a software development process.

3.1 Theoretical Concepts

In this section, we describe the main theoretical concepts considered as the foundation
of our proposal: model-based UID method engineering.

The proposed structure is based on the definition of method content from the Soft-
ware Process Engineering Metamodel (SPEM), a meta-model for defining software
development processes [25]. Considering that SPEM is “limited to the minimal ele-
ments necessary to define any software and systems development process, without
adding specific features for particular development domains or disciplines” [25], we
aim to add specific elements for UID. The main goal is to make usability as a central
point not only for UI designers, but even before they come into action during software
development processes; making usability also a concern for method engineers.

Fig. 3 depicts a class diagram with the most relevant elements for the definition of
a model-based UID method. This proposal shall evolve progressively to address the
organization of method activities in a process lifecycle nor does it consider the
method enactment (or execution). This proposal extends the basic elements of a
method engineering notation by associating usability goals with activities, which will
be presented in the next sub-section. In general, a method is defined by describing
Activities, which are selected for a Project based on Usability Goals. Activities are
performed by Roles, and act upon Work Products using Tools to manage the work
products, which can be UI Models.

Usability Goals should be established early in the project to drive professionals
into focusing on UID efforts, and to use these goals as precise resources to evaluate
their work towards accomplishing these goals. Usability goals can shorten the UID
lifecycle, as stated in the Usability Engineering Lifecycle [23]. This methodology es-
tablishes usability goals in the requirements analysis phase and uses them to assess
UIs during usability evaluation. In our work, usability goals have yet another purpose
because they are used in the identification of activities that are appropriate for a spe-
cific project. The impact that usability goals can bring to method definition is to pro-
vide a manner to make method engineers (as well as project managers) more aligned
with usability from the beginning until the end of the project, in order to make sure
that all stakeholders value the importance to check whether or not such goals were ac-
complished in the end.

Projects are composed of activities that are performed to develop a system. Activi-
ties represent the work that is performed by roles when acting upon work products
and using a tool. Roles define a set of competencies that professionals must have to
execute such role by performing activities and being responsible for work products.
Work Products are assets or artifacts that are used, produced or updated during the
execution of activities using a tool. Work Products can be input or output of activities

118 K. Sousa, H. Mendonça, and J. Vanderdonckt

Fig. 3. Concepts for Model-Based UID Method Engineering

performed by roles. For a model-based UID method, the main work products are UI
models. Tools support the execution of activities by managing work products, that is,
a tool can manage one or more kinds of work products.

Activities can also be supported by other kinds of implementation besides tools,
when it is necessary to implement functionalities that do not need tools or that can be
available in more than one tool. In such cases and considering the current technology
for process automation, we propose the use of web services.

In general, web services “allow access to a functionality via the web using a set of
open standards that make the interaction independent of implementation aspects, such
as the operating system platform and the programming language used” [12]. This
technology promotes a high level of coherence and a low level of coupling, which
contributes to assemble services to compose a method. Business Process Execution
Language (BPEL) [4] was defined by W3C to promote assembling services. It has
reached a good maturity and it is supported by the main architectures available in the
market, such as JEE and .NET.

3.2 Strategy to Define a Method

Aiming at systematizing how a method can be defined and evolved, an evolution
driven method engineering approach [2] was defined with two main goals: construct a
product model and construct a process model. Focusing on the process model, this
approach proposes four strategies to describe a process model:

i) activity-based, description of a set of actions to be carried out;
ii) context-driven, description considering the context, which is composed of the

situation in which the product is undergoing transformation and the intention to be
achieved in this situation;

iii) pattern-driven, use of a catalogue of patterns with the identification of generic
problems and proposal of solutions applicable whenever the problem occurs;

iv) strategy-driven, integration of several process models into a complex multi-
process model.

 Towards Method Engineering of Model-Driven User Interface Development 119

We selected the activity-based strategy to help method engineers in identifying ac-
tivities to construct a method. We have adapted this strategy to the HCI domain, by
proposing the identification of usability goals and their association with UID activities
that can be included in the method to achieve the desired goals.

Depending on the usability goals presented early in the project specification and
system requirements, a set of UID activities could be selected as part of the tailored
method. Consequently, the activities performed by the professionals are aligned with
the usability goals of the project with two main advantages. First, they are more effec-
tive in performing their work because each activity performed has a specific purpose.
Second, if any non-planned goal is presented during the UID lifecycle, the method
can be adapted with the selection of appropriate activities. A usability goal is a ge-
neric specification that can be addressed by one or more UID activities (see Table 1).

Table 1. Association of Goals and Activities

Usability Goal UID Activity Description
Design UIs considering users’
mental models to perform their
tasks

Create task model Describe tasks in a hier-
archical manner.

Design user-centered UIs Create context of
use model

Describe user’s character-
istics, platform used and
environment.

Design UIs focused on the ap-
plication domain

Create domain
model

Describe the manipulated
data.

Design for many devices Create Abstract UI
(AUI) model

Specify objects in a UI,
independent of device.

Design focused on the look-
and-feel of the system

Create Concrete UI
(CUI) model

Specify positioning of ob-
jects in a UI, considering
device constraints.

Create context of
use model

Specify user’s character-
istics.

Adapt the user interaction ac-
cording to users’ personal
characteristics Create task model Specify user’s tasks ac-

cording to their specific
characteristics.

Transform task and
domain models into
AUI model

Receive task model and
domain model as input
and generate AUI model.

Automate the generation of
UIs considering many devices

Transform AUI
model into CUI
model

Receive AUI model as
input and generate CUI
model.

Automate the generation of
UIs for a specific device

Transform task and
domain models into
CUI model

Receive task model and
domain model as input
and generate CUI model.

Automate the generation of
specification of UIs

Transform AUI into
task model

Receive AUI as input and
generate task model.

120 K. Sousa, H. Mendonça, and J. Vanderdonckt

An activity can be associated with one or more usability goals, which is the case of
the UID activity “Create task model”. But, this does not mean that once the position
and ordering of this activity has been defined, it has to be repeated twice for the dif-
ferent goals to be accomplished. On the other hand, it means that if a project needs to
achieve both goals, the execution of this activity addresses both of them.

Depending on the usability goals, activities can be selected independently of each
other, which is the case for the activities “Create task model” and “Create context of
use model” with their own specific goal. But, in cases of a usability goal triggering
more than one activity, their order of execution is clearly specified because one activ-
ity has a direct impact on the other, which is the case of executing the activity “Create
context of use model” before the activity “Create task model” for the usability goal
“Adapt the user interaction according to users’ personal characteristics”.

In cases when stakeholders state that they want some kind of automation in UID to
achieve more productivity, certain activities can be selected depending on the goal.
For instance, the activity “Transform task and domain models into AUI model” is ap-
propriate when various devices are considered and the activity “Transform AUI
model into CUI model” also aids in the productivity level of designers since they re-
ceive UIs with the necessary objects as a starting point to work on the look-and-feel.
The activity “Transform task and domain models into CUI model” is useful when one
specific device is the aim.

UID activities that are commonly used may already be included in software devel-
opment processes, such as defining a style guide, prototyping, usability evaluation,
among others. But, in cases where such activities are not yet part of the organizational
software process, usability goals must be considered to correctly apply these activi-
ties. It is our intention to further improve the list in Table 1 with usability goals associ-
ated to such activities.

3.3 Tool Support

Tool support for method engineers can be very useful for their productivity when de-
fining or customizing methods. The process of deciding which are the most appropri-
ate activities for specific projects requires knowledge and experience, but tools can
help them to maintain a base of experiences and learned lessons, when easily accessed
can add value to their work. Therefore, in addition to the strategy presented in the
previous section, we selected Business Process Modeling Notation (BPMN) as a stan-
dard with available tools to support method engineers.

BPMN was proposed to be applied in the representation of organizational proc-
esses [24], and we propose to use BPMN in method definition because: i) it has be-
come a pattern for process modeling; ii) there are many tools available in the market
implementing it; iii) it has been intended as a human-readable layer that hides the
complexity of designing transactional business processes; and iv) BPMN can be trans-
formed in BPEL to be automated using web services, as described at the end of
section 3.1.

There are many tools available that implement BPMN, which provide the neces-
sary support for method engineers that follow a common structure as in the tool pre-
sented in Fig. 4. But, after the assessment of model-based UID methods, we noticed
the need to use method engineering techniques to improve method definition.

 Towards Method Engineering of Model-Driven User Interface Development 121

Therefore, we have analyzed the alignment of BPMN with a software engineering no-
tation, more specifically with SPEM. The alignment and complementary aspect is
confirmed by quoting the SPEM documentation [25]: “SPEM 2.0 does not aim to be a
generic process modeling language, nor does it even provide its own behavior model-
ing concepts. SPEM 2.0 focuses on providing the additional information structures
that you need for processes modeled with UML 2.0 Activities or BPMN/BPDM to
describe an actual development process.” Using a process modeling tool to define a
method, we have followed three steps, as pointed out in Fig. 4:

1. Definition of activities – we have defined a list of activities for a model-based UID
method based on the Cameleon Framework.

2. Association of BPMN and SPEM – we have associated BPMN elements with
SPEM elements to give meaning and use business process elements in the method
engineering domain.

3. Reuse of activities – drag and drop activities from the pre-defined list (on the left
of the tool) and reuse them when defining the method for a specific project, in the
desired or recommended order.

The method defined on the right side of the tool in Fig. 4 is clearly related with the
concepts defined in Fig. 3. For example, the Role “Usability Expert” performs the Ac-
tivity “Create AUI” and acts upon (by creating) the Work Product, which in this case
is a UI Model “AUI Model” by using the Tool “IdealXML”. To complete, this activ-
ity is present in this method because the stakeholders stated the Usability Goal “De-
sign for many devices”, which is directly associated with the activity “Create AUI”.

After analyzing which activities are important to achieve certain usability goals and
selecting the appropriate ones, it becomes easier to define a method. We must fur-
thermore be able to define methods that are applicable in software development

Fig. 4. Activity selection using a process modeling tool [31]

122 K. Sousa, H. Mendonça, and J. Vanderdonckt

projects and also provide support for model-based UID. Following, we demonstrate
an example of integration of model-based UID activities in a software development
process.

4 Integration of Methods

In an attempt to make UID methods really effective in real projects, there have been
various efforts to bridge the gap between software engineering and HCI. Some pro-
posals focus on user involvement [15], on how to help software engineers execute us-
ability techniques [13], on addressing usability issues using architectural patterns
[20], others are product-oriented and adapt an object-oriented notation to support HCI
techniques [11], but all aim at making usability techniques applicable in real-life soft-
ware development projects.

The technique to define project-specific methods from parts of existing methods is
called method assembly [8], which can produce a powerful new method. Using this
technique, we integrate the best from both domains: activities from a world-wide ac-
cepted commercial software development process, the Rational Unified Process
(RUP) [21]; and activities for creating UI models. Works, such as [9], demonstrate
that the integration with RUP can make model-driven methods in general more acces-
sible to a wider audience of software engineers.

While some HCI methods have specific and unique structures, like the Usability
Engineering Lifecycle [23], many proposals that integrate SE and HCI are based on
the RUP structure, such as the integration of development activities with usability
techniques [13] is based on the RUP process structure; and the UCD [15] creates a
new discipline for usability design in the RUP.

This is an example of the integration of a model-based UID method and a software
development process. Picture a software organization that already has a well-deployed
software development process, such as the RUP and wants to focus on UID. For

Fig. 5. Integration of software and UID activities

 Towards Method Engineering of Model-Driven User Interface Development 123

instance, when the organization already has a standard way to do tests, reviews, and
controls of change requests, but it wants to increment its way of working with models,
it is possible to make a smooth integration. In Fig. 5, we present activities related to
model-based UID: create context of use model and create AUI, and SE activities: re-
view requirements, review the design, and submit change request.

Our proposal to support the integration scenario is provided with the association of
goals with activities that can be appropriately allocated in the method. For instance, if
a new project aims at designing UIs for many devices, the activity “Create AUI” is
included in the organizational software process to accomplish this usability goal, as
specified in Table 1. In addition, the method engineer might also need support in de-
fining the sequence of the activities; therefore, a proposed model-based UID method
that integrates UID activities and RUP activities can be provided as a source of guid-
ance, which is subject for future work.

5 Conclusion

The main goals we intend to achieve with our proposal of a model-based UID method
engineering is to aid method engineers when creating methods more efficiently and
also to make model-based UID methods applicable in the competitive reality of soft-
ware development companies.

Method engineers can define a model-based UID method appropriate for the reality
of the software organization and its projects using an activity-based strategy. This
strategy is founded on usability goals and brings together two different domains:
method engineering and UID methods. In other words, when method engineers rely
on usability goals to define a method, they also profit from clearly specifying goals
that must be accomplished after each activity is concluded.

Our ongoing and future works are related to extending this proposal to address the
organization and sequence of UID activities in a process lifecycle, such as the organi-
zation of activities in phases and disciplines; to provide guidance for the integration of
UID and software engineering activities; to define activities related to UID, but not
necessarily to model-based design and associate them to usability goals; and to pro-
pose a solution to execute the method and a strategy for model traceability [1].

Acknowledgments. We gratefully acknowledge the support of the Program Alban,
the European Union Program of High Level Scholarships for Latin America, under
scholarship number E06D103843BR and the Similar network of excellence
(http://www.similar.cc), the European research task force creating HCI similar to hu-
man-human communication of the European Sixth Framework Program.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Systems Journal 45(3), 515–526 (2006)

2. Ayed, M.B., Ralyte, J., Rolland, C.: Constructing the Lyee method with a method engi-
neering approach. Knowledge-Based Systems 17(7-8), 239–248 (2004)

124 K. Sousa, H. Mendonça, and J. Vanderdonckt

3. Barclay, P.J., Griffiths, T., McKirdy, J., Kennedy, J.B., Cooper, R., Paton, N.W., Gray, P.:
Teallach - a flexible user-interface development environment for object database applica-
tions. Journal of Visual Language and Computing 14(1), 47–77 (2003)

4. BEA Systems, IBM Corporation, Microsoft Corporation, SAP AG, Siebel Systems: Busi-
ness Process Execution Language for Web Services, V1.1 (May 2003)

5. Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J.: Computer-Aided Win-
dow Identification in Trident. In: Nordbyn, K., Helmersen, P.H., Gilmore, D.J., Arnesen,
S.A. (eds.) Proc. of 5th IFIP TC 13 Int. Conf. on Human-Computer Interaction Interact
1995, Lillehammer, July 1995, pp. 331–336. Chapman & Hall, London (1995)

6. Botterweck, G., Hampe, J.F.: Capturing the Requirements for Multiple User Interfaces. In:
Proc. of 11th Australian Workshop on Requirements Engineering AWRE 2006, Adelaide,
December 9, 2006, Univ. of South Australia (2006)

7. Brinkkemper, S.: Method engineering: Engineering of information systems development
methods and tools. Information Software Technology 38(4), 275–280 (1996)

8. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24(3), 209–228 (1999)

9. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approach to model-driven develop-
ment. IBM Systems Journal 45(3), 463–480 (2006)

10. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

11. Costa, D., Nóbrega, L., Nunes, N.: An MDA Approach for Generating Web Interfaces
with UML ConcurTaskTrees and Canonical Abstract Prototypes. In: Proc. of 5th Int.
Workshop on Task Models and Diagrams for user interface design Tamodia 2006. LNCS,
vol. 4385, pp. 95–102. Springer, Heidelberg (2006)

12. Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services - The Web Service Modeling Ontology. Springer, Berlin
(2007)

13. Ferré, X., Juristo, N., Moreno, A.M.: Framework for Integrating Usability Practices into
the Software Process. In: PROFES 2005. Proc. of 6th Int. Conf. on Product Focused Soft-
ware Process Improvement, Oulu, June 13-18, 2005. LNCS, vol. 3547, pp. 202–215.
Springer, Heidelberg (2005)

14. Furtado, E., Furtado, J.J.V., Silva, W.B., Rodrigues, D.W.T., Taddeo, L.S., Limbourg, Q.,
Vanderdonckt, J.: An Ontology-Based Method for Universal Design of User Interfaces. In:
Seffah, A., Radhakrishnan, T., Canals, G. (eds.) Proc. of Workshop on Multiple User Inter-
faces over the Internet: Engineering and Applications Trends MUI 2001 (Lille, September
10, 2001)

15. Göransson, B., Gulliksen, J., Boivie, I.: The usability design process - integrating user-
centered systems design in the software development process. Software Process: Im-
provement and Practice 8(2), 111–131 (2003)

16. Griffiths, T., Barclay, P.J., McKirdy, J., Paton, N.W., Gray, P.D., Kennedy, J.B., Cooper,
R., Goble, C.A., West, A., Smyth, M.: Teallach: A Model-Based User Interface Develop-
ment Environment for Object Databases. In: Proc. of UIDIS 1999, pp. 86–96. IEEE Com-
puter Society Press, Los Alamitos (1999)

17. Grundy, J.C., Venable, J.R.: Towards an integrated environment for method engineering.
In: Proc. of IFIP WG 8.1 Conf. on method Engineering, pp. 45–62. Chapman and Hall,
Sydney, Australia (1996)

18. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal 45(3), 451–461 (2006)

 Towards Method Engineering of Model-Driven User Interface Development 125

19. Harmsen, F.: Situational Method Engineering. Moret Ernst & Young Management Con-
sultants (1997)

20. Juristo, N., López, M., Moreno, A.M., Sánchez-Segura, M.I.: Improving software usability
through architectural patterns. In: ICSE Workshop on SE-HCI 2003, pp. 12–19 (2003)

21. Kruchten, Ph.: The Rational Unified Process - An Introduction. Addison-Wesley, New Jer-
sey (2000)

22. Limbourg, Q., Vanderdonckt, J.: UsiXML: A User Interface Description Language Sup-
Porting Multiple Levels of Independence. In: Matera, M., Comai, S. (eds.) Engineering
Advanced Web Applications, pp. 325–338. Rinton Press, Paramus (2004)

23. Mayhew, D.: The Usability Engineering Lifecycle - A Practitioner’s Handbook for User
Interface Design. Morgan Kaufmann Publishers, San Francisco (1999)

24. OMG, Business Process Modeling Notation Specification, V1.0 (February 2006)
25. OMG, Software Process Engineering Metamodel Specification, V2.0 (February 2007)
26. Rosenbaum, S., Rohn, J.A., Humburg, J.: A toolkit for strategic usability: Results from

Workshops, Panels and Surveys. In: Proc. of ACM Conf. on Human Factors in Computing
Systems Proceedings CHI 2000, pp. 337–344. ACM Press, NY (2000)

27. Saeki, M.: Came: The first step to automated software engineering. In: Proc. of the OOP-
SLA 2003 Workshop on Process Engineering for Object-Oriented and Component-Based
Development, pp. 7–18 (2003)

28. Sinnig, D., Gaffar, A., Reichart, D., Seffah, A., Forbrig, P.: Patterns in Model-Based Engi-
neering. In: Proc. of CADUI 2004, pp. 195–208. Kluwer Academic Publishers, Dordrecht
(2004)

29. Si-Said, S., Rolland, C., Grosz, G., MENTOR,: A Computer Aided Requirements Engi-
neering Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE
1996. LNCS, vol. 1080, pp. 22–43. Springer, Heidelberg (1996)

30. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

31. Visual Paradigm. Business Process Visual Architect. Available at: http://www.visual-
paradigm.com/product/bpva/

32. Wolff, A., Forbrig, P., Dittmar, A., Reichart, D.: Linking GUI elements to tasks: support-
ing an evolutionary design process. In: Proc. of TAMODIA 2005, pp. 27–34. ACM Press,
New York (2005)

33. Zhang, Z., Lyytinen, K.: A Framework for Component Reuse in a Metamodelling-Based
Software Development. Requirements Engineering 6(2), 116–131 (2001)

	Towards Method Engineering of Model-Driven User Interface Development
	Introduction
	Related Work
	UID Activities
	Theoretical Concepts
	Strategy to Define a Method
	Tool Support

	Integration of Methods
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

