
A Review of XML-compliant User Interface

Description Languages

Nathalie Souchon and Jean Vanderdonckt

Université catholique de Louvain, Institut d’Administration et de Gestion
Place des Doyens, 1 - B-1348 Louvain-la-Neuve, Belgium

{souchon, vanderdonckt}@isys.ucl.ac.be

Abstract. A review of XML-compliant user interface description lan-
guages is produced that compares a significant selection of various lan-
guages addressing different goals, such as multi-platform user interfaces,
device-independence, content delivery, and user interfaces virtually de-
fined. There has been a long history and tradition to attempt to capture
the essence of user interfaces at various levels of abstraction for differ-
ent purposes. The return of this question today gains more attraction,
along with the dissemination of XML markup languages, and gives birth
to many proposals for a new user interface description language. Conse-
quently, there is a need to conduct an in-depth analysis of features that
make all these proposals discriminant and appropriate for any specific
purpose. The review is extensively conducted on a significant subset of
such languages based on an analysis grid and user interfaces that we
tried to implement across these languages.

1 Introduction

For years, Human-Computer Interaction (HCI) witnessed a perennial race for
the ultimate User Interface (UI) Description Language that would ideally cap-
ture the essence of what a UI could be or should be. A UI Description Language
(UIDL) consists of a high-level computer language for describing characteris-
tics of interest of a UI with respect to the rest of an interactive application.
Such a language involves defining a syntax (i.e. how these characteristics can be
expressed in terms of the language) and semantics (i.e., what do these character-
istics mean in the real world). It can be considered as a common way to specify
a UI independently of any target language (e.g., programming or markup) that
would serve to implement this UI.

The issue of UIDL was first raised when it was required to develop a UI like
a module of an interactive application rather than merely a series of lines codes.
In a second time, the issue was reinforced when the desire appears to model a
UI by a set of specifications so as to communicate these specifications and to
share them across stakeholders. Or to (semi-)automatically generate the code
of the UI, as desired in model-based approaches for developing UIs. When a UI
was required to be run simultaneously on different computing platforms, this

J.A. Jorge, N. Jardim Nunes, J. Falcão e Cunha (Eds.): DSV-IS 2003, LNCS 2844, pp. 377–391, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

378 N. Souchon and J. Vanderdonckt

need took shape in some language that would be exchanged from one platform
to another without any changes to avoid any extraneous development effort.

For some years, the race progressively slept. The wide availability of markup
languages and the capability of introducing any language based on XML meta-
language, along with the multiplicity of today’s available platforms (e.g., mobile
phone, smart phone, pocket PC, handheld PC, Tiqit PC, tablet PC, laptop,
traditional PC, and even wall screens) have awaken this race and have exacer-
bated it to a point where today more than a dozen of UIDLs exist that focus
on some of the desired characteristics. To shed light on this proliferation of
UIDLs, we conducted a systematic comparison based on an analysis grid. The
paper focus only on XML-based languages because XML is a well established
standard that is easily extensible and that could work with yet-to-be-invented
appliances without many changes. Furthermore, it is declarative and can be use
by non-programmers or occasional users.

For the purpose of the survey, we gathered and analyzed as much literature
as possible on each UIDL. Then, depending on available tools, we systematically
developed a multi-platform or multi-context UI for a simple dictionary so as to
identify the capabilities of the UIDL and the ability of this UIDL to be supported
by editing, critiquing, analysis tools, and, of course, tools for producing runnable
UIs, both by compilation/execution and by interpretation.

The remainder of this paper is structured as follows: section 2 reports on
some related work that have been considered as significant milestones in the
race for THE UIDL. Section 3 respectively describes each UIDL that has been
retained as significant in the comparison and identifies the main goals pursued
by each UIDL. Section 4 similarly describes alternate UIDLs that have been
considered for the comparison, but which are more restricted in scope or goals.
Section 5 defines the comparison criteria to be used in the comparison analysis
and provides the final analysis grids. Section 7 concludes the paper by keeping
only salient features of high interest for each considered UIDL.

2 Related Work

Historically, many approaches have emerged to solve the problem of the porta-
bility (without any extraneous development effort) of UIs on multiple platform.
Some approaches can be identified in the race for the ultimate UIDL [4]:

1. Binary emulation: This approach allows an application to be used on dif-
ferent platforms without having to be recompiled, thanks to a software emu-
lator that executes the Intel instruction set, the operating and the windowing
systems. Wabi (Windows Application Binary Interface), from SunSelect uses
this approach.

2. Virtual toolkits: Virtual toolkits have been introduced to reduce the effort
of development: the developer writes a unique code using a virtual Appli-
cation Programming Interface (API) that is executed on all the platforms
for which the API exists. In other words, this approach provides a software

A Review of XML-compliant User Interface Description Languages 379

layer between the application and the environment that makes the transla-
tion from one API to another. Two kinds of virtual toolkits exist:

– by actualisation (layered toolkits): the toolkit binds the virtual Ab-
stract Interaction Object (AIO) [25] to the real CIO of the platform by
actualizing them. For instance, X Virtual Terminal (Xvt) [26] gives C,
C++ interface for the presentation in OSF/Motif, Open Look, Macin-
tosh, Ms-Windows et IBM OS/2. The main benefit of this approach lies
in the large range of virtual primitives. Nevertheless, its usage is limited
by the presence of a massive run-time library. Indeed, the toolkit sup-
ports only those features already supported by both the source and the
target platforms.

– by re-implementation (emulation toolkits): the toolkit re-implements
each virtual AIO for each platform, it emulates the look and feel of each
native environment. For instance, Galaxy [10] offers a library of CIOs
that have the same layout on each platform.

Although these tools certainly contain some abstractions that are expressed
in a platform-neutral format, it does not accommodate with many platform
constraints.

3. Ported APIs: The tools based on this approach support native APIs (usu-
ally Windows) on other environments. It concentrates only on the source
and the destination platforms of the application and so, it supports a high
percentage of the source functionality on the destination platform. Windows
Interface Source Environment (WISE) from Microsoft is an example of such
a tool.

4. Tools generating adaptive UIs: Tools that generate a user interface which
can be adapted at runtime depending on the context of use. An example is
the BOSS-system [22] which is a component of the FUSE-architecture. The
user interface generated by BOSS is very flexible, e.g. the layout style of the
UI can change at runtime. Thanks to a hierarchical internal representation
of the UI that can be modified at any time by restructuring rules, and that
is consequently reflected by a UI refresh.

5. Multi-context tools at the logical level: Those tools generate at design
time a concrete UI for a specific context, from an abstract description of
the UI. The abstract description is written in a specific language that differs
from one tool to another. Among those tools is Liquid UI [3]. Most languages
of the two next sections belong to this approach, but only XML-compliant
languages will be considered in this paper.

3 Significant Contributions

In this section, the main contributions of XML-compliant languages for the def-
inition of UIs are analyzed, based on the available literature and tools.

380 N. Souchon and J. Vanderdonckt

3.1 UIML

The User Interface Markup Language [3] is a meta-language that allows designers
to describe the user interface (UI) in generic terms, and to use a style description
to map the UI to various operating systems, languages and devices. UIML was
created by Virginia Tech’s Center for Human Computer Interaction, Harmonia
Inc., and other organizations on uiml.org (http://www.uiml.org). Work on UIML
began in 1997.

A UIML document contains three different parts [2]: a UI description, a
peers section that defines mappings from the UIML document to external entities
(target platform’s rendering and application logic), and finally a template section
that allows the reuse of already written elements. In UIML, a UI is described as
a set of interface elements with which the end-user interacts. For each part, a
presentation style is given (e.g. position, font style, color), along with its content
(text, images etc.) and possible user input events and resulting actions.

The interface description is then rendered according to the specification of
the presentation component, and communicates with the application logic via
the logic definitions. The renderer either interprets UIML on the client device
(similar to the way a web browser renders an HTML file) or compiles it to
another language (like WML, HTML).

One big shortcoming of UIML is that, as it just offers a single language to
define the different types of user interfaces, it does not allow the creation of
user interfaces for the different languages or for different devices from a single
description: there is still a need to design separate UIs for each device.

UIML and the related products (LiquidUI) are still under development. Many
bugs exist and the installation of the tool is quite hard (installation issues are
not specified anywhere).

UIML version 3.0 was released last year. Conferences are organized each year.

3.2 AUIML

In 1998, IBM undertook an Advanced Technology project to develop a Device In-
dependent Markup Language in XML. This project (previously called DRUID)
ended up with a XML vocabulary called Abstract User Interface Markup Lan-
guage (AUIML) [14].

AUIML allows defining the intent (or purpose) of an interaction with a user
instead of focusing on the appearance. This means that the designers have to
concentrate only on the semantics of the interactions. Indeed, AUIML is intended
to be independent of any client platform, any implementation language, and any
UI implementation technology [6]. A single intent should run on many devices. A
UI is described in terms of manipulated elements (a data model that structures
the information required to support a particular interaction), of interaction el-
ements (a presentation model that specifies the look of the UI - choice, group,
table, tree) and of actions which allow to describe a micro-dialogue to manage
events between the interface and the data.

A Review of XML-compliant User Interface Description Languages 381

Besides the specification of the appearance of the UI, the presentation model
allows flexibility in the degree of specificity of what is expected of the renderer:
the designer can either decide to precisely control what is to be displayed or only
specify the interaction style, leaving the decision to the renderer. As AUIML is
mostly developed for internal use at IBM, most information is confidential. So
far, no editor tools are available and little is done in publicity. The rendering
engine remains confidential.

3.3 XIML

The eXtensible Interface Markup Language (XIML), the follower of MIMIC [20],
provides a way to describe a user interface without worrying about its imple-
mentation. It was initially developed by the research laboratories of RedWhale
Software Corp. It is now supported by the XIML forum (http://www.ximl.org),
an industrial organization dedicated to the research, the dissemination, the adop-
tion, and the standardization of XIML. The goal of XIML is to describe the UI
abstracts aspects (e.g., tasks, domain and user) and concrete aspects (i.e., pre-
sentation and dialogue) throughout the development life cycle. Mappings from
abstract to concrete aspects are similarly supported [9].

XIML is a hierarchically organised set of interface elements that are dis-
tributed into one or more interface components [19]. Theoretically, the language
does not limit the number and types of components that can be defined and
there is also no limit on the number and types of elements within each compo-
nent. In a more practical sense, however, XIML predefines five basic interface
components, namely: (1) the task component that captures the business pro-
cess and/or user tasks that the interface supports; (2) the domain component
which is a set of all the objects and classes used; (3) the user component that
captures the characteristics of the (group of) users that can use the application;
(4) the dialog component that determines the UI interaction, and (5) the
presentation component[19].

Besides the interface components, a XIML description is composed of at-
tributes and relations. An attribute is a feature or a property that has a value
and belongs to a component. A predefined set of attributes already exists. A rela-
tion links one or several component(s) together, within a same model component
or across several ones.

The definition of the language is on the way to be finished. An editor is
proposed to manage the different conception levels (which is still limited and
difficult to use). Although XIML specifications are intended to lead to code
generation at design time and code interpretation at runtime, no tool is available.

Nevertheless, a tool converts any MOBI-D [21] model specification into an
XIML specification and another one reverse engineers HTML pages into XIML
(Vaquita) [8].

3.4 Seescoa XML

Seescoa (Software Engineering for Embedded Systems using a Component Ori-
ented Approach) is a project that started in October 1999 and has to be finished

382 N. Souchon and J. Vanderdonckt

in September 2003, involving a research consortium of four Belgian university
partners. The main objective of Seescoa project is to adapt the software engi-
neering technologies to the needs of embedded software [13].

The Seescoa project proposes an architecture for runtime serialization of Java
user interfaces into a XML description. This XML description provides an ab-
straction of the user interface, which is described as a hierarchy of Abstract
Interaction Objects (AIO) [25]. Once a user interface has been serialized, and a
XML description produced, the description has to move to another device, where
it can be ”deserialised” into a user interface for the target device. This deserial-
isation involves mapping the platform independent AIO onto platform specific
CIO. Indeed, while parsing the XML document that contains an abstraction of
the user interface, the renderer of the target platform is free to choose other
ways to present the same functionality on the user interface. For every system a
XSLT is defined which maps the AIO of the abstract user interface description
to CIO on the foundations of the constraints of each platforms [12].

The XML description of the UI is an interface components (AIO) decompo-
sition. It describes the ”look and feel” of the UI. Besides the presentation tags
(up to now, six different interactors available), the action tag specifies the action
to be fired if the interactor is manipulated. Seescoa XML is still under develop-
ment and there is no stable version of the language up to now. A shortcoming
of this language is that it has only a conversation mechanism for Java User In-
terface, although more powerful mechanisms are being studied that would use
technologies as XML-RPC and WSDL (Web Services Description Language).

3.5 Teresa XML

Teresa XML is the XML-compliant language that was developed inside the
Teresa project, which is intended to be a transformation-based environment de-
signed and developed at the HCI Group of ISTI-C.N.R (http://giove.cnuce.cnr.it).
It provides an environment that supports the design and the generation of a con-
crete user interface for a specific type of platform [11]. The Teresa project take
place inside an European project (Cameleon IST).

The Teresa XML language is composed of two parts: (i) a XML-description
of the CTT notation [18] which was the first XML language for task models;
(ii) a language for describing user interfaces. Teresa XML for describing UIs
specifies how the various AIO composing the UI are organized, along with the
specification of the UI dialog.

Indeed, a UI is a set of one or more presentation element(s). Each presentation
element is characterized by a structure, that describes the static organization of
the UI (the AIOs [25]) and 0 or more connections, that gives information about
the relationships among the various presentations elements of the user interface
(it identifies the presentation element whose activation triggers the transition to
another presentation element). Each structure element can be either an elemen-
tary AIO or a composition of them. Each AIO can be either an interaction AIO
or an application AIO depending on whether or not an interaction between the
user and the application is involved [15].

A Review of XML-compliant User Interface Description Languages 383

Teresa XML is used in a tool (TERESA) that supports the generation of task
models, abstract UIs, and running UIs. This tool is still under development. Some
bugs still exist, that are often removed, as new versions are steadily produced.
The UIs generated by TERESA may contain some errors (e.g. links broken).

3.6 WSXL

The Web Services Experience Language (WSXL), released by IBM, is a Web
services centric component model for interactive Web applications. It is intended
for applications providing a user experience across the Internet [5]. The two goals
of WSXL are firstly to give a way to build web applications to a wide variety
of channels and secondly to create web applications from other ones. WSXL is
built on widely established and emerging open standards, and is designed to be
independent of execution platform, browser, and presentation markup languages.

WSXL uses base components to allow easy migration and adaptation of web
applications. An Adaptation Description can be associated with a WSXL base
component. It describes how the markup generated by the component can be
adapted to new channels. WSXL enables applications to be built out of separate
presentation, data, and control components; this helps developers to separate
design issues and facilitates the reassembly of multiple alternative versions of
the components in order to meet the requirements of separate channels, users,
and tasks.

The WSXL presentation component implements portTypes used to describe
and maintain DOM-accessible instances of presentation in WSXL applications.
The namespaces for elements used in presentation components are not fixed
by WSXL, though commonly useful ”widget” sets may be available such as
those defined in the XFORMS UI draft. WSXL presentation components may
generate output markup in any target XML language and should indicate which
languages may be requested. WSXL is currently not yet developed for mobile
user interfaces. WSXL is just designed to be the next piece of the set of web
services.

4 Other Contributions

4.1 XUL

The Extensible User Interface Language (XUL) is a Mozilla’s XML-based lan-
guage for describing window layout. The goal of XUL is to build cross platform
applications, making applications easily portable to all of the operating systems
on which Mozilla runs [1].

XUL provides a clear separation among the client application definition and
programmatic logic, presentation (”skins” consisting of CSS and images), and
language-specific text labels. As a result, the ”look and feel” of XUL applications
can be altered independently of the application definition and logic.

A UI is described as a set of structured interface elements (windows, menubar,
scrollbar, button ...), along with a predefined list of attributes. Scripts are added

384 N. Souchon and J. Vanderdonckt

that allow interaction with the user. Furthermore, to build cross platform web
applications, some bindings can be made between XUL and other technologies
introduced by Mozilla: (i) the eXtensible Bindings Language (XBL) which is a
markup language that defines new elements (methods, content, properties) for
XUL widgets; (ii) Overlays that are XUL files used to describe extra content for
the UI; (iii) XPCOM/ XPConnect that allows the integration of new libraries
and (iiii) XPInstall that provides a way to package XUL application. XUL has
its focus on window-based graphical user interfaces. This focus is also a limit.
XUL is not applicable to interfaces of small mobile devices. Furthermore, there
are no abstractions of interaction functionality available.

4.2 XISL

The Extensible Interaction Sheets Language (XISL) is a multi-modal interaction
description language. It is designed for describing interaction using multi-modal
inputs and outputs [7]. It separates the description of interactions from XML
contents and enables the XML contents to be used independently [17].

An interaction is described in terms of users operations (e.g. click, speech
input) for a XML element and actions (e.g. screen update, speech output)
based on the users operations. Only interactions are described. As XISL is a
multi-modal description language, it is designed to control and support parallel
and sequential inputs/outputs as well as alternative input.

The XISL execution system consists of three modules: a front-end module (a
UI that has audio capabilities, e.g. a microphone or a speaker), a dialog manager
module (it interprets XISL documents, manages dialog flows, and controls inputs
and outputs), and a document server module (a general web server).

4.3 AAIML

The Alternate User Interface Access standard (AAIML) is being developed by
the V2 technical committee of the National Committee for Information Tech-
nology Standards (NCITS).

To overcome the problem of accessibility to UIs for disable persons, the con-
cept of ”Universal Remote Console” (URC) has been introduced. It allows people
with disabilities to remotely control a variety of electronic devices (target de-
vice/service), such as copy machines or elevators, from their personal remote
control device [27]. Because all those electronic devices are manufactured by dif-
ferent companies, a standard must be found, that allows the personal remote
control device (typically a mobile device) to control them.

When a target device or service is accessed, it transmits an abstract user
interface to the remote console which, in turn, provides the particular input and
output mechanisms that are appropriate for the user. V2 is currently working
on the definition of a XML-based language to convey an abstract UI description
from the target device or service to the URC. This language would be structured
as a set of abstract interactors for input and output operations. On the URC,

A Review of XML-compliant User Interface Description Languages 385

this abstract description would be mapped to a concrete description, available
on the platform.

4.4 TADEUS-XML

TADEUS-XML was developed for the purpose of the model-based approach
of the same name [16]. In a TADEUS-XML description, a UI is made up of
two parts: a model component (abstract interaction model), that describes the
feature of the UI on a high level of abstraction, and a presentation component.

The XML-based interaction model is a hierarchically structured set of User
Interface Objects (UIO). Each UIO has different attributes specifying their be-
havior. Besides this model, a XML-Based Device Definition is available, that
transforms the former model into a device dependent abstract model, which is
still on an abstract level but integrates some constraints specific to the target
platforms (mapping of the UIO to concrete UIO). Finally, a XSL-based model
description is derived, based on the knowledge of the availability of UIOs for spec-
ification representation and a running interface is generated. TADEUS-XML is
on development stage. The tool supporting the mapping and design process is
not yet developed.

5 General Comparison

In the two previous sections, a description of the different UIDLs for UI descrip-
tion was given. The purpose of this section is to make a general comparison of
all the previously cited languages together in a general overview. Table 1 com-
pares the general properties of the different UIDLs according the six following
criteria’s:

– Component models: This criteria gives the aspects of the UI that can be
specified in the description of the UIs. The task model is a description of
the task to be accomplished by the user, the domain model is a description
of the objects the user manipulates, accesses or visualizes through the UIs,
the presentation model contains the static representation of the UI and the
dialog model holds the conversational aspect of the UI.

– Methodology: Different approaches to specify and model UIs exist:
* Specification of a UI description for each of the different contexts of use.

As a starting point, a UI specification for the context of use considered
as representative of most case, the one valid for the context of use con-
sidered as the least constrained or finally the one valid for the context of
use considered as the most comprehensive is specified. From this start-
ing UI specification, corrective or factoring out decorations [24] (e.g.,
to add, remove, or modify any UI description) are applied so that UI
specifications can be derived for the different contexts of use.

* Specification of a generic (or abstract) UI description valid for all the
different contexts of use. This generic UI description is then refined to
meet the requirements of the different contexts of use.

386 N. Souchon and J. Vanderdonckt

– Tools: Some of the languages are supported by a tool that helps designer
and renders the specification to a specific language and/or platform.

– Supported languages: Specify the programming languages to which the
XML-based language can be translated.

– Platforms: Specify the computing platform on which the language can be
rendered by execution, interpretation or both.

– Target: A context of use [23] is made up of three different models: the user
model, the environment model (that represents different configuration of the
physical conditions in which the application is used) and finally the platform
model (represents any property of the platform). This criteria is aimed at
indicating which model variation the markup language was designed for (i.e.,
mono/multi-platform, mono/multi-user or mono/multi-environment).

Table 2 compares UIDLs according to the five following criteria:

– Abstraction level: each UIDL may exhibit the capability to express a
runnable UI (instance level), one or many models involved in the devel-
opment of this UI (model level), how these models are built (meta-model
level), and what are the fundamental concepts on which this operation is
based (meta-meta-model level).

– Amount of tags: to reach the above level of abstraction, each UIDL ma-
nipulates a certain amount of tags, which is also highly depending on the
coverage of the concepts.

– Expressivity of the language: this criteria denotes not only the capability
of the UIDL to express concepts of the real world, but also the easiness and
the usability of manipulating them with the UIDL. If, for a same expressible
concept, a first UIDL needs 5 lines of specification and another one, only 2,
the latter will be said to be more concise.

– Openness of the language: this criteria informs the designer whether a
UIDL sees its concepts or tags fixed or user-modifiable. A UIDL can have a
fixed amount of tags while keeping the capability to introduce new concepts
that have not been specified in the canonical definition.

– Coverage of concepts: depending on the level of abstraction, each UIDL
may introduce some specific vs. generic concepts (e.g., a given presentation
model vs. any model, each custom-defined), their properties (e.g., to what
extent can a concrete presentation be specified), and their relations.

6 Acknowledgements

We gratefully acknowledge the support from the European Commission through
the CAMELEON IST project of Vth framework programme (http://giove.cnuce.
cnr.it/cameleon.html). The authors would like also to thank Loubna Id-Bouharia
for providing a first version of the Cameleon document ”D1.3 Companion-Compa-
rison of XML-based languages for specifying user interfaces”.

A Review of XML-compliant User Interface Description Languages 387

M

od
el

s
M

et
ho

do
lo

gy

T
oo

ls

Su
pp

or
te

d
la

ng
ua

ge
s

Su
pp

or
te

d
P

la
tf

or
m

s
T

ar
ge

t

U
IM

L

Pr
es

en
ta

ti
on

 a
nd

di

al
og

Sp

ec
if

ic
at

io
n

 o
f

m
ul

tip
le

 U
I

pr
es

en
ta

tio
ns

 a
nd

 f
ac

to
ri

ng

ou
t/c

or
re

ct
iv

e
de

co
ra

tio
n.

L
iq

ui
d

U
I:

 r
en

de
ri

ng

en
gi

ne
, c

od
e

ed
ito

r
an

d
ge

ne
ra

to
r

Ja
va

, H
T

M
L

, W
M

L
,

V
oi

ce
X

M
L

, C
+

+
,

Pa
lm

O
S

H
an

dh
el

d
an

d
de

sk
to

p
PC

; S
m

ar
t,

st
an

da
rd

an

d
m

ob
ile

 p
ho

ne
;

vo
ca

l U
I.

M
ul

ti-
pl

at
fo

rm
.

A
U

IM
L

Pr

es
en

ta
ti

on
 a

nd

di
al

og
.

Sp
ec

if
ic

at
io

n
of

 a
 g

en
er

ic
 U

I
de

sc
ri

pt
io

n.
 T

he
 d

ec
or

at
io

n
ca

n
be

 d
on

e
ei

th
er

 b
y

th
e

re
nd

er
er

 o
r

by
 th

e
de

ve
lo

pe
r.

R
en

de
ri

ng
 e

ng
in

e
H

T
M

L
, D

H
T

M
L

,
Ja

va
 S

w
in

g,

Pa
lm

O
S,

 W
M

L

H
an

dh
el

d
an

d
de

sk
to

p
PC

M

ul
ti-

pl
at

fo
rm

(a

va
il

ab
le

 in
te

ra
ct

or
s,

di

sp
la

ys
)

X
IM

L

A
ny

 m
od

el
.

Sp
ec

if
ic

at
io

n
 o

f
m

ul
tip

le
 U

I
de

sc
ri

pt
io

ns
 o

r
of

 a
 g

en
er

ic

on
e.

C
od

e
ed

ito
r

H
T

M
L

, W
M

L
, J

av
a

N
on

e
fo

r
th

e
m

om
en

t.
In

 th
e

fu
tu

re
:

H
an

dh
el

d
an

d
de

sk
to

p
PC

 ;
m

ob
ile

 p
ho

ne
 ;

Ja
va

 T
er

m
in

al

In
 th

eo
ry

, m
ul

ti
-

pl
at

fo
rm

, -
us

er
 a

nd
 -

en
vi

ro
nm

en
t;

 in

pr
ac

ti
ce

, m
ul

ti
-

pl
at

fo
rm

Se
es

co
a

X
M

L

Pr
es

en
ta

ti
on

 a
nd

di

al
og

Sp

ec
if

ic
at

io
n

of
 a

 g
en

er
ic

 U
I

de
sc

ri
pt

io
n.

R

en
de

ri
ng

 e
ng

in
e

Ja
va

 S
w

in
g

an
d

A
W

T
, H

T
M

L

H
an

dh
el

d
an

d
de

sk
to

p
PC

M

ul
ti-

pl
at

fo
rm

T
er

es
a

X
M

L

Pr
es

en
ta

ti
on

 a
nd

di

al
og

 ;
T

as
k,

do

m
ai

n
an

d
pl

at
fo

rm

Sp
ec

if
ic

at
io

n
of

 a
 g

en
er

ic
 U

I
de

sc
ri

pt
io

n.

T
E

R
E

SA

X
H

T
M

L
, V

oi
ce

X

M
L

H

an
dh

el
d

an
d

de
sk

to
p

PC
, m

ob
il

e
ph

on
e

M
ul

ti-
pl

at
fo

rm

W
SX

L

Pr
es

en
ta

ti
on

,
di

al
og

 a
nd

 d
at

a.

Sp
ec

if
ic

at
io

n
 o

f
m

ul
tip

le
 U

I
de

sc
ri

pt
io

ns
 a

nd
 f

ac
to

ri
ng

ou

t/c
or

re
ct

iv
e

de
co

ra
tio

n

W
SX

L
 S

D
K

M

ar
ku

p
la

ng
ua

ge
s:

H

T
M

L
, X

U
L

,
U

IM
L

, .
..

D
es

kt
op

 P
C

M

on
o

-p
la

tf
or

m
, -

us
er

, -
en

vi
ro

nm
en

t

X
U

L

Pr
es

en
ta

ti
on

 a
nd

di

al
og

.
Sp

ec
if

ic
at

io
n

 o
f

m
ul

tip
le

 U
I

de
sc

ri
pt

io
ns

 a
nd

 f
ac

to
ri

ng

ou
/c

or
re

ct
iv

e
de

co
ra

tio
n

R
en

de
ri

ng
 e

ng
in

e
G

ec
ko

,
X

PC
O

M
/ X

PC
on

ne
ct

,
X

P
In

st
al

l,
M

oz
il

la

X
U

L

D
es

kt
op

 P
C

 (
W

eb

ap
pl

ic
at

io
n

us
in

g
M

oz
ill

a)

M
ul

ti-
pl

at
fo

rm

X
IS

L

D
ia

lo
g.

Sp

ec
if

ic
at

io
n

 o
f

m
ul

tip
le

 U
I

de
sc

ri
pt

io
ns

 a
nd

 f
ac

to
ri

ng

ou
t/c

or
re

ct
iv

e
de

co
ra

ti
on

X
IS

L
 I

nt
er

pr
et

er

X
M

L
-b

as
ed

la

ng
ua

ge
s

M

ob
il

e
ph

on
e,

D

es
kt

op
 P

C
, d

ig
ita

l
T

V
 w

it
h

m
ul

ti-
m

od
al

ca

pa
bi

li
tie

s

M
ul

ti-
pl

at
fo

rm

A
A

IM
L

Pr

es
en

ta
ti

on
 a

nd

di
al

og
.

N
ot

 y
et

 d
ef

in
ed

N

ot
 y

et
 d

ev
el

op
ed

,
Pr

ot
ot

yp
ic

al
 a

rc
hi

te
ct

ur
e

of
 th

e
U

R
C

.

N
ot

 y
et

 d
ef

in
ed

Si

m
ul

at
io

n
on

H

an
dh

el
d

PC
, S

m
ar

t
T

V

M
ul

ti-
us

er
 o

n
m

ul
tip

le
 p

la
tf

or
m

s

T
A

D
E

U
S

X
M

L

Pr
es

en
ta

ti
on

 (
ba

se
d

on
 a

 u
se

r,
 a

 ta
sk

an

d
an

 o
bj

ec
t

m
od

el
s)

Sp
ec

if
ic

at
io

n
of

 a
 g

en
er

ic
 U

I
de

sc
ri

pt
io

n
T

A
D

E
U

S
 X

M
L

 c
on

ve
rt

er

to
 b

e
de

ve
lo

pe
d

N
ot

 s
pe

ci
fi

ed

N
ot

 s
pe

ci
fi

ed

M
ul

ti-
pl

at
fo

rm

Table 1. Comparison of UIDLs general properties.

388 N. Souchon and J. Vanderdonckt

L

ev
el

T

ag
s

E
xp

re
ss

iv
it

y
O

pe
nn

es
s

C
on

ce
pt

s
U

IM
L

M

od
el

 le
ve

l
36

 ta
gs

M

od
er

at
e

N
o

In
te

rf
ac

e,
 s

tr
uc

tu
re

, s
ty

le
,

co
nt

en
t,

be
ha

vi
or

, p
ar

t,
pe

er
s,

lo

gi
c,

 p
re

se
nt

at
io

n
A

U
IM

L

M
od

el
 le

ve
l

N
o

cl
ea

r
in

fo
rm

at
io

n
av

ai
la

bl
e,

 a
t l

ea
st

 5
5

ta
gs

M

od
er

at
e

N
o

D
at

e-
gr

ou
p,

 g
ro

up
, a

ct
io

ns

X
IM

L

M
et

a-
m

od
el

le

ve
l

33
 ta

gs
.

H
ig

h:
 e

ve
ry

th
in

g
ca

n
be

 e
xp

re
ss

ed
, a

s
th

e
la

ng
ua

ge
 is

 o
pe

n
Y

es

C
om

po
ne

nt
 m

od
el

s,
 m

od
el

el

em
en

t,
re

la
ti

on
_d

ef
in

iti
on

,
fe

at
ur

e_
de

fi
ni

tio
n,

at

tr
ib

ut
e_

de
fi

ni
tio

n
Se

es
co

a
X

M
L

M

od
el

 le
ve

l
O

n
th

e
w

ay
 to

 b
e

co
m

pl
et

ed
, n

o
st

ab
le

 D
T

D

av
ai

la
bl

e

L
ow

N

o
G

ro
up

, i
nt

er
ac

to
r,

 a
ct

io
n

T
er

es
a

X
M

L

M
od

el
 le

ve
l

32
 ta

gs
 f

or
 th

e
U

I
de

sc
ri

pt
io

n
H

ig
h

N

o
Pr

es
en

ta
tio

n,
 s

tr
uc

tu
re

, A
IO

,
in

te
ra

ct
io

n_
A

IO
,

ap
pl

ic
at

io
n_

A
IO

,
A

IO
_c

om
po

si
ti

on
 a

nd

co
nn

ec
ti

on

W
SX

L

In
st

an
ce

 a
nd

m

od
el

 le
ve

l
N

o
li

m
it

, X
FO

R
M

S
L

ow
: w

eb
-a

pp
li

ca
tio

n,
 o

nl
y

gr
ap

hi
ca

l U
I

N
o

X
U

L

In
st

an
ce

 a
nd

m

od
el

 le
ve

l
A

t l
ea

st
 6

0
ta

gs

L
ow

: l
im

it
ed

 to
 w

in
do

w
s-

ba
se

d
gr

ap
hi

ca
l

U
I

N
o

W
in

do
w

, b
ox

, h
bo

x,
 v

bo
x

X
IS

L

M
od

el
 le

ve
l

53
 ta

gs

H
ig

h:
 m

ul
ti

m
od

al
 U

I
on

 m
ul

tip
le

 p
la

tf
or

m
s.

In

pu
t M

od
al

iti
es

 s
up

po
rt

ed
: D

T
M

F,
 s

pe
ec

h,

po
in

tin
g,

 k
ey

bo
ar

d.
 O

ut
pu

t M
od

al
iti

es
:

w
in

do
w

, s
pe

ec
h,

 v
id

eo
, a

ud
io

, a
ge

nt
.

Y
es

D

ia
lo

g,
 e

xc
ha

ng
e,

 o
pe

ra
ti

on
,

ac
ti

on
, i

np
ut

, o
ut

pu
t

A
A

IM
L

M

od
el

 le
ve

l
N

ot
 y

et
 d

ef
in

ed

M
od

er
at

e
N

ot

sp
ec

if
ie

d
N

ot
 y

et
 d

ef
in

ed

T
A

D
E

U
S

X
M

L

M
od

el
 le

ve
l

N
ot

 s
pe

ci
fi

ed

L
ow

N

o
U

io
, i

np
ut

, o
ut

pu
t,

tr
ig

ge
r

Table 2. Comparison of UIDLs capacities.

A Review of XML-compliant User Interface Description Languages 389

7 Conclusion

The previous investigation and comparison of the most significant UIDLs, if not
all, reveal that there might be a plethora of UIDLs, from which it may seem
hard to pick up one. We believe that this choice is more dictated by the goals
to be pursued if one decides to adopt one of these UIDLs rather than only the
different criteria that have been compared.

For instance, XUL is an official Mozilla initiative which received considerable
attention from the international audience. However, XUL is mainly intended to
support different viewing capabilities that are required to be supported by dif-
ferent computing platforms. Per se, it does address some requirements for sup-
porting multiple platforms, but it is not intended to be a genuine and complete
UIDL, as it is probably the less expressive one.

On the other end of the expressiveness continuum is located XIML which
demonstrates the highest expressivity possible since it is located at the meta-
model level (the only one in the comparison). Therefore, XIML is particularly
appropriate to specify UIsfor multiple platforms, multiple contexts of use, even
for custom situations that have not been thought before, as it is an open lan-
guage. But its tool support is less advanced at the time of writing this paper
than tools provided by UIML. UIML seems to be one of the most restrictive
UIDLs, but the one which is the most supported by software. The real attrac-
tiveness of a UIDL heavily depends from this: it is meaningless to possess a
refined specification of a UI that cannot be rendered or only partially.

Thus, we believe that XIML should be more appreciated for its interoper-
ability qualities for exchanging UI descriptions between stakeholders (e.g., from
one software to another), while UIML should be more accepted for true gener-
ation. AUIML is dedicated to accessibility issues and should probably be used
only in these circumstances. AUIML is today more part of the internal processes
of IBM than in a complete suite of tools, although IBM WebSphere became a
truly operational software with wide scope in mind. Like UIML, AUIML only
supports some predefined features of the presentation and the dialog models.
It does not support other models that are manipulated in context-sensitivity.
Moreover, it is impossible to expand the language. IBM today focuses more on
the development of Web services, through the WSUI and the WSXL languages.

Furthermore, one of the main conclusions of the survey is that tools are
not only difficult to use, but that they often result in low visual quality user
interfaces.

In this study, we did not consider Xforms (see http://www.w3.org/MarkUp
/Forms/), which is a W3C initiative to express forms-based UIs at a level that
is more abstract than supposed-to be physical HTML descriptions. In some way,
this initiative addresses the question of multiple computing platforms. Although
Xforms is promoted by the W3C, thus giving it the widest potential audience
abroad, implementation is only at the beginning. Xforms is basically aimed at
expressing forms-based UIs with presentation and some dialog aspects, but does
not necessarily support other UI modalities (e.g., vocal UIs).

390 N. Souchon and J. Vanderdonckt

Finally, we did not consider the legal issues of using one of these languages
in a tool to be used or developed. XIML is protected by copyright by the XIML
Consortium. Any software that is XIML compliant can consequently be dis-
tributed only if the future user of this software already possesses a XIML license.
Although this license can be freely obtained from the XIML consortium, this reg-
istration process may be interpreted as a burden and a potential reduction of
the audience. The vast majority of the other UIDLs are totally free of use.

References

[1] XUL tutorial, 2003. http://www.xulplanet.com/tutorials/xultu/.
[2] M. Abrams. Device-independent authoring with UIML. In W3C Workshop on

Web Device Independent Authoring, Bristol, 2000.
[3] M. Abrams, C. Phanouriou, A.L. Batongbacal, S. Williams, and J. Shuster. UIML:

An Appliance-Independent XML User Interface Language. In A. Mendelzon,
editor, Proceedings of 8th International World-Wide Web Conference WWW’8
(Toronto, May 11-14, 1999), Amsterdam, 1999. Elsevier Science Publishers.

[4] M. Argollo Jr. and C. Olguin. Graphical user interface portability. CrossTalk:
The Journal of Defense Software Engineering, 10(2):14–17, 1997.

[5] A. Arsanjani, D. Chamberlain, and et al. (WSXL) web service experience language
version, 2002. http://www-106.ibm.com/developerworks/library/ws-wsxl2/.

[6] P. Azevedo, R. Merrick, and D. Roberts. OVID to AUIML - user-oriented inter-
face modelling. In N. Nunes, editor, Proceedings of 1st International Workshop
”Towards a UML Profile for Interactive Systems Development” TUPIS’00 (York,
October 2-3, 2000)., York, 2000.

[7] T. Ball, Ch. Colby, P. Danielsen, L.J. Jagadeesan, R. Jagadeesan, K. Läufer,
P. Matag, and K. Rehor. SISL: Several interfaces, single logic. Technical report,
Loyola University, Chicago, January 6th, 2000.

[8] L. Bouillon, J. Vanderdonckt, and N. Souchon. Recovering alternatives presen-
tation models of a web page with vaquita. In Proceedings of 4th Int. Conf. On
Computer-Aided Design of User Interfaces CADUI2002 (Valenciennes, 15-17 May
2002), pages 311–322, Dordrecht, 2002. Kluwer Academics Pub.

[9] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying model-based techniques
to the development of UIs for mobile computers. In Proceedings of ACM Confer-
ence on Intelligent User Interfaces IUI’2001 (Albuquerque, January 11-13, 2001),
pages 69–76, New York, 2001. ACM Press.

[10] Galaxy Application Environment. Visix Software Inc., 11440 Commerce Park
Drive, Reston (VA 22091), 1993.

[11] Paternò. F and Santoro. C. One model, many interfaces. In Ch Kolski and
J. Vanderdonckt (Eds.), editors, Proceedings of the 4th International Conference
on Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes, 15-17
May 2002), pages 143–154, Dordrecht, 2002. Kluwer Academics Publishers.

[12] K. Luyten and K. Coninx. An XML-based runtime user interface description
language for mobile computing devices. In Proceedings of the 8th Int. Workshop
on Design, Specification, and Verification of Interactive Systems DSV-IS’2001,
(Glasgow June 13-15 2001), pages 20–29, Berlin, 2001. Springer Verlag.

[13] K. Luyten, C. Vandervelpen, and K. Coninx. Adaptable user interfaces in com-
ponent based development for embedded systems. In Proceedings of the 9th Int.
Workshop on Design, Specification, and Verification of Interactive Systems DSV-
IS’2002, (Rostock, June 12-14, 2002). Springer Verlag, 2002.

A Review of XML-compliant User Interface Description Languages 391

[14] R. Merrick. Device independent user interfaces in XML, 2001.
http://www.belchi.be/event.htm.

[15] G. Mori, F. Paternò, and C. Santoro. Tool support for designing nomadic appli-
cations. In Proceedings of the 2003 International Conference on Intelligent User
Interfaces IUI 2003 (Miami, January 12-15), pages 149–157, New York, 2003.
ACM Press.

[16] A. Müller, P. Forbrig, and C. H. Cap. Model-based user interface design us-
ing markup concepts. In Ch. Johnson (Eds.), editor, In Proc. Of 8th Inter-
national Workshop on Design, Specification, Verification of Interactive Systems
DSV-IS’2001 (Glasgow, 13-15 Juin 2001), pages 16–27, Berlin, 2001. Springer-
Verlag.

[17] T. Nitta et Al. XISL: An attempt to separate multimodal interactions from XML
contents. In Eurospeech 2001, pages 1197–1200, Aalborg, 2001.

[18] F. Paternò. Model Based Design and Evaluation of Interactive Applications.
Springer-Verlag, Berlin, 1999.

[19] A. Puerta and J. Eisenstein. XIML: A common representation for interaction
data. In Proc. Of the 7th International Conference on Intelligent User Interfaces
(Santa Fe, United States, January 2002), pages 69 – 76., New York, 2002. ACM
Press.

[20] A. R. Puerta. The mecano project: Comprehensive and integrated support for
model-based user interface development. In J. Vanderdonckt, editor, Proc. Of
the 2nd Int. Workshop on Computer-Aided Design of User Intercace CADUI’96
(Namur 5-7 June 1996), pages 19–37, Namur, 1996. Presses Universitaires de
Namur.

[21] A. R. Puerta. A model-based interface development environment. IEEE Software,
14(4):40–47, 1997.

[22] S. Schreiber. Specification and generation of user interfaces with the BOSS system.
In J. Gornostaev et al, editor, Proceedings East-West International Conference
on Human-Computer Interaction EWHCI’94 (St. Petersburg, August 2-6, 1994),
Moskau, 1994. Springer.

[23] N. Souchon, Q. Limbourg, and J. Vanderdonckt. Task modelling in multiple con-
texts of use. In Pre-Proceedings of the 9th International Workshop on Design,
Specification and Verification of Interactive Systems Workshop DSV-IS’02 (Ros-
tock, June 12-14, 2002), 2002.

[24] D. Thevenin. Adaptation En Interaction Homme-Machine : Le Cas de la Plasc-
ticité. PhD thesis, Université Joseph Fourier, 21 December 2001.

[25] J. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent auto-
matic interaction objects selection. In S. Ashlund, K. Mullet, A. Henderson,
E. Hollnagel, and T. White, editors, Proceedings of the ACM Conference on Hu-
man Factors in Computing Systems InterCHI’93 (Amsterdam, 24-29 April 1993),
pages 424–429, New York, 1993. ACM Press.

[26] XVT. XVT Software, Inc., 4900 Pearl East Circle, Boulder, CO, 80301, USA,
1996.

[27] G. Zimmermann, G. Vanderheiden, and A. Gilman. Universal remote console
- prototyping for the alternate interface access standard. In N. Carbonell and
C. Stephanidis, editors, Universal Access: Theoretical Perspectives, Practice and
Experience - 7th ERCIM UI4ALL Workshop (Oct. 2002, Paris, France). Springer-
Verlag, 2002.

	Introduction
	Related Work
	Significant Contributions
	UIML
	AUIML
	XIML
	Seescoa XML
	Teresa XML
	WSXL

	Other Contributions
	XUL
	XISL
	AAIML
	TADEUS-XML

	General Comparison
	Acknowledgements
	Conclusion

