
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 21 (2010) 98–108
1045-92

doi:10.1

� Cor

fax: +6

E-m

beryl@c

(J. Vand
1 Te
journal homepage: www.elsevier.com/locate/jvlc
Generating systems from multiple sketched models
Paul Schmieder a,�, Beryl Plimmer a,1, Jean Vanderdonckt b

a Department of Computer Science, University of Auckland, Auckland 1142, New Zealand
b Université catholique de Louvain, Place des Doyens 1, 1348 Louvain-la-Neuve, Belgium
a r t i c l e i n f o

Keywords:

Sketch tools

Sketch recognition

Software modeling
6X/$ - see front matter & 2010 Published by

016/j.jvlc.2009.12.003

responding author. Tel.: +64 9 373 7599x8935

4 9 373 7453x85453.

ail addresses: psch068@ec.auckland.ac.nz (P.

s.auckland.ac.nz (B. Plimmer), jean.vanderdo

erdonckt).

l.: +64 9 373 7599x82285; fax: +64 9 373 745
a b s t r a c t

Diagrams are often used to model complex systems: in many cases several different

types of diagrams are used to model different aspects of the system. These diagrams,

perhaps from multiple stakeholders of different specialties, must be combined to

achieve a full abstract representation of the system. Many CAD tools offer multi-

diagram integration; however, sketch-based diagramming tools are yet to tackle this

difficult integration problem. We extend the diagram sketching tool InkKit to combine

software engineering sketches of different types. Our extensions support software

design processes by providing a sketch-based approach that allows the iterative

creation of multiple outputs interacting with one another from the inter-linked models.

We demonstrate that InkKit can generate a functional system consisting of a user

interface with processes to submit and retrieve data from a database from sketched user

interfaces designs and sketched entity relationship diagrams.

& 2010 Published by Elsevier Ltd.
1. Introduction

The use of pen and paper is the most natural way to
draft ideas in a non-digital environment and the methods
to accomplish the same tasks in the computer world
should be similar. This interaction can be achieved by
using a digital stylus rather than keyboard and mouse.
Studies show that, while computer-based sketch tools still
lack in familiarity and intuitiveness of physical paper
[1,2], there is a clear preference for computer-based
sketch tools over their widget-based equivalents because
of the more intuitive interaction offered by the digital
pen [3,4].

Computer-based sketch tools offer different features
depending on the program’s domain and implemented
functionality. While simple implementations of sketch
Elsevier Ltd.

7;

Schmieder),

nckt@uclouvain.be

3x85453.
tools offer a canvas to draw on, more sophisticated ones
also recognize the sketches. Due to the diversity of
possible sketches the demands on the underlying recogni-
tion algorithms are high. On one hand they have to cover
all possible shapes and on the other hand they have to
successfully differentiate between the shapes, even when
they look very similar. Once the sketch is recognized, it
can be interpreted and converted into symbolic expres-
sions which represent the user’s intent.

There are different diagram domains which can be
sketched in a digital environment, such as user interface
(UI) and entity-relationship (ER) diagrams. The former
outline the design of a graphical user interface; the latter
are used to specify database drafts, including the relation-
ships between their entities. While a number of sketch
tools can recognize a specific type of diagram and
translate it into a formal representation or, in the case
of software, generate code, we are not aware of any sketch
tools that combines different types of diagrams to
generate a more complete model or system.

InkKit [5] is a software toolkit used to recognize and
convert user-drawn sketches from several domains into
other representations. Each domain consists of one

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2009.12.003
mailto:psch068@ec.auckland.ac.nz
mailto:beryl@cs.auckland.ac.nz
mailto:jean.vanderdonckt@uclouvain.be
mailto:jean.vanderdonckt@uclouvain.be


ARTICLE IN PRESS

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108 99
recognizer and multiple output modules. InkKit can
recognize sketched diagrams from the same domain,
which are split into several parts as shown in Fig. 1.

In this project we extended InkKit so that it combines
the interpretation results of different types of diagrams.
The generated software representations of the sketched
diagrams can interact with each other because the
necessary information is exchanged during the interpre-
tation process. The contribution of this project is that this
interaction enables many new sketch tool possibilities
such as the generation of simple software systems rather
than single individual system components. This allows the
iterative development of low-fidelity sketches, which
have been proven to be better for early stage design [1]
and quick generation of operational prototypes.

Our exemplar is ER and UI diagrams which are
recognized and used to generate a database and a
connected user interface. Afterwards the user can enter
data in the UI which is then transmitted to the database.

This method of combining recognition results from
different hand-drawn sketches enables new opportunities
for collaborative work. At a preliminary stage of design
people with skills from different areas could work
together or independently. Ideas can be explored and
iteratively developed. Once they are finished, they could
import their sketched ideas into one project and link the
related parts which can then be further processed.

The structure of this article is as follows. The next
section presents our motivation; this is followed by
related work and a description of InkKit. We then describe
the requirements for cross-domain recognition and our
approach to implementing these requirements. The
evaluation using the cognitive dimensions framework is
Fig. 1. InkKit portfolio manager which contains three sketch
described before a general discussion and final conclu-
sions and future work is presented.
2. Motivation

Complex systems, in a wide variety of different
domains, including architecture and engineering, natural
systems and software, are often defined by abstract
models. Because of the complexity of such systems,
different models are used to describe different aspects of
the system. Yet the system itself is a complex interplay of
these different models. In many cases diagrams are used
as the visualization of the model.

Software systems are a particularly interesting exam-
ple of abstract models and diagrams because the model
can be used to generate the system. Increasingly software
modeling tools support code generation. Yet, because of
the formality and constraints of these tools such formal
models are rarely used during initial design. Instead
people revert back to using whiteboards and scraps of
paper. Sketch tools aim to bridge this gap, and sketch
toolkits with configurable recognition engines are allow-
ing us to explore the intersection between tools, models
and systems more easily.

There are various methodologies, models and diagrams
used to describe software systems (for example UML).
Bringing the different models together to describe a
system is a well-known approach in software design
known as model-driven architecture (MDA). At the most
basic level, ‘ordinary’ software systems consist of a user
interface, data and processes. Fig. 2 shows a simple set of
three diagrams that could be used as a first iteration of
pages from the UI domain connected via rubber bands.



ARTICLE IN PRESS

Fig. 2. Sketches of related user interface, class diagram and process hierarchy and the notes page.

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108100
a design. Our goal is to take a set of related diagrams like
this and use them to generate the software system.
3. Related work

Sketch tools can be differentiated by their basic
features, such as their recognition engine, their ability to
process text or the domains they recognize. The recogni-
tion engine is the component of the sketch tool which is
responsible for the scope of domains. There are two
different engine designs; domain specific and generic.
Generic recognizers are designed to recognize a range of
different diagram types, while specific engines are
tailored to one type of diagram.

The first published sketch tools had recognition
engines dedicated to one particular domain. For example,
Silk [6], as one of the first, was published in 1996 and was
specifically designed to recognize UI diagrams. Four years
later Knight [7] followed, and another two years later
Tahuti [8] was designed to recognize UML class diagrams.
More recent sketch tools are DEMAIS [9], Freeform [10],
JavaSketchIt [11], LADDER [12] and SketchiXML [13],
which all recognize UI diagrams.

Examples of sketch tools which have a generic
recognition engine are Lank’s framework [14], Sketch-
READ [15] and InkKit [5]. Additional domains can be
added to each of these tools. However, the implementa-
tion complexity varies significantly from tool to tool.
Lank’s framework is the most expensive one to extend in
relation to code complexity and amount of code.

The majority of diagrams recognized by the sketch
tools are from the fields of Computer Science and
Engineering; user interface diagrams [1,16–18], UML class
[7,8] or circuit diagrams [15]. To our knowledge no sketch
tool is capable of recognizing diagrams from different
domains in one step and linking the generated output.
However, when using InkKit, multiple diagrams from the
same domain (for example linked UI pages Fig. 1) can be
recognized and a unified representation can be generated
as if it were drawn in one sketch. Denim [19] achieves a
similar result by providing a very large drawing space that
is viewed at different levels of abstraction. Actions at the
higher levels of abstraction determine the overall website
and page attributes while the detailed levels translate to
the page component. These automatically generated pages
can interact with each other because the necessary infor-
mation was exchanged during the interpretation process.
In this project we extend InkKit to handle multiple
sketches from two different domains and automatically
generate output that reflects their interrelationships.
4. InkKit overview

Two main user interfaces represent InkKit’s graphical
front end: sketch pages and a portfolio manager. The
portfolio acts as a container for the sketch pages (see
Fig. 1). This design is robust and well tested [20] and
enables intuitive user interaction. In addition to basic
functions, such as sketch page resizing, moving and
zooming, connectors (called rubber bands) between the
sketch pages can be added. They represent a directed
relationship between the connected pages; the rubber-
band connects a shape on one sketch page with its
associated content on another sketch page. The start point
(indicated by a blue dot) of a rubber band is directly
associated with the component it originates from (the
drop down box and button in the left page of Fig 1),
however, the end point (indicated by a red dot) is related
to the entire sketch page at the end point. For example the
left-hand sketch in Fig 1 shows two source points; one



ARTICLE IN PRESS

Fig. 4. A combo box consisting of the basic shapes rectangle and

triangle.

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108 101
from the drop down list to the list in the top-right sketch
and the other from the ‘OK’ button to another user
interface form.

For example, in Fig. 1 three sketch pages are con-
nected. The top left sketch page includes a control for
list of animal names, which will be added from the
‘‘connected’’ list on the top left page when both user
interface diagrams are recognized and interpreted. The
same applies for the third sketch page, which is connected
to the first sketch page’s OK-button. The ability to merge
sketches enables an easy, clear and well-arranged way to
draw comprehensive diagrams. There is no beautification
applied to the sketches within InkKit in order to preserve
their hand-drawn appearance [1,2]. Beautification occurs
naturally when the recognizer output is rendered in
another tool, and this may be enhanced by applying
layout constraints as we have done by including ALM [22]
as a part of the Java output.

Fig. 3 shows InkKit’s overall architecture. The recog-
nition process consists of two main parts: the domain-
independent and the domain-dependent. Starting with
the independent part, the sketched strokes are classified
either as text or shape strokes. This is done with the help
of a decision tree which uses features such as time,
sketching speed and spatial relationships for the classi-
fication [23]. Those strokes recognized as letters are
grouped into words and recognized by an independent
text recognition engine.

Sketched shapes can consist of more than one stroke.
In order to use Rubine’s classifier [24] single stroke
algorithm to classify each shape, the strokes that
constitute one shape have to be joined. This is done by
iterating through the strokes and measuring the distance
between the endpoints of two consecutively drawn
strokes. If the distance is within a predetermined thresh-
old, both strokes are joined by replacing them with a
single composed stroke [25].

After being joined the shapes are recognized using
Rubine’s classifier. At this point during the recognition,
there is no domain-specific knowledge available; drawing
ink is classified as primitives (basic-shapes), such as
circles and lines. Domain-specific shapes (complex
shapes) consist of a set of basic shapes. For example,
Fig. 4 shows the user interface component ‘‘Combo Box’’.
Before Rubine’s classifier is applied the ‘‘Combo Box’’ is
decomposed into its basic shapes: rectangle and triangle.
Then both basic shapes get recognized independently.
Fig. 3. Architectu
To recognize a shape Rubine’s classifier [24] computes
its feature vector. This vector is used in a linear evalua-
tion function against an existing vector for every known
basic shape class. While a shape can be every sketched
component, a shape class describes all these components
belonging to the same class or type such as rectangles and
circles. These functions have been trained using about 10
to 15 predefined examples for every basic shape class to
determine the weights over all features. The basic shape
class with the highest computed value for its linear
evaluation function is the one to which the sketched
shape belongs. The basic shapes for the training of the
linear functions are taken from a predefined set stored in
a library which can be extended by the user.

After all the sketched strokes are recognized as basic
shapes (except those recognized as text strokes), the
results get handed over from the generic recognition
engine to the domain-specific one. For the example in
Fig. 4 (see bottom bar), which has been designated as a
user interface by the user, the rectangle and triangle are
known as such and handed over to the user interface
interpreter that interprets them as a dropdown list.

Each domain consists of components, which the user
has predefined in the form of sketches. These components
are stored in the specific domain library. InkKit’s current
version consists of nine domain libraries: activity
re InkKit.



ARTICLE IN PRESS

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108102
diagram, directed graph, undirected graph, entity-
relationship diagram, organization chart, parsimonious
data model graph, UML class diagram, user interface and
Venn diagram.

The first task of the domain-specific interpreter is to
cluster the basic shapes into groups based on the basic
shapes’ spatial relationships. The computation of these
relationships is derived from spatial features, such as near
or intersecting, relative position and orientation. The
result of these likelihood computations is then used to
calculate the probability of the basic shape group to be
part of a domain-specific complex component. Going back
to the example in Fig. 4, at this point the triangle and
rectangle are grouped together because of their spatial
relationship; the rectangle encloses the triangle. Note that
this new group is one of three groups, which are com-
puted as each basic shape also forms an individual group.

Finally, using the likelihood calculation results of the
basic shape groups, a hypothesis space is built which
includes all these possible group combinations. Groups
are joined together to a complex shape based on several
factors such as their spatial relations and their bounding
box properties. Since a group of strokes can already be a
complex shape, a combination can consist of one or more
groups. The next step is to compute probability tables for
each of these combinations of possible complex shapes.
After all combinations are classified, the one with the
highest probability gets assigned to its associated com-
plex shape and is taken out of the hypothesis space. This
association process is repeated in a descending order of
the combination’s probabilities until all sketched strokes
are assigned.

For the example in Fig. 4 there are three groups at this
stage of the recognition, the likelihood for each group
being a complex shape is calculated. As the UI domain
does not contain a component consisting of an individual
triangle, the ‘individual triangle’ group gets the lowest
likelihood. However, the UI domain contains complex
shapes consisting of a rectangle (Text Box) and of a
rectangle enclosing a triangle (Combo Box). The reason
why the sketch gets classified as a ‘‘Combo Box’’ is that
complex shapes consisting of multiple basic shapes are by
default ranked higher.

In order to implement a new domain in InkKit, an
interpreter describing the domain’s properties and
sketched examples of all of the components of that
domain have to be added. In addition to the examples of
the domain components, sketched components have to be
defined in the interpreter. Furthermore, the relations of
the components and the domain-specific data model have
to be defined in the interpreter. The expense of imple-
menting such an interpreter depends on its scope of
services. For example, the most compact one consists of
150 lines of code (InkKit’s organization chart interpreter)
and the most complex one of 880 (InkKit’s ER interpreter).

Once the interpreter is implemented, output modules
can be added to generate a representation of the sketches
in a specific format. An output module maps the internal
description of a diagram to a format specific repre-
sentation such as Java or HTML. In the example shown
in Fig. 4 the output module gets the information about
a ‘‘Combo Box’’ being part of the diagram and generates an
HTML file containing the ‘‘Combo Box’’. Again, the scope of
services provided by the output module will determine its
complexity and size. Existing output modules range from
130 lines of code (InkKit’s graph text output module) to
350 (InkKit’s ER Microsoft Office Access output module).

InkKit’s general design is a composition of layered code
segments that communicate through interfaces. A code
segment is responsible for a specific task. This enables
easy modification of the single layers to integrate and test
new technologies.

5. Cross-domain requirements

To recognize the relationships between diagrams of
different types and intelligently generate output that
leverages these relationships a toolkit has to have certain
capabilities. The most important properties are an inter-
face supporting multiple sketches, a way to define
relations between the different sketched diagrams, a
recognizer and interpreter for at least one domain and
some way of exchanging information between the
diagrams during the recognition process.

5.1. Interface and relationships

Mechanisms which enable the definition of relation-
ships between the different sketched diagrams must be
provided. InkKit’s well-tested rubber band visual ap-
proach [20] for pages of the same type of diagram can
be extended to manage cross-domain relationships. The
essential additional requirement is to be able to associate
components on one diagram directly with components on
another diagram. As an example Fig. 2 shows component-
to-component relationships between the user interface
and ER diagram components. This purely visual approach
can leverage the start and endpoints as significant but
does include cardinality information, which may be
necessary in some circumstances. This cardinality infor-
mation could be recorded by having different types of
rubber bands or annotating the endpoints.

5.2. Recognition, interpretation and information flow

While the recognition process assigns the sketched
components to their most likely predefined matches
(basic shapes), the interpretation brings meaning to the
overall sketch. For example, after the ER diagram shown
in Fig. 5 is recognized, its components are known, i.e. the
two entities, two attributes and three connectors. It is
then the interpreter’s task to give this composition of
elements a meaning. In this example the interpreter
would create a one-to-many relationship between the
two entities ‘‘address’’ and ‘‘street’’, assign attribute ‘‘one’’
to ‘‘address’’ and ‘‘two’’ to ‘‘street’’ and determine that
‘‘one’’ and ‘‘two’’ are primary keys.

In InkKit [5] a diagram can be decomposed into several
smaller diagrams, which aids overview and grouping.
Until now all diagrams had to belong to the same
domain because the information flow was bound to one



ARTICLE IN PRESS

Fig. 5. Entity relationship diagram.

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108 103
domain-specific interpreter. To recognize diagrams from
different domains in one step every sketch has to be
separately recognized whereas the interpretation is
processed simultaneously. During the interpretation the
single domain-specific interpreters have to exchange
information such as component names and locations.

There are two main software engineering approaches
to enable an information exchange: specifying and
implementing a communication protocol, or providing a
shared object acting as an information carrier that is
passed to every interpreter.

The communication protocol is a more complex
method than the shared object. It would enable a direct
communication between the single interpreters. This
follows an ‘‘information on demand’’ approach, which
means that an interpreter could ask for the needed
information at any time.

An information carrier is a data structure which
contains all the information about a sketch. It is created
independently as a step of the page interpretation without
reference to related pages. The use of an object as the
information carrier instead of a communication protocol
can result in several disadvantages. For example, every
interpreter has to dump all information into the carrier
resulting in a waste of memory. The reason to store all
information is that the single interpreters do not know
with whom they exchange information. Thus saving all
information guarantees that all interpreters get the
desired information.

However an information carrier also has a number of
advantages including that it is easier to implement and
extend. This extensibility is important when, as in this
case, the problem space is not well understood. It also is
self-contained, not requiring information about the
problem, the data, or how the data will be used.
6. Our approach

In order to enable the interpretation of diagrams from
different domains in a single step we need to extend
InkKit and implement appropriate output modules. As an
example we have chosen to take two of the three basic
system models, combining the data representation with
the user interface. The processes ‘submit’ and ‘retrieve’ are
hard coded to generate code specific representation
(Fig. 6, lower two sketch pages) a functional system can
be generating. InkKit’s recognition engine has to be
adjusted and an information exchange between the inter-
preters has to be established.

In order to interpret diagrams from different domains,
the recognizers from the sketched diagram domains must
be loaded. Previous implementations of InkKit were only
able to interpret one domain at a time, so only one
interpreter was loaded. After all sketches are recognized,
they have to be interpreted.

The loop controlling the interpretation of the sketches
had to be extended to handle more than one diagram
domain. The loop’s purpose is to process relations between
different sketch pages, which are indicated by rubber
bands between the sketches (see Fig. 6). The loop extension
includes the implementation of code which supervises the
loop and controls the sketch order, meaning that diagrams
from the same domain are processed consecutively.

After the sketches are interpreted, output modules can
generate format-specific code based on the interpretation
results. Every domain has output modules which generate
specific code; for example, the UI domain has two output
modules which generate Java code and HTML code.

We implemented an enhancement to the Java code
output module to improve the aesthetics of the generated
output. Until this point, the Java output module has not
used a manager to organize the GUI’s layout. There are
several layout managers available such as Gridbag Layout
Manager and ALM [22]. ALM is focused on the tabstops
between cells rather than on the cells of the grid like the
Gridbag Layout Manager. This generalization of grid-
based layouts makes ALM the most powerful manager in
terms of adaptive layout resizing [26]. By using the layout
manager the form appearance is enhanced, due to the
standardized sizes of components of the same type and
the harmonized positions of the components.

A MySQL output module was added as part of the ER
domain as it provides an easy interface to the Java front
end that we planned. The implementation consists of 650
lines of code, making this module one of the more



ARTICLE IN PRESS

Fig. 6. InkKit’s portfolio manager including a sketched ER diagram, user interface and processes.

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108104
complex InkKit output modules. The reason for its size is
the complexity of ER diagrams—different sketch compo-
nents are connected with each other and therefore form a
single, complex structure rather than a collection of
independent components.

After the necessary changes in InkKit’s implementation
were made, the communication between the interpreted
sketches had to be established in order to exchange
information. Several challenges had to be overcome which
are explained in this section.

If diagrams from different domains are interpreted in
one step, information can only be exchanged sequentially.
This makes it necessary to interpret diagrams in a
particular order.

Since InkKit’s design follows a modular approach, it
only calls the interpreters and hands over the needed
information. This means that InkKit does not actively
coordinate messages between the different interpreters,
hence the interpreters have to coordinate the commu-
nication by themselves. We considered two approaches to
this, as described above, a communications protocol or
information carrier object passed between the inter-
preters. We decided to implement the information carrier
object because of easier integration into InkKit’s current
architecture, the lower degree of implementation com-
plexity and the lower complexity for maintenance.

InkKit has no information about the interpretation at
any stage due to the modular design, which encapsulates
the recognition from the interpretation. Therefore it
cannot know dependencies between the sketches to
inform the order in which the sketches should be
recognized. The user can order the sketches manually
using the GUI listing the required interpreters (see Fig. 8).
When there are several sketches from the same domain
(i.e. they have the same interpreter) they are ordered
consecutively within the domain.

Since it cannot be guaranteed that the user knows the
correct order and that the information can be provided
when needed, the interpreter was designed to be fault-
tolerant. This means that if the information is not
available, the interpreter produces an incomplete result
which is then further used by an output module. After-
wards, if desirable, the gaps in the generated output code
can be manually completed by the user. This has the
advantage of allowing immediate generation of partial or
ambiguous designs that can be used experimentally using
the design process.

Using this new cross-domain interpreter, a set of
diagrams such as that in Fig. 6 can be successfully
interpreted to produce a MySQL database and Java UI.
The generated UI is shown in Fig. 7 including a table
which shows the data retrieved from the database. This
table is displayed by pressing the ‘Retrieve’ button on the
UI. The process diagrams, which contain the information
about how to submit and retrieve data from the database,
are situated in the lower middle of Fig. 6. A process
diagram recognizer is not yet available in InkKit—for
presentation purposes it has been assumed that InkKit
could recognize them. However, while the processes are
currently hard-coded, the information necessary for the
process diagram interpreter to communicate with other
interpreters is implemented and information between it
and other interpreters is automatically exchanged.
7. Cognitive dimensions

We used Green and Petre’s [27] cognitive dimensions
(CDs) to evaluate the cognitive aspects of cross-domain
diagramming. The recommended practice for conducting
a cognitive dimensions evaluation is to describe the
environment in which the interaction takes place and
detect the system’s notation [28].

Pen input is supported by a broad variety of devices
such as Tablet PCs, Handhelds and special monitors. In
terms of utilization the digital pen can be best compared



ARTICLE IN PRESS

Fig. 7. User interface and database table automatically generated from the sketches in Fig. 6.

Fig. 8. Interface to order the interpreters.

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108 105
to its non-digital equivalent. Both types of devices are
used to record information in the form of writing or
drawing on an appropriate canvas. Such a digital canvas is
incorporated by our tool InkKit [5], which additionally
provides methods to manipulate the drawn input, e.g.
erasing, resizing, selection, redo/undo and cut.

In the following we provide a brief analysis of the CD’s
categories which were most influenced by our extension.
The CDs which are discussed in this section have been
chosen to outline the benefits of the new abilities to
sketch software systems and develop them gradually. The
focus specifically lies on the obvious as well as on the
hidden parts this kind of progressive system development
contains within itself. This becomes particularly evident
when sketching as this kind of interaction is virtually free
of constraints but also free of feedback; there is no
obvious evidence as to whether things will go according
to plan or not.
7.1. Premature commitment

There is no order forced on the user when sketching
diagrams. The user is able to work on all sketches in an
arbitrary order. Thereby the user can arbitrarily change
between the different sketches. This switching between
sketches and manipulating them in a constraint free
manner is crucial to the progressive development of
systems as the development steps can be arbitrary in size
and order; every aspect of the system (distributed over
the sketch pages) can be changed at will without any
restrictions. When designing InkKit, this freedom of
creativity was an important factor in order to achieve
the overall goal of creating a sketch environment, which is
as intuitive and easy to handle as possible.

7.2. Hidden dependencies

The dependencies between different domains are not
visible to the user. It is possible that domains which are
supposed to communicate (indicated by rubber bands)
with each other cannot do so because of missing
information. Due to the chosen structure, which handles
the information exchange between the single domains
the necessary information might not be available when
needed. There is no feedback given as to whether the
information exchange between the sketch pages works
until the system is generated. Even then the user has to
manually inspect the generated results to identify
possible errors that occurred during the system genera-
tion. Due to the explorative nature of sketching and the
proposed system, the user can ‘play’ around and change
the order of sketch interpretations, which might result in
a correctly generated system.

These current limitations can neither be influenced by
the user nor actively avoided. It has to be pointed out that
the system in its current status is still in development.
As outlined before, the information carrier was chosen
over a protocol to exchange information because of its
flexibility and adaptiveness. These characteristics were
very important when designing the extensions because
the problem space is not well known and necessary
changes should be as easy as possible to integrate.

7.3. Secondary notation

In order to support the users during the early design
phase it is possible to add annotations to the sketches



ARTICLE IN PRESS

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108106
which are not recognized. The purpose of those annota-
tions is simply to aid the user in the process, which is of
great importance to success as indicated by Myers et al.
[29]. Annotations can be of arbitrary appearance because
they do not have any notation constraints. Annotations
have to be contained in sketch pages of type annotation.
To indicate the association of annotations to sketches
rubber bands can be used.

7.4. Viscosity

At all times sketches can be incrementally refined or
modified; e.g. components can be easily added, deleted,
selected or moved. The transcription of different sketches
(to copy components from one sketch to another) is also
supported. However, there is no automated mapping of
the components to the new notation. This means that
copied components belonging to one notation also have to
be part of the target notation. If that is not the case the
copied components will be incorrectly recognized.

7.5. Hard mental operations and progressive evaluation

The idea behind sketching is the ease and familiarity
with which ideas can be visualized. This simple way of
exploring the possibilities represented in the sketched
diagram is proven to be more efficient in terms of
producing ideas than widget-based tools [1,2]. One reason
contributing to the efficiency is the nonexistence of hard
mental operations necessary to express ideas. This is why
the user can concentrate on the exploration of possibi-
lities rather than on the process of putting a diagram
together that represents the ideas. This whole idea is
reflected in InkKit’s interface: at any time the user can add
diagrams, modify them and define relationships between
them.

The same applies for progressive evaluation. At every
stage the user can recognize all sketched diagrams
including their relationships to check and explore the
generated output. It is also possible to recognize one
diagram rather than the entire set (when multiple sketch
pages exist) to test whether this one diagram in isolation
is correct.

As stated before, the basic principle of sketching is an
easy and intuitive form of progressive evaluation. One
might start drawing only the very essential components
of a diagram and add components while confirming that
the concept still works.

7.6. Closeness of mapping

To demonstrate the ability to recognize diagrams from
different domains and connect the automatically gener-
ated output we used UI, ER and process diagrams. The
idea is to sketch a set of related UI and ER diagrams, create
relationships between the ER’s attributes and UI’s input
components such as text boxes or combo boxes (see
Fig. 6). There is a high closeness of mapping between the
sketches and the automatically generated MySQL data-
bases and Java UIs. To improve the aesthetics of the
generated Java interface the Auckland Layout Manager
(ALM) was used. Managing the output mainly affects the
size and alignment of the UI components (see Fig. 7)
decreasing the hard mental operations of users interacting
with the generated interface.

The sketched process diagrams describe the actions
triggered when clicking on the Submit and Retrieve
buttons. In our implementation the sketch describing
the process only consists of one signal word, i.e. either
submit or receive. This highly abstract approach to visu-
ally represent processes results in a very low closeness of
mapping. Regarding hard mental operations our approach
of using key words to symbolize processes is extremely
user-friendly due it’s effortlessness to learn and facilitate.
8. Discussion

When systems are created the first step is often to
outline the system’s design and its capabilities. One
frequently used and efficient method of doing this is to
sketch diagrams describing the single parts of the
complex system. InkKit and other sketch tools already
recognize different types of diagrams. However, all these
tools are limited to recognizing and interpreting one
diagram type at a time. By overcoming this shortcoming,
new opportunities are created such as automatically
generated interpretation results where the different views
interact with each other.

This demands an information exchange between the
sketches when being interpreted. Since InkKit’s modular
design does not allow for direct coordination of this
exchange, the different diagram plug-ins are required to
do so. We found and explored several possibilities to
organize an information exchange. One method is to use a
communication protocol; another is to pass a data
structure along with the sketch interpretation. The latter
has the advantage of being easier to extend and imple-
ment. However, it also has many disadvantages which a
communication protocol would solve. The biggest draw-
back is the fixed interpretation order, which results in a
sequential exchange schema that cannot be altered: if
information is needed it has to be available otherwise the
generated interpretation result is incomplete. Another
problem solved by the communication protocol would be
the ability of the sketch interpreters to specifically ask for
information. With the information carrier object approach
all information has to be stored to ensure that it will be
available when needed. The information carrier may also
cause a problem of how to find the relevant information
within the data structure.

Despite these drawbacks, the information-carrier ob-
ject was implemented as it has the advantage of fitting
more easily into InkKit’s current architecture. We now
have a better understanding of the requirements of the
communication protocol, which needs to be carefully
designed before implementation. Any mistakes in its
model would result in communication limitations, mak-
ing careful planning necessary.

We simulate the existence of working process dia-
grams to demonstrate the new capabilities of InkKit



ARTICLE IN PRESS

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108 107
regarding the information the diagram interpreters have
about each other. Without the process diagrams no code
defining the actions to perform on the exchanged
information would have been generated.

The choice of notation for the different diagram types
can be difficult. The notation used to sketch UI diagrams
consists of well-known components, which look similar to
their corresponding UI components resulting in a high
closeness of mapping. The degree of abstraction is
comparatively low because of the closeness of mapping;
the generated result and the original sketch look almost
identical. When choosing a notation for process diagrams
the decision regarding the level of abstraction is not
straightforward.

In InkKit’s current implementation the two processes
to retrieve and submit data to the database are indicated
by key words rather than being properly described with
sketches. This approach is abstract and cannot be
manipulated or adjusted in any way. This is partly
because there is no visual representation of processes
which offers the means to sketch detailed enough
processes; e.g. with a closeness of mapping close to the
UI domain’s one. The commonly known visual represen-
tations of processes (e.g. UML diagrams) are highly
abstract and depict the process from different perspec-
tives such as structure or information flow. Due to this
abstract notation a lot of information has to be inferred
resulting in high viscosity of a system; the system is
highly resistant to change. High viscosity limits users in
their design freedom by putting additional constraints on
them, which goes against the purpose of our sketch toolkit
as being intuitive and with natural interaction. Ideal
would be a visual representation of the processes which is
similar to the UI ones in terms of closeness of mapping
and viscosity. To make a good decision regarding the
process notation, which includes the abstraction trade-off,
more research is necessary.

In simulating the possible processes, we implemented
only very general methods to perform on the information.
These methods include the submission and retrieval of
data entered in the UI to and from the MySQL database.

Adding a cross-domain information exchange between
sketch interpreters into InkKit enables many new sketch
tool features, such as letting the generated programs
interact with each other. UI and ER diagrams are good
examples of related diagrams that have allowed us to
explore many of the issues with cross-domain recogni-
tion. However there are possibly other requirements that
different types of domain combinations would reveal. One
which we are particularly aware of is the cardinality of
relationships between the different sketches.
9. Conclusion and future work

In this project we extended InkKit to recognize
diagrams from different domains in a single step and
connect the automatically generated software of specific
data formats. A ‘‘single step’’ means that the recognition,
interpretation and output generation of all sketches in the
active portfolio is computed in one run. The run combines
the representation results in independent software com-
ponents from the various domains with interaction
between them. Since sketch tools were already able to
recognize different domains in separate steps, the next
logical stage was to interpret sketches from different
domains in one step and compute the relationships.

We realized the cross-domain interpretation between
the UI and ER diagrams. Existing plug-ins in InkKit have
been modified in order to be able to exchange information
with other diagram interpreters. To make the information
exchange more flexible, the list should be replaced by a
communication protocol. This would lead to a new set of
opportunities such as an information exchange, which is
independent from interpretation order and is more
intuitive.

To assess the efficacy of these new capabilities a
detailed user evaluation study is necessary. The focus of
this evaluation should be on the new possibilities of
collaborative work between experts from different do-
mains.

References

[1] B.P. Bailey, J.A. Konstan, Are Informal Tools Better? Comparing
DEMAIS, Pencil and Paper, and Authorware for Early Multimedia
Design. CHI 2003, ACM, Ft Lauderdale, 2003, p. 313-320.

[2] Yeung, L., Plimmer, B., Lobb, B., Elliffe, D., Effect of fidelity in
diagram presentation, in: Proceedings of the 22nd British HCI
Group Annual Conference on HCI 2008: People and Computers XXII:
Culture, Creativity, Interaction—volume 1, United Kingdom: British
Computer Society, Liverpool, 2008, p. 35–45.

[3] V. Goel, Sketches of Thought, The MIT Press, Cambridge, Massachu-
setts, 1995.

[4] Plimmer, B.E., Apperley, M., Interacting with sketched interface
designs: an evaluation study. SigChi 2004, vol. Extended Abstracts,
ACM, Vienna, 2004, p. 1337–1340.

[5] B. Plimmer, I. Freeman, A Toolkit Approach to Sketched Diagram
Recognition. HCI, vol. 1, eWiC, Lancaster, UK, 2007, p. 205–213.

[6] J. Landay, B. Myers, Sketching Storyboards to Illustrate Interface
Behaviors. CHI ‘96, ACM, Vancouver, BC Canada, 1996, p. 193–194.

[7] C.H. Damm, K.M. Hansen, M. Thomsen, Tool Support For Coopera-
tive Object-Oriented Design: Gesture Based Modelling on and
Electronic Whiteboard. Chi 2000, ACM, 2000, p. 518–525.

[8] Hammond, T., Davis, R., 2002. Tahuti: a geometrical sketch
recognition system for UML class diagrams, 2002 AAAI Spring
Symposium on Sketch Understanding.

[9] B.P. Bailey, J.A. Konstan, J.V. Carlis, DEMAIS: Designing Multimedia
Applications with Interactive Storyboards, ACM Multimedia, 2001,
pp. 241–250.

[10] B.E. Plimmer, M. Apperley, Freeform: a tool for sketching form
designs, BHCI, Bath 2 (2003) 183–186.

[11] A. Caetano, N. Goulart, M. Fonseca, J. Jorge, Javasketchit: Issues
in Sketching the Look of User Interfaces, AAAI Press, Menlo Park,
2002.

[12] Hammond, T., Davis, R., LADDER: a language to describe drawing,
display, and editing in sketch recognition, IJCAI, 2003, p. 12–19.

[13] Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., Vanderdonckt, J.,
SketchiXML: towards a multi-agent design tool for sketching user
interfaces based on USIXML, in: Proceedings of the Third Annual
Conference on Task models and Diagrams, ACM Press, Prague,
Czech Republic, 2004, p. 75–82.

[14] Lank, E.H., A retargetable framework for interactive diagram
recognition, in: Proceedings of the Seventh International Con-
ference on Document Analysis and Recognition-volume 1: IEEE
Computer Society, 2003, p. 185–189.

[15] C. Alvarado, R. Davis, SketchREAD: A Multi-Domain Sketch
Recognition Engine. UIST, ACM, Santa Fe, 2007, p. 23-32.

[16] J.A. Landay, Interactive Sketching for the Early Stages of User
Interface Design, Carnegie Mellon University, Pittsburg, PA, 1996.

[17] J. Lin, M.W. Newman, J.I. Hong, J.A. Landay, Denim: Finding a
Tighter Fit between Tools and Practice for Web Design. Chi 2000,
ACM, 2000 p. 510–517.



ARTICLE IN PRESS

P. Schmieder et al. / Journal of Visual Languages and Computing 21 (2010) 98–108108
[18] Plimmer, B.E., Apperley, M., Software for students to sketch
interface designs, in: Rauterberg, M., Menozzi, M., Wesson, J.,
(Eds.), Interact. Zurich, 2003, p. 73–80.

[19] M.W. Newman, J. Lin, J.I. Hong, J.A. Landay, DENIM: an informal
web site design tool inspired by observations of practice, Human-
Computer Interaction 18 (2003) 259–324.

[20] B. Plimmer, G. Tang, M. Young, Sketch Tool Usability: Allowing the
User to Disengage, ACM, HCI London, 2006, p. 164–167.

[22] C. Lutteroth, R. Strandh, G. Weber, Domain specific high-level cons-
traints for user interface layout, Constraints 13 (7) (2008) 307–342.

[23] Patel, R., Plimmer, B., Grundy, J., Ihaka, R., Ink features for diagram
recognition. 4th Eurographics Workshop on Sketch-Based Inter-
faces and Modeling Riverside, Eurographics, California, 2007.

[24] Rubine, D., Specifying gestures by example, in: Proceedings of
Siggraph ’91, ACM, 1991, p. 329–337.
[25] I. Freeman, B. Plimmer, Connector Semantics for Sketched
Diagram Recognition. AUIC, ACM, Ballarat, Australia, 2007
p. 71–78.

[26] Lutteroth, C., Weber, G., Modular Specification of GUI layout using
constraints, in: Weber G, (Ed.), 19th Australian Conference on
Software Engineering, ASWEC, 2008, p. 300–309.

[27] T.R.G. Green, M. Petre, Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework, Journal of
Visual Languages and Computing 7 (1996) 131–174.

[28] Green, T. R. G., Blackwell A. F., 1998. ‘‘Cognitive dimensions of
information artefacts: a tutorial.’’ from /http://www.cl.cam.ac.uk/
�afb21/CognitiveDimensions/CDtutorial.pdfS.

[29] Myers, B., Park, S.Y., Nakano, Y., Mueller, G., Ko, A., How designers
design and program interactive behaviors, VL/HCC 2008. Herrsch-
ing am Ammersee, Germany: IEEE, p. 177–184.

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

	Generating systems from multiple sketched models
	Introduction
	Motivation
	Related work
	InkKit overview
	Cross-domain requirements
	Interface and relationships
	Recognition, interpretation and information flow

	Our approach
	Cognitive dimensions
	Premature commitment
	Hidden dependencies
	Secondary notation
	Viscosity
	Hard mental operations and progressive evaluation
	Closeness of mapping

	Discussion
	Conclusion and future work
	References




