
Automatic User Interface Generation from
Declarative Models

Egbert Schlungbaum and Thomas Elwert
Universität Rostock, Fachbereich Informatik, Albert-Einstein-Straße 21, D-

18051 Rostock, Germany
Phone: +49-381-498-34{19, 27} – Fax: +49-381-498-3426

E-mail: {Egbert.Schlungbaum, telwert}@informatik.uni-rostock.de
WWW: http://www.icg.informatik.uni-rostock.de/~{schlung, telwert}

Abstract

Automatic user interface generation is a widely discussed topic in the research
community. In recent years several approaches have been developed to support
this kind of generation. There is a need to summarise this. This article should pro-
vide a basis for a founded discussion in this direction. The article gives an overview
about model-based user interface software tools. The special attention is paid to
the declarative models. The process of user interface generation is highlighted on a
basis of a categorisation. The main section contains ideas of TADEUS about auto-
matic user interface generation explained by an example.

Keywords

Model-based user interface software tools, user interface generation.

Introduction

User interface software is often large, complex and difficult to implement, to de-
bug, and to modify. An average of 48% of the code of application is devoted to the
user interface, and that about 50% of the implementation time is devoted to im-
plementing the user interface portion [Myers92]. As user interfaces become easier
to use, they become harder to create [Myers94].

A lot of user interface software tools was created in order to help the user interface
developer. In our days the state of the art tools are called higher level tools
[Myers95]. Higher level tools exist in a large variety of forms, for example UIMSs,
UIDEs, IBs, UIDEs1, Application Frameworks and further. They are built on the
top of user interface toolkits.

Brad Myers overviews the current state of the art in user interface software tools
[Myers95]. He introduced a classification of these tools. It is based on the way how

1 Do not confuse this general term with Foley's UIDE - The User Interface Development Environ-
ment [Foley94] the state of the art tool in the area of model-based user interface software tools.

4 Computer-Aided Design of User Interfaces

the designer can specify the layout and the dynamic behaviour of a user interface.
There are tools which require the user interface developer to program in a special-
purpose language (language-based tools in Myers' classification), which allow to design
the user interface interactively (interactive graphical specification tools in Myers' classifica-
tion), or which automatically generate the user interface from a high-level model or
specification (model-based generation tools in Myers' classification).

Language-based tools as well as interactive graphical specification tools are com-
mercially available and frequently used at present. But the development of user in-
terfaces is still a difficult and time-consuming activity by using one of these tools.
Language-based tools support the specification of the control of the user interface
in an easy way. But the problem is that the developer must specify layout, place-
ment, and format for each user interface object.

There is an opposite situation with interactive graphical specification tools. On the
one hand the designer creates the layout of the user interface interactively what
seems to be a natural way to develop a user interface and can be carried out by
non-programmers. On the other hand the dialogue control specification has to be
added by using a programming language or by using a special purpose language.

Furthermore, the language-based tools as well as the interactive graphical specifica-
tion tools do not support the developer to follow existing user interface guidelines
and style guides in order to maintain the internal consistency across the user inter-
face as well as the external consistency with other applications.

A further important lack of language-based tools and interactive graphical specifi-
cation tools is that the results of requirements analysis cannot be directly used for
user interface development in most of existing user interface software tools. Solv-
ing this problem is a issue of extensive current research (e.g., [Coutaz94, EHCI95]).

Olsen et al. [Olsen93] suggest the automatic user interface generation as an essen-
tial part of future user interface development environments. The model-based gen-
eration tools were introduced to solve the mentioned problems. Several model-
based user interface software tools have been built. Some of these are UIDE [Fo-
ley94], HUMANOID [Szekely93], ADEPT [Johnson95, Wilson96], ITS [Wiecha90],
MECANO [Puerta94b, Puerta96b], TRIDENT [Bodart95a], BOSS [Schreiber94b],
GENIUS [Janssen93], JANUS [Balzert95a], MASTERMIND [Szekely95], AME [Märtin-
96a, Märtin96b].

As shown in figure 1 the common property of all these tools is that the desired
user interface is automatically created from a specification represented by declara-
tive models.

The model-based approach offers many potential benefits over traditional methods
of building user interfaces (see also [Szekely95]), e.g., powerful design and runtime
tools, support for early conceptual design, consistency and reusability, iterative de-
velopment, integrated development of user interface and application core. But this

 Key dimensions for a Deveopment Methodology of Interactive Systems 5

approach is still at the research level (see also [Myers95]), because the user inter-
faces that are generated are not good enough.

Furthermore, the specification languages are quite hard to learn and use. Extensive
current research is done to address these problems. On the other hand, there are
tools which primarily focus on design assistance during the user interface devel-
opment process. Examples are EXPOSE [Gorny95], IDA [Reiterer94].

generation

declarative
models

• tasks
• objects
• presentation
• dialogue
• ...

UI
description

file

runtime
system

of existing
UIMS

special
purpose
runtime
system

Figure 1. Model-based user interface generation

The purpose of this article was to encourage the discussion during the special track
CADUI workshop. There is a long tradition in CADUI and in our opinion it is
necessary to summarise the research results. For it, the paper is organised as fol-
lows. Different model-based user interface software tools are shortly surveyed in
the next section.

The points of investigation are the use of different declarative models and the
computer-based user interface generation from it. After it, the automatic user inter-
face generation in the TADEUS approach is described in detail.

1 Model-Based User Interface Software Tools

1.1 Representing Information by Declarative Models

As mentioned above there are several model-based user interface software tools.
All these approaches follow one key idea. That is, the information which is re-
quired for user interface development is explicitly represented in declarative mod-
els. These models are accessible by the user interface, the application core and ex-
ternal tools at design time and at run time.

Summarising shortly the mentioned model-based tools there are some kinds of
models which are used commonly [Puerta94a].

6 Computer-Aided Design of User Interfaces

A Task model is used to describe the tasks the end-user has to perform. Goals in
a task model specify when a desired state is met, methods describe procedures to
achieve a goal, where atomic methods achieve a goal in one step and composite
methods decompose a goal into subgoals.

An Application model is to specify the services an application provides. It is
mostly object-oriented; objects capture the state of entities and the operations
change the state of objects. It is important that the operations correspond to the
atomic methods specified in the task model.

A Dialogue model is used to describe the human-computer conversation. It de-
scribes when the end-user can invoke commands, select or specify inputs and when
the computer can query the end-user and presents information.

A Presentation model specifies the object and operation appearance, the hier-
archical decomposition of displays into components, the attributes and layout of
each component.

A Behaviour model is used to specify the input behaviour. The use of a presenta-
tion model and a behaviour model allows to specify the layout and the dynamic
behaviour of the user interface independently.

A Platform model can be used to describe platform characteristics, e.g., input de-
vices, output devices.

A User model specifies the end-user characteristics. A user model can be used in
order to generate individual user interfaces (adapted to stereotypes), to reconfigure
the interface to the end-user, to provide adaptive user interfaces, to provide an ap-
propriate level of help, to actively guide the user during interaction.

A Workplace model can describe workplace characteristics, e.g., cultural charac-
teristics, environment factors. These models are used in different ways. The first
five of these eight are used mainly; the use of an explicit user model was suggested
in the context of ADEPT only [Kelly92], neither an explicit platform model nor an
explicit workplace model is used in any of the model-based approaches. Further-
more, there are differences in controlling the designed user interface, e.g., control-
ling by a special-purpose runtime-system that uses the specified models directly or
generating a textual user interface description that is used to control an existing
UIMS. Let's look into some of the mentioned tools.

In UIDE [Sukaviriya93] the designer has to specify an application model that consists
of application actions, interface actions, and interaction techniques. Parameters, pre-condi-
tions, and post-conditions are assigned to each action. The pre- and post-condi-
tions are used to control the user interface during run time by means of the UIDE
runtime system.

An extension to UIDE [Sukaviriya94] provides an application model and an interface
model. The application model consists of tasks which will be performed by end-
users, their operational constraints, and objects on which these tasks operate. Inter-

 Key dimensions for a Deveopment Methodology of Interactive Systems 7

face components, application-independent interface tasks, and operational con-
straints on these tasks are specified in the interface model. The application seman-
tic information which is stored in the application model is preserved from design
time to run time. So it can be used for some sophisticated tools to support the end-
user, e.g. automatic generation of context-sensitive help.

HUMANOID [Szekely92, Szekely93] provides a declarative modelling language that
consists of five semi-independent parts: the application semantics represents the ob-
jects and operations of an application; the presentation defines the visual appearance
of the interface; the behaviour defines the input gestures that can be applied to pre-
sented objects, and their effects on the state of the application and the interface;
the dialogue sequencing defines the ordering constraints for executing commands and
supplying inputs to commands; the action side-effects defines actions executed auto-
matically when commands or command inputs change state (e.g., making a newly
created object the current state). The presentation and the behaviour models are
specified by using templates, the dialogue sequencing is specified implicitly and is
derived from the application model. The designed user interface is controlled by
the HUMANOID runtime system.

In TRIDENT [Bodart94b, Bodart95a] the designer has to specify a task model which
is represented by an Activity Chaining Graph (ACG) and an application model in
form of an entity-relationship diagram. The task model includes the interactive
tasks the end-user has to perform, and the sequencing information for tasks in or-
der to achieve the related goal. A presentation model represented by presentation units
is defined over the ACG. Finally, a textual description of the user interface is gen-
erated.

In GENIUS [Janssen93] the designer uses the existing data model to design the user
interface. On the data model he has to define views those are used for explicit dia-
logue modelling by means of Dialogue nets and for the layout generation. A textual
description of the user interface is generated.

In JANUS [Balzert95a] the user interface is generated from an object-oriented applica-
tion model (OOA model that results from object-oriented analysis) by using few
knowledge bases. There are not any further models in JANUS. A textual description
of the user interface is generated.

According to the notation of the central model (mostly the application or task
model) the mentioned model-based approaches can be classified into two classes:
the ones which use their own notation (e.g., UIDE, HUMANOID, TRIDENT) and the
others which use notations well-known from software-engineering (e.g., JANUS,
GENIUS). Especially JANUS is a good example how to use a software-engineering
model to generate the user interface. In this way user interface engineering can be
integrated into the general software engineering process what is mentioned as a fu-
ture direction of research by a lot of authors (e.g., [Coutaz94, Curtis94]).

According to the generation target there also can be distinguished two groups (see
figure 1): the systems which use their own runtime system (e.g., UIDE, HUMAN-

8 Computer-Aided Design of User Interfaces

OID) and the systems which generate a textual description of the desired user inter-
face to animate and to control by means of existing UIMS (e.g., GENIUS, JANUS).

Furthermore, there are some differences in modelling the dialogue sequencing. On
the one hand, such systems like UIDE, HUMANOID, MECANO, or TRIDENT do not
use an explicit dialogue model. The necessary sequencing information is specified
by using pre's and post's (e.g., UIDE), or it is derived from the application model
(e.g., HUMANOID, MECANO - extended application model called domain model,
JANUS) or task model (e.g., TRIDENT).

On the other hand, some authors argue the importance of explicit dialogue model-
ling [Janssen96, Lauridsen95, Weisbecker95]. This approach allows to involve the
end-user in a participatory user interface design process because of the whole dia-
logue structure can be shown and discussed at a glance. Furthermore, the genera-
tion of the user interface from an explicit dialogue model can lead to a higher qual-
ity of the user interface than the generation from other models.

1.2 Process of User Interface Generation

The idea of automatic user interface generation from some kind of declarative de-
scription (e.g., application model) is not new at all. The first of these tools were
presented about ten years ago, e.g., COUSIN [Hayes85], MIKE [Olsen86]. Currently,
there are a lot of various approaches of automatic user interface generation. They
are different in the use of input information mostly represented by declarative
models (from which the generation is done), the generation target, and the genera-
tion process itself. The first two points are shortly reported above. Now we will
discuss the generation process.

Although there are differences, some common features of the user interface gen-
eration can be identified. Mostly, four basic steps are reported (e.g., [Puerta94b,
Balzert95a, Janssen96, Vanderdonckt95b, Weisbecker95]):

• high-level dialogue generation,
• layout generation,
• low-level dialogue generation,
• layout and design revision.

There are also some extensions. Helmut Balzert [Balzert95b] describes not only the
user interface generation but also extends to application generation too. Jean Van-
derdonckt [Vanderdonckt95b] especially analyses the knowledge-based support of
each generation step, e.g., suggestion of interaction style, selection of interaction
objects, defining the layout of interaction objects, identification of windows, pro-
viding a guideline document.

High-level dialogue generation consists of identification of all windows of the
desired user interface, specification of the navigation structure among these win-
dows in the interface, and assigning of interface objects to each window. The term
Abstract Interaction Object (AIO) is often used instead of the term interface ob-

 Key dimensions for a Deveopment Methodology of Interactive Systems 9

jects, e.g., [Morin90, Johnson92a, Vanderdonckt93, Weisbecker95]. AIO takes into
consideration behavioural aspects only, they are free of presentational aspects.

TRIDENT uses Presentation Units (PU) defined over the ACG. One or more win-
dows can be identified inside a PU. For it, five identification strategies are sug-
gested and supported by algorithms [Bodart95b]. The selection process of AIO in-
side a PU can be full automatic or computer-aided. For it, additional information
from the task and application model is used [Vanderdonckt93].

GENIUS [Janssen93] automatically assigns a window to each view defined in the
dialogue model. The views are defined by hand on the data model. The transitions
of the Dialogue nets (Dialogue nets represent the dialogue model in GENIUS) are
used for the generation of navigation structure among windows. AIOs are assigned
to each attribute of entities related to a view.

JANUS [Balzert95a] assigns a window to each non-abstract class defined in the ob-
ject-oriented model. The navigation structure among these windows is generated
by using the relations between the classes defined in the OOA model and by using
one of the knowledge bases in order to generate one pull-down menu item for each
window.

MECANO [Puerta94b] is similar to JANUS. It also assigns a window to each class
defined in the domain model. The navigation structure is derived from the rela-
tions between the classes. In both systems the AIOs are derived from model in-
formation, in JANUS an AIO is assigned to each attribute of a class, and in ME-
CANO to each slot of a class.

During layout generation each abstract interaction object is assigned to a Con-
crete Interaction Object (CIO, e.g., dialogue widgets on toolkit-level) and all CIOs
are placed on their corresponding windows by a layout algorithm that observes in-
terface design guidelines. Various placement strategies are discussed in the litera-
ture (e.g., a summarising overview [Vanderdonckt94d]).

Low-level dialogue generation deals with the user interface behaviour on the
CIO-level, e.g., disabling of application actions if there is not any selected object.
On this level the systems, that preserve the application semantics from design time
to run time (e.g., UIDE, HUMANOID), are good because of dependencies like that
mentioned above are specified by pre's and post's and can be used to execute the
user interface. In GENIUS the dialogue model was extended with constraints in or-
der to describe low-level user interface behaviour [Janssen96]. This step is not de-
scribed for all the other tools explicitly.

Layout and design revision is done in the most cases manually. It is an essential
step because of automation during layout generation do not guarantee a satisfac-
tory user interface in all cases. This step is used for participatory design steps on
which the end user of the desired user interface is involved.

10 Computer-Aided Design of User Interfaces

Considering the mentioned methodologies for user interface generation together
with the described generation levels we are developing TADEUS – a task-based
methodology supporting the user interface development process.

1.3 User Interface Development by Using TADEUS

At the begin we want to describe the TADEUS methodology in general. Then we
outline the TADEUS dialogue model shortly.

The TADEUS approach divides the user interface development process of an inter-
active software system into three stages [Elwert95]. In the first stage, the require-
ments analysis, the designer specifies three domain models (task, problem domain,
and user model) which contain the requirements for the desired user interface. In
the second, the dialogue design stage, the designer develops the dialogue model. Its
initial form is generated from the already created domain models.

The dialogue model describes the static layout and the dynamic behaviour of the
user interface. The third stage is the automatic generation of the prototype of the
final user interface by using a software ergonomics knowledge base and additional
information input provided by an auxiliary dialogue with the dialogue designer in
order to request non-specified information. The generation result is a dialogue de-
scription file for an existing UIMS.

The TADEUS dialogue model distinguishes between two different types of dialogue,
the navigation and the processing dialogue. The navigation dialogue describes the pos-
sible interactions between dialogue views which represent logical and functional
groups of dialogue objects1. The dialogue objects represent objects and methods
stored in the TADEUS problem domain model.

A group called dialogue view can exist in one or more instances. The dialogue views
are transformed later on into windows of the final user interface. The navigation
dialogue can be specified by means of Dialogue graphs.

The processing dialogue deals with the description of the dialogue within a dialogue
view and is expressed by interaction tables. This interaction table stores the design
decision about the representation of objects and methods coming from the prob-
lem domain model in terms of dialogue object, method, dialogue form, transition,
abstract interaction object and concrete interaction object. The interaction table
covers the development process from an abstract to a concrete level. In a further

1 Dialogue objects are close related to task placed in the task model and their related objects and
methods and objects and methods placed in the problem domain model. That means in particular a
dialogue object represents a problem domain object or a releaser of a method of an object. In the fol-
lowing section we want to use the term interaction object instead of dialogue objects in order to em-
phasis the interactive nature of these objects. There is no difference between this both terms but in
our opinion the term dialogue object fits the desired meaning at the best. We use both in this paper
in order to make it easier to find relations to other existing methodologies.

 Key dimensions for a Deveopment Methodology of Interactive Systems 11

development step of TADEUS we want to use the Dialogue graph notation for the
description of the processing dialogue too.

2 Generation of User Interface Software in TADEUS

The development of the dialogue model and the generation of the user interface
prototype are closely related. The exactness of the dialogue model influences the
effort for the generation of the user interface and its quality. If there are missed in-
formation in the dialogue model the dialogue designer has to answer some ques-
tions during the generation process to add the missed information.

In TADEUS the desired user interface is primarily generated from the dialogue
model which consists of two parts the Dialogue graph and the interaction tables.
Additionally, information represented in the task and problem domain models is
used during the generation process. The presentation layout of the user interface is
generated using the interaction tables and the problem domain model. The dy-
namic behaviour of the user interface is generated using the Dialogue graph and
the task model.

The generation process realised in the TADEUS system conforms to the four steps
discussed in the paragraph 1.2. Furthermore, it is similar to the generation steps de-
scribed in TRIDENT [Bodart95a], GENIUS [Weisbecker95]. The TADEUS generation
process contains seven steps:

1. Defining and evaluating the default layout description.
2. Selection of abstract interaction objects for each dialogue form.
3. Mapping from abstract interaction objects to concrete interaction objects.
4. Defining the layout of concrete interaction objects by using the defaults.
5. Placing the concrete interaction objects inside the views automatically.
6. Creation the dynamic behaviour from the Dialogue graph.
7. Generation of the user interface description file for an existing UIMS.

In general, the dialogue designer performs only once the first step for each user in-
terface project. The default layout description includes some presentation proper-
ties of CIO. For example, one important point of the defaults is the definition of
background and foreground colour relations of CIOs themselves, among different
CIOs, and between windows and CIOs which are placed inside the windows.

During the generation process these default settings support to achieve consistency
and to speed up the generation procedure. The table 1 gives a short impression of
the defaults.

12 Computer-Aided Design of User Interfaces

CIO background foreground font cursor type

window white black mask font arrow cursor
group box grey black mask font arrow cursor
edit text white blue text font text cursor

push button dark grey black button font action cursor

Table 1. Default layout description (some examples)

The real and possible repeated generation process begins at step 2. The highest
level of the TADEUS dialogue model describes views which are transformed into
windows during the generation process. That means, the window identification
procedure is done by explicit dialogue modelling before the automatic generation
starts. Furthermore, the generation steps from 2 up to 5 must be repeated for each
view (window). The dynamic behaviour among the windows is generated from the
transitions of the Dialogue graph (see below).

An interaction table is defined for each view of a Dialogue graph in order to de-
scribe the processing dialogue. There are some examples of interaction tables in the
following section. The dialogue designer can define a dialogue form for each transi-
tion of the Dialogue graph which is assigned to the current view. If there is no ad-
ditional information from the task or problem domain model, the default for the
dialogue form is a function call, but the dialogue designer can change this value.
The use of this additional information is a topic of our current research. The in-
formation about the dialogue forms is used to choose AIOs by rules which are de-
rived from table 2. In the following step the abstract interaction objects are
mapped to CIOs by rules which are derived from table 3.

dialogue form type AIO

function call action trigger
data input free input field; input group

 1:n single selector
 m:n multiple selector

data output output field; output group

Table 2. From the dialogue form to the AIO (some examples)

AIO type CIO
input field free edit text

single selector 1 : n, (n = const., n ≤ 7) group box + radio button
 1 : n, (n = const., n > 7) list box
 1 : n, (n = variable) list box

multiple selector m : n, (n = const., n ≤ 7) group box + check boxes
 m : n, (n = const., n > 7) list box
 m : n, (n = variable) list box

Table 3. From the AIO to the CIO (some examples)

In the next steps each concrete interaction object is extended by layout parameters
and placed in the corresponding window. The step 4 is solved by the usage of the

 Key dimensions for a Deveopment Methodology of Interactive Systems 13

default layout description. This description contains information about layout pa-
rameters of each concrete interaction object type (e.g., foreground colour, back-
ground colour, see table 1). The step 5 is supported by grouping information which
is described in the interaction table. This information is not required, but it helps a
lot to improve the quality of the generated layout.

When the static layout of all views (windows) is generated the dynamic behaviour
among these windows is implemented. All transitions of the Dialogue graph are
transformed into executable rules by generation pattern. A generation pattern is de-
fined for each transition, the following figure gives an impression on the essence of
a sequential transition (left hand side) and a concurrent transition (right hand side).

V1 V2

on B1 select
{
 V2.visible := TRUE;
}

V1

on B1 select
{
 V1.visible := FALSE;
 V2.visible := TRUE;
}

B1 B1V2

Figure 2. Generation pattern

Up to this point the result of the TADEUS generation process is an internal user in-
terface description which is independent of a concrete UIMS. In the last step it is
transformed into a user interface description file of an existing UIMS. So, it is pos-
sible to create the same user interface for different UIMS or on different platforms.

3 Example

Let's use a concrete example to demonstrate the TADEUS generation process. The
example explains a part of the user interface of the TADEUS environment, the user
modelling component [Elwert95]. The necessary parts of the task model and the
problem domain model for the user modelling component are shown in figure 3.

Furthermore, figure 3 shows the views the dialogue designer identified over the
task model. With it, the Dialogue graph shown in figure 4 can be generated (view 1
= TADEUS, view 2 = user model, view 3 = role).

This example explains two elementary dialogue structures of a GUI of an informa-
tion system like a database application. The first one describes the situation: the
end-user uses the interactive system to support a lot of sub-tasks (e.g., process
tasks, process roles) which he/she can carry out concurrently. It is represented with
a concurrent transition in the Dialogue graph between the main view and the view
of a sub-task.

14 Computer-Aided Design of User Interfaces

The second one describes the situation: the end-user wants to process a set of ob-
jects of the same type (e.g., different end-users of an interactive application are
modelled by different roles). This situation is represented with an object-related
concurrent transition.

role

dialogue experience
problem domain knowledge
system knowledge
...

create role
remove role
modify role

class name

attributes

 problem domain model

legend:

goal

primary
object

legend:

 task model

••• •••

process
tasks

tasks roles

process
roles

TADEUS

roles,tasks,
…

create
role

role

remove
role

role

modify role
attributes

role

1

2

3

Figure 3. Example: task and problem domain model

Figure 4. Example: Dialogue graph

The dialogue designer defines for the view user model the interaction table (see table
4). There are some special features which should be explained. First, the rows of
the interaction table were created automatically. The sequence of the first three
transitions confirms to the task model (e.g., the order of sub-tasks from left to
right). The help and quit transition are added by using styleguide information.

Second, the dialogue designer changed the dialogue form of the create role transition
to data input. And third, the dialogue designer had to change the positions in the
second group to achieve suitable sequence of the buttons. The generation result is

 Key dimensions for a Deveopment Methodology of Interactive Systems 15

shown in figure 5; figure 6 shows the corresponding generation result of the view
role. The next example explains how the generation results will change, if the dia-
logue designer uses the generated interaction table (see table 5). Now there are only
two groups, the transitions derived from the task model and the transitions added
by using styleguide information. The generation result is shown in figure 7.

transition dialogue form type group position in group
create role data input free 1 1

remove role function call 2 2
modify role function call 2 1

help function call 3 1
quit function call 3 2

Table 4. Example: interaction table of the view user model

transition dialogue form type group position in group
create role function call 1 1

remove role function call 1 3
modify role function call 1 2

help function call 2 1
quit function call 2 2

Table 5. Example: modified interaction table of the view user model

Figure 5. Generation result of view user model

16 Computer-Aided Design of User Interfaces

Figure 6. Generation result of the view role

Figure 7. Generation result of the modified view user model

Conclusion

In this paper we summarised the work in the area of model-based user interface
software tools in order to come to a basis for automatic user interface generation.
In a lot of various model-based user interface tools some common declarative

 Key dimensions for a Deveopment Methodology of Interactive Systems 17

models are used to specify the necessary information for automatic user interface
generation.

The user interface generation process in the TADEUS system was described and
demonstrated by an example. The development of the tool supporting this genera-
tion process is not finished yet. In order to improve the quality of the generation
result, we plan to implement a tool which generates different suggestions of the
layout of a view and then the dialogue designer can select the best one. Further-
more, it is necessary to extend the generation tool by a possibility for the creation
of the system pull-down menu of the desired user interface in order to fulfil
styleguide requirements.

In our opinion, one point of discussion during the CADUI workshop should be
the relation between modelling effort and quality of generation result. As it is obvi-
ous, on the one hand, the modelling effort using the TADEUS environment is high,
but on the other hand, the generation result of user interfaces in the area of infor-
mation systems is acceptable.

Furthermore, there are a lot of other points which could be discussed. Important
ones are which steps of user interface generation can be done in a full automatic
way, how many it will cost (e.g., realisation of the tool, required time of the genera-
tion procedure), and what kind of quality we will get as result of this generation
process. Or there are any steps which the dialogue designer must execute (these
steps are unable for automatisation) or should execute (these steps are carried out
by the dialogue designer better than automatisation) in order to achieve an accept-
able quality per acceptable costs.

Acknowledgements

Many thanks to Peter Forbrig for his remarks and proof reading and the anony-
mous referees for their helpful comments.

References

[Balzert95a] Balzert, H., From OOA to GUI - The JANUS-System, in Proceedings of
the 5th IFIP TC13 Conference on Human-Computer Interaction INTERACT’95,
Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and
S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 319-324.
http://www.swt.ruhr-uni-bochum.de/forschung/janus/lillehammer. html

[Balzert95b] Balzert, H., Hofmann, F., Niemann, C., Vom Programmieren zum Generi-
eren - Auf dem Weg zur automatischen Anwendungsentwicklung, in Proceedings of GI-
Fachtagung Software-technik'95 (Braunschweig, October 1995), 1995, pp. 126-136.
http://www.swt.ruhr-uni-bochum.de/forschung/swt95/artikel.htm

[Bodart94b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Vander-
donckt, J., A Model-based Approach to Presentation: A Continuum from Task Analysis to

18 Computer-Aided Design of User Interfaces

Prototype, in Proceedings of 1st Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994),
F. Paternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin,
1995, pp. 77-94.

[Bodart95a] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Sacré, B.,
Vanderdonckt, J., Towards a Systematic Building of Software Architectures: the TRIDENT
Methodological Guide, in Proceedings of 2nd Eurographics Workshop on Design,
Specification, Verification of Interactive Systems DSV-IS’95 (Château de Bonas, 7-
9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series, Springer-
Verlag, Vienna, 1995, pp. 262-278. http://www.info.fundp.ac.be/cgi-bin/pub-
spec-paper?RP-95-019

[Bodart95b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J.,
Computer-Aided Window Identification in TRIDENT, in Proceedings of the 5th IFIP
TC13 Conference on Human-Computer Interaction INTERACT’95, Lillehammer,
25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and S.A. Arnesen
(Eds.), Chapman & Hall, London, 1995, pp. 331-336. http:
//www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-021

[Coutaz94] Coutaz, J., Taylor, R.N., Introduction to the Workshop on Software Engineering
and Human-Computer Interaction: Joint Research Issues, in Proceedings of the Software
Engineering and Human-Computer Interaction ICSE’94 Workshop (Sorrento, 16-
17 May 1995), J. Coutaz, R.N Taylor, (Eds.), Lecture Notes In Computer Science,
Vol. 896, Springer-Verlag, Berlin, 1995, pp. 1-3.

[Curtis94] Curtis, B., Hefley, B., A WIMP No More - The Maturing of User Interface
Engineering, ACM Interactions, Vol. 1, No. 1, 1994, pp. 22-34.

[EHCI95] « Engineering for Human-Computer Interaction », Proceedings of the
6th IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-Com

[Elwert95] Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User In-
terfaces in the TADEUS Approach, in Proceedings of 2nd Eurographics Workshop on
Design, Specification, Verification of Interactive Systems DSV-IS’95 (Château de
Bonas, 7-9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series,
Springer-Verlag, Vienna, 1995, pp. 193-208. http://www. informatik.uni-
rostock.de/~schlung/TADEUS/paper/DSV-IS95.html

[Foley94] Foley, J.D., History, Results and Bibliography of the User Interface Design Envi-
ronment (UIDE), an Early Model-based Systems for User Interface Design and Implementation,
in Proceedings of 1st Eurographics Workshop on Design, Specification, Verifica-
tion of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994), F. Pa-
ternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp.
3-14.

[Gorny95] Gorny, P., EXPOSE - An HCI-Counseling for User Interface Design, in Pro-
ceedings of the 5th IFIP TC13 Conference on Human-Computer Interaction IN-

 Key dimensions for a Deveopment Methodology of Interactive Systems 19

TERACT’95, Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J.
Gilmore and S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 297-304.

[Hayes85] Hayes, P.J., Szekely, P.A., Lerner, R.A., Design Alternatives for User Interface
Management Systems Based on Expierence with COUSIN, in Proceedings of the Confer-
ence on Human Factors in Computing Systems CHI’85 (San Francisco, 14-18
April 1985), L. Borman, B. Curtis (Eds.), ACM Press, New York, 1985, pp. 169-
175.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423.

[Janssen96] Janssen, C., Dialogentwicklung für objektorientierte, graphische Benutzungss-
chnittstellen, Springer, Berlin, 1996. Also Ph.D. thesis, University of Stuttgart, 1996.

[Johnson92a] Johnson, J.A., Selectors: Going Beyond User Interface Widgets, in Proceed-
ings of the Conference on Human Factors in Computing Systems CHI’92 « Strik-
ing a balance » (Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G. Lynch
(Eds.), ACM Press, New York, 1992, pp. 273-279.

[Johnson95] Johnson, P., Johnson, H., Wilson, S., Rapid Prototyping of User Interfaces
Driven by Task Models, in « Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development », J. Carroll (Ed.), John Wiley & Sons, London, 1995,
pp. 209-246.

[Kelly92] Kelly, C., Colgan, L., User Modelling and User Interface Design, in Proceedings
of British Conference on Human-Computer Interaction HCI’92 « People and
Computers VII », A. Monk, D. Diaper, M.D. Harrison (Eds.), Cambridge Univer-
sity Press, Cambridge, 1992, pp. 227-239.

[Lauridsen95] Lauridsen, O., Generation of user interfaces using formal specification, in
Proceedings of the 5th IFIP TC13 Conference on Human-Computer Interaction
INTERACT’95, Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J.
Gilmore and S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 325-330.

[Märtin96a] Märtin, Ch., Modellierung, Entwurf und automatische Konstruktion interaktiver
Softwaresysteme, Entwurf der modellbasierten Entwicklungsumgebung Application
Modeling Environment (AME), Ph.D. thesis, University of Rostock, 1996.

[Märtin96b] Märtin, C., Software Life Cycle Automation for Interactive Applications: The
AME Design Environment, in this volume, pp. 57-74.

[Morin90] Morin, D., Working Group Discussion: Current Practice, in Proceedings of
Eurographics Workshop on User Interface Management Systems and Environ-
ments (Lisbon, June 1990), Duce, D.A., Gomes, M.R., Hopgood, F.R.A., Lee, J.R.
(Eds.), Eurographics Seminars, Tutorial and perspectives in computer graphics,
Springer-Verlag, 1990, pp. 51-56.

20 Computer-Aided Design of User Interfaces

[Myers92] Myers, B.A., Rosson, M.B., Survey on User Interface Programming, in Pro-
ceedings of the Conference on Human Factors in Computing Systems CHI’92
« Striking a balance » (Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G.
Lynch (Eds.), ACM Press, New York, 1992, pp. 195-202.

[Myers94] Myers, B.A., Challenges of HCI Design and Implementation, Interactions, Vol.
1, No. 1, pp. 73-83.

[Myers95] Myers, B.A., User Interface Software Tools, ACM Transactions on Com-
puter-human Interaction, Vol. 2, No. 1, March 1995, pp. 64-103.

[Olsen86] Olsen, D.R., MIKE: The Menu Interaction Kontrol Environment, In: ACM
Transactions on Information Systems, Vol. 5, No. 4, pp. 318-344.

[Olsen93] Olsen, D.R., Foley, J.D., Hudson, S.E., Miller, J., Myers, B.A, Research di-
rections for user interface software tools, Behaviour & Technology, Vol. 12, No. 2, 1993,
pp. 81-97.

[Puerta94a] Puerta, A.R., Szekely, P., Model-based Interface Development, CHI'94 Tuto-
rial Notes, 1994.

[Puerta94b] Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A., Beyond Data
Models for Automated User Interface Generation, in Proceedings of British Conference
on Human-Computer Interaction HCI’94 « People and Computers IX » (Glasgow,
23-26 August 1994), G. Cockton, S.W. Draper, G.R.S. Weir (Eds.), Cambridge
University Press, Cambridge, 1994, pp. 353-366. http://www-
ksl.stanford.edu/KSL_Abstracts/KSL-93-62.html

[Puerta96b] Puerta, A., The MECANO Project: Comprehensive and Integrated Support for-
Model-Based Interface Development, in this volume, pp. 19-35.

[Reiterer94] Reiterer, H., User Interface Evaluation and Design, GMD-Report No. 237,
Oldenbourg, 1994.

[Schreiber94b] Schreiber, S., Specification and Generation of User Interfaces with the
BOSS-System, in Proceedings of the East-West International Conference on Hu-
man-Computer Interaction EWHCI’94 (St. Petersburgh, 1994), B. Blumenthal, J.
Gornostaev, C. Unger (Eds.), Lecture Notes in Computer Sciences, Vol. 876,
Springer-Verlag, Berlin, 1994, pp. 107-120. ftp://hpeick7.informatik.tu-muenchen.
de/pub/papers/sis/ewhci94.ps.Z

[Sukaviriya93] Sukaviriya, P., Foley, J.D., Griffith, T., A Second Generation User Inter-
face Design Environment: The Model and the Runtime Architecture, in Proceedings of the
Conference on Human Factors in Computing Systems INTERCHI’93 « Bridges
Between Worlds » (Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Hen-
derson, E. Hollnagel, T. White (Eds.), ACM Press, New York, 1993, pp. 375-382

[Sukaviriya94] Sukaviriya, P., Muthukumarasamy, J., Frank, M., Foley, J.D., A
Model-based User Interface Architecture: Enhancing a Runtime Environment with Declarative
Knowledge, in Proceedings of 1st Eurographics Workshop on Design, Specification,

 Key dimensions for a Deveopment Methodology of Interactive Systems 21

Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994),
F. Paternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin,
1995, pp. 181-197.

[Szekely92] Szekely, P., Luo, P., Neches, R, Facilitating the Exploration of Interface De-
sign Alternatives: The HUMANOID Model of Interface Design, in Proceedings of the Con-
ference on Human Factors in Computing Systems CHI’92 « Striking a balance »
(Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett, G. Lynch (Eds.), ACM Press,
New York, 1992, pp. 507-514. http://www.isi.edu/isd/CHI92.ps

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based In-
terface Tools, in Proceedings of the Conference on Human Factors in Computing
Systems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM
Press, New York, 1993, pp. 383-390. http://www.isi.edu/isd/Interchi-be-yond.ps

[Szekely95] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher,
E., Declarative interface models for user interface construction tools: the MASTERMIND ap-
proach, in « Engineering for Human-Computer Interaction », Proceedings of the 6th
IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-Computer
Interaction EHCI’95 (Grand Targhee Resort, 14-18 August 1995), L. Bass, C.
Unger (Eds.), Chapman & Hall, London, 1995, pp. 120-150.
http://www.isi.edu/isd/Mastermind/Papers/ ehci95.ps

[Vanderdonckt93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection, in Proceedings of the Conference on Human
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T.
White (Eds.), ACM Press, New York, 1993, pp. 424-429. http://www.
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-93-005

[Vanderdonckt94d] Vanderdonckt, J., Ouedraogo, M., Yguietengar, B., A Compari-
son of Placement Strategies for Effective Visual Design, in Proceedings of British Confer-
ence on Human-Computer Interaction HCI’94 « People and Computers IX »
(Glasgow, 23-26 August 1994), G. Cockton, S.W. Draper, G.R.S. Weir (Eds.),
Cambridge University Press, Cambridge, 1994, pp. 125-143. http://
www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-94-019

[Vanderdonckt95b] Vanderdonckt, J., Knowledge-Based Systems for Automated User In-
terface Generation: the TRIDENT Expierence, Technical Report RP-95-010, Facultés
Universitaires Notre-Dame de la Paix, Institut d'Informatique, Namur, 1995.
http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-010

[Weisbecker95] Weisbecker, A., Ein Verfahren zur automatischen Generierung von soft-
ware-ergonomisch gestalteten Benutzungsoberfläachen, Springer, Berlin, 1995, Also Ph.D.
thesis, University of Stuttgart, 1995.

22 Computer-Aided Design of User Interfaces

[Wiecha90] Wiecha, C., Bennett, W., Boies, S., Gould, J., Green, S., ITS: A Tool for
Rapidly Developing Interactive Applications, ACM Transactions on Information Systems,
Vol. 8, No. 3, July 1990, pp. 204-236.

[Wilson96] Wilson, S., Johnson, P., Bridging the Generation Gap: From Work Tasks to
User Interface Designs, in this volume, pp. 77-94.

	Abstract
	Keywords
	Introduction
	1 Model-Based User Interface Software Tools
	1.1 Representing Information by Declarative Models
	1.2 Process of User Interface Generation
	1.3 User Interface Development by Using TADEUS

	2 Generation of User Interface Software in TADEUS
	3 Example
	Conclusion
	Acknowledgements
	References

