Tool support for handling mapping rules from domain to

task models

Costin Pribeanu
National Institute for Research and
Development in Informatics
Bd. Maresal Averescu Nr. 8-10,
011455 Bucharest, Romania

pribeanu@ici.ro

ABSTRACT

The success of model-based approaches to usefageatesign
depends on the ability to solve the mapping prokdsmvell as on
the availability of tools able to reduce the effoftestablishing
and maintaining of links between models throughdbe

development life cycle. In this paper a tool supipgra small set
of mapping rules is presented. The tool enablesddsgner to
produce task model fragments at operational leasket on the
patterns of mapping between task and domain modbks.task
model fragments are generated in XML format andlmarfurther
loaded in task modeling tools like CTTE or Teresa.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and techniques.
H5.2 Information Interfaces and presentation] User interfaces

General Terms
Design, Human Factors, Languages.

Keywords

Model-based design, Task models, Mapping problem.

1. INTRODUCTION

The explosion of mobile and embedded systems ikediggng the
development of interactive systems able to run ifient

contexts of use. The model-based approach couldeba as a
progressive derivation of user interface componefrsm

representations expressing relations between ussks, domain,
environment, and technology. The strength of tpjsraach relies
on the separation of various models which are caguthe

context variations. In turn, the generative power these
abstractions relies mainly on the mappings betweedels.

The mapping problem has been defined in [8] asyapkeblem
for the gradual transformation of models from adudtto concrete
level as well as for the mapping between differaotdels on the
same level of abstraction. Previous work in thesdnighlights the
concern for preserving consistency between modilsgathe

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fhist page. To copy
otherwise, or republish, to post on servers oretistribute to lists,
requires prior specific permission and/or a fee.
Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

progression from one model to another [2], elabonabf graceful
degradation rules for multi-target user interfaf@sas well as
development of a description language and toolpating the
specification transitions [4].

This paper is presenting a small set of mappingsrbetween task
and domain models and a tool supporting the aum®aativation
of task model fragments from the domain model. It enables
the designer to integrate domain modeling resutibjett,
attributes and relationships) into task models Hrat developed
by using the CTT notation [5].

The rest of this paper is organized as followsdation 2, we will
briefly describe our task modelling framework amang general
mapping rules between domain, task and presentaiodels.
Then we will describe a tool supporting a set désuthat are
covering a significant effort in a task-based desigf user
interfaces. The paper ends with conclusion in sacti

2. THE TASK MODELING FRAMEWORK
Our model-based design framework is focusing onréiations
between three models: task, domain and presentafidre
purpose of modeling is to derive as much as pasdioim the
user interface based on the mappings between thpaents of
these models.

The basic element in the presentation is the atisingeraction

object (AlO). We distinguish between informationntml AlOs

(such as text boxes, check boxes or lists) andtifumaontrol

AlOs (such as buttons or menus). The user intelifas&ructured
into dialog units featuring various AlO configu@is. The user is
manipulating AlOs to change something in the donramdel:

objects, attributes and relationships between thjec

We identified three layers which are relevant ia thsk modeling
for user interface design:

= A functional layer that results from mapping apation
functions onto user tasks, corresponding to busingmls
(such as clients or order management).

= A planning layer that results from the decompositiof
functional tasks up to the level of unit tasks 71, having a
clear relevance for the user (such as adding adliewt or
updating the client address).

= An operational layer that results from the decorijs of
unit tasks up to the level of basic tasks. A b&ask has been
defined in [7] as the lowest level task that isngsa single
interaction object, or a single external objectserves a
communicational goal.

Figure 1 is illustrating various kinds of pattermfsmapping that
occur in and between task, domain and presentatimehels. The
framework showshorizontal mappings between elements from
different models as well awertical mappings within the
hierarchical structure of each model.

¢ Frosentation

Funciions +

Relationships <> Goal Aierarchies <> Dialog unite

Domain objects + Uit tasks + AT configurations

Fitributes + Busic fasks +

LEGEMC
‘ haorizonkal mapping <> wertical mapping

Tasks

AIOs

Fig. 1. Domain-task-presentation mappings

In this paper we will focus on mapping rules thpplg to the
lower levels of task and domain models, i.e. theppireg of
domain objects and attributes onto unit tasks asichiasks.

o

an application da

In order to illustrate our approach we will take example: an
application for data management in a trade compahg. target
task is the recording of new orders. In Figure 2ask model
representation using the CTT notation is given.

Tasks on the first decomposition level are corragpt to the
business goals of the application: managementafts|, products
and orders. Each of them is further decomposedashst that
correspond to the high level functions of the aggilons that
support these goals. For the sake of simplicity lagibility of the
representation, only the decomposition of the tatask (“New
order”) is shown in Figure 2.

The task new order is a leaf in the functional taged is further
decomposed in the planning layer up to the leveinif tasks.

Unit tasks are further decomposed up to the lef/élasic tasks.
Again, for the sake of legibility, only the task &W product” has
been decomposed up to the level of basic tasks.

Editcollection Reports Exit Edit collection Reports Exj

B - -m- —H

Order details

Take order Clight thata
planm'n

ub;

[Mew client] Selpruducts

- — i —

Selold [Search byid] [Search by name]

D”

[Edit address]

[>—
W %N

G-r-Cir fE O-E-Gr b @—H—

ey invoice

2 -k -2

Edit collection Reports E}ut

cancel

New [diro) lesh
0peratlon

-@>> E-T[lbb'-!ﬂ —[|>>— 'ii* ::ﬁ-f hﬂf

Oy Total product Totalorder ok cancel

-ﬁ—ﬂ::—ﬁ—n::—ﬁgé—::—rgs

Category Product name

Show code Show price

Fig. 2. An example illustrating the layered task modekpproach

In [7] it was shown that the operational task moslgjgests the
first level of aggregation of abstract interactiojects into AIO

groups. Interaction object groups, which have omenmre

information control AIO (for example, a text box arlist box)

and one function control AIO (sometimes two, b tiser could
choose only one of them at a given time — for edanmpttons

OK vs. Cancel) provide with a first level of strudhg the

interface. As such, they can be used as basicibgilolocks for

the presentation model in a task-based design.

The goal of an information control basic task is thanipulation
of a domain object attribute (such as display oit)edhe
mapping rule described below is well known in thedel based
design of user interfaces and has been widely iunsedrly model-
based approaches to user interface design.

MR1. Information control basic tasks in the task modet
mapped onto domain object attributes in the domain
model and abstract interaction objects in the presien

model. Attribute names are mapped onto AIO labels

The goal of a function control basic task is tgder a transaction
changing some attribute values in the domain mod&b present
them in the interface. Each basic task in thiegaty is using a
function control AIO. (Function control is sometiséermed as
action control and the focus is on low level fuon8 or

commands provided by the user interface).

MR2. Function control basic tasks in the task modelraapped

We identified five detailed mapping rules by apptyiMR3 to

five operations performed onto domain objects. Eawpping

rule is expressed bellow as a task pattern havimgfixed part, a
sequence of information control basic tasks ands fixed part.

In three cases (b, ¢ and d), a task for selectiegdrget object is
needed before selecting the command.

The process of computer-aided generation of futlodgosition

onto available commands on the target p|atform and for unit tasks is illustrated in Figure 4, The @B‘ﬁfr selects the

abstract interaction objects (AIO) in the preséarat
model

Mapping rules MR1 and MR2 are the lowest level ofizontal
mappings illustrated in Figure 1 on the last rovihef table.

The operations performed on domain objects (suckligsay,
new, update or delete) are mapped onto unit tasksgure 2, the
first basic task has an enabling role for the task. Usually, the
task name is a concatenation of the enabling bask name
denoting the operation and the domain object name.

This task structure is a typical task pattern fatadentry tasks
carried on in a separate dialog unit and suggesisngposition
rule for this category of unit tasks. The mappinote rdescribed
below makes it possible the derivation of a great pf the task
model (operational layer) from the application demanodel.

This is very useful when using task-based desigistfor the

computer-aided design of user interfaces.

MR3. Unit tasks corresponding to operations performetb o
domain objects are usually starting with one (op)tw
function control basic task selecting the operafemd the
object) and are ending with one or two function tooin
basic tasks for the confirmation (or canceling)task
completion

Since this mapping takes the form of a compositibepuld be
further expanded in more detailed rules, followerrh type of
operation. This way it is possible to automate deavation of a
great part of the task model from the domain moéet.example,
in the case of the task “New order” in Figure % thsk model
statistics provided by the CTTE tool shows a tofadver 40 tasks
for which the designer should manually specify thgk model,
including temporal relations (operators), attrilsuaéad objects for
each task.

In the table in Figure 1, MR3 covers a vertical piag in the task
model (unit task-basic tasks) and a horizontal rirappetween
domain and task models (domain object-unit task).

3. TOOL SUPPORT FOR DETAILED
MAPPING RULES

In order to illustrate more detailed mapping rules, will use a
simplified task notation that could be mapped ottte CTT
notation, like in Figure 3. There are three typebasic tasks: two
for information control (interactive and displaylgnand one for
function control.

() unit task
@ abstraction

B info contral

h”é‘r‘interaction

Fig. 3. A simplified task notation and the correspondenitk the
CTTE graphical notation

[display

E—’“—f interaction T!E.a application

@ function control

object and the object attributes that are relef@nthe context of
use. Then (s) he checks on the operations to erped onto it.
In the case of a search operation, (s) he will atdect the search
key attribute. The generated unit tasks are showvthe lower left
list box.

The wuser selects the “new’
command and the object
attributes are displayed with their
default values and available for
data entry. The user can confirm
or cancel the transaction.

(a) add new object

o-l-0-0-01®

ey ok cancel

(b) edit object attributes

. []=>.>>.>>.>:-.>>. i} .

=e et ok cancel

(c) delete object

.[]>>.>>|:|:=:=.[].

=l el ok cancel

(d) display object
attributes

.[]:=:= .::::I:l:=>|:|>=-|:|:=>.

=2l display ak
(e) search object

- @ -

input search

== I:I ==

] EI::: .

errmes ok

The user selects the object to be
modified and then selects the
“edit” command. The object
attributes are displayed and
available for data entry. The user
can confirm or cancel the
transaction.

The user selects the object to be
deleted and then selects the
“delete” command. A shield
message is displayed so the user
could check once again if (s) he
really wants to perform. The user
can confirm or cancel the
transaction.

The user selects the object to be
displayed and then selects the
“display” command. The object

attributes are displayed until the
user confirm the visualization

The user inputs the search key
(attribute) and then selects the
“search” command. If the search
succeeds, then object attributes
are displayed. Otherwise, an error
message is displayed.

The designer can choose all the operations or idye that are
relevant for the context of use. Moreover, (s) ha select only
attributes that are relevant for the target conbéxise.

For example, according to the functional layer iguFe 2, in the
context client data management, all operationsamain objects
and all object attributes are needed while in theeoording a
new order, only the operations that are checkeHiguire 4 are
selected. On another hand, the “search objectepais applied
twice in this case (search by id and search by hame

In some situations, a manual post processing nlighteeded for
the task model fragment generated by the tool.example, the

enabling basic task might not be needed, if the task is
implicitly enabled. An example is the case of it tasks that
are implicitly started and explicitly stopped, like the case of
“New product” in Figure 2. The user ends the iteratby
selecting the “Finish” command.

E2 UNIT TASKS GENERATION

EEX

Obhjects Operations on objects ™ Select all

Client -

Attributes W add new

Client1d ~ &-H-l-H-81®

Client name ety ok cancel

Phane

Address

Postcode ¥ edit

Town Hi--@®--H--0--0--9®1@®

Client hank 281 edit ok cancel

Client account bt
A I~ delete

dbk-dlick to select
| B EANER Nl]

=el dlel ok cancel

s

Phone
Address
Postcode

¥ search by

Toh | Y B 0= @ l—;l
input search errmes ok Client Id
dhl-click to remove
Generated tasks == []==
edit Client
new Client
search Client 1d I~ display
W= @ ==]==]--@
zel display ok
Generate Close

Fig. 4. Tool supporting mappings from domain to task nhode

The unit tasks are generated in XML format andl@aded in the
CTTE tool [5] with the “Load CTT as XML” functionThe

generation process is producing a full specificaftask attributes
and interaction objects) according to the spedificaof domain
object attributes in the domain model (a time comsg work if

manually introduced with the CTT editor).

4. CONCLUSION AND FUTURE WORK

In our task-based approach, the task model is gipddeveloped
from functional to planning and operational leveis.this paper
we presented a tool supporting a small set of pettef mapping
between task and domain models at operational .|duaither
work is needed to extend these detailed mappingsrahd to
explore the mappings between goal hierarchiesentakk model
and relationships between domain objects in theadomodel.

The mapping rules are preserving the consistendyveles
domain, task and presentation models and makesisilple the

computer aided design of user interface. In thispeet, the
specification of domain objects is automaticallgnsformed into
a XML specification of unit tasks following the cpsition

rules. Then the generated tasks are loaded in & ¢8ér other
tool supporting the computer-aided generation efgtfesentation.
Since task variations play an important role whegrating from

a target context of use to another, the computigdageneration
of (an important part of) contextualized task medi a key
facility for designers.

5. Acknowledgement
This tool has been developed during a scientifit @t ISTI-CNR
Pisa. We gratefully acknowledge the support of $IMR NoE
under FP6-507609 project.

References

[1] Card, S. K., Moran, T. P. and Newell, A.: The psyogy of
human-computer interaction. Lawrence Erlbaum Asgesi
(1983).

[2] Clerckx, T., Luyten, K. & Coninx, C.: The mappingpplem
back and forth: Customizing dynamic models while
preserving consistency. Proc. of Tamodia 2004 (2004
104.

[3] Florins, M. & Vanderdonckt, J.: Graceful degradataf user
interfaces as a design method for multiplatforniesys.
Proceedings of IUI'2004. ACM Press (2004) 140-147

[4] Limbourg, Q. & Vanderdonckt, J.: Addressing the piag
problem in user interface design with USIXML. Pro€.
Tamodia 2004 (2004) 155-164.

[5] Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskT a
Diagrammatic Notation for Specifying Task Models. |
Proceedings of IFIP TC 13 Int. Conf. on Human-Cotepu
Interaction (Syndey, June 1997). Chapman & Halhdan
(1997), 362-369

[6] Paterno, F., Santoro, C. :One Model, Many Inta$ac
Proceedings of CADUI'2002, Kluwer. 143-154.

[7] Pribeanu, C. & J. Vanderdonckt (2002) Exploring iDes
Heuristics for User Interface Derivation from Tasid
Domain Models. Proceedings of CADUI'2002, KluweB10
110.

[8] Puerta, A.R. & Einsesnstein: J. Towards a general
computational framework for model-based interface
development systems. Proceedings of IUI'99 (5-&idan
1999). ACM Press. (1999). 171-178.

