
TOWARDS A PATTERN LANGUAGE FOR UID

Costin Pribeanu
ICI Bucharest, Romania

 pribeanu@acm.org

Abstract
A challenge for the model-based design of user interfaces is to understand how
usable designs could be specified as configurations of smaller parts along a pattern
hierarchy. Each configuration of these building blocks has to balance requirements
coming from several models, which are constraining the design process. This paper
aims at investigating typical interaction structures by exploiting the information
coming from both task and domain models and to elaborate on a pattern language
that captures the essential mappings between these models and the user interface.

Keywords
task-based design, user interface design, operational task modeling, relationships in
domain models

Introduction
In his seminal book [1], Christopher Alexander advocated for a deeper
understanding of the design process. A pattern is a three-part rule expressing a
relation between a certain context, a problem and a solution. The solution is a
configuration that allows the forces acting in that context to resolve themselves. In
his design philosophy, a pattern is itself a pattern of relationships between other
patterns and it is both a thing and the way it is generated. The pattern language
elaborated by him and his colleagues [2] goes down from towns to urban spaces,
houses and building elements. Pattern languages in user interface design are a
challenging topic. Some approaches feature a conceptual view on patterns by
pleading for the use of patterns as mental models for designers and lingua franca for
communication within the design team and between them and clients or users.
User interface design could be seen as a progressive derivation of the interface
components from representations expressing relations between users, tasks, domain,
and technology. The generating power of a pattern language relies mainly on the
patterns of mappings between these models.
This paper aims at investigating how pattern languages could be used as a

foundation for the model-based design of user interfaces. The basic idea of our
approach is to identify typical interaction structures in task and domain models and
to elaborate on a pattern language that captures the essential mappings between the
various models that are used in the development process

Related work
Welie and Veer [20] argued that now, when substantial bodies of patterns have been
published, it is time to develop approaches for structuring pattern languages. They
proposed a pattern classification for e-commerce applications based on functional
aspects and a pattern language structure which follows a top-down decomposition,
along a scale of problems: posture type, experience, task and action. An interesting
feature of this approach is the layer of experience patterns that are related to a
higher-level goal or motivation.
In a similar vein, Molina et al [6] are arguing for using conceptual patterns during
the requirements specification and propagating them throughout the next
development stages. They are focusing on what is to be done (the problem space)
and not on how to do it (the solution space). Conceptual patterns like filters, master-
detail forms or predefined selections could be identified early in the development
process, during the discussion with the client. Nilsson’s work [8] discusses the
limitation of models along different platform and the cost-benefit of their portability.
In order to encompass model imitations, he proposed the study of mappings between
conceptual user interface components.
The conceptual perspective on patterns provides with valuable insights on the role of
patterns in user interface design but leaves outside many concrete problems of user
interface design and specification. Seffah and Forbig [14] proposed a layering of
task models from the most general to the most context dependent as a foundation for
a “multiple user interfaces” paradigm in model-based design. They distinguished
between horizontal usability (across platforms) and vertical usability (platform
specific). Other approaches attempting to refine task modelling for different contexts
of use are described in [12, 16]. Like the previous one, they are mainly addressing
task-modelling problems with little or no relation to domain and presentation
models.
Traetteberg [19] argued for using patterns as reusable model fragments. He proposed
several patterns such as item selection, browse aggregation or select from favourites,
which are focusing on the mapping between the domain and presentation models.
The work of Sinnig et al [15] is also discussing user interface patterns in the
framework of model-based engineering. Like in [13], in their approach a distinction
between two categories of tasks is made: goal oriented (what-to-do) and feature
oriented (how-to-do-it). Task patterns apply for the former category and feature
patterns for the second.

Domain-task-presentation mappings
From the perspective user interfaces design, a pattern language could be an attractive
approach to deal with the complexity and diversity of user interfaces, which is
difficult to manage using existing model-based approaches. Design of user interfaces
is constrained by several models: user model, task model, application-domain model
and platform model.
Like the patterns of Alexander, UID patterns could help in deriving characteristics of
the presentation, which can afford certain cognitive behavior. Using the information
contained in the domain model helps in deriving what information the user needs to
manipulate in order to perform his task. Using the task model makes it also possible
to derive how to present and organize this information in a usable way and the
ordering of task performance.
Our approach is based on the domain-task-interface mappings. Figure 2 is
illustrating various kinds of patterns that occur in these models and the derivation
process as a horizontal mapping. Nevertheless, there is also a vertical mapping since
patterns have a hierarchical structure within each model. In the domain model, two
(rarely more) objects are participating in a relationship and each object has several
attributes. The task model is a tree having as leaves the basic tasks. The user
interface is structured into dialog units featuring various AIO configurations.

Fig. 1. A pattern-based framework for domain-task-interface mappings

We already outlined some typical mappings in the previous section, based on the
domain and task models. A simple pattern, which could be observed in the task
model, is the edit entity attributes pattern. This pattern is exploited in most model-
based approaches and is suitable for automatic generation. The task pattern is
featuring a sequence of basic tasks starting with a command selection, followed by
data entry tasks (corresponding to object attributes) and ended by a confirmation
command (usually ok vs. cancel). The pattern applies for editing attributes of both
existing and newly created objects. We can identify three occurrences in Figure 1:
edit guideline, new section and new base.
The generic form of this pattern is given in Figure 3, where we used the CTT
notation for the task model and a wire frame representation for the interface. Most
characteristic are the mappings between the three pairs: entity-attributes, unit task -

basic tasks and dialog unit – abstract interaction objects. Attributes in the data
model, basic tasks in the task model and AIOs in the interface model are the basic
elements in our framework. Depending on the available screen space and the
allocation strategy, AIO configurations could be placed into separate dialog units or
not.

Fig. 2. A domain-task-presentation mapping for data entry

Mappings from one model to another are done according to design heuristics and
derivation rules. For example, ergonomic rules are used to choose the most
appropriate AIOs according to the information coming from the domain model as
regarding data type, data length, domain of values or selection type. On another
hand, unit tasks names are usually used to label AIO groupings in order to provide
with more user guidance.

Presentation patterns
In order to perceive the relationships between domain objects the user needs some
additional information to be displayed: either the “one” part (the higher level entity),
either the “many” part, either both. We can distinguish between 3 types of such
displaying patterns:
a) Showing the higher level entity, for example to display the section to which a

guideline belongs – this is usually accomplished by using a text box placed on the
top of the AIO group presenting the attributes of the entity;

b) Showing the lower level entities, for example to display the more specific
guidelines (recursive aggregation) – this is usually accomplished by using a list
box placed at the bottom. This is also used to show associated entities since in a
relational model the many-to-many relationship is mapped onto two one-to-many
relationships.

c) Showing both the higher and lower level entities, for example to display the
general guideline and the more specific guidelines – this could be accomplished
using a text box and a list but also embedded dialog units showing a master-detail
relationship.

The diagrams in Figure 4 show these typical situations. Although not illustrated,
these dialog units also contain the edit entity attributes pattern described in the
previous section. For example, the pattern in Figure 4c is a composition of three

patterns: show higher, edit entity attributes, and show lower. Typical for these
patterns is the placement of the higher / lower level entity above / below the AIO
group used for data entry. This visual structure is actually mirroring the “one-to-
many” relationship thus being consistent with the mental model of the user as
regarding the data organization.

Fig. 3. Presentation patterns

The pattern in Figure 4b is applied in master-detail forms where two related tables
are displayed. Usually, the lower level entities are displayed as rows of attributes
and the resulting pattern is a combination of an AIO group (placed above)
corresponding to the “one” part and a data sheet (placed below) corresponding to the
“many” part of the relationship.

Fig. 4. An example of presentation

An example is given in Figure 4. The task is to edit the attributes of an ergonomic
criteria in a guidelines management system. The pattern language is composed of
following patterns: show higher, select and show related, show higher, select and
show related, edit entity attributes.

Conclusion
In this paper, we investigated presentation patterns, which are based on the
information provided by task and domain models and we have shown how they

could be progressively transformed into design patterns. Display patterns refer
mainly to the presentation parts, thus being static. Selection patterns are relating the
presentation and dialog model at widget level with the control model while patterns
for changing the associations are also relating the dialog model at dialog unit level.
The main feature of this approach is that patterns are combining themselves and it is
possible to specify large configurations of user interface parts with few patterns.
In order to have a generative power, a pattern language for user interfaces should
include both the patterns occurring within the various models and the patterns of
mappings.

References
1. Alexander, C. (1979) The Timeless Way of Building. New York: Oxford University

Press.
2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, I. Fiksdahl-King and S. Angel, A

Pattern Language. New York: Oxford University Press, 1977.
3. Limbourg, Q., Vanderdonckt, J. & Souchon, N. “The Task-Dialog And Task-

Presentation Mapping Problem: Some Preliminary Results”. In F.Paterno & P.Palanque
(Eds.) Proceedings of DSV-IS’2000, Limerick, 5-6 June, LNCS 1946, Springer, 2000.
227-246.

4. Molina, P.J., Melia, S. & Pastor, O. “User Interface Conceptual Patterns”. In Forbig et al.
(Eds.) Proceedings of DSV-IS 2002, Springer, 2002. 159-172

5. Molina, P. & Traetteberg, H. “Analyis & Design of model-based User Interfaces”. Pre-
proceedings of CADUI’2004. 211-222.

6. Nilsson, E. “Combining Compound Conceptual User Interface Components”. In Forbig
et al. (Eds.) Proceedings of DSV-IS 2002, Springer, 2002. 114-117

7. Paternò, F. Model-based design and evaluation of interactive applications. Springer,
1999.

8. Pisano,A., Shirota, Y. & Iizawa, A. “Automatic generation of graphical user interfaces
for interactive database applications”. Proceedings of CIKM ’93. ACM Press. .344-355.

9. Pribeanu, C., Limbourg, Q. & Vanderdonckt, J. “Task Modelling for Context-
Sensitive User Interfaces.” C. Johnson (Ed.): Proceedings of DSV-IS 2001,
Springer, 2001. 167-182

10. Pribeanu, C. & J. Vanderdonckt (2002) “Exploring Design Heuristics for User Interface
Derivation from Task and Domain Models”. Proceedings of CADUI'2002, Kluwer, 103-
110.

11. Seffah, A. & Forbig, P. “Multiple User Interfaces: Towards A Task-Driven And
Patterns-Oriented Desigm Model”. In Forbig et al. (Eds.) Proceedings of DSV-IS 2002,
Springer, 2002. 118-132

12. Sinnig, D., Gaffar, A., Reichart, D., Forbig, P. 7 Seffah, A. “Patterns In Model-Based
Engineering”. Pre-proceedings of CADUI’2004. 197-210

