
A Transformational Approach for Pattern-based Design of User Interfaces

Costin Pribeanu1, Jean Vanderdonckt2
1Nat. Institute for Research & Development in Informatics (ICI),

Bd.Mareşal Averescu Nr.8-10, 011455 Bucharest, Romania
2Université catholique de Louvain, Louvain School of Management

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
pribeanu@ici.ro, jean.vanderdonckt@uclouvain.be

Abstract
A pattern-based approach to user interface devel-

opment is presented that is explicitly based on artifacts
contained in a task and a domain models. Exploiting a
task model or a domain model in isolation may lead to
patterns that are not user-centered. By combining the
exploitation of both models at the same time with pri-
ority lead to identifying interaction patterns in a sys-
tematic way. Types of relationships in these models
help in structuring interaction patterns, that are in turn
transformed into design patterns for information sys-
tems.

1. Introduction

In terms of a pattern language philosophy [1], do-
main and task models are the main forces competing
for a model-based design of user interfaces (UI).
User’s demands are also competing with her own cog-
nitive capacity and the constraints imposed by the
presentation and dialog parts of the UI [4]. This means
that design patterns should address both UI develop-
ment and usability requirements [10]. Since a pattern
language is integrating related patterns we will focus
on an application example and we will take the follow-
ing approach.
1. We will identify interaction patterns based on the re-

lationships in the domain model. In this respect we
will analyse the categories of tasks, which are af-
forded by each type of relationship, and we will look
for mappings between the domain model and the op-
erational task structure. This also includes a basic
mapping with the presentation since task decomposi-
tion at operational level is done after selecting ap-
propriate widgets [3].

2. Then we will propose a set of design patterns that
provides with a usable solution for both parts of the
user interface: presentation: grouping of abstract in-
teraction objects (IOs) [3] and allocation of dialog
units; dialog: interaction at dialog unit level and in-
teraction object level.

3. Mappings between four models are studied: task and

domain models on one hand and the presentation and
dialog model on the other hand. The proposed pat-
tern is providing with a solution, which consists in
the resulting user interface building block. Addition-
ally we will investigate the extent to which control
issues could be included in a pattern definition.

4. We will investigate the relation between design pat-
terns and a method for integrating them into a pat-
tern language. For this purpose, we will further ex-
ploit the task and domain models in order to inte-
grate the resulted building blocks into bigger UI
components.

2. Finding Design Patterns
2.1 Identifying interaction patterns in one-to-

many relationships
In most of the situations when the user wants to per-

form tasks using hierarchically organised data it is im-
portant to provide him with means to visualise the rela-
tionship between entities. Depending on the relation-
ship type several interaction patterns could be identi-
fied in the domain model. In this respect we can say
that relationships are affording certain tasks [9]. These
interaction patterns are potential since they reveal in-
herent capabilities of the interactive system as provided
by the domain model. Both domain objects and rela-
tionships could be visualised and modified by the user
and there are several ways to provide him with usable
interaction techniques to do it. On the other hand, these
patterns are typical interaction structures which could
be identified both in the domain and task models. The
task model at operational level is a useful artefact be-
cause it shows how a unit tasks is actually decomposed
in basic tasks pointing to interaction objects of the in-
terface. Interaction patterns are closely related to unit
tasks and they are intended to be usable operational
structures. In this respect, complex operational struc-
tures having several levels of unit tasks, like the one
depicted in Fig. 1, are the target of this research. The
general case of the one-to-many relationship is illus-
trated in Fig. 1. There are two object types involved:

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.36

47

section and guideline. The name and length of each at-
tribute is not relevant for our purpose. However, there
is an additional construct – the foreign key that is
pointing to the primary table (section). The dialog
model at interaction object level manipulates this at-
tribute in various ways to satisfy user’s task require-
ments.

Figure 1. One-to-many relationship.

Another relationship type taking a similar form is
classification [13]. For example, guidelines are classi-
fied as regarding importance level (good practice, ex-
perimentally validated). The mechanism of manipulat-
ing the relationship is similar in that a foreign key at-
tribute is used in the first table in order to have access
to the data in the second table. To perceive the rela-
tionship between domain objects the user needs some
additional information to be displayed: either the “one”
part (the higher level entity), either the “many” part.
We can distinguish between 3 types of displaying pat-
terns, which are supporting tasks afforded by the rela-
tionship [5]:

1) Showing the higher level entity, for example to
display the section to which it belongs – this is
usually accomplished using text box placed on the
top of the interaction object group presenting the
attributes of the entity;

2) Showing the lower level entities, for example to
display the more specific guidelines (recursive ag-
gregation) – this is usually accomplished using a
list box placed at the bottom;

3) Showing both the higher and lower level entities,
for example to display the general guideline and
the more specific guidelines – this could be ac-
complished using a text box and a list but also em-
bedded dialog units showing a master-detail rela-
tionship (Fig. 2).

Figure 2. Display patterns in one-to-many relationships.

More complicated interaction structures occur when
the task is to change something in the relationship: add
or delete an item from a collection or move an item
from one collection to another. In this case there are
several types of tasks: displaying an item, selecting an
item and performing some action upon the selected
item. We can distinguish between three interaction pat-
terns:

1) Selecting the higher level entity while editing the
attributes of the part entity, for example, selecting
the section while editing a guideline (moving a
guideline from a section to another i.e. editing the
relationship itself) – this could be done using a se-
lecting device (a drop down list).

2) Selecting a lower level entity from a collection in
order to perform some action upon it - for select-
ing a criterion from a criteria group – this could be
accomplished with two associated selection de-
vices (selection of higher level object updates the
content of the list) and additional function control
objects, applying to the selected entity in the list;

3) Selecting an entity from the hierarchy and per-
forming some actions upon, for example a section
or one of its guidelines – this could be accom-
plished with two associated lists (selection of
higher level object updates the content of the list)
and additional function control objects, applying
to the selected entity.

The interaction pattern in Fig. 3b is the best as in-
formation provided to the user: he can perceive both
the objects and their relationship. This is why it is rec-
ommended when performing editing operations on the
lower level objects. This interaction pattern corre-
sponds to the situation when the focus is on the man-
agement of these objects. The interaction pattern in
Fig. 3c could raise some usability problems since there
are two lists and in each list an object could be se-
lected. Therefore some additional information denoting
the selection to which editing operations apply should
be provided. For example, displaying the object type
(guideline or section) on the right of buttons. Even so,
this pattern should only be designed for experienced
users or for special context of use. Depending on the
user’s task the relationships could be manipulated in
several ways thus expanding to many other cases. In
each situation, specific interaction objects for function
control can be used. For example, in e-commerce ap-
plications selection is often combined with the display
of related content in a separate window. We could also
consider that the user might want to examine in more
detail an object from the list. In this case a “show” but-
ton could be added or just a double click on the item
could invoke a dialog unit where all attributes of the
given object are displayed. Also, more complex user

48

interface constructs could be derived after selecting the
first object, like for example master-detail dialog units.

Fig. 3. Interaction patterns in one-to-many relationships

An analysis of relationships between domain ob-
jects may be complemented with a task analysis taking
into account the tasks the user may want to perform.
The domain model itself does not provide with infor-
mation enough to derive a UI since there is a huge po-
tential of possible tasks.

2.2 Identifying interaction patterns in many-
to-many relationships

For this of relationship (Fig. 4), two constructs are
resulted from localisation: foreign keys which are
pointing to the data in the primary table; a new relation
(table Item-Association) that holds the explicit associa-
tions. Several tasks could be afforded by this kind of
relationship. We distinguish two interaction patterns
supporting the specific tasks afforded by a many-to-
many relationship:

1) Showing the associated objects, for example
showing the criteria respected by a guideline – this
goal could be achieved by using a list box with as-
sociated entities and one or more functional con-
trol objects for editing the relation (add new items
or delete existing ones);

2) Changing the current association by removing or
adding an existing object to the list – this could be
done by using an accumulator (Fig. 5).

Figure 4. Many-to-many relationship.

In the first case editing the associated objects is not
a typical task. This is usually done apart, within the
context of their organization. For example, ergonomic
criteria are organized in general and elementary crite-
ria. In this case interaction patterns afforded by one-to-
many relationships apply. In the second case, a device

for selecting several values is used (typical for many-
to-many relationships).

Fig. 5. Inter. patterns in many-to-many relationships.

2.3 Transforming interaction patterns into
design patterns

Design patterns derived from the task and domain
models. IOs are embodying basic interaction tech-
niques. They are covering both presentation and dialog
model at a basic level, which we may term as lexical
level. In this respect, interaction objects are the basic
constituencies of the user interface. IO groups, which
have one or more information, control IO and one
function control IO provide with a first level of struc-
turing the interface. Interaction object groups could be
used as basic building blocks for the presentation
model in a task-based approach. An example is given
in Fig. 6 where searching by identification number is
used to identify an old client. Grouping of interaction
objects is done around the function control.

Figure 6. Design pattern for a task-based IO grouping.

We can further decompose the task “display results”
with CTTE [7] (Fig. 7) in order to obtain we have the
full operational structure for the task “identify-by-id”,
including the feedback presented to the user. The task
structure suggests a grouping of interaction objects in
the interface according to semantic and functional cri-
teria [6]. IO groups could further be grouped together
to form higher-level groups. An example is given in
Fig. 8 where three groups are grouped following a
higher-level goal in the goal hierarchy. According to
ergonomic criteria, this is good for 3 reasons: (i) pro-
vides for user guidance, by grouping related interaction
objects; (ii) reduces memory workload, by creating
chunks of information and reducing the articulator dis-
tance needed to perform a given task; (iii) provides for

49

compatibility with the user tasks. We can put it all to-
gether and propose a design pattern. In order to pro-
pose a pattern language we will start by describing the
following: problem, context, forces, solutions and
comment.

Figure 7. Operational task structure

Figure 8. Design pattern for IO grouping.

We can also derive design patterns based on display
patterns like those presented in Fig. 3. We will take the
more general example depicted in Figure 3c and we
will propose a pattern which is mainly based on one-to-
many relationships in the domain model [8].

Problem
Functions could be chained such as the same data is used
as prompting for future actions and feedback for previous
actions. Ideally, the user should be provided with semantic
feedback showing the effect of his actions to the applica-
tion data.
Context
The same operational structure could be used in several
sub-tasks. It usually happens when there are several func-
tions performed upon the same object. For example, the
client address is used as feedback after two search methods
and for data entry for a new client or when the address
changes.
The user is performing a search function. If successful, the
attribute data of the found object is displayed in the inter-
face. Then the user could act upon the displayed data in

order to perform further actions. This situation is typical in
data base applications when we first search for a record
and then edit it.
Forces
There are several search keys. For example, the user can
search using a client id, a personal id number or the name.
Some search methods could be faster other could be more
easy to use. If a method fails, possible because of a data
entry error, the user might want to try another.
There are a huge number of possible groupings of AIOs in
the interface. Grouping of interaction objects could be
done according to semantic criteria provided by the data
model or in a task based approach. Semantic criteria help
to perceive the data structure including relationships. A
task-based approach minimizes user actions.
There is always a tradeoff between the information density
and the articulator tasks for navigating between different
dialog units.
Solution
First level of AIO grouping should mirror the operational
task structure. Assign a static interaction object denoting
the semantics of data or function to each AIO. This design
step is performed in a bottom-up approach.
Higher-level groups are based on the goal hierarchy. As-
sign a static interaction object denoting the task goal to
each AIO group. Use up to three levels of grouping in a
dialog unit. Allocation of dialog units should be done in a
top-down approach based on the task model.
Comment
This pattern applies mainly for the presentation part of the
interface and helps in organizing the information on the
screen in a way that provides with user guidance. It can be
integrated in more complex patterns.

An example using this pattern is presented in Fig.
12 where a dialog unit for the task “edit guideline” was
designed. The user can manipulate one-to many rela-
tionships as follows. Base name is only displayed. Sec-
tion could be selected from a drop-down list. If not
found, a new section could be created. The user could
also select the general guideline and he is provided
with a list of more specific guidelines. A classification
relationship is used to select the importance level of the
guideline from a drop-down list. In this example, the
recursive aggregation of guidelines was implemented
according to the case 3c in order to provide with
maximum of feedback. Seeing both the ancestor and
the descendants helps the user to better perceive the
underlying domain model. However, the design deci-
sion is also dependent on the available screen space.
Design patterns derived from interaction patterns.
More complicated interaction structures like those af-
forded by many-to-many relationships in the domain
model need a closer look in order to be embedded in
useful task structures and thus aid the UI design.

50

Task
goal

Presentation Dialog Control

select a
category

click to show list +
select + show cur-
rent

category id – inter-
nally available
category name – dis-
played

add a
new
category

Click on button

edit at-
tribute
value

Enter text box value – in-

ternally available

perform transaction
(record AIO values)

Click on “ok”

update the category
list

record /
cancel

Click on “cancel”
Table 1: Interaction techniques for creating a new entity

Figure 9. Design pattern for creating a new entity.
For example, the operational structure of the unit

task “new base” (Fig. 1) suggests a dialog unit having
one group composed of interaction objects for informa-
tion control and a group composed of two interaction
objects for function control. The interaction pattern is
simple: the user is pressing the “new” button while ed-
iting the section. Then the dialog unit is displayed so
the user can enter attribute data by using information
control objects like text boxes (profiled text box for
base id and base name and multiline text boxes for de-
scription and comments. Then she can record the new
base in the database by pressing the “ok” button or
cancel the operation by pressing the “cancel” button.
The task and domain models are providing with useful
information for user guidance: the dialog unit will dis-
play the name of the unit task in the window title;
static interaction objects (labels) denoting the seman-
tics of data are composed with the information control
objects (Fig. 9). Both presentation and dialog part at
dialog unit level are provided. This pattern is com-
posed from several abstract interaction objects (generic
interaction techniques), which are, providing with

presentation, dialog and control at
interaction object level. These patterns
are presented in Table 1. Although
this design pattern is well known, it is
mentioned because is needed when
combining several patterns in a pattern
language. It also shows how we van
integrate useful information from both
task and domain models. In this
respect, showing the current selected
value for the base and the possibility
of adding a new base corresponds to
the interaction pattern in Fig. 4b. This
pattern occurs three times in the task
model: when selecting the section for
a guideline; when selecting the base
for a new section; when selecting a
criteria section. In the third case we

will not provide a new button since the set of criteria is
well-established. This is a variation in the context of
use, which should be recorded in the context and solu-
tion parts of the pattern. In this respect, the pattern lan-
guage should be flexible enough to capture different
situations of use if they lead to a similar design. Since
a strong feature of patterns is to be context sensitive we
will need to describe several solutions: a general one,
corresponding to the common part of the problem and
several detailed solutions, corresponding to the diver-
sity of the use situations.

This pattern is based on the display pattern (Fig. 3a)
and the interaction pattern depicted (Fig. 4a). It in-
cludes the design pattern described in the previous sec-
tion. Additionally, it describes the whole interaction
process by including the data input for the higher-level
object and the relation between the two dialog units.
From an implementation point of view, this data is re-
corded in a transaction process when the user is press-
ing the “OK” button (explicit user action). In this case,
the attributes are taking the values stored by the inter-
action objects and the drop down list is updated with
the new value. Ideally, the new category should be dis-
played as the current selected value in order to save the
selecting action.

We will further analyze the two situations described
in Fig. 6, but in a more concrete task context. For ex-
ample, the relation between guidelines and criteria
could be edited in a separate dialog unit, where both
unit tasks of adding a new item and deleting an exist-
ing one are possible. The diagram in Figure 10 shows
the mapping between the task and the presentation
models. In Table 2 the mappings at interaction object
level are presented. A different context for editing the
association is presented in Fig. 11. In this case the user
is provided with a list of associated items. He can re-
move an association or she can add a new one by se-

51

lecting it from a list. This is a better solution since the
user is provided with some information about the exist-
ing state of association. This requires more screen
space in the first dialog unit.

Figure 10. Editing a many-to-many rel. in one dialog

unit.
A design pattern integrated both situations is pre-

sented below. The interaction techniques are presented
Table 3. The item collection could also be structured.
In this case the user will first select the category and
then the item. Actually this is a combination of asso-
ciation and aggregation relationships. It is possible to
create pre-defined (typified) dialog units that accept as
parameters the data source extracted from the domain
model. This way the code needed to handle the dialog
is re-used for similar interaction structures.

The data model could be also exploited in order to
derive appropriate interaction objects (for example, cri-
terion instead of item) and to edit their properties (list
width). In Fig. 8 an example of presentation derived
from task and domain models is presented. It corre-
sponds to the operational task structure in Fig. 1. For
each domain object associated with a guideline we
have an interaction object group in the UI. Each group
has a label, a list box and two buttons.

Figure 11. A many-to-many rel. in two dialog

units.

Figure 12. Adding a criterion while editing a guide-

line.

Task goal Presentation Dialog Control
Main dialog unit
see associated label+ button Click on button displays the dialog unit
Relationship dialog unit
select an object any list scroll+click on item object id internally available
associate list box “all” click on button ”<” creates a record in the relationship table
delete an object list box “associated” click on button ”>” deletes a record in the relationship table
return to main button “close” Click on “close” close the relationship windows

Table 2: Interaction techniques for editing associations.
Task goal Presentation Dialog Control

Main dialog unit
select an object list box “associated” scroll+click on item object id internally available
delete an object list box + button click on button ”X” deletes a record in the relationship table
associate list box + button click on button ”+” opens the “associate” window
Available objects dialog unit
select a category category combo box click + select updates “all” list box
select an object list box “all” scroll+click on item object id internally available
associate list box click on button ”<” creates a record in the relationship table
return to main button “close” Click on “close” close the relationship windows

Table 3. Interaction techniques for an association.

52

3 Towards a Pattern Language
A problem with pattern languages for user interface

design is the difficulty of relating them. For example,
we need a more complete set of patterns in order to in-
clude cross-references in each pattern. However, this
seems to go very deep in the design process and prone
to reduce generality. In this moment it seems to be
more feasible to catch only a general design problem
and to develop and document a set of related patterns.
While the pattern definition could follow a template,
there is still a need of some common information to
discuss, illustrate and justify the pattern. Since the task
of elaborating of patterns is time consuming and may
need further steps (in order to gather valuable design
knowledge from several designers) we propose a prag-
matic approach, based on a short template (formal de-
scription) for each pattern and additional (informal) de-
scription including examples, discussion, figures and
tables.

Together these will form an exploratory framework
for identifying new patterns and will preserve the find-
ings for further work. This initial form of pattern lan-
guage will also serve as a design rationale for the user
interface. When enough knowledge is gathered, the
template could be expanded in order to record in a
formal way the pattern definition. However, a pattern
language will integrate patterns with different granular-
ity, according to their scope and scale. Different scope
means that patterns will mainly focus on some compo-
nent: presentation, dialog or control. It also means that
they will be different in covering design and imple-
mentation.

Domain Task model Presentation

Table 4: UI derivation from task, domain models.

Different scale means that only that for large-scale

patterns how to combine other patterns will be de-
scribed. In order to develop a usable pattern language
we need to start with some basic heuristics, which are
too simple or too informal to be recorded in a complex
template but which, are useful in identifying and justi-
fying a pattern. On another hand, having this basic
layer, pattern descriptions could be more concise and
thus easier to elaborate and manage. A more synthetic
presentation of our task-based approach is depicted in
Table 4. First row shows how interaction object groups
are derived from task and domain models. Domain ob-
jects are providing with attribute information from
which interaction objects for information control are
derived. In our task modelling framework this row cor-
responds to the operational level in task decomposition
and shows how unit tasks are performed with a given
technology. Grouping of interaction objects is done ei-
ther according to the semantics of the domain model
(rarely, for objects having many and / or compound at-
tributes) or around function control IOs (often). Static
IOs denoting the group meaning are also added in or-
der to increase user guidance. For example, IO groups
could take the name of the unit task they support. This
mapping is shown in the second row. Third and fourth
rows represent the derivation of more complex unit
task structures by considering relationships between
domain objects. In turn, these structures are further ex-
ploited in order to derive interaction object groups and
dialog units. The last row is incomplete in that it illus-
trates allocation of dialog units only by considering the
task model. In a task-based approach early task model-
ling is assumed to integrate systems functions. There-
fore they are not further exploited during operational
task modelling. Clearly, these mappings are not a sub-
stitute for patterns. However, they show an underlying
task-based design philosophy and help in organising
design patterns in a more systematic way and describ-
ing them in a more concise manner.

No. Statement
H1 Assign a static interaction object, denoting the

data meaning, to each information control object.
H2 Assign a static interaction object, denoting the

goal name, to each goal at unit task level.
H3 First level grouping of interaction objects should

mirror the operational task structure.
H4 Higher level grouping of interaction objects

should mirror the goal structure
H5 Assign a static interaction object to each higher

level grouping of interaction objects, denoting
the goal it represents

Table 6: Heuristics for grouping of interaction objects.

This basic level could be then completed with heu-
ristics for typical derivation rules providing with more

53

detailed design knowledge. For example, in a previous
work several heuristics were proposed for grouping of
interaction objects (Table 6). We can use heuristics for
dialog unit allocation following a given strategy. Heu-
ristics could be illustrated with examples. This basic
layer will be the most general in that it will provide de-
signers with heuristics and design rules that apply to a
variety of patterns. We can summarize its content as
following: ergonomic criteria; selection rules for
choosing the most ergonomic IO (interaction tech-
nique); task-domain-presentation mappings, detailed
heuristics for the derivation of presentation.

4. Conclusion
Operational task structures describe how users are

manipulating domain objects. Interaction object groups
are formed by grouping information control objects
around a function control object that is designed ac-
cording to requirements coming from the task model.
More complex task structures at operational level are
afforded by relationships between domain objects. Not
only IO groups could be derived but also dialog units.
Thus bigger building blocks having both presentation
and dialog parts could be derived. A problem with pat-
terns is the diversity of design situations. Although pat-
terns are intended to satisfy requirements related both
to complexity and diversity, it is hard to address meth-
odological aspects:
• Applications are very different as regarding the driv-

ing model: driven by task and functional require-
ments, others by complex relationships or by large
data structures and other by content.

• Although attractive, patterns could easily trap the de-
signer into futile work which could be saved by us-
ing design heuristics;in elaborating a pattern lan-
guage, finding a stopping criterion is hard.

• Patterns languages are difficult to elaborate: the
more formal definition is used, more time is spent to
integrate related patterns and this may lead to narrow
their applicability.

In this paper we investigated design patterns, which are
based on the information provided by task and domain
models. On the basis of our previous work and this in-
vestigation we proposed a method to develop pattern
languages in two steps:
1. Identifying patterns by using information from task

and domain models and recording them in an initial
pattern language combining formal definition with
informal description;

2. Formalisation of the pattern language by expanding
the initial pattern template.

5. References
[1] Alexander, C., The Timeless Way of Building, Oxford

University Press, New York, 1979.

[2] Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fin-
cher, S., Grinter, B., Gross, B., Lehder, D., Marmolin,
H., Potts, C., Skousen, G., and Thomas, J., “Putting It
All Together: Towards a Pattern Language for Interac-
tion Design, Summary Report of the CHI’97 Work-
shop”, SIGCHI Bulletin, 30(1), Jan. 1998. Accessible at
http://sigchi.org/bulletin/1998.1/erickson.html.

[3] Bodart, F. and Vanderdonckt, J., “On the Problem of
Selecting Interaction Objects”, Proc. of BCS Conf.
HCI’94 "People and Computers IX" (Glasgow, 23-26
August 1994), G. Cockton, S.W. Draper, G.R.S. Weir
(eds.), Cambridge University Press, Cambridge, 1994,
pp. 163-178.

[4] Card, S.K., Moran, T.P., and Newell, A., The Psychol-
ogy of Human-Computer Interaction, Lawrence Erl-
baum Associates, Hillsdale, 1983.

[5] Chaffin, R., Herrmann, D.J., and Winston, M.E., An
empirical taxonomy of part-whole relations: Effects of
part-whole type on relation identification, Language
and Cognitive processes, 3(1), 1988, 17-48.

[6] Furtado, E., Furtado, J.J.V., Silva, W.B., Rodrigues,
D.W.T., Taddeo, L.S., Limbourg, Q., and Vander-
donckt, J., “An Ontology-Based Method for Universal
Design of User Interfaces”, Proc. of Workshop on Mul-
tiple User Interfaces over the Internet: Engineering and
Applications Trends MUI’2001, A. Seffah, T. Rad-
hakrishnan, G. Canals (eds.), Lille, 10 September 2001.
Accessible at http://www.cs.concordia.ca/
~faculty/seffah/ihm2001/ papers/furtado.pdf

[7] Paternò, F., Model-based design and evaluation of in-
teractive applications, Springer-Verlag, Berlin, 1999.

[8] Pisano, A., Shirota, Y., and Iizawa, A., “Automatic
generation of graphical user interfaces for interactive
database applications”, Proc. of CIKM’93, ACM Press,
New York, 1993, pp. 344-355.

[9] Storey, V., Understanding Semantic Relationships,
VLDB Journal, 2, 1993, pp. 455-488.

[10] Mahemoff, M.J. and Johnston, L.J., “Principles for a
Usability-Oriented Pattern Language”, Proc. of OZ-
CHI’98, IEEE Press, Los Alamitos, 1998, pp. 132-139.

[11] Vanderdonckt, J. and Gillo, X., “Visual Techniques for
Traditional and Multimedia Layouts”, Proc. of 2nd
ACM Workshop on Advanced Visual Interfaces
AVI'94 (Bari, 1-4 June 1994), T. Catarci, M.F. Costa-
bile, S. Levialdi, G. Santucci (eds.), ACM Press, New
York, 1994, pp. 95-104.

[12] van Welie, M., van der Veer, G.C., and Eliëns, A.,
“Patterns as Tools for User Interface Design”, Proc. of
TFWWG’2000, J. Vanderdonckt, Ch. Farenc (eds.),
Springer-Verlag, London, 2000.

[13] Winston, M.E., Chaffin, R., and Herrmann, D., A tax-
onomy of part-whole relations, Cognitive Science, 11,
1987, pp. 417-444.

54

