
C. Baranauskas et al. (Eds.): INTERACT 2007, LNCS 4662, Part I, pp. 411–425, 2007.
© IFIP International Federation for Information Processing 2007

The Beautification Process in Model-Driven
Engineering of User Interfaces

Inés Pederiva1, Jean Vanderdonckt1,2, Sergio España1, Ignacio Panach1,
and Oscar Pastor1

1 Universidad Politécnica de Valencia, Dep. de Sistemas Informáticos y Computación
Camino de Vera s/n, 46071 Valencia, Spain

2 Université catholique de Louvain, Louvain School of Management,
Place des Doyens, 1 – 1348 Louvain-la-Neuve, Belgium

{ipederiva, jvanderdonckt, sergio.espana, jpanach,
opastor}@dsic.upv.es,

jean.vanderdonckt@uclouvain.be

Abstract. The beautification of a user interface resulting from model-to-model
and model-to-code transformations in Model-Driven Architecture consists of
performing manual changes to address user requirements which have not been
supported during the transformations. These requirements may include cus-
tomization, users’ preferences, and compliance with corporate style guidelines.
This paper introduces a beautification process into a user-interface model. This
process includes a series of beautification operations based on a formal defini-
tion, as well as a constrained editor that enables designers to apply these beauti-
fication operations on a user interface. All manual changes done using these
beautification operations are transformed into model-to-model transformations,
thus reducing the problem of round-trip engineering. The paper also demon-
strates that this process significantly reduces the number of manual changes
performed on user interfaces of information systems, while preserving the qual-
ity properties induced by the transformations.

Keywords: Beautification operation, beautification process, human-computer
interaction model, round-trip engineering, model-driven engineering, quality by
construction, user interface description language, user interface code tweaking.

1 Introduction

The complete support of User Interfaces (UIs) requirements in Model-Driven Engi-
neering (MDE) [4,21] is a problem that has not yet been solved. The user require-
ments to be addressed usually fall into two categories: requirements that are
effectively supported by applying model-to-model (M2M) and model-to-code (M2C)
transformations [10] and requirements that are not supported because they are not
covered by these transformations. This dichotomy of requirements leads to two ex-
tremes: on the one hand, the UI that has been automatically generated by these trans-
formations is assumed to be usable by the end user or it is simply taken for granted
because of resource limitations, or on the other hand the UI is subject to manual
modifications in an attempt to address the remaining user requirements. These manual

412 I. Pederiva et al.

modifications take two basic forms: the generated UI code is tweaked manually or it
is imported in a UI builder to be edited by direct manipulation. These modifications
are performed to agree with the user requirements and are usually referred to as beau-
tification operations since they are intended to beautify the manual changes brought
to automatically generated UI. The whole process is known as UI beautification.

Unfortunately, this task is very sensitive to mistakes [1]: understanding generated
code is usually a complex activity, and what has been constructed according to the
MDE approach may easily be destroyed by manual beautification. Moreover several
quality features guaranteed by construction in the MDE approach could be endan-
gered by the beautification: usability [1]; consistency between the UI and its model
[3]; correctness [7], and error-free benefit [15].

In the field of computer graphics, beautification [17] is referred to as the direct
manual sketching of a shape, a drawing, or an illustration in an editor and its auto-
matic replacement by a ‘beautified’ symbol. This is performed all in one step in order
to remove manual clutter [8]. By analogy, in computer science, we define UI beautifi-
cation as the whole process of improving the automatically generated UI with manual
modifications to address unsupported user requirements.

The consequence of this manual beautification is that all efforts are not saved and
are lost if a new UI is regenerated [18]: if the UI model changes, the generated UI
changes accordingly but it is no longer compliant with the manual changes done pre-
viously. To alleviate this problem, researchers in MDE introduced various solutions to
the so-called round-trip engineering [2]: manual modifications could be saved, inter-
preted, abstracted and finally replaced by a ‘beautified’ operation to be propagated to
the model that initiated the M2M and M2C transformations. These operations could
then be replicated each time the whole set of transformations is reapplied.

This paper addresses the shortcomings mentioned above by introducing a frame-
work of beautification operations that provides a constrained UI editor where these
beautification operations can be applied without endangering the qualities provided
by the MDE approach. One approach is to let designers be free to do what they want
in any UI builder, however, the quality of the resulting UI will depend heavily on
their expertise. Another approach is to develop a brand new UI builder that supports
the beautification operations using round-trip engineering, but this requires too much
effort. Our solution provides a balance between these two extremes: the paper pre-
sents a constrained UI editor equipped with some beautification operations that can
only be applied in the context of the editor, preserving the quality features provided
by the MDE. The new definition of UI beautification becomes: the whole process of
improving the automatically generated UI with beautification operations to address
unsupported user requirements while preserving the qualities provided by MDE.

The remainder of this paper is structured as follows: Section 2 reviews how the
beautification process was addressed in software engineering, and in the domain of
MDE of UIs. Section 3 develops the methodological context in which our solution of a
constrained editor is developed and reports observations of the tweaking performed us-
ing OO-Method. Section 4 describes how our framework performs beautification op-
erations on graphical representations of an underlying UI model in order to support
round-trip engineering. A running example is provided for this purpose to demonstrate
the effectiveness and the efficiency of this solution. Section 5 reports the experience
gained by using this method and its corresponding constrained UI editor. This section
also identifies directions for future work resulting from this experience.

 The Beautification Process in Model-Driven Engineering of User Interfaces 413

2 State of the Art

The beautification of automatically generated computer-based systems and its corol-
lary, the round-trip engineering problem [2], are concluded to go far beyond a simple
combination of forward and reverse engineering [20]. Many different techniques have
been proposed to address this problem. Some of these are design patterns, framework-
specific modeling languages [2], model reconciliation [20], etc. Although these tech-
niques are generally applicable in the discipline of software engineering, they do not
exploit the full potential of UI models, which are usually visual in nature: all UIs in-
corporate visual aspects that should be dealt with in case of beautification.

In Human-Computer Interaction (HCI), MECANO [19] was the first project to rec-
ognize the need for beautification support in the generation process: the methodologi-
cal guidelines recommended that designers propagate their manual modifications into
elements and relationships in the underlying model for reuse. Clerckx et al. enumerate
an extensive list of similar rules that can be manually applied to the model after a
transformation has been performed. Their DynaMo-AID design process is divided
into several steps providing rules for propagating changes across models that are in-
volved in different levels. MOBI-D [18] and TEALLACH [6] enable a designer to start a
project from any model (task, domain, UI), thus propagating the consequences to the
other models by linking and derivation. These mechanisms are similar, but not in-
tended to really support UI beautification. WISDOM [14] also recommends keeping the
models consistent with each other when a mode has been updated. In da Silva’s sur-
vey of model-based tools and techniques [4], none of them provides any explicit sup-
port for UI beautification. This shortcoming is also observed in major commercial
software that automatically generates UI, such as Genova [5], JaxFront [9], and Oli-
vaNova [15]. In the following sections, we formally define beautification operations
so that, in theory, they could work in any of the above environments. To be practical,
the beautification process is illustrated in the context of a specific MDA-based
method: the OO-Method [16].

3 Model-Driven Engineering of User Interfaces in the OO-Method

OO-Method [16] is a software development method that is MDA-compliant, i.e., it
involves models of the future interactive system at different levels of abstraction
(CIM, PIM, PSM [10]– Fig. 1) and provides an explicit transformation mechanism
between them. The method is initiated by specifying the system functional require-
ments and develops the final interactive system through consecutive transformations.
This method is supported by a software suite [15] that edits the various models in-
volved and applies subsequent transformations until the final code is generated for
different computing platforms: ASP, .Net, .JSP, Java, and C#.

The requirements elicitation in OO-Method [16] gathers all the user requirements
in the Requirements Model by specifying the system’s functionality in the Mission
Statement and the Function Refinement Tree. The Use Cases detail each function and
when this model is complete, system specifications are output independently of the
implementation or the technological space (Computation Independent Model - CIM).

414 I. Pederiva et al.

Fig. 1. Correspondences between the MDA proposal and the OO-Method

The Conceptual Model, equivalent to the MDA’s Platform-Independent Model or-
PIM, specifies four complementary system views. The Object Model specifies the
static properties of the interactive application by defining the classes and their rela-
tionships. The Dynamic Model controls the application objects by defining their life
cycle and their interactions. The Functional Model describes the semantics of object’s
state changes. Finally the Presentation Model (PM) models the UI.

Fig. 2. The user interface design patterns defined in [11]

 The Beautification Process in Model-Driven Engineering of User Interfaces 415

Fig. 2 presents the Just-UI [11] decomposition. The Interaction Units (IUs) repre-
sent the main interactive operations that can be performed on the domain objects:

1. The Instance IU shows a single object at a time, that is, one instance of a class.
2. The Population IU shows a group of similar objects.
3. The Master/Detail IU shows a hierarchical view of relationships between objects.
4. The Service IU modifies objects, their attributes and their relationships.

The next level of decomposition of the PM consists of restricting and specifying
the behavior of each IU in the PM into an elementary pattern. For example, if a Popu-
lation IU is being specified, then five elementary patterns could be attached to it [11]:

a) A Filter Pattern filters any set of objects to display only the objects needed.
b) The Order Criteria specifies the order in which the objects are shown.
c) The Display Set restricts which attributes of the objects are going to be presented.
d) The Navigation Pattern specifies the navigation between the objects.
e) The Action Pattern specifies functions that can be triggered for the object shown.

Fig. 3. Our running example as generated: a Population IU with a Filter pattern (a), an Order
Criteria (b), a Display Set (c), a Navigation pattern (d), and an Action pattern (e)

The Conceptual Model, once achieved, is submitted to model compilation (M2C
transformation). For any target computing platform, the Source Code is automatically
generated and structured according to a three tier’s architecture: the Interface Tier, the
Application Tier, and the Persistence Tier. A fully functional application can be gen-
erated, which is not limited to database or UI (for more details, see [15,16]).

To illustrate the beautification process, a Population IU was selected. It was ex-
tracted from a real-world application delivered to Aguas del Bullent S.A.

416 I. Pederiva et al.

(http://www.aguasdelbullent.com/index_en.html), a drinking water supply service
company located in Oliva, Alicante (Spain). This application was chosen for several
reasons: it has been entirely produced according to the OO-Method and generated by
the OlivaNova without any manual modification; it represents a medium-sized inter-
active application of moderate complexity; it is a genuine application which is used
today; and it has received the Microsoft certification of quality. Fig. 3 reproduces a
Population pattern for displaying the water meters of customers located in a certain
region. This Population pattern is decomposed into the five elementary patterns de-
scribed above. The following section shows how this automatically generated UI is
subjected to beautification operations.

4 The Beautification Process

4.1 Purpose of Beautification Operations

The need for a beautification operation arises as soon as there are user requirements
that are unsupported by the MDA approach. For example, users of the interface
shown in Fig. 3 complain that the list of objects displayed may become long. To im-
prove the legibility of the list, the background color was changed every four lines with
a usable background color in order to avoid interfering with the data. Since this fea-
ture is not supported by the approach there is no modeling operation for it and a man-
ual modification is necessary. The goal now is to turn these manual modifications into
beautification operations, which will ultimately be considered as modeling operations.
To decide the manual modifications to be included into the beautification process, a
statistical analysis was conducted on three professional applications generated by the
OlivaNova software:

1. A small-sized interactive application: ProAM consists of a golf management appli-
cation especially designed for golf tournaments, which is generated for both JSP
and Visual Basic. A total number of 19 manual modifications were observed.

2. A moderately-sized interactive application: MultiLanguage consists of an applica-
tion that runs the same user interfaces but in different languages. It was generated
for C# and a total amount of 144 manual modifications were reported.

3. A large-sized interactive application: Alligator consists of an invoicing system for
multiple inter-related companies with advanced reporting functions, which is gen-
erated in Visual Basic. A total of 252 manual modifications were examined.

From the total of 415 manual modifications those made by the developers were ex-
tracted (171 out of 252 were considered in the large-sized application) and classified
into two sets: those relevant to the Presentation Model (103 out of 171) and those not
relevant to it (58 out of 171) but relevant to the other models involved in the OO-
Method (Fig. 1). This study shows the most frequent modifications and their level of
importance in terms of the impact on the generated code. Therefore, a manual modifi-
cation is considered a beautification operation because: the operation was observed in
most applications; the operation occurred with a significant frequency; the operation
was realistic in terms of future implementation support; and the operation was of at
least moderate importance.

 The Beautification Process in Model-Driven Engineering of User Interfaces 417

4.2 Classification of Beautification Operations

In order to classify a manual operation and, therefore, a subsequent beautification op-
eration, Nielsen’s linguistic model of interaction [13] was selected for these reasons:
it decomposes a human-computer interaction in terms of seven inter-related, but inde-
pendent, levels with a communication protocol between them; it has already been
successfully used to classify usability guidelines according to their level of impor-
tance; and it allows identification criteria to univocally locate each modification to
one and only one level. Table 1 decomposes a simple goal (i.e., delete a paragraph in
a letter) into subsequent units of interaction for each level. The same is done here with
a user’s goal attached to the Population Interaction Unit Pattern shown in Fig. 3:

• Level 1 (Goal): expresses a user’s mental goal, such as “search for a particular
customer having a water meter in a specific region”.

• Level 2 (Pragmatic): translates this mental goal into a task to be carried out in the
system according to the system concepts, such as “search for a subscriber having at
least one water meter in zone x” (Fig. 3).

• Level 3 (Semantic): translates the real-world objects into system objects and func-
tions, such as “search for a subscriber with a code region filled in” (Fig. 3).

• Level 4 (Syntactic): structures the semantic into an ordered sequence of operations
in time and space, such as “select a zone code from the list and launch a query”.

• Level 5 (Lexical): decomposes each operation into the smallest possible pieces of
information, such as “a zone code”.

• Level 6 (Alphabetic): specifies the unit of information (e.g., a lexeme, a metric)
for each information item, such as “an integer for representing the zone code”.

• Level 7 (Physical): specifies the physically-coded information in terms of light,
sound, color, etc., such as “display the integer in black on white for input”.

Table 1. Definition of the seven levels of Nielsen’s linguistic model of interaction [13]

Le
vel

Title Units Definition Example Wo
rld

1 Goal Concepts of
real world

Mentalization of a goal, a wish
in the user’s head

Delete a paragraph from my
letter

2 Pragmatic Concepts of
system

Translation of a goal into sys-
tem concepts

Delete 6 lines of the current
paragraph in the edited text

3 Semantic Detailed
functions

Real world objects translated
into system objects manipulated
by functions

Delete a certain amount of
lines

C
onceptual

4 Syntactic System sen-
tences

Time & space sequencing of in-
formation units

DELETE 6

5 Lexical Information
units

Smallest elements transporting
significant information: word,
figure, screen coordinates, icon

[DELETE] command, [6]
number

Perceptual

6 Alpha-
betic

Lexems Primitive symbols: letter, num-
bers, columns, lines, dots, pho-
nems, ...

D, E, L, E, T, E, 6

7 Physical Physically
coded in-
formation

Light, sound, physical moving Pressing [CTRL]+[D] fol-
lowed by [6]

Physical

418 I. Pederiva et al.

4.3 Definition of a Beautification Operation

According to Table 1, any beautification operation can be classified into one and only
one level. If any ambiguity persists after an initial classification, it means that the
beautification operation should be decomposed into smaller operations. In order to
show a significant set of operations, five beautification operations belonging to five
different levels will be executed for our running example (Fig. 3) as follows:

1. Level 7 (Physical): Specify (rowHighlightingType) specifies that for every n num-
ber of lines in a table, the background color of this line should be set to a color that
is different from the foreground color to ensure contrast. For instance, in Fig. 3,
one in every four lines of the “Subscriber table” should be highlighted. This opera-
tion belongs to the Physical Level because it affects the physical appearance.

2. Level 6 (Alphabetical): Convert (inputMetricUnit, outputMetricUnit) converts
data expressed according to one metric unit into another one. For instance, in Fig.
3, the currency of a price displayed in the column “Invoice amount” should be
converted from the Euro (€€) currency into the United States Dollar (U$D) cur-
rency. This operation belongs to the Alphabetical Level because it only changes
the numerical value of prices with another symbol to support internationalization.

3. Level 5 (Lexical): Specify (buttonPresentationType) specifies whether a push but-
ton should be presented with one label only (l), with an icon only (i) or with both
(i+l), according to the usability guideline. For instance, in Fig. 3, a push button of
the navigation pattern (e) could be presented with an icon and label together. This
operation belongs to the Lexical Level because textual and/or graphical informa-
tion is presented for the same object.

4. Level 4 (Syntactical): Substitute (widgetType) replaces a widget of a given type by
a widget of another type by transferring its properties from the initial one to the
substituted one. For instance, in Fig. 3, the edit box attached to “Category” may be
substituted by a drop-down combo box because the amount of categories remains
fixed. This operation belongs to the Syntactical Level because it changes the se-
quence of actions that the user has to do in order to select a category.

5. Level 3 (Semantic): Specify (conditionalDisplay) changes the value of a widget
property depending on whether a semantic condition is satisfied or not. For in-
stance, in Fig. 3, the “Invoiced” flag should be changed to another symbol depend-
ing on whether the invoice has been issued or not. This operation belongs to the
Semantic Level because the presentation only changes according to a semantic
change of the object (that is, the values of its attributes).

These five examples show that a beautification operation is executed depending on
the widget types involved, the interaction unit concerned, and the elementary patterns
present. Therefore, a beautification operation is now formally defined as a State-Pair
Action (SAP) B = 〈 s, a 〉 where

 s = a state of a IU where the beautification operation could be applied.
 a = an action to be performed on the state s when it is found.

A SAP consists of a representation of the Interaction Units (IUs) contents prior to
executing the action (the state) and a description of this action at an appropriate level

 The Beautification Process in Model-Driven Engineering of User Interfaces 419

of abstraction (the action). Consequently, these five examples of beautification opera-
tions could be formally expressed as follows:

 B1 = 〈 table in: DisplaySet, Specify (rowHighlightingType) 〉
 B2 = 〈 cell in:table in: DisplaySet, Convert (inputMetricUnit, outputMetricUnit) 〉
 B3 = 〈 button in:Navigation in: PopulationIU, Specify (buttonPresentationType) 〉
 B4 = 〈 inputText in:, Substitute (widgetType) 〉
 B5 = 〈 cell in:, Specify (conditionalDisplay) 〉

If the same beautification operation is applied on different widgets considered in
different contexts, the beautification operation is repeated with the same action. De-
pending on the scope of the action and depending on what needs to be beautified, the
action could be applied on a particular widget, on a particular widget in a container, or
to a series of widgets.

Now that a beautification operation has been properly defined, the next section de-
scribes the beautification process and then decomposes this process into three steps.

4.4 The Steps of the Beautification Process

Thanks to the concept of beautification, OO-Method methodology can be improved
through beautification (Fig. 4). This process is decomposed into three steps which are
detailed in the following subsections.

Step 1: Derivation of a Concrete User Interface Model from the Presentation
Model. Since the Presentation Model contains an abstract definition of the future UI
in terms of IUs and attached elementary patterns, it is considered to be the best candi-
date to apply a M2M transformation in order to derive a Concrete User Interface
Model from it. This model needs to fulfill at least two requirements:

1. In order to apply any beautification operation, it is necessary to know which widget
must be replaced depending on the context.

2. In order to manipulate a working model, an internal UI representation that is sub-
ject to the beautification operations must be maintained.

The Concrete User Interface (CUI) model of the USer Interface eXtensible markup
Language (UsiXML – http://www.usixml.org) has been selected because it satisfies
these two requirements and allows us to provide the following definitions:

• A Concrete User Interface (CUI) consists of an abstraction of a final UI independ-
ently of the particular widgets used in a particular computing platform, thus result-
ing in a characterization of a UI in terms of Concrete Interaction Objects (CIOs).
In this paper only graphical CIOs will be considered.

• Let C be the set of all graphical CIOs to be considered here.
• A graphical CIO, or a CIO for short here, is formally defined as a couple c = 〈t,A〉

- where t = type of the CIO A = decorator iff c is non-interactive, graphicalIndi-
vidualComponent iff c is interactive and ∃/ c’ ∈ C such that c’ ⊂ c, graphical-
Container iff c is interactive and ∃ c’ ∈ C such that c’ ⊂ c, respectively.

- where A is a set of triple (ai, ti, vi): A = { (ai, ti, vi) }, of cardinality ⎪A⎪ = n where
i.ai (i=1,…,n) = ith attribute of c

420 I. Pederiva et al.

ii.ti (i=1,…,n) = data type of the ith attribute of c : ti ∈ {boolean, time, date, inte-
ger, string}

iii.vi (i=1,…,n) = value of the ith attribute of c = null if ai is empty
• Therefore C = {decorators, graphicalIndividualComponent, graphicalContainer}
• UsiXML includes several CIOs for these different types, such as: a separator

(decorator), inputText, outputText, radioButton, checkBox, listBox (graphicalIndi-
vidualComponent), dialogBox, window, and tabbedDialogBox (containers).

• A CIO is said to be totally instantiated when all its attributes ai have been assigned
to a value vi: c is totally instantiated ⇔ ∀ i=1,…,n: vi ≠ null.

• A CIO is said to be partially instantiated when some attributes ai have been as-
signed to a value vi: c is partially instantiated ⇔ ∃ i=1,…,n: vi ≠ null.

• A CIO is said to be uninstantiated when all attributes ai have not been assigned to
any value vi: c is uninstantiated ⇔ ∀ i=1,…,n: vi = null.

Fig. 4. Update of the OO-Method as defined in Fig. 1 with support for beautification

Once a Presentation Model is created for a UI, a corresponding CUI model is
therefore derived as a tree of structured and partially instantiated CIOs whose root is a

 The Beautification Process in Model-Driven Engineering of User Interfaces 421

graphicalContainer. Each IU and each pattern contained in the Presentation Model is
transformed into a CUI. This is a straightforward transformation.

Step 2: Execution of the beautification operations. Once a CUI Model has been de-
rived, it can be submitted to beautification operations, applying model-to-model trans-
formations. For this purpose, the CUI Model is opened in the constrained GUI editor.
Each partially instantiated CIO belonging to the CUI Model is then subject to beauti-
fication operations. The GUI constrained editor detects potential SAPs to be applied
by examining the states defined in each SAP and matching them to the CIOs of the
GUI Model. If a CIO is subject to a particular SAP, the constrained GUI editor allows
the designer to apply the corresponding beautification operation through a contextual
menu (Fig. 5): when the cursor moves over a CIO subject to beautification (a), a con-
textual menu appears (b) which could be pulled down (c) so as to select the desired
operation and to apply it instantly (d).

Fig. 5. Sequence of user actions to trigger a beautification operation

When it receives a new SAP as input, the constrained GUI editor finds the collec-
tion C of action steps in the model that are consistent with this input. An action step is
consistent with a SAP if the step is a generalization (abstraction) of the action in the
SAP. For each consistent step, for example s, it checks whether the model can be
modified to contain a direct path from C.to s.

The constrained GUI editor is a program that captures the model defined in the
Presentation Model and with the information given in the ON Metamodel, gives a
preview of the designed interface. In order to protect the quality and good design
defined in the Presentation Model, this editor is constrained by parameters. These
parameters define which values can be defined and modified for each component in
the interface. For instance, no CIO may be deleted and no new widget can be de-
fined. Each parameter is described by: (1) The name of the parameter; (2) the data
type and the values of the parameters; (3) the widgets where this parameter may be
applied.

Parameters go beyond simple CIOs since they gather high-level values that are
consequently applied to one or many CIOs to complete their instantiation. When
the designer modifies those parameters, a preview of what will be generated by
OlivaNova is produced. We call it a Generation Preview as it provides a UI pre-
view before its final code is generated. A prototype of the constrained GUI editor
has been implemented in Java 1.5 with 15 beautification operations using this
mechanism.

422 I. Pederiva et al.

Fig. 6. The running example of Fig. 3. after applying the five beautification operations: (1)
Specify(rowHighlightingType), (2) Convert (inputMetricUnit, outputMetricUnit), (3) Specify
(buttonPresentationType), (4) Substitute (widgetType), (5) Specify (conditionalDisplay)

Fig. 7. The running example of Fig. 3 after applying other beautification operations

Step 3: Generation of the final user interface. Once all the beautification operations
have been applied by the designer, the CUI Model is completed and sent to the model
compiler so as to perform the model-to-code transformation. This transformation
transforms all the models defined in the process of designing the system. With the

 The Beautification Process in Model-Driven Engineering of User Interfaces 423

modifications described previously, the resulting UI is shown in Fig. 6. Fig. 7 repro-
duces a UI resulting from other beautification operations also applied on the UI of
Fig. 3.

4.5 The Parameters, the Templates and the User Interface Model

The parameters should be gathered in a UI template which is organized into a hierar-
chy of templates. A presentation template is decomposed into style and layout tem-
plates. A style template is decomposed into color scheme template and font template.
As stated previously, the constrained GUI editor exploits these parameters. Each pa-
rameter represents an interface concept and is initially defined on a default value.
Two examples are presented here:

• flowAlignment (type=string, status=public, inherited=no, allowed values=optional): specifies
how elements should flow in a flowBox: left, middle, right.

• labelVerticalAlignment (type=string, status=public, inherited=no, allowed values=mandatory):
specifies how identification labels and it corresponding CIO are aligned vertically.

As each interface concept is conceptualized in a parameter, with the template sup-
port, the designer can recurrently apply the same configuration to many projects or
can have institutionalized styles for different customers.

5 Conclusions and Future Work

This paper has examined in detail the process of UI beautification, by analogy with
the concept of “beautification” in the field of computer graphics. In the context of
Model-Driven Engineering, it consists in modifying a software artifact so as to ad-
dress those users’ requirements which the given method could not satisfy by means of
model-to-model and model-to-code transformations. When applied at the level of the
automatically generated application, it supports round trip engineering in order to
keep the models consistent with the tweaked code.

By restricting the scope of UI beautification to those operations which preserve us-
ability, an intermediate approach was adopted between the two extreme and com-
monly taken positions (resign to the generated interface and unrestricted tweak the
UI). The approach adopted consists of shifting the beautification process to a more
abstract level, and this issue was tackled following several steps:

1. Identifying the most frequently demanded UI modifications.
2. Defining a Concrete User Interface (CUI) model that allows refining UI appear-

ance and behavior.
3. Defining operations over the elements of the CUI model as a SAP performed on

partially instantiated CIO, guaranteeing the fulfillment of the user’s needs (step 1).
4. Constructing a Constrained GUI Editor that allows editing the CUI model via the

previously defined beautification operations.

The paper defines the process formally and presents a methodological approach to
deal with the unsupported requirements of the Model-Driven Engineering. An exam-
ple is provided along the paper to illustrate the approach. The first experience gained

424 I. Pederiva et al.

with this process and tool has been satisfactory and rewarding. Although the proto-
typed Constrained GUI Editor supports a limited functionality, it significantly reduces
not only the tweaking operations on the final generated code but also the designer's
effort to cover the unsupported requirements. As future work, a more extended con-
strained GUI Editor will be developed and an empirical validation of the proposed
modifications in OO-Method will be analyzed. This analysis will involve two aspects:
the improvements on the whole production process after the adoption of the new tool
and the benefits of its use in terms of final user satisfaction and UI usability.

Acknowledgements. This work has been developed with the support of MEC under
the project DESTINO TIN2004-03534 and co-financed by FEDER. We also ac-
knowledge the support of the SIMILAR European network of excellence on multimo-
dal interfaces (FP6-IST1-2003-507609 - www.similar.cc). The authors would like to
also thank Emilio Iborra, Ismael Torres, José Maria Cubel, and Quentin Limbourg for
their valuable input in this work.

References

1. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability Evaluation of User Interfaces Gener-
ated with a Model-Driven Architecture Tool. Chapter 2. In: Law, E., Hvannberg, E., Cock-
ton, G. (eds.) Maturing Usability: Quality in Software, Interaction and Value. HCI Series,
Springer, Berlin (2007)

2. Antkiewicz, M.: Round-Trip Engineering of Framework-Based Software using Frame-
work-Specific Modeling Languages. In: Proc. of ASE’2006 (2006)

3. Clerckx, T., Luyten, K., Coninx, K.: The Mapping Problem Back and Forth: Customizing
Dynamic Models while preserving Consistency. In: Proc. of TAMODIA’2004, Prague,
November 15-16, 2004. ACM Int. Series, vol. 86, pp. 33–42. ACM Press, New York
(2004)

4. da Silva, P.P.: User Interface Declarative Models and Development Environments: A Sur-
vey. In: Palanque, P., Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 207–226.
Springer, Heidelberg (2001)

5. Genova V8.0, Esito AS, Lysaker (2006), http://www.genera.no/default.htm
6. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J.B., Gray, P.D., Cooper,

R., Goble, C.A., da Silva, P.P.: Teallach: a Model-Based User Interface Development En-
vironment for Object Databases. Interacting with Computers 14(1), 31–68 (2001)

7. Hall, A., Chapman, R.: Correctness by Construction: Developing a Commercial Secure
System. IEEE Software 19(1), 18–25 (2002)

8. Igarashi, T., Matsuoka, S., Kawachiya, S., Tanaka, H.: Interactive Beautification: a Tech-
nique for Rapid Geometric Design. In: UIST’97. Proc. of the 10th Annual ACM Sympo-
sium on User Interface Software and Technology, pp. 105–114. ACM Press, New York
(1997)

9. JaxFront, XCentric Technology & Consulting GmbH, Zurich (2006), http://www.jaxfront.
org/pages/

10. Model-Driven Architecture Guide, Version 1.0.1, Object Management Group (December
2006), http://www.omg.org/docs/omg/03-06-01.pdf

11. Molina, P.J., Meliá, S., Pastor, O.: Just-ui: A User Interface Specification Model. In: CA-
DUI’2002. Proc. of 4th Int. Conf. on Computer-Aided Design of User Interfaces, Valen-
ciennes, May 2002, pp. 63–74. Kluwer Academic Press, Dordrecht (2002)

 The Beautification Process in Model-Driven Engineering of User Interfaces 425

12. Myers, B., Hudson, S.E., Pausch, R.: Past, Present, and Future of User Interface Software
Tools. ACM Trans. Computer-Human Interaction 7(1), 3–28 (2000)

13. Nielsen, J.: A Virtual Protocol Model for Computer-Human Interaction. International
Journal of Man-Machine Studies 24(3), 301–312 (1986)

14. Nunes, N.J., Falcao e Cunha, J.: Wisdom - A UML-Based Architecture for Interactive Sys-
tems. In: Palanque, P., Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 191–205.
Springer, Heidelberg (2001)

15. OlivaNova Software, Care Technologies, Denia (December 2006), http://www.care-t.com
16. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for Informa-

tion Systems Modeling: from Object-oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26(7), 507–534 (2001)

17. Pavlidis, T., Van Wyk, C.J.V.: An Automatic Beautifier for Drawings and Illustrations.
Computer Graphics 19(3), 225–234 (1985)

18. Puerta, A.R.: A Model-Based Interface Development Environment. IEEE Software 14(4),
40–47 (1997)

19. Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A.: Beyond Data Models for Auto-
mated User Interface Generation. In: Proc. of HCI’94, Glasgow, September 1994, pp.
353–366. Cambridge University Press, New York (2004)

20. Sendall, S., Küster, J.: Taming Model Round-Trip Engineering. In: MDSD’2004. Proc. of
Workshop ’Best Practices for Model-Driven Software Development’, Vancouver (October
2004)

21. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

	The Beautification Process in Model-Driven Engineering of User Interfaces
	Introduction
	State of the Art
	Model-Driven Engineering of User Interfaces in the OO-Method
	The Beautification Process
	Purpose of Beautification Operations
	Classification of Beautification Operations
	Definition of a Beautification Operation
	The Steps of the Beautification Process
	The Parameters, the Templates and the User Interface Model

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

