UNIVERSITE CATHOLIQUE DE LOUVAIN
FACULTE DES SCIENCES ECONOMIQUES, SOCIALES et POIQUES

INSTITUT D’ADMINISTRATION ET DE GESTION

S,
>
LOUVAIN

School of Management

T\

/

Development of a user interface generator
for a workflow information system

Mémoire présenté en vue

de I'obtention du grade
Supervisor : Prof. Jean Vanderdonckt de Maitre
Unité de Systemes d’'Information en Informatique

par: Miguel Moreno Roldan

Louvain-la-Neuve
Année académique 2008-2009

Acknowledgement

I would like to extend my thanks to Jean Vanderkipeny supervisor,
for his support, direction and invaluable advice.

For accepting to mentor my thesis, | would likethank Josefina
Guerrero and Christophe Lemaigre as well as Juamiv Gonzéalez
and Francisco Javier Martinez, for their continuisgpport.

Furthermore, | would like to mention Defimedia canmp (of the
IMmedia group) with a special note of appreciatitsn Luc, Benoit,
Renaud, Grégory and Olivier as without their sugpand patience,
this thesis would not have been possible.

To all those who | have met during my stay in Refgiin particular
those who are close, | am very grateful for youremagement.

My Mum, Dad and sister whose loving support gavecmegage and
strength.

To all | say thank you.

Table of contents

Chapter 1 I ntroduction 9
11 Thesis context 10
1.1.1 Workflow 10
1.1.2 User interfaces 11
12 Objectives 13
13 Reading map 13
Chapter 2 State of the art 16
2.1 Wor kflow 17
2.1.1 Workflow models 17
2.1.1.1 Activity diagrams 17
2.1.1.2 Data flow diagrams 19
2.1.2 Workflow notations 21
2.1.2.1 UML State charts 21
2.1.2.2 Petri nets 22
2.1.2.3 YAWL 24
2.1.2.4 BPMN 26
2.1.25 BPEL 28
2.2 Wor kflow tools 29
2.2.1 Commercial software 30
22.1.1 Staffware 30
2.2.1.2 Websphere MQ Workflow 31
2.2.1.3 The Progression Model 31
22.14 Microsoft Windows Workflow Foundation 33
2.2.15 Flexo business 34
2.2.1.6 Business Process Visual Architect 36
2.2.2 IMmedia S.A. Atoms 36
2.2.3 FlowiXML Workflow editor 37
Chapter 3 eXtensible Mark-up Languages for User | nterface Definitions 40
31 Introduction to XML 41
32 User Interface Description Languages based on XML 42
3.21 XIML 42
3.2.2 UIML 42
3.2.3 XUL 43
3.2.4 AUIML 43
3.2.5 UsiXML 43
3.2.6 User Interfaces definition in IMmedia S.A. Atoms 44
3.3 XML transformations 44
3.3.1 XSLT Stylesheet Language 44
3.3.2 Transforming XML with Java 45
3.3.21 SAX 46
3.3.2.2 DOM 46
3.3.2.3 JAXP 47
3.3.3 Composition of our solution 47
Chapter 4 Development of a user interface generator for a workflow information
system 438
4.1 Overview of the global approach 49
4.2 Workflow resource patterns 50
4.2.1 Creation patterns 51

4211 Direct allocation 52
42.1.2 Deferred allocation 52
4.2.1.3 Authorization based 53
4.2.1.4 Separation of duties 54
4.2.1.5 Case handling 54
4.2.1.6 Retain familiar 55
4.2.1.7 Capability-based allocation 56
4.2.1.8 History-based allocation 56
4.2.1.9 Hierarchy level based 57
4.2.2 Push patterns 57
4.2.2.1 Distribution by offer single-resource 58
4.2.2.2 Distribution by offer multiple-resources 58
4.2.2.3 Distribution by allocation single-resource 59
4224 Random allocation 59
4225 Round robin allocation 60
4.2.2.6 Shortest queue 61
4.2.2.7 Early distribution 61
4.2.2.8 Distribution on enablement 62
4.2.2.9 Late distribution 62
4.2.3 Pull patterns 63
4231 Resource-initiated allocation 63
4.2.3.2 Resource-initiated execution-allocated task 64
4.2.3.3 Resource-initiated execution-offered task 64
4.2.3.4 System determined agenda content 65
4.2.3.5 Resource determined agenda content 65
4.2.3.6 Selection autonomy 66
4.2.4 Detour patterns 66
4.2.4.1 Delegation 66
4.2.4.2 Escalation 67
4.2.4.3 Deallocation 68
4.2.4.4 Stateful reallocation 68
4245 Stateless reallocation 69
4.2.46 Suspension /resumption 70
4.2.4.7 Skip 70
4.2.4.8 Redo 71
4.2.4.9 Pre-Do 72
4.2.5 Auto-start patterns 72
4251 Commencement on creation 73
4.25.2 Commencement on allocation 73
4,253 Piled execution 74
4254 Chained execution 74
4.3 XSL transformationsfrom Petri netsto State charts 75
4.3.1 Output from FlowiXML workflow editor 75
4.3.1.1 processModel 75
43.1.2 taskModel 76
4.3.1.3 mappingModel 77
43.1.4 workflowModel 78
4.3.2 XML workflow definition of IMmedia Atoms 79
4.3.3 XSL transformation 80
4331 Petri nets to state charts 80
4.3.3.2 Patterns representation 82
4.3.3.3 User interfaces 84
Chapter 5 Case studies 86
51 Case study 1 - Simplified buying request 87
52 Case study 2 - Complete buying request 20
Chapter 6 Conclusion 93

6.1 Contribution

6.2 Futurework

References

Annex. Attached content

94
94
95
98

Table of figures

Figure 1-1 An example of a workflow process

experience of the Readers

Figure 2-1 Activity diagram example

Figure 2-4 An example of UML State charts diagram

Figure 2-8 Graphical Workflow Definer of Staffware

Figure 2-9 Buildtime user interface

Figure 2-12 The Visual Studio 2005 Workflow designe

Figure 2-14 The workflow modeller

Figure 2-15 Layout of user graphical interfacescdi

Figure 2-16 User interface of BP-VA

Figure 2-17 A screenshot of the Atoms workflow edit

Figure 2-19 The main user interface

Figure 2-20 Workflow editor user interface

in a HTML webpage

file definition (Figure 3-1)

Figure 4-1 Task represented in FlowiXML workflowited

Figure 4-4 Creation patterns

Figure 4-5 Push patterns

Figure 4-6 Pull patterns

Figure 4-7 Detour patterns

Figure 4-8 Auto-start patterns

Figure 4-9 Task with a direct allocation patterplags

Figure 4-11 Possible solution to AND-split problem

Figure 4-13 Reallocation patterns definition

Figure 4-14 Skip pattern definition

Figure 4-15 Redo pattern definition

Figure 4-16 Direct allocation pattern definition

Figure 4-17 User interface to select a resource

Figure 4-18 Reallocation patterns transformation

Figure 4-19 Skip pattern transformation

Figure 4-20 Redo pattern transformation

Figure 4-21 Direct allocation patterns transformati

Figure 5-3 Use interface of the select resourctepatask

10
Figure 1-2 User interface of MS Office 2007, easymderstand and to use 1 1
Figure 1-3 An example of a bad user interface, rmaldsigned thinking in a hardware expert,
but to provide software like this to the end ussnsot good 2 1
Figure 1-4 Graphical representation of the mair gbthis thesis 13
Figure 1-5 Graphical representation of the readiag of this thesis, divided by different levels of
15
18
Figure 2-2 Example of how to use the Yourdon & Coatition for data flow diagrams 20
Figure 2-3 The nesting of data flow layers in Yand Coad notation 20
22
Figure 2-5 Petri net modelling the simplified wddd of a waiter in a café 23
Figure 2-6 A Segment of a Process with Data Ohjé&xtsups, and Annotations 28
Figure 2-7 Example BPEL process for travel arrargygsh 29
30
31
Figure 2-10 The progression analyzer displayingihter Name scene 33
34
Figure 2-13 An interior view of the OrderCreated&vEventDriven activity 34
35
35
36
37
Figure 2-18 A screenshot of the FlowiXML workflowditor 38
38
39
Figure 3-1 An example of a bookstore definitiomiXML file 41
Figure 3-2 An example of XSLT stylesheet to trangfohe last XML file definition (Figure 3-1)
45
Figure 3-3 The output obtained after apply our XSityilesheet (Figure 3-2) to the last XML
45
49
Figure 4-2 Direct allocation workflow resource patt represented in terms of petri nets 49
Figure 4-3 Petri nets process transformed int@ stharts in Atoms 9 4
52
58
63
66
72
81
Figure 4-10 Representation of a task with direlctcaltion pattern applied 81
82
Figure 4-12 Conflictive process transformation whaerAND-split is found 82
83
83
83
84
84
84
85
85
85
Figure 5-1 Process of a simplified buying requestn online shop 7 8
Figure 5-2 Simplified buying request process tramsid to state charts in Atoms 88
9 8
Figure 5-4 Process of a complete buying requestdompany 91
Figure 5-5 Complete buying request process tramefdrin state charts in Atoms 2 9

Table of tables

Table 2-1 Activity diagrams syntax

18

Table 2-2 Data flow diagrams syntax

Table 2-3 UML State charts notation

19
21

Table 2-4 Petri nets notation

23

Table 2-5 YAWL notation

Table 2-6 BPMN syntax notation

Table 4-1 Template to define workflow patterns

26
28
50

Table 4-2 Summary of the workflow resource pattemalysis

51

Table 4-3 Direct allocation analysis

52

Table 4-4 Deferred allocation analysis

53

Table 4-5 Authorization pattern analysis

53

Table 4-6 Separation of duties pattern analysis

54

Table 4-7 Case handling pattern analysis

55

Table 4-8 Retain familiar pattern analysis

55

Table 4-9 Capability-based allocation pattern asialy

56

Table 4-10 History-based allocation pattern analysi

57

Table 4-11 Hierarchy level based pattern analysis

57

Table 4-12 Distribution by offer single resourcétgan analysis

Table 4-13 Distribution by offer multiple resoungattern analysis

Table 4-14 Distribution by allocation single resmeipattern analysis

Table 4-15 Random allocation pattern analysis

60

Table 4-16 Round robin allocation pattern analysis

60

Table 4-17 Shortest queue pattern analysis

61

Table 4-18 Early distribution pattern analysis

61

Table 4-19 Distribution on enablement pattern agialy

62

Table 4-20 Late distribution pattern analysis

62

Table 4-21 Resource-initiated allocation patteralysis

63

Table 4-22 Resource-initiated execution-allocasstk pattern analysis

Table 4-23 Resource-initiated execution-offered fzegtern analysis

Table 4-24 System determined agenda content pattelysis

65

Table 4-25 Resource determined agenda contentipattelysis

65

Table 4-26 Selection autonomy pattern analysis

66

Table 4-27 Delegation pattern analysis

67

Table 4-28 Escalation pattern analysis

68

Table 4-29 Deallocation pattern analysis

68

Table 4-30 Stateful reallocation pattern analysis

69

Table 4-31 Stateless reallocation pattern analysis

69

Table 4-32 Suspension/resumption pattern analysis

70

Table 4-33 Skip pattern analysis

71

Table 4-34 Redo pattern analysis

71

Table 4-35 Pre-do pattern analysis

72

Table 4-36 Commencement on creation pattern aisalysi

73

Table 4-37 Commencement on allocation pattern aisly

73

Table 4-38 Piled execution pattern analysis

74

Table 4-39 Chained execution pattern analysis

74

Table 4- 40 Summary of the relations between obffeat FlowiXML workflow editor and Atoms

81

Chapter 1

Introduction

Nowadays, everyone interacts with personal computeeryday. We
use it to work, to enjoy, to look for any kind aformation... The
computers are no longer electrical appliances ceeaexclusively for
experts like in its beginning, everyone can becangood user. We
have to give thanks to user interfaces, which elaryimproves its
usability and accessibility.

In the Business World, the great majority of entisgraises a certain
volume of needs, which must be satisfied with stpgfocomputer
application to run all processes right and with goperformance. In
these enterprises, the users do not need to bewtorgexperts.

The automatic generation of user interfaces thatlifates the design
of these work processes is the goal we are goirgltivess here.

In this chapter, we start to explain the basics agpts, in a thesis
context. Afterwards, we explain the objective effiast explanation.

1.1 Thesis context

1.1.1 Workflow

In the Middle Ages, the monks were copying cargfiiie documents that were written in
planks. The Father Superior was doing the assigtar@nthe work, maybe giving the first
page of a section to the most expert artist, if thek was required a perfect performance,
maybe giving it to the first one he was findingtekf he was doing the assignments of the
tasks to be corrected to the top learned.

A few changes have happened in the next centurieany work, the supervisors assign the
work, maybe basing their decisions on the trainaiglities and experiences, to the resources.
At the beginning, the resources were only the hub®ng, helped possibly by the tools like
typewriters or calculators.

Nowadays, the resources are anything that can oatrg task. Any kind of machine can be a
resource which can receive a request to perforaslg and an information system is the one
that sends it the request. These kinds of infolwnasystems are the Workflow Management
Systems. Helped by a system like this, the resptensi a concrete work process can monitor
it, knowing how the process is being executed akhty decisions if he thinks there is any
kind of problem, like the lack of time or an incseaof the cost of the performance.

For example, we can imagine the process to folldwmwwe buy something in an online shop.
Figure 1-1 is a good generic example of how wedmathat, starting visiting the online shop
and adding some goods to our shopping basket. vidtels, the online shop asks us for our
user identifier and password and invites us tostegiif we do not have registered before.
Once we have been registered at the online shopcamecheckout to place the order
definitively. Until last step, the costumer havebédhe only resource to carry out all the tasks
to do, but now, the workers of the shop’s warehaita#d to prepare the order. And when the
order is ready to be shipped, maybe the worketiseoflelivery department are the responsible
to send the goods to the costumer. During the gsyaee could monitor how many orders are
waiting for be prepared or how many orders areyéadbe shipped.

Visitanonline | | Add goods to our
shopping basket

shop

Way to follow if the user is
already registered

Confirm
registration

Are you

registered? Checkout [> Prepare the order

Way to follow to user
registration

Insert payment L | Insertpersonal

information information Send goods

Figure 1-1 An example of a wor kflow process

10

1.1.2 User interfaces

The user interface of an application is the haréveard software elements of a computer that
present the information to the user and allows tonmteract with the information and the
computer.

Each step (or task) in a workflow has its own us&rface. The website of the shop where
we were buying (Figure 1-1) is the way with whitlnteracts with us. Maybe, the main page
of the website would show us the bestsellers prisdaicd the checkout page would show us
the content of our shopping basket and the totalsrmincluding shipping costs. They would
be the different user interfaces for these twoedéht tasks.

(r L) rAER, Document] - Microsoft Word 2] G il

Heme | Inset Pagelajout Referencas. Mailings Review. View Lo

Cal A - B o | | e s e i [| ¥ 4 A 3 Replace
Catibirt (Bady) u A W] s [L] | s aencene] asmbeene AaBbC: aaBbee. AAB "N v :Gcm
B LU -k x, w MR (- A - IR R B2 D

Paste 9 Normal 1Ko S ing 1 Hi g Tids — - Change Find
s F Format painter H: mal o Spai. eading 1 eading 2 e = *;.'rs?‘ Lp Selert =

CHpboard [Font fe Faragraph iz Styfes ¥ Editing

L

Figure 1-2 User interface of M S Office 2007, easy to under stand and to use

The most popular software applications have implpvwelease after release, their user
interfaces according with the new technologies tygtear nowadays to obtain the users
approval and to become more and more popular y®tioOsly, the user interfaces are not the
only determining factor in the way to reach therigsapproval, but it is the first one which
the user will interact with, the user first impness Figure 1-2 show us the user interface of
the most popular word processing software.

An application can be very well-designed and it ganerate a big set of useful results. If its
user interface is well-designed too, the user @btlain a satisfactory experience after using it.
In the other hand, if the user interface is notladebigned, the interaction with this
application can be an unfulfilling experience bessaanyone will not be able to adapt oneself
to this application. The useful results can nobb&ined by the users. See Figure 1-3 like an
example of a bad user interface.

11

CONTROL BOX SETTINGS - ¥3.22 ElEE

PARAMETERS SET

PWM:period 272 ms W P ;ﬁ:ﬂm

PWM:max.duty 277 % cmd W [V OPTIVEZE =

PWM:min.duty T [~ ROT CHECK

PWM:ramp e — o g

Lower Limit 7?7 ° Abs{0.500) o -swnmhj"”‘

Upper Limit 777 ° Abs{0-500) ® ;

Rev. Delay 777 sec :’:r:::

Preset Delay 77? sec Offset [-70°.#470°%) 7?2772 * | ———

Rot. Timeout 7?? sec Check angle 205 2??2.727

PARAMETERS READ GOTO

PWM:period 72?7 Offset e

PWM:max.duty 777 Optimize 7

PWM:min.duty 77?7 PWMis 77

PWM:ramp 72?7 Position e

Lower Limit 7?7 CBOXis [£44

Upper Limit ??7? Cal.Fact FPITT

Rev. Delay 77?7 Rot.Chk T

Preset Delay ?72? Chk Angle 727?

Rot. Timeout [e

Mode FERIIIII?

DIP-SW P o o Soft STOP

COMMUNICATION MONTCR e

. START.. Position 7?7 F1 2

: i 279 CLR REPLES r3 4

CBOX replies CBOXis *7"
cmd S
cmd M
cmd ?

Figure 1-3 An example of a bad user interface, maybe designed thinking in a hardwar e expert, but to
provide software like thisto the end usersis not good [BuiGO08]

At this point, we can differentiate between twofehiént kinds of user interfaces, in terms of
design:

1. Bad user interfaces. The user can not understand entirely the optibas the
application offers. Some buttons have not a comaate related with the function
it does, some menus are too much big and they iodimia many options, there are
too many text boxes to fill labelled with very caatdt names, etc (see Figure 1-3).

2. Well-designed user interfaces: The user interface is easy to understand anddo u
and the user has obtained a satisfactory expergfteeusing it (see Figure 1-2).

Each application needs to have defined a userfacirIn some applications, which need a
set of data, maybe divided in some steps like & workflow management systems, it is
possible to generate the user interfaces autorfigticaaking easier the design of the
application. With automation like this, every usmEuld define these applications without
considering the user interface definition and withprogramming skills.

In this thesis, we will focus only on user intedacwhich will allow us to allocate every task
of the process to the available resources, in &fleov information system, automating their
generation since a low-level definition of them.eféd are already defined the patterns that
covers the whole set of cases. For each pattesre tis defined too a user interface
proposition, easy to understand and to use. Youindrthese definitions in Chapter 4, where
we show the solution we have found for each case.

12

1.2 Objectives

The main goal of this thesis is to generate autmalét the allocation tasks user interfaces of
a workflow management system, directly derivatednfthe workflow definition information.

Specifically, we are going to transform the dataaforkflow editor which works with Petri
nets notation into the data specification of anotherkflow editor, called Atoms from the
Defimedia company, which works with State chartgation and another user interface
definition. During this transformation, we will gerate the necessary user interfaces to assign
each task, depending on the pattern defined itetflecreation.

Workflow
definition
User interface

Automatic generation

Workflow
Patterns

Figure 1-4 Graphical representation of the main goal of thisthesis

Deriving from the main motivation of this thesigjdabeing necessary to reach this user
interfaces automatic generation, the main steptharéollowed ones:

» Familiarize me with the propositions of user inded definition in XML, especially in
UsiXML.

» Familiarize me with how to represent workflow preses, especially in the
FlowiXML workflow editor and in the Atoms softwafeom IMmedia S.A.

= Study the workflow resource patterns, defined swteallocation case.

= Study the different notations to define a workflosgpecially UML State charts and
Petri nets.

= Study the alternatives of XML transformations apglg my knowledge in a real case,
transforming a workflow defined in Petri nets istepecial UML State charts one.

= Study how to generate automatically a user interfeaking the appropriate decisions,
depending on different cases defined by the wovkfiesource patterns.

1.3 Reading map
The remainder of this thesis is structured as lo

In chapter 1, the introduction, we introduce soraeessary concepts that we will use in the
next pages. The most important ones are the wavidlod user interface concepts. Moreover,
we define the main objectives of this thesis amohtive show how it is organized.

In chapter 2, the state of the art, we introduae lighest level of knowledge about some
technologies we are going to use, they have attlireslation with the ones we are going to
use or simply they could be alternatives. Spedlficave will introduce the workflow models
and notations, the commercial workflow managemgsiiesns at present and the two ones we
will use in the development, and the user inteddoe workflow management systems.

13

In chapter 3, XML user interface definitions, wéraduce the eXtensible Mark-up Language
(XML) first. Afterwards, we show what different ophs we can use to read and transform
this language. In the end, we introduce some XMimglant mark-up languages to describe
user interfaces for multiple context of use, goingp UsiXML, the one we use in the
development, in depth.

In chapter 4, the development, we start with amoge of the goal of this thesis, to show
after all the workflow resource patterns, explagniwwhat user interface we have found to
transform it in the target application. Afterwardge will show the output of the source
workflow editor, explaining how it stores the infioation, and then the input we have to
generate to be read by the target application.lligjnge will show how the transformation is
done.

In chapter 5, the case studies, we explain howtrtresformation is done in two examples,
one very simple explained in full detail, and amotmore extended with less details.

In chapter 6, the conclusions, we will start explag what contributions has been made by
this thesis, to propose after some future work stildo which could bring this problem to
new frontiers of solution.

The reader can skip some chapters or sectionsdiegoon his experience. Figure 1-5 can
help to decide how to read this thesis.

14

XML Expert

Workflow Expert

User Interfaces Expert

1. Introduction

2. State of the art

3. eXtensible Mark-up Languag

)€

s for User Interfaces Definition

4. Development of a

user interface generator for a workflo

W

information system

5. Case studies

6. Conclusions

Figure 1-5 Graphical representation of thereading map of thisthesis, divided by different levels of

experience of thereaders

Chapter 2

State of the art

The former chapter has already introduced the wovkf workflow

management system and user interface conceptidmchiapter, we are
going to introduce the highest level of knowleddgeows some
technologies we are going to use, they have a ttireelation with the

ones we are going to use or simply they could teeradtives.

We start with a deeply workflow introduction (deeplean in the
former chapter), introducing the most importantidefi models and
notations. After, we will explain how are the apptions we are going
to work with, Atoms from Defimedia company and EhewiXML
workflow editor [LemaOQ7]. A brief introduction obmmercial software
is accessible at the end of the workflow toolsisedbo.

16

2.1 Workflow

The Workflow Management Coalition [WfMC99] definése workflow concept likéthe
automation of a business process, in whole or ghrting which documents, information or
tasks are passed from one participant to anothea@tion, according to a set of procedural
rules”.

The essential workflow characteristics are: tasksa(tivities) that are performed by role-
playing persons, using supporting tools that gigeeas to a variety of shared information
resources [Mars97].

Workflow technologies facilitate modelling, redesigg and administration of process in an
organization [EichO4]. Due to the importance of kitmw nowadays, several models have
been proposed to design and specify it. In additimrkflow patterns have been identified to
enrich this specification by introducing resourgepresentation like workflow resources
patterns, and for routing workflow constructiorielworkflow patterns [vand03].

2.1.1 Workflow models

In this section, we will briefly introduce some natsl that can be used to represent a
workflow. There are many different types of workflonodels: activity diagrams, data flow
diagrams, function chaining graphs, etc.

We will detail activity diagram and data flow diagn in depth because they are two
important models we need to know to understand W$kéke charts and Petri nets.

2.1.1.1 Activity diagrams

The UML provides two different kinds of state mawhiformalisms: activity diagrams and
state charts. They differ in the kinds of situati®a which they are applied. Activity diagrams
are appropriate when the object or operation chestge primarily upon completion of the
activities executed within the state rather thanatynchronous occurrence of events. We will
talk about state charts in the next section (2L1V2orkflow notations).

An activity diagram is used to display the sequenteactivities. Activity diagrams are

appropriate for showing workflows of activities aadtions, from a start point to the finish
point, with support for choice, iteration and comency, and detailing the many decision
paths that exist in the progression of events coathin the activity. They may be used to
detail situations where parallel processing mayuodn the execution of some activities.
Activity diagrams are useful for business modellingere they are used for detailing the
processes involved in business activities. It shihesoverall flow of control.

To design an activity diagram we have to use the syntax definition (see Table 2-1).

Notation Definition Graphical representation
Initial Activity | This shows the starting point or first

activity of the flow. Denoted by a solid

circle.
Activity Represented by a rectangle with rounded or

17

Activity

Decisions A logic where a decision is to be made is
depicted by a diamond, with the options
written on either sides of the arrows
emerging from the diamond, within box
brackets.

Signal When an activity sends or receives| a

message, that activity is called a signal. P
Signals are of two types: Input signal Signal
(Message receiving activity) shown by| a
concave polygon and Output signal Output>
(Message sending activity) shown by| a Signal
convex polygon. -

Concurrent Some activities occur simultaneously or|in

Activities parallel. Such activities are called l’
concurrent activities. This is represented| by

a horizontal split and the two concurrent

activities next to each other, and 1 [isten Read

horizontal line again to show the end of 1h -

parallel activity.

Final Activity The end of the activity diagram is shown

by an “eye symbol”, also called as a final
activity.

Table 2-1 Activity diagrams syntax

An example about the enrolment in a university gsantivity diagrams notations is defined
as follows (see Figure 2-1).

[otherwise] Enralling in the
Univermsity for the first
[incorrect] [help available] e
Fill Qut Enroliment - Obtain Help to Fill AD # 007
Farrns [trivial Out Forms
problems]

[correct]

—
Attend University

Enroll in University Overview
Fresentation

Enrall In Serminar(s Make Initial Tuition
Fayment

Figure 2-1 Activity diagram example [Agil08]

18

2.1.1.2 Data flow diagrams

Data flow diagrams were invented by Larry Constantfborn in 1943), who is considered
one of the pioneers of computing and the origiradetoper of structured design.

In the late 1970s data flow diagrams were introdueyed popularized for structured analysis
and design. Data flow diagrams show the flow ohdabm external entities into the system,
showed how the data moved from one process to anath well as its logical storage.

There are two different types of notations to defitata flow diagrams: Yourdon & Coad or
Gane & Sarson (see Table 2-2).

Graphical representation
Notation | Description Yourdon & Coad | Gane& Sarson

Process A process take data as input,

do
something to it, and output it. ‘ / N
Information
W Process

N

DataStore | Datastores are repositories of datg in
the system such as databases or XML
files and physical stores such as filing
cabinets or stacks of paper.

1 datastore

Dataflow | Dataflows are pipelines through
which packets of information flow.
They can either be electronic data|or
physical items.

External | External entities are objects outside
Entity the system, with which the system
communicates. External entities are
sources or destinations of the system's
inputs and outputs.

External External Entity

Entity

Table 2-2 Data flow diagrams syntax

Now, we can see an example of how to use the YougdGoad notation (see Figure 2-2).

19

"
,
1 !
Verify |
S i |
_/'{ \ [_J_r. edit i
reject order e o mErd S
g o S e
- -
’ #
e - process arder
- 7arder
o -
- —
e ",
-,
Customer e . 1
/ \
.
— 1 ship M
T e-rmail confirmation | F
| Y Items kY
| \ ™, A i
| 1 e ~ Y
| | — \
\ W record transaction
Y [
"'._“ '__ |
, S, Supply account /
h,] i o~ T r
", nformation - . Iy
, h ,
\ . ; 1 \,f’
’ L f i
" ‘-H-\- I
—— Mainta l—p
- | -
__ v Customer
- ,

Customer
|

. . ACCoUn
Change acoount

Account Info
-
Alformation

Figure 2-2 Example of how to usethe Yourdon & Coad notation for data flow diagrams

A single process node on a high level diagram eaexpanded to show a more detailed data
flow diagram in nested layers (see Figure 2-3).

Context Diagram

| process 0
L/
. P

Level 1 DFD
| L process 1
LA
e -:'!"\
I'-\ _/' I'_ :
process 2
- - Level 2 DFD e
. } -
| |\ process 1.1 | process 2.1
e e ‘,‘ N A
AN N ¥
AR,
process 1.2

Figure 2-3 The nesting of data flow layersin Yourdon & Coad notation

20

2.1.2 Workflow notations

In this section, we are going to introduce the nmpugiular workflow notations, UML State
charts and Petri nets. UML State charts represstdta machine and Petri nets are a tool for
modelling and analyzing processes. Both can despribcesses in a graphical way.

2.1.2.1 UML Statecharts
In section 2.1.1.1 we have introduced a kind ofestaachine representation that UML
provides, the Activity diagrams. In the other hastite charts are used when the transition
from state to state takes place primarily when waene of interest occurs and is more
commonly used.

UML State charts were introduced by David Harelot@rcome the shortcomings of prior
state machine representations by adding hierarotyycurrency and communication. State
charts were adopted as a behavioural diagram witMh specification.

State charts consist of three primary things: statansitions, and actions.

1. States. Statesare distinguishable conditions of existence thasipefor a significant
period of time.

2. Transitions. Transitions are the means by which objects chatafes in respond to
events.

3. Actions. State machines also execute actions (atomic bealrayiat various points in
a state machine, such as when an event triggeamsitton, when a state is entered or
when a state is exited.

Notation Definition Graphical representation

State A state marks a mode of the entity. The

graphical representation is a rectangle with stat
rounded corners and the name of the state ae

Transition A transition marks the changing of the object
state, caused by an event. The representation ——————)
is an arrow with the Event Name.

Initial state | The initial state is the state of an object before
any transitions; it is marked using a sqlid
circle. Only one initial state is allowed on| a ‘
diagram.
Final state The final states mark the destruction of the
object whose state we are modeling. The final
state is drawn using a solid circle with| a @
surrounding circle.
Table 2-3 UML State chartsnotation

Now, we can see an example of a process defindilin State charts terms (see Figure 2-4).

21

°

Save order

Saved

Submit order

Delete

order
Placed |
Cancel
order
Payment

Charge customer

cancelled

Cancel
Charged order

Error: Not Ship order

Error: Shipped A

Lost in
shipping Shipped Cancelled

Deliver order

A

Figure 2-4 An example of UML State chartsdiagram

Figure 2-4 shows the different states of a curoeriine order and its transitions. The order
starts in the Saved state and arrive at the Deld/state is its goal. During this way to reach
the goal, the payment could be cancelled or sonoesecould happen, sending back the actual
state to previous states; and in some statespibssible to cancel the order, preventing the
order reaching its goal.

2.1.2.2 Petri nets

Petri nets, introduced by Carl Adam Petri [Carl6®fovide an elegant and useful
mathematical formalism for modelling concurrentteyss and their behaviours. Petri nets are
graphical and mathematical modelling tools. As a@pbical tool, Petri nets can be used as a
visual-communication aid. As a mathematical toblisipossible to set up state equations,
algebraic equations, and other mathematical mogels&erning the behaviour of systems
[Mura89].

22

The graphical representation Petri net is a ditebipartite graph with two kinds of nodes:
places and transitions [vand98].

1. Places, which are usually model resources or partiaestdthe system.

2. Transitions, which are model state transitions and synchraoiozs.

The nodes are connected via directed arcs andatlagys connect nodes of different types.
The state of the system is modelled by markingpllages with tokens and a place can be
marked with a finite number (possibly zero) of toke

Notation Definition Graphical representation
Transition | Transitions are the active components of a

Petri net. The triggering of a transition
results in the state of the network being

changed.
Arc Places and transitions can be linked using

directed arc. —
Token The state of a Petri net is determined| by

the distribution of tokens amongst the

places.
Place Places are the passive components of a

Petri net. A place may contain none, one
or more tokens.

Table 2-4 Petri nets notation

Now, we can see an example of a process definBdtimnets terms (see Figure 2-5).

order_donut

®_> p2 serve_donut p4 4»@

pi accept_order handle_payment p6

p3 serve_coffee ps

serve_tea
Figure 2-5 Petri net modelling the ssimplified wor kflow of a waiter in a cafe [vand01]

23

Figure 2-5 represents the work, but simplifiedt thavaiter has to do in a cafe. After accept
an order, the token will wait in p2 and p3 to de tiext task, serve a coffee, a tea or a donut.
Then it will rest in p5, in case of serve a cofte¢ea, or p4, in case of serve a donut.

Using the classical Petri net notation, it is pbkesito model states, events, conditions,
synchronization, parallelism, choice, and iteratibmthe other hand, classical Petri net does
not allow the modelling of data and time. To sotlilese problems, some extensions have
been proposed: the extension with color to modéh,ddne extension with time, and the

extension with hierarchy to structure large modeks three well-known extensions of the

basic Petri net model. A Petri net extended witlsombination of the three extensions

mentioned is called a high-level Petri net [Guer06]

1. Extension with color. Tokens often represent objects (cases) in theemsyslf we
want to represent attributes that are not easjyesented by a token in a classical
Petri net, the net model is extended with colora keolored Petri net each token has a
value often referred to as ‘color’. Transitions etatine the values of the produced
tokens on the basis of the values of the consumleehs. For example, a transition
describes the relation between the values of tpatitokens and the values of the
output tokens.

2. Extension with time. Often for real systems, it is important to deserthe temporal
behaviour of the system. Since the classical nebtisapable of handling quantitative
time, a timing concept is added. There are manysvtayntroduce time into the Petri
net. Time can be associated to tokens, places ramdnhsitions.

3. Extension with hierarchy. In order to avoid the tendency to large and cempl
specifications for real systems, a hierarchy cowstrcalled subnet is provided. A
subnet is an aggregate of a number of places,iticass and subsystems. These
hierarchies can be used to structure large prosedsethe first level a simple
description of the process is given, and at thet mexels another more detailed
behaviours are given.

2.1.2.3 YAWL

YAWL (Yet Another Workflow Language) is a workflokanguage designed and defined
specifically to accomplish the Workflow patternsa05]. The language is supported by a
software system that includes an execution engirggaphical editor and a worklist handler.
The system is available as an Open source softwater the LGPL license [Wiki09].

The language and its supporting system were otlgindeveloped by researchers at
Eindhoven University of Technology and Queenslandvérsity of Technology.

As we have mentioned before, YAWL was born becaoké¢he necessity to define a
workflow language that would support the Workflowtferns and that would have a formal
semantics. Petri nets was taken as a starting damto it came close to supporting most of
this patterns and it was extended with three mansttucts, namely or-join, cancellation sets,
and multi-instance activities. These three concepts aimed at supporting five of the
Workflow Patterns that were not directly supporiedPetri nets, namely synchronizing
merge, discriminator, N-out-of-M join, multiple ita;ce with no a priori runtime knowledge
and cancel case. In addition, YAWL adds some syicaelements to Petri nets in order to
capture other workflow patterns such as simple aghdike xor-split, simple merge like xor-
join, and multiple choice like or-split.

24

During the design of the language, it turned oat #ome of the extensions that were added to
Petri nets were difficult or even impossible toerecode back into plain Petri nets. As a result,
the original formal semantics of YAWL is defined at.abelled transition system and not in

terms of Petri nets.

Table 2-5 shows us the YAWL notation we can usgettne workflow process.

Object Description Graphical representation
Atomic task Represents a single task to be performed

by a human or an external application.
Condition Represents a state for the process.

Input condition

The Input condition is where a proce
starts.

SS

Output Condition

The Output condition is where a process

ends.

AND-split Activates all outgoing links from this task
upon completion.

AND-join Activates this task when all incoming
links have been activated.

OR-split Activates a number of outgoing links from
this task upon completion.

OR-join Activates this task when one or mare
incoming links are activated and there is
no possibility for other links to be
activated if the task continues to wait.

XOR-split Activates one outgoing link from this task
upon completion.

XOR-join Activates this task each time an incoming

link has been activated.

25

Aubdb0LE®@00

Composite task | The Composite task is a container for

another YAWL process, and as such
provides decomposition mechanisms.

Multiple instance Allows multiple instances of a task to run
task concurrently. The minimum and
maximum number of instances, the
threshold for completion and whether new
instances can be created on the fly or not

can be specified for this task.

Cancellation In a Cancellation Region, all elements
region within the dotted region are deactivated
upon task activation. Workflow designers
can thus specify cancellation of single !

tasks up to whole processes. |

Table 2-5 YAWL notation [YAWL08]

2.1.2.4 BPMN

The Business Process Modeling Notation (BPMN) &amdard developed by the Business
Process Management Initiative (BPMI). The firseesde of BPMN, the 1.0 specification, was
released to the public in May of 2004 and represembre than two years of effort by the
BPMI Notation Working Group. The primary goal ofetBPMN effort was to provide a
notation that is readily understandable by all bess users, from the business analysts that
create the initial drafts of the processes, to teehnical developers responsible for
implementing the technology that will perform thqe®cesses, and finally, to the business
people who will manage and monitor those procel&asn08].

BPMN defines a Business Process Diagram (BPD), lwihéc based on a flowcharting
technique tailored for creating graphical modelsbo$iness process operations. A BPD is
made up of a set of graphical elements that erthbleasy development of simple diagrams
that will look familiar to most business analystela flowchart diagram. The elements were
chosen to be distinguishable from each other andgtii@ae shapes that are familiar to most
modellers. For example, activities are rectangles @decisions are diamonds. It should be
emphasized that one of the drivers for the devetypnof BPMN is to create a simple
mechanism for creating business process model$e whthe same time being able to handle
the complexity inherent to business processes. dp@oach taken to handle these two
conflicting requirements was to organize the greghaspects of the notation into specific
categories which provide a small set of notaticle@aries, so the reader of a BPD can easily
recognize the basic types of elements and underst@ndiagram. Within the basic categories
of elements, additional variation and informati@m de added to support the requirements for
complexity with no more changes in the basic lon#-geel of the diagram. The four basic
categories of elements are flow objects, conneabjgcts, swimlanes and artifacts.

26

Flow objects

Description

Graphical representation

Event

An Event is represented by a circle and

is something that happens during
course of a business process.

he

OO
I

Activity

An Activity is represented by @a

rounded-corner rectangle and is

generic term for work that company

performs.

Gateway

A Gateway is represented by the

familiar diamond shape and is used
control the divergence ar
convergence of Sequence Flow.

Connecting obj ects

Sequence flow

A Sequence Flow is represented b
solid line with a solid arrowhead and
used to show the order that activit
will be performed in a Process.

S

m

Message flow

A Message Flow is represented by
dashed line with an open arrowhe

e
and is used to show the flow p
¢

messages between two sepa

business entities (or business roles)

that send and receive them.

o - ——— — — — >

Association

An Association is represented by

dotted line with a line arrowhead an .
is used to associate data, text, a

other Artifacts with flow objects.

Swimlanes

Pool

A Pool represents a Participant in a
Process.

Narre

Lane

A Lane is a sub-partition within ja
Pool and will extend the entire
length of the Pool, either vertically
or horizontally.

Name
Name | Name

Artifacts

Data object

Data Objects are a mechanism to sh
how data is required or produced
activities.

ow
by

Group

A Group is represented by a round
corner rectangle drawn with a dash
line. The grouping can be used {
documentation or analysis purposes

ed
ed
or

27

Annotation Annotations are a mechanism for prmmm y
del id dditi | - Text Annotation Allows
modeler to provide additional te -+.| "a Modeler to provide
information for the reader of a BPM additianal Information
Diagram. —

Table 2-6 BPM N syntax notation

Now we can see a process about a request apprefuaed using the BPMN syntax notation
we have explained before (see Figure 2-6).

c s .
§e] o Ty
£ - Purchase Info
A 3 Prepare PO
=
£
E . R

| |

| I
— - .
= : |
E : Approval .
%’] . Request ;ppruw—:i |
@ Email eques :
c
© |
=)

_ [These

- - activities can
@ be started at
o Dispatch to the same time
w Approver —
o
i
=

Figure 2-6 A Segment of a Process with Data Objects, Groups, and Annotations

2.1.2.5 BPEL

Business Process Execution Language for Web Ser(RlREL or BPEL4WS) is a language
used for the definition and execution of busingsegsses using Web services. BPEL enables
the top-down realization of Service Oriented Arebitire through composition, orchestration,
and coordination of Web services. BPEL provideslatively easy and straightforward way
to compose several Web services into business sses¢Orac09].

BPEL builds on the foundation of XML and Web seeagit uses an XML-based language
that supports the Web services technology staadudmg SOAP, WSDL, UDDI, WS-
Reliable Messaging, WS-Addressing, WS-Coordinatama WS-Transaction.

BPEL represents a convergence of two early workflawguages; Web Services Flow
Language (WSFL) and XLANG. WSFL was designed by IBMI is based on the concept of

28

directed graphs. XLANG, a block-structured langyagas designed by Microsoft. BPEL
combines both approaches and provides a rich véagbdor description of business
processes.

The first version of BPEL was developed in Augu€i02 In April 2003, BPEL was
submitted to the Organization for the AdvancementStiuctured Information Standards
(OASIS) for standardization purposes, and the Wetvi€es Business Process Execution
Language Technical Committee (WSBPEL TC) was formed

A BPEL process specifies the exact order in whiahtigipating Web services should be

invoked, either sequentially or in parallel. WithPBL, you can express conditional

behaviours. For example, an invocation of a Welvisercan depend on the value of a
previous invocation. You can also construct loagslare variables, copy and assign values,
define fault handlers, etc. By combining all thesastructs, BPEL lets us to define complex
business processes in an algorithmic manner.

. 1: Request
Client & Invak ccifvoks (Eyncis=
- Invoke Retricve the employers
Lravel stalus
portType
Employee
2: Redquest Travel
=<invoka {asynces =eirnka [AsYNC|>> Statl,ls Weh
Gel plane ticket offer Ged plane ticke offer . .
frarm American Airlines from Dalta Airlines 3: Reply Service
4.1: Invoke Amencan

[Armarican.price <= Delta,prics | | Amaricanprice > Delta.price | Airlines

_ Web

ARSI e ASSIN .
Selact the American Salact the Delta 4.2: Call-back Service
Airlinas tickat Airlines tickat
5.2: Call-back
woraplyss ortT &

Return the best K [is Delta
affer 6.1: Invake Aidines

Web
Service

BPEL Process for Business Travels
Figure 2-7 Example BPEL processfor travel arrangements

An example of a BPEL process defined for a trageinay is showed in the Figure 2-7.

2.2 Workflow tools

The former section introduced the most popular Wowk notations used to define business
process. In this section, we are going to know s@wiware systems which use these
notations or are based in it. We will start witlbréef selection of commercial software and
after we will define the two applications we arengpto use in the development.

There are some workflow concepts that are commanany systems [Mano02]:
1. Monitoring, used for contributing information about the cir@tances of workflow
during execution.
2. History of workflow actions for evaluation or recovery.

29

3. Persistence to save the historic information and provide asdest.

4. Manual Intervention for changing the order that activities are perfednin as they
are performed.

Worklist to coordinate the activities among the workers.

Federated Workflow to address the issue of how workflow systems apterate.

o o

2.2.1 Commercial software

The commercial software chosen to introduce brieflythe next pages are Staffware,
Websphere MQ Workflow, The Progression Model, Msod Windows Workflow
Foundation, Flexo Business and Business ProcessMsgchitect [Guer06].

2.2.1.1 Staffware

Staffware is a workflow management system develdpgdhe Staffware company from

England. Apart from creating a seamless bridge éetwthe different areas of the system,
Staffware also manages the processes, automatroallyng specific tasks to the appropriate
person in the right part of the organizational cuee [Tibc09]. This commercial software

supports the BPMN notation.

Its process definition tool is the Graphical Wookil Definer (GWD, see Figure 2-8). GWD
has the advantage of being very clear in visuah$etJsing Staffware, the workflow manager
can define three different kinds of tasks: autooatormal and eventual tasks.

The resource management allows defining differesdr)groups. Each user has an agenda
where they have the work items allocated to themd, the allocation is done to the entire
groups we have mentioned [LemaO07].

4§ Wodkflow Definer - TRAVELA
Proceduie Ecit Tools Vww Feld Dphons Hep

& el DELeE] o B el |6 e

COMMUMEC

DRITINT

; i
o
DRIDING ‘

[Toot SeieatMove Eaimstad Obimst. Hething Selecind

Figure 2-8 Graphical Workflow Definer of Staffware

30

2.2.1.2 Websphere MQ Wor kflow

WebSphere MQ Workflow supports long-running bussne®cess workflows as they interact
with systems and people. Automates and tracks bssimprocesses in accordance with
business design. Provides integration processds ngh support for human interactions.
Enables use with WebSphere Business IntegrationeMo@and Monitor for design, analysis,
simulation and monitoring of process improvemersildtime is the graphical process
definition tool that is part of the WebSphere MQ Mftow product. You can graphically
define business processes and their activitieheoldvel of detail needed for automation.
Buildtime includes graphical support for declarargd documenting:

1. business rules on process navigation between steps,

2. business rules for role-based work assignment,

3. process interface definitions (data, programs, gseu

When you first start Buildtime, you see the Buitdki window (see Figure 2-9). There is a tree
view on the left of the Buildtime window that shoa# the objects that belong to workflow
models. The tabs at the top of the tree view pewadquick way to switch between the
different trees. The tabs indicate that you carpldis object trees for Processes, Staff,
Network, and Implementations. The right part of Bweldtime window is a work area that is
used to display views of workflow elements. Thia t& the diagram view of a process or the
properties that you can define for a selected obfsticthe bottom of the Buildtime window,
there is a Status bar. The status bar shows inf@mauch as the name of the database you
are using and your user ID.

— Work ama

F.-—Tg:»:.nllnarfr Tree view r— Drawing tool paette —Menu bar

N]
Acumpn

i = =
ColleciCradidfamnation Assesafak e
i At Crodi

T BLOLL FEEERE. .
- ﬂ: | |

h@ =i
-
Hugeeb s ol
Ll | .‘Jﬂ
T Ko v Qi et i v DAL g Dot ste s e
L & rwOTToe-0e -H:.:mmc‘rﬂ: B U K ADM
W] £ Frvgan | S Eapler Bt (@i Wa G FEE A

Figure 2-9 Buildtime user interface

2.2.1.3 The Progression Model

The Progression model [Stav04] has incorporated esai the managing concepts of
workflow to increase the flexibility in IS. It makeexplicitly the steps and transactions as user
undertakes when using an IS. As the user progréssesds accomplishing a task or goal,

31

the progression model infrastructure records eaep and the state of the transaction and
workflow. A progression is a workflow transactiondaa sequence of scenes in a process to
create a workflow transaction. The progression rmaléisplayed to the user in the single
progression section through four main panels:

1. User interface. This panel displays the widgets or interface elet® that are
specified in the user interface element of the madtocument for the current scene.

2. Transaction. This panel displays all the transaction itemstled progression as
specified in the workflow transaction element of tharkup document, including the
information that the user has entered up to thait o the progression.

3. Workflow. This panel displays the status information fa plogression as specified
in the workflow element of the markup document. Merkflow status shows the
scenes of the progression in the recommended dideh scene is associated with a
name, the worker assigned to complete it, and thieeist status of its completion;
these are all displayed in a table format.

4. Feedback. This panel consists of constraints, informatidatus, and markup
document. The constraints sub-panel display angrnmhtion related to constraints
that are violated throughout the progression. Tii@rmation status sub-panel display
the information that is missing and required to ptate the transaction. The markup
document sub-panel displays the current state efnilarkup document. The single
section also has buttons to start a new progressen an existing progression, save
the current progression, and quit the progressiatyaer.

32

&2 Progression Analyzer

File
User Interface Transaction Workflow
S |. T [Scene| Narme [vvorkd Status |
Pick-up Lrozation Airport Code ick-up Locat onis,..| 1 [Choose Rental |Dave |In Progress
or] 2 ter Cont armation |Dave | e
T 3 Billirg Information [Tara i
ickup Dae y forfoproval Tara
A VB
[March <] [2004 <] (- 08 5 deApproval len [Inactive
Drop-off Location ditport Cods A |Canfirm R2seration |Dave |Inactive
| o |
Drop-off Date
[1 =] [Mach | [zo04 <] & AM
" PM
1Eal Tyre - _
I weekend Special —
B v | Last Marme i=
User Actions Transaction Actions Workflow Actions
Enter Pick-up Location :
Enter Pick-up Airport | Provinus | | Next |
Enter Drop-off Location
Select Car Type | Save |
Enter Pick-up Date Edit Transaction | Recall |
Enter Drop-off Date
Enter Drop-off Airport | Rearder |
Choose Weekend Special | Transforms |
[z
Markup | anguage Document
<{progression’>
{scene>
<auir...<{faui>
<{transaction>...{/transaction>
Lworkflow> . . {fworkflow>
{fscener...

Figure 2-10 The progression analyzer displaying the Enter Name scene

2.2.1.4 Microsoft Windows Wor kflow Foundation

Microsoft Windows Workflow Foundation (WWF) [Espd0iS an extensible framework for
developing workflow solutions on the Windows platfo It provides a single, unified model
to create end-to-end solutions that span categofiapplications, including human workflow
and system workflow. WWF supports two fundamentatkflow styles: sequential workflow
and state machine workflow. A sequential workflawiseful for operations expressed by a
pipeline if steps that execute one after the nextil the last activity completes. Sequential
workflows are not purely sequential in their exémuitthey can still receive external events or
start parallel tasks, in which case the exact sezpief execution can vary somewhat. A state
machine workflow is made up of a set of statesisitaons and actions. One state is denoted
as a start state, and then based on an eventsatitrarcan be made to another state. The state
machine workflow can have a final state that deteesithe end of the workflow.

33

2% HelloWorldWorkflow - Microsaft Visual Studio E“E El
Fle Edit \iew FProject Buld Debug Workflow Zats Took Window Community Helo
R R b Debug = fny CPU v | [=]
R LUR] wx - =M e
% | Workdiow1.xomi* ~ x_ Sokition Expiorer < HeloWoridior,.. » 3 X
3 YIS
: Secueniel Worklow i T
Q - [5d Properties
|3 References
I ':% Program.cs
- __.." o =] Workfiow 1. xoml
il _:It?uthﬁctﬁtf L
. - .m:-h.-p...u.ulul- PE 1 .5
l codefctivityl System. Workflow, Activitie: =
@ STIETEN
~ (rzme} codeActivityl
I I | - Enableg True
A | Cp
5 - @} Ececutecode
@
B Eror List| 3] Outmst| 34 Task Lint
Ready
Figure 2-12 The Visual Studio 2005 Workflow designer
1 State Machine Workflow
] Workflow? - [§] WaitingForOrderState
(3] WaitingForOrderState
L] L] L]
OrderCreatedEvent
g
4y handleExter
“F nalEventh
L] e L]
L] L]

Figure 2-13 An interior view of the Order CreatedEvent EventDriven activity

2.2.1.5 Flexo business
The Flexo Business [Dena08] is a Workflow Managem@pstem based on Petri nets
formalism for process description. It interpretse tivorkflow description, controls the

34

instantiation of processes, sequences activitidéds avork items to the user work lists and
invokes application tools when necessary. Flexari®ss is an extremely powerful yet simple
tool that facilitates the collaborative definitiosf applications by modelling underlying

processes, workflows, and graphical interfaces thmge with external connections to

databases and existing services. The Flexo Work#mgine interprets the Flexo model,
enabling it to automatically run an application tth@teracts with databases and external
services. Flexo Workflow Engine is also BPEL conigat (Business Process Execution
Language) and therefore can be used in relatiamatiter BPEL engines.

Using intuitive and familiar drag-and-drop techregudrom a palette of pre-configured items,
business analysts can define the underlying waskidution and navigational pages of the
application in seconds.

-y BICHRS A0 [s)
B BPELNw Dhovichiow] Fletrity| Operstion || &
¥ £ EPtiNesiaDaT] A]
v [} roRoie SO I ivepiing | T oo 'I-
ot s Activiey o
T - [=@ |
.] A = L s < |
B3 schediong '-,__,:,_,-..., E.': o Ty ML DR I}
8 meengPraceii] ! S \ . = ._: |
A :t \ [i] - |
o sippirg F. |
£ g 4] / Trregstonrini s |
= - { e PO |"-‘""""' +E T M = i |
. ; | — ¥ o= / = + ¥ 2 |
£ PO L J | 1 | . |
3 Pt B lr.:_':' = A £ ! o) y :
w R iwepicing a) oy i N Unght dli- rrid
- G wsseg Yo ‘ - '
* o Scheduing '-.A'l s ‘ e i = I
ok DicgPrateis \ ¥ [] S |
¥ MG L] | —_— B
= D _'ﬂl— Pt e s | (I
¥ Recens K ! I
] (10} Hot L J |
W N :'_J:g.*__.a‘.,‘l-'g'-,- -t ;1/ ey U
¥ T sy = =/ - E—r ek
F tacodata % ¥ o Tl el i
EOHN L R | ik
END o
* Fy |2
@ b r £ - 9] i
@ Confem P fecooesr | s
- & Or (%]

Figure 2-14 The wor kflow modeller [Dena08]

leail | s w18 11350 | todetny 2] I
Libeary Mini | B EncodePO 3] e lees | Bumoss | B
1 Servwn ttasy r Bl UE 2 I s
¥ T e Rt W VS D Elrtiss — n?_h | P :lm-'-
7 Popus Aoidat perE F e T —
i Tem = o
L D ncription T T Ty | \’-’ %
¥ | ConfumEncoden e A
T FY .
Flroum P e bl by e g
s whiBuwhsnham Bt R PO [mpryreey T
; o . [Al =f=|
- == = - L T
1 Emcraa P ™ | s [EPOT | EETT L 1 } sl
Wia [E |
o s rav—ITY T T e o Til _Tewtbinid
- Leestan Sk Advanced Doc Ciediage |
¥ e - s ety ' omant pothaty comd ss (] md
rere © I NN o - .
2 l.;p.ar;w!-‘ B e et g = |l
3 TextFmid e ::m.;-n L e a.;.u
R TExtFiakd el Pt |
i Teuiliesd ol e e sk |
T Eidraney preatinad :ﬂ:Jw!'fl.l:r
ey Addresy Durf ety & =
m Y Sebvrrshddren s Ef;_:?_r“_
"1 : Lmencen. s 00l
! o iz pora: |
= a- et A i |
- =

Figure 2-15 Layout of user graphical interfaces editor

Pages and forms are easily constructed by dragiyopding texts, images and preconfigured
interaction widgets (entry fields, drop-down listsc.) to their desired location. The addition

35

of realistic data samples to the pages and thesfdinons defined bring a first round of simple
prototypes to life ready for improvement.

2.2.1.6 Business Process Visual Architect

Business Process Visual ARCHITEC (BP-VA) is a vismadelling tool that provides the
most extensive support for the Business ProcessMugdNotation (BPMN). BP-VA adopts
the resource-centric interface, where context-sgasshortcut buttons will be shown around
the active diagram element. Each resource prowadesctionality that you would likely to
perform frequently, like creating a connection tmew/existing shape, opening the model
specification, resizing a shape to fit.

BP-VA completely covers the BPMN, from model spieeafion to graphical notation,
including different presentation options.

The Diagram pane is a tabbed view of all openedrdias. You can click on the tab of a
diagram to make it the active diagram for viewimgediting.

pss Process Diagra = ||

|H_. IZ'I | ¥ Process| e

%, Tools =)

. Poink Eraser

]i Sweeper

_# Gesture Pen

;%'JBusinessProcess o (‘_‘3 p| Frocess q_{ Process2 q
[Task -

[[@] Sub-Process -
O Start Event e

O Intermediate Event

0 End Event .
{} Gateway =

—» Sequence Flow b

1

== Horizontal Pool .

[HLane ¥
&b Message Flow Frocess4 @
[_j Group

A= Text Annotation
[Data object

e BcnCiakion i

v

Figure 2-16 User interface of BP-VA

2.2.2 IMmedia S.A. Atoms

Atoms, a product from IMmedia S.A., is distributdce an information management system
that allows the user, among other things, to defumekflow process using its workflow
editor. This commercial workflow software is theeone are going to work with. It is for that
reason it is out of the former section about conumésoftware.

It is built using Java, XML, XSL, XHTML and CSS tewlogies:

36

=

XML to store data base format data.

2. Java to develop the entire application layer and toatxethe last mentioned XML
files.

3. XSL to interpret and transform the XML files to obtadRTML pages.

4. XHTML pages that a web browser can execute.

5. CSSwith a defined style attached to each XHTML page.

Atoms is a software that allows users an integratadagement of all company’s information
through the different modules it integrates, like@nt management, document management,
customer relationship management, learning managgeie.

Going depth in its workflow editor, the tool we agyeing to use primarily, it allows users to
define business processes, adding concepts toiffieeedt transitions (tasks) like time to
execute or to be valid, and execution in chargehefserver or humans, attach forms to the
different tasks, etc. Its workflow editor works ngiUML State charts notation, but it does not
accomplish this notation strictly.

Using its workflow editor we ca define states amahsitions, the main objects to run a
process there. We can also expand a state to anochade states inside it, but it will be only a
graphical feature that can make easier the compséte of the process. Moreover, we can
define synchronization bars which should allow wiefy two different ways to follow, but it
is not possible (it is not possible yet, maybe ivew version).

To run a process, this application needs to craatlocument first, which will store the
different information created throughout the couo$ethe process. This document will be
placed in the actual state of the process execuatmohit can only be unique. Then, it would
not be possible to have two different tasks in aken at the same time.

Skip
< £

w0, Y,
to Send.
((5etect reso... 3 choice }3{Control the. }—3{ skip patter.. F==="%3{select reso...)3 send order }-3{Direct alloc...)
o o
1 3
/ tan,, \%‘

20 i,
.
[e Ys(orem arons) S, seimareso }{__ton e aioe)
o)

g, e togoin =

(Setect reso.. }»{_ choice }-»{Manage the. }—>{Delzgation]

Lekeg =

¢ o

Figure 2-17 A screenshot of the Atoms wor kflow editor

Figure 2-17 shows us how a process can be defimedei workflow editor of Atoms last
mentioned.

2.2.3 FlowiXML Workflow editor

FlowiXML workflow editor is a tool developed at Umrsité Catholique de Louvain by
Christophe Lemaigre [LemaQ7]. This tool allows wdiming workflow processes using petri
nets notation, and in terms of the workflow reseupatterns, it allows applying this kind of
resources to each task in its definition.

Defining the workflow process, the tool allows wsadd places, tasks, organizational units

and resource boxes:
1. Placesand tasks. They are used to represent the process in paginotation.

37

2. Organizational units. We can define organizational units to represbat different
departments of the organization and to classifysehelifferent tasks in these
departments. In Figure 2-18 we can see the ordgamzéd units represented in the
boxes called Stock department, Delivery departraadtAccountant department.

3. Resource boxes. We can define user stereotypes and jobs andsepréhem using
resource boxes in the process. In Figure 2-18 wesea a resource box represented
called Warehouseman.

:’ Stock contral department :‘ Delivery department

Control the stock o Send order HC)\

Warehouseman

\\

:I Accounting department /

A
Wanage the payment ._O‘/

Figure 2-18 A screenshot of the FlowiXM L wor kflow editor

Figure 2-18 shows us a screenshot of a processedetising FlowiXML workflow editor.
Concretely, this process represents the procetigedirst and simplest case we are going to
study (see section 5.1).

To add these different objects the application wse&ery understandable toolbar in the left

side, using the right side to show the differentiays to configure each object added (see
Figure 2-20). However, to create the different ustereotypes and jobs we need to go to the
main user interface of the application and seleetoptions to edit them (see Figure 2-19).

]
| £ Workflow Tools ﬂl&

File About

Project name : project name
Elicitation

| Model Elicitation Tool

Task Model
I Task Spreadshest

Resources

Job Edition

| UserStereotype Edition

Workflow

Workilow Editor

)

Figure 2-19 The main user interface

38

[£] Workflow Editor = =] &%

File Project Analysis Options About
Menu |~ | -Edit
C) —| Name:
| | |Task
Task Type:
:l| @_» Select resource i : @ pr—
r Frequency:
k0 I
=| Importance:
£ [
|
i | £s| Resource patterns handler - Taszk E=_CC1 Categon:
e = —l
Design time Values Jointype :
EDIT: Allowed jobs
Aﬂ]) [Select role(s) | Split type
Creation {None -
[Direct =] Infout points:
|El Distribution type [Invert
— |Offer to sinale resource | =] R aaras
><| Distribution time e
SO [Eariv | =]
1 Tasktree:
_—P| Execution Edit
——p |Resource-initiated execution =]
=] Import
o Detour |
= I Select | >
14 | Other patterns
Console 1| [] Configurable unallocated work items visibility
[] configurable allocated work items visibility
[] Simultaneous execttion
[| Additional resources
|

Figure 2-20 Workflow editor user interface

As we can see in the workflow editor user interfgEegure 2-20), inside the allowed
configuration options in a task, we can specifyadtgrn clicking the button called pattern
labelled with resource. After clicking it, the toshows us the window resource pattern
handler as we can see in the picture, allowing dbénition of the different workflow
resource patterns of creation, distribution typstrdbution time, execution and detour.

Moreover, FlowiXML workflow editor allows us to egpt the workflow information of our
project in an XML file, whose specification candmen in further chapters (see section 4.3.1).

39

Chapter 3 eXtensible Mark-up Languages for User
Interface Definitions

XML has become one of the most used languagesogrgmming.
Using XML, you can store structured data in an exdefile, design
web pages that any device could read using devigatlike XHTML...
and design user interfaces in a low level, amoongstr uses.

Nowadays, we can visit a website since our laptapeoffice, using a
cell phone while walking, or using one of the néde® game consoles
which includes web browser software. Each device Odferent
hardware interfaces, bigger or smaller screensbkeyd or only eight
or nine buttons...

Thanks to XML, we can define abstract user inte$ao adapt it later
depending on the device that is going to show it.

In this chapter, we start introducing the XML laage to show later

how we can represent a user interface using it oot we can read
and transform it.

40

3.1 Introduction to XML

XML is, in fact, a very simple technology which hasound it other technologies that
complement and make it bigger and with major polés#s. Together with all related
technologies, XML represents a different way to kyanore advanced, with the information
in software applications, whose principal innovatigonsists in allowing sharing the
information not in a concrete level or to a specd@nvironment, but for all the environments
and supports.

Then, XML plays an important role in the actual ldpmvhich tends to the globalization and
the compatibility among the systems, since therteldgy is the one which will allow sharing
the information in a sure, trustworthy and easy wayddition, XML allows the programmer
to dedicate his efforts to the important tasks whemworks with the information, since some
tedious tasks like data validation or data searcimnthe XML structure is chargeable to the
language and it is specified by the standard, abttie programmer does not have to worry
about that.

There is a world of technologies about XML, whicloyade easier and interesting ways to
work with the information and, definitively, an ahce at the moment of treating the
information, which is indeed the aim of the compwgeience in general. So, the world of
XML is not a language nor syntax, but several dhband is not a totally a new way to work,
but a more refined one.

The World Wide Web Consortium (W3C) defines XMLfabows [W3CO09]:

“Extensible Markup Language (XML) is a simple, véigxible text format derived from
SGML (ISO 8879). Originally designed to meet thallehges of large-scale electronic
publishing, XML is also playing an increasingly ionfant role in the exchange of a wide
variety of data on the Web and elsewhere.”

Now, we can see an example of how the data iscstora XML file (see Figure 3-1).

<bookstore>
<book category="WEB">
<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>
</book>
<book category="PHILOSOPHY">
<title lang="en">Tao Te Ching</title>
<author>Lao Tse</author>
<year>1993</year>
<price>19.95</price>
</book>
</bookstore>

Figure 3-1 An example of a bookstore definition in a XML file
In figure 3-1, we can see how the data is represem a XML file. After defining the
bookstore, we have stored two of its books, satfreginformation of title, author, year of
publication and its price.

In conclusion, XML is a markup language that allavgers to define a set of tags that define
the structure of a document. While XML can helgxthange of semantic information, it still

41

lacks routing information. Such information is & to enable proper routing of a document
within and across organizations [vand01].

3.2 User Interface Description Languages based on XML

XML is frequently used in user interface design.User Interface Description Language
(UIDL) consists of a high-level computer languagedescribing characteristics of interest of
a user interface with respect to the rest of amrattive application. It helps define user
interfaces linguistically with a general trend to do in an XML-complaint way. Many

UIDLs have been conceived that contain differemtidees and focus on different levels of
granularity [Guer05]. Many XML-compliant languagés defining user interfaces have
identified and analyzed [SoucO03].

The following definitions have been extracted frQonceptual Modeling of User Interfaces
to Workflow Information Systems by Josefina Guarr€arcia [Guer06].

3.2.1 XIML

XIML (eXtensible Interface Mark-up Language) afferdhe ability to describe a user
interface without concern for the implementatiorugf02]. XIML is functional across the
entire lifecycle of Ul design, development, opEmat management, organization, and
evaluation. It is able to relate the abstract asnttoete data elements of an interface.

XIML defines five basics interface elements: (1 ttask component that captures the
business process and/or user tasks that the icéedapports; (2) the domain component
which is a set of all the objects and classes ugddthe user component that captures the
characteristics of the users that can use the cahign; (4) the dialog component that
determines the Ul interaction, and (5) the presmmtacomponent. Additionally, XIML
includes attributes and relations to connect withélements.

The main concern of the XIML approach is the mduakded development itself. It provides a
standard mechanism to data interchange among tads application from design to
operation. One shortcoming of XIML is that only ghécal user interfaces are supported. The
language is used by industry in commercial produadsvever XIML is available via a non-
commercial research license. XIML do contain a naecdm for specifying any general-
purpose model: this could be used to specify a flawkmodel, but the designer is entirely
left without any conceptual and methodological gnick.

3.2.2 UIML

The UIML (User Interface Mark-up Language) allowus user to specify the user interface in
general terms and then render it according to ke stgscription [Abra99]. It was designed

conforming to XML and has HTML-like syntax. A UIMtdocument contains three different

parts: 1) a Ul description, 2) a peers section dedihes mappings from the UIML document

to external entities, and finally 3) a templatetmecthat allows the reuse of already written
elements. This language allows the designer toifypie appearance, user interaction, and
application connection of the user interface. UlMLalso independent of any user interface
metaphor, such as graphical user interfaces oevasponse, but not multimodal.

42

3.2.3 XUL

XUL (XML-based User-Interface Language) is a mplatform language to describe
application Ul. The most of GUI components coulddoeate using XUL — buttons, text-
boxes, check-boxes, menus, dialog boxes, treestaeds [Bosw02].

XUL is similar to the Java approach but it useshMwozilla engine instead of the Java Virtual
Machine. It is the ideal solution to Web System wliteis not possible to install a standard
browser. It is also possible to design on-line affdine application. XUL has its focus on
window-based graphical user interfaces. The maadiiantage is the low portability because
it cannot be used in every browser [Gome04]. XUluldobe considered mainly as a Ul
markup language for browsers, like HTML is for welges. It does not represent a
specification of this user interface connected wither aspects, like the task model.

3.2.4 AUIML

AUIML (Abstract User Interface Mark-up Language)@n XML vocabulary which has been
designed to allow the intent of an interaction vatbhser to be defined” [Azev00]. This clearly
contrasts with the conventional approach to uséerfsce design, which focuses on
appearance. It is intended to allow designers tmdoon the semantics of the interactions
rather than the particular devices that need tcsiggported. Being an XML vocabulary,
AUIML allows device independent encoding of infoima. All the interaction information
can be encoded once and subsequently rendered ‘dsiige dependent rendering’ so that
users can actually interact with the system. AUIMItherefore intended to be independent of
the client platform on which the user interfaceasdered, the implementation language and
the user interface implementation technology [GofheBs AUIML is mostly developed for
internal use at IBM, most information is confidetithus limiting the usage of this UIDL
outside.

3.2.5 UsiXML

UsiXML (USer Interface eXtensible Mark-up Languags) a XML-compliant markup
language that describes the Ul for multiple corge{tuse such as Character User Interfaces
(CUIs), Graphical User Interfaces (GUIs), Auditddger Interfaces, and Multimodal User
Interfaces. In other words, interactive applicasiowith different types of interaction
technigues, modalities of use, and computing platéocan be described in a way that
preserves the design independently from peculiaradteristics of physical computing
platform. UsiXML is defined in a set of XML schemdsach schema corresponds to one of
the models in the scope of the language. UsiXMLswia of a User Interface Description
Language (UIDL) that is a declarative language wapg the essence of what a Ul is or
should be independently of physical characteristicdescribes at a high level of abstraction
the constituting elements of the Ul of an applmatiwidgets, controls, containers, modalities,
interaction techniques, etc. UsiXML allows crosetit development of interactive
application. A Ul of any UsiXML-compliant applicat runs in all toolkits that implement it:
compilers and interpreters.

UsiXML supports device independence: a Ul can bsculeed in a way that remains

autonomous with respect to the devices used iniriteractions such as mouse, screen,
keyboard, voice recognition system, etc. In caseeef, a reference to a particular device can
be incorporated. UsiXML supports platform indeparzie a Ul can be described in a way

43

that remains autonomous with respect to the varammsputing platforms, such as mobile
phone, Pocket PC, Tablet PC, laptop, desktop/rettase of need, a reference to a particular
computing platform can be incorporated.

UsiXML supports modality independence: a Ul candsscribed in a way that remains
independent of any interaction modality such aplgil interaction, vocal interaction, 3D
interaction, or haptic. It allows reuse of elemepitsviously described in anterior Uls to
compose a Ul in new applications..." [UsiX08].

3.2.6 User Interfaces definition in IMmedia S.A. Atoms

In this case, the application where we are goingeioerate automatically the user interfaces
do not use any of the past proposals. This appmitdtas a non-standard definition of user
interfaces, only valid for it, and generated dine@itom java source code. For this reasons, the
only way to create a user interface for a giverk tasusing the form editor that Atoms
includes in its environment.

3.3 XML transformations

Last section showed us some ways to define userfaces. Now, we are going to show how
to transform these user interface definitions oy ather kind of XML definition (as we sill
see in further chapters) into readable contentiohecessity.

There are some technologies we can use to modKivh file. The former chapters have
already introduced some concepts like workflow ars#r interface. The two workflow
system editors we are going to use in this thasre sheir workflow processes information in
a XML file. We need to transform this informatiorofn one of these editors to another, and
as following, we present what technologies we cagiel to do it.

3.3.1 XSLT Stylesheet Language

XSLT (eXtensible Stylesheet Language Transformadios a language for transforming
XML documents into other XML documents.

XSLT is designed for use as part of XSL, which &yesheet language for XML. In addition
to XSLT, XSL includes an XML vocabulary for spedify formatting. XSL specifies the
styling of an XML document by using XSLT to deseribow the document is transformed
into another XML document that uses the formattingabulary.

XSLT is also designed to be used independentlySif. ¥However, XSLT is not intended as a
completely general-purpose XML transformation leeqger Rather it is designed primarily for
the kinds of transformations that are needed wh8hTXis used as part of XSL [W3C09]
[W3Sc09].

44

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h2>Available books</h2>
<table border="1">
<tr>
<th>Title</th>
<th>Author</th>
</tr>
<xsl:for-each select="bookstore/book">
<tr>
<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="author"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

Figure 3-2 An example of XSLT stylesheet to transform the last XML file definition (Figure 3-1) in a
HTML webpage

Available books

Title Author
Learning XML Erik T. Ray
Tao Te Ching | Lao Tse

Figure 3-3 The output obtained after apply our XSLT stylesheet (Figure 3-2) tothelast XML file
definition (Figure 3-1)

In Figure 3-2 we can see a XSLT stylesheet whichcare apply to the XML file we have
defined before (see Figure 3-1). Thei:tempiate> declaration is used to build a template for
an element defined by its attribute match, whichssd to associate a template with an XML
element. The match attribute can also be used fioeda template for the entire XML
document usingatch="/" like in our example.

The «xs1:for-each> element can be used to select every XML elemerda epecified set of
nodes. Using the attribut&iect="bookstore/book* We select all the books defined in our
bookstore. Iterating each book, using the:vaive-of> €element we can extract the value of an
XML element and add it to the output stream oftthesformation. In our example, using the
select="title" attribute we extract the title information of thetual book iterated.

3.3.2 Transforming XML with Java

Java is one of the best languages for transformibi. documents. Its strong Unicode
support in particular made it the preferred langudgr many early implementers.
Consequently, more XML tools have been writtenamalthan in any other language. More

45

open source XML tools are written in Java thanny ather language. More programmers
process XML in Java than in any other language.

As following, we present the three major standaRIs&or processing XML documents with
Java, the Simple API for XML (SAX), the Document j&ti Model (DOM), Java API for
XML Processing (JAXP) [Cui05].

3.3.2.1 SAX

SAX, the Simple API for XML, was the first standafdP| shared across different XML
parsers. SAX is unigue among XML APIs in that it dets the parser rather than the
document. In particular the parser is represenseanainstance of the XMLReader interface.
The specific class that implements this interfaaees from parser to parser. Most of the time
you only access it through the common methodseXiMLReader interface.

A parser reads a document from beginning to endt dses so it encounters start-tags, end-
tags, text, comments, processing instructions,raack. Parsing is the process of reading an
XML document and reporting its content to a cliapplication while checking the document
for well-formedness.

SAX represents parsers as instances of the XMLRaatgrface. The parser tells the client
application what it sees as it sees it by invokingthods in a ContentHandler object.
ContentHandler is an interface the client applaratimplements to receive notification of
document content. The client application will imgtate a client-specific instance of the
ContentHandler interface and register it with th&DPReader that going to parse the
document. As the reader reads the document, & baitk to the methods in the registered
ContentHandler object.

3.3.2.2 DOM

The Document Object Model, DOM, provides a standsetl of objects for representing
HTML and XML documents, and a standard interfageaficessing and manipulating them. It
is the second major standard API for XML parserssimajor parsers implement both SAX
and DOM. DOM programs start off similarly to SAXggrams, by having a parser object
read an XML document from an input stream or otbaurce. However, where the SAX
parser returns the document broken up into a sefiesnall pieces, the equivalent DOM
method returns an entire Document object that aositaverything in the original XML
document. One can read information from the docuni®ninvoking methods on this
Document object or on the other objects it contaliis makes DOM much more convenient
when random access to widely separated parts afrig@al document is required.

The DOM is separated into different parts (Core,XMnd HTML): (1) Core DOM - defines
a standard set of objects for any structured dootynf2) XML DOM - defines a standard set
of objects for XML documents, (3) HTML DOM - defisea standard set of objects for
HTML documents.

The XML DOM views XML documents as a tree structafeelements embedded within
other elements. All elements, their containing terd their attributes, can be accessed
through the DOM tree. Their contents can be madlibe deleted, and new elements can be
created by the DOM. The elements, their text, &ed attributes are all known as nodes.

46

3.3.2.3 JAXP

Starting in Java 1.4, Sun bundled the Crimson XMtspr and the SAX2, DOM2, and TrAX
APIs into the standard Java class library. (TrAXars XSLT API that sits on top of XML
APIs like SAX and DOM.) They also threw in a couglefactory classes, and called the
whole thing the “Java API for XML Processing” (JAXP

The reason about include the JAXP to the XML precesAPI is explained as following:
DOM represents a document tree fully held in memtiris a large API designed to perform
almost every conceivable XML task. It also must dhahhe same API across multiple
languages. Because of those constraints, DOM doésalways come naturally to Java
developers who expect typical Java capabilitieshsas method overloading, the use of
standard Java object types, and simple set andng#tods. DOM also requires lots of
processing power and memory, making it intractétenany lightweight Web applications
and programs.

SAX does not hold a document tree in memory. lktiégresents a view of the document as
a sequence of events. For example, it reports diragyit encounters a begin tag and an end
tag. That approach makes it a lightweight API tisagood for fast reading. However, the
event-view of a document is not intuitive to mariytarlay's server-side, object oriented Java
developers. SAX also does not support modifyingdbeument, nor does it allow random
access to the document.

JAXP attempts to incorporate the best of DOM anKSKs a lightweight API designed to
perform quickly in a small-memory footprint. JAXBsa provides a full document view with
random access but, surprisingly, it does not regihie entire document to be in memory. The
API allows for future flyweight implementations thlmad information only when needed.
Additionally, JAXP supports easy document modif@atthrough standard constructors and
normal set methods.

3.3.3 Composition of our solution

We are going to transform the workflow process fittwa FlowiXML workflow editor to the
Atoms Defimedia workflow process specification,ngsa XSLT stylesheet, which it will be
called from Java code. In the next chapter you valable to see the entire stylesheet used.

a7

Chapter 4

Development of a user interface generator for

a workflow information system

At this point, we know some technologies usedatostorm XML files
and some notations used to define business pracés&eonly need to
know what are the workflow resource patterns toewsthnd how to
solve the main problem we deal with in this thesis.

In this chapter, we will start to introduce the apach of the problem
and the solution proposed. Afterwards, we will wefall workflow
resource patterns, defining the representation arms of user
interfaces we have chosen for each one.

Once we have decided how to represent each patiermnyill show the
way to store the information in the two applicatie will work with,
FlowiXML workflow editor as source application aifldmedia Atoms
as target application. Then, we will show the tfansation done to
obtain a user interface for each workflow resoupedtern in the target
application applied in the source application.

48

4.1 Overview of the global approach

As we have mentioned in former chapters, the maia gf this thesis is to transform the

output of a workflow editor to be used by a workflosnanagement system. This workflow

editor allows defining workflow processes in petets notations and it lets the definition of
the workflow resource patterns for each task ins¢herocesses. However, the target
application does not allow us to define this kindpatterns, so in this transformation is

necessary to reflect the behaviour of the applatem in the task execution.

How we will transform each of these patterns islaxgd in the next section, but we are
going to show an example of one of these transfbomzfirst. In this example, we will show
the transformation of the simplest pattern, whtak called direct allocation and it represent a
direct resource assignment to a task.

Imagine we have defined a task in FlowiXML workflosditor (see Figure 4-1) and we
decide to apply the mentioned pattern direct atlooa

o

Figure 4-1 Task represented in FlowiXM L workflow editor

If we have to represent that in a workflow inforroatsystem that does not allow us to use
this pattern, we have to define the behaviour o plattern (see Figure 4-2). In this case, to
represent a direct resource assignment to a tasknlyehave to add another task before the
execution of the main task that allows the workflma&nager to select the resource which is
going to execute it.

Selectresource Task
| = L

Figure 4-2 Direct allocation wor kflow resource pattern represented in terms of petri nets

Once we have a process defined in the workflowoedinhd the representation of the applied
patterns, we can transform it to the input speatitn of the target application. We will show

how to do that in the next sections, but now we sa@ the result in a graphical way (see
Figure 4-3).

Figure 4-3 Petri nets process transfor med into state chartsin Atoms

Figure 4-3 shows us the result of the transformiatiba task, which has the direct allocation
pattern applied, into state charts in Atoms. As ea@ see in former chapters, petri nets
notation uses tasks to define the processes whestds charts uses states. In this
transformation, we will transform each task defimegbetri nets into an arrow (or transition)

between states. Each state will be called as #leitdhas to execute later and, the transition

49

that is called Ul (user interface), will have them® name as its source state (in this case,
Select resource).

Next section will show us the description of therkilow resource patterns and the
representation of its behaviour and user interfasesl to transform them.

4.2 Workflow resource patterns

The Workflow Patterns initiative is a joint effat Eindhoven University of Technology and
Queensland University of Technology which started999. The aim of this initiative is to
provide a conceptual basis for process technoltyparticular, the research provides a
thorough examination of the various perspectives:

1. Control flow

2. Data

3. Resource

4. Exception handling

These perspectives need to be supported by a warkinguage or a business process
modeling language.

In this thesis we will deal with workflow resourpatterns, which cover the various ways in
which resources are represented and used in warkflimside the workflow resource pattern
there are four categories:

1. Creation patterns

2. Push patterns

3. Pull patterns

4. Auto-start patterns

Each category will be defined, containing the d&bn of each pattern that it covers in the
same way, using a template as follows:

Identifier: Identifier of the pattern.
Name of the Name of the pattern.
pattern:
Synopsis: The definition of the pattern.
Context: When the application of this pattern is useful.
Examples: It would be a good application of the pattern:
Example.
Petri netsrepresentation:
Representation of the pattern in terms of petig.net

Table 4-1 Templateto define wor kflow patterns
Then, we will summarize about what commercialsvgafé and workflow notations (UML,

BPMN and BPEL) support the given pattern, and vdificulties we have found to represent
these patterns in the target software, Atoms.

50

RESOURCE PATTERNS

SUPPORTED

IGNORE

ADVERTISE

CREATION

Directly

Indirectly

No support

Yes No

Yes

No

Direct allocation

X

X

Deferred allocation

X

X

Authorization based

X

X

Separation of duties

Case handling

Retain familiar

X
X
X
X
X
X

Capability-based allocation

History-based allocation

Hierarchy level based

x| X|x

PUSH

Distribution by offer single-resource

Distribution by offer multiple-resources

Distribution by allocation single-resource

Random allocation

Round robin allocation

Shortest queue

x| X| X

[XX

Early distribution

Distribution on enablement

Late distribution

PULL

Resource-initiated allocation

Resource-initiated execution-allocated task

Resource-initiate execution-offered task

System determined agenda content

Resource determined agenda content

<[X[XX

Selection autonomy

DETOUR

Delegation

Escalation

Deallocation

Stateful reallocation

Stateless reallocation

Suspension / resumption

Skip

Redo

Pre-Do

AUTO-START

Commencement on creation

X

Commencement on allocation

M

Piled execution

X

X

Chained execution

X

X

Table 4-2 Summary of the workflow resour ce patternsanalysis

Table 4-2 shows us all workflow resource patteswsnmarizing the conclusions we have
obtained after study the target application feauhe this table, we can see what patterns are
directly, indirectly or not supported by Atoms, wipatterns we are going to ignore if we find
it applied in a task, and what patterns will needsénd an advertisement to the workflow

manager.

4.2.1 Creation patterns

Creation Patterns correspond to limitations on rtrenner in which a work item may be

executed. They are specified at design time, uguraltelation to a task, and serve to restrict
the range of resources that can undertake worksitiyat correspond to the task. They also

51

influence the manner in which a work item can béchmed with a resource that is capable of

undertaking it.

offered to a suspended

S:create
created

S-offer_m

single resource x\\h\
_._R:stan_s J
S:offer_s R:allocate_s \“\k\ R:suspend Riresume
N R |
. R:start ‘eomplete
S:allocate - allocated to a - started P - completed
single resource
.-"'/'
R:allocate_m ’__’p—'f‘/ R:fail

’/_/, R:start_m

offered to
multiple
resources

failed

Figure 4-4 Creation patterns

4.2.1.1 Direct allocation

I dentifier: R-DA

Name of the Direct allocation

pattern:

Synopsis: The ability to specify at design time the identiythe resource that wi
execute a task. This pattern prevents the problémnam-suitable
allocation but there is no opportunity to change tlsource if he is not
available to perform the task.

Context: Apply this pattern is a good option when we needdotrol the resourc
assignment of a task.

Examples: It would be a good application of the pattern:

“Upload new web contents” task must only be undema by

Petri netsrepresentation:

>y

Selectresource Task

Administrator.
O~ | -@®

Direct allocation, the simplest pattern, is able apply in any case. There is neither

Table 4-3 Direct allocation analysis

commercial software nor notation which does nopsuipthis pattern.

4.2.1.2 Deferred allocation

(4%

Identifier: R-FBA

Name of the Deferred allocation

pattern:

Synopsis: The ability to defer specifying the identity of thhesource that wil
execute a task until runtime.

Context: Apply this pattern is a good option when the reseudentity has to b

[}

D

changed dynamically during the workflow executianensure that th

52

resource is the most appropriate to develop the tas

Examples: It would be a good application of the pattern:
“Pay a payment order” task will be executed onlytthg resource named
in the next-resource field of the payment order.

It would not be a good application of the pattern:
“Prepare the order” in the warehouse can not defeinformation of any
warehouseman directly from the order. The ordery onbntains
information about the customer.

Petri netsrepresentation:

Selectresource Task

Table 4-4 Deferred allocation analysis

In case of commercial software, some of the mopujaw ones like Staffware or Websphere
MQ support it directly, whereas the notations BPEiN UML do not support that.

In this case, we can not know what the resource hha to execute the task is. Then, the
representation will be the same as direct allonattboosing the resource in a list directly.

4.2.1.3 Authorization based

Identifier: R-RA

Name of the Authorization

pattern:

Synopsis. The ability to specify the range of resources #ratauthorized to execute
a task.

Context: Apply this pattern is a good option when it is resagy to define a

—

security framework over a workflow implementatidrat is independer
of the way in which tasks are actually routed intime.

Examples: It would be a good application of the pattern:
Only the “Social worker” is authorized to executetances of the “Apply
the Final Interview” task.

Petri netsrepresentation:

Selectresource Task
| = |

Table 4-5 Authorization pattern analysis

Neither Staffware nor Websphere MQ support thigepat In terms of notation, neither
BPMN nor UML nor BPEL support it.

IMmedia Atoms does not support it too. In this ¢abe authorization will be in charge of the

workflow manager, who will have to do a direct alition to the task defined with this
pattern taking in the account that not all the veses are able to execute it.

53

4.2.1.4 Separation of duties

)y

Identifier: R-SOD

Name of the Separation of duties

pattern:

Synopsis. The ability to specify that two tasks must be aled to different
resources in a given process.

Context: Apply this pattern is a good option when two tasi&s not be executed |
the same resource to assure the intervention fefreift resources.

Examples: It would be a good application of the pattern:

“Second medical opinion” can not be executed bysame doctor wh
executed the past task “Medical diagnostic”

It would not be a good application of the pattern:
“Revise the order” and “Approve the order” are tiasks that have to b

e

Petri netsrepresentation:

:: :. Select resource

executed by the same resource.
Tazk
= @

Table 4-6 Separation of duties pattern analysis

While Staffware does not support this pattern, Videbse MQ supports it directly via task
linking between activities in the process modet ttam not have the same resource allocation
at runtime within a case. In terms of workflow rt@as, they do not allow specifying the
separation of duties in terms of relationships leetwtasks, nor they allow the separation of
duties based on security mechanisms. Thus thigrpait not supported neither by BPMN,

UML nor BPEL.

In this case, we can only advertise the workflonnager that a Separation of duties pattern
has been defined and he will have to manage it albnu

4.2.1.5 Case handling

e

2d

Identifier: R-CH

Name of the Case handling

pattern:

Synopsis: The ability to allocate the tasks within a giverogess to the sam
resource.

Context: Apply this pattern is a good option when a proaessds to be executg
entirely by the same resource.

Examples: It would be a good application of the pattern:

All tasks in “Revise the daily work” have to be ewged by the
supervisor.

It would not be a good application of the pattern:
“Second medical opinion” can not be executed bysame doctor wh
executed the past task “Medical diagnostic”.

Petri netsrepresentation:

54

Selectresource Task

Table 4-7 Case handling pattern analysis

Neither Staffware nor Websphere MQ support thigepatand, whereas BPMN and UML
neither support it, BPEL has a feature of dynamsgignment using an expression that allows
specifying that a next task must be assigned tadbeurce who executed the previous task.
In this case, BPEL is the only notation that suppdhis pattern (excluding YAWL, of
course).

In this case, we can only advertise the workflonnager that a Case handling pattern has
been defined and he will have to manage it manually

4.2.1.6 Retain familiar

Identifier: R-RF

Name of the Retain Familiar

pattern:

Synopsis: Where several resources are available to undedakesk, the ability to

allocate a task within a given process to the saseurce that undertogk
a preceding task.

Context: Apply this pattern is a good option when a sequaidasks need to be
executed entirely by the same resource.
Examples: It would be a good application of the pattern:

The tasks “Revise the stock” and “Make a productinuest” have to be
executed by the same resource.

It would not be a good application of the pattern:
“Second medical opinion” can not be executed bysieme doctor who
executed the past task “Medical diagnostic”.

Petri netsrepresentation:

Selectresource Task

Table 4-8 Retain familiar pattern analysis

Websphere MQ supports it indirectly. It can alleca common resource, which can be
specified for specific tasks in the process moeguiring the same resource allocation at
runtime within a case. Staffware does not support i

In terms of notations, neither BPMN nor UML suppibrivhereas BPEL has a function that
lets the workflow manager to get the previous &grover.

In this case, and like the last two patterns, wearay advertise the workflow manager that a
Retain familiar pattern has been defined and hehaite to manage it manually.

55

4.2.1.7 Capability-based allocation

Identifier: R-CBA

Name of the Capability-based allocation

pattern:

Synopsis. The ability to offer or allocate instances of akt&s resources based on
specific capabilities that they possess.

Context: Apply this pattern is a good option when it is resagy an expert t
execute a task.

Examples: It would be a good application of the pattern:

Instances of the “Airframe Examination” task shoblel allocated to a
Engineer with an aeronautics degree, an Airbusemise accreditatior
and more than 10 years experience in Airbus senyici

It would not be a good application of the pattern:
The task “Recollect goods of an order” should ne¢dhan expert to b

Petri netsrepresentation:

>y

Selectresource Task

executed.
O~ }-®

Table 4-9 Capability-based allocation pattern analysis

3

e

Neither Staffware nor Websphere MQ and neither BPMX UML support this pattern. In
the other hand, BPEL allows defining user propsréied store them in a file, which become
accessible via some functions.

It is not possible to do in Atoms. The workflow nager will have to select a suitable
resource to execute the task.

4.2.1.8 History-based allocation

Identifier: R-HBA

Name of the History-based allocation

pattern:

Synopsis: The ability to offer or allocate tasks to resourcesthe basis of their
previous execution history.

Context: Apply this pattern is a good option when a taskdsde be executed by|a
resource that has executed it before.

Examples: It would be a good application of the pattern:
Allocate the “Finalize heart bypass” task to thergson who has
successfully completed the most of these tasks.
It would not be a good application of the pattern:
Allocate the “Prepare the order” in a warehouseemhthere are 20D

warehouseman, always to the same worker would enasbful.

Petri netsrepresentation:

56

Selectresource Task

Table 4-10 History-based allocation pattern analysis

Neither Staffware nor Websphere MQ support thisepat The same for BPMN, UML and
BPEL. However, BPEL allows implementing this featuso using this notation could be
possible to use this pattern.

It is not possible to represent, there is no hystaformation stored in Atoms. Then, the

workflow manager has to know which resources haype®rence in the execution of this task
and select a suitable one.

4.2.1.9 Hierarchy level based

I dentifier: R-HLB

Name of the Hierarchy level based

pattern:

Synopsis. The ability to offer or allocate instances of akt&s resources based on

their hierarchic level within the organization amdtheir relationship with
other resources.

Context: Apply this pattern is a good option when a taskdsde be executed by|a
resource that has a specific range in a company.
Examples: It would be a good application of the pattern:

The task “Reduce the cost of the project” has toekecuted by a
“Financial Manager” who has a high position in tisnpany.

Petri netsrepresentation:

Selectresource Task
| = L

Table 4-11 Hierarchy level based pattern analysis

Staffware supports partially roles and groups, Whian be used to define some hierarchies.
In case of Websphere MQ, it offers a directly supmd this pattern. Neither BPMN nor
UML support it, whereas BPEL stores the organizetictructure and it can be accessed.

In case of Atoms, there is no organizational stmgtstored and the allocations are always
directly done. Then, the best option is to definreugs of users and select one of them before
the execution of the task.

4.2.2 Push patterns

Push Patterns characterize situations where newbtex work items are proactively offered
or allocated to resources by the system. Theseao@ayr indirectly by advertising work items

to selected resources via a shared work list arcdyr with work items being allocated to

specific resources. In both situations howevers ithe system that takes the initiative and
causes the distribution process to occur.

57

5-offer_s

offered to a
single resource

S:create
created

S:allocate

R:allocate_s

S:offer_m

R:allocate_m

> allocated to a
single resource

/I’_,«""/I;::tart m

offered to
multiple
resources

[~

suspended

A

Y

started

R:resume

Ricomplete

R:fail

Y

failed

- completed

Figure 4-5 Push patterns

4.2.2.1 Distribution by offer single-resource

Identifier: R-DBOS

Name of the Distribution by offer single-resource

pattern:

Synopsis: The ability to offer a task to a selected individiesource.

Context: Apply this pattern is a good option when we knowowtas to execute
given task.

Examples: It would be a good application of the pattern:

“Upload new web contents” task is assigned to theniistrator.

Petri netsrepresentation:

>y

Select resource

Task

m

Table 4-12 Distribution by offer single resource pattern analysis

a

Neither Staffware nor Websphere MQ support thisepat The same for BPMN and UML.
However, BPEL allows offering a work item to mengef a group and a user can "acquire”
the offered work item.

In Atoms, the tasks in process are allocated dyréatthe resource assigned (or to a group of
resources) who can execute the task when it wahemn, this pattern is supported by Atoms

indirectly.

4.2.2.2 Distribution by offer multiple-resour ces

Identifier: R-DBOM

Name of the Distribution by offer multiple-resources

pattern:

Synopsis: The ability to offer a task to a group of seleatesources.

Context: Apply this pattern is a good option when we haveltocate a task to
group of workers or a specific department.

Examples: It would be a good application of the pattern:

“Approve the buying request’” has to be executedaby worker in the

58

“Commercial department”

It would not be a good application of the pattern:
“Accept company merge” has to be executed by then&gal Director”,
not by “Direction department” in general.

Petri netsrepresentation:

Selectresource Task

Table 4-13 Distribution by offer multiple resource pattern analysis
As Staffware as Websphere MQ support this patteimyugroup queues. Whereas BPMN and
UML do not support it, BPEL can specify the namaafroup as an assignee of the task. As a
result, the task will be offered to all memberaafroup.

As the last pattern explained, we can select apgoduesources and allocate a task to all of its
members. Then, any resource inside the group cacueit.

4.2.2.3 Distribution by allocation single-resour ce

Identifier: R-DBAS

Name of the Distribution by allocation single-resource

pattern:

Synopsis: The ability to directly allocate a task to a spieciesource for execution.

Context: Apply this pattern is a good option when we realir a resource is very
busy and we decide to change it.

Examples: It would be a good application of the pattern:
“Develop the final test” task should be allocatexl the “Chemica
engineer”.

Petri nets representation:

:: : Select resource i : Task i :

Table 4-14 Distribution by allocation single resour ce pattern analysis

Another one of the simplest patterns can be supgdsy the commercial software and the
business process notations.

In Atoms, this is the standard behaviour of angdaation. It offers direct support for this
pattern.

4.2.2.4 Random allocation

Identifier: R-RMA

Name of the Random allocation

pattern:

Synopsis. The ability to offer or allocate tasks to suitalbésources on a random
basis.

59

Context: Apply this pattern is a good option when it doed nmatter which
resource execute a given task.
Examples: It would be a good application of the pattern:

The “Judge case” work item is allocated to a Magtst on a random

basis.

It would not be a good application of the pattern:
“Accept company merge” can not be executed by awoyker of the

Petri netsrepresentation:

O

Selectresource Task

company.
e ")

Table 4-15 Random allocation pattern analysis

Neither Staffware nor Websphere MQ support it. BPEMN UML neither. Only BPEL can
use some features that allow the simulation afdtrectly.

There are no features comparable to this way otalion. Then, the workflow manager will
be in charge of select the resource.

4.2.2.5 Round robin allocation

Identifier: R-RRA

Name of the Round robin allocation

pattern:

Synopsis. The ability to allocate a task to available resesron a cyclic basis.
Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

Work items corresponding to the “Umpire Match” teele allocated t(
each available Referee on a cyclic basis.

It would not be a good application of the pattern:
“Revise the daily work” has to be executed alwayshHe supervisor, ng

Petri nets representation:

O

Selectresource Task

by a group of users in a cyclic basis.
O~ }-®

Table 4-16 Round robin allocation pattern analysis

—

Neither Staffware nor Websphere MQ support it. N&itBPMN nor UML too. Only BPEL
can use some features that allow the simulationhiodirectly like the random allocation.

As a variation of the last pattern, Atoms doesaftdr support to it and we propose the same

solution.

60

4.2.2.6 Shortest queue

| dentifier: R-SHQ

Name of the Shortest queue

pattern:

Synopsis. The ability to allocate a task to the resource ttest the least number
tasks allocated to it.

Context: Apply this pattern is a good option when we neeel mhost available
resource, the one with less tasks allocated, towtge given task.

Examples: It would be a good application of the pattern:

“Show new apartment” task is allocated to the “Sabpresentative” wh
has the least number of tasks to do.

It would not be a good application of the pattern:
“Revise the daily work” can not be executed by thest available
resource, it has to be executed by the “Supervisiovays.

Petri netsrepresentation:

:: :. Select resource

Task

Table 4-17 Shortest queue pattern analysis

174

[®)

Neither Staffware nor Websphere MQ support it.dnms of notations, BPMN and UML do
not support it whereas BPEL can support it indiygichplementing a personalized service.

There are no features in Atoms that allow the workfmanager to do an allocation like that.
The workflow manager will have to know how busy #re workers and allocate this task

manually.

4.2.2.7 Early distribution

of

1%

I dentifier: R-ED

Name of the Early distribution

pattern:

Synopsis. The ability to advertise and potentially allocasks to resources ahead
the moment at which the tasks are enabled.

Context: Apply this pattern is a good option when we neethtorm the resourct
about it has to execute a task before its execution

Examples: It would be a good application of the pattern:

“Organize the annual college reunion” task is ated to the “Secretary
of ex-students department at least three montls pithe time that i

t

Petri netsrepresentation:

O

Selectresource Task

will commence.

Table 4-18 Early distribution pattern analysis

Neither Staffware nor Websphere MQ support thisgpat Any notation supports it neither.

61

Atoms does not offer support for this pattern reitiVe will ignore this pattern in the
definition, being automatically converted to Distriion on enablement pattern, which
corresponds to the standard behaviour of the system

4.2.2.8 Distribution on enablement

Identifier: R-DE

Name of the Distribution on enablement

pattern:

Synopsis: The ability to advertise and allocate tasks toueses at the moment the
are enabled for execution.

Context: Apply this pattern is a good option when don’t ndedadvertise thg
resource of a task prior to its execution.

Examples: It would be a good application of the pattern:
“Prepare the payroll” task is allocated to the “Auntant assistant” at th
time it is required to execute
It would not be a good application of the pattern:

Petri netsrepresentation:

O

Selectresource Task

O | @

Table 4-19 Distribution on enablement pattern analysis

\1*4

3

e

This pattern represents the standard behaviouroirk viem distribution in the commercial
software and in the business process notations.

Atoms has this behaviour in its distribution. Werdi have to do anything to accomplish this

pattern.

4.2.29 Latedistribution

Identifier: R-LD

Name of the Late distribution

pattern:

Synopsis: The ability to advertise and allocate tasks to weses after the task has
been enabled.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
“Pack milk boxes” task is allocated to a Packeerathey have been
sealed to be delivered.

Petri netsrepresentation:

O

Selectresource Task

Table 4-20 Latedistribution pattern analysis

62

Like the early distribution pattern, neither Stadh@ nor Websphere MQ and any notation
support this pattern.

We will act like in the Early distribution pattengnore it and will be automatically converted
to Distribution on enablement pattern.

4.2.3 Pull patterns

Pull Patterns correspond to the situation wheraviddal resources are made aware of
specific work items, that require execution, eitivea a direct offer from the system or

indirectly through a shared work list. The commiti® undertake a specific task is initiated
by the resource itself rather than the system. fadigethis results in the work item being

placed on the specific work list for the individuasource for later execution although in
some cases, the resource may elect to commencetiexeon the work item immediately.

offered to a

single resource suspended

[

Sooffer_s R:allocate_s R:suspend Riresume

Y

R:complete

S:create S-allocate R:start
e created - _allocated R e started — completed
single resource

S:offer_m R:allocate_m R:fail
Y
murtple failed
Figure 4-6 Pull patterns
4.2.3.1 Resour ce-initiated allocation

Identifier: R-RIA
Name of the Resource-initiated allocation
pattern:
Synopsis. The ability for a resource to commit to undertakiask without needing

to commence working on it immediately.
Context: Apply this pattern is a good option when
Examples: It would be a good application of the pattern:

The “commercial” accept a task he has offered snagienda to execute|it

in the future.

Petri netsrepresentation:

Selectresource Task
| = |

Table 4-21 Resour ce-initiated allocation pattern analysis

Neither Staffware nor Websphere MQ support it. dmts of notation, neither BPMN nor
UML nor BPEL support it.

63

Atoms does not offer support to this pattern neithieis not necessary to do anything, the

task will be allocated without asking for permissio the resource.

4.2.3.2 Resour ce-initiated execution-allocated task

Identifier: R-RIEA

Name of the Resource-initiated execution-allocated task

pattern:

Synopsis. The ability for a resource to start to work on sktthat is allocated to it.
Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

The Laser Printer selects the next Printing docuntask which is

Selectresource Task

allocated to it and commences work on it.
Petri netsrepresentation:

Table 4-22 Resour ce-initiated execution-allocated task pattern analysis

This is the standard consequence of starting an @@ a work queue in Staffware and
Websphere MQ. Notations like BPMN and UML do nopport this pattern, but BPEL
supports it directly.

Atoms runs like Staffware and Websphere MQ, sstasdard behaviour involves the support
for this pattern.

4.2.3.3 Resour ce-initiated execution-offered task

I dentifier: R-RIEO

Name of the Resource-initiated execution-offered task

pattern:

Synopsis. The ability for a resource to select a task offécel and starts to work on
it immediately.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
The Courier Driver selects the next “Delivery” tdstm those offered
and commences work on it.

Petri netsrepresentation:

Selectresource Task

Table 4-23 Resour ce-initiated execution-offered task pattern analysis
This approach to work distribution is adopted bgf8tare whereas WebSphere MQ using

work queues, where the work items wait for an atatem of a resource to execute it. BPEL
adopt a similar approach of that whereas BPMN atiL ldo not support it.

64

In Atoms it is not possible to offer a task, ssthattern is not supported.

4.2.3.4 System deter mined agenda content

n

Identifier: R-SDAC

Name of the System determined agenda content

pattern:

Synopsis. The ability of the work flow engine to order thentent and sequence
which tasks are presented to a resource for exe#cuti

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

Depending on the configuration specified in the cpss model, th
workflow engine presents work items to resourcéseeiin order of work

112

Petri netsrepresentation:

>y

Selectresource Task

item priority or date created.

Table 4-24 System deter mined agenda content pattern analysis

Staffware let ordering work items by priority ancedéphere MQ does not support it. In terms
of notations, neither BPMN nor UML nor BPEL suppibrt

Atoms allows the

user to order his work list.

4.2.3.5 Resour ce deter mined agenda content

[oX

I dentifier: R-RDAC

Name of the Resource determined agenda content

pattern:

Synopsis. The ability for resources to specify the format aodtent of tasks liste
in the agenda for execution.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

The Printer has a work list ordered by time ofvaati

Petri netsrepresentation:

>y

Selectresource ,: :\/ Task i

Table 4-25 Resour ce deter mined agenda content pattern analysis

Staffware, WebSphere MQ and Oracle BPEL allow anykwtem attribute to be used as the
basis of the sort criterion or for filtering the skatems that are displayed, whereas BPMN
and UML do not support it.

Atoms allows the user to order his work list.

65

4.2.3.6 Selection autonomy

Identifier: R-SA

Name of the Selection autonomy

pattern:

Synopsis. The ability for resources to select a task for exiea based on tas
attributes, features and capabilities of the resaur

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

Of the outstanding “Pruning” work items, the Heaard&ner chooses tf
one for execution they feel they are best suited to

e

Petri netsrepresentation:

>y

Selectresource

Task

)

Table 4-26 Selection autonomy pattern analysis

All of the workflow engines examined, except BPMNdaUML which do not support any

notion of agenda handler, provide support for gaigern.

In Atoms, a resource can choose what task wanexégute without any restriction, only

having allocated to it.

4.2.4 Detour patterns

Detour Patterns refer to situations where work itistributions that have been made for
resources are interrupted either by the systemt dhea instigation of the resource. As a
consequence of this event, the normal sequendateftsansitions for a work item is varied.

AS sescalate_oo

created

S:escalate_so
offered to a T —— ded
single resource T suspends
R:staft
-deallocate_s R:SUSF’E“E" R:resume
S:eskalate_ao
S:offer_s R:allocate_s - i
ﬁﬁ:escalate_aa ' R:skip
S:create - R:complete
S-allocate - allocated to a Rustart L started P - completed

single resource

R:reallocatio R:redo

S-eschlate_om
5:offer_m R: allocate/
-

no_state
S:escalatg'sa

ot —
UH:reallocation_with_state

R:fail

F

R:delegate R:start_m

calate_am Py
eallocale_m_.~

offered to -
multiple i
resources

Vs:escalate_mrn

failed

S:escalate_sm

Figure 4-7 Detour patterns

4.2.4.1 Delegation

| dentifier:

R-D

Name of the

Delegation

66

pattern:

Synopsis: The ability for a resource to allocate a task pyesily allocated to it t@
another resource.

Context: Apply this pattern is a good option when a resogare not execute a task
and decides to reallocate to another resource.

Examples: It would be a good application of the pattern:
The Chief Accountant passed all of their outstagdiasks onto the
Assistant Accountant.

Petri netsrepresentation:

: : Selectresource : : Chaice Task : :

: Celegate

Table 4-27 Delegation pattern analysis

Both Staffware and WebSphere MQ allow a resourderiard any work item that is routed
to them to another resource. Whereas BPMN and UMNllnat support this pattern, BPEL
supports it directly by means of reassign actions.

Atoms does not offer support for this pattern. Aagd of change of resource has to be
implemented in the process definition, like in petri nets representation.

4.2.4.2 Escalation

Identifier: R-E

Name of the Escalation

pattern:

Synopsis: The ability of the workflow system to offer or atlate a task to a resource

or a group of resources other than those it hagqusly been offered or
allocated to in an attempt to expedite the commbetif the task.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

The “Review earnings” task was reallocated to theatmcial Cente
Office. It had previously been allocated to thedricial Accountant but
the deadline for completion had been exceeded.

Petri netsrepresentation:

67

2 Selectresource : Choice Task :

: Delegate

Table 4-28 Escalation pattern analysis

Like the last pattern, Staffware, Websphere MQ BRE&L notation support the reallocation
of a task whereas BPMN and UML not.

We will tackle this pattern as we have done with ltst one. In fact, it is the same behaviour
in different situations.

4.2.4.3 Deallocation

Identifier: R-SD

Name of the Deallocation

pattern:

Synopsis: The ability to a resource to relinquish a task whig allocated to it and
make it available for allocation to another reseurc

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

The Supervisor has a lot of tasks allocated andldedo allocate one of
his tasks to a subordinate that will help him.

Petri nets representation:

Selectresource Task

Table 4-29 Deallocation pattern analysis

Neither Staffware nor Websphere MQ support it duthé lack of mechanisms to have a task
without allocation. The same occurs using BPMN &ML notations, whereas using BPEL,
a resource of a group of resource can acquire & item allocated to its group, and after it
can relinquish it, returning the allocation togt®up.

Atoms can not leave a task without allocation. tat reason, we will tackle this pattern as
we have done the Delegation and the Escallation.

4.2.4.4 Stateful reallocation

Identifier: R-PR

Name of the Stateful reallocation

pattern:

Synopsis. The ability of a resource to allocate a task totlagoresource without logs
of state data.

68

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
The Senior Partner has suspended work on the “Bgil&ociety Audit
Plan” task and passed it to the Junior Project Iganéor further work.

It would not be a good application of the pattern:

Petri netsrepresentation:

2 Selectresource : Choice Task :

: Delegate

Table 4-30 Stateful reallocation pattern analysis

As we have commented before, Staffware and Websplk) allows the reallocation of
tasks. BPMN and UML do not support it whereas BRHEbws the reassignment of it work
items.

Atoms can not allow the resources to reallocatesk tluring its execution, so the reallocation

has to be done before starting to execute. Wetnaitisform it as we have done with the last
patterns.

4245 Statelessreallocation

Identifier: R-UR

Name of the Stateless reallocation

pattern:

Synopsis: The ability for a resource to reallocate a taskentty being executed to
another resource without retention of state.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
The “Fill form” task has been reallocated to anotBank executive who
will restart it.

Petri nets representation:

2 Selectresource : Choice Task :

: Delegate

Table 4-31 Stateless reallocation pattern analysis

69

Neither any commercial software nor notations o$igpport for his pattern.

It is the same problem as the last pattern, wetackle it in the same way.

4.2.4.6 Suspension / resumption

Identifier: R-SR

Name of the Suspension or resumption

pattern:

Synopsis. The ability for a resource to suspend and resureewdon of a task.
Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

The Secretary has suspended all “Board Meetingfstasile the Board i$
being reconstituted.

Petri netsrepresentation:

Selectresource Task
| = |

Table 4-32 Suspension/resumption pattern analysis

Staffware allows work items that utilise a formh® suspended at any stage via some options
and Websphere MQ does not allow individual workniseto be suspended but supports the
suspension of an entire workflow case. Neither BPMiY UML support it, whereas BPEL
has available actions that offer support to it.

In terms of Atoms, it is not possible to suspertdsk in process. A work item assigned to a
resource will wait until the resource executes it.

4.2.4.7 SKip
Identifier: R-SK
Name of the Skip
pattern:
Synopsis: The ability for a resource to skip a task allocated and to mark the tagk
with a finished status.
Context: Apply this pattern is a good option when a task lsamlone automatically

from the outside of the process and at the momkits @xecution it has
been realized before.

Examples: It would be a good application of the pattern:
The Bank teller has elected to skip the “Identiigrmt” task because he
considers to the client as Regular client.

Petri nets representation:

70

Skip

z Selectresource : Choice Task :

Table 4-33 Skip pattern analysis

Whereas this pattern is not supported by Staffwatehsphere MQ offers directly support to
it. Neither BPMN nor UML support it, whereas BPHlpgorts it directly.

Atoms lets us to define an unconditional task alively to another task to skip it, but we
will not mark it as done. This is not a problemAtoms because it does not need to mark all
tasks as done, only follow the path defined ingraress.

4.2.4.8 Redo

Identifier: R-RD

Name of the Redo

pattern:

Synopsis: The ability for a resource to redo a task that pasviously beer
completed in a case.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
The Inspector has decided to redo the “Interview Watness” task.

Petri nets representation:

z Selectresource Task

Fedn

Table 4-34 Redo pattern analysis
Neither the commercial software studied nor thatans offer support for this pattern.

Atoms lets us to define an unconditional transiti@tween two tasks like in the last pattern.
Doing that, we can go back and re-do a task alrdadg.

71

4.2.4.9 Pre-Do

—

I dentifier: R-PRE

Name of the Pre-do

pattern:

Synopsis: The ability for a resource to execute a work itdma of the time that
has been offered or allocated to resources woikmng given case.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
The Inspector has completed the “Charge Suspectk vilem even
though the preceding “Interview Witness” work itetmsve not yet bee
completed.

=)

Petri netsrepresentation:

>y

Selectresource

Task

)

Table 4-35 Pre-do pattern analysis

Neither the commercial software studied nor thatans offer support for this pattern.

Atoms does not offer support for this pattern. Wk ignore this pattern definition in the
transformation and the resource can execute anhsk it is available.

4.2.5 Auto-start patterns

Auto-start patterns relate to situations where etiec of work items is triggered by specific

events in the lifecycle of the work item or theated process definition. Such events may
include the creation or allocation of the work itesampletion of another instance of the same
work item or a work item that immediately precettesone in question.

S:create
created

S:offer_m

S:start_on_create

offered to a

single resource

suspended

S:allocate

R:allocate_s

R:allocate_m

R:suspend

A

Y

R:resume

started

R:complete
-

completed

g - = =

offered to
multiple
resources

> allocated to a
single resource | S:start_on_
allacatf’,__,«"
'{/”'/R’ start_m

R:fail

Y

S:piled_execution
S:chained_execution

failed

Figure 4-8 Auto-start patterns

72

4.25.1 Commencement on creation

| dentifier: R-CC

Name of the Commencement on creation

pattern:

Synopsis. The ability for a resource to commence executiom tesk as soon as it|is
created.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

—~+

The “End of Month” task is allocated to the Chietoduntant who mus
commence working on it as soon as it is allocabelnig work queue.

Petri netsrepresentation:

Selectresource Task

Table 4-36 Commencement on creation pattern analysis

Neither Staffware nor Websphere MQ support thisgpat The BPEL notation neither since a
resource needs to accept or acquire a work itenm fiee agenda in order to start the
execution. In the other hand, BPMN and UML assuneedctions/activities lived as soon as
they receive the control-flow token.

Atoms does not support this pattern because itglatd behaviour corresponds to the next
pattern, Commencement on allocation. Then, a resowill have to wait for an allocation to
execute a task.

4.2.5.2 Commencement on allocation

I dentifier: R-CA

Name of the Commencement on allocation

pattern:

Synopsis: The ability to commence execution on a work itemsasn as it is
allocated to a resource.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:
Work on the “Practice Tower Block Fire Drill” tastlommences as soon
as it is allocated to a Fire Team resource.

Petri netsrepresentation:

Selectresource Task

Table 4-37 Commencement on allocation pattern analysis

While Staffware do not support this pattern, WelesphMQ allows resources to configure
work queues to initiate tasks on arrival. BPEL tiotadoes not support this pattern by the
same cause as last pattern whereas, BPMN and UMhptsupport it because they support
the last pattern.

73

In Atoms, a resource can execute a task sincecdiwves the control-flow token and it is
allocated to it.

4.2.5.3 Piled execution

Identifier: R-PE

Name of the Piled execution

pattern:

Synopsis: The ability of the workflow system to initiate tmext instance of a task
once the previous one has completed.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

The next “Clean Hotel Room” task can commence imatety after the
previous one has finished and it can be allocatedd same Cleaner.

Petri netsrepresentation:

Selectresource Task
| = L

Table 4-38 Piled execution pattern analysis
Neither the commercial software studied nor thetahs support this pattern.

Atoms does not support any kind of special featuresecution like that.

4.2.5.4 Chained execution

Identifier: R-CE

Name of the Chained execution

pattern:

Synopsis: The ability of the workflow engine to automatica#ifart the next task ip
case once the previous one has completed.

Context: Apply this pattern is a good option when

Examples: It would be a good application of the pattern:

D

Immediately commence the next work item in the “Egeacy Rescug
Coordination” process when the preceding one hagptaied.

Petri netsrepresentation:

Selectresource Task

Table 4-39 Chained execution pattern analysis
Neither Staffware nor Websphere MQ support it. VéaerBPEL does not support it neither,
BPMN and UML support it because when an actioromgleted, subsequent actions receive
a control-flow token and are triggered immediately.

Atoms lets the resources to execute any availadsk, tbut the system can not start the
execution of a given task.

74

4.3 XSL transformations from Petri nets to State charts

Once we know all the workflow resource patterns laod we have decided to transform each
case, we are ready to transform the source pratefgssed in Petri nets to the State charts
specification of IMmedia Atoms. In this section, &e going to show first the specification
of the output generated by our source editor, BXdi workflow editor, and the way that
IMmedia Atoms stores its workflow processes, whigh be its input too, after.

4.3.1 Output from FlowiXML workflow editor

Our workflow editor generates four different XMLUes as output of the workflow processes
we have defined using its environment:
1. processModel, which represents all the transitions between ifierdnt tasks,
2. taskModd, which stores some information about each task tmar internal
execution definition,
3. mappingModedl, which we can obtain the necessary information abwoel workflow
resource pattern applied to each task,
4. workflowModel, which has stored all the information about theaargation, like
organizational units, user stereotypes and jobs.

Some changes have been introduced in the mappingiMite] allowing the assignment of
only one pattern in the definition of a task. le flellowing sections is showed the content of
these four XML files and the changes applied omthe

4.3.1.1 processM odel

In this file we can find the information about thedations between the defined tasks of the
process.

75

<?xml version="1.0" encoding="UTF-8"?>
<ProcessModel>
<Process>
<joinPattern type="sequential">
<source taskId="2" taskName="Control the stock" />
<destination taskId="4" taskName="Send order" />
</joinPattern>
<splitPattern type="sequential">
<source taskId="4" taskName="Send order" />
<destination taskId="5" taskName="Join" />
</splitPattern>
<joinPattern type="sequential">
<source taskId="1" taskName="Place an order" />
<destination taskId="3" taskName="Manage the payment" />
</joinPattern>
<splitPattern type="sequential">
<source taskId="3" taskName="Manage the payment" />
<destination taskId="5" taskName="Join" />
</splitPattern>
<joinPattern type="sequential">
<source taskId="1" taskName="Place an order" />
<destination taskId="2" taskName="Control the stock" />
</joinPattern>
<splitPattern type="sequential">
<source taskId="2" taskName="Control the stock" />
<destination taskId="4" taskName="Send order" />
</splitPattern>
<splitPattern type="andSplit">
<source taskId="1" taskName="Place an order" />
<destination taskId="2" taskName="Control the stock" />
<destination taskId="3" taskName="Manage the payment" />
</splitPattern>
<joinPattern type="andJoin">
<source taskId="3" taskName="Manage the payment" />
<source taskId="4" taskName="Send order" />
<destination taskId="5" taskName="Join" />
</joinPattern>
</Process>
</ProcessModel>

Inside the ProcessModel tag we find the tag Proaisieh includes all the transitions in the
process, representing it in splitPattern and jditePa tags. These two tags have an attribute
called type, where we can define the type of gmlijoin of the transition, which can be
sequential, or “and”, “or” or “andOr” split/join. #Awe can see in the example, the transitions
of type sequential can be repeated due to two tamksected without any type of split or join
will have two definitions of sequential transitiomse in a splitPattern tag and another one in
a joinPattern tag.

4.3.1.2 taskM odel

This file contains information about the executiointhe task which will not used in our
transformation, because of we only deal with therusterfaces related to the workflow
resource patterns applied in the tasks.

76

Inside the TaskModel tag we can define the intebriaviour of each task using the tag
called TaskAtProcessLevel. We will not explain éeply because, as we have mentioned
before, we will not deal with this information dfet task execution.

4.3.1.3 mappingM odel

This file contains the information related to thattprns applied to defined tasks. We have
modified this file on order to allow the definitiarf only one pattern in a task.

77

<?xml version="1.0" encoding="UTF-8"?>
<mappingModel>
<resourcePatterns taskId="4" taskName="Send order">
<pattern name="R-RD" />

</resourcePatterns>
<resourcePatterns taskId="3" taskName="Manage the payment">
<pattern name="R-D" />

</resourcePatterns>
<resourcePatterns taskId="2" taskName="Control the stock">
<pattern name="R-SK" />

</resourcePatterns>
<resourcePatterns taskId="1" taskName="Place an order">
<pattern name="R-DA" />

</resourcePatterns>
<resourcePatterns taskId="5" taskName="Join">
<pattern name="R-DA" />

</resourcePatterns>
</mappingModel>

Inside the mappingModel tag we can define resowttefs tag for each task where we will
be able to define the patterns applied in themidénsesourcePattenrs tag we find the
modification we have introduced, the tag patternhwthe attribute name, filled by the

identifier of the pattern applied. The originalanfhation of the applied patterns is not showed

here because of we will not use it.

4.3.1.4 wor kflowM oddl

This file contains the information related to thigamization. In this file there is no reflected
any relation with the tasks and the process andihis reason, we will not use it in the

transformation.

<?xml version="1.0" encoding="UTF-8"?>
<WorkflowModel>
<OrganizationalUnits>
<OrganizationalUnit id="3" name="Delivery department” . . . />
<OrganizationalUnit id="2" name="Accounting department"” . . . />
<OrganizationalUnit id="1" name="Stock control department"” . . . />
</OrganizationalUnits>
<Jobs>
<Job id="1" name="Warehouseman" . . . />
</Jobs>
<UserStereotypes>
<UserStereotype id="1" name="Order preparator" . . . />
</UserStereotypes>
<RelationsJobInUnit>
<RelationJobInUnit jobId="1" organizationalUnitId="3">
<ContainedUserStereotype id="1" />
</RelationJobInUnit>
</RelationsJobInUnit>
</WorkflowModel>

Inside the WorkflowModel tag we find the informatioelated to the organization mentioned

before, but we are not going to explain it duehltttle importance of it in this thesis.

78

4.3.2 XML workflow definition of IMmedia Atoms

IMmedia Atoms stores its workflow process datann@iL file called workflow.xml, which
includes information about java classes that havbe included in the environment of the
application, the different states of the process, the transitions (tasks) between these states
called arrows.

<?xml version="1.0" encoding="UTF-8"?>
<graph>
<loader class="be.immedia.workflow.actor.computer.Null" />

<loader class="be.immedia.workflow.actor.human.FillTemplate" />
<section rows="20" cols="20">
<start id="9tmxdcka4504" row="2" col="2" />
<state id="1lpatternTaskl" name="Select ressource" rows="@" row="2" col="3" />
<state id="1" name="Place an order" rows="0" row="2" col="4" />
<end id="9tmycrk7tsfl" row="2" col="16" />

</section>
<arrow id="1" name="editer un document" start="lpatternTaskl" end="1" when="-1" class="JAVA">
<users>
<user id="-1">Administrateur</user>
</users>

<config confirm="true">
<edit id="31" form="form: Form" />
</config>
</arrow>
</graph>

The entire process is defined inside the graph tiag, main one. Inside it, we find an
assortment of java classes to include in the enmient of the application, defined using the
loader tags and its attribute class.

Afterwards, we can find the definition of all ofetlstates in the process defined using the state
tags inside the section tag, which has definedntireber of rows and columns of the final
screen. Each of these states stores informatioenttifier, name and the position in the
screen using the different attributes of this Huwe attribute row is used when a state contains
other states, but it is only a graphical suppod @ are not going to use it. There are two
special states defined using start and end tagshaydepresent the start and end states of the
entire process.

Then, the transitions between the states are dktismg the arrow tag. The attributes of this
tag are:

1. id, the identifier of the arrow,

2. name, the name of the arrow,

3. start, the source state of the arrow,

4. end, the target state of the arrow,

5. when, the number of minutes we can wait to executetds& (-1 implies no time

limit),
6. class, the java class of the arrow, which defines itisawéour.

Inside the arrow tag, we can define some necegsaameters for some types of arrows. For
example, if we define an arrow as immedia.workflow.actor.human.edit (€dit a document by a
human resource), we have to define which useralaeeto execute the task in the users tag,
and which form (user interface) is attached to ateet in the config tag.

79

4.3.3 XSL transformation

After knowing the entire XML files format we areigg to work with, we can show how the
transformation has been done.

We have approached this transformation in threestaigs: translate the petri nets process into
a state charts one, represent the behaviour gbdtiern and attach a user interface to a task
when needed.

4.3.3.1 Petri netsto state charts

As we have mentioned before, petri nets definegritsesses using places and tasks, whereas
state charts defines them using states and tramsitTo make this transformation we need to
find a relation between each object in petri net$igs corresponding object (or objects set) in
state charts, although not in the general spetificaof the UML state charts, but in the
specific definition of process of the target apgiion Atoms. The next table shows the

relation found.

Petri nets Graphical State charts Graphical Conclusions
representation representation

Start place Initial State These two objects represent

._ the same in the two
applications.

Final place Final State These two objects represent
the same in the two
applications.

Place State The state will have the name

O of the next task to execute.
. -

Task (with no Transition These two objects represent

join no split) Task to Buying request .., | the same in the two
applications.

Task (with Transition It is not possible to represent.

AND-split) Task to Buying request .., | We will advertise the
workflow manager.

Task (with Transition It is not possible to represent.

And/or-split) Task to Buying request .., | We will advertise the
workflow manager.

Task (with Transition This behaviour is the standard

XOR-split) Task to Buying request .., | one in the target application.

Task (with Transition We can not represent any kind

AND-join) Task to Buying request .., | of AND-split. Then, we will
not be necessary to represent
that.

Task (with Transition We can not represent any kind

And/or-join) Task to Buying request ..y | Of AND-split. Then, we will
not be necessary to represent
that.

80

Task (with Transition This behaviour is the standard
XOR-join) Task to Buying request ﬂ one in the target application.

Organizational

unit

User No representation The wuser management is
management developed to be done using
the interface of the
application. It could be
represented as a user group.

2rg Unit

Resour ce box User No representation The wuser management is

management developed to be done using
the interface of the
application. It could be
. represented as a user or a user

group.

Table 4- 40 Summary of therelations between object from FlowiXM L workflow editor and Atoms

Table 4-40 shows us some conclusions about thearltound, but we will complement it
with a bigger definition of each relation defineslfallows:

1.

2.

3.

Both start place andend place have a direct transformation into start state iath e
state. These two objects do not present any probileig the transformation.

Places will be represented as states. Places do not ihawve whereas states have it,
so the name of the states will be defined in thitepas definition (see section 4.3.3.2).
Tasks will be defined as transitions, which will be expdad depending on the pattern
applied to the task. As we have seen in formel@ecisee section 4.1), a task which
has applied a direct allocation pattern (see Figu®¢ will be transformed in a set of
states and transitions that represents the behavidhe applied pattern (see Figure 4-
10). The real task will be represented as the itianscalled “TASK”, whereas the
other transitions will represent the desired behavi

o

Figure 4-9 Task with a direct allocation pattern applied

Figure 4-10 Representation of a task with direct allocation pattern applied

Tasks defined with any kind oAND-split will not have the desired behaviour once
the transformation is done. The target applicatioas not allow two different paths to
follow in a process at the same time, so the balsitisn found is to advertise the
workflow manager about this kind of split and hdl Wwe able to take the best decision
for each transformation. It is not possible to $tate petri nets into state charts due to
this kind of splits [Eshu05], but in our case wedra problem added, the restriction of
only one document created for process. One possiblgion thought was to connect
the end of the different paths to the beginninghefother paths, allowing the users to

81

follow one way and return to the beginning of aeotivhen finished (see Figure 4-
11), but this solution could not make understarneldbé process transformed if the
process has a lot of this kind of splits (see Fagiil2, green arrows).

State2

Figure 4-11 Possible solution to AND-split problem

Stateld

State2

Statell

State3 Statel2

Statel3

Figure 4-12 Conflictive process transfor mation when an AND-split isfound

5. Tasks defined with OR-splits will be transformed without any special attention
because of they represent the standard behaviotineotarget application in the
transaction splitting.

6. Tasks defined with any kind ofijoin will be represented as OR-join tasks. The
problem about the representation of the AND-sphiésinot allow us to represent the
AND-join neither.

7. Organizational units and resource boxes will not be represented in the target
application. The concept of organizational unit slowt exist there, whereas the
resource boxes could be transformed in users.isrttiesis, we will not deal with the
user management in the target application, so onéyuser, the administrator, will be
able to execute the entire process.

4.3.3.2 Patternsrepresentation

Each task defined in the source editor tool wilvéna workflow resource pattern applied.
Some of these patterns will have the same repms@mtdue to the incompatibility of the
source and target applications.

82

Four different pattern representations have bedmeatk to represent the entire set of
workflow resource patterns.

: : Selectresource

: ': Choice

Figure 4-13 Reallocation patterns definition

Task

-

: Celegate

Figure 4-13 represents the definition of the ddfer reallocation patterns. In this set of
patterns we found the following ones: delegati@tadation, stateful reallocation and stateless
reallocation. We can not represent the differenetwben the stateful and stateless

reallocations in Atoms, so these two patterns kalle the same representation.

z Selectresource

: Choice

Figure 4-14 Skip pattern definition

Task

Skip

®
®

Skip pattern is a particular case of pattern, nwtilar to another one, and it will have a
special representation (see Figure 4-14).

>

Select resource

Task

Fedo

:

Figure 4-15 Redo pattern definition

83

As skip pattern, redo pattern will have a particulgpresentation in the transformation (see
Figure 4-15).

Selectresource Task
| = |

Figure 4-16 Direct allocation pattern definition

The rest of patterns we have not mentioned willehdlve representation of the direct
allocation pattern (see Figure 4-16), maybe dué rgpresents their behaviour or maybe due
to the impossibility to represent them using thers features as we have explained before
(see section 4.2). In case of our transformatiam roat represent one of this pattern and it
represents it like that, the transformation wilvedise the workflow manager of the lack of
correctness in the result. It will be necessary fwmumanagement to accomplish the behaviour
represented in the source workflow editor.

4.3.3.3 User interfaces

At this point, we only need to attach the userrfames needed to each transition created. We
will use two kinds of user interfaces, one to sethe resource to execute a task and another
to go to the next state unconditionally (see Fighey).

Select resource:

|Administrateur ‘v‘

Figure 4-17 User interface to select aresource

As a result of the transformation of the processwik obtain a bigger process (bigger
number of states) due to the transitions addeepoesent the patterns behaviour. For each
task we will obtain a set of states, whose trams&iwill have to be defined in these two ways:
select a resource or go to the target state unwondlily. We are going to show an example of
application of the four possible representatiorssngi the transformation of the second case
study of the next chapter (see section 5.2).

z! Delegate
: to Regional depart..

Select reso... Buying req... HDEIEQ&HDH-Q, e]
Fac

Figure 4-18 Reallocation patternstransfor mation

Figure 4-18 shows the transformation of a taskedaBuying request approval defined with a
delegation pattern applied. During its executioa,will arrive at the Select resource state and
we will be able to execute the selection resouass& tising the user interface last mentioned.
After that, we will arrive at the Choice state, whave will have to decide if we want to

execute the task or to reallocate it to anothesue® using unconditional transitions. If we

decide to execute the task, we will be in the statked Buying request approval in this case,
and we will have to execute it, using the speddik form, to arrive to the Delegation pattern
end, which is used to redirect the control flowtleé process to the next task. In the other

84

hand, if we would have decided to reallocate trsk,tave would have to select another
resource using the same user interface as befameive to the main state too.

(skp Jeo{ choice)
oy _Lﬂ'fﬁ' 1

o Initialize the ord... 1o B

J {Skip patter... Buying req... [Select resao... }—

Figure 4-19 Skip pattern transfor mation

Figure 4-19 shows us the transformation of a tadled Buying request responsible approval
defined with a skip pattern applied. As the lasireple, we arrive at Select resource state and
we have to select the resource using the useffantementioned before to arrive at Choice
state. Once there, we will be able to choose ifinaeat to skip the task or to execute it. If we
want to execute it, the process will be the samth@ageallocation patterns explained before
till the Skip pattern end state but, if we wanskip the task, we will arrive at the Skip state
and after we will execute an unconditional transitio finish at the Skip pattern end too.

1o Delivery f

‘Redu patter...] {Select resﬁ
T

v
{ Redo ﬁ@rder prep...]

Figure 4-20 Redo pattern transfor mation

e
Ll

Figure 4-20 shows us the transformation of a tadled Order preparation defined with a
redo pattern applied. We will always start in aeSekesource state and we will execute its
transition using the user interfaces before exphhirAfter that we will arrive at the Order
preparation state, when we will only be able tocexe the task using its specific user
interface. Then, we will arrive at Redo state, whenwill have to decide if we want to redo
the task or to finish it going unconditionally teetRedo pattern end state. If we decide to redo
the task, we will return to the Order preparatitetesand the behaviour in this state will be
the same as before.

A
—(Select resu:u...]

Figure 4-21 Direct allocation patter nstransfor mation

Tasy

: to Buying request ..
Direct alIu:u:...} g ey 2

Figure 4-21 shows us the transformation of a tadled Place an order defined with a direct
allocation pattern applied. As the other transfdromes, the execution will start in the Select
resource state and its transition will be executgidg the same user interface used before to
select a resource. Afterwards we will arrive atRit@ce an order state whose transition will be
executed using the specific user interface of &s& to finally arrive to the Direct allocation
end state, where the transformation finishes.

Once we know the essential steps of this transfiomave can show complete case studies to
understand it better in the next chapter.

85

Chapter 5

Case studies

This chapter will show two case studies allowing treader to
understand better how the transformation is done.

The first one will represent a process that an ofglaced in a current
web shop could trigger. This little case study Ww#l detailed as much
as possible showing the source process, the tramsfdb process and
the user interface used to execute it.

Afterwards, another one will represent a biggergass about a buying
request in a company which produces and managesotter it
receives. This process will not be detailed asfitisé one, but it will be
possible to know what patterns have been appliezhoh task and the
process defined in petri nets, and after its transition, will be
shown.

86

5.1 Case study 1 - Simplified buying request

This case study is about a simplified buying retjuean online shop. This business process
(see Figure 5-1) starts when a customer placesder.cAt this point, we have defined an
AND-split, starting two different (and concurreptpcesses: the one related to the accounting
department and another one related to the delepartments and its previous control of the
stock in the stock control department. Afterwattgy join in a task defined only to unify the
two processes, we have called join.

:I Stock control department :‘ Delivery department

‘Q_ Control the stock o Send order _,Q
J
/ =
9
El

Ol =)@

:l Accounting department

h /’/
O Manage the payment __O‘

Figure 5-1 Process of a simplified buying request in an online shop

Referring to the workflow resource patterns, weehapplied different patterns to each task
according to their place in the different departtaesf the organization and the execution of
the tasks. The patterns applied for each taskefreat as follows:

1. Placean order. This task is always executed by the customer fanthis reason, we
have applied the direct allocation pattern.

2. Control the stock. This task is executed by the stock controllers.N&fee applied the
skip pattern, to allow them the option of skip ttask, because of maybe they have
controlled the stock of a given good before fortarotask, knowing surely that there
Is no any lack of stock to satisfy the actual order

3. Send order. This task is executed by the warehousemen. We d&yapieed the shortest
gueue pattern to assign the task to the warehoumsweiittaless charge of work.

4. Managethe payment. This task is executed by the accountants. We teaaiiow the
accountants to reallocate this task to other warkiethe have a big charge of work,
and for this reason we have applied a delegatitienpa

Once the process is defined and we want to tramsfgrwe have to know what kind of
transformation has each of the applied patterns:

1. The place an order task will have the simplestgpattepresentation, adding a task to
select a resource before the execution of the tasin

2. The control the stock task representation hasltavals the option of skip the task.
So, before selecting the resource is going to dereitie task, we have to add a task
that allows us to choice if we want to execute task or we want to skip it.
Afterwards, they join in the same task.

3. The send order task will be allocated to the wanebman with less charge of work.
This feature can not be represented in Atoms, saviNeapply the direct allocation
pattern and the workflow manager will have to berefidly choosing the
warehouseman to execute this task.

87

- S
oo i
> 10 Send..
{Selecl reso... H Choice HComrol the...HSkip patter... HSE|EE[reso... H Send order HDirecl alloc...]
s Ly
tr
) %S”""’?i i
€
.—(Select reso... HPIace anor... HDirect alloc..) onwﬁ%n Select reso... H Jain HDirect alloc...]
8 .
3, e 1g Join m

Talodd pu;

{Select reso... H Choice ’HManage the...HDelegation
'O!'}e
=1

Figure 5-2 Simplified buying request processtransfor med to state chartsin Atoms

4. The manage the payment task will have to allowhes reallocation of the task to
another accountant. In this case, we will add & tast allows the accountant to
choose if he wants to execute the task or he mreterdelegate it to another
accountant.

Once we have the transformation done, we notideinithe petri nets process we had applied
an AND-split in the place an order task. As we knave can not represent this kind of
splitting in the state charts specification of Awnn this case, we have to choose what way
will be executed first and, knowing the case thecpss covers, we have to manage the
payment before starting to prepare the order, obimyg the stock and sending it. For this
reason, we have added a transition between thealsistof the manage the payment pattern
tasks to the first of the control the stock pattssks (see Figure 5-2).

In terms of user interfaces, once the behaviouwvali-represented in state charts, for the
selection of the resources we will use a simplerfate where we will choose the resource to
execute the actual task in a combo box (see Figpde

Select resource:

|Administrateur ‘v‘

Figure 5-3 Useinterface of the select resour ce pattern task

5.2 Case study 2 - Complete buying request

This case study is about a complete buying reguest company. As case study 1, this
process starts when a customer (or an external @oy)places an order. Afterwards, the
commercial department first, and the warehousessiflain regional departments after,
execute a series of tasks to prepare and deliyeedt Figure 5-4).

We are not going to focus on the process definitiothis case study but we will show the
patterns applied and why they have been applied:

1.

2.

8.

9.

Place an order. This task has a direct allocation pattern appliee to only the
customer or an external company can execute it.

Buying request approval. This task has a delegation pattern applied tovatoe
reallocation of this task to another resource df tiser has allocated it can not execute
it.

Send buying request cancellation. This task has a retain familiar pattern applied
because of we want that the same worker who hasiedthe previous task executes
it.

Regional department assignment. This task has a history-based allocation pattern
applied because of the company wants to have the sagional department assigned
in the different orders of the same customer.

Responsible assignment. This task has a direct allocation pattern to marstgctly

the resources who can execute this task.

Buying request warehouse approval. This task has a skip pattern applied because of,
as the order has been approved by the commerquarideent and by the regional
department before, the responsible of the warehoaseskip it if he has a good
experience with the customer and he does not thiskanother approval is necessary.

. Initialize the order preparation. This task has a shortest queue pattern appliesl. Th

reasons are that using this pattern, we can hawetatks to do well-distributed
between the workers.

Production request. This task has a retain familiar pattern appliece da the
company wants that the worker has initialized tltieobefore execute this task after.
Production. This task has a shortest queue pattern appliegl.rddsons are the same
as in the initialize the order task.

10.Order preparation. This task has a redo pattern applied because ofder can be

bad-prepared and we want to allow the workersdo re

11.De€livery. This pattern has a direct allocation pattern bgeaof this task will be

executed by an external post company and it ismcitarge of our company.

12. Satisfaction report. This pattern has a direct allocation pattern a&gplilue to we

want that the customer will execute this task.

Figures 5-4 shows us the source process defingetin nets and its transformation can be
seen in Figure 5-5.

90

Buying reguest | Redgional department assi- |

¥

approval anment

Send buying request
cancellation

=

Responsible assignment

ﬁu/ying request warehouse a-
pproval

¥

Satisfaction report

Celivery

. | Initialize the arder

i preparation

Crder preparation

¥

Production @

Production reguest ’_O

Figure 5-4 Process of a complete buying request in a company

(Choice H Delegate]
~Tis, =

Select reso... Euying reqg...

o Regional depart.

Regional de...

o '

o Responsible ass)

Responsibl...

{Select reso...] {Drect alloc...]

2 Select reso...] [Direct alloc... f

Delegation ...

1o Production

I

transitigp, fiie

T UOIRlEIES 01

(Select reso... HSatisfaction...]

o Production requ.

Ao

Je
] Buyy, 2

Select reso..] [D|rect alloc..]

"/

Send buyin..

‘Direct alloc...] (Select reso..

Shditig

nelle

l‘,.

‘Dlrect alloc

r
o |nitialize the ord..

Tlsanbal BUIANG O

(

(Select res

.\Q-

Redo patter...

Select reso...

Redo

(

HOrder prep...]

End process

Direct alloc...

y*”

Figure 5-5 Complete buying request processtransformed in state chartsin Atoms

\

Skip patter... HBuying req...l {Select reso...}
3k

X r‘iﬂ-
Skip Choice

Chapter 6 Conclusion

This thesis concludes with this chapter.

It starts with a summary of the main contributioos this thesis.
Afterwards, an explanation of some future work Wtaould bring this
problem to new frontiers of solution will be pretszh

6.1 Contribution

This thesis has dealt with the current need, withis generation, for user interfaces in a
workflow information system, which allows the defion of workflow resource patterns in
its tasks. For this purpose, commercial software baen chosen to target workflow
management systems, called Atoms. Each workflowureg pattern has been studied in
order to find a valid transformation. Whilst knogithe features of the target application, it is
impossible to represent, in its entirety, theseafgiatterns. The most common commercial
workflow management systems do not support, formiust part, the behaviour workflow
resource patterns because of they have only appeacently. Furthermore, some of this
software has been well-consolidated in the busimesdd for a long time. Some others
initiatives, such as YAWL, have been exclusivelyw@eped to support them, but in this
thesis, it was intended to link FlowiXML workflowndgor with a commercial software, which
is unable to support a large amount of the workfi@source patterns, and find the best
solution to each of them.

6.2 Future work

As mentioned throughout this thesis, the resouraeagement in the target application has
not been implemented. This is the main work stllte done in order to progressively
improve this transformation; providing it with déffent groups of users, making possible the
allocation to different resources using the usé&erfaces generated automatically. Atoms is
not developed to manage users with regards to &éxtarnal environment, so to reach this
goal, without knowing the data base managemenésysthich Atoms uses, it is necessary to
study the different relations between the data beasles, they create. Moreover, Atoms could
be modified in order to simplify the data base nggmaent from its exterior. Currently, this is
seen as complicated therefore, this modificationldtdnterest IMmedia S.A. for future
releases.

Another project could study the patterns which hagebeen possible, with respect to their
behaviour, dealing directly with the IMmedia S.Aaf§to find which pattern could be useful
to implement on Atoms. As we have seen throughtug thesis, the most common
commercial workflow management systems do not suifgpe great majority of the workflow
resource patterns. Therefore this project couldystuhich patterns are; most popular, useful
in the business world. If the developers of Atorgeea to implement some new features to its
application, the transformation could be upgradedtnew version that includes the new
supported patterns transformation.

This transformation could be done another timegiamother target application. In this thesis,
some problems have been found working with petts rend state charts transformation.
Therefore, another transformation could be doniegus petri nets based workflow definition
system, trying to find the support of the majormtythe workflow resource patterns. In this
way, the transformation will be more compatibléhte source and transformed process.

Finally, a project that deals with the transformatof the FlowiXML workflow editor output
to be used in a YAWL-supported system could be ddres would allow for perfect
behavioural representation of the different patesince YAWL has been developed directly
to support all workflow patterns.

94

References

A

[Abra99]
Abrams, M. Phanouriou, C., Batongbacal, A.L., Vdilis, S., & Shuster, J. UIML: An Appliance-
Independent XML User Interface Language. In A. Mamdn, editor, Proceedings of 8th International
World-Wide Web Conference WWW'8 (Toronto, May 11-1¥099), Amsterdam, 1999. Elsevier
Science Publishers.

[Agil08]
http://www.agilemodeling.com

[Azev00]
Azevedo, P., Merrick, P., and Roberts, D. OVID tWIML user oriented interface modeling. In
Proceedings of 1st International Workshop TowardsUMIL Profile for Interactive Systems
Development TUPISO00. York, October 2000.

B

[Bosw02]
Boswell, D., King, B., Oeschger, I., Collins, PndaMurphy, E. Introduction to XUL. In “Creating
Applications with Mozilla”, O’Reilly, Sebastopol.eptember 2002.

[BpmnO08]
http://www.bpmn.org

[BuiG08]
http://www.buigallery.com/

C

[Carl62]
C. Petri. Kommunikation mit Automaten, DissertatiofRheinisch-Westfalisches Institut fur.
Intrumentelle Mathematik an der Universitat BononB. 1962.

[Cui05]
Cui, X., Transforming Phone-based Interfaces foibVecess: from WML to UsiXML, Louvain-la-
Neuve, 2005.

D

[Desa08]
http://www.desarrolloweb.com

[Dena08]
http://www.denali.be

E

[Eich04]
Eichholz, C., Dittmar, A., Forbrig, P. (2004) Usimgsk Modeling Concepts for Achieving Adaptative
Workflows. Proceedings of DSV-IS-EHCI'94, Springéerlag, Berlin, LNCS,3425.

[Eshu05]
Eshuis, R. Statecharting Petri Nets. BETA Workirap& Series WP 153, Eindhoven University of
Technology, 2005.

[Espo05]

Esposito, D. Getting Started with Microsoft Window&/orkflow Foundation: A Developer
Walkthrough. September 2005. http://msdn.microsoft/winfx/reference/workflow

95

G

[Gome04]
Gomes de Sousa, L., and Leite, J.C. XICL- An Ext@asMark-up Language for Developing User
Interface and Components. Proceedings of the Hifthrnational Conference on Computer-Aided
Design of User Interface CADUI'2004.

[Guer06]
Guerrero, J., Conceptual Modeling of User Interfatte Workflow Information Systems, Louvain-la-
Neuve, 2006.

L

[Lema07]
Lemaigre, C., Développement d'un éditeur graphideeworkflow générant automatiquement ses
spécifications fonctionnelles, Louvain-la-Neuve020

M

[Mano02]
Dragos A. Manolescu., An Extensible Workflow Aragdture with Objects and Patterns. TOOLSEE
2001, March 2002, Sofia, Bulgaria.

[Mars94]
Marshak, R.T., Workflow White Paper — An overvietWdorkflow Software, Workflow'94, San Jose,
1994,

[Mars97]
Marshak, R.T. Workflow: Applying Automation to GrmpWProcess. In Coleman, D. (ed.): Groupware-
Collaborative Strategies for Corporate LANs anddneéts. Prentice Hall PTR, 1997, p.p. 143-181.

[Mura89]
Murata, T., Petri nets: properties, analysis angliegtions, Proceedings of the IEEE, 77(4), 541-80,
April 1989.

(0]

[Orac09]
http://www.oracle.com

P

[Puer02]
Puerta, A., and Eisenstein, J. XIML: A common regreation for interaction data. In Proceedings of
the 7th International Conference on Intelligent tdséerfaces, pp. 69-76. ACM Press, January 2002.

S

[Souc03]
Souchon, N. and Vanderdonckt, J. A review of XMlrggiant user interface description languages.
DSV-1S2003, 2003.

[Spar08]
http://www.sparxsystems.com

[Stav04]
Stavness, N. and Schneider, K. (2004) Supportirexiblle Business Processes with a Progression
Model. Workshop: Making Model-based Ul Design Picedt Usable and Open Methods and Tool.

T

[TibcO9]
http://www.tibco.com

U

[UsiX08]

http://www.usixml.org/

96

Y,

[vand98]
van der Aalst, W.M.P. The Application of Petri N&asWorkflow Management. The Journal of
Circuits, Systems and Computers, 8(1):21--66, 1998.

[vand01]
van der Aalst, W.M.P. and Kumar, A. XML Based Schemefinition for Support of Inter-
organizational Workflow. University of Colorado ahbihiversity of Eindhoven. Technical Report, 2001

[vand03]
van der Aalst W.M.P., ter Hofstede, A.H.M., Kiepesski, B. and Barros, A.P., Workflow Patterns.
Distributed and Parallel Databases, 14(3), July32p@ges 5-51.

[vand05]
van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWYet Another Workflow Language. Information
Systems 30 (2005) 245—275

W
[W3C09]
http://www.w3.0rg

[W3Sc09]
http://www.w3schools.com/

[WfMC99]
WIMC (1999) Terminology & Glossary. Workflow Managent Coalition. Document Number
WFMC-TC-1011. Document Status — Issue 3.0. Feb-99.

[Wiki09]
http://www.wikipedia.com

[Work08]
http://www.workflowpatterns.com

Y
[YAWLOS]
http://yawlfoundation.org/

97

Annex. Attached content

In the attached disc we can find the source codehef XSL transformation called
UlGenerator.xsl, which can be executed using tha poject included, called SampleXalan,
amongst other execution options. This project ctuiled because is the used one throughout
the tests done for this thesis and to facilitaeegkecution of it. To use that, we need to define
the SampleXalan folder as workspace of an Eclipsgegt and add a folder called xml, which
will include the output XML files of the FlowiXML wrkflow editor and the UlGenerator.xsl
source code, but also the four pattern definitionghe folder added, all of these steps have
been done and is not necessary to do it again.

The UlGenerator.xsl source code file and this th@siPDF format are inside the attached
content too.

98

