
Chapter #

FAST HI-FI PROTOTYING BY USING IDEALXML
A task-based approach to user interfaces design

Francisco Montero, Víctor López-Jaquero
Laboratory on User Interaction & Software Engineering (LoUISE)
Instituto de Investigación en Informática (I3A)
University of Castilla-La Mancha, 02071 Albacete, Spain
{ fmontero | victor }@info-ab.uclm.es

Abstract: Task modeling has become one of the cornerstones of model-based user
interface design. Although different task modeling approaches to user
interfaces design have been pushed, ConcurTaskTrees notation is becoming a
de facto standard in the design of user interfaces including task-based
modeling techniques. In this paper, a task-based approach to user interfaces
design is introduced inspired by ConcurTaskTrees (Paternò, 1999). This
approach is supported by a tool, namely IDEALXML, that allows for the
animation of the specified user interfaces to generate a hi-fi prototype of the
future user interface while still in the first development stages.

Keywords: Specification animation, task modeling, model-based design, user interfaces
design tools.

1. INTRODUCTION

The main idea underlying in model-based approaches is identifying
useful abstractions that highlight the main aspects of the design of an
application. Model-based approaches for User Interface (UI) development
have the potential to accommodate the increasing complexity of today’s
interactive applications. However, the mainstream developer has not adopted
the model-based approach for creating UIs due to certain limitations (Myers
et al., 2000).

The UI development task is one of the main design challenges in the
creation of an application, since it must support the system’s acceptance and
be accessible and usable for everyone. Involving the users from the very
beginning in the design process and focusing on usability, and not just on

#. Fast Hi-Fi Prototying by Using IdealXML 2

technology, designers have tried to address this difficult challenge. To
ensure the interface suited the target population, User-Centered Design
(UCD) methods were introduced. On the other side, Usage-Centered Design
(Constantine et al., 1999) partakes of the broadly UCD philosophy, but it
emphasizes the fact that the center of attention should be the usage rather
than the users per se. In the so called usage-centered design the attention is
driven to those particular aspects of users that are more relevant to user
interface design, fostering the linkage to use cases as a task or usage model.

Nowadays, software engineers use rapid prototyping to discover
requirements by analyzing the prototypes built early in the development
process and gathering feedback.

In this paper, we address fast hi-fi prototyping within a model-based UI
environment. This approach is supported by a powerful visual tool, namely
IDEALXML (Montero et al., 2005). UI design following the proposed
approach is driven by task and domain models using a seamless mapping
technique.

This paper is organized in three sections. First, an overview of model-
based UI generation is presented. Next, UI description languages are
introduced, focusing on usiXML (Limbourg et al., 2004). Finally, our
approach to fast hi-fi prototyping is described.

2. USER INTERFACE GENERATION

The model-based approach was introduced to identify high-level models
in order to allow the specification and analysis of an interactive system from
a more semantic-oriented level, rather than dealing immediately with low-
level implementation issues (Paternò, 1999). Unfortunately, the creation of
the various models and the process of linking those models to each other is a
tedious and time–consuming activity. Tools are required to attempt to relieve
or hide these shortcomings.

In a model-based approach, the UI design is the process of creating and
refining the set of models that describes the UI. In other words, model-based
design focuses on finding the mappings between the various models
(Vanderdonckt et al., 2003; Montero et al., 2005). Many facets as well as
related models exist in order to describe the UI. A series of declarative
models, such as domain, task, dialog, and presentation are interrelated to
provide a formal representation of an interface design (Puerta, 1997) that
finally will drive the generation of the UI.

Nowadays, we can find proposals in the literature that provide
frameworks that enable UI development. At the beginning, most of those
proposals would generate the UI out of a domain model. However, currently

#. Fast Hi-Fi Prototying by Using IdealXML 3

most approaches drive their development out of a task model. Some of these
proposals will be introduced in the next sections, describing the pros and
cons of both domain-based UI design and task-based UI design.

2.1 Domain-Based Generation of User Interfaces

Domain model encapsulates the important entities of a particular
application domain together with their attributes, methods and relationships.
In particular, it captures concepts, objects and operations describing the
domain. Within the scope of UI development, it defines the objects that the
user requires in order to carry out his tasks.

Elements in the domain model possess attributes that are often relevant to
UI presentation elements selection. Examples for these attributes are the data
type, the range, the minimum and maximum value, etc. During the
transformation process that generates the final UI, mappings are established
which define, for example, which widgets should be used to display the
value of an integer-type object for an input interaction task.

A study of the matching between the domain model elements and the UI
ones has resulted in the following observations, which are enumerated
bellow:
• Most of the main menu entries or navigation tabs correspond to one

important class in the domain model
• There are some small help classes that are not presented in the UI at all.
• Text, integer and date attributes are represented by a static text label or a

editable text field.
• Attribute types having a predefined number of values, are represented by

an option-button or by an editable text-field that performs a syntax check.
• Singular references/pointers to other model classes are represented by a

number of widgets showing important properties of the referenced object
and a button leading to another visualization space showing additional
information.

• Collections of references/pointers to other classes instances are
represented by a list-view, having a column for each attribute.
These observations showed that important classes in the domain model

are very visible in the UI, that class attributes often are a good indication of
what data should be displayed and how it could be displayed, and that
relationships between classes in the domain model are also represented in the
UI.

Meaningful examples of this strategy in UI generation out of different
types of domain models are Janus (Balzert, 1996), OlivaNova (Molina et al.,
2004), Teallach (Griffiths et al., 1999) for desktop application, in web-based

#. Fast Hi-Fi Prototying by Using IdealXML 4

environments WebRatio (Ceri et al., 2000) and VisualWade (Gómez, 2004)
and in hypermedia applications OHDM (Schwabe et al., 1995).

These domain-based UI generation approaches produce complex UI,
because users can see many elements at the same time. Moreover, as long as
the user-task are not contemplated the dialog within the UI is rather limited
and constrained, producing UI quite static.

2.2 Task-Based Generation of User Interfaces

Task model specifies what the user does, or wants to do, and why. It
describes the tasks that users perform using the application, as well as how
those tasks are related to each other. In other words, it captures the user tasks
and the system behavior with respect to a task-set. ConcurTaskTree (CTT)
(Paternò, 1999) is a well-accepted notation in the UI research development
community used for the specification of task models. Despite the many
advantages of CTT, large interactive systems described by using that
notation can become too complex to be easily understood and can be really
tedious to build (Paternò, 2001).

Most model-based development approaches define a dialog model by
using a task model. Information from the task model is exploited in order to
automatically or interactively derive the navigational structure of the
application. In TERESA (Mori et al., 2004), structural information, as well
as temporal relationships, are exploited in order to generate a so-called
activation set. This set is later used to automatically generate the dialog
model and the widgets of presentation model.

Our proposal is based on CTT notation, but a different set of icons are
used in our tool, IDEALXML (Montero et al., 2005), to represent the different
kinds of tasks. In Table 1 you can find the set of icons for the different types
of tasks used:

Type of task icon

abstraction
application
interaction
user

Table 1. Types of tasks and icons used in IDEALXML
Task-based design as opposed to domain-based one incorporates

information regarding the tasks the user will carry out through the UI as well
as the temporal relationships between those tasks. This kind of information
allows addressing usability aspects such as UI overload, presentation
elements grouping, etc.

#. Fast Hi-Fi Prototying by Using IdealXML 5

2.3 User Interfaces Prototyping

Presentation model represents the content and organization of the user
interface needed to support the identified tasks, apart from its appearance
and behavior. Presentation model could be also called abstract prototype,
since it represents, in the abstract, the contents of a user interface and how
these contents are organized into interaction contexts, that is, the contexts
within which users interact with the system.

Some of the main drawbacks of model-based user interface development
have been the unpredictability of the final results and the lack of techniques
for the evaluation of the final user interface given a set of declarative models
(Myers et al. 2000). To overcome these drawbacks, and some other ones,
different techniques have been introduced into human computer interaction
development methodologies. One of those techniques introduced is user
interface prototyping.

Prototyping consists in the creation of a preliminary version of the future
user interface (prototype) so that the user and the experts can find possible
problems in the design of the UI, both from the functional and from the
usability points of view. Prototyping techniques fall into two main
categories: (1) lo-fi (low-fidelity) techniques: this family of techniques are
mostly used in requirements analysis stage to validate the requirements with
the user in user-centered approaches. Lo-fi prototyping helps you apply
Fudd’s first law of creativity: “To get a good idea, get lots of ideas.” (Rettig,
1994). Paper prototyping, storyboards, card sorting, wireframes or sketching
are some of the techniques widely extended in lo-fi UI prototypes creation.
The main advantage of this kind of techniques is how quick and cheap the
prototype is built and how easily this prototype can be modified. In
(Granollers, 2004) a deep review of these lo-fi prototyping techniques can be
found. (2) hi-fi (high-fidelity) techniques: they are aimed at the creation of
preliminary version of the UI with an acceptable degree of quality. This kind
of techniques produce a UI prototype which is much more closer to the final
future one.

Although paper is still the most widely tool used in prototyping, some
other tools have been proposed to try to make prototyping faster, easier to
change or more accurate. In this sense, sketching tools like SketchiXML
(Coyette et al., 2005) or CanonSketch (Campos et al., 2004) try to replicate
the facilities in paper prototyping into a computer. SketchiXML is able to
create a sketch of the UI by interpreting the drawings the user makes in a
writable surface, such as the screen of a tablet PC, later the sketched user
interface can be saved into a UI description language, namely usiXML
(http://www.usixml.org). CanonSketch, on the other hand, allows for the
specification of an abstract UI in terms of a Canonical Abstract Prototype

#. Fast Hi-Fi Prototying by Using IdealXML 6

(Constantine, 2003). A different point of view is pushed in UI Pilot (Puerta
et al., 2005). This tool provides a environment where the designer can build
a prototype based on wireframes, that describe what should be implemented
for each screen/page. Although the tool is rather interesting for the
communication between requirements analysts and the developers, it fails to
provide a formal framework to allow the designer to test an ongoing UI
development.

Hi-fi prototypes could be considered to be better than lo-fi prototypes,
since they are closer to the final user interface the user will interact with.
Nevertheless, a set of disadvantages have been identified (Rettig, 1994) in
hi-fi prototypes that need to be overcome: (1) these hi-fi prototypes take
longer to be created and changed, (2) the reviewers/evaluators tend to
comment more on the look and feel than on usability or function issues, (3)
as hi-fi prototypes take more time and effort to be created their developers
are more reluctant to introduce any change, (4) these prototypes can rise
expectations that might not be achieved in the final version, and finally (5) a
single bug in a test can bring a testing session to a complete halt, that is to
say, the prototype must be robust.

3. MODEL-DRIVEN DEVELOPMENT IN USER
INTERFACES DESIGN

During the last years, software engineering community has introduced
the concept of Model Driven Architecture (MDA) (Vanderdonckt, 2005)
which we find, in terms of goals, has some similarities with the model-based
approach in UI engineering. The main benefit of MDA is the clear separation
of the fundamental logic behind a specification from the specifics of the
particular middleware that implements it.

In our proposal, we use models precisely because they actually speed up
development and help us to get to a better solution more quickly. Good
models clarify design issues and highlight tradeoffs, so design issues can be
resolved rapidly. Models also help us to deliver better and more robust
systems. In this sense, abstract prototyping was devised because it was found
that the sooner developers started drawing realistic pictures or positioning
real widgets, the longer it took them to converge on a good design
(Constantine, 2003). Abstract models are always much simpler than the real
thing.

#. Fast Hi-Fi Prototying by Using IdealXML 7

3.1 XML-based UI description languages

Nowadays, a series of models are used within MB-UID approaches to
describe UI. These models need to be stored in a repository so that they can
be manipulated by the different tools used during UI generation stages. In
most cases these models are stored using an XML-based format. In
(Souchon et al., 2003) a review of the most prominent XML-based UI
description languages can be found. UIML (Abrams et al., 1999), XIML
(Puerta and Eisenstein, 2002), DiaMODL (Molina et al., 2004) or UsiXML
(Limbourg et al., 2004) are meaningful examples of these kind of languages.

UsiXML provides an abstract user interface model that represents a
canonical expression of the renderings and manipulation of the domain
concepts and functions in a way that is as independent as possible from
modalities and computing platform specifies.

 Facet Icon

Abstract object Icon input

Container output
Component control

 navigation
Table 2. Abstract interaction objects and facets in usiXML and icons used in IDEALXML
We are using the abstract UI specification proposed in usiXML because

it provides a reduced set of elements that allow the description of an abstract
UI in a platform and modality independent manner. In Table 2 the set of
icons used within our tool to represent the different elements of the abstract
UI are shown.

4. FAST GENERATION OF HI-FI USER
INTERFACE PROTOTYPES

One of the advantages of using a formal modeling language to specify the
task model, such as ConcurTaskTrees, is the ability to simulate the system
before it is built. Simulation can help to ensure that the system that is built
will match users’ conceptual model as well as to help to evaluate the
usability of a system at a very early stage. Several task models simulators
have been built for ConcurTaskTrees. For example, in CTTE the designers
can specify a task model, which can be simulated. In IDEALXML designers
can specify a task model and simulate the UI derived from the designed task
model in an abstract manner by using CTT, usiXML and a set of heuristics

#. Fast Hi-Fi Prototying by Using IdealXML 8

to transform the task model specification into an abstract UI. Currently, these
heuristics are hardcoded in IDEALXML application code, but there is an
ongoing work to support the use of transformation rules that the designer can
modify following approach similar to the one proposed in (Limbourg et al.,
2004).

Figure 1. Task model specification in IDEALXML for e-mail sending task

Figure 2. Abstract UI specification out of task model

Figure 3. Simulation, ETS and abstract UI specification are available in IDEALXML

#. Fast Hi-Fi Prototying by Using IdealXML 9

4.1 Abstract User Interfaces Prototyping

The previously mentioned hardcoded transformation rules are gathered in
this section. It is fairly simple, straightforward rules govern transformations.
• Each cluster of interrelated task cases becomes an interaction space in the

navigation map, so an abstract task is a container.
• A container also can be an interaction task or an application task if any of

them are leaf in a hierarchical task decomposition.
• A component rises when we found an interaction or application task in a

hierarchical task decomposition.
• A component can have several facets (input, output, control and

navigation). These facets allow to the user interact with a system.
These transformation rules can be shown in Table 3.

Task model is an Abstract presentation model

abstract task is a container
 input
 output
interaction task control

is leaf: component

 navigation

is a

not leaf: container

 is leaf: container
application task output

is a
is leaf: component

 navigation
Table 3. From task model to abstract presentation model

4.2 Abstract User Interfaces Prototypes Animation

IdealXML supports the animation of the abstract user interface resulting
from the designed task model. This animation is grounded in the
identification of the enabled task set (ETS) (Paternò, 1999). The ETSs for a
specific task model is referred to as an enabled task collection (ETC).

Having identified the ETC for a task model, the next step is to identify
the effects of performing each task in each ETS. The result of this analysis is
a state transition network (STN), where each ETS is a state and transitions
occur when tasks are performed.

In our proposal, the task model specification is split into states. Each state
is a set of interrelated tasks, including temporal relationships between those
tasks, usually connected to a essential use case (Constantine et al., 1999). In
Fig. 1 the task model for sending an e-mail message can be found. Two

#. Fast Hi-Fi Prototying by Using IdealXML 10

states have been identified in this case. The first one is related to user
identification in the mail server and the second one is related to sending the
e-mail message. By splitting the task model into states the task model
complexity is drastically reduced and the legibility is really boosted.

States are connected by establishing links between them. Two different
kinds of links are proposed linkOK and linkKO. LinkOK specifies which
state the system should go to when the goal of the current state is
successfully achieved. In a similar manner, linkKO is state the system should
go to when the goal of the current state fails. For example, in Fig. 2 linkOK
points to the state where the user can send the e-mail (it means that the user
password provided was successfully validated) and linkKO points to current
state (identification state, because the verification of the user password
provided failed).

As in CTTE the designer can simulate task model specification in a
textual manner, see Fig. 3a. In IDEALXML the designer is allowed also to
animate the specification in a visual manner interacting with the abstract user
interface. Moreover, at any time designers can select any set of tasks in the
task model and get the abstract UI specification for the selected task in a
graphical manner.

5. CONCLUSIONS

A good user interface design is essential to ensure the acceptance of a
new software. It is a complex subject, but we can overcome this complexity
by raising the level of abstraction in the design by using models. As long as
models are aimed at working at an abstract level a mechanism is required to
validate the design.

Abstract prototyping is a way to avoid the seduction of attractive
prototypes that disguise weak designs. By making better use of modern
visual development tools, abstract prototyping can speed up and simplify the
design of highly usable systems and help us to produce improved and more
innovative software products. In our fast abstract prototyping proposal we
address most of the hi-fi prototypes shortcomings identified in (Rettig,
1994), providing an environment that allows the creation of the prototypes
quickly in an abstract level enough to avoid focusing more on look & feel
than in functional or usability issues and providing prototypes that can be
easily modified.

Because the reduced set of elements used in usiXML to describe the
abstract user interface and the graphical notations that we have provided in
IDEALXML for each element, it is easy for the user to learn the notation and
provide useful feedback to the designer.

#. Fast Hi-Fi Prototying by Using IdealXML 11

6. ACKNOWLEDMENTS

This work is in part supported by the Junta de Castilla-La Mancha
Regional grant PBC-03-003 and the Spanish CICYT TIN2004-08000-C03-
01 grant. Also, we gratefully acknowledge the support of the SIMILAR
network of excellence (http://www.similar.cc), the European research task
force creating HCI similar to human-human communication of the European
Sixth Framework Program.

REFERENCES

Abrams, M. UIML: An Appliance-Independent XML User Interface Language, in
Proceedings of WWW8, Toronto, Canada. 1999.

Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C. The JANUS Application
Development Environment - Generating More than the User Interface. CADUI 1996:
183-208

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt, J. A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers 15, 3 2003, 289–308.

Campos, P. and Nunes, N. Canonsketch: a User-Centered Tool for Canonical Abstract
Prototyping. In Proceedings of DSV-IS'2004, 11th International Workshop on Design,
Specification and Verification of Interactive Systems. Springer-Verlag, 2004.

Ceri, S. Fraternali, P. Bongio, A.: "Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites". WWW9 Conference, Amsterdam, May 2000.

Constantine, L. L., Lockwood, L. A. D. Software for use. Addison-Wesley. 1999.
Constantine, L.: Canonical Abstract Prototypes for abstract visual and interaction design. In:

Jorge, J., Nunes, N. and Falcão e Cunha, J. (eds.): Proceedings of DSVIS’ 2003, 10th
International Conference on Design, Specification and Verification of Interactive
Systems. Lecture Notes in Computer Science, Vol. 2844. Springer-Verlag, Berlin
Heidelberg New York, 2003.

 Coyette, A., Vanderdonckt, J., A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces, Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer
Interaction Interact’2005 (Rome, 12-16 September 2005), M.-F. Costabile, F. Paternò
(eds.), Lecture Notes in Computer Science, Vol. 3585, Springer-Verlag, Berlin, 2005, pp.
550-564

Eisentein, J., Rich, C. Agents and GUIs from task models. In proceedings of 7th ACM
Conference on Intewlligent User Interfaces IUI 2002. ACM Press. New York, 2002.

Gómez, J. Model-Driven Web Development with VisualWADE. ICWE 2004: 611-612
Granollers, T. MPIu+a. Una metodología que integra la Ingeniería del Software, la

Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de
desarrollo multidisciplinares, University of Lérida, Spain, July 2004.

Griffiths, T., Barclay, P., McKirdy, J., Paton, N., Gray, P., Kennedy, J., Cooper, R., Goble,
C., West, A., Smyth, M. Teallach: A model-based user interface development
environment for object databases. In Proceedings of UIDIS'99. IEEE Press. 86-96.

#. Fast Hi-Fi Prototying by Using IdealXML 12

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López Jaquero, V. UsiXML: a

Language Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP
Working Conference on Engineering for Human-Computer Interaction jointly with 11th
Int. Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). LNCS, Vol. 3425, Springer-Verlag, Berlin,
Germany, 2005.

Molina, P. User interface generation with OlivaNova model execution system. Intelligent
User Interfaces 2004: 358-359

Montero, F., López Jaquero, V., Lozano, M., González, P. A User Interfaces Development
and Abstraction Mechanism. In HCI related papers of Interacción 2004. Navarro Prieto,
Raquel; Lorés Vidal, Jesús (Eds.) Springer.Verlag, Germany, 2005.

Montero, F., López Jaquero, V., Vanderdonckt, J., González, P., Lozano, M.D., Solving the
Mapping Problem in User Interface Design by Seamless Integration in IdealXML. 12th
International Workshop on Design, Specification and Verification of Interactive Systems
(DSV-IS’2005), Newcastle upon Tyne, England, July 13-15, 2005. Springer-Verlag,
Berlin, Germany, 2005 (in print).

Mori G., Paterno` F., Santoro C. Tool Support for Designing Nomadic Applications.
Proceedings ACM IUI’03, pp.141-148, January 2003, Miami, USA.

Myers, B., Hudson, S. E., and Pausch, R. Past, present, and future of user interface software
tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (Mar. 2000), 3-28, 2000.

Paternò, F. Model-based design and evaluation of interactive applications. Springer. 1999.
Puerta, A.R. A Model-Based Interface Development Environment. IEEE Software, pp. 40-

47, 1997.
Puerta, A.R., Eisenstein, J.: XIML: a common representation for interaction data . IUI 2002:

216-217, 2002.
Puerta, A.R., Micheletti, M., Mak, A. The UI pilot: a model-based tool to guide early

interface design. IUI 2005. 215-222, 2005.
Rettig, M. Prototyping for tiny fingers. Communication ACM 37, 4 (Apr. 1994), 21-27,

1994.
Schwabe, D., Gustavo Rossi, G. The Object-Oriented Hypermedia Design Model. Commun.

ACM 38(8): 45-46. 1995.
Souchon, N., Vanderdonckt, J., A Review of XML-compliant User Interface Description

Languages. Design, Specification, and Verification of Interactive Systems (DSV-IS
2003), pp. 377-391, 2003.

Vanderdonckt, J. A MDA-Compliant Environment for Developing User Interfaces of
Information Systems. CAiSE 2005: 16-31. 2005.

