
245

Chapter 20

IDEALXML: AN INTERACTION DESIGN TOOL
A Task-Based Approach to User Interfaces Design

Francisco Montero and Víctor López-Jaquero
Laboratory on User Interaction & Software Engineering (LoUISE)
Instituto de Investigación en Informática (I3A)
University of Castilla-La Mancha - 02071 Albacete (Spain)
E-mail: {fmontero , victor}@info-ab.uclm.es
Tel: +34 967/599200 – Fax: +34 967/599224 – Web: http://www.i3a.uclm.es

Abstract Task modeling has become one of the cornerstones of model-based user inter-
face design. In this paper, a task-based approach to user interfaces design is in-
troduced. This approach is supported by a tool, namely IDEALXML, that al-
lows for the animation of the specified user interfaces to generate a hi-fi proto-
type of the future user interface while still in the first development stages.

Keywords: Model-based design, Specification animation, Task modeling, User interfaces
design tools, User interface extensible markup language.

1. INTRODUCTION

Nowadays, software engineers use rapid prototyping to discover re-
quirements by analyzing the prototypes built early in the development proc-
ess and gathering feedback. In this paper, we address fast hi-fi prototyping
within a model-based user interface (UI) environment. This approach is sup-
ported by a powerful visual tool, namely IDEALXML [13]. UI design follow-
ing the proposed approach is driven by task and domain models using a
seamless mapping technique. The task and the domain models are mapped
together thanks to a set of mappings which express how data from the do-
main model is manipulated in the task and how methods from the domain
model are executed in tasks. This paper is organized in three sections. First,
an overview of model-based UI generation is presented. Next, UI description
languages are introduced, focusing on UsiXML [10]. Finally, our approach
to fast hi-fi prototyping is described.

246 Montero and López-Jaquero

2. USER INTERFACE GENERATION

We can find proposals in the literature that provide frameworks that en-
able UI development. At the beginning, most of those proposals would gen-
erate the UI out of a domain model. However, currently most approaches
drive their development out of a task model. Some of these proposals will be
introduced in the next sections, describing the pros and cons of both.

2.1 Domain-Based Generation of User Interfaces

Domain model encapsulates the important entities of a particular applica-
tion domain together with their attributes, methods and relationships. Ele-
ments in the domain model possess attributes that are often relevant to UI
presentation elements selection. Examples for these attributes are the data
type, the range, the minimum and maximum value, etc. Meaningful exam-
ples of this strategy in UI generation out of different types of domain models
are Janus [2], OlivaNova [11], Teallach [9] for desktop application, in web-
based environments WebRatio [4] and VisualWade [8] and in hypermedia
applications OHDM [21]. These domain-based UI generation approaches
produce complex UI, because users can see many elements at the same time.
Moreover, as long as the user-task is not contemplated, the dialog within the
UI is rather limited and constrained, producing UI quite static.

2.2 Task-Based Generation of User Interfaces

Most model-based development approaches define a dialog model by us-
ing a task model. ConcurTaskTree (CTT) [16] is a well-accepted notation in
the UI research development community used for the specification of task
models. Information from the task model is exploited in order to automati-
cally or interactively derive the navigational structure of the application.
TERESA [14] exploits structural information as well as temporal relation-
ships in order to generate an activation set, which is later used to automati-
cally generate the dialog model and the widgets of presentation model. Task-
based design as opposed to domain-based one incorporates information re-
garding the tasks the user will carry out through the UI as well as the tempo-
ral relationships between those tasks. This kind of information allows ad-
dressing usability aspects such as UI overload, presentation grouping, etc.

2.3 User Interfaces Prototyping

Some of the main drawbacks of model-based user interface development
have been the unpredictability of the final results and the lack of techniques
for the evaluation of the final UI given a set of declarative models [15]. To

IDEALXML: An Interaction Design Tool 247

overcome these drawbacks, and some other ones, different techniques have
been introduced. One of those techniques introduced is user interface proto-
typing. Prototyping consists in the creation of a preliminary version of the
future UI (prototype) so that the user and the experts can find possible prob-
lems in the design of the UI, both from the functional and from the usability
points of view. Prototyping techniques fall into two main categories:
1. Lo-fi (low-fidelity) techniques: this family of techniques is mostly used in

requirements analysis stage to validate the requirements with the user in
user-centered approaches.

2. Hi-fi (high-fidelity) techniques: they are aimed at the creation of prelimi-
nary version of the UI with an acceptable degree of quality. This kind of
techniques produces a UI prototype which is closer to the final future one.
Although paper is still the most widely tool used in prototyping, some

other tools have been proposed to try to make prototyping faster, easier to
change or more accurate. In this sense, sketching tools like SketchiXML [6]
or CanonSketch [3] try to replicate the facilities in paper prototyping into a
computer. A different point of view is pushed in UI Pilot [19]. Hi-fi proto-
types could be considered to be better than lo-fi prototypes, since they are
closer to the final user interface the user will interact with. Nevertheless, a
set of disadvantages have been identified [20].

3. MODEL-DRIVEN DEVELOPMENT IN USER IN-
TERFACES DESIGN

In our proposal, we use models precisely because they actually speed up
development and help us to get to a better solution more quickly. Good
models clarify design issues and highlight tradeoffs, so design issues can be
resolved rapidly. Models also help us to deliver better and more robust sys-
tems. In this sense, abstract prototyping was devised because it was found
that the sooner developers started drawing realistic pictures or positioning
real widgets, the longer it took them to converge on a good design. Abstract
models are always much simpler than the real thing. Nowadays, a series of
models are used within MB-UID approaches to describe UI. These models
need to be stored in a repository so that they can be manipulated by the dif-
ferent tools used during UI generation stages. In most cases these models are
stored using an XML-based format. In [22], a review of the most prominent
XML-based UI description languages can be found. UIML [1], XIML [18],
DiaMODL [11] or UsiXML [10] are meaningful examples of these kinds of
languages. UsiXML provides an abstract UI model that represents a canoni-
cal expression of the renderings and manipulation of the domain concepts
and functions in a way that is as independent as possible from modalities and
computing platform specifies.

248 Montero and López-Jaquero

 Facet Icon
Abstract object Icon Input
Container Output
Component Control
 Navigation

Table 1. Abstract interaction objects and facets in UsiXML and icons used in IDEALXML.

We are using the abstract UI specification proposed in UsiXML because
it provides a reduced set of elements that allow the description of an abstract
UI in a platform and modality independent manner. In Table 1 the set of
icons used within our tool to represent the different elements of the abstract
UI are shown.

4. FAST GENERATION OF HI-FI USER INTER-
FACE PROTOTYPES

One of the advantages of using a formal modeling language to specify the
task model, such as CTT, is the ability to simulate the system before it is
built. Simulation can help to ensure that the system that is built will match
users’ conceptual model as well as to help to evaluate the usability of a sys-
tem at a very early stage. Several task models simulators have been built for
CTT. For example, in CTTE the designers can specify a task model, which
can be simulated. In IDEALXML, designers can specify a task model and
simulate the UI derived from the designed task model in an abstract manner
by using CTT, UsiXML and a set of heuristics to transform the task model
specification into an abstract UI. Currently, these heuristics are hard coded in
IDEALXML application code, but there is an ongoing work to support the use
of transformation rules that the designer can modify following approach
similar to the one proposed in [10].

4.1 Abstract User Interfaces Prototyping

The previously mentioned hard coded transformation rules are gathered
in this section. Straightforward rules govern transformations (Table 2):
• Each cluster of interrelated task cases becomes an interaction space in the

navigation map, so an abstract task is a container.
• A container also can be an interaction task or an application task if any of

them are leaf in a hierarchical task decomposition.
• A component rises when we found an interaction or application task in a

hierarchical task decomposition.
• A component can have several facets (input, output, control and naviga-

tion). These facets allow the user to interact with a system.

IDEALXML: An Interaction Design Tool 249

Task model is Abstract presentation model

Abstract task is a container

input

output

control
a leaf: component

navigation
Interactive task is

not a leaf: container

not a leaf: container

output Application task is
a leaf: component

navigation

Table 2. From task model to abstract presentation model.

4.2 Abstract User Interfaces Prototypes Animation

IdealXML supports the animation of the abstract user interface resulting
from the designed task model. This animation is grounded in the identifica-
tion of the enabled task set (ETS) [16]. Having identified the ETC for a task
model, the next step is to identify the effects of performing each task in each
ETS. The result of this analysis is a state transition network (STN), where
each ETS is a state and transitions occur when tasks are performed. In our
proposal, the task model specification is split into states. Each state is a set
of interrelated tasks, including temporal relationships between those tasks,
usually connected to an essential use case [5].

Figure 1. Task model specification in IDEALXML for e-mail sending task.

250 Montero and López-Jaquero

Figure 2. Abstract UI specification out of task model.

Figure 3. Simulation, ETS and abstract UI specification are available in IDEALXML.

In Fig. 1, the task model for sending an e-mail message can be found.
Two states have been identified in this case. The first one is related to user
identification in the mail server and the second one is related to sending the
e-mail message. By splitting the task model into states the task model com-
plexity is drastically reduced and the legibility is really boosted. States are
connected by establishing links between them. Two different kinds of links
are proposed linkOK and linkKO. LinkOK specifies which state the system
should go to when the goal of the current state is successfully achieved. In a
similar manner, linkKO is state the system should go to when the goal of the
current state fails. For example, in Fig. 2, linkOK points to the state where
the user can send the e-mail (it means that the user password provided was
successfully validated) and linkKO points to current state (identification
state, because the verification of the user password provided failed).

As in CTTE, the designer can simulate task model specification in a tex-
tual manner (Fig. 3a). In IDEALXML, the designer is allowed also to animate
the specification in a visual manner interacting with the abstract UI. More-
over, at any time designers can select any set of tasks in the task model and
get the abstract UI specification for the selected task in a graphical manner.

IDEALXML: An Interaction Design Tool 251

5. CONCLUSION

A good user interface design is essential to ensure the acceptance of a
new software. It is a complex subject, but we can overcome this complexity
by raising the level of abstraction in the design by using models. Abstract
prototyping is a way to avoid the seduction of attractive prototypes that dis-
guise weak designs. By making better use of modern visual development
tools, abstract prototyping can speed up and simplify the design of highly
usable systems and help us to produce improved and more innovative soft-
ware products. In our fast abstract prototyping proposal we address most of
the hi-fi prototypes shortcomings identified in [20], providing an environ-
ment that allows the creation of the prototypes quickly in an abstract level
enough to avoid focusing more on look & feel than in functional or usability
issues and providing prototypes that can be easily modified.

REFERENCES
[1] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., and Shuster, J.E.,

UIML: An Appliance-Independent XML UI Language, Computer Networks, Vol. 31,
1999.

[2] Balzert, H., Hofmann, F., Kruschinski, V., and Niemann, C., The JANUS Application
Development Environment - Generating More than the User Interface, in J. Vander-
donckt (ed.), Proc. of 2nd Int. Workshop on Computer-Aided Design of User Interfaces
CADUI’1996 (Namur, 5-7 June 1996), Presses Universitaires de Namur, Namur, 1996,
pp. 183-208.

[3] Campos, P. and Nunes, N., Canonsketch: a User-Centered Tool for Canonical Abstract
Prototyping, in R. Bastide, P. Palanque, J. Roth (eds.), Proc. of 9th IFIP Working Conf.
on Engineering for Human-Computer Interaction EHCI-DSVIS’2004 (Hamburg, 11-13
July 2004), Lecture Notes in Computer Science, Vol. 3425, Springer-Verlag, Berlin,
2005, pp. 146-163.

[4] Ceri, S., Fraternali, P., and Bongio, A., Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites, in Proc. 9th Int. Conf. on World-Wide Web (Amster-
dam, May 2000), 2000, accessible at http://www9.org/w9cdrom/177/177.html.

[5] Constantine, L.L. and Lockwood, L.A.D., Software for use, Addison-Wesley, Reading,
1999.

[6] Coyette, A. and Vanderdonckt, J., A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces, in Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer
Interaction INTERACT’2005 (Rome, 12-16 September 2005), Lecture Notes in Com-
puter Science, Vol. 3585, Springer-Verlag, Berlin, 2005, pp. 550-564.

[7] Eisentein, J. and Rich, C., Agents and GUIs From Task Models, in Proc. of 7th ACM
Conf. on Intelligent User Interfaces IUI’2002 (San Francisco, 13-16 January 2002).
ACM Press. New York, 2002, pp. 47-54.

[8] Gómez, J., Model-Driven Web Development with VisualWADE, in N. Koch, P. Frater-
nali, M. Wirsing (eds.), Proc. of 4th Int. Conf. on Web Engineering ICWE’04 (Munich,
28-30 July 2004), Lecture Notes in Computer Science, Vol. 3140, Springer-Verlag, Ber-
lin, 2004, pp. 611-612.

[9] Griffiths, T., Barclay, P., McKirdy, J., Paton, N., Gray, P., Kennedy, J., Cooper, R.,

252 Montero and López-Jaquero

Goble, C., West, A., and Smyth, M., Teallach: A Model-Based User Interface Develop-
ment Environment for Object Databases, in N.W. Paton, T. Griffiths (eds.), Proc. of 1st
Int. Workshop on User Interfaces to Data Intensive Systems UIDIS’99 (Edimburgh, 5-6
September 1999), IEEE Computer Society Press, Los Alamitos, 1999, pp. 86-96.

[10] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V., UsiXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces, in Proc. of 9th IFIP Work-
ing Conf. on Engineering for Human-Computer Interaction EHCI-DSVIS’2004 (Ham-
burg, July 11-13, 2004), LNCS, Vol. 3425, Springer-Verlag, Berlin, 2005, pp. 200-220.

[11] Molina, P., User Interface Generation with OlivaNova Model Execution System, in J.
Vanderdonckt, N.J. Nunes, and Ch. Rich (eds.), Proc. of ACM Int. Conf. on Intelligent
User Interfaces IUI’2004 (Funchal, 13-16 January 2004), ACM Press, New York, 2004,
pp. 358-359.

[12] Montero, F., López Jaquero, V., Lozano, M., González, P., A User Interfaces Develop-
ment and Abstraction Mechanism, in Proc. of V Congreso Interacción Persona-
Ordenador Interacción 2004 (Lérida, 3-7 May 2004).

[13] Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P., Lozano, M.D., and
Limbourg, Q., Solving the Mapping Problem in User Interface Design by Seamless Inte-
gration in IdealXML, in S.W. Gilroy, M.D. Harrison (eds.), Proc. of 12th Int. Workshop
on Design, Specification, and Verification of Interactive Systems DSV-IS’2005 (New-
castle upon Tyne, 13-15 July 2005), Lecture Notes in Computer Science, Vol. 3941,
Springer-Verlag, Berlin, 2005, pp. 161-172.

[14] Mori, G., Paternò, F., and Santoro, C., Tool Support for Designing Nomadic Applica-
tions, in Proc. of the ACM Int. Conf. on Intelligent User Interfaces IUI’2003 (Miami, 12-
15 January 2003), ACM Press, New York, 2003, pp.141-148.

[15] Myers, B., Hudson, S. E., and Pausch, R., Past, Present, and Future of User Interface
Software Tools, ACM Transactions on Computer-Human Interaction, Vol. 7, No. 1,
March 2000, pp. 3-28.

[16] Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, Berlin, 1999.

[17] Puerta, A.R., A Model-Based Interface Development Environment, IEEE Software, Vol.
14, No. 4, July/August 1997, pp. 41-47

[18] Puerta, A.R. and Eisenstein, J., XIML: A Common Representation for Interaction Data,
in Proc. of ACM Int. Conf. on Intelligent User Interfaces IUI’2002 (San Francisco, 13-16
January 2002), ACM Press, New York, 2002, pp. 216-217.

[19] Puerta, A.R., Micheletti, M., and Mak, A., The UI Pilot: A Model-Based Tool to Guide
Early Interface Design, in Proc. of ACM Int. Conf. on Intelligent User Interfaces
IUI’2005 (San Diego, 10-13 January 2005), ACM Press, New York, 2005, pp. 215-222.

[20] Rettig, M., Prototyping for Tiny Fingers, Communications of the ACM, Vol. 37, No. 4.
1994, pp. 21-27.

[21] Schwabe, D. and Rossi, G., The Object-Oriented Hypermedia Design Model, Com-
mununications of the ACM, Vol. 38, No. 8, 1995, pp. 45-46.

[22] Souchon, N. and Vanderdonckt, J., A Review of XML-Compliant User Interface Descrip-
tion Languages, in J. Jorge, N.J. Nunes, J. Cunha (eds.), Proc. of 10th Int. Conf. on De-
sign, Specification, and Verification of Interactive Systems DSV-IS’2003 (Madeira, 4-6
June 2003), Lecture Notes in Computer Science, Vol. 2844, Springer-Verlag, Berlin,
2003, pp. 377-391.

[23] Vanderdonckt, J., A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems, in O. Pastor, J. Falcão e Cunha (eds.), Proc. of 17th Conf. on Ad-
vanced Information Systems Engineering CAiSE'05 (Porto, 13-17 June 2005), Lecture
Notes in Computer Science, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-31.

