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Abstract 
A model-based approach is presented for structuring a devel-

opment process of virtual user interfaces based on UsiXML, a 
XML-compliant User Interface Description Language. UsiXML 
provides a Concrete User Interface description that remains inde-
pendent from any toolkit, whether graphical or virtual. To support 
the rendering of this description in a virtual world, two toolkits 
have been developed: for VRML97 and X3D. The user interface 
description can be edited within an appropriate graphical editor, in 
2D for instance, and leads to 2D or 3D rendering or an automated 
generation of a 2D graphical user interface in Java or a 3D virtual 
user interface in VRML97 or X3D, for both presentation and be-
havior parts. When any element involved in the Concrete User In-
terface changes, the corresponding virtual user interface changes 
accordingly, thus reducing development time and complexity. In 
this way, a virtual user interface can be produced with the advan-
tage of raising the level of abstraction with respect to any lan-
guage. This paper focuses on the 3D user interfaces. 
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1    Introduction 
Several model-based approaches exist for developing graphical 
user interfaces (UIs) based on underlying models, a method im-
plying these models throughout the development life cycle, and 
software that help developers to apply the method. A lot of effort 
has been devoted to such two-dimensions (2D) UIs that remains 
unparalleled for three dimensions (3D) UIs in general, and for vir-
tual UIs in particular. 

This is somewhat paradoxical as 3D environments should 
make the user’s interaction not only more familiar with the real 
world and more engaging, but are also intended to improve user’s 
productivity. Furthermore, most UIs have been developed only for 
a 2D environment in mind: their 3D integration is not seamless 
and not straightforward. Therefore, there are many reasons to de-
fine and test a method for systematically producing a 3D UI simi-
larly to methods existing for 2D UIs, while taking into account 
specific characteristics of the 3D world and what is needed to en-
sure a smooth transition between 2D and 3D. 

The most important reason is that, even though virtual envi-
ronments are often considered as an extension of the 2D direct 
manipulation paradigm in 3D, it is difficult to build a whole new 
UI that relies solely on direct manipulation [Foley, 1995]. Adding 
degrees of freedom to tasks that do not need them can be the 
cause of an undesired complexity: tasks that are 2D in nature are 
not necessarily transferable into 3D. Direct manipulation is not 
always obvious [Cuppens, 2004]. Consequently, indirect manipu-
lation may be sometimes desired or required. When a 2D Graphi-
cal UI (GUI) needs to be incorporated in a 3D environment with-
out appropriate modifications, a hybrid 2D/3D UI is obtained. 
Most virtual environments offer a 3D UI that is suited for spatial 
navigation and physical object manipulation [Larimer, 2003], for 
example, but there are other tasks that are carried out within the 
virtual environment that only require 1D or 2D interaction, such 
as selecting items from a menu. One way to provide 2D interac-
tion in a virtual environment consists of a window-based envi-
ronment, augmenting the virtual environment by introducing addi-
tional controls and information.  

A second reason is to help the new 3D environments to sup-
port the current 2D applications, offering backwards compatibility 
and making reusing easier. Support for legacy applications is one 
aim that has been present in the development of many of the well-
known experiments in the field of 3D desktops, such as 3D Win-
dow Manager [http://www.3dwm.org] or Microsoft Task Gallery 
[http://research.microsoft.com/adapt/TaskGallery/], as the devel-
opers that were involved in them admitted in public discussions in 
the 3DUI mailing list [3DUI, 1999]. In the particular case of 
RealPlaces, a set of design guidelines developed by IBM for new 
3D environments, the idea of using a virtual version of the old en-
vironment –such as a computer unit on a table– in the new three 
dimensional spaces was introduced so that it could be used to run 
the old applications [Roberts, 2000]. 

A third reason consists in evolution rather than revolution: 3D 
environments like the above quoted ones did not go truly beyond 
the experimentation stage. But many of their ideas have been bor-
rowed for the new and promising projects such as SphereXP 
[http://www.hamar.sk/sphere/], Infinite-3D [http://www.infinite-
3d.com/] and Croquet [http://croquetproject.org/]. The main as-
sumption of these environments is the need for replacing a 2D 
windows desktop with a new full 3D desktop where conventional 
2D applications are able to run under 3D managed mode [Molina 
et al., 2003]. 
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A fourth reason comes from one opinion frequently expressed 
on the VRML-list mailing list, and supported by many of the par-
ticipants: 3D environments must handle 2D very well in order to 
break into the desktop market. It is significant that, in one of the 
online forums that the Web3D Consortium hosts in its Web site, 
Toni Parisi admitted the existing interest in including in the X3D 
specification the concept of “application texture”, explaining that 
it will allow applications to output its graphics to a bitmap that 
can be used as a texture in the 3D world.   

Figure 1. 3D UI generated from a description [Maquil,2004]. A fifth reason is that a 3D environment really needs to ma-
nipulate 3D effects  of UI element such as 2D environments do in 
animation, but without merely duplicating the 2D effects in 3D. 
For instance, when a push button appears, it should really have a 
thickness that will appear pressed and depressed when the button 
is selected, which is only done with shadow effect in 2D. Simi-
larly, when a drop down list box is opened in 2D, the list of poten-
tial values is scrolled down. In 3D, this list should exhibit a 3D 
scrolling effect that clearly depicts the UI behavior. 

 
Improvise [Zhou & Feiner, 1997] automatically generate co-

herent visual discourse which refers to a series of connected vis-
ual displays. Developers of Improvise developed a visual lan-
guage that is independent of any graphics platform or package. 
Automated generation of VRML code has been successfully used 
in various domains, such as guided tours from physical models 
[Chittaro et al., 2003], city scenes from city models [Schilling & 
Zipf, 2003], and graphical art. Another significant manifestation 
of automated generation of 3D UI is Maquil’s tool [Maquil, 2004] 
that produces 3D dialog boxes on top of widgets belonging to Stu-
dierStube environment (http://www.studierstube.org). Although 
this system is equipped with an automatic layout facility of the 
widgets (Fig. 1), the UI specification is rather a description in 
terms of the StudierStube environment. In addition, no other pos-
sibilities exist for obtaining alternative layouts or UIs. 

A last reason is an authority argument: in his keynote address 
at Web3D’2000, N. Trevett raised the question of UI transition: in 
order to make a 3D UI useful for mainstream users, there is a need 
to transform flat 2D GUIs coming from the traditional desktop 
into 3D. If an application running a GUI is launched in a 3D desk-
top, everything returns to a flat 2D representation as soon as the 
application is active: the true 3D aspects are lost in the transition. 
Therefore a 3D version of such UIs could change the situation, 
encouraging a larger adoption and use of 3D desktops by match-
ing much better the mental model of the user. 

The idea of widgets in 3D environments has been the seed of 
many interesting discussions in mailing lists such as VRML-List, 
and one of the topics that are usually debated is the question of 
which should be the standard set of widgets for that kind of envi-
ronments. The interest in this topic was so high that a working 
group was formed to study that problem in the context of the 
VRML language.  This working group analyzed two different ar-
chitectures for VRML-based widgets, being the first a layered ap-
proach based on the ideas of P. Isaacs and S. Becker, and the sec-
ond a component-based approach as suggested by G. Seidman. 

In this paper, we would like to address the process of UI vir-
tualization, which is to progressively move 2D UIs to the 3D 
world while fully exploiting the capabilities of the 3D environ-
ment. Instead of replicating a 2D window in a 3D world, each UI 
will be specified in UsiXML [Limbourg et al., 2004] (USer Inter-
face eXtensible Markup Language – http://www. usixml.org) and 
rendered in 3D thanks to two toolkits that have been developed 
for VRML97 and X3D. VRML97 and X3D have been chosen be-
cause of their wide dissemination and adoption, but also because 
X3D is the latest standardized version of VRML which progres-
sively becomes supported in browser plug-ins. So, it was a chal-
lenge to implement such a toolkit in X3D. 

The first approach considers three layers, the first of them 
deals with time control and pointer-surface interaction, the second 
layer is related to the interpretation and control of that interaction 
(which determines the “feel” of a widget), an the third and last 
layer adds the geometry (the “look” of a widget). The second ar-
chitecture considers five basic components, which are the sensors, 
the internal glue, the geometry, the external glue and, finally, the 
Virtual Reality User Interfaces (VRUIs, analogous to GUIs). 
Based on these architectures, different widgets were proposed, 
and from all of them it is worth to mention the set of G. Seidman, 
which is quite rich. However, all the pieces of work that result 
from that group did not finally serve as the basis for a standard 
toolkit, the group activities ceased and the VRML language con-
tinued without the desired standard set of widgets. 

The remainder of this paper is structured as follows: section 2 
will report on related work conducted in the domain of UI virtual-
ization and will show the sources that inspired the development of 
the work presented in this paper. The approach based on UsiXML 
will be motivated with respect to this state of the art. Section 3 
will define the UI reference framework used throughout this pa-
per, not only for the rendering, but also for the method to virtual-
ize a UI. Section 4 provides a description of the UsiXML con-
cepts that are manipulated in this work. Section 5 then shows how 
a UI specified in UsiXML can be automatically generated in both 
VRML97 and X3D, and then rendered within appropriate plug-
ins. Section 6 explains how the rendering engines have been de-
veloped for any other reuse and some of the challenges solved. 
Section 7 describes an example of an Internet radio player that is 
running throughout the method. Section 8 replaces the work con-
ducted here in the context of a larger continuum of various UIs in 
different virtual modes. Section 9 concludes the paper by summa-
rizing the benefits of the approach and some of its shortcomings. 

The lack of a standard set of widgets forces every author to 
create from scratch the interactive elements that are needed for the 
project under development, using only those nodes that are speci-
fied in the specification of the VRML language. To address this 
problem and let the author focus on the content of the project, 
some authoring tools provide a set of VRML prototypes that also 
includes certain widgets, as for instance interactive buttons. One 
example of such authoring tools is Internet Scene Assembler 
(http://www.parallelgraphics.com/products/isa/), developed by 
ParallelGraphics, which has an extensive library of prototypes 
which includes button, toggle button, slider, checkbox and text la-
bels, although among the parameters of those prototypes that the 
author is able to set in order to fit them into his or her project it is 
not included the geometry of the widgets, which reduces flexibil-
ity in their use. The provided subset of widgets is not as rich as 
those found in 2D development tools, possibly because it may be 
conceived to serve as a basic set for building Head-Up Display 
(HUD) interfaces to be used in PC desktop virtual worlds.   

2    Related Work 
The main principle of automated generation of a 3D UI from its 
specifications has been already demonstrated in several domains. 
IBIS (Intent-Based Illustration System) [Seligmann & Feiner, 
1991] automatically generates illustrations guided by communica-
tive goals specifying that particular properties of objects, such as 
their size, color, or location are to be conveyed in the illustration.  
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2. Concrete UI (CUI): concretizes an abstract UI for a given 
context of use into Concrete Interaction Objects (CIOs) 
[Vanderdonckt & Bodart, 1993] so as to define widgets lay-
out and interface navigation. It abstracts a FUI into a UI 
definition that is independent of any computing platform. Al-
though a CUI makes explicit the final Look & Feel of a FUI, 
it is still a mock-up that runs only within a particular envi-
ronment. A CUI can also be considered as a reification of an 
AUI at the upper level and an abstraction of the FUI with re-
spect to the platform. For example, in Envir3D [Vander-
donckt et al., 2004], the CUI consists of a description of tra-
ditional 2D widgets with mappings to 3D by relying on dif-
ferent mechanisms when such a mapping is possible. 

Up to this point, we have only described VRML-based pro-
jects and tools related to the topic we are concerned. With the de-
velopment of the third version of that language, X3D, new pro-
jects and tools appeared which also address the problem of the 
widget toolkit. One of those projects is CONTIGRA [Dachselt, 
Hinz, and Meißner, 2002], whose objectives do not only include 
the standardization of a repertoire of 3D widgets, but also meta-
phors and interaction techniques, everything structured in the 
form a hierarchy. Each component is specified using a XML-base 
language, which provides all the benefits of using XML technol-
ogy, and combines X3D language to describe the final appearance 
and geometry of each 3D widget. Among those widgets, the rep-
ertoire includes some of the elements that are used in almost every 
2D and 3D application, such as the button and the toggle button, 
but also other widgets that are only specific to 3D environments, 
such as the ring menu. The advantage of this set is that it has been 
designed taking geometry apart from behavior, following an 
architecture that resembles the ideas proposed by the former 
VRML Working Group, allowing the author to choose the form 
that better adjust to the behavior required for his or her project. 
The disadvantage is that many of the widgets of this hierarchy 
have not been developed or are not publicly available yet, which 
limits its adoption as a standard in the field. Besides this, it is not 
clear enough how a traditional 2D application could be translated 
to a 3D environment using that set of widgets, bearing in mind 
that some of the widgets used in 2D applications have not got a 
direct correspondence with a widget of the CONTIGRA hierarchy. 

3. Abstract UI (AUI): defines abstract containers and individual 
components [Limbourg et al., 2004] by grouping subtasks 
according to various criteria (e.g., task model structural pat-
terns, cognitive load analysis, semantic relationships identifi-
cation), a navigation scheme between the container and se-
lects abstract individual component for each concept so that 
they are independent of any modality. An AUI abstracts a 
CUI into a UI definition that is independent of any modality 
of interaction (e.g., graphical interaction, vocal interaction, 
speech synthesis and recognition, video-based interaction, 
virtual, augmented or mixed reality). An AUI can also be 
considered as a canonical expression of the rendering of the 
domain concepts and tasks in a way that is independent from 
any modality of interaction. An AUI is considered as an ab-
straction of a CUI with respect to modality. With regard to the toolkits developed for virtual environments 

based on other languages or libraries different than the VRML97 
or X3D, it is worth to cite the work described in [Boyd, 1999], 
[Larimer, 2003] and [Cuppens, 2004]. The first of them was car-
ried out within the INQUISITIVE project, and involved the devel-
opment of a library of interaction objects which were imple-
mented using the MAVERIK toolkit, including widgets such as the 
window, dial and slider. The second of those references describe a 
system called VIEWL, which implements a windowing system 
based on Qt and DIVERSE, where windows are represented as 
polygons that are tangent to the surface of a sphere that surrounds 
the user. The third one is VRIXML, a XML-based language 
aimed at developing UIs in virtual worlds, whose authors use to 
create 2D/3D hybrid interfaces, and for that purpose they elabo-
rated a toolkit based on a subset of the classical 2D widgets. 

4. Task & Concepts (T&C): describe the various tasks to be 
carried out and the domain-oriented concepts as they are re-
quired by these tasks to be performed. These objects are con-
sidered as instances of classes representing the concepts. 
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In our work, we would like to have a XML-compliant User 
Interface Description Language that not only supports the descrip-
tion of a UI, whether 2D or 3D, graphical or virtual, but also the 
method that can be followed to produce such a UI. From these 
specifications, different UIs should be produced by rendering and 
automated generation. In this way, it is possible to simulate in the 
virtual world the look and feel of the same UI in virtual versions 
of different platforms, such as PDAs, PCs or even Interactive 
Walls. In addition, it supports migrating a UI from one platform to 
another (e.g., 2D to 3D) by visually representing this transition. 
The next section presents the framework that allows this process. 

Figure 2. The User Interface Reference Framework. 

This framework exhibits three types of transformation types: 
(1,2) Abstraction (respectively, Reification) is a process of elicit-
ing artifacts that are more abstract (respectively, concrete) than 
the artifacts that serve as input to this process. Abstraction is the 
opposite of reification. (3) Translation is a process that elicits arti-
facts intended for a particular context of use from artifacts of a 
similar development step but aimed at a different context of use. 
With respect to this framework, multi-path UI development refers 
to a UI engineering method and tool that enables a designer to (1) 
start a development activity from any entry point of the reference 
framework (Fig. 1), (2) get substantial support in the performance 
of all basic transformation types and their combinations of Fig. 2. 

3    A Reference Framework for User Interfaces 
Multi-path UI development is based on the Cameleon Reference 
Framework [Calvary et al., 2003], which defines UI development 
steps for multi-context interactive applications. Its simplified ver-
sion, reproduced in Fig. 2, structures development processes for 
two contexts of use into four development steps (each develop-
ment step being able to manipulate any specific artifact of interest 
as a model or a UI representation): 

In this paper, the four levels will be used for supporting the 
method where a UI will be mainly described at the CUI level be-
cause this level is independent of any computing platform and any 
particular toolkit. It will be demonstrated that from a same speci-
fications of a CUI, a GUI can be obtained in parallel to a virtual-
ization of this GUI or even another genuine 3D virtual UI. This is 
why the next section is focusing on the CUI. 

1. Final UI (FUI): is the operational UI i.e. any UI running on a 
particular computing platform either by interpretation (e.g., 
through a Web browser) or by execution (e.g., after compila-
tion of code in an interactive development environment). 
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4    The Concrete User Interface in UsiXML 5    Mapping from UsiXML to VRML97 and X3D 
In Fig. 2, the last level of abstraction before obtaining a final UI is 
the CUI level. A description of a CUI can be obtained by succes-
sive forward engineering from the T&C level, the AUI level or di-
rectly. A CUI is assumed to be described without any reference to 
any particular computing platform or toolkit of that platform. For 
this purpose, a CUI model consists of a hierarchical decomposi-
tion of CIOs. A Concrete Interaction Object (CIO) is defined as 
any UI entity that users can perceive such as text, image, anima-
tion and/or manipulate such as a push button, a list box, or a check 
box [Limbourg et al., 2004, Vanderdonckt & Bodart, 1993]. A 
CIO is characterized by various attributes such as, but not limited 
to: id, name, icon, content, defaultContent, defaultValue. 

The platform independence then poses the challenge of correctly 
and appropriately mapping the platform-independent specification 
(the CUI model) to a platform-specific one (the FUI). Thanks to 
the UsiXML-based VRML97 and X3D toolkits that have been 
implemented and that are described in the following sections, it is 
possible to map interface elements described at the CUI level of 
UsiXML and those that have been included in the toolkit to allow 
the generation of a FUI in a VRML97 or X3D-based 3D environ-
ment. Without those toolkits, it could not be possible to carry out 
the mappings, as none of those Web3D standard languages in-
clude primitives that can be matched with the CIOs defined in 
UsiXML. However, the toolkit does not cover everything that is 
specified in UsiXML, and at the same time introduces new con-
cepts that are not included in UsiXML. Therefore, when attempt-
ing to map a CIO from a CUI to a VRML97 or X3D world, sev-
eral cases practically occurred: 

Since a CIO is independent of any computing platform, we do 
not know yet which interaction modality is used on that platform. 
Therefore, each CIO can be sub-typed into sub-CIOs depending 
on the interaction modality chosen: graphicalCIO for GUIs, audi-
toryCIO for vocal interfaces, 3DCIO for 3D UIs, etc. In this pa-
per, we focus on graphical CIO since they form the basic elements 
of a traditional 2D GUI or a 3D, virtual UI. Each graphicalCIO 
inherits from the above CIO properties and has specific attributes 
such as: isVisible, isEnabled, fgColor and bgColor to depict fore-
ground and background colors, etc. 

1. Direct mapping between a CIO of the CUI and a VRML97 or 
X3D primitive. This mapping could be one-to-one (bijection) 
or one-to-many (composition of objects). As explained be-
fore, it is not possible to set a one-to-one mapping as those 
Web3D languages define basic elements such as shapes and 
sensors that must be used together to create interactive ele-
ments, such as for instance 3D widgets. The new standard 
X3D does not change this status, even though it includes new 
2D geometry nodes that make easier to draw 2D interfaces in 
a 3D world. 

Each graphicalCIO is then sub-typed into one of the two pos-
sible categories (Fig. 3):  graphicalContainer for all widgets con-
taining other widgets such as page, window, frame, dialog box, 
table, box and their related decomposition or graphicalIndividu-
alComponent for all other traditional widgets that are typically 
found in such containers. A graphicalIndividualComponent can-
not be further decomposed. UsiXML supports a series of widgets 
defined as graphicalIndividualComponents such as: textCompo-
nent, videoComponent, imageComponent, imageZone, radioBut-
ton, toggleButton, icon, checkbox, item, comboBox, button, tree, 
menu, menuItem, drawingCanvas, colorPicker, hourPicker, 
datePicker, filePicker, progressionBar, slider, and cursor. 

2. New mapping between the CIO and a VRML97 or X3D coun-
terpart. Sometimes, no object exists natively in the X3D lan-
guage to ensure the mapping. In this case, there is a need to 
fill this gap by introducing a new widget in the X3D world 
by appropriate implementation. This is what happens with 
the CIOs that have been used as a starting point for the tool-
kit, for each of them there is an element in the toolkit that 
can be used for their representation in the final interface. 
However, this correspondence is not complete, as there are 
some attributes that are defined in the concrete level of 
UsiXML but that are not used in the 3D world, and there are 
also other attributes that are added because they are neces-
sary to describe the interface elements in the 3D world, such 
as those properties that allow the specification of the position 
and dimension of the widget. 

Thanks to this progressive inheritance mechanism, every final 
elements of the CUI inherits from the upper properties depending 
on the category they belong to. The properties that have been cho-
sen in UsiXML have been decided because they belong to the in-
tersection of property sets of major toolkits and window manag-
ers, such as Windows GDI, Java AWT and Swing, HTML. Of 
course, only properties of high common interest were kept. In this 
way, a CIO can be specified independently from the fact that it 
will be further rendered in HTML, VRML or Java. This quality is 
often referred to as the property of platform independence. 

3. No possible mapping. In spite of the implemented toolkit and 
the elements included in it, there are other CIOs whose coun-
terpart in VRML97 or X3D have not been done yet or it is 
impossible or difficult to implement it. An example of this is 
the CIO box defined in the concrete level of UsiXML, which 
is meant to position the widgets according to some logic con-
straints. Due to the fact that the implemented toolkit does not 
include that CIO, it is necessary to perform a transformation 
that takes the concrete interface as an input and calculate the 
position and dimensions of each widget in order to output the 
final interface. 
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graphicalCIO

graphicalContainer graphicalIndividualComponent

CUI ModelCUI Model

CIOCIO

graphicalCIOgraphicalCIO
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Another aspect to take into account when mapping between a 
concrete interface and its final representation in VRML97 or X3D 
is that when defining GUI it is being assumed that the final plat-
form will have a screen where the elements will be displayed, and 
the user will be able to interact with those elements by means of a 
keyboard and a mouse. When translating those concepts to a vir-
tual world, it is necessary to define which are the counterparts of 
the screen, the keyboard, and the mouse. 

With regard to the screen, the implemented toolkit includes a 
prototype that is called “Screen”, whose function in the toolkit is 
double. On the one hand, it makes possible to specify a rectangle 
that represents the rectangular screen of almost every computer 
display, detailing its dimensions –specifying width and height in Figure 3. Decomposition of a CUI model into concepts. 
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meters, or the diagonal length in inches and the aspect ratio- and 
its pixel resolution. This prototype accepts a bitmap as a parame-
ter, and has also a sensor that sends out events which contain the 
coordinates of the pixel at which the user is pointing with his or 
her pointing device. The second use of this prototype is to serve as 
a container of elements of a traditional GUI, elements which can 
be any of those included in the toolkit. For that purpose, the field 
children is provided in the “Screen” prototype. That field resem-
bles those present in VRML97 and X3D nodes, such as Transform 
or Group. In fact, the mechanism used in those languages to group 
nest nodes by means of MFNode field is also the one use in the 
toolkit to set up the relationships between graphical CIOs. 

As for the keyboard and mouse, in both VRML97 and X3D 
specifications it is assumed that the user interacts with the virtual 
world using a pointing device, and many of the sensors are ori-
ented to the user-world interaction using that device. In this way, 
the mouse could be mapped with that pointing device that user 
employs when exploring a VRML97 or X3D virtual world, which 
indeed in most cases is the mouse of the PC where the virtual 
world browser is running. The keyboard could also be the PC one, 
and in that case the only thing needed is a sensor or a set of sen-
sors that detect the key pressing. This is possible with X3D since 
it offers this kind of sensors, such as StringSensor. But it is im-
possible to do with VRML97 since it requires the use of non-
standard extensions, such as the KbdSensor from ParallelGraph-
ics. One alternative to using one of those sensors is the introduc-
tion of virtual versions of the mouse and the keyboard in the vir-
tual world. 

6    Implementation of the VRML97 & X3D toolkits 
The architecture of the set of widgets is the same in both 
VRML97 and X3D versions, and its implementation has been 
based on the prototyping mechanism which is available in both 
languages, and also on some of the ideas expressed by the VRML 
Widget Working Group. This way, for each final widget it has 
been created a VRML97 and an X3D prototype which are both 
composed of: an interface based on a set of fields–for setting ini-
tial values and also send and receive events-, shapes that represent 
the appearance and geometry of the widget –customizable through 
the prototype interface-, the sensors that make possible the inter-
action between the user and the geometry, internal logic that keep 
the state of the widget and control the behaviour of it depending 
on its state, and a set of routes that set up links among shapes, 
sensors and logic. 

In order to explain the details of the toolkit, this section will 
focus on the implementation of one widget, which is the GUITog-
gleButton. First, as it has been introduced in the previous para-
graph, the widget is implemented as a prototype in both VRML97 
and X3D versions. The interface of the prototype has been defined 
from the set of attributes that the toggleButton class has as speci-
fied in the concrete level of UsiXML, with some of those attrib-
utes being inherited from the cio, graphicalCio and graphicalIn-
dividualCio classes. When adding one attribute from a CIO to a 
VRML97 or X3D prototype we must adapt the type of the of each 
attribute to those available in VRML97 and X3D languages. For 
example, a boolean attribute of a CIO can easily be specified as a 
SFBool field in VRML97 or X3D. However, whereas the colour 
of an element is specified as an attribute whose type is string in 
USIXML, the type of that attribute in the toolkit should be 
SFColor, which is the most appropriate to describe that property 
in VRML97 and X3D. The code reproduced in Fig. 4 has been 
copied from the VRML97 version of the GUIToggleButton proto-
type: it clearly shows a section containing the mappings to the 
CIO object, then a section related to the mappings of the graphi-
calCIO properties, then a section for the graphicalIndividual-
Component, and finally the properties of the toggleButton. 

PROTO GUIToggleButton [ 
# USIXML: cio 
# ... 
# USIXML: graphicalCio 
# ... 
# USIXML: graphicalIndividualComponent 
# ... 
# USIXML: toggleButton 
field        SFBool   defaultState FALSE 
# VRML97 GUI Toolkit fields 
field        SFInt32  top    0 
field        SFInt32  left   0 
field        SFInt32  width  75 
field        SFInt32  height 25 
exposedField MFNode   label  [ ] 
 
eventOut     SFTime   touchTime 
eventIn      SFBool   set_state 
eventOut     SFBool   state_changed 
 
eventIn      SFInt32  set_top 
eventIn      SFInt32  set_left 
eventIn      SFInt32  set_width 
eventIn      SFInt32  set_height 
eventOut     SFInt32  top_changed 
eventOut     SFInt32  left_changed 
eventOut     SFInt32  width_changed 
eventOut     SFInt32  height_changed  

Figure 4. Definition of a UsiXML toggleButton in VRML97. 
 
Due to space reasons and in order to focus the discussion on a 

few fields, some of the sections of the interface have been cut out. 
More precisely, it has been cut all the fields that are derived from 
the cio, graphicalCio and graphicalIndividualCio classes. In con-
trast, it has been left the attribute defaultState which is defined in 
the toggleButton class as a property of type boolean and included 
in the prototype as a SFBool field. Not every attribute that is de-
fined in the concrete level of UsiXML has a meaning in the tool-
kit, and some other new attributes have to be added to the proto-
type in order to include some parameters which are related to the 
final platform, which in this case are virtual worlds created with 
VRML97 and X3D languages. For example, in the concrete level 
of UsiXML there are no attributes to specify the position or di-
mensions of a widget using units such as pixels or meters, because 
the widgets are laid out on a container using a set of logical rela-
tionships. On the contrary, the toolkit that is used to render the fi-
nal interface in a virtual world requires from each widget its posi-
tion and dimensions measured in pixels, and for that reason the in-
terface of the GUIToggleButton prototype has four new fields: 
top, left, width and height. Besides, there are some eventIn fields 
with same name but for the prefix set_, and some eventOut field 
with same name too but for the suffix _changed. The internal 
logic of each prototype handles the incoming events and sends out 
new events that communicates the changes in the state of the wid-
get. In the case of the X3D version, every prototype parameter is 
of type inputOutput, which packs three kinds of fields in only one, 
simplifying the interface by making it more reduce but having the 
same functionality as the VRML97 version. This reduction in the 
interface is not possible in the VRML97 specification as fields of 
type exposedField can not be used in Script nodes. X3D allows 
Script nodes to include inputOutput, and so the interface of GUI-
ToggleButton is as reproduced in Fig. 5. Apart from the new at-
tributes that define the position and dimensions of the widget, the 
interface of the GUIToggleButton includes a field named label 
that is of type MFNode, an attribute that makes possible to assign 
to any of those widgets another window element that will play the 
role of button label or box label, as for example a GUITextCom-
ponent or a GUIImageComponent element, or even the combina-
tion of both of them. 
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<ProtoDeclare name="GUIToggleButton"> 
<ProtoInterface> 

<!-- USIXML: cio --> 
<!-- . . . -->     
<!-- USIXML: graphicalCio -->  
<!-- . . . -->     
<!-- USIXML: graphicalIndividualComponent --> 
<!-- . . . -->     
<!-- USIXML: toggleButton --> 

<field accessType="initializeOnly"  
name="defaultState"  
type="SFBool" value="false"/> 
 

<!-- X3D GUI Toolkit fields -->   
<field accessType="inputOutput" name="top" 

type="SFInt32" value="0"/> 
<field accessType="inputOutput" name="left" 

type="SFInt32" value="0"/> 
<field accessType="inputOutput" name="width" 

type="SFInt32" value="75"/> 
<field accessType="inputOutput" name="height" 

type="SFInt32" value="25"/> 
   <field accessType="inputOutput" name="state"  

   type="SFBool"/> 
   <field accessType="inputOutput" name="label"  

   type="MFNode"/> 
<field accessType="outputOnly"  

name="touchTime" type="SFTime"/> 

Figure 5. Definition of a UsiXML toggleButton in X3D. 
 
There are also some fields that make possible to connect this 

widget with the rest of the interface and the application, such as 
touchTime, which is used to cast an event each time the button is 
pressed, an the field state, which makes it possible to change the 
state of the button with an incoming event and to communicate 
the change in the state of the button with and outgoing event (in 
the VRML97 version there are two fields, set_state and 
state_changed). 

The next element of the prototype is a scene graph which in-
cludes the shapes that give the widget its appearance and geome-
try. In a 2D environment, the widget would be drawn using primi-
tives such as points, lines, rectangles, text and images. In 
VRML97 the shape must be modeled using the nodes that the lan-
guage offers, such as polylines, polygons, text and textures. In 
X3D the range of primitives is wider, as it includes new 2D ge-
ometry nodes. In both Web3D languages, the geometry of the 
widget is specified as a hierarchy of transformations whose leaves 
are the shapes that give to the widget the look it has once rendered 
in the screen. 

Another element of each widget is the sensor or sensors that 
are included in the prototype so that the user can interact with the 
shapes that are displayed. In the case of the prototype GUITog-
gleButton, it includes a TouchSensor associated to the button ge-
ometry, so that when the user performs the action of touching that 
geometry with his o her pointing device, the sensor detects the ac-
tion and cast an event that contains the time when the user 
touched the button. Besides, this prototype has also two TimeSen-
sors that launch two different animations, one for the case the but-
ton is pressed and one for the case the button is released. In both 
animations, the geometry of the button changes moving along the 
third dimension, as it would be expected in the real world, instead 
of using visual tricks as occurs in 2D environments. 

The event that is cast by the TouchSensor is routed to a Script 
node that is included in the GUIToggleButton prototype, a node 
that represents the logic of the widget. This Script node has a set 
of fields that are matched, by means of IS statements, with some 
of the fields defined as the interface of the prototype, so that the 
Script receives the initial values and sets the widget accordingly, 
changing the geometry and behavior based on the current state of 

the widget. Each external event, such as one user action, is then 
routed to this Script node, executing the corresponding function 
that will interpret the event and change the state of the widget, 
sending out events that communicate the changes to other parts of 
the interface or the application. 

The last part of the GUIToggleButton prototype, as in any of 
the rest of the prototypes that are part of this toolkit, is a set of 
routes, which is the mechanism that is described in the VRML97 
and X3D specifications to conduct events from the nodes that cast 
them to the nodes that receive the events. More precisely, the 
routes that are included in each prototype have the role of connect 
the shapes and sensors with the logic of the widget, so that the 
Script node can rule the behavior of the widget, receiving incom-
ing events and sending out events to the scene graph of the proto-
type. 

7    A case study  
In this section, a case study is described as an example running 
from the topmost level of the reference framework (Fig. 2) until 
the bottom level, here in VRML97 and X3D. This case of study 
has been carefully selected for its specification with the USIXML 
language and later generation of the final interface using the tool-
kit previously described, and using both VRML97 and X3D ver-
sions of it. Thus, as a case of study it has been chosen a music 
player that uses as source the Internet radio station that the user 
wants to listen to. This application allows the user to select the 
music source from a list of available radio stations, reducing the 
number of items presented in that list by selecting a particular mu-
sic genre, or introducing some key words for an intelligent search. 
Once the radio station is selected, the user can play the music that 
is broadcast by that station, pause or stop the played music at his 
or her will, and also turn up or down the volume of the music, or 
even turn it into silence.  

This example, as it will be seen in the next sections, has been 
chosen for the rich set of functions that integrates in only one ap-
plication, which leads also to a rich interface with regard to num-
ber and type of elements, which allows us to put into practice all 
the implemented elements of the USIXML-based VRML97 and 
X3D toolkit.  

In the following sections it will be detailed how the USIXML 
specification of the selected case of study has been carried out, 
having a look at each model until the final user interface level is 
reached, then a final user interface is generated using the proposed 
toolkit in order to deploy the application in a three-dimensional 
environment build with VRML97 or X3D. 

7.1. Task and Concept Model (T&C) 

The task model is aimed at expressing what will be the user’s ac-
tions independently of any implementation of these actions. The 
high-level task “Listen to radio” is depicted by a cloud since at 
this level, the task is considered rather abstract (Fig. 6). It is there-
fore decomposed into a system task “Retrieve list” which will 
automatically retrieve all radio stations accessible at that time, 
then passes this information to the radio player display. At this 
level “Radio player ready”, the user can perform the following ac-
tions in any order (“|||” represents concurrency): select a station, 
play this station, stop it, pause it, increasing or decreasing the vol-
ume, and making the player mute or not. All tasks in brackets, e.g. 
[Play*] mean that they are optional. The star * means that the task 
can be repeated several times. The “[Play*]” task is a final inter-
active (user-system icon) task because it cannot be further decom-
posed, as opposed to the “[Select station*]” task which can be fur-
ther decomposed into sub-tasks to end up with actions. This task 
model is saved in UsiXML format to be transformed into an AUI. 
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Figure 6. Task model of the case study. 

7.2. Abstract User Interface Model (AUI) 

 

To switch from the task model to a AUI model (Fig. 7), a set of 
transformations can be applied to automatically generate such an 
AUI. The results of this generation can then be manually edited in 
the corresponding editor to refine the specifications. Examples of 
such transformations involve: for each leaf node task, produce an 
abstractContainer whose function corresponds to the task type in 
the task model (e.g., for producing a “Play” control facet in the 
“Play” container), for each task manipulating an attribute, produce 
an abstractContainer whose function corresponds to the task ac-
tion type applied to the domain element (e.g., for producing the 
“Volume” input facet of the “Volume tuning” container), for each 
task passing information, produce a container with an input facet 
related to the user input and a navigation facet to propagate the re-
sults of the user input on some other object (e.g., for the “Search” 
container with “Word” input and navigation in the Station list). 

Figure 8. The Concrete User Interface of the case study. 

Within this editor, the individual components such as buttons, list 
box, drop-down list box, check box are produced within their ap-
propriate container if any, but no assumption is made on how 
these components will be in turn reified concretized into dedicated 
widgets belonging to a particular computing platform and toolkit. 
The main area of Fig. 8 contains the rendering of the CUI and its 
left pane displays the current values of each component’s proper-
ties. Each property can be edited by direct manipulation of the 
corresponding component or by alphanumeric editing of the val-
ues. Again, everything is saved in UsiXML. 

 

7.4. Final User Interface (FUI) 
Once the CUI specifications are completed, there is a need to 
connect each component to the corresponding service. For exam-
ple, the “retrieve list” computer task in Fig. 6 is mapped onto the 
definition of a service which calls functions to retrieve this list 
from the web. Once this step is achieved, the resulting UsiXML 
specifications can then serve as input for the automated generation 
of VRML97 and X3D according to the mappings described in 
Section 5 and on top of the toolkits developed in Section 6. Fig-
ures 9 and 10 provide screenshots of the Final User Interface ren-
dered in X3D thanks to the Flux environment. This consists of a 
2D GUI rendered in a 3D environment, but with real 3D effects. 
For instance, when the user presses the “Play” button, the button 
is really pressed and depressed according to an animation mecha-
nism. When the user selects the drop-down list containing the 
genres, the list is really scrolled down according to a circular vis-
ual effect that is embedded in the underlying toolkit. The same 
definition of the CUI stored in UsiXML can be equally rendered 
in VRML97 within the Cortona plug-in for Internet browsers. 

Figure 7. The Abstract User Interface of the case study. 

7.3. Concrete Model (CUI) 

The Abstract UI model only contains a hierarchical decomposi-
tion of user’s actions dealing with domain elements. To turn this 
Abstract UI into a Concrete one, again a series of transformations 
are applied to the UsiXML specifications for selecting appropriate 
widgets, for producing the intra-container navigation and extra-
container navigation if appropriate, and for laying out objects de-
pending on constraints imposed by the ordering of sub-tasks wit-
hin a same level of task decomposition in the task model (Fig. 6). 
This results into UsiXML specifications at the Concrete UI level 
which can be opened and edited in an appropriate editor, such as 
GrafiXML (Fig. 8). 
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Figure 9. Close view of the final user interface in Flux. 

 
Figure 10. The final user interface rendered in Flux. 

 
Figure 11. The virtual laptop with the FUI rendered in VRML97. 

 
Fig. 11 provides a screenshot of this rendering, but augmented 
with the automatic generation of the computing platform which is 
simulated, here a laptop. In this case, the user may move, shrink, 
expand or resize the window on the screen similarly to any classic 
2D environment. The big win in this case is that there is no need 
to change the UsiXML specifications since they are toolkit-
independent. They are simply rendered differently depending on 
the underlying toolkit. The rendering is a genuine 3D rendering of 
objects as opposed to a 2D projection in a 3D environment as 

software like Cube [Infinite3D, 2004], SphereXP [SphereXP Pro-
ject Website, 2004] or Looking Glass [SUN Looking Glass Pro-
ject Website, 2003] are performing. These software exhibit the 
advantage that nothing should be changed to application to be ren-
dered in 3D, but suffer from the drawback that it is not a real 3D 
UI since everything is projected into 2D. Now, one can discuss 
that the components are rendered as 3D widgets in a way that re-
mains similar to the “Look & Feel” of 2D widgets, except that the 
“Feel” is a genuine 3D behavior. According to this view, this kind 
of FUI can be interpreted only as a 3D rendering of 2D UIs, even 
if their specifications are toolkit-independent. The next section 
examines further this problem. 

8    A Continuum for virtualizing user interfaces 
So far, we have shown how to produce UsiXML specifications of 
a CUI that can be rendered in 3D in two ways, on top of two dedi-
cated toolkits that have been developed for this purpose. The 
UsiXML specifications do not change whether we want a Java or 
HTML final user interface (that can be generated by GrafiXML) 
or a VRML97/X3D one (that can be generated by the system 
demonstrated here). Our ultimate goal is now to explore how we 
can expand, refine these specifications to reach a wider spectrum 
of UIs exhibit various capabilities without changing their specifi-
cations, or at least while minimizing the changes of these specifi-
cations depending on their type. 

To introduce and define a wider spectrum of such interfaces 
while offering different basic or advanced mechanisms and tech-
niques for virtualizing a user interface, we draw some inspiration 
from Milgram and Kishino [1994] continuum. They defined a 
continuum of real-to-virtual environments and called the space 
between Mixed Reality (MR). Mixed Reality includes Augmented 
Virtuality (AV), in which real world objects are augmented by 
virtual ones or virtual capabilities that cannot be found in the real 
world. Augmented Reality (AR) is the other facet of MR in which 
virtual objects of the virtual world or scene are added to a real en-
vironment. A MR environment is assumed to enhance the user’s 
perception and to improve the intuitive interaction with the real 
world. Milgram and Kishino’s continuum distributes user inter-
faces on one dimension ranging from the real environment to the 
virtual environment by going through the two forms of MR: aug-
mented reality and augmented virtuality. 

We have extended this continuum by adding a more continu-
ous range of UIs in the virtual part (Fig. 12) since it can be a 2D 
UI, a 3D rendering of a 2D UI (whether genuine as in our work or 
simulated), a genuine 3D UI manipulating 3D objects, and so 
forth. Moreover, a second dimension has been added to represent 
the degree of immersion that is allowed at each step: low immer-
sion when the user is only looking at the screen (desktop virtual 
UI) or high when the user is really immersed in the system 
(CAVE, HMD in a physical space). From the left to the right of 
Fig. 12, we have respectively: 

The true radio player as a physical device. • 
• 

• 

• 

• 

The same radio player, but augmented information that is su-
perimposed when the user is looking at it with HMD. 
A virtual representation of the radio player, but with incorpora-
tion of the true physical loudspeakers to directly operate on 
them through the interface as a remote control. Fig. 13 also de-
picts an example of such an augmented reality UI. 
A purely virtual 3D GUI consisting of a world where virtual 
objects mimic their real counterparts, but displayed on the 
user‘s screen. All objects of the UI are virtual and directly op-
erated by direct manipulation of them. 
A 3D UI where 3D objects correspond to the tasks (e.g., a 
sphere to trigger the “Play” function) and the elements (e.g., a 
cone representing the current volume). Fig. 14 also depicts an 
example of such a 3D UI where all objects are really spatial. 
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Figure 12. An extended continuum of user interfaces from pure reality (left) to the pure digital (right). 

  
Figure 13. An example of augmented virtuality for the case study. Figure 14. An example of a genuine 3D UI for the case study. 
 

One can observe that on the topmost line of Fig. 12, there is no 
counterpart with a high degree of immersion for pure reality 
(since we are already in the real world completely) and no coun-
terpart with a high degree of immersion for 2D GUIs (since we 
stay in the digital world of the operating system). Our ultimate de-
sire would be that the common parts of these UIs could be fac-
tored out and isolated from specific issues belonging to each case. 
The common parts should be expressed in UsiXML. 

A 3D rendering of a 2D GUI in a virtual environment, typically 
a 3D desktop such as Task Gallery, Windows 3DNA. 

• 

• 

• 

• 

• 

• 

• 

A classical 2D form-based GUI. 

On the second line of Fig. 12, corresponding UIs are imagined 
with a higher degree of immersion than merely on computer. 
From left to right, we have a series of various UIs: 

A tangible UI where physical objects are attached to the player 
functions (e.g., a physical cube for the “Play” function and a se-
ries of graduations for representing the volume of the loud-
speakers). A camera captures the movements of the user and in-
terprets them in the same way as she is performing in another 
virtual UI, except that all operations are performed in the real 
world, with an effect in the virtual world. 

9    Conclusion 
In this paper, we have presented a set of four models, a 

method and a suite of software for quickly producing 2D GUIs 
rendered in a 3D environment with the following benefits: 
• All steps of the method are stored in UsiXML specifications 

throughout the development life cycle so that specifications can 
be refined as the workflow is proceeding. 

A CAVE-based UI where the previously introduced physical 
objects are replaced by their virtual counterparts, while keeping 
the same functions attached. A user equipped with HMD and a 
glove can directly interact with these objects. 

• Once a Concrete UI is obtained, it can initiate an automated 
generation of the CUI both in VRML97 and in X3D thanks to 
two toolkits that have been developed for this purpose. A CAVE-based UI where the radio player is directly repre-

sented by its virtual scene. A glove similarly manipulates the 
user’s hand to mimic the real world’s operations. In this case, 
the operations are performed in the virtual world as opposed in 
the real world in the tangible UI. 

• The development of the two toolkits lead to identifying the 
parts of UsiXML which were possible to map and parts that re-
quired further modeling and implementation. This represents an 
extension of the language that is unique for virtual UIs. 

A CAVE-based UI containing the same 3D objects as in the 
genuine 3D UI for the case study (as in Fig. 14). 

• There is a true computer-aided virtualization process of a GUI 
into a VUI by help of mappings. 

A CAVE-based UI where the classical 2D UIs are projected 
and manipulated by glove and hand recognition techniques. 

• Contrarily to other rendering engines, the rendering engines de-
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veloped here largely exploit the 3D features of the virtual envi-
ronment: buttons have a real depth and their animation is im-
plemented as a real translation of the geometry in 3D. 

The difficulties we have encountered were largely due to estab-
lishing the mappings between the CUI and any FUI in VRML and 
X3D. As X3D only becomes partially supported in tools and plug-
ins, it was sometimes very difficult to test the correctness of the 
results. In addition, the rendering of a 3D UI in terms of polygons 
and textures is time consuming and does not always lead to a per-
fect representation of them in 3D. 
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