
Copyright © 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2005 ACM 1-59593-012-4/05/0003 $5.00

Towards Virtualization of User Interfaces based on UsiXML

José Pascual Molina Massó1,2, Jean Vanderdonckt2, Francisco Montero Simarro1,2, Pascual González López2

1Université catholique de Louvain, Belgian Laboratory of Computer-Human Interaction (BCHI)
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{molina | vanderdonckt | montero}@isys.ucl.ac.be
2Laboratory on User Interaction & Software Engineering (LoUISE), Univ. of Castilla-La Mancha, 02071 Albacete (Spain)

{jpmolina | fmontero | pgonzalez }@info-ab.uclm.es

Abstract
A model-based approach is presented for structuring a devel-

opment process of virtual user interfaces based on UsiXML, a
XML-compliant User Interface Description Language. UsiXML
provides a Concrete User Interface description that remains inde-
pendent from any toolkit, whether graphical or virtual. To support
the rendering of this description in a virtual world, two toolkits
have been developed: for VRML97 and X3D. The user interface
description can be edited within an appropriate graphical editor, in
2D for instance, and leads to 2D or 3D rendering or an automated
generation of a 2D graphical user interface in Java or a 3D virtual
user interface in VRML97 or X3D, for both presentation and be-
havior parts. When any element involved in the Concrete User In-
terface changes, the corresponding virtual user interface changes
accordingly, thus reducing development time and complexity. In
this way, a virtual user interface can be produced with the advan-
tage of raising the level of abstraction with respect to any lan-
guage. This paper focuses on the 3D user interfaces.

CR Categories: D.2.2 [Software Engineering]: Design Tools and
Techniques – User interfaces. I.3.6 [Computer Graphics]: Meth-
odology and Techniques – Interaction techniques. I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism – In-
teraction techniques. H.5.1 [Information Interfaces and Presen-
tation]: Multimedia Information Systems – Artificial, augmented,
and virtual realities. H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces – Graphical user interfaces, input devices
and strategies, interaction styles, user-centered design

Keywords: abstract user interface, concrete user interface, do-
main model, graphical user interface, task model, user interface,
User Interface Description Language, UsiXML, virtual user inter-
face, virtualization, XML.

1 Introduction
Several model-based approaches exist for developing graphical
user interfaces (UIs) based on underlying models, a method im-
plying these models throughout the development life cycle, and
software that help developers to apply the method. A lot of effort
has been devoted to such two-dimensions (2D) UIs that remains
unparalleled for three dimensions (3D) UIs in general, and for vir-
tual UIs in particular.

This is somewhat paradoxical as 3D environments should
make the user’s interaction not only more familiar with the real
world and more engaging, but are also intended to improve user’s
productivity. Furthermore, most UIs have been developed only for
a 2D environment in mind: their 3D integration is not seamless
and not straightforward. Therefore, there are many reasons to de-
fine and test a method for systematically producing a 3D UI simi-
larly to methods existing for 2D UIs, while taking into account
specific characteristics of the 3D world and what is needed to en-
sure a smooth transition between 2D and 3D.

The most important reason is that, even though virtual envi-
ronments are often considered as an extension of the 2D direct
manipulation paradigm in 3D, it is difficult to build a whole new
UI that relies solely on direct manipulation [Foley, 1995]. Adding
degrees of freedom to tasks that do not need them can be the
cause of an undesired complexity: tasks that are 2D in nature are
not necessarily transferable into 3D. Direct manipulation is not
always obvious [Cuppens, 2004]. Consequently, indirect manipu-
lation may be sometimes desired or required. When a 2D Graphi-
cal UI (GUI) needs to be incorporated in a 3D environment with-
out appropriate modifications, a hybrid 2D/3D UI is obtained.
Most virtual environments offer a 3D UI that is suited for spatial
navigation and physical object manipulation [Larimer, 2003], for
example, but there are other tasks that are carried out within the
virtual environment that only require 1D or 2D interaction, such
as selecting items from a menu. One way to provide 2D interac-
tion in a virtual environment consists of a window-based envi-
ronment, augmenting the virtual environment by introducing addi-
tional controls and information.

A second reason is to help the new 3D environments to sup-
port the current 2D applications, offering backwards compatibility
and making reusing easier. Support for legacy applications is one
aim that has been present in the development of many of the well-
known experiments in the field of 3D desktops, such as 3D Win-
dow Manager [http://www.3dwm.org] or Microsoft Task Gallery
[http://research.microsoft.com/adapt/TaskGallery/], as the devel-
opers that were involved in them admitted in public discussions in
the 3DUI mailing list [3DUI, 1999]. In the particular case of
RealPlaces, a set of design guidelines developed by IBM for new
3D environments, the idea of using a virtual version of the old en-
vironment –such as a computer unit on a table– in the new three
dimensional spaces was introduced so that it could be used to run
the old applications [Roberts, 2000].

A third reason consists in evolution rather than revolution: 3D
environments like the above quoted ones did not go truly beyond
the experimentation stage. But many of their ideas have been bor-
rowed for the new and promising projects such as SphereXP
[http://www.hamar.sk/sphere/], Infinite-3D [http://www.infinite-
3d.com/] and Croquet [http://croquetproject.org/]. The main as-
sumption of these environments is the need for replacing a 2D
windows desktop with a new full 3D desktop where conventional
2D applications are able to run under 3D managed mode [Molina
et al., 2003].

169

A fourth reason comes from one opinion frequently expressed
on the VRML-list mailing list, and supported by many of the par-
ticipants: 3D environments must handle 2D very well in order to
break into the desktop market. It is significant that, in one of the
online forums that the Web3D Consortium hosts in its Web site,
Toni Parisi admitted the existing interest in including in the X3D
specification the concept of “application texture”, explaining that
it will allow applications to output its graphics to a bitmap that
can be used as a texture in the 3D world.

Figure 1. 3D UI generated from a description [Maquil,2004]. A fifth reason is that a 3D environment really needs to ma-
nipulate 3D effects of UI element such as 2D environments do in
animation, but without merely duplicating the 2D effects in 3D.
For instance, when a push button appears, it should really have a
thickness that will appear pressed and depressed when the button
is selected, which is only done with shadow effect in 2D. Simi-
larly, when a drop down list box is opened in 2D, the list of poten-
tial values is scrolled down. In 3D, this list should exhibit a 3D
scrolling effect that clearly depicts the UI behavior.

Improvise [Zhou & Feiner, 1997] automatically generate co-

herent visual discourse which refers to a series of connected vis-
ual displays. Developers of Improvise developed a visual lan-
guage that is independent of any graphics platform or package.
Automated generation of VRML code has been successfully used
in various domains, such as guided tours from physical models
[Chittaro et al., 2003], city scenes from city models [Schilling &
Zipf, 2003], and graphical art. Another significant manifestation
of automated generation of 3D UI is Maquil’s tool [Maquil, 2004]
that produces 3D dialog boxes on top of widgets belonging to Stu-
dierStube environment (http://www.studierstube.org). Although
this system is equipped with an automatic layout facility of the
widgets (Fig. 1), the UI specification is rather a description in
terms of the StudierStube environment. In addition, no other pos-
sibilities exist for obtaining alternative layouts or UIs.

A last reason is an authority argument: in his keynote address
at Web3D’2000, N. Trevett raised the question of UI transition: in
order to make a 3D UI useful for mainstream users, there is a need
to transform flat 2D GUIs coming from the traditional desktop
into 3D. If an application running a GUI is launched in a 3D desk-
top, everything returns to a flat 2D representation as soon as the
application is active: the true 3D aspects are lost in the transition.
Therefore a 3D version of such UIs could change the situation,
encouraging a larger adoption and use of 3D desktops by match-
ing much better the mental model of the user.

The idea of widgets in 3D environments has been the seed of
many interesting discussions in mailing lists such as VRML-List,
and one of the topics that are usually debated is the question of
which should be the standard set of widgets for that kind of envi-
ronments. The interest in this topic was so high that a working
group was formed to study that problem in the context of the
VRML language. This working group analyzed two different ar-
chitectures for VRML-based widgets, being the first a layered ap-
proach based on the ideas of P. Isaacs and S. Becker, and the sec-
ond a component-based approach as suggested by G. Seidman.

In this paper, we would like to address the process of UI vir-
tualization, which is to progressively move 2D UIs to the 3D
world while fully exploiting the capabilities of the 3D environ-
ment. Instead of replicating a 2D window in a 3D world, each UI
will be specified in UsiXML [Limbourg et al., 2004] (USer Inter-
face eXtensible Markup Language – http://www. usixml.org) and
rendered in 3D thanks to two toolkits that have been developed
for VRML97 and X3D. VRML97 and X3D have been chosen be-
cause of their wide dissemination and adoption, but also because
X3D is the latest standardized version of VRML which progres-
sively becomes supported in browser plug-ins. So, it was a chal-
lenge to implement such a toolkit in X3D.

The first approach considers three layers, the first of them
deals with time control and pointer-surface interaction, the second
layer is related to the interpretation and control of that interaction
(which determines the “feel” of a widget), an the third and last
layer adds the geometry (the “look” of a widget). The second ar-
chitecture considers five basic components, which are the sensors,
the internal glue, the geometry, the external glue and, finally, the
Virtual Reality User Interfaces (VRUIs, analogous to GUIs).
Based on these architectures, different widgets were proposed,
and from all of them it is worth to mention the set of G. Seidman,
which is quite rich. However, all the pieces of work that result
from that group did not finally serve as the basis for a standard
toolkit, the group activities ceased and the VRML language con-
tinued without the desired standard set of widgets.

The remainder of this paper is structured as follows: section 2
will report on related work conducted in the domain of UI virtual-
ization and will show the sources that inspired the development of
the work presented in this paper. The approach based on UsiXML
will be motivated with respect to this state of the art. Section 3
will define the UI reference framework used throughout this pa-
per, not only for the rendering, but also for the method to virtual-
ize a UI. Section 4 provides a description of the UsiXML con-
cepts that are manipulated in this work. Section 5 then shows how
a UI specified in UsiXML can be automatically generated in both
VRML97 and X3D, and then rendered within appropriate plug-
ins. Section 6 explains how the rendering engines have been de-
veloped for any other reuse and some of the challenges solved.
Section 7 describes an example of an Internet radio player that is
running throughout the method. Section 8 replaces the work con-
ducted here in the context of a larger continuum of various UIs in
different virtual modes. Section 9 concludes the paper by summa-
rizing the benefits of the approach and some of its shortcomings.

The lack of a standard set of widgets forces every author to
create from scratch the interactive elements that are needed for the
project under development, using only those nodes that are speci-
fied in the specification of the VRML language. To address this
problem and let the author focus on the content of the project,
some authoring tools provide a set of VRML prototypes that also
includes certain widgets, as for instance interactive buttons. One
example of such authoring tools is Internet Scene Assembler
(http://www.parallelgraphics.com/products/isa/), developed by
ParallelGraphics, which has an extensive library of prototypes
which includes button, toggle button, slider, checkbox and text la-
bels, although among the parameters of those prototypes that the
author is able to set in order to fit them into his or her project it is
not included the geometry of the widgets, which reduces flexibil-
ity in their use. The provided subset of widgets is not as rich as
those found in 2D development tools, possibly because it may be
conceived to serve as a basic set for building Head-Up Display
(HUD) interfaces to be used in PC desktop virtual worlds.

2 Related Work
The main principle of automated generation of a 3D UI from its
specifications has been already demonstrated in several domains.
IBIS (Intent-Based Illustration System) [Seligmann & Feiner,
1991] automatically generates illustrations guided by communica-
tive goals specifying that particular properties of objects, such as
their size, color, or location are to be conveyed in the illustration.

170

2. Concrete UI (CUI): concretizes an abstract UI for a given
context of use into Concrete Interaction Objects (CIOs)
[Vanderdonckt & Bodart, 1993] so as to define widgets lay-
out and interface navigation. It abstracts a FUI into a UI
definition that is independent of any computing platform. Al-
though a CUI makes explicit the final Look & Feel of a FUI,
it is still a mock-up that runs only within a particular envi-
ronment. A CUI can also be considered as a reification of an
AUI at the upper level and an abstraction of the FUI with re-
spect to the platform. For example, in Envir3D [Vander-
donckt et al., 2004], the CUI consists of a description of tra-
ditional 2D widgets with mappings to 3D by relying on dif-
ferent mechanisms when such a mapping is possible.

Up to this point, we have only described VRML-based pro-
jects and tools related to the topic we are concerned. With the de-
velopment of the third version of that language, X3D, new pro-
jects and tools appeared which also address the problem of the
widget toolkit. One of those projects is CONTIGRA [Dachselt,
Hinz, and Meißner, 2002], whose objectives do not only include
the standardization of a repertoire of 3D widgets, but also meta-
phors and interaction techniques, everything structured in the
form a hierarchy. Each component is specified using a XML-base
language, which provides all the benefits of using XML technol-
ogy, and combines X3D language to describe the final appearance
and geometry of each 3D widget. Among those widgets, the rep-
ertoire includes some of the elements that are used in almost every
2D and 3D application, such as the button and the toggle button,
but also other widgets that are only specific to 3D environments,
such as the ring menu. The advantage of this set is that it has been
designed taking geometry apart from behavior, following an
architecture that resembles the ideas proposed by the former
VRML Working Group, allowing the author to choose the form
that better adjust to the behavior required for his or her project.
The disadvantage is that many of the widgets of this hierarchy
have not been developed or are not publicly available yet, which
limits its adoption as a standard in the field. Besides this, it is not
clear enough how a traditional 2D application could be translated
to a 3D environment using that set of widgets, bearing in mind
that some of the widgets used in 2D applications have not got a
direct correspondence with a widget of the CONTIGRA hierarchy.

3. Abstract UI (AUI): defines abstract containers and individual
components [Limbourg et al., 2004] by grouping subtasks
according to various criteria (e.g., task model structural pat-
terns, cognitive load analysis, semantic relationships identifi-
cation), a navigation scheme between the container and se-
lects abstract individual component for each concept so that
they are independent of any modality. An AUI abstracts a
CUI into a UI definition that is independent of any modality
of interaction (e.g., graphical interaction, vocal interaction,
speech synthesis and recognition, video-based interaction,
virtual, augmented or mixed reality). An AUI can also be
considered as a canonical expression of the rendering of the
domain concepts and tasks in a way that is independent from
any modality of interaction. An AUI is considered as an ab-
straction of a CUI with respect to modality. With regard to the toolkits developed for virtual environments

based on other languages or libraries different than the VRML97
or X3D, it is worth to cite the work described in [Boyd, 1999],
[Larimer, 2003] and [Cuppens, 2004]. The first of them was car-
ried out within the INQUISITIVE project, and involved the devel-
opment of a library of interaction objects which were imple-
mented using the MAVERIK toolkit, including widgets such as the
window, dial and slider. The second of those references describe a
system called VIEWL, which implements a windowing system
based on Qt and DIVERSE, where windows are represented as
polygons that are tangent to the surface of a sphere that surrounds
the user. The third one is VRIXML, a XML-based language
aimed at developing UIs in virtual worlds, whose authors use to
create 2D/3D hybrid interfaces, and for that purpose they elabo-
rated a toolkit based on a subset of the classical 2D widgets.

4. Task & Concepts (T&C): describe the various tasks to be
carried out and the domain-oriented concepts as they are re-
quired by these tasks to be performed. These objects are con-
sidered as instances of classes representing the concepts.

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

In our work, we would like to have a XML-compliant User
Interface Description Language that not only supports the descrip-
tion of a UI, whether 2D or 3D, graphical or virtual, but also the
method that can be followed to produce such a UI. From these
specifications, different UIs should be produced by rendering and
automated generation. In this way, it is possible to simulate in the
virtual world the look and feel of the same UI in virtual versions
of different platforms, such as PDAs, PCs or even Interactive
Walls. In addition, it supports migrating a UI from one platform to
another (e.g., 2D to 3D) by visually representing this transition.
The next section presents the framework that allows this process.

Figure 2. The User Interface Reference Framework.

This framework exhibits three types of transformation types:
(1,2) Abstraction (respectively, Reification) is a process of elicit-
ing artifacts that are more abstract (respectively, concrete) than
the artifacts that serve as input to this process. Abstraction is the
opposite of reification. (3) Translation is a process that elicits arti-
facts intended for a particular context of use from artifacts of a
similar development step but aimed at a different context of use.
With respect to this framework, multi-path UI development refers
to a UI engineering method and tool that enables a designer to (1)
start a development activity from any entry point of the reference
framework (Fig. 1), (2) get substantial support in the performance
of all basic transformation types and their combinations of Fig. 2.

3 A Reference Framework for User Interfaces
Multi-path UI development is based on the Cameleon Reference
Framework [Calvary et al., 2003], which defines UI development
steps for multi-context interactive applications. Its simplified ver-
sion, reproduced in Fig. 2, structures development processes for
two contexts of use into four development steps (each develop-
ment step being able to manipulate any specific artifact of interest
as a model or a UI representation):

In this paper, the four levels will be used for supporting the
method where a UI will be mainly described at the CUI level be-
cause this level is independent of any computing platform and any
particular toolkit. It will be demonstrated that from a same speci-
fications of a CUI, a GUI can be obtained in parallel to a virtual-
ization of this GUI or even another genuine 3D virtual UI. This is
why the next section is focusing on the CUI.

1. Final UI (FUI): is the operational UI i.e. any UI running on a
particular computing platform either by interpretation (e.g.,
through a Web browser) or by execution (e.g., after compila-
tion of code in an interactive development environment).

171

4 The Concrete User Interface in UsiXML 5 Mapping from UsiXML to VRML97 and X3D
In Fig. 2, the last level of abstraction before obtaining a final UI is
the CUI level. A description of a CUI can be obtained by succes-
sive forward engineering from the T&C level, the AUI level or di-
rectly. A CUI is assumed to be described without any reference to
any particular computing platform or toolkit of that platform. For
this purpose, a CUI model consists of a hierarchical decomposi-
tion of CIOs. A Concrete Interaction Object (CIO) is defined as
any UI entity that users can perceive such as text, image, anima-
tion and/or manipulate such as a push button, a list box, or a check
box [Limbourg et al., 2004, Vanderdonckt & Bodart, 1993]. A
CIO is characterized by various attributes such as, but not limited
to: id, name, icon, content, defaultContent, defaultValue.

The platform independence then poses the challenge of correctly
and appropriately mapping the platform-independent specification
(the CUI model) to a platform-specific one (the FUI). Thanks to
the UsiXML-based VRML97 and X3D toolkits that have been
implemented and that are described in the following sections, it is
possible to map interface elements described at the CUI level of
UsiXML and those that have been included in the toolkit to allow
the generation of a FUI in a VRML97 or X3D-based 3D environ-
ment. Without those toolkits, it could not be possible to carry out
the mappings, as none of those Web3D standard languages in-
clude primitives that can be matched with the CIOs defined in
UsiXML. However, the toolkit does not cover everything that is
specified in UsiXML, and at the same time introduces new con-
cepts that are not included in UsiXML. Therefore, when attempt-
ing to map a CIO from a CUI to a VRML97 or X3D world, sev-
eral cases practically occurred:

Since a CIO is independent of any computing platform, we do
not know yet which interaction modality is used on that platform.
Therefore, each CIO can be sub-typed into sub-CIOs depending
on the interaction modality chosen: graphicalCIO for GUIs, audi-
toryCIO for vocal interfaces, 3DCIO for 3D UIs, etc. In this pa-
per, we focus on graphical CIO since they form the basic elements
of a traditional 2D GUI or a 3D, virtual UI. Each graphicalCIO
inherits from the above CIO properties and has specific attributes
such as: isVisible, isEnabled, fgColor and bgColor to depict fore-
ground and background colors, etc.

1. Direct mapping between a CIO of the CUI and a VRML97 or
X3D primitive. This mapping could be one-to-one (bijection)
or one-to-many (composition of objects). As explained be-
fore, it is not possible to set a one-to-one mapping as those
Web3D languages define basic elements such as shapes and
sensors that must be used together to create interactive ele-
ments, such as for instance 3D widgets. The new standard
X3D does not change this status, even though it includes new
2D geometry nodes that make easier to draw 2D interfaces in
a 3D world.

Each graphicalCIO is then sub-typed into one of the two pos-
sible categories (Fig. 3): graphicalContainer for all widgets con-
taining other widgets such as page, window, frame, dialog box,
table, box and their related decomposition or graphicalIndividu-
alComponent for all other traditional widgets that are typically
found in such containers. A graphicalIndividualComponent can-
not be further decomposed. UsiXML supports a series of widgets
defined as graphicalIndividualComponents such as: textCompo-
nent, videoComponent, imageComponent, imageZone, radioBut-
ton, toggleButton, icon, checkbox, item, comboBox, button, tree,
menu, menuItem, drawingCanvas, colorPicker, hourPicker,
datePicker, filePicker, progressionBar, slider, and cursor.

2. New mapping between the CIO and a VRML97 or X3D coun-
terpart. Sometimes, no object exists natively in the X3D lan-
guage to ensure the mapping. In this case, there is a need to
fill this gap by introducing a new widget in the X3D world
by appropriate implementation. This is what happens with
the CIOs that have been used as a starting point for the tool-
kit, for each of them there is an element in the toolkit that
can be used for their representation in the final interface.
However, this correspondence is not complete, as there are
some attributes that are defined in the concrete level of
UsiXML but that are not used in the 3D world, and there are
also other attributes that are added because they are neces-
sary to describe the interface elements in the 3D world, such
as those properties that allow the specification of the position
and dimension of the widget.

Thanks to this progressive inheritance mechanism, every final
elements of the CUI inherits from the upper properties depending
on the category they belong to. The properties that have been cho-
sen in UsiXML have been decided because they belong to the in-
tersection of property sets of major toolkits and window manag-
ers, such as Windows GDI, Java AWT and Swing, HTML. Of
course, only properties of high common interest were kept. In this
way, a CIO can be specified independently from the fact that it
will be further rendered in HTML, VRML or Java. This quality is
often referred to as the property of platform independence.

3. No possible mapping. In spite of the implemented toolkit and
the elements included in it, there are other CIOs whose coun-
terpart in VRML97 or X3D have not been done yet or it is
impossible or difficult to implement it. An example of this is
the CIO box defined in the concrete level of UsiXML, which
is meant to position the widgets according to some logic con-
straints. Due to the fact that the implemented toolkit does not
include that CIO, it is necessary to perform a transformation
that takes the concrete interface as an input and calculate the
position and dimensions of each widget in order to output the
final interface.

CUI Model

CIO

graphicalCIO

graphicalContainer graphicalIndividualComponent

CUI ModelCUI Model

CIOCIO

graphicalCIOgraphicalCIO

graphicalContainer graphicalIndividualComponentgraphicalContainergraphicalContainer graphicalIndividualComponentgraphicalIndividualComponent

Another aspect to take into account when mapping between a
concrete interface and its final representation in VRML97 or X3D
is that when defining GUI it is being assumed that the final plat-
form will have a screen where the elements will be displayed, and
the user will be able to interact with those elements by means of a
keyboard and a mouse. When translating those concepts to a vir-
tual world, it is necessary to define which are the counterparts of
the screen, the keyboard, and the mouse.

With regard to the screen, the implemented toolkit includes a
prototype that is called “Screen”, whose function in the toolkit is
double. On the one hand, it makes possible to specify a rectangle
that represents the rectangular screen of almost every computer
display, detailing its dimensions –specifying width and height in Figure 3. Decomposition of a CUI model into concepts.

172

meters, or the diagonal length in inches and the aspect ratio- and
its pixel resolution. This prototype accepts a bitmap as a parame-
ter, and has also a sensor that sends out events which contain the
coordinates of the pixel at which the user is pointing with his or
her pointing device. The second use of this prototype is to serve as
a container of elements of a traditional GUI, elements which can
be any of those included in the toolkit. For that purpose, the field
children is provided in the “Screen” prototype. That field resem-
bles those present in VRML97 and X3D nodes, such as Transform
or Group. In fact, the mechanism used in those languages to group
nest nodes by means of MFNode field is also the one use in the
toolkit to set up the relationships between graphical CIOs.

As for the keyboard and mouse, in both VRML97 and X3D
specifications it is assumed that the user interacts with the virtual
world using a pointing device, and many of the sensors are ori-
ented to the user-world interaction using that device. In this way,
the mouse could be mapped with that pointing device that user
employs when exploring a VRML97 or X3D virtual world, which
indeed in most cases is the mouse of the PC where the virtual
world browser is running. The keyboard could also be the PC one,
and in that case the only thing needed is a sensor or a set of sen-
sors that detect the key pressing. This is possible with X3D since
it offers this kind of sensors, such as StringSensor. But it is im-
possible to do with VRML97 since it requires the use of non-
standard extensions, such as the KbdSensor from ParallelGraph-
ics. One alternative to using one of those sensors is the introduc-
tion of virtual versions of the mouse and the keyboard in the vir-
tual world.

6 Implementation of the VRML97 & X3D toolkits
The architecture of the set of widgets is the same in both
VRML97 and X3D versions, and its implementation has been
based on the prototyping mechanism which is available in both
languages, and also on some of the ideas expressed by the VRML
Widget Working Group. This way, for each final widget it has
been created a VRML97 and an X3D prototype which are both
composed of: an interface based on a set of fields–for setting ini-
tial values and also send and receive events-, shapes that represent
the appearance and geometry of the widget –customizable through
the prototype interface-, the sensors that make possible the inter-
action between the user and the geometry, internal logic that keep
the state of the widget and control the behaviour of it depending
on its state, and a set of routes that set up links among shapes,
sensors and logic.

In order to explain the details of the toolkit, this section will
focus on the implementation of one widget, which is the GUITog-
gleButton. First, as it has been introduced in the previous para-
graph, the widget is implemented as a prototype in both VRML97
and X3D versions. The interface of the prototype has been defined
from the set of attributes that the toggleButton class has as speci-
fied in the concrete level of UsiXML, with some of those attrib-
utes being inherited from the cio, graphicalCio and graphicalIn-
dividualCio classes. When adding one attribute from a CIO to a
VRML97 or X3D prototype we must adapt the type of the of each
attribute to those available in VRML97 and X3D languages. For
example, a boolean attribute of a CIO can easily be specified as a
SFBool field in VRML97 or X3D. However, whereas the colour
of an element is specified as an attribute whose type is string in
USIXML, the type of that attribute in the toolkit should be
SFColor, which is the most appropriate to describe that property
in VRML97 and X3D. The code reproduced in Fig. 4 has been
copied from the VRML97 version of the GUIToggleButton proto-
type: it clearly shows a section containing the mappings to the
CIO object, then a section related to the mappings of the graphi-
calCIO properties, then a section for the graphicalIndividual-
Component, and finally the properties of the toggleButton.

PROTO GUIToggleButton [
USIXML: cio
...
USIXML: graphicalCio
...
USIXML: graphicalIndividualComponent
...
USIXML: toggleButton
field SFBool defaultState FALSE
VRML97 GUI Toolkit fields
field SFInt32 top 0
field SFInt32 left 0
field SFInt32 width 75
field SFInt32 height 25
exposedField MFNode label []

eventOut SFTime touchTime
eventIn SFBool set_state
eventOut SFBool state_changed

eventIn SFInt32 set_top
eventIn SFInt32 set_left
eventIn SFInt32 set_width
eventIn SFInt32 set_height
eventOut SFInt32 top_changed
eventOut SFInt32 left_changed
eventOut SFInt32 width_changed
eventOut SFInt32 height_changed

Figure 4. Definition of a UsiXML toggleButton in VRML97.

Due to space reasons and in order to focus the discussion on a

few fields, some of the sections of the interface have been cut out.
More precisely, it has been cut all the fields that are derived from
the cio, graphicalCio and graphicalIndividualCio classes. In con-
trast, it has been left the attribute defaultState which is defined in
the toggleButton class as a property of type boolean and included
in the prototype as a SFBool field. Not every attribute that is de-
fined in the concrete level of UsiXML has a meaning in the tool-
kit, and some other new attributes have to be added to the proto-
type in order to include some parameters which are related to the
final platform, which in this case are virtual worlds created with
VRML97 and X3D languages. For example, in the concrete level
of UsiXML there are no attributes to specify the position or di-
mensions of a widget using units such as pixels or meters, because
the widgets are laid out on a container using a set of logical rela-
tionships. On the contrary, the toolkit that is used to render the fi-
nal interface in a virtual world requires from each widget its posi-
tion and dimensions measured in pixels, and for that reason the in-
terface of the GUIToggleButton prototype has four new fields:
top, left, width and height. Besides, there are some eventIn fields
with same name but for the prefix set_, and some eventOut field
with same name too but for the suffix _changed. The internal
logic of each prototype handles the incoming events and sends out
new events that communicates the changes in the state of the wid-
get. In the case of the X3D version, every prototype parameter is
of type inputOutput, which packs three kinds of fields in only one,
simplifying the interface by making it more reduce but having the
same functionality as the VRML97 version. This reduction in the
interface is not possible in the VRML97 specification as fields of
type exposedField can not be used in Script nodes. X3D allows
Script nodes to include inputOutput, and so the interface of GUI-
ToggleButton is as reproduced in Fig. 5. Apart from the new at-
tributes that define the position and dimensions of the widget, the
interface of the GUIToggleButton includes a field named label
that is of type MFNode, an attribute that makes possible to assign
to any of those widgets another window element that will play the
role of button label or box label, as for example a GUITextCom-
ponent or a GUIImageComponent element, or even the combina-
tion of both of them.

173

<ProtoDeclare name="GUIToggleButton">
<ProtoInterface>

<!-- USIXML: cio -->
<!-- . . . -->
<!-- USIXML: graphicalCio -->
<!-- . . . -->
<!-- USIXML: graphicalIndividualComponent -->
<!-- . . . -->
<!-- USIXML: toggleButton -->

<field accessType="initializeOnly"
name="defaultState"
type="SFBool" value="false"/>

<!-- X3D GUI Toolkit fields -->
<field accessType="inputOutput" name="top"

type="SFInt32" value="0"/>
<field accessType="inputOutput" name="left"

type="SFInt32" value="0"/>
<field accessType="inputOutput" name="width"

type="SFInt32" value="75"/>
<field accessType="inputOutput" name="height"

type="SFInt32" value="25"/>
 <field accessType="inputOutput" name="state"

 type="SFBool"/>
 <field accessType="inputOutput" name="label"

 type="MFNode"/>
<field accessType="outputOnly"

name="touchTime" type="SFTime"/>

Figure 5. Definition of a UsiXML toggleButton in X3D.

There are also some fields that make possible to connect this

widget with the rest of the interface and the application, such as
touchTime, which is used to cast an event each time the button is
pressed, an the field state, which makes it possible to change the
state of the button with an incoming event and to communicate
the change in the state of the button with and outgoing event (in
the VRML97 version there are two fields, set_state and
state_changed).

The next element of the prototype is a scene graph which in-
cludes the shapes that give the widget its appearance and geome-
try. In a 2D environment, the widget would be drawn using primi-
tives such as points, lines, rectangles, text and images. In
VRML97 the shape must be modeled using the nodes that the lan-
guage offers, such as polylines, polygons, text and textures. In
X3D the range of primitives is wider, as it includes new 2D ge-
ometry nodes. In both Web3D languages, the geometry of the
widget is specified as a hierarchy of transformations whose leaves
are the shapes that give to the widget the look it has once rendered
in the screen.

Another element of each widget is the sensor or sensors that
are included in the prototype so that the user can interact with the
shapes that are displayed. In the case of the prototype GUITog-
gleButton, it includes a TouchSensor associated to the button ge-
ometry, so that when the user performs the action of touching that
geometry with his o her pointing device, the sensor detects the ac-
tion and cast an event that contains the time when the user
touched the button. Besides, this prototype has also two TimeSen-
sors that launch two different animations, one for the case the but-
ton is pressed and one for the case the button is released. In both
animations, the geometry of the button changes moving along the
third dimension, as it would be expected in the real world, instead
of using visual tricks as occurs in 2D environments.

The event that is cast by the TouchSensor is routed to a Script
node that is included in the GUIToggleButton prototype, a node
that represents the logic of the widget. This Script node has a set
of fields that are matched, by means of IS statements, with some
of the fields defined as the interface of the prototype, so that the
Script receives the initial values and sets the widget accordingly,
changing the geometry and behavior based on the current state of

the widget. Each external event, such as one user action, is then
routed to this Script node, executing the corresponding function
that will interpret the event and change the state of the widget,
sending out events that communicate the changes to other parts of
the interface or the application.

The last part of the GUIToggleButton prototype, as in any of
the rest of the prototypes that are part of this toolkit, is a set of
routes, which is the mechanism that is described in the VRML97
and X3D specifications to conduct events from the nodes that cast
them to the nodes that receive the events. More precisely, the
routes that are included in each prototype have the role of connect
the shapes and sensors with the logic of the widget, so that the
Script node can rule the behavior of the widget, receiving incom-
ing events and sending out events to the scene graph of the proto-
type.

7 A case study
In this section, a case study is described as an example running
from the topmost level of the reference framework (Fig. 2) until
the bottom level, here in VRML97 and X3D. This case of study
has been carefully selected for its specification with the USIXML
language and later generation of the final interface using the tool-
kit previously described, and using both VRML97 and X3D ver-
sions of it. Thus, as a case of study it has been chosen a music
player that uses as source the Internet radio station that the user
wants to listen to. This application allows the user to select the
music source from a list of available radio stations, reducing the
number of items presented in that list by selecting a particular mu-
sic genre, or introducing some key words for an intelligent search.
Once the radio station is selected, the user can play the music that
is broadcast by that station, pause or stop the played music at his
or her will, and also turn up or down the volume of the music, or
even turn it into silence.

This example, as it will be seen in the next sections, has been
chosen for the rich set of functions that integrates in only one ap-
plication, which leads also to a rich interface with regard to num-
ber and type of elements, which allows us to put into practice all
the implemented elements of the USIXML-based VRML97 and
X3D toolkit.

In the following sections it will be detailed how the USIXML
specification of the selected case of study has been carried out,
having a look at each model until the final user interface level is
reached, then a final user interface is generated using the proposed
toolkit in order to deploy the application in a three-dimensional
environment build with VRML97 or X3D.

7.1. Task and Concept Model (T&C)

The task model is aimed at expressing what will be the user’s ac-
tions independently of any implementation of these actions. The
high-level task “Listen to radio” is depicted by a cloud since at
this level, the task is considered rather abstract (Fig. 6). It is there-
fore decomposed into a system task “Retrieve list” which will
automatically retrieve all radio stations accessible at that time,
then passes this information to the radio player display. At this
level “Radio player ready”, the user can perform the following ac-
tions in any order (“|||” represents concurrency): select a station,
play this station, stop it, pause it, increasing or decreasing the vol-
ume, and making the player mute or not. All tasks in brackets, e.g.
[Play*] mean that they are optional. The star * means that the task
can be repeated several times. The “[Play*]” task is a final inter-
active (user-system icon) task because it cannot be further decom-
posed, as opposed to the “[Select station*]” task which can be fur-
ther decomposed into sub-tasks to end up with actions. This task
model is saved in UsiXML format to be transformed into an AUI.

174

Figure 6. Task model of the case study.

7.2. Abstract User Interface Model (AUI)

To switch from the task model to a AUI model (Fig. 7), a set of
transformations can be applied to automatically generate such an
AUI. The results of this generation can then be manually edited in
the corresponding editor to refine the specifications. Examples of
such transformations involve: for each leaf node task, produce an
abstractContainer whose function corresponds to the task type in
the task model (e.g., for producing a “Play” control facet in the
“Play” container), for each task manipulating an attribute, produce
an abstractContainer whose function corresponds to the task ac-
tion type applied to the domain element (e.g., for producing the
“Volume” input facet of the “Volume tuning” container), for each
task passing information, produce a container with an input facet
related to the user input and a navigation facet to propagate the re-
sults of the user input on some other object (e.g., for the “Search”
container with “Word” input and navigation in the Station list).

Figure 8. The Concrete User Interface of the case study.

Within this editor, the individual components such as buttons, list
box, drop-down list box, check box are produced within their ap-
propriate container if any, but no assumption is made on how
these components will be in turn reified concretized into dedicated
widgets belonging to a particular computing platform and toolkit.
The main area of Fig. 8 contains the rendering of the CUI and its
left pane displays the current values of each component’s proper-
ties. Each property can be edited by direct manipulation of the
corresponding component or by alphanumeric editing of the val-
ues. Again, everything is saved in UsiXML.

7.4. Final User Interface (FUI)
Once the CUI specifications are completed, there is a need to
connect each component to the corresponding service. For exam-
ple, the “retrieve list” computer task in Fig. 6 is mapped onto the
definition of a service which calls functions to retrieve this list
from the web. Once this step is achieved, the resulting UsiXML
specifications can then serve as input for the automated generation
of VRML97 and X3D according to the mappings described in
Section 5 and on top of the toolkits developed in Section 6. Fig-
ures 9 and 10 provide screenshots of the Final User Interface ren-
dered in X3D thanks to the Flux environment. This consists of a
2D GUI rendered in a 3D environment, but with real 3D effects.
For instance, when the user presses the “Play” button, the button
is really pressed and depressed according to an animation mecha-
nism. When the user selects the drop-down list containing the
genres, the list is really scrolled down according to a circular vis-
ual effect that is embedded in the underlying toolkit. The same
definition of the CUI stored in UsiXML can be equally rendered
in VRML97 within the Cortona plug-in for Internet browsers.

Figure 7. The Abstract User Interface of the case study.

7.3. Concrete Model (CUI)

The Abstract UI model only contains a hierarchical decomposi-
tion of user’s actions dealing with domain elements. To turn this
Abstract UI into a Concrete one, again a series of transformations
are applied to the UsiXML specifications for selecting appropriate
widgets, for producing the intra-container navigation and extra-
container navigation if appropriate, and for laying out objects de-
pending on constraints imposed by the ordering of sub-tasks wit-
hin a same level of task decomposition in the task model (Fig. 6).
This results into UsiXML specifications at the Concrete UI level
which can be opened and edited in an appropriate editor, such as
GrafiXML (Fig. 8).

175

Figure 9. Close view of the final user interface in Flux.

Figure 10. The final user interface rendered in Flux.

Figure 11. The virtual laptop with the FUI rendered in VRML97.

Fig. 11 provides a screenshot of this rendering, but augmented
with the automatic generation of the computing platform which is
simulated, here a laptop. In this case, the user may move, shrink,
expand or resize the window on the screen similarly to any classic
2D environment. The big win in this case is that there is no need
to change the UsiXML specifications since they are toolkit-
independent. They are simply rendered differently depending on
the underlying toolkit. The rendering is a genuine 3D rendering of
objects as opposed to a 2D projection in a 3D environment as

software like Cube [Infinite3D, 2004], SphereXP [SphereXP Pro-
ject Website, 2004] or Looking Glass [SUN Looking Glass Pro-
ject Website, 2003] are performing. These software exhibit the
advantage that nothing should be changed to application to be ren-
dered in 3D, but suffer from the drawback that it is not a real 3D
UI since everything is projected into 2D. Now, one can discuss
that the components are rendered as 3D widgets in a way that re-
mains similar to the “Look & Feel” of 2D widgets, except that the
“Feel” is a genuine 3D behavior. According to this view, this kind
of FUI can be interpreted only as a 3D rendering of 2D UIs, even
if their specifications are toolkit-independent. The next section
examines further this problem.

8 A Continuum for virtualizing user interfaces
So far, we have shown how to produce UsiXML specifications of
a CUI that can be rendered in 3D in two ways, on top of two dedi-
cated toolkits that have been developed for this purpose. The
UsiXML specifications do not change whether we want a Java or
HTML final user interface (that can be generated by GrafiXML)
or a VRML97/X3D one (that can be generated by the system
demonstrated here). Our ultimate goal is now to explore how we
can expand, refine these specifications to reach a wider spectrum
of UIs exhibit various capabilities without changing their specifi-
cations, or at least while minimizing the changes of these specifi-
cations depending on their type.

To introduce and define a wider spectrum of such interfaces
while offering different basic or advanced mechanisms and tech-
niques for virtualizing a user interface, we draw some inspiration
from Milgram and Kishino [1994] continuum. They defined a
continuum of real-to-virtual environments and called the space
between Mixed Reality (MR). Mixed Reality includes Augmented
Virtuality (AV), in which real world objects are augmented by
virtual ones or virtual capabilities that cannot be found in the real
world. Augmented Reality (AR) is the other facet of MR in which
virtual objects of the virtual world or scene are added to a real en-
vironment. A MR environment is assumed to enhance the user’s
perception and to improve the intuitive interaction with the real
world. Milgram and Kishino’s continuum distributes user inter-
faces on one dimension ranging from the real environment to the
virtual environment by going through the two forms of MR: aug-
mented reality and augmented virtuality.

We have extended this continuum by adding a more continu-
ous range of UIs in the virtual part (Fig. 12) since it can be a 2D
UI, a 3D rendering of a 2D UI (whether genuine as in our work or
simulated), a genuine 3D UI manipulating 3D objects, and so
forth. Moreover, a second dimension has been added to represent
the degree of immersion that is allowed at each step: low immer-
sion when the user is only looking at the screen (desktop virtual
UI) or high when the user is really immersed in the system
(CAVE, HMD in a physical space). From the left to the right of
Fig. 12, we have respectively:

The true radio player as a physical device. •
•

•

•

•

The same radio player, but augmented information that is su-
perimposed when the user is looking at it with HMD.
A virtual representation of the radio player, but with incorpora-
tion of the true physical loudspeakers to directly operate on
them through the interface as a remote control. Fig. 13 also de-
picts an example of such an augmented reality UI.
A purely virtual 3D GUI consisting of a world where virtual
objects mimic their real counterparts, but displayed on the
user‘s screen. All objects of the UI are virtual and directly op-
erated by direct manipulation of them.
A 3D UI where 3D objects correspond to the tasks (e.g., a
sphere to trigger the “Play” function) and the elements (e.g., a
cone representing the current volume). Fig. 14 also depicts an
example of such a 3D UI where all objects are really spatial.

176

P
S

V

Now playing Volume:74%

Play

Stop

Play

Stop
P

S
V

2D GUI3D rendering
of 2D GUI

Digital
3D GUI

Virtual
3D GUI

Augmented
virtuality

Augmented
reality

Pure
reality

Degree
of

immersion

High

Low

Virtuality / digitality

P
S

VP
S

V

Now playing Volume:74%

Play

Stop

Play

Stop

Play

Stop
P

S
VP

S
V

2D GUI3D rendering
of 2D GUI

Digital
3D GUI

Virtual
3D GUI

Augmented
virtuality

Augmented
reality

Pure
reality

Degree
of

immersion

High

Low

Virtuality / digitality

Figure 12. An extended continuum of user interfaces from pure reality (left) to the pure digital (right).

Figure 13. An example of augmented virtuality for the case study. Figure 14. An example of a genuine 3D UI for the case study.

One can observe that on the topmost line of Fig. 12, there is no
counterpart with a high degree of immersion for pure reality
(since we are already in the real world completely) and no coun-
terpart with a high degree of immersion for 2D GUIs (since we
stay in the digital world of the operating system). Our ultimate de-
sire would be that the common parts of these UIs could be fac-
tored out and isolated from specific issues belonging to each case.
The common parts should be expressed in UsiXML.

A 3D rendering of a 2D GUI in a virtual environment, typically
a 3D desktop such as Task Gallery, Windows 3DNA.

•

•

•

•

•

•

•

A classical 2D form-based GUI.

On the second line of Fig. 12, corresponding UIs are imagined
with a higher degree of immersion than merely on computer.
From left to right, we have a series of various UIs:

A tangible UI where physical objects are attached to the player
functions (e.g., a physical cube for the “Play” function and a se-
ries of graduations for representing the volume of the loud-
speakers). A camera captures the movements of the user and in-
terprets them in the same way as she is performing in another
virtual UI, except that all operations are performed in the real
world, with an effect in the virtual world.

9 Conclusion
In this paper, we have presented a set of four models, a

method and a suite of software for quickly producing 2D GUIs
rendered in a 3D environment with the following benefits:
• All steps of the method are stored in UsiXML specifications

throughout the development life cycle so that specifications can
be refined as the workflow is proceeding.

A CAVE-based UI where the previously introduced physical
objects are replaced by their virtual counterparts, while keeping
the same functions attached. A user equipped with HMD and a
glove can directly interact with these objects.

• Once a Concrete UI is obtained, it can initiate an automated
generation of the CUI both in VRML97 and in X3D thanks to
two toolkits that have been developed for this purpose. A CAVE-based UI where the radio player is directly repre-

sented by its virtual scene. A glove similarly manipulates the
user’s hand to mimic the real world’s operations. In this case,
the operations are performed in the virtual world as opposed in
the real world in the tangible UI.

• The development of the two toolkits lead to identifying the
parts of UsiXML which were possible to map and parts that re-
quired further modeling and implementation. This represents an
extension of the language that is unique for virtual UIs.

A CAVE-based UI containing the same 3D objects as in the
genuine 3D UI for the case study (as in Fig. 14).

• There is a true computer-aided virtualization process of a GUI
into a VUI by help of mappings.

A CAVE-based UI where the classical 2D UIs are projected
and manipulated by glove and hand recognition techniques.

• Contrarily to other rendering engines, the rendering engines de-

177

veloped here largely exploit the 3D features of the virtual envi-
ronment: buttons have a real depth and their animation is im-
plemented as a real translation of the geometry in 3D.

The difficulties we have encountered were largely due to estab-
lishing the mappings between the CUI and any FUI in VRML and
X3D. As X3D only becomes partially supported in tools and plug-
ins, it was sometimes very difficult to test the correctness of the
results. In addition, the rendering of a 3D UI in terms of polygons
and textures is time consuming and does not always lead to a per-
fect representation of them in 3D.

Acknowledgements
We gratefully acknowledge the support of the SIMILAR network
of excellence (www.similar.cc), the European research task force
creating human-machine interfaces similar to human-human com-
munication of the European Sixth Framework Programme. José
Pascual Molina Massó was also supported by the Spanish CICYT
project TIN2004-08000-C03-01 when visiting BCHI. All infor-
mation regarding UsiXML and software described in this paper
are accessible through http://www.usixml.org.

References
3D UI Mailing List Archive. URL: http://people.cs.vt.edu/~bow

man/3dui/
3D Window Manager, URL: http://www.3dwm.org
ARJOMANDY, S. AND SMEDLEY, T.J. 2004. Visual Specification of

Behaviours in VRML Worlds. In Proceedings of 9th ACM Int.
Conf. on 3D Web Technology Web3D’2004 (Monterey, April 5-
8, 2004), ACM Press, New York, 2004, 127–133.

BOYD, D. AND SASTRY, L. 1999. Development of the INQUISI-
TIVE interaction toolkit—concept and realisation. In Proc. of
Workshop on User Centered Design and Implementation of Vir-
tual Environments UCDIVE’99 (York, September 30th, 1999).

CALVARY, G., COUTAZ, J., THEVENIN, D., LIMBOURG, Q., BOUIL-
LON, L., AND VANDERDONCKT, J. 2003. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting with
Computers, vol. 15, no. 3, 289–308.

CHITTARO, L. AND RANON, R. 2002. Dynamic Generation of Per-
sonalized VRML Content: a General Approach and its Applica-
tion to 3D E-Commerce. In Proc. of 7th Int. Conf. on 3D Web
Technology Web3D’2003 (Tempe, February 24-28, 2002).
ACM Press, New York, 145–154.

CHITTARO, L., RANON, R., AND IERONUTTI, L. 2003. Guiding Visi-
tors of Web3D Worlds through Automatically Generated Tours.
In Proc. of 8th Int. Conf. on 3D Web Technology Web3D’2003
(Saint-Malo, March 9-12, 2003). ACM Press, NY, 27–38.

Croquet Project Website. URL: http://croquetproject.org/
CUPPENS, E., RAYMAEKERS, CH., AND CONINX, K. 2004.

VRIXML: A User Interface Description Language for Virtual
Environments. In Proceedings of the ACM AVI’2004 Workshop
“Developing User Interfaces with XML: Advances on User In-
terface Description Languages” UIXML’04 (Gallipoli, May 25,
2004), Luyten, K., Abrams, M., Limbourg, Q., Vanderdonckt, J.
(eds.), Gallipoli, 2004, 111–118.

DACHSELT, R., HINZ, M. AND MEIßNER, K. 2002. CONTIGRA: An
XML-Based Architecture for Component-Oriented 3D Applica-
tions. In Proceedings of 7th International Conference on 3D
Web Technology Web3D’2002 (Tempe, February 24-28, 2002).
ACM Press, New York, 155–163.

DACHSELT, R. AND RUKZIO, E. 2003. BEHAVIOR3D: An XML-
Based Framework for 3D Graphics Behavior. In Proceedings of
8th Int. Conference on 3D Web Technology Web3D’2003 (Saint-
Malo, March 9-12, 2003). ACM Press, New York, 101–112.

FOLEY, J.D., VAN DAM, A., FEINER. S.K., AND HUGHES, J.F., 1995.
Computer Graphics: Principles and Practice in C. Addison-
Wesley, New York.

Infinite-3D and Cube Project Website, 2004. URL:

http://www.infinite-3d.com/
IBM. RealPlaces Design Guide. URL: http://www-3.ibm.com/

ibm/easy/eou_ext.nsf/Publish/580
LARIMER, D., AND BOWMAN, D., 2003. VEWL: A Framework for

Building a Windowing Interface in a Virtual Environment. In
Proc. of Int. Conf. on Human-Computer Interaction Inter-
act’2003 (Zürich, Sept. 1-5, 2003), IOS Press, 2003, 809–812.

LIMBOURG, Q., VANDERDONCKT, J., MICHOTTE, B., BOUILLON, L.,
LOPEZ, V., USIXML: a Language Supporting Multi-Path Devel-
opment of User Interfaces. In Proc. of 9th IFIP Working Con-
ference on Engineering for Human-Computer Interaction jointly
with 11th Int. Workshop on Design, Specification, and Verifica-
tion of Interactive Systems EHCI-DSVIS’2004 (Hamburg, July
11-13, 2004). Kluwer Academic Press, Dordrecht, 2004.

MAQUIL, V. 2004. Automatic Generation of Graphical User Inter-
faces in Studierstube, B.Sc. thesis, Institute for Software Tech-
nology and Interactive Systems, Vienna Univ. of Technology,
https://www.ims.tuwien.ac.at/publication_detail.php?ims_id=140

Microsoft Task Gallery Project Website. URL: http://research.
microsoft.com/adapt/TaskGallery/

MILGRAM, P. AND KISHINO, F. 1994. A Taxonomy of Mixed-
Reality Visual Displays. In IEICE Transactions on Informations
Systems, vol. E77-D, no. 12

MOLINA, J.P., GONZÁLEZ, P., LOZANO, M.D., MONTERO, F., AND
LÓPEZ-JAQUERO, V. 2003. Bridging the Gap: Developing 2D
and 3D User Interfaces with the IDEAS Methodology. In Proc.
of 10th Int. Conf. on Design, Specifications, and Verification of
Interactive Systems DSV-IS’2003 (Funchal, June 2003), LNCS
Vol. 2844. Springer-Verlag, Berlin, 2003, 303–315.

ROBERTS, D., 2000, RealPlaces, 3D Interfaces for Office Applica-
tions. In Proc. of Int. Workshop on Tools for Working with
Guidelines TFWWG'2000 (Biarritz, October 7-8, 2000). Van-
derdonckt, J. and Farenc, Ch. (eds.), Springer-Verlag, London.

SCHILLING, A., AND ZIPF, A., 2003. Generation of VRML City
Models for Focus Based Tour Animation - Integration, Model-
ing and Presentation of Heterogeneous Geo-Data Sources. In
Proc. of 8th Int. Conf. on 3D Web Technology Web3D’2003
(Saint-Malo, March 9-12, 2003). ACM Press, NY, 39–47.

SELIGMANN, D.D., AND FEINER, S. 1991. Automated Generation of
Intent-Based 3D Illustrations. In Proceedings of 18th Annual
Conference on Computer Graphics and Interactive Techniques
SIGGRAPH’91 (Las Vegas, July 28-August 2, 1991), Computer
Graphics, vol. 25, no. 4, 123–132.

SphereXP Project Website. URL: http://www.hamar.sk/ sphere/
SUN Looking Glass Project Website, 2003. URL: http://www

.sun.com/software/looking_glass/index.html
VANDERDONCKT, J. AND BODART, F. 1993. Encapsulating Knowl-

edge for Intelligent Automatic Interaction Objects Selection. In
Proc. of ACM Conf. on Human Aspects in Computing Systems
InterCHI’93 (Amsterdam, April 24-28, 1993). ACM Press, New
York, 424–429.

VANDERDONCKT, J., BOUILLON, L., CHIEU, C.K. AND TREVISAN, D.
2004. Model-based Design, Generation, and Evaluation of Vir-
tual User Interfaces. In Proceedings of 9th ACM Int. Conf. on 3D
Web Technology Web3D’2004 (Monterey, April 5-8, 2004),
ACM Press, New York, 2004, 51–60.

Web3D Consortium. X3D: The Virtual Reality Modeling Lan-
guage - International Standard ISO/IEC 14772:200x, URL:
http://www.web3D. org/TaskGroups/x3d/specification/

VRML Widgets Working Group Website. URL: http://zing.ncsl.
nist.gov/~gseidman/vrml/wwg/

Extensible Markup Language (XML), http://www.w3.org/XML/
XML-Schema, http://www.w3.org/XML/Schema
ZHOU, M.X. AND FEINER, S.K. 1997. Top-down Hierarchical

Planning of Coherent Visual Discourse. In Proc. of 2nd Int.
ACM Conf. of Intelligent User Interfaces IUI'97 (Orlando,
January 6-9, 1997). ACM Press, New York, 129–136.

178

http://www.similar.cc/
http://www.usixml.org/

