
Direct Manipulation of User Interfaces for Migration
José Pascual Molina Massó1,2, Jean Vanderdonckt1, Pascual González López2

1Université catholique de Louvain,
Belgian Lab. of Computer-Human Interaction

Place des Doyens, 1
B-1348 Louvain-la-Neuve, Belgium

{molina, vanderdonckt}@isys.ucl.ac.be

2 Universidad de Castilla-La Mancha,
Lab. of User Interaction & Software Engineering,

Inst. de Investigación en Informática de Albacete (I3C)
Campus universitario s/n, 02071 Albacete, Spain

{jpmolina, pgonzalez}@info-ab.uclm.es

ABSTRACT
From a topological model of a working environment, MIGRIXML
automatically generates a virtual reality environment for control-
ling the run-time migration of a graphical user interface from one
computing platform to another one (e.g., from a desktop to a
pocket computer), from one interaction surface to another (e.g.,
from a laptop to a wall screen) at run-time. For this purpose, any
user interface subject to migration is described in USer Interface
eXtensible Markup Language regarding its look & feel as well as
the platforms and the surfaces involved in the migration. Each
interface, in part or in whole, can be attached to a platform or a
surface, detached from it, and migrated across platforms or inter-
action surfaces. Instead of communicating data and code during
the migration, the description of the user interface of concern is
wirelessly passed from one platform to another one to be regener-
ated on the target platform. To ensure a continuous control of the
run-time migration, MIGRIXML automatically generates a world
model representing the context of use where the source/target
platforms/interaction surfaces are represented. Finally, migrating a
user interface becomes as natural as its direct manipulation from
one platform to another exactly in the same way as it is done on a
single platform.

ACM Classification: H5.2 [Information interfaces and presen-
tation]: User Interfaces - Graphical user interfaces.

General terms: Design, Languages

Keywords: Virtual environment, migration

INTRODUCTION
End users of modern interactive systems are confronted with a
wide variety of computing platforms to support their interactive
tasks ranging from the mobile phone to a wall screen [2]. Not all
these platforms are appropriate for every context of use [3]: the
mobile phone or a PocketPC are more appropriate when the user
in mobile, moving with the platforms, while desktop and wall
screens are more appropriate when the user is stationary, perhaps
moving across platforms. A same platform can even serve in both
situations: a laptop is useful the user is moving and when she is
working at a static place. Due to these very different platforms and
due to the various working conditions, the user may need migrating
tasks and data between platforms [12,15].
The migration of a User Interface (UI) is hereby referred to as the
action of transferring a UI from one source location to a target one.
A location could be any computing platform, an interaction surface
[7] or an interaction space [1]. Therefore, a migration could be

interpreted as transferring a UI for instance from a desktop com-
puter to a handheld device.
A UI is said to be migratable if it holds the migration ability. A
migration is said to be total, respectively partial, when the whole
interactive application, respectively the UI, are migrated [1,2,3]. If
the UI is decomposed into two components, the control which is
responsible for the UI behavior and the presentation which is re-
sponsible for presenting information to the user, control migration
[3] migrates only the control component while the presentation
remains. In presentation migration [3], the situation is the inverse:
the presentation component is migrated while the control remains on
the source platform. When it is mixed [3], different parts of both the
control and the presentation are migrated.
To support all these different cases of migration, a special UI is
required that will perform the required steps to conduct the migra-
tion, such as identification of migration possibility, proposal for
migration, selection of migration alternative, and execution of the
migration itself. Since these types of migrations and underlying
steps require complex handling of UI events and procedures, the UI
responsible for migration is even more complex and not always
visible to the eyes of the end user. This UI is referred to as the meta-
user interface in [1], i.e. the UI for controlling the run-time migra-
tion of the UI of the interactive systems. This term will be used
throughout the rest of this paper.
In most of research/development projects involving some form of
migration [1,2,3,4,5,9,10,12,13,19,20,21,22,23,24], the meta-UI is
implemented in very different ways with different manifestations. It
is not made explicit whether the meta-UI is system initiated (the
system initiates the migration), user-initiated (the user initiates the
migration), or mixed-initiated (the user and the system collaborate to
perform the migration). In addition, the interaction techniques in-
volved in the meta-UI do not deal directly with the components of
the UI to be migrated. This situation may confuse the user when,
how and what parts of the UI need to be migrated. To fill these gaps,
we developed a meta-UI as a virtual environment for controlling
run-time UI migration in all the above situations with the new ad-
vantage that all the steps of the migration are graphically repre-
sented in virtual reality that mimics the real world.
This paper focuses on the original part of providing a virtual control
environment for migrating parts or whole of a UI from one platform
to another. Therefore, other aspects such as platform discovery,
platform management underlying architecture, etc. are not addressed
as they are based on previous work done in this area [3,5,6,10]. The
rest of this paper is structured as follows: the following section
reviews some work related to migration and closely examines the
shortcomings of how the meta-UI is implemented in these works.
Section 3 summarizes the contents of the models involved in the
migration and the meta-UI in virtual reality we developed. Section 4
details the complete implementation of this meta-UI and the migra-
tion process that is controlled behind the direct manipulation of the
meta-UI. Section 5 illustrates a case study with two migration types
using our meta-UI MIGRIXML.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’06, January 29–February 1, 2006, Sydney, Australia.
Copyright 2006 ACM 1-58113-894-6/05/0001...$5.00.

RELATED WORK
In this section, we review some work done in the area of UI mi-
gration with an emphasis on how the meta-UI was designed and
developed.

Probably the first work done in the history of migration is [5]:
complete interactive applications can roam over a network thanks
to a single migration command enabling migration to a host or a
server. The migration is total, mixed, and system initiated. The
meta-UI is hard coded in the application that needs to migrate. In
[24], a similar system stops and saves a web browser session,
migrates it to another browser, possibly located on another plat-
form, and restores the previously saved session. The migration is
total, mixed, and user-initiated. The meta-UI is implemented
separately. The MIGRATION project [2,3] supports a similar migra-
tion but across different platforms equipped with a web browser
such a mobile phone, a PocketPC, a laptop or a desktop. The
migration is partial or total, presentation oriented, and user-
initiated. For this purpose, a separate form-based GUI displays
previously defined platforms from which and to which the migra-
tion is achieved. CamNote [1] is a slide manager distributed across
a desktop and PocketPC in a cluster: when the PocketPC enters,
respectively leaves, the cluster, the slides control is migrated to
the PocketPC, respectively returned to the desktop: migration is
partial, mixed, and system initiated. The meta-UI is embedded in
the whole system, but developed on top of I-AM, a run-time infra-
structure supporting migration and plasticity that can accommo-
date several configurations of distribution and migration [7,8].
Drag & Pop, Drag & Pick [4] are two interaction techniques
enabling the user to quickly reach icons across several screens
aligned side by side: when the user moves the cursor towards one
of those screens, the potential target icons approach the user’s
pointer. The migration is partial, presentation oriented, and mixed-
initiative. The meta-UI is the interaction technique itself, without
other control. In Aura [9], the information is presented on the wall
screen that is the closest to the user depending on her location in
the building. The migration is partial, presentation oriented, sys-
tem initiated and the meta-UI is totally invisible. [22,23] do the
same for a collaborative virtual environment. The Stanford Inter-
active Mural system [13] is similar except that wall screens could
be hung up on different walls. In Detachable Interfaces [10], a
portion of a UI can be detached from a UI belonging to one plat-
form to another. Detaching a UI is achieved by dragging a portion
of the UI and dropping it outside the UI: the migration could be
partial or total, presentation-, control-oriented or mixed, and user-
initiated. Since neither the source-target platforms are represented
nor the exchange space between them, the user may get lost. This is
why Augmented Surfaces [19] and Pick & Drop [20] rely on a
physical space (e.g., a portion of a table) to materialize an area
where the UI can be placed before transfer. Again, there is no con-
crete representation of the target platform although there is a repre-
sentation of the space between them. To improve this, Proximal
Interactions [21] provides a screenshot of the target platform as an
image on the source platform to support the Drag & Drop. A repre-
sentation of the environment in the form of a 2D iconic map is
found in ARIS [6], showing walls as if they have been pulled down
on their back side, and enables relocation of a window by dragging
its representation in the map. To aid user orientation, an arrow had
to be added in the map to communicate a location and view direc-
tion.

In conclusion, we can observe that most meta-UIs developed so far
share the following shortcomings: there is no graphical representa-
tion of the complete environment in which the migration occurs, a

cognitive disruption may arise during migration time as this process
is not continuously represented, the meta-UI is hard coded in the
system and thus rather inflexible to cope with varying migration
conditions and environments, the separation between the UI to be
migrated and the data that populate the UI is not always clear, the
meta-UI is not open for incorporating new platforms or spaces. In
addition, existing environments for UI migration mainly support
total migration. When they support partial migration, only contigu-
ous parts could be migrated. UI migration usually occurs for the
Web whereas our migration environment is not restricted to HTML.
These aspects have been identified as crucial for the usability of
multiple monitors tasks: tasks are usually distributed among plat-
forms, but without any consistent way to distribute them [10], the
bezel or the physical space between platforms introduces a disconti-
nuity that may disrupts the fluency of the interactive task [4,25].

USIXML: USER INTERFACE EXTENSIBLE MARKUP
LANGUAGE
To generate the virtual reality scene representing the migration
environment, a suite of models is used describing relevant aspects of
the problem in terms of USIXML (USer Interface eXtensible
Markup Language), a XML-compliant language [14,28]:

1. The Concrete User Interface (CUI) model: decomposes a GUI
into Concrete In-teraction Object (CIOs) that are characterized by
various attributes (id, name, icon, content to save the current
value of a widget before migration, defaultContent, defaultValue)
and sub-typed into one of the two categories: graphicalContainer
for all widgets containing other widgets such as page, window,
frame, dialog box, table, or graphicalIndividualComponent for all
other traditional widgets: text, video, image, radio button, draw-
ing canvas,…

2. The user model: decomposes the users’ population into a hierar-
chy of users’ stereotypes, each one sharing a series of attributes
such as skills, preferences, system experience, task experience,
task motivation, abilities to use a modality,...

3. The platform model captures relevant attributes for each couple
software-hardware platform and attached devices that signifi-
cantly influence the context of use: a series of physical hardware
devices (hardware platform components), a series of software
components (software platform), the characteristics of the net-
work, the capability to support wireless applications and brows-
ing.

4. The environment model is a contribution in this paper. It de-
scribes properties of interest of the physical environment where
the user is with the computing platform to accomplish her interac-
tive tasks. Such attributes may be physical, psychological, and
organizational. The physical part basically consists of a scene
model inspired from VRML97/X3D [27,28], the multi-surface
interaction ontology [8] and Stanford topology model [13] repre-
senting the topology of physical setup of the ambient environ-
ment of the user. Each scene is physically decomposed into a se-
ries of planes that are connected to each other, and which are in
turn decomposed into areas. An ear is basically an interactive
surface. Other components include physical resources. Each area
may be an interaction surface: a monitor on a table, a wall screen,
or any area where the UI is projected and/or recognized with
computer vision techniques. Each area is described by attributes
like dimensions, capabilities, angle with respect to reference area,
relative position, relationships with other objects (i.e., left, right,
top, bottom).

G
U

I a
pp

lic
at

io
n

(A
rc

h
m

et
a-

m
od

el
)

G
ra

ph
ic

s
pl

at
fo

rm

User

Domain-specific
component

(Application)

Presentation component

Operating
system

Graphics
library

I/O drivers

Hardware

Interaction toolkit
component

(User interface, UI)

Domain adaptor comp.

Dialogue

G
U

I a
pp

lic
at

io
n

(A
rc

h
m

et
a-

m
od

el
)

G
ra

ph
ic

s
pl

at
fo

rm

UserUser

Domain-specific
component

(Application)

Presentation component

Operating
system

Graphics
library

I/O drivers

Hardware

Interaction toolkit
component

(User interface, UI)

Domain adaptor comp.

Dialogue

M
ig

riX
M

L
vi

rtu
al

en

vi
ro

nm
en

t

VR System

UI

Virtual Hardware (VHW)

UI

App

Virtual Machine (VM)

App

Virtual Window
Manager (VWM)

Migration Manager

G
ra

ph
ic

s
pl

at
fo

rm

User

Operating
system

Graphics
library

I/O drivers

Hardware

UsiXML

M
ig

riX
M

L
vi

rtu
al

en

vi
ro

nm
en

t

VR System

UI

Virtual Hardware (VHW)

UI

App

Virtual Machine (VM)

App

Virtual Window
Manager (VWM)

Migration Manager

G
ra

ph
ic

s
pl

at
fo

rm

UserUser

Operating
system

Graphics
library

I/O drivers

Hardware

UsiXML

Figure 1. GUI application and platform architecture (left), and MIGRIXML architecture (right).

A VIRTUAL REPRESENTATION OF A REAL MIGRATION
The architecture and implementation of MIGRIXML are now de-
tailed, as a virtual reality system representing the user’s real envi-
ronment, based on the models of previous section: the platforms
found in that environment, the UI of interactive graphics applica-
tions that are executed on these platforms, and the user. Within this
environment, the user is interacting with the platforms and the
running applications as if they were their real counterparts. The user
selects any application, the related UI emigrates from the source
platform and immigrates in the target platform.

The MigriXML Architecture
In order to describe the software architecture of MIGRIXML, we
firstly define the concepts of interactive graphical application, plat-
form and user’s environment, explaining the models and structures
that have been taken into account to create the architecture of
MIGRIXML. Beginning with the definition of interactive graphics
application, it can be addressed taking the Arch meta-model, also
known as the ‘Slinky’ meta-model [26] for extending the Seeheim
model from three to five components:

1. Domain-specific component: also known as the functional core
or the application, it manages the information of the system, and
carries out the functionality that the system offers.

2. Domain adaptor component: it offers a unified, generic view of
the functionality that implements the functional core, hiding the
differences that any component playing that role may have with
others.

3. Dialogue component: it mediates between the domain-specific
and user interface functions. Between both extremes, this com-
ponent is responsible for the task sequencing and for matching
between the domain formalisms and those of the user interface.
This component is the keystone of the meta-model, the top of the
visual metaphor that this meta-model represents.

4. Presentation component: it provides to the dialogue component
a set of logical interaction objects. These objects are mapped to
toolkit-specific objects, which depend on the platform that exe-
cutes the application.

5. Interaction toolkit component: it is responsible for handling the
input/output de-vices, and is usually implemented as a software
library or toolkit for UIs.

The Arch meta-model does not require to strictly implement the
previous set of components in applications. In contrast, it aims at
helping developers choosing the software structure that best suits
their projects. That structure will depend on, among other factors,
the necessity to adapt the application to different platforms, so if the
software is well divided into different modules, the adaptation will
be less costly. In our case, that meta-model turns out to be quite
suitable to describe the interactive graphics applications as its com-
ponents fit the previously USIXML introduced models. For exam-
ple, the presentation component corresponds to the USIXML CUI
model to a large extent, as the latter is an abstraction of the different
widgets that toolkits offer, the FUI specific objects.

Following up with the definitions, the platform that executes the
application and that renders its interface can also be described using
a layered structure, identifying two main layers: an upper software
layer and a lower hardware layer. On the one hand, the hardware
layer represents the physical devices used for control and presenta-
tion, the physical interface that the machine offers to the user. On
the other hand, the software layer consists of the operating system
and the I/O drivers. In the case of graphics platforms, that layer
usually includes the graphics library, and if the graphics platform is
a windowing system, it also includes the window manager.

Finally, the platform or platforms that the user makes use of, to-
gether with the applications that they execute, are all part of the
user’s environment. In that environment, there are elements that
may not be directly related to the computing set up, but they do
relate to the user, such as the user’s work space and the furniture
included in that space. The specific needs of the user’s environ-
ment at a given moment, or its evolution as the time goes by, can
make necessary to remove one application from one platform and
make it run in another platform. This means that the given appli-
cation, which was originally adapted to the current platform, must
be adapted in order to be executed in the new computing platform.

MIGRIXML enables the user to carry out that migration process
without the physical presence of the involved platforms, in a
virtual and interactive way, relying on the USIXML language and
the models that have been previously explained.

Vi
rtu

al
iz

ed
G

U
I a

pp
lic

at
io

n

Virtualized user
interface (VUI)

World

Application

user
input

VRML/X3D Browser

Audio / Visual
Presentation

SAI

EAI

G
ra

ph
ic

s
pl

at
fo

rm

User

Operating
system

Graphics
library

I/O drivers

Hardware

UsiXML

Vi
rtu

al
iz

ed
G

U
I a

pp
lic

at
io

n

Virtualized user
interface (VUI)

World

Application

user
input

VRML/X3D Browser

Audio / Visual
Presentation

SAI

EAI

G
ra

ph
ic

s
pl

at
fo

rm

UserUser

Operating
system

Graphics
library

I/O drivers

Hardware

UsiXML

M
ig

riX
M

L
vi

rtu
al

en

vi
ro

nm
en

t

user
input

VRML/X3D Browser

Audio / Visual
Presentation

SAI

EAI

VUI

Virtual Hardware
(VHW)

VUI

App

Virtual Machine (VM)

App

Virtual Window
Manager (VWM)

Migration Manager

G
ra

ph
ic

s
pl

at
fo

rm

User

Operating
system

Graphics
library

I/O drivers

Hardware

UsiXML

M
ig

riX
M

L
vi

rtu
al

en

vi
ro

nm
en

t

user
input

VRML/X3D Browser

Audio / Visual
Presentation

SAI

EAI

VUI

Virtual Hardware
(VHW)

VUI

App

Virtual Machine (VM)

App

Virtual Window
Manager (VWM)

Migration Manager

G
ra

ph
ic

s
pl

at
fo

rm

UserUser

Operating
system

Graphics
library

I/O drivers

Hardware

UsiXML

Figure 2. Virtualized GUI application (left), and implemented MIGRIXML structure (right).

It is a virtual reality system and, as such, its architecture is based
on a graphics platform that executes a run-time simulation envi-
ronment. In order to render the virtual representation of the user’s
environment, platforms and applications, MIGRIXML has been
designed integrating these components in its own architecture
(Figure 1):

• User’s environment: it is the virtual world rendered by the
virtual reality software.

• Platform: The hardware layer is called Virtual Hardware
(VHW) and it is the visible part of the platform in the virtual
world, the part that the user interacts with through the I/O
channels that the Virtual Reality system offers. The software
layer is named Virtual Machine (VM), and it includes the
component that is responsible for the application windows, the
Virtual Window Manager (VWM).

• Interactive graphics application: Its interaction toolkit compo-
nent is substituted by a component that renders the UI in the
3D space where the virtual world exists. The domain-specific
component is executed by the platform emulator, that is, the
virtual machine introduced in the previous point.

The last component of MIGRIXML architecture is called Migra-
tion Manager (MM), whose role in this Virtual Reality simula-
tion is to respond to use’s requests for migration of interactive
graphics applications from given platforms to selected targets. The
migration manager exploits the USIXML specifications of these
applications.

Implementation
When implementing MIGRIXML, it was decided to use the
VRML97/X3D languages [28], which are standards for the de-
scription of Web-oriented virtual worlds. That decision was made
taking into account their added flexibility, as there are many
browsers that are able to interpret those languages and these
browsers can be found for different operating systems, most of
them free and with entry-level requirements, mainly a standard PC
with 3D acceleration card. Besides, these languages can also
embed code in the scene graph, and provide access from external
code to the browser and the scene by means of a programming
interface. For that reason, the audiovisual description and render-
ing of the user’s environment is done using these Web3D standard

languages, as well as the platforms’ hard-ware and the user inter-
faces of the applications that these platforms execute.

In the particular case of the UIs –the interaction toolkit compo-
nent, according to Arch meta-model-, their implementation is
based on a set of PROTOs called VUIToolkit, which has been
developed in both VRML97 and X3D versions [16]. The software
structure that was used for the prototypes that are part of this
toolkit is partly based on the work and developments of the former
VRML Widget Working Group [27] and one of the original char-
acteristics of this toolkit is that it trans-forms the standard plain
2D widgets into a truly 3D representation. In contrast to other
approaches that are based on using the 2D graphics output of
applications as image textures in the 3D virtual world, every
widget of the VUIToolkit has real depth, they do not represent
their behavior in a real 3D space.

This implementation of the widgets is aimed to match much better
the mental model of the user. For example, if the user presses a
button, it moves along the third dimension as the user would
expect, instead of showing a predefined sequence of images that
simulates that movements with 2D drawings. To state that differ-
ence, we use the term Virtualized User Interface (VUI) to refer
to a 3D UI. Anyway, the selection of VRML97/X3D languages
and the VUIToolkit for the implementation of MIGRIXML was not
arbitrary, as the VUIToolkit was developed starting from the
object classes described in the concrete model of USIXML lan-
guage. Each prototype of VUIToolkit has a list of parameters that
was first made including the attributes of its corresponding
USIXML class, then adding new attributes as needed for trans-
forming the concrete interface object –independent of any toolkit-
into a final user interface object rendered in a 3D virtual world.
Most important, the interactive graphics interface specified using
USIXML language can, therefore, be transformed into a
VRML97/X3D-virtual world in an automated way, just making
use of the set of prototypes provided in the VUIToolkit (Figure 2).

As for the domain-specific component of the interactive graphics,
Javascript and Java languages are used, as most VRML97/X3D
can interpret Javascript code and execute Java code. This is due to
the fact that both VRML97 and X3D specifications describe for
these languages two programming interfaces to access the scene

graph, named SAI (Scene Authoring Interface) and EAI (External
Authoring Interface). Be-sides, Java can easily be executed in
different platforms thanks to its own binary for-mat and the use of
a Java Virtual Machine for each particular platform. This charac-
teristic of Java allowed us to leave aside, for this first implementa-
tion of MIGRIXML, the complex implementation of emulators for
each specific platform. We added to each platform a virtual win-
dow manager as the component that simulates the windowing
system, including special functionalities to manage our virtualized
UIs. Clearly, the implementation of MigriXML would not be
finished without the inclusion of the migration manager in the
system. As its commitment has already been explained in the
previous section, it will be omitted here. Next section will de-
scribe in depth the migration process, highlighting the actions
performed by this component.

Migration Process in Detail
The migration process is divided in four stages (A, B, C and D),
each one having a finite set of steps, representing a total amount
of 14 steps (Figure 4). In the following sub-sections, that sequence
of steps will be explained in an ordered way.

Stage A: Select an interactive application. In MIGRIXML, a
migration process starts with the selection of the graphics applica-
tion, action that is performed by the user in an interactive way. To
do so, the user presses the button (M) –which stands for ‘migrate’-
that can be found in the button bar of the application window (a
VUIToolkit window). As a result, the user ‘grabs’ the window,
and from that very moment the window will follow the user wher-
ever he or she points at within the screen of the source platform
(step 1). That action is transmitted to the corresponding virtual
window manager by means of sending out an event (step 2). Then,
that component forwards the information to the migration man-
ager of MIGRIXML environment (step 3).

Stage B: Select target platform. Once the migration manager
receives the message from the virtual window manager, it broad-
cast a message to all platforms (step 4), which changes their cur-
rent state to ‘wait-for-selection’ state. In the audio-visual part of
each platform –the virtual hard-ware-, a TouchSensor is activated
waiting for the user to perform a selection action, clicking on the
target screen (step 5). Meanwhile, the user can point at whatever
screen, and the virtualized application window will follow the
cursor, being rendered according to the resolution and definition
of the pointed screen. Just after selecting a platform (step 6), the
virtual hardware casts an event to the virtual window manager
(step 7), which proceeds by forwarding a message to the migration
manager (step 8).
Stage C: Migrate to target platform. In this third stage, the se-
lected application is re-generated according to the target plat-form.
As a first step in this stage, the migration manager sends a com-
mand to the source platform (step 9), meaning that the application
must be detached from it. Then, it also broadcasts a message to the
rest of platforms, asking them to change to normal execution (step
10, not shown in figure for clarity reasons). The last step is carried
out by own migration manager, which, taking the USIXML appli-
cation specification as a source, re-generates the application for its
execution in the new platform (step 11).

Stage D: Adapt to the target platform. This last stage is entered
when the migration manager asks the target platform to host the
re-generated application and its related user interface (step 12).
The virtual window manager of the target platform launches the
application, and its virtualized user interface is nested in the scene
graph that represents the virtual hardware of the new platform

(step 13). To achieve a correct visualization in the target screen,
the user interface is adapted to it, reducing the size of the applica-
tion window if it is larger than the screen itself, and applying the
colors of the desktop theme of the target windowing system (step
14).

VRML/X3D Browser

VUI

VHW

VHW

App

VM

VWM

VM

VWM

Migration
Manager

VUI

App

1

2
3

4

5

6

7

8

9

11

12

13
14

VRML/X3D Browser

VUI

VHW

VHW

App

VM

VWM

VM

VWM

Migration
Manager

VUI

App

1

2
3

4

5

6

7

8

9

11

12

13
14

Figure 3. Steps involved in the migration process.

A CASE STUDY
In this section, a case of study will be used to exemplify the proc-
ess of creation of the virtual world that, in MIGRIXML, represents
the user’s environment, the platforms and the applications that run
in them. This case study will also illustrate in detail how migration
processes are performed, from emigration to immigration.

User’s Environment and Platforms
In this case of study, the user’s environment is a small office,
where five different platforms are at the disposal of the user to
carry out his or her tasks: one PC, two lap-tops, one Pocket PC
and a portable projector. The USIXML language is used to de-
scribe that environment and the platforms, saving in a XML speci-
fication the details that concern the developers involved in the
case of study, such as software engineers and user interface de-
signers. From that specification, it is generated a set of VRML97/
X3D prototypes that will be used by MIGRIXML to represent the
virtual world. Each of these prototypes has associated an interac-
tive audio-visual representation, which is not the result of an
unmanned automatic process that takes the specification as a
source, but the result of a structured process of creation that is
carried out by a virtual environment designer or a team of them.
Even though the development of Virtual Reality systems is usu-
ally done relying on the experience and intuition of the designers,
the development of the virtual environment of MIGRIXML is
carried out following a concrete methodology, which can be sum-
marized in three stages:
1. Requirements: Designers starts their work studying the

USIXML specifications, in order to know the details of the
user’s environment or the platform whose virtual model must
be created. A set of objectives and constraints are identified,
which in this case are partly related to the characteristics of the
VRML97/X3D languages, the world browser, and the simula-
tion platform.

2. Preparation: A compilation of audio-visual material is carried
out, such as photographs, sound or video recording, and any
other material worth to be used later to produce the 3D models.
Dimensions are measured, and sketches and mock-ups are cre-
ated, such as paper or electronic prototypes.

3. Design, test and optimize: 3D creators, under the supervision
of interaction experts, model the geometry of the objects, apply
colors and textures, and add sounds and interactive elements to
them. The outcome is tested, optimized in an iterative fashion,
until an acceptable visualization is reached within the limits
given by the objectives and constraints fixed in the first stage.

1

2
3 4

5

1

1

2
3 4

5

1

Figure 4. Overview of the user’s environment of the case study, showing the five platforms.

No. Platform Image
size

Image
ratio

Max image
resolution

Image
resolution

1 Panasonic
PT-LB10SU

¾ d* 4:3 800x600 800x600

2 Toshiba
PocketPC
e750

3.8” 3:4 240x320 240x320

3 Acer
Aspire 2000

15” 16:10 1280x800 1280x800

4 Dell
Latitude C840

15” 4:3 1600x1200 1024x768

5 NEC
LCD1960NX

19” 5:4 1280x1024 1024x768

Table 1. Screen characteristics of the five platforms of the
case of study.

The result of applying the previous methodology to the case study
can be seen in the screenshot given in Figure 4, showing the user’s
environment and the five platforms (Table 1). Numbers have been
added so that the visual representation of each platform can be
easily matched with the screen characteristics given in the follow-
ing table.

User Interface
The UIs that are included in our case of study correspond to two
different applications: an Internet Radio Player and an Instant
Messaging Client. The radio player includes controls to search
radio stations, filter the search results and select the desired sta-
tion, play, pause and stop, as well as volume controls. The latter
includes allow the user enter text for new messages, and follow up
the online conversation. Both inter-faces are specified in USIXML
language using the models provided. In order to make this task
easier, different tools have been developed, helping the UI de-
signer to visually create these models. Thus, IDEALXML allows
the designer to create the abstract model in a diagrammatic way
[17], and GRAFIXML supports the visual creation of the CUI
model (Figure 6). From the specified models, a final UI is gener-
ated as a VRML97 or X3D file, based on VUIToolkit (Figure 5).

Migrating from one Platform to Another
In this section, it will be described and illustrated how MIGRIXML
environment can be used to perform the migration of an applica-
tion, running in a given platform, to another target platform.

Migrating from one laptop to the other. In this first example, the
user selects the Internet Radio Player, currently running in the
Acer laptop, and takes it to the Dell laptop. The sequence of im-
ages illustrates the following process (Figure 7):

Figure 5. Screenshots of the application windows described in the
case study: Internet Radio Player (left), Instant Messaging Client

(right).
1. First of all, the users ‘grabs’ the application windows by press-

ing the button (M) located in its button bar. Then, the virtual-
ized user interface communicates the user action to its corre-
sponding virtual window manager, which forwards the in-
formation to the migration manager.

2. The user moves the cursor around the screen and the application
window follows that movement. By then, the migration man-
ager changed the state of other plat-forms, which are awaiting
the next user action: selection of the target platform.

3. As the user moves the cursor around the environment towards
the Dell laptop, the user points at the screen where a desktop
image is being projected by the Panasonic device. The Touch-
Sensor of that platform captures the user action and the migra-
tion manager is informed of that event. Then, the migration
manager proceeds to nest the virtualized interface in the trans-
formation hierarchy of that platform. As a result, the application
window is rendered on that screen according to the resolution
and definition of the image projector.

4. The user goes on moving the cursor and the window follows it
until the Dell laptop is reached. Then, the user selects that lap-
top as the target platform with a mouse single click. However,
the migration process is not finished until the migration man-
ager re-generate the given application for the new platform, and
once re-generated is hosted in the laptop, adapting itself to the
new characteristics of the screen and the desktop.

Migrating from a laptop to the Pocket PC. In this second exam-
ple, the user wants to ‘grab’ the Instant Messaging Client from the
same starting point as in the previous example, but this time to
achieve its adaptation to the Pocket PC. This time, the desktop
characteristics of the laptop are quite dissimilar to those of the
Pocket PC. Therefore, the application window must be adapted to
the reduced size of the new display, and its appearance modified
according to the Pocket PC desktop theme (Figure 8).

Figure 6. Abstract model of the user interface corresponding to the Internet Radio Player application, done with IDEALXML

(left), and the concrete model of the same interface done with GRAFIXML (right).

1
2

3 4

1
2

3 4

Figure 7. Sequence of screenshots for the first example, from the Acer laptop to the Dell one.

1

2

3

1

2

3

Figure 8. Sequence of images for the second example, from the Acer laptop to the Pocket PC.

CONCLUSION
In this paper, we have presented a virtual reality environment that
reproduces the user’s real world in which UI migration may occur
by dynamically generating a virtual scene in which the user may
initiate any migration (total or partial, control- or presentation-
oriented) by direct manipulation. Once the manipulation occurred,
the UI model with the values are transferred through the network.
This virtual environment probably constitutes the best possible
meta-UI for controlling the UI migration since all involved elements

are graphically rendered (therefore, functional) and the migration is
continuously depicted during the process. This system, MIGRIXML,
is developed on top of VUIToolkit, a Virtual UI toolkit developed
for this purpose exploiting USIXML models of the UI to be mi-
grated. This appproach is superior to existing migration systems
from the representation viewpoint as it supports direct manipulation
of migration (windows are augmented by a <M> icon for allowing a
window to be migrated), partial or total migration, contiguous or
non-contiguous portions could be migrated (which is difficult to do

in a non-graphical environment), adaptation or no adaptation when
the target computing platform is more constrained than the source
targer. The long term goal of this research is to provide end users
with a complete environment for multi-user, multi-platform, and
multi-context environment fro migration, therefore allowing them to
exchange and share portions of UIs depending on the way they
work. Videos of MigriXML interactive sessions are accessible at
http://www.usixml.org/index.php? view=page&idpage=40.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the SIMILAR network of
excellence (http://www.similar.cc), the European research task force
creating human-machine interfaces similar to human-human com-
munication. J.P. Molina Massó was also supported by the Spanish
CICYT project TIN2004-08000-C03-01 when visiting BCHI. See
http://www.usixml.org.

REFERENCES
[1] Balme, L., Demeure, A., Barralon, N., Coutaz, J., and Calvary,

G. Ethylene: a Software Architecture Reference Model for Dis-
tributed, Migrable, Plastic User Interfaces. In Proc. of Conf. on
Ambient Intelligence EUSAI’04. Springer-Verlag, Berlin, 2004,
291–302.

[2] Bandelloni, R., Berti, S., and Paternò, F. Mixed-Initiative,
Trans-modal Interface Migration. In Proc. of MobileHCI’2004.
Springer-Verlag, Berlin, 2004, 216–227.

[3] Bandelloni, R. and Paternò, F. Migratory User Interfaces Able
to Adapt to Various Interaction Platforms. International Jour-
nal of Human Computer Studies 60 (2004), 621–639.

[4] Baudish, P., Cutrell, E., Czerwinski, M., Tandler, P., Bederson,
B., and Zierlinger, A. Drag-and-Pop and Drag-and-Pick: Tech-
niques for Accessing Remote Screen Content on Touch- and
Pen-Operated Systems. In Proc. of Interact’2003. IOS Press,
Amsterdam, 2003, 57–64.

[5] Bharat, K.A. and Cardelli, L. Migratory Applications. In Proc.
of UIST’95. ACM Press, New York, 1995, 133–142.

[6] Biehl, J.T. and Bailey, B.P. ARIS: An Interface for Application
Relocation in an Interactive Space. In Proc. of Graphics Inter-
face, 2004, pp. 107-116.

[7] Coutaz, J., Lachenal, C., Calvary, G., and Thevenin, D. Soft-
ware Architecture Adaptivity for Multi-surface Interaction and
Plasticity. In Proc. of IFIP WG2.7 Workshop on Software Ar-
chitecture Requirements for CSCW–CSCW’2000, ACM Press,
2000.

[8] Coutaz, J., Lachenal, C., and Dupuy-Chessa, S. Ontology for
Multisurface Interaction. In Proc. of Interact’2003, IOS Press,
Amsterdam, 2003, 447–453.

[9] de Sousa, J. and Garlan, D. AURA: An Architectural Frame-
work for User Mobility in Ubiquitous Computing Environ-
ments. In Proc. of IEEE-IFIP Conf. 140 on Software Architec-
ture (Montreal), IEEE Computer Society Press, Los Alamitos,
2002.

[10] Grolaux, D., Van Roy, P., Vanderdonckt, J. Migratable User
Interfaces: Beyond Migratory User Interfaces. In Proc. of
MOBIQUITOUS’04. IEEE Computer Society Press, Los
Alamitos, 2004, 422–430.

[11] Grudin, J. Partitioning Digital Worlds: Focal and Peripheral
Awareness in Multiple Monitor Use. In Proc. of CHI’2001,
ACM Press, New York, 2001, 458–465.

[12] Grundy, J.C. and Hosking, J.G. Developing Adaptable User
Interfaces for Component-based Systems. Interacting with
Computers 14 (2002), 175–194.

[13] Guimbretière, F., Stone, M., and Winograd, T. Fluid Interac-
tion with High-resolution Wall-size Displays. In Proc. of 14th

ACM Conf. on User Interface Software Technology UIST’2001
(Orlando, November 11-14, 2001). ACM Press, New York,
2001, 21–30.

[14] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
Lopez, V., UsiXML: a Language Supporting Multi-Path De-
velopment of User Interfaces, Proc. of 9th IFIP Working Con-
ference on Engineering for Human-Computer Interaction
jointly with 11th Int. Workshop on Design, Specification, and
Verification of Interactive Systems EHCI-DSVIS’2004 (Ham-
burg, July 11-13, 2004). LNCS, Vol. 3425, Springer-Verlag,
Berlin, 2005, pp. 200-220.

[15] Milojicic, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., and
Zhou, S. Process Migration. ACM Computing Surveys 32, 3
(2000), pp. 241–299.

[16] Molina, J.P., Vanderdonckt, J., Montero, F., and Gonzalez, P.
Towards Virtualization of User Interfaces. In Proc. of 10th
ACM Int. Conf. on 3D Web Technology Web3D’2005 (Bangor,
March 29-April 1, 2005), ACM Press, New York, 2005, 169–
178.

[17] Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez,
P., Lozano, M.D., and Limbourg, Q. Solving the Mapping
Problem in User Interface Design by Seamless Integration in
IdealXML. In Proc. of 12th Int. Work-shop on Design, Specifi-
cation, and Verification of Interactive Systems DSV-IS’2005
(Newcastle upon Tyne, July 13–15, 2005), Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2005.

[18] Puerta, A.R. A Model-Based Interface Development Environ-
ment. IEEE Software 14,4 (July/August 1997) 41–47.

[19] Rekimoto, J. and Masanori, S. Augmented Surfaces: A Spa-
tially Continuous Work Space for Hybrid Computing Envi-
ronments. In Proc. of CHI’99. ACM Press, New York, 1999,
378–385.

[20] Rekimoto, J. Pick-and-Drop: A Direct Manipulation Technique
for Multiple Computer Environments. In Proc. of UIST’97.
ACM Press, New York, 1997, 31–39.

[21] Rekimoto, J., Ayatsuka, Y., Kohno, M., and Oba, H. Proximal
Interactions: A Direct Manipulation Technique for Wireless
Networking. In Proc. of Interact’2003. IOS Press, Amsterdam,
2003, 511–518.

[22] Schäfer, K., Brauer, V. and Bruns, W. A New Approach to
Human-Computer-Interaction Synchronous Modelling in Real
and Virtual Spaces. In Proc. of DIS’97, ACM Press, New
York, 1997, 335–344.

[23] Schmalstieg, D. and Hesina, G. Application Migration for
Virtual Work Environments. Vienna Univ. for Virtual Work
Environments, Vienna, 2001.

[24] Song, H., Chu, H., and Kurakake, S. Browser Session Preser-
vation and Migration. In Poster Session of WWW’2002.

[25] Tan, D.S. and Czerwinski, M. Effects of Visual Separation and
Physical Discontinuities when Distributing Information across
Multiple Displays. In Proc. of Interact’2003. IOS Press, Am-
sterdam, 2003, 252–255.

[26] The UIMS Tool Developers Workshop: A Metamodel for the
Runtime Architecture of an Interactive System. ACM SIGCHI
Bulletin 24,1 (Jan. 1992), 32–37.

[27] Vanderdonckt, J. A MDA-Compliant Environment for Devel-
oping User Interfaces of Information Systems. In Proc. of 17th
Conf. on Advanced Information Systems Engineering
CAiSE'05 (Porto, 13-17 June 2005). LNCS, Vol. 3520,
Springer-Verlag, Berlin, 2005, 16–31.

[28] VRML Widgets Working Group Website. URL: http://zing.
ncsl.nist.gov/~gseidman/vrml/wwg/

[29] Web3D Consortium Website. URL: http://www.web 3D.org

