
GrafiXML, A Multi-Target User Interface Builder based on UsiXML

Benjamin Michotte, Jean Vanderdonckt
Université catholique de Louvain, Louvain School of Management

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
michotte@isys.ucl.ac.be, jean.vanderdonckt@uclouvain.be

Abstract
We have developed GrafiXML, an original user in-

terface builder in that it enables designers and devel-
opers to design several UIs simultaneously for multiple
contexts of use, i.e. for many users, platforms, and en-
vironments. For this purpose, it maintains coordina-
tion between three representations: an internal repre-
sentation consisting of specifications in USer Interface
eXtensible Markup Language (UsiXML), an external
representation consisting of the interface preview, and
a conceptual representation consisting of a user inter-
face model. GrafiXML is an intelligent UI builder in
that it maintains model consistency between these rep-
resentations through a set of mappings based on a user
interface ontology. Thanks to this mechanism,
GrafiXML provides a unique set of features for sup-
porting designing interfaces for multiple targets. These
features are defined, motivated, discussed, and exem-
plified on a simple interface. Then, it is explained how
the UI resulting from this design can support one or
many levels of independence with respect to the under-
lying context of use.

1. Introduction

Many powerful tools now exist for developing
Graphical User Interfaces (GUIs) [4,16,19,25]. These
toolsets typically include a builder tool which is a vis-
ual editor for developing the GUI graphically for each
corresponding operating system or environment, such
as Aqua [1] for MacOS, Xf for Tcl/Tk, V4All for
Eclipse [2], or UIM/X for OSF/Motif. A developer de-
signs a GUI using a palette of interface interaction ob-
jects. When the appearance of the GUI is satisfactory,
the developer directs the tool to generate code for the
newly constructed User Interface (UI). Some GUI
builders go a step further and allow the developer to
associate algorithmic code with user interface compo-
nents. These tools are classified as User Interface Man-
agement Systems (UIMSs) [19]. Such tools could dras-
tically speed up the GUI development process because
much of the code can be generated automatically [17],
which is important since the GUI may occupy a sig-
nificant portion of the total code [19]. However, an
inherent limitation of these tools is that they only pro-

ent limitation of these tools is that they only provide a
subset of the options available in a GUI toolkit. Some-
times the abstractions provided are not sufficient to de-
velop complex parts of the GUI, which means that the
developer must then modify the generated code to fine-
tune the interface. Migration from another user inter-
face implementation is done manually, requiring a de-
veloper to make decisions about mappings and transla-
tions from the GUI in the source platform to the GUI
in the target platform. Therefore mappings between
GUI components may not be consistent across multiple
contexts of use such as different computing platforms.
The lack of support for multiple contexts of use (and
not only multiple computing platforms) process makes
it tedious, error-prone, and time-consuming. There are
some exceptions that confirm the rule: Galaxy [9] and
Simple UI Toolkit [21] embed such abstractions so that
each UI developed for a particular computing platform
(say for instance MacOS) is automatically translated
into exactly the same UI for the other computing plat-
form (say for instance, Linux). But the UI remains ba-
sically the same in terms of both components and lay-
out and does not take advantage of the new platform.

There is no genuine support for building UIs in a
coordinated way for multiple contexts of use where the
context of use is defined as a triple (U, P, E) where U
represents any user stereotype, P, any computing plat-
form, and E, the physical environment in which the
user is carrying out her task with the designated plat-
form. There are some tools that model the UI and that
generate UI code from these models [19], but no UI
builder for multiple contexts of use. A target is defined
by a particular UI tailored for a given context of use.
Therefore, we believe that today, we do not have any
multi-target UI builder.

In the next section, the related work will be struc-
tured around three UI representations. Then, Grafi-
XML, a unique multi-target UI builder will be pre-
sented based on identified requirements. All its unique
facilities will be exemplified on a running example.
The paper will end with a summary of those features
and some avenues for future research.

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.29

15

2. Related work
Three main starting points in building UIs are typi-

cally found in UI tools (Fig. 1) [3,19]:
1. The internal representation is the programmers

view, consists in the description of the implementa-
tion aspects of the application.

2. The external view consists in a view of the interface
appearance and basic behavior.

3. The conceptual view provides an insight on the
logical structure underlying a user interface. A con-
ceptual view provides the designer with a set of ab-
stract concepts facilitating reasoning on the artifact
that is being built (e.g., a finite state machine, a
class diagram or rule-based systems [13]).
These three views define three possible points to

initiate the process of UI development life cycle. By
defining transitions between these representations, nine
theoretical approaches for UI building exist (Fig. 1).

7

6

representation
Internal External

representation

Conceptual
representation

3

1 2

4

9

8

5
Figure 1. A classification of UI development practices.

In a programmatic approach (transition 1), the in-
ternal representation is obtained by a direct UI coding.
Theoretically, a UI may be coded with any program-
ming, markup or scripting language. Practically, some
languages do a better job than others in proposing to
designers sets of pre-defined components especially
tailored for UI construction. Several transitions may be
defined from an internal representation:
• An internal-external generation approach (transi-

tion 4) derives an external representation from an
internal representation (e.g., a web page coded in
HTML is rendered in a browser). For example, a
XUL UI [20] can be rendered by an engine.

• An internal-conceptual derivation approach (transi-
tion 7) derives from the internal representation a
conceptual representation (e.g., reverse engineering
HTML code in order to obtain an abstract view).
In an exploratory approach (transition 2), an exter-

nal representation is firstly provided (i.e., with a visual
editor or a mock-up tool) that then initiates:
• An external-internal representation approach (tran-

sition 5) derives an internal representation from an
external representation (e.g., code generation from
visually built forms in Visual Basic [17]). Most UI

builders, such as MOG UI builder [7], GUIB [10],
GTK+ [11], Tilcon UI [23], TrollTech [24], Uni-
draw [28] fall in this category. SUIT [21] also be-
longs to this category with the advantage that any
UI built for a particular platform is rendered
equally in others. The Galaxy Visual Resource
Builder [9] is a powerful visual tool for construct-
ing a multi-platform GUI. The resources created by
the Visual Resource Builder are stored in a totally
portable binary format. Springs and Struts describe
the size and positioning constraints of GUI widgets
so that all geometry management is done automati-
cally at runtime. Graphical styles [12] are specified
independently of the GUI to render them at run-
time.

• An external conceptual derivation (transition 8) de-
rives a conceptual representation from an external
representation. For instance, CanonSketch enables
the designer to sketch a UI first and to generate an
underlying model behind [6].

In a specification-based approach (transition 3), one
starts with an abstract UI representation (e.g., a de-
scription, a model, or UI specifications) to pursue with:
• A conceptual-external generation approach (transi-

tion 6) derives an external representation from the
conceptual representation. For instance, XXL [14]
enables the designer to build a hierarchical UI
model that is straightforwardly represented.
FormsVBT [3] is unique in that it combines a con-
ceptual UI representation expressed in TeX lan-
guage and an external representation to produce
code. Any change in one view is automatically
propagated in the other.

• A conceptual-internal generation approach (transi-
tion 9) derives an internal representation from the
conceptual representation. For instance, The Came-
leon reference framework [5] reports on various
approaches that start from a task and domain model
and terminate with a final UI matching them. In [8],
an ontology of the concepts are used to progres-
sively derive a corresponding UI. One single model
could be used for this purpose or multiple [26].
The next section will demonstrate that GrafiXML

supports all the UI development practices depicted in
Fig. 1. Indeed, it relies on all these transitions since it
simultaneously combines all three views (i.e., internal
= UsiXML specifications, external = graphical repre-
sentation, and conceptual = concrete UI model) and
that each change applied on one representation is
straightforwardly propagated in the others so as to
maintain one-to-one mapping between the representa-
tions. In this way, the designer is free to apply her own
preferred UI development practice.

16

3. A Multi-target UI builder
This section will progressively introduce, motivate,

detail all original features of GrafiXML and exemplify
them on a simple running example to facilitate the un-
derstanding.

3.1 Running example
Let us consider a simple GUI consisting of a login

and a password for connecting to a remote system in-
dependently of the platform used by the end user. If the
combination login+password does not match those re-
corded in a database, an error message is produced de-
pending on the results. Fig. 2 reproduces GrafiXML’s
composer where this simple UI is drawn by dragging
widgets from the palette and dropping them onto the
working area. For this part, GrafiXML is similar to any
other UI builder except that more properties can be
specified for each widget since it is modeled through a
concrete UI model. The left pane of Fig. 2 depicts the
list of current projects.

Figure 2. The composer of GrafiXML.

3.2 Platform-independent UI design
It is possible to design a GUI independently of any

computing platform and any look & feel by drawing it
in the composer. Since GrafiXML is implemented in
Java, it will adopt the look and feel of the computing
platform on which it is running, but this does not mean
that the GUI being designed is targeted towards this
platform. The GUI being designed is stored in
UsiXML 1.8.0 [27]. Export plug-in’s automatically
generate code corresponding to various computing
platforms such as Java, XUL, or XHTML. If there is a
need to preview a GUI for a specific platform, the pre-
view can be obtained according to various schemes
such as MS Windows, OSF Motif, and Java (Fig. 3).
Rendering engines exist in two forms: code generators
(which could be internal plug-in or external transfor-
mation engines) and UsiXML interpreters (which
opens a UsiXML file and renders it in the environ-
ment). For the moment, interpreters exist for Java,
Adobe Flash, and Tcl/Tk.

Figure 3. Three renderings of the same GUI.

3.3 Specification of a context of use (target)
Once a GUI is designed in the composer, a particu-

lar context of use (or target [5]) can be attached to ex-
press that this GUI is relevant for that target. A target
is composed of at most three aspects (which do not
necessarily be specified): a user (which is character-
ized by attributes such as task experience, disabilities,
motivation, experience with interaction devices, pref-
erences), a platform (which is specified according to a
subset of CC/PP recommendation from W3C), and an
environment (which is specified by a set of attributes
such as level of noise, location, neighborhood, stress
level). The context editor (Fig. 4) used to specify these
three models is invoked from the composer and auto-
matically generates UsiXML specifications corre-
sponding to the target specified. It is important to
maintain specifications in the same User Interface De-
scription Language (UIDL) so as to export the file in
one shot and to allow easy transformations. All inputs
are achieved by direct manipulation of the concepts in-
volved in the models. A property sheet is then avail-
able for those aspects which cannot be specified
graphically.

Figure 4. The context editor.

17

3.4 Multi-target UI design
If a GUI should run in many different contexts of

use, then alternative GUI designs should be specified
and added for each new context of use, thus leading to
specifying a multi-target UI. In this case, each time a
target changes, the corresponding UI changes. If the
same GUI should be expressed to work on different
contexts of use (e.g., the same GUI on different plat-
forms), it is not required to reproduce the same GUI:
only the alternative contexts (more precisely here, the
alternative platforms) should be specified. Contexts of
use can be arranged according to an inheritance hierar-
chy. In this way, a sub-platform could be specified as a
child of an existing platform model. Multiple sub-
models of a single model could be specified equally to
support multi-model and multi-level UI modeling [26].

Let us imagine in our example that once the login
and password are entered, the end user is being asked
the platform on which she would like to continue and
that the UI will change accordingly. Fig. 4 shows that a
GUI is specified for three contexts of use: a stationary
context with a desktop PC, a transient context with a
PDA, and a mobile context with a mobile phone. In our
example, if we do not want to use different UI specifi-
cations for PDA and mobile phone because all the wid-
gets we use are available on those platforms, we can
factor out the common parts. We only specify that our
application is designed to run on those platforms. The
rendering engine will adapt the UI for PDA and mobile
phone accordingly. Fig. 5 reproduces the new situation
in the composer with the corresponding UI variations.
The “Options” frame contains the properties of each UI
object, whether it is composed or individual. Fig. 6
shows the UI exported in XUL [20] thanks to the “Ex-
port to XUL” plug-in [27] and rendered in the XUL-
compatible Mozilla browser. This UI can also be run
on a mobile phone (Fig. 7) with a XHTML browser.

Figure 5. A multi-target UI.

Figure 6. UI rendered in XUL.

Figure 7. UI rendered on a mobile phone.

Thanks to the “Export to Java” plug-in [27], once
your .java file compiled, you can run it on a any Java-
compatible platform, such as a MacOsX (Fig. 8). We
can use InterpiXML, a UsiXML V.1.8.0 interpreter
implemented in Java 1.5, whose rendering on a Linux
platform is reproduced in Fig. 9. Last but not least,
thanks to the “Export to XHTML” plug-in [27], our
application can run on a browser for disabled users,
such as a text-based browser (Fig. 10).

Figure 8. UI rendered on a mobile phone.

Figure 9. UI rendered by InterpiXML.

3.5 Multi-target UI Localization
Localizing a UI often means a UI specialization (or

generalization) for a particular culture, set of users, or
population. In this way, all parameters related to user
stereotypes are captured in the user model, one of the
three dimensions of a target. Therefore, it is possible to
support multiple localization of UI, such as for differ-
ent natural languages at any time. When a new lan-
guage is added in GrafiXML, it creates automatically a

18

new context for this language copying the data of the
previous context so that you can modify this context
yourself as shown previously. In our running example,
six contexts will be finally incorporated (Fig. 4): PDA
in French, PDA in English, Mobile in French, Mobile
in English, PC in French, and PC in English. Grafi-
XML adds a contextual menu on all widgets to allow
the designer to translate their contents for any lan-
guage. All components have a lot of content you can
localize such as text content, icon, shortcut, and tooltip.
Fig. 11 shows two definitions of the Cancel push but-
ton, one in French and one in English.

Figure 10. UI rendered in a text-only browser.

Figure 11. Localization of the Cancel push button.

3.6 Three-representation UI Design
Depending on the designer’s preference, the UI can

be designed in any of the three representations (Fig. 1):
1. The internal representation consists of UI specifi-

cations expressed in UsiXML V1.8.0
(www.usixml. org), a XML-compliant UIDL for
multi-target, multi-model [26], and multimodal
UIs. On the upper left of the XML Editor (Fig. 12),
we have a tree-based view of the UsiXML specifi-
cations. A single click on a node of this tree will se-
lect the corresponding lines in the editor. When a
node is selected, the bottom left pane shows all the
attributes available for this node. You can modify
them by selecting the value in a drop down list if
values are static, checking a combo box if the value
is a Boolean or edit them if it is composed text.
You can also edit the UsiXML specification di-
rectly in the XML editor if you really want to do
so. Expert designers who are familiar with the lan-
guage may refine the specifications directly in this
window.

2. The external representation consists of a view pro-
vided in the composer. It is a synthetic and simpli-
fied view of every widget (as in Fig. 5). 32 widgets
are today supported to cover a wide range of plat-
forms. A preview facility allows the designer to see
the resulting UI for a particular Look & Feel for a
particular platform that has been specified, thus
reaching the level where a true external representa-
tion is brought to the designer’s eye.

3. The conceptual representation consists of a Con-
crete User Interface (CUI) model, made of objects
that are independent of any context of use. At any
time, the corresponding Abstract User Interface
(AUI) model is also generated to augment transla-
tion capabilities, as in the Cameleon framework [5].

Any editing applied to any particular representation is
immediately propagated in the other two representa-
tions, as in FormsVBT [3]. For this purpose, an ontol-
ogy of the CUI and AUI are exploited to maintain a set
of mappings between the representations [26].

Figure 12. UsiXML editor for the UI being designed.

19

3.7 Annotation-based UI design
Not all information related to the UI objects can be

captured in any existing UI builder that fits all the pur-
poses. This is also applicable to GrafiXML: although a
conceptual representation is maintained for both a CUI
and a AUI, possibly along with a context model, it can-
not capture all design aspects through the underlying
model. Therefore, there is a need to provide some sup-
port for annotation-based design. An annotation is de-
fined as any information captured at UI design-time
that needs to be further exploited in the remainder of
the UI development life cycle. It could be a guideline
for a model-to-code generator, a model-to-model trans-
formation engine, or simply for human purposes. Sev-
eral types of annotations are defined: Presentation (any
guideline related to presenting information such as a
metric, a convention), Specification (any guideline re-
lated to the connection with the data base, such as the
data type), Verification (any syntactical or semantic
constraint to be verified, such as a mask, a profile, or a
regular Perl expression), Discussion (any design con-
sideration that requires further attention and refine-
ment) and Tools (any guideline that will be exploited
later on by other software for automatic processing).
All these annotation types have options such as task,
domain for Specification, description for Presentation,
etc. For instance, SketchiXML
(http://www.usixml.org) is a multi-fidelity software for
sketching a UI which can export a UI into a UsiXML
file. This file can then be in turn imported in
GrafiXML and refined. Or in the other way around.
When multiple designers collaborate in the design
case, an annotation can be refined with a sub-type such
as “decision”, “proposition” or “argumentation” to cap-
ture at design-time multiple or alternative UI design
considerations and facilitate the decision. An annota-
tion can be augmented by text, image (e.g. a drawing),
sound or voice (e.g., a vocal comment). Annotations
are saved in the UsiXML de-scription, such as (Fig. 2,
central frame):

<annotation annotation-Type="Discussion#proposition"
file="capture4.png"> Is this widget is at the right place?
</annotation>

3.8 Visual UI (de)composition
A GrafiXML plug-in, called ComposiXML, has

been developed in order to compose and decompose
existing GUIs. In UI builders, UI recomposition is tra-
ditionally performed by copying and pasting UI con-
trols of interest from one UI to another one, thus re-
quiring many manual adjustments such as alignment,
resizing, reshuffling. These operations, although sim-
ple, are often perceived as tedious [25]. To overcome
these shortcomings, the Operator allows the designer to
select one or two GrafiXML projects, that is one or two

UsiXML files, and make some composition or decom-
position operations on these UI, which are as follows:
• Unary Operators: these operators are used to operate

on a single UI at a time. They are used to filter, re-
move widgets or change a kind of widget by another.

• Binary Operators: these operators are used to com-
pose a single UI from different UIs. You can choose
to remove duplicated items or select only those items.
In our running example, we decided to merge the
three windows of Fig. 5 into a single one. Com-
posiXML provides the fusion binary operator (Fig.
13) for obtaining the final UI reproduced in Fig. 14.

Figure 13. Interface of composition plug-in.

Figure 14. Fusion of three windows into a single one.

3.9 Graceful degradation of UI
An important requirement identified for multi-target

UI [5,16] is the ability to easily transform a UI existing
for a source context into a new one that is tailored to a
target context. For example, a GUI designed for a
desktop PC may not fit in the constraints imposed by a
smaller platform, such as an Internet ScreenPhone or a
PDA. Therefore, instead of starting designing a new UI
from scratch, it is desirable to apply a series of trans-
formations to the initial GUI to adapt it to the final
context. The “Graceful degradation” plug-in has been
developed for changing a GUI to fit it for another plat-
form in a logical way for an entire UI, and not just a
window of it. For instance, we can develop a PC UI
and transform it into a PDA one. The plug-in offers
five families of transformation rules which can be
specified and triggered at once or separately (Fig. 15):
resizing rules, moving rules, interactor transforma-
tions (e.g., a radio button is reduced to a combo box as
in Fig. 16), image transformations, and splitting rules.
The primary advantage of this approach is that trans-
formations are applied logically on the conceptual rep-
resentation, thus updating the other views accordingly.

20

Figure 15. UI of the “Graceful degradation” plug-in.

Figure 16. Example of a widget substitution applied.

3.10 Usability evaluation of UI at design-time
Since a UI conceptual representation is continuously
maintained throughout the development life cycle, it is
an appropriate candidate to apply model-checking
techniques to verify properties of interest, such as us-
ability guidelines, physical properties, heuristics, rules
of thumbs or any other type of evaluation principle [4].
For this purpose, UsabilityAdvisor (www.usixml. org)
is a GrafiXML plug-in that performs logical evaluation
of properties expressed in a XML-language on the cor-
responding UsiXML specifications of the GUI of inter-
est. The evaluation could be performed on a single UI
at a time (e.g., checking the alignment of controls) or
multiple UIs simultaneously (for example, one can
check the consistency between windows across multi-
ple targets by asking the plug-in to compare the model
definitions across the multiple targets). This is particu-
larly appreciated when several versions of the same UI
should be maintained in a coordinated way, such as in
the multi-target situation. If the designer wishes to
check another guideline, she may enter the guideline in
the XML language and see its evaluation incorporated
without changing the evaluation engine.

3.11 Multiple levels of independence
Thanks to the different models involved in GrafiXML,
it is possible to specify a GUI dependently or inde-
pendently of various concerns on demand. Five levels
of independence are depicted in Fig. 17:

• Device independence: the CUI level allows ex-
pressing a UI without any reference to any term be-
longing to a particular input/output device. In par-
ticular, there is no physical coordinates for any wid-
get constituting the UI, either absolute or relative. In
this way, the description of the UI is independent of
any screen resolution, any window manager or tool-
kit.

• Platform independence: when a CUI does not pre-
clude any reference to a particular computing plat-
form, it is said to be platform independent, which is
the case for a CUI. However, if a link between a CUI
and a particular platform needs to be established, a
mapping between this CUI and a platform model
could be maintained as long as this is relevant.

• ‘Modality of interaction’ independence: the AUI
level allows expressing a UI without any reference to
any term belonging to a particular modality of inter-
action (e.g., graphical interaction as in GUIs, sonic
interaction in auditory interfaces, speech synthe-
sis/recognition in speech interfaces, haptic for touch-
sensitive interfaces). Since this level is independent
of any modality of interaction, only a recursive de-
composition of actions is produced. A same platform
may combine one or many interaction modalities.

• Channel independence: a channel is defined as a par-
ticular computing platform, along with a selected set
of modalities of interaction in a given physical envi-
ronment. For instance, using an interactive kiosk with
an Internet navigator that is HTML-enabled and con-
nected to a T1-network consists of a particular chan-
nel of interaction. Another channel could be for in-
stance the production of structured PDF documents
from the same con-tents to be delivered through
Internet web sites. When a AUI does not preclude
any reference to any channel, it is said to be channel
independent. When a need arises to create a mapping
between a AUI and its relevance for a particular
channel, a mapping between this AUI and a corre-
sponding platform can be established and maintained.

• ‘Context of use’ independence: ultimately, any AUI
is said to be context-independent when there is no
reference to any term relevant to a context of use [5].
When such a reference exists deliberately, the AUI is
mapped to a context model stating that this AUI is
relevant to this context of use, although the AUI does
not contain any descriptor.

ContextsContexts

of useof useChannelsChannelsModalitiesModalitiesPlatformsPlatformsDevicesDevices
ContextsContexts

of useof use
ContextsContexts

of useof useChannelsChannelsChannelsChannelsModalitiesModalitiesModalitiesModalitiesPlatformsPlatformsPlatformsPlatformsDevicesDevicesDevicesDevices

Figure 17. Multiple levels of independence supported.

21

5. Conclusion
In this paper, we have introduced, motivated and dis-
cussed GRAFIXML, a software that supports multi-
target design of UIs thanks to a set of several facilities
that are often cited as requirements for selecting an ap-
propriate UI builder [4,16,25]: platform independent
design, multi-target, localization, context editing, us-
ability evaluation are among them. In the near future,
we will deploy a system for fostering plug-in deploy-
ment over the Web in order to allow any interested
party to make a new plug-in largely available.

10. References
[1] Apple Corp., Aqua Interface Builder, 2007, http://de-

veloper.apple.com/tools/interfacebuilder/
[2] Assisi, R., “V4ALL GUI Designer for Eclipse Manual

V.1.0”, Visual Builder for Eclipse, Eclipse, 2004,
http://v4all.sourceforge.net/index_start.html

[3] Avrahami, G., Brooks, K.P., and Brown, M.H., “A
Two-view Approach to Constructing User Interfaces”,
Proc. of SIGGRAPH’89, pp. 137–146.

[4] Bass, L., Abowd, G., and Kazman, R., “Issues in the
Evaluation of User Interface Tools”, in Proc. of Work-
shop on Software Engineering & Computer-Human In-
teraction, Lecture Notes in Computer Science, Vol.
896, Springer, Berlin, 1995, pp. 17-27.

[5] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J., “A Unifying Refer-
ence Framework for Multi-Target User Interfaces, In-
teracting with Computers, 15(3), 2003, pp. 289–308.

[6] Campos, P. and Nunes, N.J., “Towards useful and us-
able interaction design tools: CanonSketch”, Interact-
ing with Computers, 19(5-6), 2007, pp. 597–613.

[7] Colebourne, A., Sawyer, P., and Sommerville, I.,
“MOG User Interface Builder: A Mechanism for Inte-
grating Application and User Interface”, Interacting
with Computers, 5(3), 1993, pp. 315–331.

[8] Furtado, E., Furtado, J.J.V., Silva, W.B., Rodrigues,
D.W.T., Taddeo, L.S., Limbourg, Q., Vanderdonckt, J.,
“An Ontology-Based Method for Universal Design of
User Interfaces”, Proc. of Workshop on Multiple User
Interfaces over the Internet: Engineering and Applica-
tions Trends MUI’2001, Lille, 10 September 2001,
http://www.cs.concordia.ca/~faculty/seffah/ihm2001/
papers/furtado.pdf

[9] Galaxy Application Environment, Ambiência, http://
www.ambiencia.com/galaxy/galaxy.htm

[10] Graphical User Interface Builder (GUIB), 2004, http://
www-k3.ijs.si/kokalj/guib/

[11] GTK+ User Interface Builder, http://glade.gnome.org/
[12] Hashimoto, O. and Myers, B.A., “Graphical Styles for

Building User Interfaces by Demonstration By Exam-
ple”, Proc. of the ACM Symposium on User Interface
Soft-ware and Technology UIST’92, ACM Press, New
York, 1992, pp. 117–124.

[13] Hudson, S.E. and Yeatts, A.K., “Smoothly Integrating
Rule-Based Techniques into a Direct Manipulation In-
terface Builder Input Techniques”, Proc. of the ACM
Symposium on User Interface Software and Technol-

ogy UIST’91 (Hilton Head, 11-13 November 1991),
ACM Press, New York, 1991, pp. 145–153.

[14] Lecolinet, E., “XXL: A Dual Approach for Building
User Interfaces”, Proc. of the ACM Symposium on
User Interface Software and Technology UIST’96,
ACM Press, New York, 1996, pp. 99–108.

[15] Lumsden, J. and Gray, P.D., “SUIT - Context Sensitive
Evaluation of User Interface Development Tools”,
Proc. of DSV-IS’2000, Lecture Notes in Computer Sci-
ence, Vol. 1946. Springer, Berlin, 2000, pp. 79–95.

[16] McKirdy, J., “Choosing the UI Tool Which Best Suits
Your Needs”, Proc. of 7th IFIP Int. Conf. on Human-
Computer Interaction Interact’99 (Edinburgh, 30-
August-3 Sept. 1999), IOS Press, Amsterdam, 1999.

[17] Milosavljević, B., Vidaković, M., Komazec, S., and
Milosavljević, G., “User interface code generation for
EJB-based data models using intermediate form repre-
sentations”, Proc. of the 2nd Int. Conf. on Principles and
practice of programming in Java (Kilkenny City, June
16-18, 2003), ACM Press, NY, 2002, pp. 59–64.

[18] Myers, B.A. and Rosson, M.B., “Survey on User Inter-
face Programming Tools and Techniques”, Proc. of
ACM Conf. on Human Factors in Computing Systems
CHI’92 (Monterey, 3-7 May 1992), ACM Press, New
York, 1992, pp. 195–202.

[19] Myers, B.A., “User Interface software Tools”, http://
www-2.cs.cmu.edu/afs/cs.cmu.edu/user/bam/www/tool
names.html

[20] Oeschger, I., XUL Programmer's Reference Manual, 5
April 2001, http://www.mozilla.org/xpfe/xulref/

[21] Pausch, R., Conway, M., and DeLine, R., “Lessons
Learned from SUIT, the Simple User Interface Toolkit
Practice and Experience”, ACM Transactions on Infor-
mation Systems, 10(4), 1992, pp. 320–344.

[22] Puerta, A.R., Cheng, E., and Ou, T., “MOBILE: User-
Centered Interface Building Tools for Building Inter-
faces and Applications”, Proc. of ACM Conf. on Hu-
man Factors in Computing Systems CHI’99, ACM
Press, New York, 1999, pp.426-433.

[23] The Graphical Interface Company, Tilcon Interface
Builder, http://www.tilcon.com/ graphicseditor.html

[24] Trolltech Corp., Qt Windows editor, 2004, http://
www.trolltech.com/products/qt/windows.html

[25] Valaer, L.A. and Babb, R.G., “Choosing a User Inter-
face Development Tool”, IEEE Software, 14(4), July-
August 1997, pp. 29–39.

[26] Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg,
Q., Silva, W., Rodrigues, D., and Taddeo, L., “Multi-
model and Multi-level Development of User Inter-
faces”, Multiple User Interfaces - Cross-Platform Ap-
plications and Context-Aware Interfaces, John Wiley
& Sons, New York, 2003, pp. 193–216.

[27] Vanderdonckt, J., “A MDA-Compliant Environment
for Developing User Interfaces of Information Sys-
tems”, Proc. of CAiSE'05, Springer, Berlin, pp. 16–31.

[28] Vlissides, J.M. and Tang, S., “A Unidraw-based User
Interface Builder”, Proc. of the 4th Annual ACM Sym-
posium on User Interface Software and Technology
UIST’91. ACM Press, New York, 1991, pp. 201-210.

22

