
 - 99 -

Service-Oriented Architecture for Supporting
Collaborative User Interface Development

Hildeberto Mendonça1, Kênia Sousa2, Jean Vanderdonckt2
Université catholique de Louvain

1Place du Levant, 1 - 2Place de Doyens, 1 - 1348 Louvain-La-Neuve, Belgium
{hildeberto.mendonca, kenia.sousa, jean.vanderdonckt}@uclouvain.be

ABSTRACT
Professionals working in organizations that conduct any
user interface development life cycle are more and more
involved in a collaborative setup where competences and
resources are distributed in time and space. In order to
support this shift of practice, a service-oriented architec-
ture is defined and developed according to principles of
model management. In this paradigm, user interaction de-
velopment is decomposed into activities, which could be
supported by model management operations. These oper-
ations are in turn converted into services, developed ac-
cording to the service-oriented architecture. A distributed
user interaction development life cycle consequently in-
volves the following steps: a method engineer defines the
activities to be conducted for the user interface of a pro-
ject, the method definition is imported in the software ar-
chitecture to enact the method by assigning responsibili-
ties to team members, and these members then perform
their responsibilities through the services corresponding
to the operations. This paper also presents a taxonomy of
services for supporting the user interface development life
cycle that is unique.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques – Computer-aided software engineering (CASE),
User interfaces H.5.2 [Information Interfaces and
Presentation]: User Interfaces – Graphical user interfac-
es (GUI), User Centered Design. I.3.6 [Methodology
and Techniques]: Device Independence, Language,
Standards. H.5.3 [Information Interfaces and Presenta-
tion]: Group and Organization Interfaces - Collaborative
computing, Computer-supported cooperative work.

General Terms
Design, Human Factors, Standardization, Languages.

Keywords
User interaction design method, service-oriented architec-
ture, meta-models, business process modeling, model
management.

INTRODUCTION
Service-Oriented Architecture (SOA) has been success-
fully applied to a wide variety of domains of human activ-
ity, inside and outside computer science, such as, but not

limited to: database management, distributed computing,
cloud computing. One discipline of computer science that
has received little or no attention with respect to SOA is
Human-Computer Interaction (HCI), which is the disci-
pline that is aimed at defining and applying a user inter-
face development life cycle for any project. This has been
for a while primarily because HCI has not evolved as fast
as other disciplines in integrating SOA concepts and ex-
perience and because integrating Software Engineering
§SE) techniques in HCI has been challenging for many
years. This paper is aimed at addressing the need of sup-
porting a structured user interface development life cycle
using SOA.

Although still evolving, one reference framework has to-
day received some consensus throughout the HCI com-
munity: the Cameleon Reference Framework (CRF) [5]
proposes a set of models, compatible with MDA [16,24],
that provide the necessary support for addressing the cur-
rent challenges posed by User Interface (UI) develop-
ment. This framework consists of 5 models distributed in
4 levels of abstractions that are intended to express the UI
development life cycle. The CRF proposal achieves the
necessary support for different platforms, devices and
contexts of use and a considerable effort is running to
provide computational and methodological applicability.
Different implementations exist today that exhibit various
levels of compliance with the CRF.

One of the bases of this work was to define a language to
represent all aspects of the CRF in a computational form.
The language UsiXML [15] was created as a XML exten-
sion to describe UIs for multiple contexts of use and it
motivated the implementation of a set of tools to manipu-
late the language [25]. Every day, the integration between
all these tools becomes more critical to guarantee the life
cycle's completeness and coherence. At the same time, all
possible operations in a life cycle could not be provided
by tools because there are some dimensions to be consid-
ered, as management, control, integration with external
environments, and so on.

We are now proposing one approach that could standard-
ize the integration between tools and make the application
of methods possible to support the entire life cycle, in-
cluding the integration of these methods in a pre-existent
and deployed development process. The basic idea is to
provide all model operations as services that could be re-

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 100 -

used by different tools and applications. The UsiXML
language will provide the necessary support to represent
models in a structured and reasonable form.

The service’s concept is the same used by SOA that con-
siders it as a software component, but with special ability
to improve the software composition and distribution. A
service is published in the World Wide Web (WEB) in-
frastructure and can be invoked by a software to execute
part of its logic. Applying it in our problem, a service can
provide a set of potential benefits such as:

 Reduce the complexity of the current tools and ap-
plications available and improve the architecture of
the future implementations;

 Enable the collaborative work locally, distributed
(e.g. intranet), and remotely distributed (e.g. inter-
net);

 Avoid the duplication of implementations and value
the variety of implementation strategies;

 The number of services available is directly propor-
tional to the number of possibilities to create new
applications and methods; and

 Totally based in widely accepted patterns, managed
by W3C, OMG, OASIS, etc.

The research aims to provide a consistent solution to al-
low a collaborative work in the UI design and to bring a
definitive contribution to facilitate the application of HCI
practices in real world organizations. This paper intends
to present the foundations and the structure of the re-
search, talking about models, methods and technology,
but every time thinking about how it can contribute to the
software's end-users.

This paper is organized as follows: Section 2 presents re-
lated works; Section 3 shows the use of services for mod-
el management; Section 4 presents the method specifica-
tion; Section 5 details the deployment of services to sup-
port communication; Section 6 illustrates the method exe-
cution with a case study; Section 7 concludes this work
by presenting the contribution and future work.

RELATED WORK
In order to achieve competitive results and still address
constant organizational changes, SOA has been widely
applied to bring agility in the business process definition
and improve the communication between organizations
and even between distributed people of the same organi-
zation.

A model proposed by Colombo et al. [6] shows that web
services, the key technology to concretize SOA, are an ef-
fective solution to let software systems, developed by dif-
ferent organizations and spread across the world, interop-
erate. This model has support to i) Agent-actors: identifi-
cation of stakeholders and roles; ii) Core Service: a par-
ticular concrete resource which is offered by a Software

System; iii) Service Description: a syntax description
about the service interface to show the potential offered;
iv) Service Discovery: a process to discover new services
in the network to become available for services compos-
ers; v) Service Composition: the service capability to exe-
cute in cooperation with other services in a same transac-
tion; vi) Service Publication: to make services available
in the network, exposing theirs service descriptions to be
recognized by other applications; and vii) Service Moni-
toring: production of statistics data to build quality met-
rics. All these concepts allow the method automation,
creating services to manage artifacts, requirements, tests
and so forth, putting all the services in a logic sequence
and changing it whenever necessary or creating different
versions of the method, considering the size or the com-
plexity of projects.

One collaborative approach to improve the user interac-
tion design process is not a strongly explored subject as it
really deserves. Actually, there exists a real desire to in-
crease the return of investment on the HCI adoption as we
have noticed in some works [3,7,10,22], which use differ-
ent approaches like reducing the gap between Software
Engineering and Human-Computer Interaction or creating
new techniques to deliver a well-accepted user interface.

We are not trying to create a new form to reduce the gap
between SE and HCI or a new technique. But, with SOA,
it is possible to reduce the mentioned gap and use new
techniques throughout the activities. It is fundamental to
use models, represented in a structured language, such as
UsiXML, to improve the performance by model trans-
formations, avoiding tocreate models since the beginning.

MANTRA (Model-bAsed eNgineering of multiple inter-
faces with TRAnsformations) [4] is a model-driven ap-
proach for the development of multiple UIs. MANTRA is
structured by abstraction levels similar to the CRF [5].
The model transformations, such as adapting the AUI ac-
cording to the requirements and transforming the adapted
AUI into several CUIs, are described in ATL (Atlas
Transforming Language) [12], a hybrid model transfor-
mation language that allows both declarative and impera-
tive constructs to be used in transformation definitions.
The declarative style of transformation is based on speci-
fying relations between source and target patterns. The
imperative part in the transformation language is explicit-
ly encoded by the developer. In contrast with our ap-
proach, MANTRA uses web services to implement the fi-
nal application, not as a strategy to improve the method
applicability and adaptation to the dynamism of the or-
ganization.

Wolff et al. [27] propose an approach and a tool to sup-
port transformations between models supported by pat-
terns. The transformation between the dialog graph (spec-
ification of views, their association to tasks, and the tran-
sitions between tasks and views) and a platform-
independent UI model (PIM) is produced by mapping

 - 101 -

views to windows and elements of views to buttons. The
connections with the task model are kept, which facili-
tates tracing actions on elements back to tasks and the
simulation of dialog graphs. The transformations are not
fully automated, but they are supported by humans using
interactive tools. For instance, the transformation from
Platform-Independent Model (PIM) to Platform-Specific
Model (PSM) is achieved by the designer replacing (via
“drag & drop”) PIM elements by a pre-designed compo-
nent, that is, UI patterns.

Similarly, Sinnig et al. [23] use patterns during the appli-
cation of a model-based development methodology with
tool support based on XML-representation of patterns for
each level, namely dialog, presentation and layout pat-
terns.

Even though the use of patterns during User Interface
Development (UID) promotes re-use, standardization, and
efficiency to the transformation of models; model trans-
formation logic are coded inside the tools, thus making it
more difficult to reuse implementation strategies.

These approaches have tools to support UID methods, but
the descriptions of these tools do not mention any tech-
nology that supports collaborative work. Thus, these tools
support the creation of models and automated transfor-
mations in some level, but professionals cannot use them
to communicate and share their work.

These approaches follow a formalized method, but their
supporting tools do not provide facilities to change the
sequence of the method activities, thus restricting the pos-

sibilities to adapt the method. Some approaches use
XML-like files to store the models or XML-based imple-
mentation language, thus, they are aligned with standards.
Following, we will demonstrate how our approach ad-
dresses these issues.

UsiXML follows a multi-path UI development based on
the CRF [5], which defines UI development steps for
multi-context interactive applications in a simplified
manner. Now, we present that this framework can also be
applied with a distributed team. Figure 1 depicts that in
each level of the CRF, it is possible to consider people
working in different time and space, but still connected
through the execution of web services that support the
method.

The MBUID method used to illustrate the workflow exe-
cution is divided in four phases: inception, elaboration,
construction, and transition. These phases are composed
of activities, organized in five disciplines: requirements,
analysis and design, implementation, deployment, and
test. The main roles are: system analyst, usability expert,
requirements reviewer, UI designer, software architect,
implementer, tester, and deployment manager.

The artifacts are a combination of SE and HCI, for in-
stance, UML diagrams [10] and UsiXML models [22], re-
spectively. The method engineer is the one responsible
for the definition and maintenance of the method. To fa-
cilitate his/her work, standard notations and workflow ed-
itors can be used, which are presented in the next sec-
tions.

Figure 1. Distributed team applying the Cameleon Reference Framework.

 - 102 -

Figure 2. Example of method defined using BPMN editor.

SERVICES FOR MODEL MANAGEMENT IMPLEMEN-
TATION
The UsiXML language describe the user interface for
multiple context of use such as character user interfaces,
graphical user interfaces, auditory and vocal user inter-
faces, virtual reality, and multimodal user interfaces. As a
language explicitly based on the Cameleon Reference
Framework, its adopts four development steps, which are
(Figure 1):

1) Task & Concepts (T&C): describe the various user’s
tasks to be carried out and the domain-oriented con-
cepts as they are required by these tasks to be per-
formed.

2) Abstract UI (AUI): defines abstract containers (AC)
and individual components (AIC) [15] two forms of
Abstract Interaction Objects (AIO) [25] by grouping
subtasks according to various criteria (e.g., task model
structural patterns, cognitive load analysis, semantic
relationships identification), a navigation scheme be-
tween the container and selects abstract individual
component for each concept so that they are inde-
pendent of any interaction modality, such as graphical,
vocal, tactile, or haptic modalities. The AUI is said to
be independent of any interaction modality.

3) Concrete UI (CUI): concretizes an abstract UI for a
given context of use into Concrete Interaction Objects

(CIOs) [25] so as to define widgets layout and inter-
face navigation. It abstracts a final UI into a UI defini-
tion that is independent of any computing platform.
While the AUI is independent of any interaction mo-
dality, a CUI assumes that a particular interaction mo-
dality has been chosen, but that this CUI remains in-
dependent of any computing platform.

4) Final UI (FUI): is the operational UI i.e. any UI run-
ning on a particular computing platform either by in-
terpretation (e.g., through a Web browser) or by exe-
cution (e.g., after compilation of code in an Integrated
Development Environment (IDE).

Across these four development steps are distributed five
models, which are task model, domain model and context
model in the first step, Abstract User Interface (AUI) in
the second step, and Concrete User Interface (CUI) in the
third step. The language does not consider the Final UI,
but offers the necessary support to concept and generate
it, when it is a specific technology [25]. Task & Concepts,
respectively AUI, CUI, are the manifestations of Compu-
ting-Independent Model (CIM), respectively PIM, and
PSM.

The models have a natural logic sequence. However, its
sequence could not support many situations. For instance:
if we already have a CUI and a new device needs to be
considered, it is necessary to transform that CUI in an

 - 103 -

AUI, to have a model platform independent. Moreover,
there are many other possibilities that are treated by a
model management approach.

It intends to be a higher level programming interface that
offers a set of operations, supported by mappings between
models [2]. Our approach is aimed at providing a set of
model management operations as services to allow a col-
laborative work oriented by one or more methods, to in-
tegrate all available tools and to improve the architecture
of the current and future tools. Other types of services are
necessary to promote control and integration, as depicted
in Table 1.

Type Service Description

Model
manage-
ment

Transform
AUI to CUI,
merge

Operations over models.

Control Version
check in /
check out,
exclude, add,
etc.

Physical control over
managed models.

Integration Generate
class dia-
gram, refac-
toring, trace

Integration of UsiXML
models with other mod-
els and processes.

Table 1. Types of services.

A service has different levels of granularity. A unique
service can be responsible for an entire process, a sub-
process, a process step or an operation of a process step
[9]. The granularity is inversely proportional to the possi-
bilities of services composition. So, we choose a low lev-
el of granularity to increase the applicability of the ser-
vices in different situations.

In some situations, a specific service can be invoked sepa-
rately by a tool, but, in most of the situations, an atomic
service collaborates with other services to produce signif-
icant results. For example: a tool can call a specific trans-
formation service to transform an AUI model in a CUI
model. It will be done, but in a real application, a CUI
Model could already exist and it is necessary to use a
comparison service to check all changes made over the
original CUI model and call a refactoring service to prop-
agate each change in all managed models.

A SOA provides support for process orchestration, which
is used to describe how services can interact with each
other to provide new applications for each specific situa-
tion in the organization [20]. Orchestration promotes the
services composition to make possible simple logics, as
explained in the last example, and complex process defi-
nition, such as a software development process.

But, as described by Sadiq et al. [21], orchestration is a
creative work and, until now, it needs to be done by hu-

man beings. So, this concept is not self evident and to be
applied, we need to consider a specific domain, as HCI, a
specific application, as model management, and a method
to describe in details how everything works.

SERVICE ORCHESTRATION TO SUPPORT UID
METHODS
A method supporting model management addresses mod-
el transformations as a means to produce UIs for a variety
of platforms, such as in [4,23,26]. But, we intend to en-
compass a broader definition by considering the applica-
tion of standards in the method definition.

To make a representative method, that is, to make it
clearer to understand, apply and implement, it is im-
portant to present it in a flow format. Business Process
Modeling Notation (BPMN) [18] was proposed to be ap-
plied in the representation of organizational processes.
The use of BPMN in the method definition is important
because: i) it has become a pattern for process modeling;
ii) many software is available in the market implementing
it; iii) it has been intended as a human-readable layer that
hides the complexity of designing transactional business
processes; and iv) there is a strong integration with the
SOA.

There are a lot of elements in the BPMN notation. To take
a complete overview of the notation, the specification is
available on [18]. Since BPMN can be used in any busi-
ness process modeling, we want to demonstrate that it is
in accordance to Software Process Engineering Meta-
model (SPEM), as described in the next sub-section, be-
fore actually presenting the method using BPMN ele-
ments.

We associate SPEM and BPMN to help method engineers
specify the method and also to adhere to formal SE speci-
fications. SPEM is a meta-model for defining software
development processes and their components [19].

We associate SPEM and BPMN to help method engineers
to specify the method using a workflow, and also to ad-
here to formal SE specifications. SPEM is a meta-model
for defining software development processes and their
components [18]. In a general view, the structure of the
SPEM meta-model is organized as follows: ProcessCom-
ponent is a set of process description to assemble a pro-
cess; Process is a process component intended to stand
alone as a complete process; Lifecycle is the behavior of a
process and it is defined as a sequence of phases; Phase is
defined with the constraint of being executed sequentially
with a series of milestones spread over time; Iteration is a
composite of a phase with a minor milestone; Discipline
partitions the activities of a process according to a com-
mon theme; WorkDefinition is the work performed in the
process; Activity (specialization of WorkDefinition) is a
piece of work performed by a process role; Step is an
atomic element of an activity; ProcessPerformer per-
forms a set of work definitions in a process; ProcessRole

 - 104 -

(specialization of ProcessPerformer) is responsible for
specific work products by performing and assisting in
specific activities; WorkProduct is an artifact produced,
consumed, or modified by a process; and Precondition is
a constraint that is expressed in terms of the states of the
work products that are parameters of the work definition.
The lifecycle, phase, and iteration can be represented as a
BPMN sub-process. For instance, a lifecycle can be rep-
resented as a sub-process composed of phases. The disci-
pline can be represented as a BPMN group in order to de-
limitate the activities that are part of the same discipline.
The activity can be a BPMN activity, since it can repre-
sent tasks, operations, and actions. When an activity is
consisted of atomic elements, a step can be represented
using a BPMN task, which is an atomic activity. A pro-
cess performer can be represented as a BPMN pool since
both are more generic representations of process partici-
pants and a process role (a subclass of a process perform-
er) can be represented as a BPMN lane, which is a sub-
partition within a pool. Work product is a BPMN data ob-
ject since both are considered as artifacts in the process.
Precondition can be a BPMN gateway that controls the
sequence flow; or a BPMN conditional flow, which has
condition expressions evaluated at runtime to determine
whether or not the flow will be used.

SPEM suggests the definition of a method using UML di-
agrams, in particular, the following UML notations are
useful: class diagram, package diagram, activity diagram,
use case diagram, sequence diagram, and state chart dia-
gram. Method engineers can use any BPMN editor to de-
fine the process workflow and make it available for pro-
fessionals in their organization as guidance for their work,
as depicted in Figures 2 and 3: the business process nota-
tion is used by tools to draw the method flow and all ob-
jects shown here can be found in the left tab.

Figure 3. Defining the method with a BPMN editor.

Method Description
The method description is base on the following phases.

In the inception phase, the system analyst elicits require-
ments, then the usability expert describes the tasks, the
context of use, and the prototype in abstract level while
the system analyst performs class design, then the re-
quirements reviewer analyzes all the models that have to
be approved before going to the next phase. In the elabo-
ration phase, the software architect defines the architec-
ture and the UI designer designs the UI in a concrete lev-
el, then the UI is evaluated and approved by the usability
expert before going to the next phase. In the construction
phase, the implementer implements the UI in the final
level.

The tester evaluates the UI before approving it for the fi-
nal phase. In the transition phase, the deployment manag-
er installs the system in the environment where the usabil-
ity expert evaluates the system with end users, who have
to approve it to consider the project finalized. Throughout
the method, when an artifact is not approved, a new itera-
tion can be executed until an acceptable version of the ar-
tifacts is produced.

Figure 3 illustrates the method using a flow chart orga-
nized according to the RUP structure [14] in four phases:
inception, elaboration, construction, and transition. This
flow was designed using the tool Business Process Visual
Architect [26]. These phases are composed of activities,
organized in five disciplines: requirements, analysis and
design, implementation, deployment, and test. The main
roles are: system analyst, usability expert, requirements
reviewer, UI designer, software architect, implementer,
tester, and deployment manager. The main UsiXML
models are: task model, domain model, context model,
abstract UI (AUI), and concrete UI (CUI). With the use of
a UID method for the application of services for model
management, we can present how SOA provides support
for professionals working in a distributed manner towards
the creation of consolidated artifacts.

Method Implementation
Each method activity, described in BPMN, is represented
as a BPEL task, which is associated with services. Many
services are invoked by the engine during the BPEL exe-
cution. The engine will control the execution of the flow,
the state of process, the time spent in each task, saving
important data for the process analysis. A method activity
can be associated with one or more services of different
types and a specific service can be used by various activi-
ties. This flexibility in their association makes it easier for
the method engineer to define and improve the workflow
by selecting available services. The services invoked by
BPEL are called web services in an IT environment. [14]
considers that web services are the main element of a
SOA. It represents the business functionality and applica-
tion logic available in conceptual business architecture to
users, costumers and other services on an IT network.

 - 105 -

Three types of web services available in the network to
support the method:

1. Transformation Services: transformation between
models;

2. Operation Services: operations performed over the
models;

3. Software Engineering Services: execution of activities
related to SE.

The transformation services make transformations be-
tween UsiXML models, passing one or many UsiXML
models as input and receiving another UsiXML model as
output. For instance, task model and domain model as in-
put for the transformation into an abstract UI model. The
operation services receive as input UsiXML models cre-
ated or edited using the UsiXML tools (e.g., IdealXML
for task and domain model, SketchiXML or GrafiXML
for Concrete UI) in order to perform some of the main
model management operators: match, compose, diff,
modelGen, and merge. The SE services receive as input
UsiXML models created or edited using the UsiXML
tools in order to perform the following services: version
control and traceability. These services handling various
models are performed by accessing them from a common
repository.

Method Deployment
Figure 4 represents the infrastructure adopted for the
method execution, but it can be simplified or improved,
considering the availability of resources. The idea is to
make clear where the method is executed and how the
models are manipulated. Once the method is defined in
BPMN, it can be transformed in BPEL code using a tool
that implements mapping rules. The BPEL engine will ef-
fectively execute it in the organization network. The exe-
cution of BPEL and the management of instances of this
execution by the BPEL engine are called Orchestration.
The organizational processes are executed by a set of
available services, reusing what is already done and ex-
tending the current business rules.

The process orchestration, implemented by BPEL, makes
a lot of calls to web services available in the network. The
web services could be available in many points of the
network and the BPEL Engine needs to call many web
services on different places. But, it could be a problem in
the future because the connections can become interlaced,
thus increasing the possibility of service coupling. To
solve this problem it is recommended to use an Enterprise
Service Bus (ESB) to be an intermediary between the
BPEL Engine and all web services available in the net-
work. This technology is an implementation of a broker,
an architectural pattern to structure distributed software
systems with decoupled components that interact by re-
mote service invocation. The ESB is responsible for co-
ordinating communication, such as forwarding requests,
also for transmitting results and exceptions. All commu-
nication intermediated by the Enterprise Service Bus are

defined by Simple Object Access Protocol (SOAP), a
XML based protocol that works over TCP/IP to support
web service messages between servers and clients. The
entire solution is XML based. The models are defined in
UsiXML, which will be transported on the network in a
XML message, to be processed by services exposed using
XML signatures, to be orchestrate by a BPEL (a XML to
describe the execution of business logic), defined by
BPMN, whose metadata is in XML format.

Figure 4. The architecture proposed.

Method Execution
Methods are then executed according to the normal SOA
principles of orchestration. Table 2 presents the services
created for each method activity.

Activity Type of Service Service Interface
Task analysis Software Eng. controlModel(taskModel)
Class design Transformation transformDomainMod-

el(classDiagram)
Analyze Con-
text of Use

Operation addContextMod-
el(contextModel)

Review Re-
quirements

Software Eng. evaluateMod-
els(evaluatedModels)

Abstract UI
Prototyping

Software Eng. controlModel(auiModel)

ConcreteUI
Prototyping

Software Eng. controlModel(cuiModel)

Generate Final
UI

Transformation generateFUI(language,
cuiModel)

Table 2. Association of Method Activities and
Services.

SUPPORT FOR COMPUTER-MEDIATED COMMUNICA-
TION
Technically speaking, the implementation of services in a
specific platform is called Web Services [13]. The added
term "Web" means that the service is available in an in-
ternet environment, and it can be invoked locally or re-
motely by other applications. All the communication is
managed by a protocol called Simple Object Access Pro-
tocol (SOAP), based on XML, which is responsible for
the encapsulation and transport of request messages from
the client to the server and response messages from the
server to the client. The availability of a web service can

 - 106 -

improve substantially the management of the UsiXML
models. One of the first steps is to migrate all the code in
the tool implementation that manipulates UsiXML models
to web services. It will reduce the complexity of the tool's
code, make the implementation available for other tools,
and improve the architecture of future tool implementa-
tions. A catalog of available services, among other things,
will avoid the duplication of implementations.

A SOA is the basis to enable a correct design and imple-
mentation of all model management web services. Ac-
cording to [9], "SOA represents a open, agile, extensible,
federated, composable architecture comprised of autono-
mous, QoS-capable, vendor diverse, interoperable, dis-
coverable, and potentially reusable services, implemented
as Web services". Part of the above advantages is sup-
ported by web services and orchestration, a concept intro-
duced in Section 3.

As we discussed in Section 4, BPMN will provide the
higher level definition of a SOA application to execute
methods to offer support in the UID. Currently, BPMN
can be transformed in the Business Process Execution
Language (BPEL) [1]. In fact, most of the tools that work
with BPMN can generate BPEL [11], reducing the effort
of achieving an automated process. BPEL is a XML
based language that can be executed by a BPEL engine
that allows composition of web services and communica-
tion between them. Each method activity, described in
BPMN, is represented as a BPEL task, which is associat-
ed with web services. The engine controls the execution
of the flow, the state of process, the time spent in each
task, saving important data for the process analysis.

Figure 5 represents the SOA support for methods and
tools. We can see the transformation of BPMN in BPEL
and the deployment of a BPEL in its engine. The engine
can orchestrate services inside and outside the organiza-
tion, widely distributed. A service-oriented application
client will execute instances of the method and tools can
make use of a particular web service and participate of the
method execution, offering the support for a particular ac-
tivity.

Figure 5. The SOA support for methods and tools.

CASE STUDY
Consider a software organization, located in Europe,
which is responsible for a project for the design of UIs for
an e-commerce web site for desktops and Palm Tops. But,
the organization needs an expert in UI design for Palm
Tops. Therefore, the directors decide to hire such an ex-
pert for this specific project, but who works remotely
from South America. In order to improve their communi-
cation, the project manager trains the hired professional
on the method and on the method execution application
so all the outcomes are shared, that is, they are available
for all professionals at anytime, anywhere. We now pre-
sent how the execution of the method can be automated
with SOA by depicting prototypes of the method execu-
tion application, a service-oriented application, and imag-
es of the models created during the execution of certain
activities. During the Task Analysis activity of the incep-
tion phase, the usability expert uploaded the UsiXML
task model file (Fig. 6). Whenever the usability expert
makes changes in this model, he/she can upload the new
version and a service is called to perform version control
operations.

Figure 6. Task Analysis.

During the Analyze Context of Use activity of the incep-
tion phase, the usability expert can inform the data about
the context of use (Figure 7). In this application, there are
also pages devoted for user profile and platform. After
requesting the data to be saved, a service is called to per-
form a model management method that creates the
UsiXML context of use file. During the Abstract UI Pro-
totyping activity of the inception phase (Figure 6), the us-
ability expert uploads the UsiXML AUI model file, which
was generated using IdealXML. The AUI could also have
been automatically generated by another tool, which can
call specific services that perform the transformation from
conceptual models (task, domain, and context of use) into
the AUI. When the resulting UsiXML AUI is uploaded, a

 - 107 -

service is called to execute version control operations. If a
new version of the AUI is uploaded, a service for refac-
toring is called to make the appropriate changes in the
models associated to this AUI model, such as the concep-
tual models or even in the CUI, in cases when it was cre-
ated, for instance, in a previous iteration of the lifecycle.
During the Class Design activity of the inception phase,
the system analyst can create the class diagram using any
UML editor, upload the XMI file of the class diagram,
and then request the generation of the UML class diagram
into a UsiXML domain model (Figure 8).

Figure 7. Analyze Context of Use.

This service performs a specific model management oper-
ation, which facilitates the integration of artifacts pre-
pared using another modeling language with UsiXML
models. It is visible here that any modeling tool can be
used, and each one can have a different specification, vis-
ualization, among other aspects. With this application, we
reinforce consistency in applying the method by provid-
ing such services for specific transformations.

Figure 8. Class Design.

During the Review Requirements activity of the inception
phase, the requirements reviewer evaluates each of the
models mentioned previously. When the reviews are
saved, a service is called to send e-mails with the status of
the evaluation and the list of possible changes for the pro-
fessionals responsible for the models that need changes.
This is an example of a service that facilitates the coordi-
nation between professionals. This service is associated to
the other activities that evaluate artifacts, such as the
Evaluate Prototype, Evaluate Product, and Evaluate the
System activities. During the Concrete UI Prototyping ac-
tivity of the elaboration phase, the usability expert creates
the CUI model. When he/she uploads it, a service for ver-
sion control is called. Similarly to all other models, the
upload of a new version of the model triggers the service
for refactoring. Since the models are in a common reposi-
tory, it is easier to perform such a service. During the
Evaluate Prototype activity of the elaboration phase, the
expert in UIs for Palm Tops also plays the role of a re-
viewer and verifies if specific guidelines for this device
are addressed in the CUI. This is one of the method ac-
tivities that triggers refactoring services, since changes
made in one model have to reflect on all associated mod-
els. During the Generate Final UI activity of the con-
struction phase, the implementer selects the language to
generate the UI. When the implementer requests the gen-
eration of HTML and WAP files, the service is called to
generate the Web page and the page in a Mobile Phone
(Fig. 9). Consider that this is an automatically generated
UI, in which the designer will still incorporate the organi-
zation’s style guide into it. For the moment, (X)HTML,
Java, and XUL codes are automatically generated.

Figure 9. Generate Final User Interface

 - 108 -

These screens depict the most common interactions with
the application that manages the method lifecycle. When
professionals perform these activities, they interact with
the application to: document the outcomes of their work
(i.e. uploading files), perform their work (i.e. defining the
context of use), receive outcomes that help in their work
(i.e. use the generated FUI and add business rules in it),
control the status of their work (i.e. view which activity
of the process is being executed, receive notifications of
which activity they need to perform), etc. This case study
demonstrates that the execution of a method supported by
a service-oriented application reinforces consistency in a
project and even across different projects. Also note that
if the method flow of activities is changed in the BPMN
editor, so is the associated BPEL, therefore, the services
will be invoked in a different sequence, accordingly to the
method, thus, increasing the flexibility to make changes
in the method, whenever appropriate.

CONCLUSION
This work presented an approach that uses SOA to sup-
port the transformation between models during the UID
lifecycle. The specific issue we address is the support for
communication through the use of an application that al-
lows sharing and integrating the work performed by the
software organization teams either locally (e.g. profes-
sionals designing the UI physically located in the same
organization), distributed (e.g. professionals accessing the
organization intranet), or remotely distributed (e.g. pro-
fessionals accessing the internet to use the common appli-
cation). Considering the existence of a set of tools that
manipulate UsiXML during the UID lifecycle, we provide
the foundation to integrate them through the reuse of ser-
vices that manipulate UsiXML models to perform trans-
formations. With the case study, we exemplified how real
world organizations can use a standardized architecture to
reuse implementation strategies in different projects to
promote the institutionalization of UID by supporting col-
laborative work. There are some topics that are open for
future work. For the method, we will work on its specifi-
cation in details, and define how to make adaptations, de-
pending on the organization or project. For the services,
the next step is to implement them. Concerning project
management, we intend to monitor the method using an
engine that generates statistical data (e.g. comparison of
project planned dates with real dates), and improve the
method based on the results of the statistical data.

REFERENCES
1. BEA Systems, IBM Corporation, Microsoft Corpora-

tion, SAP AG, Siebel Systems, Business Process Exe-
cution Language for Web Services, 1.1, May 2003.

2. Bernstein, P. Applying Model Management to Classi-
cal Meta Data Problems. In: Conference on Innovative
Data Systems Research (2003) 209-220.

3. Bias, Randolph G.; Mayhew, Deborah J. Cost-
Justifying Usability: An Update for the Internet Age,

Morgan Kaufmann Publishers Inc., San Francisco,
CA. (2005).

4. Botterweck, Goetz and J. Felix Hampe. Capturing the
Requirements for Multiple User Interfaces. 11th Aus-
tralian Workshop on Requirements Engineering
(AWRE'06), Adelaide, Australia, 2006

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interact-
ing with Computers 15, 3 (June 2003), pp. 289-308.

6. Colombo M., Di Nitto E., Di Penta M., Distante D.,
Zuccalà M. Speaking a Common Language: A con-
ceptual Model for Describing Service-Oriented Sys-
tems. In ICSOC'2005, 48-60.

7. Constantine, Larry and Lockwood, L. Software for
Use: A Practical Guide to Models and Methods of Us-
age-Centered Design. Addison-Wesley, Reading.

8. Blind reference
9. Erl, Thomas. Service-Oriented Architecture – Con-

cepts, Technology, and Design. Prentice Hall, Craw-
fordsvile, Indiana (2005).

10. Göransson, Bengt; Gulliksen, Jan; Boivie, Inger. The
usability design process - integrating user-centered
systems design in the software development process.
Software Process: Improvement and Practice 8(2):
111-131 (2003).

11. Harvey, Michael. Essential Business Process Model-
ing. O’Reilly Media (2005).

12. Jouault, Frédéric; Kurtev, Ivan. Transforming Models
with ATL. Model Transformations in Practice (Work-
shop at MoDELS 2005), Montego Bay, Jamaica
(2005).

13. Kreger, Heather. Web Services – Conceptual Archi-
tecture. IBM Software Group (2001).

14. Kruchten, Philippe. The Rational Unified Process -
An Introduction. 2 ed. Addison-Wesley, New Jersey
(2000).

15. Limbourg, Q., Vanderdonckt, J., UsiXML: A User In-
terface Description Language Supporting Multiple
Levels of Independence, in Matera, M., Comai, S.
(Eds.), “Engineering Advanced Web Applications”,
Rinton Press, Paramus, 2004, pp. 325-338.

16. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Dis-
tilled: Principles of Model-Driven Architecture. Addi-
son-Wesley, NY, 2004.

17. Montero, F., Víctor López Jaquero, V., IDEALXML:
An Interaction Design Tool and a Task-based Ap-
proach to User Interface Design, Proc. of CA-
DUI’2006, Chapter 20, Springer-Verlag, Berlin
(2006) 245-252.

18. OMG, Business Process Modeling Notation Specifica-
tion, 1.0, February, 2006.

19. OMG, Software Process Engineering Metamodel
Specification, Jan. 2005.

20. Peltz, C. Web Services Orchestration and Choreogra-
phy. IEEE Computer, Vol. 36, 10 (2003) 46-52.

 - 109 -

21. Sadiq, Waqar; Racca, Felix. Business Services Or-
chestration - The Hypertier of Information Technolo-
gy. Cambridge University Press, Cambridge (2003).

22. Schaffer, Eric. Institutionalization of Usability: A
Step-by-Step Guide, Addison Wesley, (2004).

23. Sinnig, Daniel; Gaffar, Ashraf; Reichart, Daniel; Sef-
fah, Ahmed; Forbrig, Peter. Patterns in Model-Based
Engineering. In Proc. of CADUI’2004, Madeira, Por-
tugal (2004) 195-208.

24. Soley, Richard. Model Driven Architecture. Available
at: http://www.omg.org/mda/presentations.htm. OMG
White Paper (2000).

25. Vanderdonckt, J. A MDA-Compliant Environment for
Developing User Interfaces of Information Systems.
In Proc. of 17th Conf. on Advanced Information Sys-
tems Engineering CAiSE'05 (Porto, 13-17 June 2005),
O. Pastor & J. Falcão e Cunha (eds.), Lecture Notes in
Computer Science, Vol. 3520, Springer-Verlag, Ber-
lin, 2005, pp. 16-31.

26. Visual Paradigm. Business Process Visual Architect.
Available at: http://www.visual-
paradigm.com/product/bpva/. Accessed on March
30th, 2007.

27. Wolff, Andreas; Forbrig, Peter; Dittmar, Anke;
Reichart, Daniel. Linking GUI elements to tasks: sup-
porting an evolutionary design process. Proc. of
TAMODIA’2005, Gdansk, Poland (2005) 27-34

 - 110 -

