
Distributed User Interfaces in Space and Time
Jérémie Melchior

Université catholique de Louvain, Louvain School of Management
Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

Jeremie.melchior@uclouvain.be

ABSTRACT
Distributed User Interfaces (DUIs) have been imagined in
order to support end users in carrying out interactive tasks
that could be distributed in space (e.g., some subtasks are
carried out in different locations) and time (e.g., some sub-
tasks are carried out during different time intervals, de-
pending on who is contributing to the task. Classical inter-
active applications involving a single-user, single-context
user interface are rarely developed in a way that distribut-
ing parts or whole of the user interface is made effective
and efficient. In order to facilitate the deployment of such
distributed user interfaces, this thesis provides the follow-
ing contributions: a series of models capturing the various
aspects of a DUI based on new concepts (i.e. distribution
scene and scenario), an engineering method for specifying
DUIs based on these concepts, and a supporting toolkit
providing the developers with distribution primitives.

Author Keywords
Distributed User Interfaces, Mobility, Ubiquity, Design.

General Terms
Design, Experimentation, Human Factors, Verification.

ACM Classification Keywords
C.2.4 [Computer-Communication Networks]: Distrib-
uted systems – Distributed applications. D2.2 [Software
Engineering]: Design Tools and Techniques – Modules
and interfaces; user interfaces. H5.2 [Information inter-
faces and presentation]: User Interfaces – graphical user
interfaces, user interface management system (UIMS).

INTRODUCTION
A Distributed User Interface (DUI) is hereby defined as
any application User Interface (UI) whose components can
be distributed across different displays of different comput-
ing platforms that are used by different users, whether they
are working at the same place (co-located) or not (remote
collaboration) [1,2,7,9]. Consequently, DUIs allow for the
UI to be spread out over a set of displays/devices/platforms
taking advantage of each display/device/platform's unique
properties instead of residing on a single display/devi-
ce/platform [1] with the interaction capabilities that are
constrained on this display/device/platform. People use one
or several computing devices every day. In order to im-
prove applications, researchers try to provide usable user

interfaces (UIs) for this purpose. But applications only run
on one single platform. Now, there are concepts such as
distributed applications and distributed user interfaces
(DUI) [2,5,6,8,9,10]. While the first has become popular,
the second is only used by some groups of researchers and
are not ready to a public use.

Motivations
The main motivations can be described with two small ex-
amples from [8]. “A user of a tabletop surface may wish to
grab and use a keyboard from a nearby PC”. In this first
example, we have a multi-device system that we would like
to organize in another way. We would like to use the key-
board device with the computer as well as the tabletop sur-
face. To generalize this small example, we would like to be
able to choose the way devices are logically connected at
running time of the system. “Or an application running on a
Smartphone might discover that its battery is about to ex-
pire, and look for another device onto which it can migrate
while offering minimal interruption to its user”. The second
example shows an example of smart application. We would
like to have independence between user interface and
logical part of an application [8]. In the Smartphone ex-
ample, we notice that there are a strong coupling between
the user interface and the devices on which it runs. The
place where the application is displayed should not be de-
pendent from where the application runs. Users and appli-
cations might organize the user interface across several de-
vices without other constraints than physical ones. Due to
the lack of a single and complete description of what an
application should be, there are a lot of different ways to
create applications. Depending on what aims the applica-
tion, it will be created using a toolkit, a framework, an API,
a software development kit which may be more specific to
the domain of the application [7]. The diversity of ways to
create interactive applications leads to different ways to re-
alize the same application. A consequence of this wide
choice is that it is not easy to choose the one which is the
most appropriate for the application. The choice can reduce
the functionalities because some improvements exists but
with different solutions. A major problem in computing
science is to use the powerful varieties of operating sys-
tems, interaction mechanisms and form factors to create a
large and powerful world that could be widespread like in
the same room or interactive space [9]. The objective of all
the operating systems is to be the most effective platform
as possible but there are still a lot of features that still need
to appear. Almost all the applications are local and the only
interaction mechanisms for which they are written are the
basic keyboard and mouse. Multiplatform applications are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

311

very specifics and represent a few percent of all the appli-
cations. In order to get more powerful applications, there is
a need for more development around multiplatform, multi-
user and multimodal. Applications such as office automa-
tion and drawing application are developed for a single
user and a single platform [7].

Starting concepts
The main concepts used in the thesis are:
 A device is a single physical unit such as a computer, a

mobile phone or a complex interaction platform.
 A user interface is the set of graphical components of

an application.
 A user is a concept of a human person interacting with

the system.
 A context of use describes the environment and the ma-

terial in which he is. A context of use C is composed by
a platform P, a user U and an environment E.

 The platform is the software architecture (such as an
operating system) provided to the user to interact with
the device.

The context of use considered in the thesis may be more
complex than one single platform, user and environment.
Depending where and when the user is accomplishing the
tasks, she is evolving in an environment. For example, he
can be at work, at home or traveling. Even the easiest tasks
can become difficult if the environment is not appropriate.

THESIS
Two dimensions: time and space. An important aspect of
the distribution is the way users interact with the applica-
tion. Users may be working at the same time in a competi-
tive way or cooperating together to increase the effective-
ness of the work. There can be different users working on
the same application but at different time. Multiuser can be
sequential or concurrent on a single computer or on several
computers. While some users are working on the same
computer, other users may interact with them from other
computers wherever they are.
Concerns. we propose a description of the distribution
domain, a toolkit for creating DUIs, a catalog of distribu-
tion primitives and concepts of distribution graphs and sce-
narios. It allows applications to be distributed across multi-
ple devices, multiple screens and for multiple users. The
concerns that this thesis try to address are [2,5,6,7,8,9]:

 Concern #1. Development of distributed user inter-
faces: the development of DUI is not supported by
usual tools. Most of the time, developers have to man-
age the development in their own way. A lot of time is
spent on the development of DUIs mostly the distrib-
uted aspects.

 Concern #2. Support for distribution of user interfaces
at running time: existing DUIs are limited to predefined
applications and domains of application which lead to
little support for the various possibilities of distribution.

 Concern #3. Support for multi-user collaboration: mul-
ti-user applications are developed in different ways de-

pending on the use and domain of application. The lack
of a common base is slowing down the development.

 Concern #4. Execution control in the distributed envi-
ronment: the control of the distribution is a real prob-
lem when managing DUI systems [4]. The limitations
are high especially with a fixed level of granularity.
Some systems can replicate windows while not being
able to replicate widgets. Others can manipulate wid-
gets one at a time but no group of widgets.

 Concern #5. Network transparency: The distribution of
the UIs has to be network transparent in the sense that
the user should not have to worry about network details
such as IP address, user network and network settings.

 Concern #6. Lack of description of the distributed do-
main and models: The researches around multi-user ap-
plications and distributed user interfaces are very spe-
cifics to the needs of the developers and are almost
never documented or badly documented.

Model-based Approach. The main contribution we bring
to DUI is a model-based approach for designing distributed
user interfaces (DUIs), i.e. graphical user interfaces that are
distributed along one or many of the following dimensions:
end user, display device, computing platform, and physical
environment. The three pillars of this model-based ap-
proach are: (i) a Concrete User Interface model for DUIs
incorporating the distribution dimensions and able to ex-
press in a XML-compliant format any DUI element until
the granularity of an individual DUI element is reached, (ii)
a specification language for DUI distribution primitives
that have been defined in a user interface toolkit, and (iii), a
step-wise method for modeling a DUI based several con-
cepts we introduce in the thesis. The model-based approach
for DUIs consists of conducting the following steps:

1. Build a cluster model of the platforms.
2. Build a CUI model for each platform.
3. Assemble models in the distribution scene.
4. Write a distribution scenario based on distribution

primitives.
5. Develop the distribution scenario
Underlying models. The Concrete User Interface (CUI)
model is independent of any computing platform and im-
plementation language. A CUI model is hereby defined as
recursive hierarchy of containers (e.g., windows, tabbed di-
alog boxes, group boxes) and individual widgets (e.g.,
check boxes, push buttons, list boxes, etc.). Widgets are
laid out either horizontally or vertically. Each widget is de-
fined as a vector W=(Pi, Vi) where Pi denotes the ith prop-
erty of the widget and Vi denotes the value of this property
(e.g., the background color of a push button is grey). A se-
lector consists of a selection of UI element types of a par-
ticular CUI model that satisfy a first-order predicate logical
formula. In this way, a template is applied for a selector in-
stead of a (potentially long) sequence of widgets as:
1. Universal Selector: applies the template to all UI ele-

ments belonging to a particular CUI, whatever they are.

312

2. Element Type Selector: applies the template to all UI el-
ements belonging to a particular CUI which correspond
to the selector’s type (e.g., all containers).

3. Class Selector: applies the template to all UI elements
belonging to a particular CUI.

4. Identifier Selector: applies the template to only one UI
element belonging to a particular CUI: the one whose id
property matches the string contained in the parameter.

We also introduce a platform model. The UI distribution
concerns the repartition of one or many UI elements from
one or many DUIs in order to support one or many users to
carry out one or many tasks on one or many domains in one
or many contexts of use, each context of use consisting of
users, platforms, and environments. Therefore, the context
of use is hereby considered as a cluster of individual com-
ponents. In order to represent this cluster, we adopted the
Delivery Context Ontology (DCO) standardized by W3C
(www.w3.org/TR/dcontology), a subset of which in Fig. 1.

Figure 1. The platform model used for DUI.

According to DCO, a platform model is divided into one or
many platforms. For example, a laptop itself consists of
three platforms: the laptop, the display and the keyboard.
Each platform has three main categories of components: a
connection category representing the input and output con-
nections to other devices or to the internet, the hardware
category that defines the main components such as the
CPU, the memory and if the platform has a display or not,
and any component linked to the medias (e.g., audio and
video). Based on this, a cluster is defined by a graph
G=(Nj,Rj) which is a set of nodes Nj connected together
through Rj relationships. Each node consists of a DCO-
compliant platform model representing any kind of device
or components able to interact with the system (e.g., com-
puters, displays, keyboards and mice are representative ex-

amples). Each relationship represents a communication
channel (e.g., a Wi-Fi network or a Bluetooth connection)
between nodes. Fig. 2a denotes a cluster composed of three
platforms: a laptop connected to a flat monitor and a mo-
bile phone. In order to properly express DUIs, to operate
them and to reason on them, it is required to know at time
what DUI is residing on which platform of the cluster. For
this purpose, we hereby define a distribution scene as a
cluster in which each node is associated to a CUI model, all
CUI models connected to each other by a graph (Fig. 2b).
Any cluster node contains a reference to a particular CUI
model that could evolve over time. Consequently, a distri-
bution scene holds a two-layer structure: (1) a cluster rep-
resenting the physical setup of interaction elements and de-
vices and (2) an associated graph of CUI models attached
to any element in this cluster that supports some interac-
tion. Not all platforms run a UI at any-time. To depict this,
full circles in Fig. 2a represent that no DUI exist for those
two platforms at some point (e.g., the starting time). The
dashed circle around the laptop means that it holds a DUI.
All models manipulated in this approach have their seman-
tics defined in a UML V2.0 class diagram, a concrete syn-
tax defined via a EBNF, and their stylistics defined.

Figure 2. A distribution scene made up of: a cluster of three

platforms (a) and an associated graph of CUI models (b).

Catalog of distribution primitives. A distribution primi-
tive consists of a basic operation in order to support distri-
bution of any element of the CUI model of the cluster with
respect to multiple devices/displays. The syntax of these
distribution primitives is defined through an Extended
Backus Naur Form (EBNF) grammar. Instances of distri-
bution primitives are called by statements. The definitions
of an operation, a source, a target, a selector and some oth-
er ones are defined in Fig. 3 (excerpt only). For instance,
COPY button_1 TO button_2 ON shared_display means
that button_1 is copied on shared_display and identify it as
button_2. In this example, button_2 inherits everything
from button_1, both presentation and behavior. This may
induce some prioritization aspects since two push buttons
could trigger the same function for instance. We are now
working on extending these primitives in order to transfer
partial/total presentation and/or behavior. For instance, but-
ton_2 could inherit the presentation from button-1, but its
behavior will be expanded in order to address multi-user
aspects. Or vice versa: button_2 could inherit the behavior
of button_1, but its presentation will be changed. Different
types of behavior inheritances are under study depending
on which interaction status should be preserved.

313

statement = operation , white_space , source , white_space , ”TO” ,
white_space , target ;
operation = "SET" | "DISPLAY" | "UNDISPLAY" | "COPY" |
"MOVE" | "REPLACE" | "TRANSFORM" | "MERGE" |
"SWITCH" | "SEPARATE" | "DISTRIBUTE";
source = selector ;
target = displays | selector , white_space , “ON” ,
white_space , displays ;
displays = display_platform , { “,” , display_platform}
display_platform = display , [white_space , “OF” ,
white_space , platform] ; selector = identifier , { “,” , identifier
} | universal ;
display = identifier ; platform = identifier ;

Figure 3. EBNF grammar for distribution primitives.

Toolkit for Distribution Primitives. A toolkit is being de-
veloped upon the aforementioned model-based approach in
order to provide the developer with the distribution primi-
tives of the catalog. It creates application with UI separated
in two-parts: the proxy and the rendering. The proxy is rep-
resented as a separate part of the application than the ren-
dering. The first keeps the state of the application and en-
sures the core functionalities, while the second displays the
user interface. Application supporting DUI allows the ren-
dering to be distributed on other platforms while the proxy
stays where the application has been created. The toolkit
works in an environment supported by Microsoft Windows
XP and up, Apple Mac OS X, Linux and Android. We are
currently working on Apple iOS. The applications created
with this toolkit are multi-platform. Each graphical compo-
nent is described as a record containing several keys and
values. It ensures compatibility with XML because the
keys/values become the name/value pairs of the XML.

Multiple meta-user interfaces. Any DUI based on the dis-
tribution primitives can be controlled by a meta-user inter-
face [3] with the following interaction styles: command
line interface, menu selection, drag and drop (partially),
and programming language. Further investigation is needed
in order to determine which interaction style is appropriate.

Figure 4. Command line and menu selection for distribution.

CONCLUSION AND FUTURE WORK
The very first step in order to come up with a full method
for designing DUIs consists of investigating which models,
languages, development approach, and supporting software
could be defined and implemented. This is why distribution
primitives have been defined prior to any other step. But it
is not because a distribution primitive could be imple-
mented in a more effective way than by hand that the re-
sulting DUI is usable for the end user. Multiple interaction
styles exist that could support the same distribution primi-
tive. In order to become effective, a DUI resulting from the
aforementioned model-based approach should be offered
via different interaction styles that are appropriate for the
end user and task. So far, the metaphors used to control the
DUIs are limited to keyboard/mouse interactions. For this
purpose, we are conducting an experiment that would de-
termine what are the end user preferences for some interac-
tion style for a distribution primitive. We would like to ex-
tend these interactions by adding touch and multi-touch
gestures to enable the distribution primitives. We think that
the more natural the DUIs will be presented to the public,
the better it will be for users.

REFERENCES
1. Beale, R. and Edmonson, W. Multiple Carets, Multiple

Screens and Multi-Tasking: New Behaviours with Multiple
Computers. In Proc. of HCI'2007, British Computer Society.

2. Berglund, E. and Bång, M. Requirements for distributed user
interface in ubiquitous computing networks. In Proc. of Conf.
on Mobile and Ubiquitous MultiMedia MUM'2002

3. Coutaz, J. Meta-User Interfaces for Ambient Spaces. In Proc.
of TAMODIA’2006. LNCS, Vol. 4385. Springer, pp. 1–15.

4. Coyette, A., Vanderdonckt, J. A Sketching Tool for Designing
Anyuser, Anyplatform, Anywhere User Interfaces. In: Proc. of
10th IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT’2005 (Rome, 12-16 September 2005). LNCS,
Vol. 3585, Springer-Verlag, Berlin, 2005, pp. 550-564.

5. Luyten, K. and Coninx, K. Distributed User Interface Ele-
ments to support Smart Interaction Spaces. In Proc. of the 7th
IEEE Int. Symposium on Multimedia, (2005), pp. 277-286.

6. Luyten, K., Van den Bergh, J., Vandervelpen, Ch., and Con-
inx, K. Designing distributed user interfaces for ambient intel-
ligent environments using models and simulations. Computer
& Graphics. 30, 5 (2006) 702-713.

7. Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy, P.
A toolkit for peer-to-peer distributed user interfaces: concepts,
implementation, and applications. In: Proc. of EICS'09 (Pitts-
burgh, July 15-17, 2009). ACM Press, NY (2009), pp. 69–78.

8. Qiu, X.F. and Graham, T.C.N. Flexible and efficient platform
modeling for distributed interactive systems. In: (Pittsburgh,
July 15-17, 2009). ACM Press, New York (2009) pp. 29-34.

9. Vandervelpen, Ch., Vanderhulst, G., Luyten, K., and Coninx,
K. Light-Weight Distributed Web Interfaces: Preparing the
Web for Heterogeneous Environments. In Proc. of IC-
WE'2005. Springer-Verlag, Berlin (2005), pp. 197-202.

10. Vanderdonckt, J. Distributed User Interfaces: How to Distrib-
ute User Interface Elements across Users, Platforms, and En-
vironments. In: Proc. of XIth Congreso Internacional de Inter-
acción Persona-Ordenador Interacción’2010 (Valencia, 7-10
September 2010). AIPO, Valencia (2010), pp. 3–14.

314

