
A Toolkit for Peer-to-Peer Distributed User Interfaces:
Concepts, Implementation, and Applications

Jérémie Melchior1, Donatien Grolaux1,2, Jean Vanderdonckt1, Peter Van Roy2
Université catholique de Louvain, – B-1348 Louvain-la-Neuve (Belgium)

1Louvain School of Management, Place des Doyens, 1
2Dept. of Computing Science and Engineering, Place Sainte Barbe, 2

nediar@gmail.com, {jeremie.melchior, jean.vanderdonckt, peter.vanroy}@uclouvain.be

ABSTRACT
In this paper we present a software toolkit for deploying peer-to-
peer distributed graphical user interfaces across four dimensions:
multiple displays, multiple platforms, multiple operating systems,
and multiple users, either independently or concurrently. This
toolkit is based on the concept of multi-purpose proxy connected
to one or many rendering engines in order to render a graphical
user interface in part or whole for any user, any operating system
(Linux, Mac OS X and Windows XP or higher), any computing
platform (ranging from a pocket PC to a wall screen), and/or any
display (ranging from private to public displays). This toolkit is a
genuine peer-to-peer solution in that no computing platform is
used for a server or for a client: any user interface can be distrib-
uted across users, systems, and platforms independently of their
location, system constraints, and platform constraints. After defin-
ing the toolkit concepts, its implementation is described, moti-
vated, and exemplified on two non-form based user interfaces: a
distributed office automation and a distributed interactive game.

Categories and Subject Descriptors
C2.4 [Distributed systems]: Distributed applications. D1.3 [Con-
current Programming]: Distributed programming. D2.2 [Soft-
ware Engineering]: Design Tools and Techniques – Modules and
interfaces; user interfaces. D2.m [Software Engineering]: Mis-
cellaneous – Rapid Prototyping; reusable software. D4.7 [Or-
ganization and Design]: Distributed systems. H.1.2 [Information
Systems]: Models and Principles – User/Machine Systems. H5.2
[Information interfaces and presentation]: User Interfaces –
Prototyping; user-centered design; user interface management
systems (UIMS). I.6.5 [Model Development]: modeling method-
ologies.

General Terms
Design, Experimentation, Human Factors, Verification.

Keywords: Distributed User Interfaces, Multi-Device Envi-
ronments, Multi-platform user interfaces, Multi-user user inter-
faces, Peer-to-peer, User Interface Toolkit, Ubiquitous computing.
1. INTRODUCTION
The division of labor in corporate environments requires more and
more to allocate tasks to users in a flexible, dynamic, and oppor-
tunistic way. For instance, a task that can no longer be ensured by

a worker is delegated to another one or offered to single / multiple
resources in order to be achieved. Interactive tasks are frequently
reallocated or (re)distributed across workers in an organization
and the User Interfaces (UIs) should support these interactive
tasks. For instance, a particular worker may want to get some ad-
vice from a colleague for solving a problem. For this purpose, she
can share some part of the information by redistributing parts or
whole of her UI, here by duplicating the UI to another user using
another computing platform and located in another environment or
context of use.

Workers may distribute UIs for several reasons beyond this distri-
bution of task allocations: in order to follow task allocation, to ex-
change information with co-workers, to balance private and public
information [15], to partition the working space into different parts
[12] and several displays [22]. They all want to distribute their UI
in order to match requirements of dynamically distributed tasks
and to keep the same usability quality in the distributed UIs as
they had before the distribution. The UIs of these applications are
generally unable to accommodate such changes, thus forcing end
users to switch from one application to another or to rely on work-
flow management systems (if any) to reach their goals. In general,
the following situations may arise:

• Multi-monitor usage: a single user using a single computing
platform may want to distribute her UI across various moni-
tors connected to the same platform [12,14]. For instance, a
dual display if the graphic card allows it or an external moni-
tor via an external port.

• Multi-device usage: a single user may use several different de-
vices together, whether they are running the same operating
system or not [15]. For instance, a user may control a music
player running on a media center using a remote control run-
ning on a handheld device.

• Multi-platform usage: a single user may user heterogeneous
computing platforms, perhaps running different operating sys-
tems [21]. Note that a multi-device usage implies a multi-
platform usage (since there are different machines) but the re-
ciprocal does not hold: a user could use several computers
(hence, multi-platform) that are similar (hence, no multi-
device).

• Multi-display usage: we hereby define multi-display as a com-
bination of multi-monitor and multi-device usages [22]. A sin-
gle user may distribute a UI across multiple monitors and de-
vices simultaneously.

• Multi-user: it represents an extension of the previous usages to
multiple users concurrently [5]. In this case, one or many users
may want to distribute parts or whole of their UI across sev-
eral monitors, devices, platforms, or displays. For instance, in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’09, July 15–17, 2009, Pittsburgh, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07…$5.00

69

a control room setup, users may want to direct portions of a UI
to other displays of others users depending on the context of
use. When a multi-user interface is of concern, it is also typi-
cally used for supporting tasks that are allocated or de-
allocated from one user to another one, such as in task delega-
tion, task suspension and resuming.

A Distributed User Interface (DUI) consists of a UI having the
ability to distribute parts or whole of its components across multi-
ple monitors, devices, platforms, displays, and/ or users. Hence, a
DUI should support any of the aforementioned usages, the multi-
monitor being the minimal.

This paper presents a toolkit with the following properties. Given
n application processes and m display processes, the toolkit allows
the GUI of each application to be partitioned arbitrarily and dy-
namically over the m display processes. A single display process
can therefore combine parts of the GUI of each application, in one
or several windows with no restriction. No other dependency ex-
ists beyond those implied by the n+m processes, i.e., if an applica-
tion process crashes, its GUI disappears and if a display process
crashes, the GUI parts that it hosts 'return' to the application proc-
ess and can be migrated to another display process. Each applica-
tion has its own point of failure which means that if an application
process crashes, other applications still work.

During the past two decades, a lot of work has been dedicated to
addressing some of the aforementioned usages at a time, such as
multi-device or multi-platform only. With the advent of all these
usages, the time has come to enable designers and developers to
engineer their interactive applications in a way that they do not
need to take care about the functions required to support these us-
ages.

In other words, the user interface of such applications should be-
come completely agnostic, independent from any underlying tech-
nology that would allow these usages. Until now, many works ad-
dressed these usages explicitly, but in a way that forces designers
and developers to think and develop user interfaces in a way that
is constrained by distribution. For instance, the underlying soft-
ware architecture may influence the way the user interface is pro-
grammed if it should be migratory [3,26] or multi-user [5].

In this paper, we relax this important constraint by offering to de-
signers and developers a toolkit that would enable them to design
and develop user interfaces that support all the aforementioned us-
ages. For this purpose, the remainder of this paper is structured as
follows: Section 2 reports on some significant pieces of related
work in order to characterize a brief, yet accurate, state of the art
in the domain of distributed user interfaces. Section 3 summarizes
the benefits brought by the toolkit. Section 4 immediately shows
two case studies of interactive applications exhibiting user inter-
faces covering the above usages that are hard to develop other-
wise. It then introduces, describes, and motivates the software ar-
chitecture of the underlying toolkit that was used for those two
case studies and finished with some final examples. It also dis-
cusses some selected aspects and properties of this toolkit. Section
5 concludes the paper by presenting some future avenues of this
work.

2. RELATED WORK
In this section, we compare the advantages and disadvantages of
the major related work in order to identify the specific aspects of
our toolkit.

Probably the first DUI ever was developed as a system that dis-
tributed a UI over many workstations connected to the same net-
work and running the same operating system [3] thanks a to a
connector mechanism. In [4], a program is dynamically changing
between centralized, replicated and a hybrid collaboration archi-
tecture. There is a notion of masters using a replica of the program
and slaves using one of the replicas provided by a master in a cen-
tralized architecture. It allows mobile devices with lack of com-
puting power to avoid running the program when it can communi-
cate with a more powerful device.

In [13], a web page is split in partial pages which will be repli-
cated to all the users. The framework supports multi-device and
multi-user Web browsing where clients connect to a server which
delivers the page. A proxy split the pages in respect to the device
and user constraints. Each page is in a XML file with specific tags
to configure how the Web page will be split among the different
users and devices.

In Luyten & Coninx [17], it is shown how an interactive system
can be distributed among several peer devices. Their approach re-
lies on the fact that nowadays most computing resources are net-
work-enabled and publish their device profile like in UAProf or
CC/PP. It raises the opportunity for supporting collaborative tasks
with the same user interface with little or no extra effort from the
user interface designer.

In [2,24], a part or whole of a DUI can be migrated from one plat-
form to another at run-time. The underlying architecture is a cli-
ent-server architecture that maintains in a central position the in-
ternal state of the DUI.

In this paper, the toolkit that will be presented is significantly dif-
ferent from this previous work in that it provides a unique combi-
nation of the following features:

• Any DUI developed in the toolkit may benefit transparently
from facilities provided to support any of the aforementioned
usages.

• The DUI is not restricted to form-based applications as it is pos-
sible to distribute any graphical UI, such as from a game, a
spreadsheet, a graphic application. Such programs contain native
widgets.

• The DUI is not restricted to web applications. The only condi-
tion to distribute a UI is to have the platforms connected via a
LAN or a wireless connection, but the applications are not nec-
essarily web applications in markup languages. There is no such
language restriction like having a UI in HTML or another mar-
kup language.

• The toolkit relies on a genuine peer-to-peer architecture in the
sense that there is no client and no server: every platform can
send and receive any part of a DUI depending on its distribution
rights. No single platform maintains the DUI internal state.

• The granularity of distribution can range from the application
level to the widget level: an entire application can be distributed
across platforms for instance, but also the different components
of any widget. For instance, even a radio button, consisting of a
circle to be checked and a label can be split across platforms.
Even the label could be distributed, although it does not make
sense in this case.

3. SOLUTION BENEFITS
The toolkit does not rely on a client-server architecture which in
the WebSplitter[13] would allow each device to create a Web page

70

and to share it with others. There is no need for a server to store
the Web page and provide it to the proxy. Each peer may create a
user interface and share it through the network. The exchange of
data is values passed through a message passing mechanism; there
is no static representation of the application in files. The toolkit
combines the ability to distribute a part or whole of a user inter-
face among devices without needing to completely share the ap-
plication. It is possible to design a lot of various applications at a
finer granularity than in [3,4,13]. Here is how the dimensions are
possible in the toolkit:

• Multiple displays: the system may be a single device connected
to multiple displays or multiple devices. For a single device with
many displays, many rendering engines on the same device
might be used. For multiple devices, each device will create at
least one rendering engine.

• Multiple users: the user interface can be distributed in part of
whole for each user independently of the situation.

• Multiple operating systems: the toolkit is developed in the Mo-
zart environment which supports a lot of different operating sys-
tems.

• Multiple platforms: it is supported by combining the multiple
operating systems dimension and the distribution of parts of the
user interface. The smallest form factors which are not able to
render the whole user interface might just get what they need
and are able to display.

In sort, any computing platform, regardless its operating system
(i.e., Linux, MacOs or Windows), can trigger a distribution of a
user interface to other platforms provided that they are connected
together through any local or wireless network. Each computing
platform can be used by a single user or by multiple users. The
distribution of the UI is not governed by a single machine since
any portion of a UI can be, for instance, forwarded to another one,
and vice versa.

4. DISTRIBUTED USER INTERFACES

4.1 Case Studies
Two case studies have been chosen to evaluate the power of the
toolkit. The evaluation of a toolkit is never easy because there are
always a lot of different and complex applications and it is not
possible to test every single feature and his behaviors. The choice
of case studies is thus quite important and difficult.

The first case study is a distributed office suite. The goal is to
show that even a complex application with many toolbars and but-
tons, such as those found in office suites, can be distributed over
multiple devices and many users. The interface can be decom-
posed in a lot of components. Going further in the decomposition
of the interface, the work space can also be divided into a lot of
different migratable regions. Distributing components of any
commercially-available application belonging to an office suite
cannot be achieved today.

The second case study is a distributed Pictionary. This is a multi-
player game where each player has his own role. To prevent play-
ers from cheating, the toolkit provides some distinctions between
the users. Players trying to guess the word cannot see it and the
player who has to describe the word by drawings should see the
word and draw in an area. The drawing area then is seen by the
other players but none of them can edit it.

Pictionary is naturally distributed because it needs at least a
drawer, a player trying to guess the word the other is trying to
draw. This game is task-driven distributed, the choice of by whom
and where the task is realized depends on the task itself. A player
has to pick a word and then another have to guess that word.
These two tasks have to be realized by two different users, other-
wise the player will know the word she has to guess. These two
tasks should also happen at different places to prevent the players
seeing the chosen word. The game is distributed across players.

Contrarily to Pictionary, the distributed office suite is not naturally
distributed. Someone may write a text or draw a picture but no-
body is able to write in the text at the same time or to draw on the
same picture. One of the objectives of the first case study is to dis-
tribute an application that is not naturally distributed. Many users
will be able to draw on the same place, to write on the same text at
the same time and to work on the same spreadsheet. Another ob-
jective is to be able to distribute atomic elements of the user inter-
face. Buttons on the drawing toolbar shall be detachable and dis-
tributable. A paragraph or a line of the text shall also be distribut-
able without the need to distribute the whole text. A task like writ-
ing a text may be realized by more than one user, which is differ-
ent than usual office suites.

4.1.1 The Distributed Office Case Study
The office suite is a bundle of applications running separately in
order to write text, to draw something, to make a presentation, and
to do other typical office tasks.

Figure 1. A graphing and a spreadsheet application.

Figure 1 reproduces a screenshot of two typical office applica-
tions: a graphing that shows a histogram with 3 columns. The val-
ue of each column can be edited by height and a spreadsheet. Any
component of either application can be marked for export and ex-
ported to another display, device, platform or user. In particular, a
whole UI like the one of graphing application itself is entirely mi-
gratable from one platform to another. In the second case, every
cell is migratable from one platform to another. The value of a
cell, even if it is the result of a formula, will remain consistent
with the formula, no matter where the cell is displayed.

71

Figure 2. Example of migration realized from

the two applications.

The result of a possible migration of components exported from
both applications is illustrated in Figure 2. For each application,
parts or whole can be marked for export, exported to another plat-
form where it continues to run its own life, and re-imported back
from where it was initially exported. This migration allows a user
to enter some data in the spreadsheet while another user is looking
at the result. The other user may adapt the values of the graphing
thanks to the values of the cells he gets from the spreadsheet. The
work is concurrently achieved and many users are working to-
gether no matter where they are.

Applications with migratable abilities allow many users working
together on the same application and on the same document. The
sequential work is thus converted to a concurrent multi-task sys-
tem. A full video of a typical session demonstrating this case study
is provided attached on the PCS system for this submission.

4.1.2 The Pictionary Case Study
The Pictionary is a multi-player game with a board. Players are
separated into teams that will have to guess words. Teams are rep-
resented by their position on the board. They win the game when
they reach the last square of the board. In each team, a player has
to make his team guess a word by drawing some clues or the word
itself but without talking and without writing it. Here, the game is
a multi-user application with two teams. Both teams have to play
alternatively. The needs of this case study are some devices able to
do the tasks. The first task is the selection of a word on a computer
by a team, let’s call it Team 2. This computer may be a PDA, a
laptop or a desktop. The other team, let’s call it Team 1, has to
guess the word selected by Team 2. A member of Team 1, denoted
Player, has to draw something to help his teammates find the
word. This task has to be realized on a PDA to allow drawing like
on a paper sheet. In order to see what Player is drawing, another
device is set up to display the drawing. A computer with a big
screen or a video projector can be used to realize this task. An ex-
ample of architecture able to run the application is illustrated in
Figure 3.

Figure 3. Example of architecture for the Pictionary.

To start the game, the application must be run on the three de-
vices. Once the connection is established, Team 2 goes to a com-
puter to enter a word. Once entered, a countdown starts to prevent
Team 1 using too much time to find the word. The PDA is given
to Player and the word appears on the screen. He may now draw
whatever he wants. The video projector displays the drawing for
everyone. These different steps are reproduced in Figure 4. In this
case, the different screen shots are taken from the different devices
running the same operating system, but nothing would prevent this
application to run between devices running different operating
systems.

Figure 4. Screenshots of the Pictionary.

72

Indeed, the toolkit used for this purpose allows deploying DUI on
top of three operating system: Linux Ubuntu distribution, Mac OS
X and Windows XP/Vista any version.

The toolkit allows designing and developing the DUI of this appli-
cation and supports the multi-user aspects of the game. To prevent
cheating, some widgets are created and migrated to the PDA as
well as the toolbar which allows drawing. The application can also
be run on a single computer in multiple windows but we recom-
mend using at least three devices: one to enter the word, one for
the drawings and one to find the word.

Let us design this application with our toolkit, using the simple
multi-user aspects of the toolkit. Even if three different devices are
used in a distributed fashion, we must think of this application as a
single process application, with transparently distributed user in-
terfaces. The widgets used are:

• A text field for entering the text (Laptop)
• A label for displaying this text (PDA)
• A start button for accepting the text input and starting the

countdown (Laptop)
• A clock (PDA, Laptop, and PC)
• A free drawing area (PC and PDA)
• A toolbar for selecting the drawing tools (PDA)
• A “Win” button to click if the word is guessed on time (Lap-

top)

We end up with seven different components, some of them present
only on one device, others at different devices simultaneously. We
use the proxy-renderer relationship: the underlying principle is that
the proxy serves as the reference for the state of the widget while the
renderer follows the instructions of the proxy for updating its incar-
nation. This principle allows the existence of several renderers; each
of them following the same instructions. Basically they all act as
mirror views of the same proxy. Note that this is against the princi-
ple of not disrupting the stationary behavior as we introduce multi-
user capabilities. New complexity is introduced because of concur-
rency and coherency problems. The toolkit itself provides a very ba-
sic way of dealing with this complexity: each widget can be config-
ured so as to have at most one renderer at a time (the default), or to
let an arbitrary number of renderers be connected at the same time.
For the Pictionary application, we have the following functionalities:

• The application can be run from any device, including the PC,
the laptop, the PC or even another computer. For our demonstra-
tion, we use the laptop.

• The text field, Start and Win buttons are created and migrated to
the laptop

• The clock is created, configured to support multiple renderers
and displayed on all the devices

• The label and the toolbar are created and migrated to the PDA.
• The canvas is created, configured to support multiple-renderers

and displayed on the PDA and the PC.

When the start button is clicked, the content of the text entry is
placed into the label, and a countdown thread is created: each sec-
ond the clock is updated to reflect the remaining time. The toolbar
chooses the active drawing tool, while the clicks on the drawing area
issue commands to apply it at that place. And that’s it; we have a
functional simple multi-player game! Note that the three processes
find each other using the Discovery module of Mozart [6], which
uses a broadcasting message on a LAN to find providers. The Pic-
tionary is inspired by the HyperPalette [1], but in a distributed way
that can be tailored at run-time.

4.2 SOFTWARE TOOLKIT FOR
PEER-TO-PEER DUIS

4.2.1 Software architecture
Each application using the toolkit relies on a three-layer model as in
Figure 5. The Application layer describes the different services of-
fered, the toolkit for migration and adaptation and the distribution
layer for peer-to-peer network. At the top, the Application layer is
the part developed for the application itself. It differs between appli-
cations depending on their needs. They support migratable and
adaptable user interfaces. This part is independent from the toolkit
and the distribution layer. The application has a standard graphical
user interface. The middle layer is the toolkit supporting the differ-
ent features for migration and adaptation. It extends Tcl/Tk which is
a toolkit for graphical user interfaces supporting several platforms.
An extension Ext is added to this toolkit to provide the needed fea-
tures. The lowest layer is the base for the toolkit. Mozart [6] imple-
ments the Oz programming language [25]. It supports several para-
digms and distributed applications [20]. It relies on a distribution
layer which relies on TCP/IP protocol.

Figure 5. Software architecture of applications using the toolkit.

4.2.2 Granularity of migration & adaptation
A running application could have its UI migrated and/or adapted at
different levels of granularity:

1. Whole screen containing the UI of the application (which may
also contain the UI of other running applications).

2. Whole UI of the application, typically contained in a single
window.

3. Subset of widgets of the application:
a. Limited to a single widget.
b. Limited to widgets that respects some placement constraints

(for example respecting a rectangular shape).
c. Any arbitrary selection of widgets.

4. Arbitrary pixel area.
Not all these levels are interesting for our purpose. In level 1, we
lack information regarding the remaining of the screen which makes
virtually impossible to provide interesting adaptation. In level 4, the
arbitrary nature of the area also makes it virtually impossible to pro-
vide interesting adaptation. Level 2 is a particular case of level 3,
where the whole UI of the application is used instead of a particular
subset of it.

73

Consequently Ext/Tk provides migration and adaptation support
at the widget level [11]. We want a maximum of flexibility: any
widget can be migrated to any platform at any time. Two widgets
from the same running application can be migrated to the same plat-
form, or to two different ones. As the migration is independent for
each widget, covering 3a is enough to also cover 3b and 3c, by exe-
cuting several migrations at the same time.

4.2.3 Orthogonal migration & adaptation
To be useful, a graphical toolkit with migration and adaptation sup-
port must still offer a functionality equivalent to a graphical toolkit
with no such support. In other words the migration and adaptation
are new functionality on top of the pure graphical toolkit functional-
ity. We argue that this new functionality is important enough to be
isolated from the pure toolkit functionality. Ext/Tk is consequently
designed to provide the migration and adaptation functionality or-
thogonally to the pure graphical one

1. The migration functionality is provided as a capability of the
widget. This capability is a value which can be passed along
freely to another process, on another computer: the migration is
a distributed operation between different computers connected
over the Internet (local migrations on the same com-
puter/process are of course supported). Once a migration capa-
bility has been passed to another process, it can be used to trig-
ger the migration of the widget, like a PULL mechanism. To
achieve this, the capability serves two purposes: 1) it contains
the authority to migrate the widget, and 2) it is a reference to the
home site of the widget over the Internet, like a URL for a web
page. Because of 2), we often call the migration capability of the
widget the reference of the widget. It is the responsibility of the
application to pass the capabilities to interested parties: it has the
complete control on who receives them. However it does not
have the control on when these capabilities are used by the re-
mote peers, i.e. when the migration really occurs. Consequently
the application should be as impermeable to the migration proc-
ess as possible. The only observable effect is a temporary block-
ing of the threads interacting with the migrated UI. For this rea-
son we say that the migration is transparent to the application.
Note that the application can register its interest for migration
events if it wants to be notified of the process. Note also that the
application has a direct access to the capabilities of the widgets
it has created, and consequently can use them to migrate the
widget back into its original place.

Figure 6. Migration from one platform to another.

This example illustrates the computer X offering the migration
capability of a label widget, and the computer Y creating a win-
dow, getting the capability, and using it to migrate the label into
its local window. Note that the OfferCap and TakeCap func-
tions are not specified here and can be implemented in numer-
ous different ways. This example assumes that they are able to
get in touch with each other, and then exchange the piece of in-
formation given to OfferCap. A possible implementation is to
have a shared file between the processes. Another possible im-

plementation is to rely on emails: OfferCap sends an email
with the capability attached to it to a mail box that is then read
by TakeCap. Still another possible implementation is to use a
DHT (distributed hash table) based P2P (peer to peer) network,
and use a shared name between the two processes to place the
value into the network, and obtain it back. And many more im-
plementations are still possible.

2. The adaptation of the widgets consists in changing its represen-
tation (presentation and/or interaction) while keeping a useful
level of usability. In that sense, the simple reconfiguration of a
visual parameter of a widget like its background color is already
an adaptation of that widget. Ext/Tk pushes this view forward
by introducing a special adaptation parameter to every widget.
When this special configuration parameter is changed, it is the
whole way the widget is displayed that is changed. Once again,
this process is impermeable to the application; the only observ-
able effect is a temporary blocking of the threads interacting
with the adapted UI. For this reason we say that the adaptation is
transparent to the application. Because of this transparency, the
application is independent of the representation currently used
for a particular widget. For example the target device of a mi-
gration could provide its own representation of the widget,
adapting it on the fly to its own specifics. Figure 7 illustrates a
selector widget that supports different representations. Switch-
ing between these representations is achieved by calling the
setContext method. It is up to the application to define why
and when the widget should change the representation. The rep-
resentation is just changed at different points during the execu-
tion unknown to the application.

Figure 7. Migration from one platform to another.

4.2.4 Distributed structure of a widget
Desktop applications are often centralized applications running the
functional core and the UI inside a single process of a computer.
Some of them have a distributed functional core (voice over IP ap-
plications for example), but that is not what interest us in this work.
Once we let parts of the UI migrate from site to site, several devices
become involved in the running of the application, and we also shift
from a centralized environment into a distributed one. The way
Ext/Tk introduces distribution is motivated by two choices:

• Any widget of a running application can be migrated at any time
(transparent distribution). Consequently Ext/Tk widgets are dis-
tributed entities. At any time they may be situated at the applica-
tion's process, a remote process, or even nowhere if they are not
currently displayed. Later we will see that it is also possible to
have several renderers connected to a single proxy, replicating
the UI of the widget at several places simultaneously.

• As for the functional core of the application, Ext/Tk does not
dictate if it should be distributed or stationary, nor does it offer
any support for distribution.

Ext/Tk provides specific distribution support for all widgets, allow-
ing them to dynamically migrate from one site to another. But the
widgets are also used by the functional core of the application that
interacts with the UI, so part of them should behave in a stationary
way. The distribution scheme of widgets is composed of:

74

• A part that is stationary to the process that created the widget.
That part is returned to the functional core of the application so
that it can interact with the widget. This part is called the proxy
of the widget.

• A part that is distributed, and runs on the site actually displaying
the widget. That part is the one the user can interact with. This
part is called the renderer of the widget.

In fig. 8, three sites are running on three different computers. Site A
creates two widgets that are migrated into Site B. Site C creates one
widget that is also migrated into Site B. Each gray area covers a
widget in its distributed execution. The proxies stay at the site that
created them forever. However the renderers are running at the site
the widgets are migrated to. The proxies and the renderers are con-
nected together over the Internet, so as to be synchronized.

Site A

Site B

Site C
Proxy A1

Proxy A2
Proxy C1

Renderer A1

Renderer A2

Renderer C1

Figure 8. Distributed architecture example.

4.2.5 Runtime architecture
At runtime, each widget is split in two parts: the stationary part
that stays at the creator site (the proxy), and the migratable part
that is run at a remote site to actually display the widget (the ren-
derer). A notable exception is the top level window widget: the
migratable part stays at the creator site; it is created immediately
along with the proxy and cannot migrate away. The renderer part
of a widget needs a window to be displayed inside, so it can only
run at a site were a window proxy is running. Note that the content
of a window is a separate widget that can be migrated away. In
other words, top level windows provide the physical hook where
widgets can be displayed. Also Note that there is no dependency
on an external server for this architecture to work. Widget proxies
act as servers for their renderers. This is based on the distribution
layer of Mozart.

Process A

Process B

Process C

Widget Proxy
Widget Proxy

Widget Proxy
Widget Proxy

Window Proxy

Window Renderer

Widget Renderer
Widget Renderer

Widget Renderer

Process D
Window Proxy

Window Renderer
Widget Renderer

Figure 9. Overview of the runtime architecture.

4.2.6 Trajectory of a universal reference
The universal reference is a capability the creator of the widget
can give to a remote site. Typically, an intermediate discovery
service allows the sites to exchange these values. Fig. 10 is a typi-
cal scenario (dashed arrows are actual connections, plain arrows
are the trajectory of the universal reference):
1. Process A running on computer X creates a widget and asks

for its migration capability.
2. Process A stores this capability at the discovery service.
3. Process B running on computer Y asks the discovery service

for the capability of the widget it wants to display.
4. Process B receives the answer
5. Process B passes it to the proxy of a container widget, here a

window.
6. The proxy forwards the capability to its renderer.
7. And lastly the renderer opens a connection with the proxy cor-

responding to the capability. In section Migration protocol we
show how this connection is used for creating a new renderer
for this proxy.

Figure 11 displays a more complex scenario where the process B
migrates the widget inside a container that is currently displayed at
the process C. The migration capability follows the same route as
in Figure 10, except that the container proxy forwards the capabil-
ity to its renderer at process C and not locally anymore.

Process A

Widget ProxyRef

Discovery Service

Ref

Process B

Window Proxy

get Ref

Ref

Window Renderer

Figure 10. Universal reference trajectory.

Process A

Widget ProxyRef

Discovery Service

Ref

Process B

Container Proxy

get Ref

Ref

Window Renderer

Window Proxy
Process C

Container Renderer

Figure 11. Complex trajectory.

4.2.7 Migration protocol
The migration protocol is a negotiation between the proxy of the
receiving container (PC), the proxy of the migrated widget (PM),
the renderer of the container (RC) and the renderer of the migrated
widget (RM). First, the migration capability of PM has to be given

75

to PC somehow . The migration starts at PC, by using the
importHere method of its manager using the reference given by
PM (the second PI parameter is further placement instructions for
example the row/column coordinates of a table container). This
method stores this new child; stored children are automatically
given to RC (either at the child's creation or at the RC creation).
RC connects to PM using the reference contained in the capability

, and in returns PM sends the class definition of the widget ren-
derer . RC creates an environment and then asks Ext/Tk to cre-
ate RM using the class definition just received. If RC fails to cre-
ate RM (due to PM not responding, or an error while creating
RM), RC tells PC to drop this particular child.

In order to create RM, Ext/Tk first creates its manager, connects
back to PM , gets the actual state of all stores , and then cre-
ates the RM object with the manager as parameter . The initiali-
zation of RM should create the actual widget, and update its state
according to the current content of the store (parameters &
event bindings). Once initialized, Ext/Tk automatically calls the
methods of RM according to the updates of the store . If the mi-
grated widget is itself a container, the information necessary to re-
store its content is in the store it receives from PM, and RM reacts
to it like RC after step . As a result its content is also migrated
along.

Negotiation phase. The step of the protocol above asks a class
definition for the renderer and is returned the one currently se-
lected by PM. Indeed there can be different renderers possible for
this widget, and the process running PM has selected one of them
in particular (using the setContext method). However we can
extend this protocol further by adding a negotiation phase where
RC uses the knowledge of its own available resources (key-
board/mouse presence, screen size...) to hint PM so that it is able
to override the current selection for the renderer with another one
that is more fit to the device.

The scheme would require:

• A model for describing the platform running the UI.
• Introspection capabilities for renderers determining their level

of compatibility with specific platforms.

RC PC PM
getRef

PM ref

importHere(Ref PI)

getClassDef

classDef
create env

connectManager

current state

create RM
RM

state update

apply current
state

Proxy of receiving Renderer of Proxy of migrated
widget

Renderer of
migrated widget

Figure 12. Migration protocol.

Another option is for RC to use its own renderer definition, ignor-
ing the one sent by PM. This may result in an incorrect renderer
that is unable to behave correctly with its proxy, however this
would open up the possibility of having a target device that adapts
the UIs it receives even if the process running those UIs do not
know how to adapt them.

Fault tolerance. Network failures can happen at any time, between
any of the sites:

• Between PC and PM. There is no direct connection between
these two sites: the capability of PM can be brought to PC by a
third site.

• Between PC and RC. If message cannot be sent be cause of
a network failure or because there is currently no RC, then the
migration cannot be executed. Nevertheless, the migration in-
struction is now part of the store of the widget. When a new
RC comes in, it will then proceed with the migration of PM.
As a result, there may be an arbitrary time between the appli-
cation command to migrate a widget, and when this command
is really executed. If message was sent, and there is a net-
work failure between PC and RC then RC eventually disap-
pears. This can happen while the migration protocol is still
running, or afterwards. In all cases, the disappearance of RC
will result in a disconnection with either PM or with RM. In
both situations the migration of RM is cancelled, and it is de-
stroyed if it exists.

• Between RC and PM. The only time this network connection
matters is between messages and . If there is a network
failure there, then the migration of PM is aborted. Also RC
removes PM from the migration store shared with PC, so that
PM is no more considered as a contained widget of PC.

• Between PM and RM. This is the same as between PC and
RC.

4.2.8 Final examples
With this toolkit, all the widgets automatically have a migration
capability. This capability is controlled by the universal reference
of the widget. This universal reference is a simple text string en-
coding the information needed to find the widget on the Internet.
As long as the widget exists, this reference implements the migra-
tion capability of the widget. Typically, passing a reference from
an application A to an application B is achieved by a discovery
service. This service can be implemented in many different ways:

− By human beings, dictating the reference over the phone.
− By email, sending the reference inside an email.
− By using an Internet server, where A registers the reference

and B gets it back. This server can be a Web server, an FTP
server, or the simple socket server provided by Ext/Tk itself.

− By broadcasting messages over a LAN, allowing B to find A
and get the reference. This can be implemented by the Discov-
ery module of Mozart.

− By registering to a peer to peer network and using its func-
tionality to get the reference. This can be implemented by the
P2PS module for Mozart.

Figure 13 graphically depicts an example where every DUI com-
ponent can be distributed: the clock, the buttons, the labels, the ca-
lendar, the agenda or even any entry of the calendar and the agen-
da. Figure 14 represents a case where the clock has been distrib-
uted.

76

Figure 13. DUI before distribution.

Figure 14. DUI after distribution.

Figures 15 to 17 present another example of distributing portions
of a graphical user interface, in this case, a vectorial drawing ap-
plication. This application is again non-form based and is consid-
ered hard to distribute due its tight synchronization between the
drawing operations and its effects. Figure 15 presents a screen shot
of this application before distribution.

Figure 15. Drawing Application DUI before distribution.

Figure 16. Drawing Application DUI after distribution with

another desktop platform.

Figure 17. Drawing Application DUI after distribution with

another mobile platform.

Figures 16, respectively 17, presents the results of DUI distribu-
tion after the toolbars and palettes have been migrated to another
desktop, respectively another mobile platform. In this case, the
various platforms were used by the same user, but we can also as-
sume that these platforms are used by different users provided that
they are connected together via the same network, local or wire-
less.

5. CONCLUSION
This paper presents a toolkit for peer-to-peer distribution of any
graphical UI that supports the following usages: multi-monitor,
devices, platform, display, and users. It also presents a detailed de-
scription of the software architecture developed for this toolkit.
Contrarily to model-based design of multiple UIs [7,8,9, 10], this
approach does not rely on any model per se, although each user in-
terface is stored in a distributed way through its properties.

ACKNOWLEDGEMENTS
This work is supported by the SELFMAN (Self Management for
Large-Scale Distributed Systems based on Structured Overlay

77

Networks and Components) European project of the 6th Frame-
work Programme (FP6-IST-2005-034084). We also acknowledge
the support of the UsiXML (User Interface extensible Markup
Language – http://www.usixml.org) project.

REFERENCES
[1] Ayatsuka, Y., Matsushita, N., and Rekimoto, J. 2000. Hyper-

Palette: a Hybrid Computing Environment for Small Com-
puting devices. In Proc. of CHI’2000. ACM Press, New
York, pp. 133-134.

[2] Bandelloni, R. and Paternò, F. Migratory user interfaces able
to adapt to various interaction platforms. Int. J. Human-
Computer Studies 60, 5-6 (2004), pp. 621-639.

[3] Bharat, K.A. and Cardelli, L. 1995. Migratory Applications
Distributed User Interfaces. In Proc. of UIST’95 (Pittsburgh,
Nov. 1995), ACM Press, New York, pp. 132-142.

[4] Chung, G. and Dewan, P. 2004. Towards Dynamic Collabo-
ration Architectures. In Proc. of the ACM Conf. on Computer
Supported Cooperative Work CSCW’2004, pp. 1-10.

[5] Dewan, P. and Choudhary, R. Coupling the User Interfaces of
a Multiuser Program. ACM Transactions on Computer-
Human Interaction 5, 1 (1998), pp. 34-62.

[6] Distributed Programming in Mozart - A Tutorial Introduc-
tion, chapter 3: Basic Operations and Examples, accessible at
http://www.mozart-oz.org/documentation/dstutorial/node3.
html#chapter.examples

[7] Eisenstein, J., Vanderdonckt, J., and Puerta, A. 2001. Model-
Based User-Interface Development Techniques for Mobile
Computing. In Proc. of IUI’01 (Santa Fe, January 14-17,
2001), ACM Press, New York, pp. 69-76.

[8] Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Ken-
nedy, J., Gray, P.D., Cooper, R., Goble, C.A., and Pinheiro,
P. Teallach: a Model-based User Interface Development En-
vironment for Object Databases. Interacting with Computers
14, 1 (December 2001), pp. 31-68.

[9] Grolaux, D., Van Roy, P., and Vanderdonckt, J. 2004. Mi-
gratable User Interfaces: Beyond Migratory User Interfaces.
In Proc. of 1st IEEE-ACM Annual Int. Conf. on Mobile and
Ubiquitous Systems: Networking and Services MOBIQUI-
TOUS’04, pp. 422-430.

[10] Grolaux, D., Vanderdonckt, J., and Van Roy, P. 2005. Attach
me, Detach me, Assemble me like You Work. In Proc. of
INTERACT’05, pp. 198-212.

[11] Grolaux, D. 2007. Transparent Migration and Adaptation in
a Graphical User Interface Toolkit, Ph.D. dissertation, De-
partment of Computing Science and Engineering, Université
catholique de Louvain, 2007.

[12] Grudin, J. 2001. Partitioning digital worlds: focal and pe-
ripheral awareness in multiple monitor use. In Proc. of
CHI’01, ACM Press, New York, pp. 458-465.

[13] Han, R., Perret, V., and Naghsineh, M. 2000. WebSplitter: A
Unified XML Framework for Multi-Device Collaborative
Web Browsing. In Proc. of the ACM Conf. on Computer
Supported Cooperative Work, pp. 221-230.

[14] Hutchins, R., Meyers, B., Smith, G., Czerwinski, M., and
Robertson, G. 2004. Display Space Usage and Window Man-
agement Operation Comparisons between Single Monitor and
Multiple Monitor Users. In Proc. of AVI’04, ACM Press,
New York, pp. 32-39.

[15] Hutchings, H.M. and Pierce, J.S. 2006. Understanding the
Whethers, Hows, and Whys of Divisible Interfaces. In Proc.
of AVI’06, ACM Press, New York, pp. 274-277.

[16] Loeser, C., Mueller, W., Berger, F., and Eikerling, H.-J.
2003. Peer to peer networks for virtual home environments,
in Proc of HICSS-36, IEEE Computer Society Press.

[17] Luyten, K. and Coninx, K. 2005. Distributed User Interface
Elements to support Smart Interaction Spaces. In Proc. of the
7th IEEE Int. Symposium on Multimedia, IEEE Comp. Soci-
ety, Washington, DC, pp. 277-286.

[18] Luyten, K., Vandervelpen, Ch., and Coninx, K. 2002. Mi-
gratable User Interface Descriptions in Component-Based
Development, in Proc. of DSV-IS’2002, pp. 44-58.

[19] Luyten, K., Van den Bergh, J., Vandervelpen, Ch., and Con-
inx, K. 2006. Designing distributed user interfaces for ambi-
ent intelligent environments using models and simulations.
Computers & Graphics 30, 5 (2006) 702-713.

[20] Mesaros, V., Carton, B., and Van Roy, P. 2004. P2PS: Peer-
to-Peer Development Platform for Mozart. In Proc. of Second
International Mozart/Oz Conference MOZ’04. LNCS, Vol.
3389, Springer, Berlin, pp. 125-136.

[21] Myers, B.A. Using Handhelds and PCs Together. Communi-
cations of the ACM 44, 11 (2001), pp. 34-41.

[22] Tan, D.S. and Czerwinski, M. 2003. Effects of Visual Separa-
tion and Physical Discontinuities when Distributing Informa-
tion across Multiple Displays. In Proc. of INTERACT’03, IOS
Press, pp. 252-260.

[23] Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg, Q.,
Silva, W., Rodrigues, D., and Taddeo, L. 2001. Multi-model
and Multi-level Development of User Interfaces, in “Multiple
User Interfaces - Cross-Platform Applications and Context-
Aware Interfaces”, John Wiley & Sons, pp. 193-216.

[24] Vandervelpen, Ch., Vanderhulst, G., Luyten, K., and Coninx,
K. 2005. Light-Weight Distributed Web Interfaces: Preparing
the Web for Heterogeneous Environments. In Proc. of ICWE
2005, pp. 197-202.

[25] Van Roy, P. and Haridi, S. 2004. Concepts, Techniques, and
Models of Computer Programming. MIT Press, Cambridge.

[26] Yanagida, T. and Nonaka, H. Architecture for Migratory
Adaptive User Interfaces. In Proc. of CIT’2008, pp. 450-455.

78

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

