
Multi-level Dialog Modeling in Highly Interactive Web Interfaces

Efrem Mbaki1, Jean Vanderdonckt1, Josefina Guerrero1, Marco Winckler2
1Université catholique de Louvain, Louvain School of Management,
Belgian Lab. of Computer-Human Interaction, Place des Doyens, 1

B-1348 Louvain-la-Neuve (Belgium) – jean.vanderdonckt@uclouvain.be
2IRIT, Université Toulouse 3, France, 118 route de Narbonne,

F-31062 Toulouse cedex 9 (France) – winckler@irit.fr – http://liihs.irit.fr/winckler/

Abstract
As web user interfaces become more sophisticated

both in functionalities and reactivity, the dialog of
such user interfaces is highly interactive and therefore
raises the need for abstracting these capabilities into
an advanced dialog model that enables modeling such
dialogs. To address this need, multi-level dialog mod-
eling enables designers to model a dialog at two inter-
related levels of abstraction (i.e., concrete and ab-
stract dialog) and at five levels of granularity: object-
level (dialog at the level of a particular objects such as
a widget), low-level container (dialog at the last level
of decomposition of user interface containers, such as
a group box), intermediary-level container (dialog at
any non-terminal level of decomposition such as a dia-
log box or a web page), within-application level (dia-
log at the level of an interactive application), and
across applications-level (dialog across user inter-
faces of different interactive applications).

1. Introduction

Among all models involved in Model-Driven Engi-
neering (MDE) of User Interfaces (UIs) of any interac-
tive application in general or for a web application in
particular, the dialog model is probably one of the
most challenging remaining problems due to several
reasons:
 Lack of ontological definition [12]: different terms,
e.g., dialog, navigation, behavior, dynamics, conver-
sation, the “feel”, are inconsistently used to refer to
the dynamic aspects of a UI, as opposed to the pres-
entation, which refers to as the static aspects of a UI,
e.g., its layout. In this paper, we define a dialog
model as the model that captures all dynamic aspects
of a UI behavior. This therefore includes dynamics
at any level of any object that may appear in a UI.
This definition will lead us to define five particular
levels.

 Lack of precise abstraction [8]: in principle, MDE
suggests three levels of abstraction (i.e., computing
independent model, platform-independent model,
and platform-specific model). These three levels are

rarely observed in the area of dialog modeling where
the platform-specific level remains predominant.

 Lack of continuity [12]: when two levels of abstrac-
tions are covered, it is not always obvious to see
how model-to-model mappings (whether it is
achieved through transformations or not) are ensured
to establish and maintain continuity between them.

 Lack of expressiveness [20]: the demand for more
sophisticated dialogs stems for a dialog model that is
capable enough to accommodate the description of
desired dynamic aspects, such as animations, transi-
tions, the two traditional forms of adaptation (i.e.,
adaptability and adaptivity). A modern dialog model
should be expressive enough to model dynamic as-
pects.

 Risk for modeling complexity: it is likely that a more
expressive model tend to be more complex to define
and therefore to use in general.

In this paper, we attempt to address the problem of dia-
log modeling in a comprehensive way in order to ad-
dress the aforementioned shortcomings. For this pur-
pose, Section 2 will report on significant work related
to the area of dialog modeling. Section 3 will define
the semantics of a dialog model respectively at the
platform-specific level (concrete UI) and at the plat-
form-independent level (abstract UI) with a derivation
from a computing-independent model (task model).
Section 3 will then define five levels of granularity.
Section 4 will conclude the paper by presenting some
future avenues of this work.

2. Related Work

Dialog models enable to reason about the UI behav-
ior. Consequently, dialog models are often considered
as a continuation of task model concepts. This explains
why the task model has been extensively used to de-
rive a dialog model, for instance, in an algorithmic way
[13] or in a logical way supported by model-to-model
transformations [12] and graph grammars [7,12]. We
hereafter give a brief survey of dialog modeling meth-
ods that percolated into the field of Human-Computer
Interaction (HCI) development methods [3,8,9,16]:

 Backus-Naur Form (BNF) grammars: they are typi-
cally used to specify command languages [9]. Com-
mand languages express commands that modify the
state of the UI on the user’s initiative. Grammars are
particularly good in detecting inconsistencies within
command sets. An inconsistent UI may contain un-
ordered or unpredictable interaction. Inconsistency
renders the UI error prone and hard to learn. Gram-
mars are both efficient and effective for expressing
sequential commands or users actions in general, but
become complex for multimodality.

 State transition diagram are a finite state machine
representation that consists in a graph of nodes
linked by edges [21]. Each node represents a particu-
lar state of the system. Each edge species the input
(i.e., event) required to go from one state to another.
State transition diagrams have been subject to sev-
eral extensions [21] and specializations, like State-
charts [10] that provide a mean for specifying the
dynamic behavior of the interface. State transition
diagrams present several drawbacks for modeling
the UI. Indeed, today's UI tend to be modeless where
one state can lead to many states. Furthermore this
can be done using many different widgets of the UI.
Theses two requirements match the quality criteria
of reachability and device multiplicity. In conse-
quence, state transition diagrams are prone to a
combinatorial explosion and tend to replace nodes
by screen prints. In [14], the transition space is re-
stricted to events and transitions that are triggered by
window managers in graphical state transition dia-
grams, thus supporting only simple windows transi-
tions [20]. Many other forms of dedicated state tran-
sition diagrams have been extensively used for dia-
log modeling without identifying which one is supe-
rior to another one with respect to various criteria:
dialog charts [1], dialog flows [4], interaction object
graph [5], Abstract Data Views [6], dialogue nets
[11].

 Statecharts: similarly to state transition diagrams,
they are supported by a graphical representation of
dynamic aspects of systems [10]. Some work espe-
cially address the modeling of UI behavior with
statecharts [18,22]. Statecharts represent state vari-
ables with rounded rectangles called states. State
changing mechanisms are represented with edges be-
tween states. State changing is triggered by events
and can be further conditioned. Statecharts facilitate
the representation of state nesting, state history, con-
currency and external interrupts. Statecharts [10]
propose solutions to the shortcomings of state transi-
tion diagrams: statecharts have representational ca-
pacities for modularity and abstraction. The number
of states with respect to the complexity of the mod-

eled system increases slower with statecharts than
with state transition diagrams. Statecharts avoid the
problem of duplicating states and transitions. States
in statecharts are hierarchical and capable of repre-
senting different levels of abstraction. Statechart are
more convenient for multimodal interfaces as they
provide nesting facilities, external interrupt specifi-
cation and con-currency representation. Statecharts
have been also specialized for specifying the dialog
of web interfaces through StateWebCharts, that can
be edited via a SWCEditor [22].

 And-Or graphs: borrowed from Artificial Intelli-
gence, AND-OR graphs have been used to branch to
various sub-dialogs depending on conditions, for in-
stance in [3]. And-or graphs have been expanded
towards function chaining graphs [3] by combining
them with data flow diagrams [19].

 Event-Response Languages: they treat input stream
as a set of events [9]. Events are addressed to event
handlers. Each handler responds to a specific type of
event when activated. This type is specified in a con-
dition clause. The body of the event generates an-
other event, changes internal state of the system or
calls an application procedure. Several formalisms
are suited for event-response specification. They can
be distinguished following their capacity in manag-
ing dialog state variables and concurrency control.
Production rules and pushdown automata [16] are
often used to describe event-response specifications.

 Petri Nets are a graphical formalism associated with
a formal notation. Petri nets are best suited to repre-
sent concurrency aspects in software systems. Petri
nets represent systems with state variables called
places (depicted as ellipses), and state-changing op-
erators called transitions (depicted as rectangles.
Connections between places and transitions are
called arcs (represented by edges). State marking
mechanism called tokens (represented by black solid
circles distributed around places). State change is the
consequence of a mechanism called firing. A transi-
tion is red when all of its input places contain to-
kens. Firing involves the redistribution of tokens in
the net i.e., input tokens are withdrawn from input
places and output tokens are added in output places.
Like State Charts, Petri nets hold mechanisms to rep-
resent additional conditions and nested states. Petri
nets have the advantage of being entirely formal [2].
Thus, model checking of interest properties of the
dialog model could be applied [17].

Fig. 1 graphically depicts some of these dialog models
in families of models. Each family exhibits a certain
degree of model expressiveness (i.e., the capability of
the model to express advanced enough dialogs), but at
the price of a certain model complexity (i.e., the easi-

ness with which the dialog could be modeled in terms
specified by the meta-model). At the leftmost part of
Fig. 1 are located BNF and EBNF grammars since they
are probably the least expressive dialog models ever,
but they do not support many dialog aspects. They we
can find respectively State Transitions Networks and
their derivatives, then Event-Response Systems. Petri
nets are probably the most expressive models that can
be used to model dialogs, but they are also the most
complex to achieve. Therefore, we believe that we
could be less expressive and complex than Petri nets if
Event-Condition-Action systems are considered.

3. Semantics of Dialog Modeling
In this section, we present the most salient aspects of
the two levels of dialog modeling with respect to the
Final User Interface (FUI). A FUI is hereby referred to
as any UI running on any computing platform with any
interaction modality (e.g., graphical, vocal, tactile,
haptic or multimodal), whether it is rendered by
markup language interpretation or by code generation.

3.1. Concrete User Interface
A Concrete User Interface (CUI) is defined as the ab-
straction of any Final User Interface (FUI) with respect
to computing platforms, but with the interaction mo-
dality given. According to MDE, it is a platform-
specific model (PSM). A CUI is made up of Concrete
Interaction Objects (CIO), which are abstractions of
widgets found in those platforms. Any CIO may be as-
sociated with any number of behaviors (Fig. 2). A be-
havior is the description of a Event-Condition-Action

(ECA) mechanism that results in a system state
change. The specification of a behavior may be de-
composed into three types of elements: an event, a
condition, and an action. An event is a description of a
run-time occurrence that triggers an action. The gen-
eral format of a ECA rule is: (ON Event, IF Condition,
THEN Action). The Event specifies when the rule
should be fired, the Condition specifies the logical con-
dition when it should be fired and the Action deter-
mines what methods should be executed for this pur-
pose. Some canonical events are described in Table 1.
They consist of any system event (i.e., issued from a
process belonging to the domain), user interface event
(i.e., issued in the context of the user interface). For in-
stance movePointer([X], [device]) refers to an event that
consists in moving a pointer in the context of a CIO
[X]. Events cannot make any reference to coordinates.
The concept of context of an object (identified by its
id) is used to reference a display area where a particu-
lar object is rendered. Note that, the negative expres-
sion of an object context is also allowed.

Figure 1. Model complexity as a function of their
expressiveness.

Figure 2. The semantics of the dialog model as a ECA system at the concrete user interface level.

Model expressiveness

Model
complexity

BNF,
EBNF,…

STN,
ESTN,… ERS

State charts,
StateWebCharts,

ADV

ECA
DISL

Petri nets
ICO

Our dialog model

Model expressiveness

Model
complexity

BNF,
EBNF,…

STN,
ESTN,… ERS

State charts,
StateWebCharts,

ADV

ECA
DISL

Petri nets
ICO

Our dialog model

For instance, depress(NOT[X]), [device]) refers to a de-
press event (e.g., a mouse down) outside the context of
[X]. [X] is unimportant in the realization of an event in
such a case a value null is referenced. The [device] pa-
rameter makes reference to the device from which the
event is generated. Each device or device part, is refer-
enced in a device model (not in the scope of this dis-
sertation) with a unique identifier.

CIO Events
System event ellapsedTime(n), systemEvent(eventName)
Graphical User Interface Events
All graphical
CIOs

movePointer(X,device),
pointerOver(X,device), moveOutPointer (X,
device), click (X,device), doubleClick (X,
device), depress(X,device), release (X, de-
vice), dragOver(X,Y,device), drag-
Drop(X,Y, device), hasFocus(X), lostFo-
cus(X).

graphicalCon-
tainer

resize(xFactor,yFactor)

textComponent Change
Slider move(cursor,x)
Spin spinUp, spinDown

Table 1. List of some canonical CUI events.

Events can be composed into more complex event ex-
pressions using a subset of the LOTOS operators as
used in IdealXML [15]. “|||” indicates a concurrence of
events (to be interpreted as a disjunction). “>>” indi-
cates a strict sequence of events. “|=|” indicates an or-
der independent sequence of events. “(n)” indicates a
finite iteration of events where n is an integer indicat-
ing the iteration factor. For instance, click (Button1,
Mouse1LeftBut) |=| depress (null, KeyBrd_Z) is an
event that is an order independent composition of a
mouse click on a button and a keyboard depress. A
condition is the expression of a state that has to hold
true before (pre-condition) or after (post-condition) an
action is performed. A condition may be positive or
negative.
We express condition as patterns (i.e., a partial de-
scription of a state) on the user interface specification
itself. Conditions may be composed using traditional
logical operator. “AND”, “OR”, “XOR” indicate re-
spectively a conjunction, a disjunction, an exclusive
disjunction of conditions. “IMPLIES” indicates an im-
plication between two conditions. An action is a proc-
ess that results in a state change in the system. An ac-
tion can be of three types:
1. A method call is a call to a method that is external to

the UI. If a domain model exists, all method calls
must reference a method belonging to this model. A
method call is normally specified with the name of
the method (under the form Class.methodName),
but other referencing techniques are not forbidden.

The method call parameters can be specified by
making a reference to the value of a property of an
object belonging to the CUI.

2. A transformation system is the expression of any
property change at the UI level [25]. We use a
mechanism to specify property changes on the UI.
To avoid too much forward reference, it can be said
that a transformation system can be explained as fol-
lows: when a pattern is found in CUI specification,
changes should occur on the elements matching the
pattern. A transformation system might be, for in-
stance, “when a green button is found in the specifi-
cation, change the color property of this button to
red” or “For all text components belonging to the
main window, double their font size”.

3. A transition, also called navigation, is a description
of a change in the container’s visibility property of a
user interface system. A transition has a source (a
navigation individual component) and a target (gen-
erally a container).

3.2. Abstract User Interface
An Abstract User Interface (AUI) is defined as the ab-
straction of any CUI with respect to interaction modal-
ity. According to MDE, it is a platform-independent
model (PIM). An AUI is made up of Abstract Interac-
tion Objects (AIOs), which are abstractions of CIOs
found in existing interaction modalities, and linked
through abstract relationships (Fig. 3). Therefore, an
AUI only specifies interaction between a user and a
system in totally independent terms. Only later on,
once the interaction modalities are selected and once
the target computing platform is elicited, this AUI will
be turned into CIOs and final widgets, respectively.
Abstract Interaction Object (AIO) may be of two types
Abstract Individual Components (AIC) and Abstract
Containers (AC). An Abstract Individual Component
(AIC) is an abstraction that allows the description of
interaction objects in a way that is independent of the
modality in which it will be rendered in the physical
world. An AIC may be composed of multiple facets.
Each facet describes a particular function an AIC may
endorse in the physical world. Four main facets are
identified:

1. An input facet describes the input action supported
by an AIC.

2. An output facet describes what data may be pre-
sented to the user by an AIC.

3. A navigation facet describes the possible con-
tainer transition a particular AIC may enable.

4. A control facet describes the links between an
AIC and system functions i.e., methods from the
domain model when existing.

A single AIC may assume several facets at the same

time. The AIO that reifies this multi-facetted AIO will
assume all those ‘functionalities’. For instance, a CIO
may display an output while accepting an input from a
user, ensure a transition between windows and trigger
a method defined in the domain model. An Abstract
Container (AC) is an entity allowing a logical group-
ing of other abstract containers or abstract individual
components. AC are said to support the execution of a
set of logically/semantically connected tasks. They are
called presentation units in some cases or work spaces.
An AC may be reified, at the concrete level, into one
or more graphical containers like windows, dialog
boxes, layout boxes or time slots in the case of audi-
tory user interfaces. Abstract User Interface Relation-
ships (AUI relationship) are relationships that can be
drawn between abstract interaction objects of all kinds.
Various types of abstract relationships may be defined
at this level:

 Decomposition relationship allows specifying a hi-
erarchical structure of abstract containers and ab-
stract individual components.

 AbstractAdjacency relationship indicates that two
AIO are logically adjacent.

 Spatio-temporal relationship allows a specification
of a very precise layout in time or space in a way
that is independent of any modality.

 Dialog control relationship allows a specification
of a flow of control between the abstract interaction
objects. Like for task models, LOTOS operators are
used for this purpose. For instance a relationship
AIC1.EnterCountry []> AIC2.EnterPro vince indi-
cates that AIC2 cannot be initiated while AIC1 is not
achieved and that AIC1 has provided a value for the
data on which the two components synchronize
with. Like for tasks, an interpretation for each type
of LOTOS operator may be provided in terms of
pre/post-conditions, termination, initiation states.

3.3. Five Levels of Dialog Granularity
Based on AUI and CUI, five levels of dialog granular-
ity can be identified and specified:

1. Object-level dialog modeling: this level models
the dialog at the level of any particular object,
such as a CIO or a AIO. In most cases, UI toolkits
and Integrated Development Environments (IDEs)
come up with their own widget set with built-in,
predefined dialog. For instance, a push button
comes up with its native dialog (or behavior) that
can be only modified by overwriting the methods
that define its behavior. Most IDEs do not allow
such a superseding, only toolkits allow the devel-
oper to redefine an entirely new dialog for a par-

ticular widget, but this programming is very com-
plex.

2. Low-level container dialog modeling: This level
models the dialog at the level of any container of
other objects that is a leaf node in the decomposi-
tion. Typically, this could be a terminal AC at the
AUI level or a group box at the CUI level in case
of a graphical interaction modality. If the UI is vo-
cal, then an auditory display should be imple-
mented that marks the boundaries of this vocal
group. For instance, by pronouncing the beginning
and the end of the group.

3. Intermediary-level container dialog modeling: this
level models the dialog at the level of any non-
terminal container of objects, that is any container
that is not a leaf node in the container decomposi-
tion. For any graphical UI, this could be a win-
dow, a dialog box, or the various tabs of a tabbed
dialog box. This level models the dialog at the
level of top containers within a same interactive
application such as a web application or a web
site. It thus regulates the navigation between the
various containers of a same application.

4. Within-application dialog modeling: This level
models the dialog at the level of top containers
within a same interactive application such as a
web application or a web site. It therefore regu-
lates the navigation between the various containers
of a same application. For instance, SketchiXML
[20] allows the designer to graphically specify
within-application dialog by affecting predefined
ECA rules between web pages. Each such ECA
rule represents a dialog pattern, such as Open-
Close, Activate-deactivate. For instance, the
Open-Close pattern means that when a web page
is closed, the next page in the transition is opened.

5. Across-application dialog modeling: Since the ac-
tion term of a ECA rule could be either a method
call or an application execution, it is possible to
specify a dialog across several applications by
calling an external program. Once the external
program has been launched, the dialog that is in-
ternal to this program (within-application dialog)
can take place.

4. Conclusion
In this paper, we have introduced a definition of a dia-
log model at both concrete and abstract UI levels,
which represent respectively the PSM and PIM levels
in MDE. For both, ECA rules are used to specify the
dialog at five different levels of granularity. Five levels
of granularity of this dialog model have been intro-
duced. A dialog at any level of granularity can be
equally modeled in the terms of an ECA system that

consist of ECA rules. Depending on the UI level of ab-
straction (AUI or CUI), the events, the conditions, and
the actions are different: the AUI events represent ab-
stractions of CUI events, AUI actions represent ab-
stractions of CUI actions, etc. For a mono-device dia-
log or for a multi-device dialog but with the same in-
teraction modality (like in [8]), the CUI level is
enough. For more interaction modalities, the AUI level
should be specified with an explicit mapping between
the levels using the same support as specified in [12].
In the near future, we are pursuing effort towards
specifying the dialog at multiple levels, separately or
simultaneously in a coordinated way. For this purpose,
the cascading style sheet mechanism of XML has been
applied to the corresponding UsiXML models so as to
form a cascading dialog modeling [23]. In this way, it
is expected that high level properties and values are
progressively propagated from one level to another
while preserving quality properties, such as consis-
tency.

5. References
[1] G. Ariav and L.-J. Calloway, Designing conceptual

models of dialog: A case for dialog charts, SIGCHI
Bulletin, 20(2), 1988, pp. 23–27.

[2] R. Bastide and P. Palanque, A Visual and Formal Glue
Between Application and Interaction, J. of Visual Lan-
guage and Computing, 10(5), 1999, pp. 481–507.

[3] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot,
J. Vanderdonckt, and G. Zucchinetti, Key Activities for
a Development Methodology of Interactive Applica-
tions, Chapter 7, in Benyon, D., Palanque, Ph. (Eds.),
“Critical Issues in User Interface Systems Engineering”,
Springer-Verlag, Berlin, 1995, pp. 109-134.

[4] M. Book and V. Gruhn, Efficient Modeling of Hierar-
chical Dialog Flows for Multi-Channel Web Applica-
tions, Proc. of 30th COMPSAC’2006 (Chicago, 17-21
September 2006), IEEE Computer Society, Los Alami-
tos, 2008, pp. 161–168.

[5] D.A. Carr, Specification of interface interaction objects,
Proc. of ACM CHI’94 (Boston, 24-28 April 1994),
ACM Press, New York, 1994, pp. 372–378.

[6] D. Cowan and C. Pereira de Lucena, C., Abstract Data
Views: An Interface Specification Concept to Enhance
Design for Reuse, IEEE Transactions on Software En-
gineering, 21(3), 1995, pp. 229-243.

[7] M. Goedicke and B.E. Sucrow, Towards a formal speci-
fication method for graphical user interfaces using
modularized graph grammars, Proc. of IWSSD’96
(Washington, DC, 1996), IEEE, Los Alamitos, 1996.

[8] J. Gomez, C. Cachero, O. Pastor, Conceptual Modeling
of Device-Independent Web Applications, IEEE Multi-
media, 8(2), 2001, pp. 26-39.

[9] M. Green, A survey of three dialogue models. ACM
Transactions on Graphics, 5(3), July 1986, pp. 244–
275.

[10] D. Harel, Statecharts: A visual formalism for complex

systems, Science of Comp. Prog., 8, 1987, pp. 231–274.
[11] C. Janssen, A. Weisbecker, and J. Ziegler, Generating

user interfaces from data models and dialogue net speci-
fications, Proc. of InterCHI’93 (Amsterdam, 24-29
April 1993), ACM Press, New York, 1993, pp. 418–
423.

[12] Q. Limbourg and J. Vanderdonckt, Addressing the
Mapping Problem in User Interface Design with
UsiXML, Proc. of TAMODIA’2004 (Prague, November
15-16, 2004), ACM Press, NY, 2004, pp. 155–163.

[13] K. Luyten, T. Clerckx, K. Coninx, and J. Vanderdonckt,
Derivation of a Dialog Model from a Task Model by
Activity Chain Extraction, Proc. of DSV-IS’2003 (Ma-
deira, 4-6 June 2003), Lecture Notes in Computer Sci-
ence, Vol. 2844, Springer, Berlin, 2003, pp. 203–217.

[14] E. Mbaki and J. Vanderdonckt, Window Transitions: A
Graphical Notation for Specifying Mid-level Dialogue,
Proc. of TAMODIA’2002 (Bucharest, 18-19 July 2002),
Academy of Economic Studies of Bucharest, INFOREC
Printing House, Bucharest, 2002, pp. 55–63.

[15] F. Montero, V. López-Jaquero, J. Vanderdonckt, P.
Gonzalez, M.D. Lozano, and Q. Limbourg, Solving the
Mapping Problem in User Interface Design by Seamless
Integration in IdealXML, Proc. of DSV-IS’2005 (New-
castle upon Tyne, 13-15 July 2005), S.W. Gilroy, M.D.
Harrison (eds.), Lecture Notes in Computer Science,
Vol. 3941, Springer-Verlag, Berlin, 2005, pp. 161-172.

[16] D. Olsen, Pushdown automata for user interface man-
agement, ACM Transactions on Graphics, 3(3), 1984,
pp. 177–203.

[17] P. Palanque and R. Bastide, Petri net based design of
user-driven interfaces using interactive cooperative ob-
ject formalism, Proc. of DSV-IS’94 (Bocca di Magra,
June 1994), Springer Verlag, Vienna, 1994.

[18] State Chart XML (SCXML): State Machine Notation
for Control Abstraction. W3C Working Draft, 21 Feb-
ruary 2007, http://www.w3.org/TR/scxml/

[19] J. Vanderdonckt, J.-Cl. Tarby, and A. Derycke, Using
Data Flow Diagrams for Supporting Task Models, Sup-
plementary Proc. of DSV-IS’98 (Abingdon, 3-5 June
1998), Eurographics Assoc., Aire-la-Ville, pp. 1–16.

[20] J. Vanderdonckt, Q. Limbourg, M. Florins, Deriving the
Navigational Structure of a User Interface, Proc. of In-
teract’2003 (Zurich, 1-5 September 2003), IOS Press,
Amsterdam, 2003, pp. 455–462.

[21] A. Wasserman, Extending State Transition Diagrams for
the Specification of Human-Computer Interaction, IEEE
Trans. on Soft. Engineering, 11(8), 1985, pp. 699–713.

[22] M. Winckler and P. Palanque. StateWebCharts: A for-
mal description technique dedicated to navigation mod-
elling of web applications. Proc. of DSV-IS’2003 (Ma-
deira, 4-6 June 2003), Lecture Notes in Computer Sci-
ence, Vol. 2844, Springer, Berlin, 2003, pp. 61–76.

[23] M. Winckler, F. Trindade, J. Vanderdonckt, Cascading
Dialog Modeling with UsiXML, Proc. of DSV-IS’2008
(Kingston, July 16-18, 2008), Lecture Notes in Com-
puter Science, Vol. 5136, Springer, Berlin, 2008, pp.
12–135.

