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Abstract 
As web user interfaces become more sophisticated 

both in functionalities and reactivity, the dialog of 
such user interfaces is highly interactive and therefore 
raises the need for abstracting these capabilities into 
an advanced dialog model that enables modeling such 
dialogs. To address this need, multi-level dialog mod-
eling enables designers to model a dialog at two inter-
related levels of abstraction (i.e., concrete and ab-
stract dialog) and at five levels of granularity: object-
level (dialog at the level of a particular objects such as 
a widget), low-level container (dialog at the last level 
of decomposition of user interface containers, such as 
a group box), intermediary-level container (dialog at 
any non-terminal level of decomposition such as a dia-
log box or a web page), within-application level (dia-
log at the level of an interactive application), and 
across applications-level (dialog across user inter-
faces of different interactive applications). 
 
1. Introduction 

Among all models involved in Model-Driven Engi-
neering (MDE) of User Interfaces (UIs) of any interac-
tive application in general or for a web application in 
particular, the dialog model is probably one of the 
most challenging remaining problems due to several 
reasons: 
 Lack of ontological definition [12]: different terms, 
e.g., dialog, navigation, behavior, dynamics, conver-
sation, the “feel”, are inconsistently used to refer to 
the dynamic aspects of a UI, as opposed to the pres-
entation, which refers to as the static aspects of a UI, 
e.g., its layout. In this paper, we define a dialog 
model as the model that captures all dynamic aspects 
of a UI behavior. This therefore includes dynamics 
at any level of any object that may appear in a UI. 
This definition will lead us to define five particular 
levels. 

 Lack of precise abstraction [8]: in principle, MDE 
suggests three levels of abstraction (i.e., computing 
independent model, platform-independent model, 
and platform-specific model). These three levels are 

rarely observed in the area of dialog modeling where 
the platform-specific level remains predominant. 

 Lack of continuity [12]: when two levels of abstrac-
tions are covered, it is not always obvious to see 
how model-to-model mappings (whether it is 
achieved through transformations or not) are ensured 
to establish and maintain continuity between them. 

 Lack of expressiveness [20]: the demand for more 
sophisticated dialogs stems for a dialog model that is 
capable enough to accommodate the description of 
desired dynamic aspects, such as animations, transi-
tions, the two traditional forms of adaptation (i.e., 
adaptability and adaptivity). A modern dialog model 
should be expressive enough to model dynamic as-
pects. 

 Risk for modeling complexity: it is likely that a more 
expressive model tend to be more complex to define 
and therefore to use in general. 

In this paper, we attempt to address the problem of dia-
log modeling in a comprehensive way in order to ad-
dress the aforementioned shortcomings. For this pur-
pose, Section 2 will report on significant work related 
to the area of dialog modeling. Section 3 will define 
the semantics of a dialog model respectively at the 
platform-specific level (concrete UI) and at the plat-
form-independent level (abstract UI) with a derivation 
from a computing-independent model (task model). 
Section 3 will then define five levels of granularity. 
Section 4 will conclude the paper by presenting some 
future avenues of this work. 
 
2. Related Work 

Dialog models enable to reason about the UI behav-
ior. Consequently, dialog models are often considered 
as a continuation of task model concepts. This explains 
why the task model has been extensively used to de-
rive a dialog model, for instance, in an algorithmic way 
[13] or in a logical way supported by model-to-model 
transformations [12] and graph grammars [7,12]. We 
hereafter give a brief survey of dialog modeling meth-
ods that percolated into the field of Human-Computer 
Interaction (HCI) development methods [3,8,9,16]: 



 Backus-Naur Form (BNF) grammars: they are typi-
cally used to specify command languages [9]. Com-
mand languages express commands that modify the 
state of the UI on the user’s initiative. Grammars are 
particularly good in detecting inconsistencies within 
command sets. An inconsistent UI may contain un-
ordered or unpredictable interaction. Inconsistency 
renders the UI error prone and hard to learn. Gram-
mars are both efficient and effective for expressing 
sequential commands or users actions in general, but 
become complex for multimodality. 

 State transition diagram are a finite state machine 
representation that consists in a graph of nodes 
linked by edges [21]. Each node represents a particu-
lar state of the system. Each edge species the input 
(i.e., event) required to go from one state to another. 
State transition diagrams have been subject to sev-
eral extensions [21] and specializations, like State-
charts [10] that provide a mean for specifying the 
dynamic behavior of the interface. State transition 
diagrams present several drawbacks for modeling 
the UI. Indeed, today's UI tend to be modeless where 
one state can lead to many states. Furthermore this 
can be done using many different widgets of the UI. 
Theses two requirements match the quality criteria 
of reachability and device multiplicity. In conse-
quence, state transition diagrams are prone to a 
combinatorial explosion and tend to replace nodes 
by screen prints. In [14], the transition space is re-
stricted to events and transitions that are triggered by 
window managers in graphical state transition dia-
grams, thus supporting only simple windows transi-
tions [20]. Many other forms of dedicated state tran-
sition diagrams have been extensively used for dia-
log modeling without identifying which one is supe-
rior to another one with respect to various criteria: 
dialog charts [1], dialog flows [4], interaction object 
graph [5], Abstract Data Views [6], dialogue nets 
[11]. 

 Statecharts: similarly to state transition diagrams, 
they are supported by a graphical representation of 
dynamic aspects of systems [10]. Some work espe-
cially address the modeling of UI behavior with 
statecharts [18,22]. Statecharts represent state vari-
ables with rounded rectangles called states. State 
changing mechanisms are represented with edges be-
tween states. State changing is triggered by events 
and can be further conditioned. Statecharts facilitate 
the representation of state nesting, state history, con-
currency and external interrupts. Statecharts [10] 
propose solutions to the shortcomings of state transi-
tion diagrams: statecharts have representational ca-
pacities for modularity and abstraction. The number 
of states with respect to the complexity of the mod-

eled system increases slower with statecharts than 
with state transition diagrams. Statecharts avoid the 
problem of duplicating states and transitions. States 
in statecharts are hierarchical and capable of repre-
senting different levels of abstraction. Statechart are 
more convenient for multimodal interfaces as they 
provide nesting facilities, external interrupt specifi-
cation and con-currency representation. Statecharts 
have been also specialized for specifying the dialog 
of web interfaces through StateWebCharts, that can 
be edited via a SWCEditor [22]. 

 And-Or graphs: borrowed from Artificial Intelli-
gence, AND-OR graphs have been used to branch to 
various sub-dialogs depending on conditions, for in-
stance in [3]. And-or graphs have been expanded 
towards function chaining graphs [3] by combining 
them with data flow diagrams [19]. 

 Event-Response Languages: they treat input stream 
as a set of events [9]. Events are addressed to event 
handlers. Each handler responds to a specific type of 
event when activated. This type is specified in a con-
dition clause. The body of the event generates an-
other event, changes internal state of the system or 
calls an application procedure. Several formalisms 
are suited for event-response specification. They can 
be distinguished following their capacity in manag-
ing dialog state variables and concurrency control. 
Production rules and pushdown automata [16] are 
often used to describe event-response specifications. 

 Petri Nets are a graphical formalism associated with 
a formal notation. Petri nets are best suited to repre-
sent concurrency aspects in software systems. Petri 
nets represent systems with state variables called 
places (depicted as ellipses), and state-changing op-
erators called transitions (depicted as rectangles. 
Connections between places and transitions are 
called arcs (represented by edges). State marking 
mechanism called tokens (represented by black solid 
circles distributed around places). State change is the 
consequence of a mechanism called firing. A transi-
tion is red when all of its input places contain to-
kens. Firing involves the redistribution of tokens in 
the net i.e., input tokens are withdrawn from input 
places and output tokens are added in output places. 
Like State Charts, Petri nets hold mechanisms to rep-
resent additional conditions and nested states. Petri 
nets have the advantage of being entirely formal [2]. 
Thus, model checking of interest properties of the 
dialog model could be applied [17]. 

Fig. 1 graphically depicts some of these dialog models 
in families of models. Each family exhibits a certain 
degree of model expressiveness (i.e., the capability of 
the model to express advanced enough dialogs), but at 
the price of a certain model complexity (i.e., the easi-



ness with which the dialog could be modeled in terms 
specified by the meta-model). At the leftmost part of 
Fig. 1 are located BNF and EBNF grammars since they 
are probably the least expressive dialog models ever, 
but they do not support many dialog aspects. They we 
can find respectively State Transitions Networks and 
their derivatives, then Event-Response Systems. Petri 
nets are probably the most expressive models that can 
be used to model dialogs, but they are also the most 
complex to achieve. Therefore, we believe that we 
could be less expressive and complex than Petri nets if 
Event-Condition-Action systems are considered. 

3. Semantics of Dialog Modeling 
In this section, we present the most salient aspects of 
the two levels of dialog modeling with respect to the 
Final User Interface (FUI). A FUI is hereby referred to 
as any UI running on any computing platform with any 
interaction modality (e.g., graphical, vocal, tactile, 
haptic or multimodal), whether it is rendered by 
markup language interpretation or by code generation. 

3.1. Concrete User Interface 
A Concrete User Interface (CUI) is defined as the ab-
straction of any Final User Interface (FUI) with respect 
to computing platforms, but with the interaction mo-
dality given. According to MDE, it is a platform-
specific model (PSM). A CUI is made up of Concrete 
Interaction Objects (CIO), which are abstractions of 
widgets found in those platforms. Any CIO may be as-
sociated with any number of behaviors (Fig. 2). A be-
havior is the description of a Event-Condition-Action 

(ECA) mechanism that results in a system state 
change. The specification of a behavior may be de-
composed into three types of elements: an event, a 
condition, and an action. An event is a description of a 
run-time occurrence that triggers an action. The gen-
eral format of a ECA rule is: (ON Event, IF Condition, 
THEN Action). The Event specifies when the rule 
should be fired, the Condition specifies the logical con-
dition when it should be fired and the Action deter-
mines what methods should be executed for this pur-
pose. Some canonical events are described in Table 1. 
They consist of any system event (i.e., issued from a 
process belonging to the domain), user interface event 
(i.e., issued in the context of the user interface). For in-
stance movePointer([X], [device]) refers to an event that 
consists in moving a pointer in the context of a CIO 
[X]. Events cannot make any reference to coordinates. 
The concept of context of an object (identified by its 
id) is used to reference a display area where a particu-
lar object is rendered. Note that, the negative expres-
sion of an object context is also allowed. 

 
Figure 1. Model complexity as a function of their 
expressiveness. 

 
Figure 2. The semantics of the dialog model as a ECA system at the concrete user interface level.
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For instance, depress(NOT[X]), [device]) refers to a de-
press event (e.g., a mouse down) outside the context of 
[X]. [X] is unimportant in the realization of an event in 
such a case a value null is referenced. The [device] pa-
rameter makes reference to the device from which the 
event is generated. Each device or device part, is refer-
enced in a device model (not in the scope of this dis-
sertation) with a unique identifier. 

CIO Events  
System event ellapsedTime(n), systemEvent(eventName)  
Graphical User Interface Events  
All graphical 
CIOs 

movePointer(X,device), 
pointerOver(X,device), moveOutPointer (X, 
device), click (X,device), doubleClick (X, 
device), depress(X,device), release (X, de-
vice), dragOver(X,Y,device),  drag-
Drop(X,Y, device), hasFocus(X), lostFo-
cus(X). 

graphicalCon-
tainer 

resize(xFactor,yFactor) 

textComponent  Change 
Slider move(cursor,x) 
Spin spinUp, spinDown 

Table 1. List of some canonical CUI events. 

Events can be composed into more complex event ex-
pressions using a subset of the LOTOS operators as 
used in IdealXML [15]. “|||” indicates a concurrence of 
events (to be interpreted as a disjunction). “>>” indi-
cates a strict sequence of events. “|=|” indicates an or-
der independent sequence of events. “(n)” indicates a 
finite iteration of events where n is an integer indicat-
ing the iteration factor. For instance, click (Button1, 
Mouse1LeftBut) |=| depress (null, KeyBrd_Z) is an 
event that is an order independent composition of a 
mouse click on a button and a keyboard depress. A 
condition is the expression of a state that has to hold 
true before (pre-condition) or after (post-condition) an 
action is performed. A condition may be positive or 
negative. 
We express condition as patterns (i.e., a partial de-
scription of a state) on the user interface specification 
itself. Conditions may be composed using traditional 
logical operator. “AND”, “OR”, “XOR” indicate re-
spectively a conjunction, a disjunction, an exclusive 
disjunction of conditions. “IMPLIES” indicates an im-
plication between two conditions. An action is a proc-
ess that results in a state change in the system. An ac-
tion can be of three types: 
1. A method call is a call to a method that is external to 

the UI. If a domain model exists, all method calls 
must reference a method belonging to this model. A 
method call is normally specified with the name of 
the method (under the form Class.methodName), 
but other referencing techniques are not forbidden. 

The method call parameters can be specified by 
making a reference to the value of a property of an 
object belonging to the CUI. 

2. A transformation system is the expression of any 
property change at the UI level [25]. We use a 
mechanism to specify property changes on the UI. 
To avoid too much forward reference, it can be said 
that a transformation system can be explained as fol-
lows: when a pattern is found in CUI specification, 
changes should occur on the elements matching the 
pattern. A transformation system might be, for in-
stance, “when a green button is found in the specifi-
cation, change the color property of this button to 
red” or “For all text components belonging to the 
main window, double their font size”. 

3. A transition, also called navigation, is a description 
of a change in the container’s visibility property of a 
user interface system. A transition has a source (a 
navigation individual component) and a target (gen-
erally a container). 

3.2. Abstract User Interface 
An Abstract User Interface (AUI) is defined as the ab-
straction of any CUI with respect to interaction modal-
ity. According to MDE, it is a platform-independent 
model (PIM). An AUI is made up of Abstract Interac-
tion Objects (AIOs), which are abstractions of CIOs 
found in existing interaction modalities, and linked 
through abstract relationships (Fig. 3). Therefore, an 
AUI only specifies interaction between a user and a 
system in totally independent terms. Only later on, 
once the interaction modalities are selected and once 
the target computing platform is elicited, this AUI will 
be turned into CIOs and final widgets, respectively. 
Abstract Interaction Object (AIO) may be of two types 
Abstract Individual Components (AIC) and Abstract 
Containers (AC). An Abstract Individual Component 
(AIC) is an abstraction that allows the description of 
interaction objects in a way that is independent of the 
modality in which it will be rendered in the physical 
world. An AIC may be composed of multiple facets. 
Each facet describes a particular function an AIC may 
endorse in the physical world. Four main facets are 
identified: 

1. An input facet describes the input action supported 
by an AIC. 

2. An output facet describes what data may be pre-
sented to the user by an AIC. 

3. A navigation facet describes the possible con-
tainer transition a particular AIC may enable. 

4. A control facet describes the links between an 
AIC and system functions i.e., methods from the 
domain model when existing. 

A single AIC may assume several facets at the same 



time. The AIO that reifies this multi-facetted AIO will 
assume all those ‘functionalities’. For instance, a CIO 
may display an output while accepting an input from a 
user, ensure a transition between windows and trigger 
a method defined in the domain model. An Abstract 
Container (AC) is an entity allowing a logical group-
ing of other abstract containers or abstract individual 
components. AC are said to support the execution of a 
set of logically/semantically connected tasks. They are 
called presentation units in some cases or work spaces. 
An AC may be reified, at the concrete level, into one 
or more graphical containers like windows, dialog 
boxes, layout boxes or time slots in the case of audi-
tory user interfaces. Abstract User Interface Relation-
ships (AUI relationship) are relationships that can be 
drawn between abstract interaction objects of all kinds. 
Various types of abstract relationships may be defined 
at this level: 

 Decomposition relationship allows specifying a hi-
erarchical structure of abstract containers and ab-
stract individual components. 

 AbstractAdjacency relationship indicates that two 
AIO are logically adjacent. 

 Spatio-temporal relationship allows a specification 
of a very precise layout in time or space in a way 
that is independent of any modality. 

 Dialog control relationship allows a specification 
of a flow of control between the abstract interaction 
objects. Like for task models, LOTOS operators are 
used for this purpose. For instance a relationship 
AIC1.EnterCountry []> AIC2.EnterPro vince indi-
cates that AIC2 cannot be initiated while AIC1 is not 
achieved and that AIC1 has provided a value for the 
data on which the two components synchronize 
with. Like for tasks, an interpretation for each type 
of LOTOS operator may be provided in terms of 
pre/post-conditions, termination, initiation states. 

3.3. Five Levels of Dialog Granularity 
Based on AUI and CUI, five levels of dialog granular-
ity can be identified and specified: 

1. Object-level dialog modeling: this level models 
the dialog at the level of any particular object, 
such as a CIO or a AIO. In most cases, UI toolkits 
and Integrated Development Environments (IDEs) 
come up with their own widget set with built-in, 
predefined dialog. For instance, a push button 
comes up with its native dialog (or behavior) that 
can be only modified by overwriting the methods 
that define its behavior. Most IDEs do not allow 
such a superseding, only toolkits allow the devel-
oper to redefine an entirely new dialog for a par-

ticular widget, but this programming is very com-
plex. 

2. Low-level container dialog modeling: This level 
models the dialog at the level of any container of 
other objects that is a leaf node in the decomposi-
tion. Typically, this could be a terminal AC at the 
AUI level or a group box at the CUI level in case 
of a graphical interaction modality. If the UI is vo-
cal, then an auditory display should be imple-
mented that marks the boundaries of this vocal 
group. For instance, by pronouncing the beginning 
and the end of the group. 

3. Intermediary-level container dialog modeling: this 
level models the dialog at the level of any non-
terminal container of objects, that is any container 
that is not a leaf node in the container decomposi-
tion. For any graphical UI, this could be a win-
dow, a dialog box, or the various tabs of a tabbed 
dialog box. This level models the dialog at the 
level of top containers within a same interactive 
application such as a web application or a web 
site. It thus regulates the navigation between the 
various containers of a same application. 

4. Within-application dialog modeling: This level 
models the dialog at the level of top containers 
within a same interactive application such as a 
web application or a web site. It therefore regu-
lates the navigation between the various containers 
of a same application. For instance, SketchiXML 
[20] allows the designer to graphically specify 
within-application dialog by affecting predefined 
ECA rules between web pages. Each such ECA 
rule represents a dialog pattern, such as Open-
Close, Activate-deactivate. For instance, the 
Open-Close pattern means that when a web page 
is closed, the next page in the transition is opened. 

5. Across-application dialog modeling: Since the ac-
tion term of a ECA rule could be either a method 
call or an application execution, it is possible to 
specify a dialog across several applications by 
calling an external program. Once the external 
program has been launched, the dialog that is in-
ternal to this program (within-application dialog) 
can take place. 

4. Conclusion 
In this paper, we have introduced a definition of a dia-
log model at both concrete and abstract UI levels, 
which represent respectively the PSM and PIM levels 
in MDE. For both, ECA rules are used to specify the 
dialog at five different levels of granularity. Five levels 
of granularity of this dialog model have been intro-
duced. A dialog at any level of granularity can be 
equally modeled in the terms of an ECA system that 



consist of ECA rules. Depending on the UI level of ab-
straction (AUI or CUI), the events, the conditions, and 
the actions are different: the AUI events represent ab-
stractions of CUI events, AUI actions represent ab-
stractions of CUI actions, etc. For a mono-device dia-
log or for a multi-device dialog but with the same in-
teraction modality (like in [8]), the CUI level is 
enough. For more interaction modalities, the AUI level 
should be specified with an explicit mapping between 
the levels using the same support as specified in [12]. 
In the near future, we are pursuing effort towards 
specifying the dialog at multiple levels, separately or 
simultaneously in a coordinated way. For this purpose, 
the cascading style sheet mechanism of XML has been 
applied to the corresponding UsiXML models so as to 
form a cascading dialog modeling [23]. In this way, it 
is expected that high level properties and values are 
progressively propagated from one level to another 
while preserving quality properties, such as consis-
tency. 
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