
 - 111 -

TRIAD: Triad-based Rich Internet Application Design
F. J. Martínez-Ruiz1, Jean Vanderdonckt1, Jaime Muñoz Arteaga2

1Université catholique de Louvain, Louvain School of Management
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{Francisco.martinez, jean.vanderdonckt@uclouvain.be} – www.isys.ucl.ac.be/bchi/members/jva
2Universidad Autónoma de Aguascalientes Aguascalientes, Mexico

jmunozar@correo.uaa.mx

ABSTRACT
Current trends in web development still are attached to
the web page paradigm. Nevertheless, new uses of al-
ready available technology and recent development in
terms of concepts, as the asynchronous communication,
have produced a new generation of web applications:
Rich Internet Applications (RIAs). These web applica-
tions essays to fulfill user expectations in terms of usabil-
ity, reliability, quality, maintainability and performance.
In this paper, we are going to present a designing meth-
odology that pursued as goal describing and developing
User Interfaces of RIAs in a standardized way. The name
of this ensemble of models and meta-descriptions is,
TRIAD (Triad-based Rich internet Application Design).

Keywords
Rich internet applications, web engineering, Model driv-
en engineering, USIXML

INTRODUCTION
Current trends in web development still are attached to
the web page metaphor. The last generation of web appli-
cations is called, Rich Internet Application (RIA). These
web applications break this paradigm and promise to ful-
fill user expectations in terms of usability, reliability,
quality, maintainability and performance [18]. For this, a
set of models based on UsiXML language (User Interface
Description Language) supported by the CAMELEON
Reference Framework are presented. Our work extends
UsiXML User Interface Description Language with the
purpose of designing UIs of Rich Internet Applications.
This work presents these notations and the general meth-
od of design.

Indeed, software design includes a set of notations and
models in order to specify different aspects of the soft-
ware system. These notations specify applications in
terms of various abstraction levels. The modeling of web
applications has been treated in several works [18][19].
Roughly, we could classify web modeling in four catego-
ries: (1) hypertext models where organization and naviga-
tion is treated in a single model. [18](2) Data-driven
models where exploitation of databases and a query lan-
guage is translated into web applications [20]. (3) UI is
defined in independent representations (e.g., UML) in a
Model Driven Approach [21],[22] and Finally, (4) Task

based modeling, where web application is modeled in
terms of tasks needed to complete the application goal.
Our proposal takes a mixed approach since we use two
categories: (3) and (4).

The rest of the paper is organized as follows: First, Core
elements of the method are explained. Second, a running
example shows the application of notations. And Third,
Conclusions and Future work.

WHAT IS TRIAD?
In this paper, we are going to present a designing meth-
odology that pursued as goal describing and developing
User Interfaces of RIAs in a standardized way. The name
of this ensemble of models and meta-descriptions is,
TRIAD (Triad-based Rich Internet Application Design).
TRIAD is a method for developing User Interfaces for
RIAs. We start with an abstract definition of the UI.
Then, in an iterative process more details are included un-
til arriving to a concrete definition. Various features make
TRIAD a viable choice: Extensibility (supports composi-
tion of structures), a set of Visual Patterns and the separa-
tion of concerns (data, logic and presentation).

CORE CONCEPTS OF THE METHOD
Now, we present the core concepts of our method which
offers a scalable and model driven engineering approach
[16] that is supported by the CAMELEON Reference
Framework [5] and UsiXML language [4]. These con-
cepts are: (1) Zoomable User Interfaces [15], which are
applied to Task hierarchies (ZUIT concept) [13], (2) the
triplet-based design concept and (3) the concept of loca-
tion.

Zoomable User Interface Task Hierarchy (ZUIT)
TRIAD defines the application as a hierarchy of tasks.
This hierarchy is composed by multiple levels where in-
ner nodes are gathering elements and leaf nodes are atom-
ic tasks. Tasks are connected by temporal operators of
three types (Sequential, concurrent and choice). Never-
theless, there are some shortcomings in these models
(discussed in [13]). For instance, the complexity is direct-
ly proportional to the size of the application and at some
point, icons and texts become unintelligible. Another
problem is that, models as ConcurTaskTrees notation
(CTTs) (see Figure) which is discussed in [13], do not
provide any semantic information through its structure

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 112 -

since the structure is simply replicated at all levels. For
instance, in a minimal Sign in application (see, Figure a)
we have two tasks (Get information and Submit). First
you have to recollect user data before submit it. Then,
tasks are related by a sequential operator ([]>>). Get in-
formation is subdivided into two atomic tasks (Input User
Name, Input Password) which are executed at the same
time (|[]|).We use a treemap-like representation [14], in-
stead of using an arborescence representation (Figure 1a)
with an important variation: indeed, it is a Zoomable Us-
er Interface. The representation of the Sign in application
is shown in Figure 1b. All tasks under the area of Login
rectangle are her children which would be executed in se-
quential order (from left to right). Under the first child,
Get information we have two other children. Here, for
the sake of simplicity all the tasks are labeled but the only
information visible at the beginning is the color (which is
associated to operator and task types). We have chosen
Piccolo toolkit [4] for taking advantage of its zooming
predefined libraries. The benefits expand in three aspects.
First, the navigation to inner hierarchies is done in a more
intuitive way. Second, the visual overload is reduced
since we are using coding schemes in order to identify
task types and task relationships (Note: Here, for the sake
of simplicity is not expressed). And third, more coding
schemes could be integrated. For instance, weight metrics
in order to adjust task area of the elements in the ZUIT.

Figure 1. Login example in ZUIT format.

Triplet-based Design
The idea behind our method is simple: Keep designers fo-
cused on their tasks so that they do not become distracted
when they go though the development process. Their ob-
jective is to define the sequence of tasks that is needed to
accomplish the application goal. For each task T intro-
duced by the designer, task triplets (triads) are introduced
in the model. T is substituted by T’ under which R (Ro-
bustness) and D (Decorative) set of tasks are added
(Figure a). These groups exchange information between
them and with the original task (which is part of the
Utilitarian task set17). In order to update the model in

17 This set include CRUD and Task operations.

terms of validation and presentation. In Figure 2b, this
structure is represented as a ZUIT. Note: the triad is de-
fined by the task sets: R(T), U(T) and D(T).That means
that each set (R, U or D) is populated, with pertinent
tasks, in function of the necessities of T.

Figure 2. Triplet of task model.

Our model is loosely based in the triad of Vitruvius [8].
He stated that every building design should have three
qualities: It must be strong, useful, and beautiful. We
translate these features for UI design into: (1) Robustness
tasks. This set agglutinates all tasks related to prevention,
validation and recuperation. (2) Utilitarian tasks. This set
includes Input, Output, Control and navigation tasks. (Be-
sides CRUD operations to be applied on associated data
[8]). That is, all the possible operations to be executed
over tasks. (3) Decorative tasks. This set groups all tasks
related to aesthetic aspects of the presentation of both, ro-
bustness and utilitarian tasks of UI. An overview of triads
is shown in Tables 1, 2, and 3. Note that these are exam-
ples of the tasks in each category; it is not an exhaustive
enumeration of them.

Task Operations

 Description

Input Entry of data

Output Describes what information may be shown to the us-
er

Control Trigger a method of business logic

Navigation Describes a container transition

Table 1. Utilitarian Tasks.

Prevention

(task is affected a
priori)

Validation

(task is affected dur-
ing interaction)

Recuperation

(task is affected a posterio-
ri)

Static User Help Data Type check Roll back

hidden tasks until
needed (Display-

ing code at the last
possible moment)

Order check Error User help
(Acknowledge)

Auto-complete Reset

Dynamic User Help

Table 2. Robustness tasks.

Decorative Tasks

 Description Example

Semantic Affects semantic presenta-
tion, in general this means
the value to be used.

A error signal icon is
changed by other in term of
internationalization

 - 113 -

Syntactic Affects order and presenta-
tion of task sequence to be
done by the user

Change a text box for a date
picker to simply the introduc-
tion of a date

Lexical Affects order and presenta-
tion of lexical elements

A button could include a la-
bel and or icon or both

Alphabetic Only affects alphabetic
representation

Change from centimeter to
millimeter values of a com-
ponent

Physical only affects physical ap-
pearance

Color, size

Table 3. Decorative Tasks.

Now, we are going to update the Login example (Figure
2). Each task in the Task Hierarchy is wrapped by the tri-
ad. This process is automated by XLST transformations
in the UsiXML code.

Figure 2. Inclusion of task Triad in Login Example.

The incorporation of the sense of location
It is time to focus in the Web Realm and for this, TRIAD
introduces a pattern set in order to model distributed na-
ture of RIAs. The original tasks are wrapped by these
pattern structures which are added hierarchies that take
into account location of tasks (see Table 4). This location
is not related to physical places (e.g., client and server) at
AUI level. The sense of location has two goals: (1) add
hint labels to be used in the next step of the method and
(2) populate the TH with tasks related to manipulation
and/or system-oriented [17] (which are going to remain
hidden until next step). An intuitive definition of location
is that web applications could be divided into n distribut-
ed blocks. Nevertheless, we could generalize these ar-
rangements into a two-block model. That is, some com-
ponents of web application (presentation, logic and data)
are located in the client (e.g., browser or local machine).
This location is called Local Realm (see W1 in Figure 3b
and c). The rest of components are assigned to the For-
eign Realm (see Figure 3e). This last one includes server-
side components, such as web services, web applications
hosted in alternative places than user interaction point
(usually his/her web browser). Also, it is possible to ex-
tend this definition to include event a local web server or
application server. The logic to define the two blocks im-
plies as local the application executed in the client host

environment, generally a web browser. It is worth notice
that Figure3d describes a mixed realm task. This implies a
compound task is internally composed by some elements
in local and others in foreign realms. A concrete example
is a submit operation which include client and server val-
idation. Nevertheless, This type of task is included in for-
eign location in order to simplify the notation. Task types
used in the Task Hierarchy level are wrapped up and di-
vided in terms of their scope (local or foreign). In Table
3, it is described the set of labels to be added. Their work
is adding hints or indicators in order to assist designers
and the method in the translation into concrete web com-
ponents. For instance, if the developer wishes to intro-
duce an interaction task, for him/her the process is
straightforward. But the real model will be updated with
task triads that take into account the location.

Figure 3. The Web Realm.

Description Local Realm Foreign Realm

Interaction task

Application task

Abstract task

Implicit Explicit

Link

Explicit Implicit

Table 4. Wrapper notation for RIAs.

GETTING STARTED

This section describes our method step by step modifying
a case study in order to show all the updates.
Features of the Method
The development of web applications needs to be very
flexible. Changes could appear in all the steps. In order to
deal with this characteristic, our method includes two im-
portant features: First, the separation of concerns princi-
ple is integrated to the method and second is based in a
Model Driven Approach.

 - 114 -

Figure 4. Example of an application for booking a hotelr oom in CTT model.

Figure 5. TRIAD Method.

The general Method
Our method is a process of translation abstract models
(Figure 4) into more concrete ones (see Figure 5) [3]. The
general process could be synthesized in the following
steps: In the first phase, we create two models: a Task hi-
erarchy model which describes User’s goal and a Domain
model to represent the data needed (T&D). The second
phase implies the production of an Abstract User Inter-
face (AUI) without any context or compromise with any
technological platform. Then, in a Third phase a Concrete
User Interface (CUI) is derived from the previous model.
There, modality and platform widgets are decided. In the
last phase, a Final User Interface (FUI) is obtained for a
specific technology (For instance AJAX, .NET, LZX,
SWF among others).

CASE STUDY: BOOK A ROOM
We use a Reservation System example. This simple UI al-
lows users to book a hotel room. Check-in and Check–out
dates, as well as, the room type and number of guests are
selected. The UI is presented in a single interface over
three sections. Validation is done during submission and
during the recollection of values. This running example is
named: Reservation System Case Study (RSC). We are

going to focus our attention on the models produced for
the different phases of the method. A final remark is that
model translation is based on XSLT in all steps.

Step 1: Creation of Task Hierarchy and Domain mod-
els
The recollection of User requirements are out of the scope
of this work. They could be recollected by UML use cas-
es and activity diagrams. These requirements are ex-
pressed in a hierarchy of tasks (TH) and Domain models
(UML Class Diagrams).

Task Hierarchy model
The goal of the application is described by a TH. This TH
is decomposed in successive levels until arriving to atom-
ic tasks related to system manipulation. In RSC, the goal
is booking a room. Then, this task could be decomposed
in three subtasks (Pick a Date, Select Room Type and
Complete Guest Details) which could be decomposed as
well in other sub tasks. The result of this is presented in
Figure 4. Also, the temporal relationships of tasks are
modeled by temporal operators of three types (Sequential,
concurrent and choice). For instance, in the first level of
the TH, We have to reserve a room before confirm the
transaction. This relationship is expressed with a sequen-

 - 115 -

tial operator ([]>>). This representation (a variant of
CTT) was created with the IDEALXML tool which the
current tool used one in UsiXML [11]. Also we have in
Figure 6 the proposed Domain model. Then, TH is trans-
lated into ZUIT format (see Figure 7) using XLST. In
Figure 4a, we marked a fragment in order to show its
UsiXML representation (Figure 8). This fragment allows
presenting the code which will be refined in following
sections.

Figure 6. Domain model.

Figure 7. ZUIT representation of Task Hierarchy model.

Figure 8. Fragment of UsiXML code of TH.

Mapping Model
The models in TRIAD are connected through a mapping
model that aids to define diverse relationships (this model
is defined in UsiXML). These relationships allow features
as derivation from models from one level to another,
helping in the successive process of adding component
features and selection of elements (depending on the lev-
el, abstract components or concrete ones), also for ad-
dressing context aspects (e.g., if the context defines a ja-
va-based platform which version of virtual machine is
needed).

Available Relationships between domain model and other
used models are: triggers, observes, updates, isReified-

By, isAbstractedInto, isExecutedIn, isTranslatedInto,
manipulates and hasContext (see [7] for more infor-
mation about them). In the case of RSC, a relationship of
manipulates type is established between the Domain and
Task Models. For instance, Figure 9 depicts “manipu-
lates” relationships between task and domain model as
pointed arrows. Pick a Date is mapped onto Reservation
class. Complete Guest Details is mapped onto Guest
class. Show Categories is mapped onto Room_Type
class. And finally, Confirm reservation is mapped onto
the method ProcesReservation of the class Reservation.

Manipulation of TRIAD tasks
The TH begins with the tasks needed to fulfill the goal of
the application. The next step is manipulating triad tasks.
That is, the developer should select decorative, robustness
and utilitarian tasks, see in Figure 10a a mock up of the
development environment that we are developing. Here,
FirstName is selected to change its features. A possible
visualization of these sets is shown in Figure 10b. In this
case, instantiated attributes are colored in green (Figure c)
when you move over Figure 10a. New features or modifi-
cations could be done by Triad Management Pattern in-
side a development environment (Figure 11). Note: We
use this pattern to describe the modus operandi of the tri-
ad task repository.

 - 116 -

Figure 9. Mapping model.

Step 2: Building the Abstract User Interface
The next step is translating the TH into an AUI model.
The process implies the introduction of more details and
precisions. The AUI is improved with precisions about
location that we introduce in the previous phase. Accord-
ing to an algorithm described in [7] and improved in [8],
each inner node is interpreted as an Abstract Container
(AC). In Figure 12a is depicted how this operation is
done: rounded squares specify task grouping. The algo-
rithm of [7] is straightforward: inner nodes are labeled
and converted into Abstract Containers and leaf nodes in
Abstract Interaction Components (Figure 13b).

A new visual notation is introduced for modeling AUI
representation (see Figure 13). This one includes three
main features: First, temporal operators are used in Fig-
ure13a in order to explain the abstract dialogue inherited
from the previous model. Second, in Figure 13b pointed
arrows are used to express abstract adjacency (i.e., the
spatial disposition of components). And Third, the RIA
patterns are applied and used in each AC and AIC to indi-
cate their application, Figure 13c.

Figure 10. ZUIT representation of RSC with instanti-

ated attributes (b).

Figure 11. TRIAD instantiation pattern for selecting

attributes of tasks.

Figure 12. Visual explanation of recovery of Abstract

components from ZUIT.

 - 117 -

Figure 13. AUI representation of the RSC.

Step 3: Building the Concrete User Interface
A Concrete User Interface (CUI) model is composed of
Concrete Interaction Objects (CIO) and concrete relation-
ships. CUI model designates a specific modality (e.g.,
Graphic or speech). Therefore, behavior and UI elements
are adjusted in order to fulfill requirements of this mo-
dality. The graphical modality could be described in terms
of graphical input GI and graphical output GO, GI is de-
fined by tuple (pointing device P, direct manipulation)
where P usually is a mouse. GO is defined by tuple
(Screen, Drawing language) where drawing language
could be procedural, declarative, pixel or vector based
[7].

At this level, compromise with any toolkit or platform is
not yet done. Nevertheless, it is possible to define a CUI
in term of valid elements of the modality. For instance, if
the graphical modality is selected and the element to be
reified is an explicit container. Then, the valid set of el-
ements includes window, box, dialogue (defined in
UsiXML).In the other hand, if a foreign interaction is as-
sociated to an AIC. Then, a RIA- CIO could be selected.

The process of choosing Concrete Interaction Com-
ponents (CICs)
From the triad table (see Figure 10b) the developer has al-
ready chosen the different facets (input, output, control or
navigation), data operation (CRUD), data types, and car-
dinalities among others. Nevertheless, the process has to
be refined in order to select components related to the
current modality. In Table 5, we can see possible deriva-
tions from AUI elements into CUI ones in RSC for AC2.
The choice is driven by the selection of options (using a
decision tree [8]) in the triad and also depending on de-
veloper preferences.

Abstract

Interaction
Component

Facet

Specification or/and

RIA label

Relevant In-
formation to
define which

CIC will be se-
lected

Possible Concrete
Interaction Com-
ponent to be used

Pick a date Explicit container/

Output facet

The container is
fixed

A box with a label
(output) “Pick a
Date”

Check in
Date

Local input/

Output “Check in”

Data type, Do-
main value

A label “Check
in” with a date
picker

Check out
Date

Local input/

Output “Check out”

Data type, Do-
main value

A label “Check
in” with a date
picker

Select
Guest
number and
Type

Implicit container/

Output facet

The container is
fixed

A box with a label
“Select Guest
number and
Type”

Adult
Number

Local input/

Output “Adult num”

Data type, Do-
main value

A label “Check
in” with a
dropdown list

Room
Number

Local input/

Output “Room num”

Data type, Do-
main value

A label “Check
in” with a
dropdown list

Children
Number

Local input/

Output “Children num”

Data type, Do-
main value

A label “Check
in” with a
dropdown list

Table 5. Translation between AIO types into CIO ones
of AC2.

Modeling the behavior
The modeling of behavior has been treated until here in
terms of rough granularity. That is, the dialogue in a sort
of “Big Picture”. Now, it is time to pay attention to de-
tails. And for this, we used the Abstract Data View nota-
tion or ADV-charts [12].

This is a notation for describing the behavior of interac-
tive systems. Also it provides a way to define the flow
control and the relationships between UI components and
their events. ADV-charts are composed by ADVs, states,
attributes and transitions. The representation of ADVs is a
rectangle with the name of the ADV (in our case ADV
are treated as equivalent to Concrete Containers and
CICs). States are depicted as rounded rectangles which
contains the name of the state. More than one state is pos-
sible per ADV. States could be alone or in a cluster.
States are linked to other with transitions (arrows) which
are indexed and explained.

In Figure 14a, it is an example of ADV Book a room, in
Figure 14b a state, Figure 14c a transition. And finally,
Figure 14d represents a concurrent execution of compo-
nents. It is needed to define each transition after defining
ADV-charts. First, we describe its preconditions, then the
event that triggers the transition and finally post condi-
tions. Note: For the sake of simplicity, only a sub set of
the available transitions are shown in Table 6.

 - 118 -

#

Triggered by Comments

1 Display Active the application

2 Focus (produced by key-
board or mouse click)

-

3 Dynamic recovery of data
view

Post conditions {screen
= screen + ShowCatego-
ries}

Table 6. Some of the transitions to model the behavior
of RSC

Now, with modality selected and Behavior more detailed,
possible CUI representations are shown in Figure 15
(HTML- based code to have a visual representation) and
Figure 16 (with GrafiXML tool [1]) both represents
UsiXML CUI code (see Figure 17).

Step 4: Building the Final User Interface
In this step are produced Final User Interfaces (FUI).
That is, UIs described by a specific platform (.NET, LZX,
SWF and GWT among others). The CUI is translated
again with XSLT templates and finally, we have code in
the target language. In this way, native code is produced
in order to be treated by interpreters, compilers, genera-
tors or converters of platform.

We translate CUI specifications into native widget sets
available in the chosen platform. One of the advantages
of the method is its capability of redirection. That is, CUI
models could be oriented to different final platforms.
This section shows the CUI definition of RSC into AJAX
code (in particular, JQuery [5]) a possible final result is
shown in Figure 18.

Figure 14. Updated Concrete dialogue of RSC

Figure 15. CUI representation of RSC.

Figure 16. Screenshot of GrafiXML tool for CUI de-

velopment.

Figure 17. Fragment of CUI definition of RSC.

 - 119 -

Figure 18. UI example with JQuery embedded in

HTML

CONCLUSION AND DIRECTIONS FOR FUTURE WORK
In this paper, we have presented TRIAD, a MDA method
for developing UIs of RIAs, which provides an ensemble
of models in order to treat the complexity of RIA design.
The first step includes a Zoomable representation of the
UI that have been proposed to avoid many of the disad-
vantages of typical task representation in UsiXML, such
as tree node explosion and lack of structure [13]. Piccolo
framework [4] is used to implement ZUITs. The design
method helps developers to focus in their work instead of
dealing prematurely with tasks related to operation and
security. This is done by the introduction of the triad con-
cept as integral part of development. Task model has re-
ceived special attention. Particularly, its container struc-
ture[9]. AUI representation has been enriched with the
RIA notation, which is proposed to introduce, early in the
development, information about RIA-oriented tasks. We
used a minimalistic case study to show these concepts and
their applicability. Therefore, we just give a glance of the
real potential of the method to deal with RIAs. Finally,
this approach is not only applicable to RIAs and it could
be used for others types of applications.

Our main objective is to establish TRIAD as a plausible
alternative method for UI-oriented development of RIA
applications. Obviously, this is a first version. TRIAD
approach will continue evolving. This process is due to
updating current features: Our Repository of triad tasks is
being updated with news tasks; Better behavior modeling;
Adaptation to mobile technologies; as well as, a better
understanding of the quality in the overall process; Better
metrics in order to measure the task weights and exploit
more semantic of ZUITs. Finally a Development envi-
ronment is being developed in order to avoid manual pro-
cess between models as in the current state.

ACKNOWLEDGEMENTS
This work is supported by the Programme AlBan, the Eu-
ropean Union Programme of High Level Scholarships for
Latin America, scholarship No. (E06D101371MX), The
University of Zacatecas (UAZ) and the Belgian Computer
Human Interaction Laboratory. The authors also
acknowledge the support of the Région Wallonne for
ITEA2 Call 3 UsiXML project, under reference 2008026.

REFERENCES
1. UsiXML. http://www.usixml.org/ (May 10th, 2009)
2. Martínez-Ruiz, F.J., Muñoz Arteaga, J., Vander-

donckt, J., González-Calleros, J.M., A First Draft of
a Model-driven Method for Designing Graphical
User Interfaces of Rich Internet Applications, Proc.
of 4th Latin American Web Congress LA-Web’2006
(Puebla Cholula, 25-27 October 2006), J.A. Sanchez
(ed.), IEEE Computer Society Press, Los Alamitos,
2006, pp. 32-38.

3. OMG, http://www.omg.org , (May 10th, 2009)
4. http://www.piccolo2d.org (May 10th, 2009).
5. http://jquery.com (May 10th, 2009).
6. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt,

J., Derivation of a Dialog Model from a Task Model
by Activity Chain Extraction, Proc. of 10th Int. Conf.
on Design, Specification, and Verification of Inter-
active Systems DSV-IS’2003 (Madeira, 4-6 June
2003), J. Jorge, N.J. Nunes, J. Cunha (eds.), Lecture
Notes in Computer Science, Vol. 2844, Springer-
Verlag, Berlin, 2003, pp. 203-217.

7. Limbourg, Q., Vanderdonckt, J., UsiXML: A User
Interface Description Language Supporting Multiple
Levels of Independence, in Matera, M., Comai, S.
(Eds.), “Engineering Advanced Web Applications”,
Rinton Press, Paramus, 2004, pp. 325-338.

8. Albin, S. T. (2003). The art of software architecture.
John Wiley and Sons.

9. Martinez, F., Vanderdonckt, J., Muñoz-Arteaga, J.
Web user interface generation for multiple
platforms. In Proc. of 7th Int. Workshop on Web-
Oriented Software Technologies IWWOST’2008
(Yorktown Heights, July 14th, 2008), L. Olsina, O.
Pastor, D. Schwabe, G. Rossi, M. Winckler (eds.),
CEUR Workshop Proceedings, Vol. 445, 2008, pp.
63-68. Accessible at http://ceur-ws.org/Vol-
445/02icwe2008ws-iwwost11-martinez-ruiz.pdf

10. Bartalos, Peter & Bieliková, Mária: (S)CRUD pat-
tern support for semantic web applications. Safarik
University, Kosice, Slovakia (2008).

11. Montero Simarro, F.; Lopez Jaquero, V., IDE-
ALXML: An Interaction Design Tool. Computer-
Aided Design of User Interfaces V. Publisher
Springer, 2007, pp.245-252.

12. Carneiro, L. M., Cowan, D. D., and Lucena, C. J.
1994. ADVcharts: a visual formalism for interactive
systems. SIGCHI Bull.26, 2 (Apr. 1994), 74-77.

 - 120 -

13. Martínez-Ruiz, F., Vanderdonckt, J., and González-
Calleros, J.M. Model Driven Engineering of Rich
Internet Applications Equipped with Zoomable User
Interfaces. In Proc. of Joint 4th Latin American Con-
ference on Human-Computer Interaction-7th Latin
American Web Congress LA-Web/CLIHC'2009
(Merida, November 9-11, 2009), E. Chavez, E. Fur-
tado, A. Moran (Eds.), IEEE Computer Society
Press, Los Alamitos, 2009, pp. 44-51.

14. Johnson, B. and Shneiderman, B. 1991. Tree-Maps:
a space-filling approach to the visualization of hier-
archical information structures. In Proceedings of
the 2nd Conference on Visualization '91 (San Diego,
California, October 22 - 25, 1991). G. M. Nielson
and L. Rosenblum, Eds. IEEE Visualization. IEEE
Computer Society Press.

15. Pederiva, I., Vanderdonckt, J., España, S., Panach,
I., and Pastor, O. The Beautification Process in
Model-Driven Engineering of User Interfaces. In
Proc. of 11th IFIP TC 13 Int. Conf. on Human-
Computer Interaction Interact’2007 (Rio de Janeiro,
September 10-14, 2007), Lecture Notes in Computer
Science, Vol. 4662, Springer-Verlag, Berlin, 2007,
pp. 409-422.

16. Raskin, J. 2000. The Humane Interface: New Direc-
tions for Designing Interactive Systems.Addison-
Wesley, Reading, Mass.

17. Lenorovitz, D.R.; Phillips, M.D.; Ardrey, R.S. &
Kloster, G.V. “A taxonomic approach to characteriz-
ing human-computer interaction”. In: G. Salvendy
(Ed.), Human-Computer Interaction. Amsterdam:
Elsevier Science Publishers, 1984, pp.111-116.

18. Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.,
2007. A Method for Model Based Design of Rich
Internet Application Interactive User Interfaces. In
The Seventh Int. Conf. on Web Engineering (IC-
WE’07).

19. Nora Koch, Matthias Pigerl, Gefei Zhang and Tatia-
na Morozova. Patterns for the Model-based Devel-
opment of RIAs. In Proc. 9th Int. Conf. Web Engi-
neering (ICWE'09), LNCS, volume 5648, pages
283-291. Springer, Berlin, June 2009.

20. Ceri, S., Fraternali, P., Matera, M., and Maurino,
A.(2001). Designing Multie-Role, Collaborative
Web Sites with WebML: a Conference Management
System Case Study. IWWOST'01, Valencia, Spain,
June 2001.

21. Matias Urbieta, Gustavo Rossi, Jeronimo Ginzburg,
Daniel Schwabe. Designing the Interface of Rich In-
ternet Applications. Proc. 5th Latin American Web
Congress (LAWeb’ 07), pp.144-153, IEEE, 2007.

22. Valverde F., Pastor, O., Applying Interaction Pat-
terns: Towards a Model-Driven Approach for Rich
Internet Applications Development. . In Proc. of 7th
Int. Workshop on Web-Oriented Software
Technologies IWWOST’2008 (Yorktown Heights,
July 14th, 2008), L. Olsina, O. Pastor, D. Schwabe,

G. Rossi, M. Winckler (eds.), CEUR Workshop
Proceedings, Vol. 445, 2008.

