
 

,  
Abstract—The world of the mobile devices involves restrictive 

features. Multiple efforts have been done to define the User 
Interface. Here, it is combined a neutral description of the UI 
with a semantic recovery of information. The focus of this paper 
is the generation of the containment structure based on the 
context of the application. The process includes three main tasks: 
first a fixed division of the neutral definition of the UI (a task 
tree), Then heuristic rules based on the vicinity are applied and 
finally a set of container patterns is provided to polish the UI. 
Alternative configurations are delivered and weighted. Since 
multiple metrics has been proposed a comparison of them was 
delivered. The results of the comparative analysis suggest that 
some metrics, although more sophisticated and fine-grained, do 
not necessarily improve significantly the quality of determining 
user interface containers, therefore stemming for simple, yet 
efficient, metrics used to reach a threshold. Finally, a set of 
plausible UIs is delivered. 
 

Index Terms—Context-awareness, Mobil Devices, Model based 
engineering, user interfaces generation  
 

I. INTRODUCTION 
he design of User Interfaces involves a process of 
gathering building blocks. These hierarchies of elements 

are the representation of the goal pursuit by the application. 
Also, the design of applications is affected by the utilization 
context which is conformed by three core components: the 
user, the platform and the environment. In this work, the focus 
is in the platform which is the supporting structure of the 
applications. The specific features of a context lead designers 
to take particular design decisions. For instance, the Mobile 
World introduces interesting challenges in terms of the 
context. According to [28], the context is any piece of data 
that could guide us in the characterization of the situation of 
 

Manuscript received June 9, 2008. This work was supported by AlBan, the 
European Union Program (www.programalban.org) of High Level Scholar-
ships for Latin America, under reference E06D101371MX and by the 
SIMILAR network of excellence, the European research taskforce creating 
human-machine interfaces SIMILAR to human-human communication under 
reference FP6-IST1-2003-507609 (www.similar.cc).  

F. J. Martinez-Ruiz is with The Université catholique de Louvain, Louvain 
School of Management. Place des Doyens, 1 – B-1348 Louvain-la-Neuve. 
Belgium. Also He is with the University of Zacatecas, Mexico. (e-mail: 
jamaru@acm.org).  

J. Vanderdonckt. is with The Université catholique de Louvain, Louvain 
School of Management. Place des Doyens, 1 – B-1348 Louvain-la-Neuve. 
Belgium. (e-mail: jean.vanderdonckt@uclouvain.be). 

J. Muñoz Arteaga is with the Universidad Autónoma de Aguascalientes, 
Centro de Ciencias Básicas. Av. Universidad, Aguascalientes. Mexico. (e-
mail: jmunozar@correo.uaa.mx). 

elements such as temporal or spatial disposition. The status of 
these elements is needed to understand the interaction between 
user and application. In our case, these pieces of data include: 
the number of tiers in containment structures defined by a 
platform (for instance the API of a language), and the 
information recovered from the task tree. But usually, this is 
taken into account in the last steps of the design when the user 
interface is already done. Furthermore, the design of the 
containment structures of a UI is not a trivial task in most of 
the scenarios, so it is pertinent to define a method to build the 
skeleton of containers. Also, relevant information is retrieved 
from temporal and spatial restrictions in order to suggest 
alternative configurations. In summary, if the container 
generation is aware of platform requirements in early stages of 
development, then more specialized UIs are delivered.  

This work proposes a method to design the UI in terms of 
hierarchies of containers. For this purpose, semantic 
information is collected from a neutral description of the UI (a 
Task Tree). From this tree is possible to recover the temporal 
and spatial constraints needed for grouping related parts of the 
UI. The selected case study comes from the Web domain 
where the paradigm is switching from the multiple web page 
application to the Single Page Application. These kinds of 
applications retrieve most of the content in a single download. 
Then with the aid of a scripting language, the Document 
Object Model (DOM) is updated in order to present (or hide) 
sections of the web page [10].   

A. The Mobile Platform  
The mobile platform is a very interesting environment to 

verify the awareness of the container structure. There are 
notable differences/constraints in the world of small devices 
and the most perceivable change among the desktop/laptop 
PCs and mobile devices is the screen size [16] also we have to 
take into account: limited capacities in terms of processor 
speed, memory and storage [17]. In the mobile devices world, 
basically there are four schemas for displaying content [18]:    

1. Native single and multiple authoring. These options 
could deliver sophisticated results but implies the 
work of specialized designers for one or a set of 
specific devices and platforms. 

2. Automatic reconstruction. This approach has more 
practical uses since we have a lot of web pages already 
done which require being migrated/delivered to small 
devices. One of the possible solutions is the web page 
summarization. 

3. Client-side navigation. This approach allows the user 

Context-aware Generation of User Interface     
Containers for Mobile Devices  

Francisco J. Martinez-Ruiz, Jean Vanderdonckt, Senior Member IEEE and Jaime Muñoz Arteaga. 

T

2008 Mexican International Conference on Computer Science

1550-4069/08 $25.00 © 2008 IEEE

DOI 10.1109/ENC.2008.34

63

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 

the capability of navigating inside the web page with 
multiples techniques e.g. scrolling or zooming.  

 
Since the proposed method is based in the second approach 

(automatic reconstruction/construction), it is important to go 
into detail. There are multiple dimensions to consider: 
syntactic vs. semantic and transformation vs. elision. The first 
is related with the structure, the second with content 
understanding, the third involves a modification of the 
presentation and finally, the fourth implies information 
removing. The first three are going to be combined in order to 
produce acceptable containers.  

 
The rest of this paper is organized as follows: Section 2 

discusses the state of the art in the creation of containers for 
applications. Section 3 introduces some theory in Task models 
and Model Driven Engineering domains. Section 4 covers the 
description of the proposed method. This section is divided in 
four subsections: classification of containers, generation of the 
Abstract User Interface (AUI), selection of UI complexity 
metrics, and a proposal of container patterns. Finally, section 5 
presents conclusions and future work. 

II. STATE OF THE ART  
Several approaches have been proposed in order to tackle 

the problem of developing UIs for mobile devices (especially 
as web pages), some techniques has been presented in the 
previous section. Current approaches are lacking of a neutral 
definition and are depending on some specific technology. For 
instance, zooming over the web page through the mobile web 
browser facilities [21], the generation of summaries [20] also 
other methods deliver a series of tiles [22] since there are more 
limitations in terms of space in the mobile devices. This 
produces an increment in the number of pages delivered from 
a less restrictive environment. 

Some architectures has been proposed in order to support 
UI description for multiple devices [19], [23] and [24] 
however the resultant UIs are limited to text or form based 
structures since more complex structures are not considered.  

Multiple problems are derived from the design of 
containment structures. The problem of dividing the UI over a 
physical space is treated in [1], [7] and [3] where the problem 
is resolved by the creation of multiple views (i.e. sub divisions 
of the original web page).  Meanwhile, the problem is resolved 
taking into account physical aspects (e.g., geometrical 
constraints) in [9] and [14].  

Other direction is the analysis of the UI expressed as a 
neutral definition (usually based on a XML description). Some 
descriptions are based on Task Trees [2], [4]and [8]. In [13] is 
proposed a method near to this paper since it also used a 
bottom-up analysis of the task tree. Here, some nodes are 
marked as splittable or not in order to indicate the “cutting 
point” to produce a new web page. However, their method 
lacks the recovery of information from temporal operators. In 
the other hand, in [11] the temporal operators are taking into 
account but the goal of is a process of degrading (or reduction 
combined with division) to fit in more limited devices instead 

of proposing a creation/design method. Also in [8] the task 
model is used to create a presentation. Here it is defined a sets 
of enabled tasks which are active at the same time. The source 
of information is the domain model (a data model that the UI 
should update) besides the user’s goals in [12].    

III. MODEL DRIVEN ENGINEERING APPROACH 
Our methodology is supported by a Model driven 

engineering approach [13], [14] and [15]; we are going to 
present its core elements: the CAMELEON framework [15], 
UsiXML [13] and the CTT task model [8].  
1) CAMELEON Framework  

The design of UIs using a model based approach that 
includes features as Multi-level abstraction and Modality 
independence [25] requires the use of a framework to deal 
with the complexity of the process. We are using the 
CAMELEON framework [15]. This framework divides the 
development process in four successive levels of abstraction: 
Task and concepts (T&D), Abstract User Interface (AUI), 
Concrete User Interface (CUI) and Final User Interface (FUI). 
The UI is represented in the User Interface Description 
Language, UsiXML (UsiXML which stands for User Interface 
eXtensible Markup Language). This language provides the 
representation of the UI in the four levels of the framework, in 
a design independent way and over multiple contexts e.g., 
Character, vocal and Graphical User Interfaces among others.   
2) CTT-based task models 

The Concur Task Tree model (CTT) is a well known 
technique in Computer-Human Interaction to model an 
application in an independent platform way. The task model of 
UsiXML is implemented through CTTs. The objective of this 
model is to explain the work that the user pursuits as a 
hierarchy of tasks where each task is decomposed until 
arriving to basic tasks. The description below is very brief and 
a more detail description could be found in [8]. The sibling 
tasks (denoted as T) are related to each other through the 
following binary and unary operators: Concurrent Operators: 
These operators imply that T1 and T2 are performed in any 
order, in a concurrent order: |=|, ||| and |[]|. Sequential 
operators: [>, |>, >> and []>> these operators imply a strict 
sequence in the order of execution of the tasks. Selection 
operator: [] exclusive choice between T1 and T2. The unary 
operators include: The Optional operator [T] that implies the 
dispensable nature of some tasks.  The Iterative operator T* 
that gives the model the faculty of describing cycles.  

IV. METHOD OUTLINE  
The method steps to generate context-aware UI containers 

are described in the following diagram (Fig. 1). Each time that 
the UI is refined more details from the context are added. The 
first one is the knowledge about the number of layers. Next, 
the vicinity of the containers and finally, the container patterns 
applicable to the specific platform. Now, each one of the 
process is explained in detail. It is worth noting that this 
proposal is using some heuristics that have been presented in 
[8]and [13].  

64

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 

 

 
Fig. 1: Diagram of the proposed method. The steps can be refined multiple 
times (this is depicted with the arrows inside the blocks) and after that applied 
a new refinement. In (d) it is depicted the final result of the procedure, a 
plausible container structure.    

A. Defining the Containment Structure 
The next section describes the proposed method for 

producing a containment structure. The revised application is a 
minimalist weather application from the catalog of demos 
from open Laszlo (www.openlaszlo.org). Her goal is very 
straightforward: deliver weather and forecast information 
about an American city. (See Fig. 2). The neutral and 
simplified version (as a Task Tree) of this application is 
presented in Fig. 3. There, the UI model is divided into two 
main sections: Rain and shine and Show Results which are 
also divided in more subtasks. Finally, the execution path is 
represented by temporal operators that show the running order 
inside the task tree. 

  

 
Fig. 2: Screenshot of the case study, in left the zip code is requested and the 
right shows a series of data of the weather. 

 
Definitions of some terms introduced later in the paper are 

presented here: A level is a set of tasks recovered by an 
exploration of all nodes adjacent to the current task node in a 
breadth-first search (see Fig. 4). The root by definition is the 
first level. Also we have to define the concept of layer which 

is a tier from a hierarchy of containment elements in a specific 
platform (e.g. a Java component Jpanel is capable of carrying 
inside other components, so if we have a panel with a button 
inside this is a one-layer application). Since we are dealing 
with Task trees a level is renamed layer in order to represent a 
tier of a specific platform in the moment of evaluating the tree 
in order to create sub trees (container hierarchies).  
  

 
Fig. 3: Task Tree Model of weather Application. 

 

 
Fig. 4: Describing elements: Root (a), a level (b) and first anchor of the task 
tree (c). 

 
 

1) Recovery of sub trees 
First, we have to identify the levels (see Fig. 4). The case 

study produces six levels. The procedure starts a bottom-up 
climbing in order to search for the nth layer. The starting point 
is called anchor node (see Fig. 4 section c) and it’s the deepest 
node of the tree. This process is repeated until the root node is 
reached. Each sub tree is called Virtual Container (VC). Note: 
the formal definition of the algorithm to recover VCs is 
presented in the Fig. 5.      

65

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 
 

 
Fig. 5: Algorithm for generating Virtual Containers. 

 
The number of layers is neither fixed nor static in most of 

the platforms. Nevertheless, it is possible to define an 
approximate value in order to guide the work of designers. 
This is more accurate in mobile devices where the restrictions 
are more explicit. For instance, in Fig. 6 features of a sample 
of mobile devices are presented. In the proposed case study, if 
four layers are selected then two containers are produced (see 
Fig. 7). 

 
Fig. 6: Some features of four platforms.  
 

 
Fig. 7: Virtual Containers generated for the case study. 
 

2) The generation of the internal structure of containers 
Now, the next process is the evaluation of the internal 

structure of each one of the sub-trees (Fig. 7 sections a and c). 
This procedure is based on the generation of abstract 
containers of [13].  

 
Fig. 8: Walk inside a VC in order to process its internal components.  
 

The nodes are classified in two types: inner nodes and leaf 
nodes. The first category involves any sibling of a set where at 
least one of the nodes is itself a parent node (e.g. Fig. 8 section 
a). Otherwise, the nodes are marked as members of the second 
category (e.g. Fig. 8 section c).Then (1) is applied to each set 
of nodes (for instance, Fig. 8 sections a to c). The generation 
of containers without restrictions is equal to the calculation of 
the number of sub-sets or partitions of a set (Bell numbers). 
For instance, in Fig. 9 are depicted three inner tasks and the 
result of the application of (1) which delivers six possible 
subsets (note, the original formula of the Bell numbers does 
not include the empty set).   

 
Fig. 9: example of application of the generation formula over a VC with three 
inner tasks. 

 
The next paragraph describes (1): Let I and L denote the 

sets of inner and leafs nodes, respectively. Let op denote the 
operator set formed by {C, F, and S} Where C is the set of all 
concurrent operators. F is the Selection operator and S is the 
set of sequential operators. Let T denote the analyzed task set. 
Finally, let n denote the amount of generated containers. 
 

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈∧∈←
∈∧∈←
∈∧∈←
∈∧∈←
∈∧∈
∈∧∈

←
←∪

=

SopLT
SopITn
FopLT
FopITn
CopLT
CopITnB

nG

0

1

0
0)(

 (1) 

 
The formal description of this method is shown in Fig. 10. 
Here again with a breadth-first walk we are going to search for 

66

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 

parent nodes in order to analyze their children. First, marking 
them as inner or leaf nodes and after that to generate a 
containment structure depending on the application of (1).  
 

 
 Figure 10: The process of generating containers. 

 
It is possible to deliver three scenarios from the VC 

depicted in Fig. 7 section c (these configurations are presented 
in Figs. 11, 12 and 13). In Fig. 13 the abstract container select 
options is omitted. But in order to retain the relationship 
between their children they are renamed. For instance, the 
forth container of Fig. 13 should be renamed: 
SelectOptions.ShowForecast. 

 
Fig. 11: A feasible configuration with 9 container units (C1). 
 

 
Fig. 12: A feasible configuration with 8 containers (C2). 

 
Fig. 13: A feasible configuration with 7 containers (C3). 
 
3) Choosing the configurations 

In order to choose the most suitable configuration the next 
step is a weighting process, based on the values of table 1. The 
weight is calculated taking into account their operators and 
tasks. The counting (2) only include the exposed elements (to 
reduce the complexity of the calculation).  In Fig. 14 the result 
of this calculation is shown as reduced weighting trees.   

 

∑∑ ×+×= woperatorswtasksvalue  (2) 

 

 
Fig. 14: Cost of each container in the Show-Results VC. 
 
 

 
 

Weight Items to process 

 
Task 
 Type 

Operator  
Type 

8 - Concurrent 

4 Interactive Choice 

2 Application Sequence 

Table 1: Weight of task tree elements. 

67

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 
 

In table 2, it is presented the result of the calculation. Each 
layer has a specific weight. It is worth noting that the selection 
of the weight could lead to specific configurations in this case 
the tasks in the deep layers are penalized with more weight. 
Note: the process of selecting weights is based on empirical 
notions (indeed, the definition of a normalized process is a 
work in progress). According to table 2 the best configuration 
is C2 (Fig. 14 section b).  

 

  
 
4) Navigational tasks  

 
The VCs are connected through navigation elements 

following the procedure described in [13]. A special case is 
the fragmentation produced by the method for instance if a 
VC’s root node is member of another VC the approach taken 
in this method is the introduction of a navigation component 
from one VC to the other one (at the level of the AUI 
definition).     

 

B. Classification of Containers 
Other source of information that it is going to give us more 

details to support the container building is the structure that 
could take our task tree. Even if the amount of combinations is 
big, it does not exclude the possibility of proposing a 
categorization of the containers in terms of a series of features 
that will be described below:  

 
1) Capacity 

That is the amount of embedded tasks/elements inside a 
container. (Also it is possible to understand it as the number of 
children nodes under a parent node i.e. the cardinality). In 
order to describe the capacity we have to specify two 
conditions:  

First, the case of (1) which involves the use of Bell numbers 
(the conditions for this are the existence of concurrent 
operators in inner nodes).This could be described in a more 
formal way as: 

 

1)1(),( >∧<<⊆ ipnkknSP  (3) 

 

⎪
⎩

⎪
⎨

⎧

=∧←
<<←

=∧←
=

1),(
1

),(1
),(

kknSn
nkP

nkknS
knCap  (4) 

 
Let P denote the set of all possible partitions (3) where pi 

indicates a specific partition, here it is exploited its cardinality 
to exclude sets with one elements. Let n denote the number of 
nodes in a set. Let k denote the number of non-empty subsets 
that are possible to deliver over the partition of a set of n 
elements. Finally, let S denote Stirling numbers of the second 
kind (i.e. the equation to calculate these partitions).  

 
Second, the other alternatives of (1) are correlated with the 

cardinality of the children sets (for instance, with four inner 
nodes connected by sequential operators the capacity of each 
container is one). 

 
2) Adjacent Disposition  

This feature is the relation of adjacency between tasks. 
Since all the children tasks of each sub-tree could be ordered 
as a sequence from left to right (this disposition does not affect 
the real attributes of the tree, because we are only dealing with 
the graphical representation). Then, two categories are 
possible: 

 
 Contiguous. The children tasks are located in an 

order that follows the natural numbers (N). 
 Non-contiguous. This disposition breaks the 

natural order also depending on the process of 
generation of containers could relate geometrically 
distant tasks of the task tree.   

Based on these features is possible to imply some heuristic 
rules over the container structure again with the information 
provided by the operators; the first one,  

 
HR1: Sequential operators could be associated with 

contiguous configurations since they are obliged to follow N 
(See Fig. 15). Then all alternative configurations are valid and 
it could be possible to reduce the number of containers. 
Another interesting consideration is that, every container of 
capacity equal to one is contiguous therefore; the order should 
be respect over container sets. 

 

 
 
Fig. 15: Cost of each container in the showResults VC. 

HR2: the discontinuous configuration should be associated 

Layers Weight Calculated cost per level 

 C1 C2 C3 

1 2 8 0 12 

2 1 12 12 28 

3 3 28 28 68 

4 2 68 68 - 

Weighted average 31 29 32 

Table 2: Result of weighting process 

68

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 

to choice or concurrent operators. Now, we are going to 
present the result over one part of the case study.  

 
The application of the rules in different ways could produce 

different scenarios. For instance, in Fig. 14 containers five, six 
and seven could be merged according to the HR1 into 
configurations which respect the rule. The results from the 
application of (1) are fixed but though HR1 and HR2 they 
could be updated since our goal is the delivery of plausible 
containment scenarios instead of optimal ones. Also, we are 
not dealing with internal spatial location of the widgets (this 
issue is outside the scope of this paper). 

 
3) The generation of the AUI 

In the previous step the second configuration has been 
presented to the designer. The process of transformation from 
task model to AUI is out of the scope of this paper since it’s 
discussed in [2] and [13]. The final process would deliver the 
AUI depicted in Fig. 16 for the container C2. The method at 
this point would provide us with two AUIs that should be 
connected with the introduction of navigation elements. For 
instance, the way of connected the UIs could be seen more 
clearly in the problem of the fragmentation of the sub tree 
depicted in Fig. 6 section b. There, the task ShowResults is a 
sub task of an upper tree besides it’s the root node of other 
container. Then, the approach taken to resolve this situation is 
the introduction in the upper container a navigation 
component pointing to the other container.  

 

 
 

Fig. 16. Conversion to AUI of the container C2. 
 
At last, as an example of the final result (see Fig. 17), we 

include a possible FUI of the Container that was labeled as C2 

(Note: this step involves the transformation of the CUI 
definition to a FUI one through the information available in 
table 3 which shows a fragment of the mapping process 
between CUI to FUI elements [2], [13]).  

 

 

 
Fig. 17: Possible Final User Interface using the GWT framework.  

C. The selection of the UI Complexity metrics 
After the process of selecting a configuration that will be 

used to update the CUI model in terms of containment 
structure. We arrive to this point where it’s possible to leave 
the semantic level and deal with layout constraints. In order to 
understand better the process behind the layout generation and 
UI complexity we are going to compare the different metrics 
used in some of the algorithms described above. We are going 
to review four metrics: µ1 (based on amount of items), µ2 
(based on weight of items), µ3 (based on widget surfaces) and 
µ4 (based on cognitive load). 

 
1) µ1 = Based on amount of items 

This is the simplest approach to the problem and in fact, it’s 
a simplification of the actual scenario of the UI. The process is 
straightforward: first we have to define a max capacity of our 
container and then the amount of items from a UI is counted. 
If the maximum is reached then another container is 
instantiated [34].  

 
2)  µ2 = Based on weight of items 

This approach to the problem requires the definition of an 
attribute weight to evaluate in a better way the widgets I each 
UI. We are going to associate the purpose of the elements of 
UI according to five roles: input elements, output elements, 

Possible 
mappings Widget 

Type of 
container 

CUI: 
UsiXML FUI : GWT widgets  

Top level 

Window, 
dialogbox, 
flowbox,g
ridbox,bor

derbox 

AbsolutePanel, 
DialogBox, DockPanel, 

FlowPanel, 
HorizontalPanel, 

VerticalPanel,  TabPanel, 
DialogBox,FlexTable 

Low level groupbox, 
Box,table, 

FormPanel, Frame,        
Grid, TextArea, TextBox 

Table 3: Mapping between CUI and FUI elements. 

69

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 
 

navigation elements or control elements [13] also we added 
the number of boxes to take into account the general 
geometrical structure. Each element has a specific value (see 
table 4) that is used to calculate the weight. The selection of 
the weight is based on heuristics about the complexity of the 
elements.  

 

 
 
3) µ3 = Based on widget surfaces 

This approach takes into account the visual design of the UI 
and the spatial constraints of the system.  It’s deeply discussed 
in [13] and [14]. Here we use bins of the same height and 
width (20 pixels) in order to simplify the counting process. 

 
4) µ4 = Based on cognitive load 

This approach uses the action analysis ideas from [27] to 
understand the processes behind the actions of the user in 
order to accomplish a task through a UI. Each element has a 
specific value that is used to calculate the weight. We have 
used the values proposed in [26] where it’s defined a Perceive 
Constant (PC) of 100ms; the cost of understanding a widget is 
230ms and 340ms for written text. 

 
5) Description of the used examples  

In order to test these metrics we have selected a group of six 
UIs: first, a login process, then a RSS reader, a shopping cart, 
an address book, a movie catalog, and finally a reservation 
system (see Fig. 18). All of them created with the Google Web 
Toolkit (GWT). The normalized results are shown in table 4.   

 

 
Fig. 18: The generated UIs with the GWT as examples. 

 

 
 
The result of this could be seen in this following graphic 

(Fig. 19). Note: each line correspond to each metric but in a 
normalized presentation. It is interesting to notice that even 
with more sophisticated metrics the tendency was very similar 
and we did not gain more information. Then we should infer 
that in the construction of containers is not necessary to 
involve complex metrics.  
 

Comparative of metrics

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

User Interfaces

W
ei

gh
t

µ1

µ2

µ3

µ4

 
Fig.19: The result of the different metrics.  

 
 
This is especially useful for the web applications (as the UIs 

generated with GWT that we have presented) because time 
would be used in other issues not in an expensive calculation 
not acceptable for the latency of the mobile domain.   

D. Inclusion of Container Patterns  
The deployment of the CUI into a specific FUI for mobile 

devices requires more knowledge of the condition of these 
devices. And table 5 shows some of the possible mappings to 
deliver the FUI.  
 

# M1 M2 M3 M4 

1 8 6.4 0.98 10.48
2 14 7.6 3.23 17.27
3 26 19 17.8 27.67
4 43 25 17.7 45.79
5 53 34 10.1 62.33
6 63 35 32.8 66.91

Table 4: Weight values of the elements of the UI. 

Role of element Weight  

Navigation (N) 5 

Output (O) 1 

Boxes (B) 10 

Input (I) 3 

Control (C) 5 

Table 4: Weight values of the elements of the UI. 

70

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 
 

 
 
In this step is possible to introduce some container patterns 

(see Figs. 20 and 21) that are proposed.  This classification of 
container patterns could be applied depending on the device’s 
features (see table 5). With this information is possible to 
refine even more the containment structure derived until now 
(The list of devices correspond to those presented in Fig. 6 
from left to right are labeled: A,B,C and D in table 5).  

 

 
Fig. 20: Proposed Container patterns. 

 
Fig. 21: Proposed Container pattern (continuation). 

 
For instance, in the case study with four layers and taking as 

the delivering platform a PDA (table 5, last row: device D) It 
could used the full gamma of patterns. In Fig. 17, the selected 
pattern is first one. Nevertheless, if the device has enough 
space, the pattern number forth is a more interesting option.  

 
 

V. CONCLUSION AND DIRECTIONS FOR FUTURE WORK 
In this paper, it has been described an iterative method to 

help UI designers in the process of defining containment 
structures in the mobile domain. This method takes into 
account contextual information (the platform, temporal 
relationships between tasks and vicinity of the tasks). The 
starting point is a task tree which is used as the skeleton base 
in order to support a structure of containers. Furthermore, the 
utilization of task trees delivers a neutral definition that allows 
the method to stay platform independent. The designs could be 
refined multiple times (different scenarios) in order to explore 
new configurations. For this purpose a set of metrics has been 
proposed and reviewed and the results obtained suggest that 
some of them even if they seem more complex and fine-
grained do not compulsorily ameliorate the process of finding 
the UI structure as consequence it’s better to use simple 
metrics in order to fulfill a threshold to construct the 
containers. Finally, A fundamental consideration is the fact 
that our method for the moment is not looking optimization as 
in [5] and [6] instead of that, it provides plausible scenarios to 
the designer.  

A. Future work 
A main issue is the refinement of the technique for selecting 

weights (now, this process is done based on empirical 
notions). Also, we are working in a better system of pruning 
low quality configurations in order to show the designer the 
most acceptable ones. This last task implies the development 
of an application to help the designer with this task.  

REFERENCES 
[1] Badros, G.J. Borning, A., and Stuckey, P.J. The Cassowary Linear 

Arithmetic Constraint Solving Algorithm, ACM Trans. on Computer-
Human Interaction 8, 4 (2001) pp. 267-306. 

[2] Bouillon, L. and Vanderdonckt, J. Retargeting Web Pages to other 
Computing Platforms with VAQUITA. In Proc. of WCRE’2002, IEEE 
Computer Society Press, Los Alamitos (2002), pp. 339-348. 

[3] Chen, Y., Xie, X., Ma, W.-Y., and Zhang, H.-J. Adapting Web Pages for 
Small-Screen Devices. IEEE Internet Computing 9, 1 (2005), 50-56. 

[4] Chu, H., Childreng, H., Wong, C., Kurakake, S., and Katagiri, M. Roam, 
a Seamless Application Framework. Journal of System and Software 69, 
3 (2004), 209-226. 

[5] Fogarty, J. and Hudchildren, S.E. GADGET: A Toolkit for 
Optimization-based Approaches to Interface and Display Generation. In 
Proc. of UIST’03, ACM Press (2003). 

[6] Gajos, K. and Weld, D.S. SUPPLE: Automatically Generating User 
Interfaces. In Proc. of IUI’2004, ACM Press (2004), 93-100. 

[7] Lim, A. and Zhang, X. The Container Loading Problem. In Proc. of 
SAC’05, ACM Press (2005). 

[8] Paternò, F., Model-Based Design and Evaluation of Interactive 
Applications. Springer-Verlag, London, 1999. 

[9] Sears, A. AIDE: A Step Toward Metric-based Interface Development 
Tools. In Proc. of UIST’95, pp. 101-110. 

[10] Mahemoff, M., Ajax Design Patterns. O'Reilly & Associates, Inc., USA, 
2006. 

[11] Florins, M., Simarro, F. M., Vanderdonckt, J., and Michotte, B. 2006. 
Splitting rules for graceful degradation of user interfaces. In Proceedings 
of the Working Conference on Advanced Visual interfaces (Venezia, 
Italy, May 23 - 26, 2006). AVI '06. ACM Press, New York, NY, 59-66. 

[12] C. Pribeanu, J. Vanderdonckt, Exploring Design Heuristics for User 
Interface Derivation from Task and Domain Models, Chapter 9, in 
Proceedings of 4th Int. Conf. on Computer-Aided Design of User 
Interfaces CADUI'2002 (Valenciennes, 15-17 mai 2002), Kluwe 
Academics Pub., Dordrecht, 2002, pp. 103-110. 

Device Container Patterns 

 1 2 3 4 5 6 

A X      

B X  X  X  

C X X X  X  

D X X X X X X 

Table 5: Mapping between devices/patterns. 

71

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.



 
[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, 

V. UsiXML: a Language Supporting Multi-Path Development of User 
Interfaces, Proc. of 9th IFIP Working Conference on Engineering for 
Human-Computer Interaction jointly with 11th Int. Workshop on 
Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). Lecture Notes in Computer 
Science, Vol. 3425, Springer-Verlag, Berlin, 2005, pp. 207-228. 

[14] Bodart, F., Hennebert, A., Leheureux, J., and Vanderdonckt, J. 1994. 
Towards a dynamic strategy for computer-aided visual placement. In 
Proceedings of the Workshop on Advanced Visual interfaces (Bari, Italy, 
June 01 - 04, 1994). M. F. Costabile, T. Catarci, S. Levialdi, and G. 
Santucci, Eds. AVI '94. ACM Press, New York, NY, 78-87. 

[15] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. 
Vanderdonckt, A Unifying Reference Framework for Multi-Target User 
Interfaces, Interacting with Comp., Vol. 15, No. 3, June 2003, pp. 289-
308. 

[16] Hürst, W., Lauer, T., and Nold, E. 2007. A study of algorithm 
animations on mobile devices. In Proceedings of the 38th SIGCSE 
Technical Symposium on Computer Science Education (Covington, 
Kentucky, USA, March 07 - 11, 2007). SIGCSE '07. ACM, New York, 
NY, 160-164. 

[17] Zhao, D., Grundy, J., & Hosking, J. (2006). Generating mobile device 
user interfaces for diagram-based model-ling tools. Proceedings of the 
7th Australasian User in-terface conference - Volume 50, 101-108. 

[18] Bickmore, T., and Schilit, B, Digestor: Device-Independent Access to 
the World Wide Web. In Proc. Seventh Intl. WWW Conference 1997, 
pp. 655–663. 

[19] Bonifati, A., Ceri, S., Fraternali, P., Maurino, A.(2000) : Building multi-
device, content-centric applications using WebML and the W3I3 Tool 
Suite, Proc. Conceptual Modelling for E-Business and the Web, LNCS 
1921, pp. 64-75. 

[20] Chen, Y., Ma, W.Y., and Zhang, H.J. (2003): Detecting Webpage 
Structure for Adaptive Viewing on Small Form Factor Devices. In Proc. 
WWW’03, 20-24 May 2003 Budapest, Hungary, pp 225–233. 

[21] Eisenstein, J. and Puerta, A. (2000): Adaptation in automated user-
interface design, Proc. 2000 Conference on Intelligent User Interfaces, 
New Orleans, 9-12 January 2000, ACM Press, pp. 74-81. 

[22] Baudisch1, P., Xie, X., Wang C., and Ma, W.Y. (2004): Collapse-to-
Zoom: Viewing Web Pages on Small Screen Devices by Interactively 
Removing Irrelevant Content. In Proc.UIST '04. 

[23] Palm Corp. (2001): Web Clipping services, www.palm.com, 2001. 
[24] Grundy, J.C. and Zhou, W. (2003): Building multidevice, adaptive thin-

client web user interfaces with Extended Java Server Pages, In Cross-
platform and Multi-device User Interfaces, Wiley, 2003. 

[25] Vanderdonckt, J. A MDA-Compliant Environment for Developing User 
Interfaces of Information Systems. In Proc. of CAiSE'05, Springer-
Verlag, (2005), pp. 16-31. 

[26] Montero, F., López-Jaquero, V., Lozano, M., González, P., IdealXML: 
un entorno para la gestión de experiencia relacionada con el desarrollo 
hipermedial, in ADACO: Ingeniería de la usabilidad en nuevos 
paradigmas aplicados a entornos web colaborativos y adaptativos, 
Proyecto Cicyt TEN2004-08000-C03-03, Taller celebrado en Granada, 
September 2005. 

[27] J.R.Olson, G. Olson. The Growth of Cognitive Modeling in Human-
Computer Interaction since GOMS. Human-Computer Interaction, 
1990,Volume 5, pp. 221-265, Lawrence Erlbaum, 1990. 

[28] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and 
Steggles, P. 1999. Towards a Better Understanding of Context and 
Context-Awareness. In Proceedings of the 1st international Symposium 
on Handheld and Ubiquitous Computing (Karlsruhe, Germany, 
September 27 - 29, 1999). H. Gellersen, Ed. Lecture Notes In Computer 
Science, vol. 1707. Springer-Verlag, London, 304-307. 

 

72

Authorized licensed use limited to: Saerens  Marco. Downloaded on October 24, 2008 at 12:07 from IEEE Xplore.  Restrictions apply.


