

A Development Method for
User Interfaces of Rich
Internet Applications

By Francisco Javier Martínez Ruiz

A thesis submitted in fulfillment of the requirements for the degree of

Diploma of Extended Studies (Diplôme d’Etudes Approfondies)
in Management Sciences

Option “Information Systems”

of the Université catholique de Louvain

Examination committee:

Prof. Jean Vanderdonckt, Advisor
Prof. Monique Noirhomme-Fraiture, Examiner

Prof. Jaime Muñoz Arteaga, Examiner
Prof., Université, Reader

Prof., Reader

 ii

 Acknowledgement

I would like to express my thanks to:

− My advisor, Professor Jean Vanderdonckt, for his constant support and tremendous
patience that make me focus in the goal.

− Professor Jaime Muñoz Arteaga for his ideas and academic discussions.

− Professors Monique Noirhomme-Fraiture for accepting to participate to the jury of
this thesis.

− My parents: Juanita and Francisco (without their love, cares and support I couldn't do
this).

− My colleagues from IAG school of management at Université catholique de Louvain.
Special thanks to Josefina Guerrero, Adrian Stanciulescu and Juan Manuel Gonzalez
Calleros.

This thesis was realized thanks to the support of:

− The Programme AlBan for their grant to support my work (the European Union
Programme of High Level Scholarships for Latin America, scholarship No. (E06D101371MX).

− The BHCI laboratory at UCL/IAG/ISYS.

− The University of Zacatecas (Specially, the PhD. H. Rene Vega Carrillo).

−The UsiXML Consortium1.

1 http://www.usixml.org for User Interface eXtensible Markup Language.

 iii

 1

Table of Contents

ACKNOWLEDGEMENT .. II

TABLE OF CONTENTS...1

TABLE OF FIGURES ..4

TABLE OF TABLES ..6

CHAPTER 1 INTRODUCTION...7

1.1 Motivation: Why Modelling Graphical User Interfaces for Rich Internet
Applications based on model-driven engineering?.. 7

1.2 Thesis ... 9
1.2.1 Thesis statement ... 9
1.2.2 Definitions .. 9
1.2.3 Focus .. 11

1.3 Reading Map... 11

CHAPTER 2 STATE OF THE ART..13

2.1 Introduction to Web Technology .. 13
2.1.1 The Web Platform .. 13
2.1.2 The Standard Web Application Architecture ... 15
2.1.3 The general RIA Architecture ... 16
2.1.4 Dialogue architectures .. 16
2.1.5 Design frameworks and tools ... 18

2.2 Classification of User Interface Models and design approaches...................... 19
2.2.1 CAMELEON Framework .. 20

2.3 User Interface Description Languages ... 22
2.3.1 XML-based User Interface Description Languages 22

2.4 User Interface Modelling in Web development ... 22
2.4.1 HTML... 22
2.4.2 XHTML.. 23
2.4.3 DISL ... 23

 2

2.4.4 XAML .. 23
2.4.5 Open Laszlo (LZX) .. 23
2.4.6 XFORMS.. 23
2.4.7 MXML.. 24
2.4.8 XUL.. 24
2.4.9 XBL .. 24
2.4.10 SVG .. 24
2.4.11 AJAX.. 24

2.5 Comparison between UIDLS... 24

2.6 Comparison between Client-Server Dialogues .. 26

2.7 Comparison between normal webapps and RIAs ... 26

2.8 Conclusions ... 28

CHAPTER 3 TASK AND DOMAIN MODELLING..29

3.1 Task modelling.. 29
3.1.1 Introduction of case study .. 30
3.1.2 Task model of the Mobalpa Running Example (MRE).................................. 30
3.1.3 Task types: Are the RIA tasks different from other tasks? 32

3.2 Domain modelling... 35

3.3 Derivation of RIA level from Task and Domain models................................... 36
3.3.1 Categorization of RIAs... 36
3.3.2 Dimensions of RIAs ... 38
3.3.3 Derivation of RIA level from Task and Domain models 39
3.3.4 Applying to the Mobalpa Running Example.. 39

3.4 The Role of XLST in the overall process of reification..................................... 40
3.4.1 The XLST language ... 41

CHAPTER 4 BUILDING THE ABSTRACT USER INTERFACE......................42

4.1 Identification of Abstract Container Hierarchy.. 42
4.1.1 Containers and webapps ... 43
4.1.2 The Problem of creating the clusters and their associated containers 43
4.1.3 Applying to MRE ... 51

4.2 Selection of Individual Components ... 53

4.3 Designing the menu .. 56
4.3.1 Steps in menu selection .. 57
4.3.2 Algorithm to generate menu objects... 58
4.3.3 Proposing a taxonomy of menu objects.. 60

 3

4.3.4 Menus on RIA applications .. 64
4.3.5 Implantation of the menu in the AUI ... 65

CHAPTER 5 CONCRETE USER INTERFACE REPRESENTATION..............66

5.1 Selection of target platform ... 66

5.2 Transformation of AUI in CUI ... 67
5.2.1 Selection of Concrete Interface Components ... 67
5.2.2 Defining CICs spatial position ... 68
5.2.3 Defining Navigation ... 68
5.2.4 Resulting CUI UsiXML specification .. 68

5.3 Refining presentation and behavior for CUI ... 69
5.3.1 Behavior a basic introduction... 69
5.3.2 Behavior of the CUI representation.. 70

CHAPTER 6 GENERATION OF FINAL USER INTERFACE71

6.1 Processing the CUI to generate the Final User Interface 71

CHAPTER 7 CONCLUSION..74

7.1 Summary of contributions ... 74

7.2 Brief discussion of future work ... 75

REFERENCES ..76

ANNEX A. TASK TYPE TAXONOMY..88

ANNEX B. COMPARING STANDARD WEB APPLICATIONS AND RIAS89

 4

Table of Figures

Figure 1-1: XSLT transformation... 11
Figure 1-2: Reading paths. ... 12
Figure 2-1: Web Architecture components. ... 13
Figure 2-2: Web Architecture relationships (based on [Jaco04])....................................... 14
Figure 2-3: Basic web Architecture.. 14
Figure 2-4: Web Application Architecture components. ... 15
Figure 2-5: Typical architecture of RIAs. .. 16
Figure 2-6: Dialogue architectures of Web applications.. 17
Figure 2-7: General Dialogue architecture of RIA applications .. 18
Figure 2-8: Classification of User interface models and design approaches...................... 20
Figure 2-9: The CAMELEON Reference framework .. 21
Figure 3-1: In step 1 the task and domain models are created as well as

the interaction of the User Interface ... 29
Figure 3-2: Mobalpa site .. 30
Figure 3-3: MCS Task model ... 31
Figure 3-4: Task types in a RIA application .. 32
Figure 3-5: The Star field visualization of the price range (unselected). 33
Figure 3-6: The Star field visualization of the price range (selected) 33
Figure 3-7: MCS Domain model.. 35
Figure 3-8: The Data/Complexity continuum in Web Applications 37
Figure 3-9: a Rich Internet Applications Categorization ... 38
Figure 3-10: Decision tree for derivate the RIA level. ... 40
Figure 4-1: Activities to create an Abstract User Interface.. 42
Figure 4-2: a The Basic layers of a web application .. 45
Figure 4-3: example of a Java GUI and its hierarchy of containers................................... 46
Figure 4-4: this minimal task tree shows the calculated values of x and y, 2 and 4

respectively... 47
Figure 4-5: The identification of Abstract Containers (v containers) and their components

.. 48
Figure 4-6: The possible configurations of the containers for three leave tasks affected by

concurrent operators ... 50
Figure 4-7: Possible configuration of containers.. 51
Figure 4-8: The levels and containers of MRE .. 51
Figure 4-9: The Containers X8 and X7 that are generated... 52
Figure 4-10: The Container X6 with detail of navigation marker....................................... 52
Figure 4-11: The AUI with the selection of facets of containers X8 54
Figure 4-12: The AUI with the selection of facets of containers X7 54
Figure 4-13: The AUI with the selection of facets of containers X6 54
Figure 4-14: The steps of interaction with a menu... 57
Figure 4-15: Menu in the task tree of MRE ... 59
Figure 5-1: Sub steps of the transformation from AUI to CUI .. 66

 5

Figure 5-2: Elements of graphic modality.. 67
Figure 5-3: Fragment of a CUI UsiXML file ... 69
Figure 6-1: The final step: delivering a RUI .. 71
Figure 6-2: The final step: delivering FUI code for the interpreters or compilers. 72
Figure 6-3: XSL transformation document .. 73
Figure 6-4: XAML resultant file .. 73
Figure 7-1: a development method for User Interfaces of RIAs .. 75

 6

Table of tables

Table 2-1 Global comparison of UIDLs ..25
Table 2-2 Evaluated features in the UIDLs ...25
Table 2-3 Global comparison of dialogue features..26
Table 2-4 Description of abbreviations..26
Table 2-5 Comparison of features between SWA and RIAs27
Table 2-6 Available frameworks for RIA platforms..27
Table 3-1 extension of Taxonomy for including RIA task types.................................34
Table 3-2 Task types proposed in [Gonz07]..35
Table 4-1 UsiXML code of the three containers shown in the previous section.........56
Table 4-2 Menu generation Algorithm ..58
Table 4-3 Resultant menu structure for MRE..60
Table 4-4 Taxonomy of Menu elements..61
Table 4-5 Taxonomy of Menu elements extended to RIA ..64
Table 5-1 Fragment of AUI (some AIOs) from MRE and their equivalent CIOs.......67
Table 5-2 Dimensions of Behaviour Modelling (modified from [Bock99])70

Table A-1: Task types..88

Table B-1 Features and Weights needed to categorize a RIA89
Table B-2 Comparison between e-commerce applications ...90
Table B-3 Comparison between weather web applications...91
Table B-4 Comparison between web mail applications ..92
Table B-5 Comparison between map dispatcher applications.....................................94
Table B-6 Comparison between online reservation systems95

Chapter 1. Introduction

 7

Chapter 1 Introduction

1.1 Motivation: Why Modelling Graphical User
Interfaces for Rich Internet Applications based on
model-driven engineering?

Web applications are increasing their integration to our life. First, the document-
based web was substituted by applications using the same channel but trapped in
the same structure: the page metaphor. Now the classical web application is
yielding her position to more complex and intuitive applications: Rich internet
applications (RIA).

This new kind of applications is emerging with the help of a plethora of toolkits
and frameworks that help developers to create the sophisticated user interface
that it’s required by users since the beginning of web apps because of the natural
comparison between desktop and web applications.

The Design of Rich User Interfaces for internet applications (RUIs) remains in
the domain of experts who learned their craft over years. Some researchers
[Prec05] are aware that there is a need of developing specific methodologies
because the existing methodologies do not fulfil the challenges imposed by the
RUIs among them we can list the followings:

 Lack of methodology: as we stated before there are some methodologies but
they were proposed to endorse the development of classical web
applications, for instance: methods for creating a RUI are proprietary
solutions [Open06], [Flex07] or they are in initial states as [Lina07].

 Lack of experience: Every year, there are new emerging technologies,

frameworks and tools for web applications. Each one requires a learning
curve that is more pronounced by the lack of information about its

Chapter 1. Introduction

 8

integration, capabilities and usability considerations to the existing
technologies.

 Lack of knowledge: Developing a Web application requires gathering a vast

knowledge in an important set of technologies which need to be carefully
tuned to create in front of the user the illusion of unity. Most of developers
couldn’t achieve a full understanding of all the components and this is not
even advisable because within development teams it’s a better solution to
specialize our personal.

 Lack of Model-based tool support: Proprietary and free tools are still scare for

designing or coding of RUIs. Most of the tools are drawing or template
oriented user development environments.

 Reaching known levels of consistency: A user relies in his/her past experience with

similar systems when using a new one (this is consistency, a well known
principle of user interface design). Since the beginning of web apps the
user’s experience is behind the user expectations in comparison to desktop
apps but now RUIs offers the possibility of reaching consistency of Web
apps to known levels. Nevertheless, this implies a careful design, time and
expertise of the developing tool.

 Usability Considerations: developing a web user interface is a demanding task

because we have to deal with browsers that don’t follow W3C standards
and usability is sometimes compromised to limitations imposed for creating
a User Interface intended to a wide audience (usually this implies a design
with simpler interfaces with fixed features).

 Definition of a general framework: introducing a general model that allow

developers to specify abstract user interfaces without being attached to any
particular platform would reduce the costs of development and
maintenance of RUIs besides to support reusability of components and
adaptation of others to fulfil the requirements of alternative platforms.

Chapter 1. Introduction

 9

1.2 Thesis

1.2.1 Thesis statement

The research questions that guide our research are intimately related with the
spirit of Model Driven Architecture and standardization, there is a need to
develop a proper model for these emerging technologies to reduce developing
costs and to produce flexible and adaptable interfaces for the next technological
leap. Therefore, we inquire the following:

1. What are the elements that make different RUIs from Traditional Web
apps User Interfaces?

2. Is it possible to extract from the RUI UIDLs the common essential

elements to model it in a neutral language?

3. What are the extensions needed in UsiXML to model today RUI
frameworks features, such as: delivery of the interaction level, cinematic
experience and multimedia elements?

Therefore, we will defend the following thesis:

The introduction of a meta-model of user interfaces for Rich Internet
Applications establishes a common ground to standardize their design and
development through a model-based and neutral representation which could be
ported by a transformational schema to various web development
environments.

The concepts introduced above are succinctly defined in the next section.

1.2.2 Definitions

1.2.2.a Rich Internet Applications

The Rich Internet Applications or RIAs are Web applications that transfer the
load of processing the User Interface to the Web client while the control and
business data is managed on the application server. A more complete description
is devoted to them in the next chapter.

Chapter 1. Introduction

 10

1.2.2.b Model-based approach

This approach uses models as development tool to specify a UI independent from
a specific implementation [Flor06]. The models can be iteratively refined to
finally deliver platform specific models [OMG07]. Usually, the UI specification is
conformed by an interrelated set of models, each one describing an aspect of the
general model. The main advantages of model-based development include: User-
centered development (which allows designers manipulate tasks, users and
domain abstractions instead of implementation specific details) and portability
between platforms. Also in [Schm06] is highly pondered how model-based
development can deal with complex platforms and domain integration into
models.

1.2.2.c Neutral representation

This feature is important in three aspects: First, A neutral representation is
intimately related with consistency because with a neutral representation is
possible to use a consistent representation since early development steps to
almost the final implementation. Second, independent description as discussed
before allows portability between different environments. And third, the use of
open standards instead of proprietary solutions reduces the risk of technological
dependence of companies.

1.2.2.d Transformation schema

The Extensible Style sheet Language Transformation (XSLT) [Kay03] is the
transformational approach used in this work. XLST is indeed, a Turing complete
language [Keps04] designed to transform a XML document into another XML
document with a different structure. The source XML file remains the same and
the result of the application of the transformation rules is deposited in a new file
(Fig. 1-2).

Chapter 1. Introduction

 11

Figure 1-1: XSLT transformation.

1.2.3 Focus

 What is the focus of this thesis? Web applications, defined as: a
distributed software system which uses a web browser as its deployment
environment where the transit of data is endeavor with an HTTP gateway.
The request parameters are treated by the Web server in order to generate
a dynamic HTTP response [15]. Common examples are: Portals, e-
commerce and search engines web apps.

 Which Type of User Interfaces is studied? Graphical User Interfaces
(GUIs), because its preponderancy in the web apps arena.

 To whom is directed this work? As the presented tool remains a proof-
of-concept prototype, the target audience is the CHI research community
as well as academics interested in web applications and state-of-the-art
development.

1.3 Reading Map

The rest of the sections are organized as follows:
Chapter 2 presents a state-of-the-art review of User Interface Description
Languages (UIDLs) that are used for developing RUIs and the UI design in
general. The following Chapter 3 introduces the process to generate the Task &
domain models. Then, in chapter 4 discuss the generation of the Abstract User
Interface. Next, chapter 5 explains the steps needed to obtain the Concrete User
Interface. After, Chapter 6 describes our proposal to generate the Final User
Interface. Finally, Chapter 7 provides the Author's conclusions, a summary of the

Chapter 1. Introduction

 12

contributions and a brief discussion of future work. This whole methodology is
supported by the CAMELEON [Calv03] framework and a XSLT transformation
schema [Kay03]. In addition, for the different readers are provided alternative
paths for guiding the lecture in the document. Two path of readings are
considered (see fig. 1-2), the first one is recommended for the people with a basic
level of knowledge in web technologies and the second should be selected by
experts who already know about UI design.

Figure 1-2: Reading paths.

Chapter 2. State of the Art

 13

Chapter 2 State of the Art

This chapter is divided intro two sections: The first one includes a brief
introduction of the Web platform, the Standard Web application architecture2
beside the general RIA architecture. Then, the second part presents a review of
the state of the art of User Interfaces within the context of the Web.

2.1 Introduction to Web Technology

2.1.1 The Web Platform

The World Wide Web (or simply web) is based upon three core components: The
Uniform Resource identifier, the interaction protocols used by the agents to get
the resources and a representation of the data contained by the resource [Jaco04].
The basic components are depicted in figure 2-1.

Figure 2-1: Web Architecture components.

All resource available through the Web uses a common representation system in
order to assure the identification of the resource by all the agents (e.g., a Web
browser). This marker is called: The Uniform Resource Identifier (URI). The
syntax of the URIs is expressed using different schemes, for instance to represent
an email we have to include “mailto” followed by a colon symbol “:” and then the
email, to produce something like this:

mailto:joanna@myexample.org

2 A brief definition of the concept of Web applications was included in the previous chapter but
in this section we review them in deep for establishing their general architecture. Then, we use
this description to build a comparison framework that is employed to analyse the structure of
RIAs and extract their essential features.

Chapter 2. State of the Art

 14

The interaction between the Web agents is endeavour by standard protocols (e.g.,
HTTP, FTP, SOAP, NNTP, and SMTP) that allow the exchange of messages
among them. For instance, if we have to retrieve some information from a FTP
service, the procedure includes a command to request the data (e.g., a FTP GET
request over the port 21 in the TCP/IP protocol) that will cause that the FTP
server response with the transmission of data. Finally, the Web exchange of
information requires a body of standardized data format specifications (e.g.,
XHTML, RDF/XML and CSS among others) for providing an adequate
interpretation of the data. The relationship between the three elements of the
architecture can be succinctly described with the following figure 2-2.

Figure 2-2: Web Architecture relationships (based on [Jaco04]).

The original function of the web was to deliver plain hypertext documents over a
client-server architecture (see figure 2-3) but its success has caused a natural
evolution from static and passive contents to dynamic and interactive ones. This
offspring is discussed in the next section.

Figure 2-3: Basic web Architecture.

Chapter 2. State of the Art

 15

2.1.2 The Standard Web Application Architecture

We are going to work with Web applications, so it’s very important to provide a
proper definition:

“A Web application (or webapp) is a distributed software system that uses a Web
browser as client to be accessed with minimal or zero installation procedures over
a network using a XML dialect to build the User Interface, store and exploit data
mainly though a HTTP gateway”.

This definition is based on [Jab04] and it settles the common ground to introduce
the architecture of webapps. The standard architecture of webapps is based on
the three-tier architecture [Adle95]. The web browser remains as the immovable
and universal client (however some little variations are presented in the next
section where this now standard model is expanded and compared with other
common alternatives). The application server is the most important element in the
second-tier (the server one) because it supplies the environment to execute the
components of the application. Generally, these servers include a framework
(APIs, interfaces and structures) to provide a way to interact with others systems
and the user. Typically, the application server supplies an environment to
construct the GUI in some User Interface Description Language (UIDL) e.g.,
HTML, or some XML dialect. Finally, in the third-tier is included a repository of
data that is available through a data access interface from the second-tier. All
these components are described in the figure 2-4.

Figure 2-4: Web Application Architecture components.

Chapter 2. State of the Art

 16

2.1.3 The general RIA Architecture

The RIAs are webapps that take into account the power of the client to increase
the responsiveness of the Web UI while the management of the application and
data remains on the server. RIAs offer similar functionalities as the ones exhibit
on desktop applications. A standard RIA architecture (Fig. 2-5) includes an
application controller, an application server in charge of Web services calls that
use some XML dialect to send data and layout information and a client rendering
engine which is downloaded the first execution to process locally the presentation
[9].

Figure 2-5: Typical architecture of RIAs.

2.1.4 Dialogue architectures

The Dialogue scheme is one of the most important aspects of the webapps and
could be called navigation [Pont04]. Here we are going to analyse it in two
different realms: First, the dialogue between the elements that support a webapp
(e.g., browser or web server) using sequence diagrams [Booc05] to understand the
interaction process among them. Second, we are going to review the proposed
methodologies or tools to model the navigation inside a specific webapp.

Chapter 2. State of the Art

 17

2.1.4.a Dialogue : the big picture

This section presents a review of the three alternative dialogue architectures that
are used in the design of webapps. This recapitalization is not exhaustive merely
representative of the most general models. In fig. 2-6 we have depicted the
dialogue of the typical webapps, in the left is the basic dialogue model of original
web sites (fig. 2-1) where the client-server architecture is very clear but the
persistence of the web browser is very limited since every http request/response
event will cause a refresh and loss of the actual interface representation while in
fig. 2-6 at right, we have the dialogue structure of standard webapps (fig. 2-4)
where the most remarkable detail is the inclusion of the application server that
handles the server scripts requested by the client in a safe environment (the
server). In fact, this kind of configuration is preferred by business-oriented
developers because of security and control reasons. In the other hand, The RIA
dialogue architecture is different from the previous ones in many aspects: First,
The inclusion of a new element, the client engine that provides all the
functionality that the browser doesn’t support or the one that is difficult to deliver
without supplementary tools or frameworks. Second, the asynchronous
communication process between the client and the server sides in the background
without refreshing the UI, this includes a continue exchange of XML formatted
streams to describe the interface, as well as the application data. And finally, most
of the RIAs have associated to them a UI description language.

Figure 2-6: Dialogue architectures of Web applications

Chapter 2. State of the Art

 18

Figure 2-7: General Dialogue architecture of RIA applications

2.1.5 Design frameworks and tools

There are diverse approaches for modelling the navigation which are immersed in
web design methodologies.

The OOHDM methodology proposes UML extensions (activity nodes) to model
the navigation [Ross03]. Also, the UWE methodology applies UML extensions (in
fact, extended UML class diagrams besides stereotypes) trying to capture the web
features including the navigation [Koch02]. Other UML associated method is the
one included in [Cona02] that proposed a Web Application Extension (WAE) to
UML in this methodology the navigation model is not as explicit as in the other
methodologies. Other option is WSDM that is a user-driven methodology based
on the ConcurTaskTrees notation where the navigation is modelled within its
conceptual design step [Detr03]. In the line of data-oriented methodologies we
have first OO-H designed for data-intensive webapps which is also based on
UML extensions: the navigation access diagrams (NAD) and abstract presentation
diagrams (APD) [Cach02]. And Second, WebML methodology that provides a
navigational model within its hypertext model [Ceri01].

Chapter 2. State of the Art

 19

2.2 Classification of User Interface Models and design
approaches

This section presents a review of the state of the art in the field of User Interfaces
with special interest on UIs at the Web environment. The research of User
Interfaces design is a very wide area so this review instead of trying to be
exhaustive is a summary of the most common models and approaches (see figure
2-1 for a panoramic view). According to [Honk07] there are three differentiable
areas: first, the interaction models that deals with user/computer interaction.
The most representative of these models is the WIMP model that is conformed
by Windows, Icons, Menus and a Pointer device [Canf90]. The direct
manipulation model [Schn83], another model proposed is more advanced that the
WIMP because impose less constraints to the interaction with the objects, for
instance, in graphics-design applications. Other alternative is the direct
combination model [Holl99] that is in fact, a specialization of the direct
manipulation model which adds to element overlapping a semantic meaning to
cause the execution of some operation, e.g., if a magnification glass object is
superposed to a map image, the result should be a zoom operation.

Second, architectural models propose alternative structures to coordinate
presentation, dialogue and data. In this section we included the models associated
to the web environment. The MVC model was proposed to desktop applications
but in web application it’s popularly named model-2 [Sesh99] and it’s one of the
most adapted in modern web applications (struts [Holm06], tapestry [Lewi04]
among others). The Presentation-Abstraction-control is based on a hierarchical
structure of agents that includes in each agent the three elements [Cout87] in
order to be capable of run in different threads. Service-oriented architecture
organizes resources in a network without knowledge of implementation details.
Multi-tier architecture is an extension of the client-server architecture, in Web
applications a typical implementation of this architectures is the 3-tier version
[Ecke95]. And third, the implementation models that are all the languages and
toolkits which produce a UI implemented in a specific platform.

Nevertheless, these models even if they could provide a guide for designing our
UI, they have to be supported by a development approach; here we discuss the
most prominent ones:

 The exploratory approach is based on developing mock-ups of the
application interfaces for user evaluation. This approach takes advantage
of the visual programming development environments where is possible
to construct easily a mock-up of the interface.

Chapter 2. State of the Art

 20

 The programmatic approach produces the UI representation by means of
coding in a procedural, object oriented or declarative language that
includes a toolkit with a set of common widgets in order to simplify the
design task [Limb04].

 The model-based approach pretends build upon abstractions an iterative,
quality-based and reproducible process, a systematic method for
developing UIs [Limb04]. In the next section we are going to discuss in
deep the elements of one of the most used frameworks in the model-
based approach: The Camaleon Framework.

Figure 2-8: Classification of User interface models and design approaches

2.2.1 CAMELEON Framework

Building a model based application requires a framework to define the design
steps needed for describe our computer system, including the features: Multi-level
abstraction, Modality independence, among others [Boui05]. The Cameleon
Reference framework [Calv03] expresses these features to describe an application.
This framework structures the development process within four levels of
abstraction: Task and concepts, Abstract User Interface (AUI), Concrete User

Chapter 2. State of the Art

 21

Interface (CUI) and Final User Interface (FUI), as shown in Fig. 2, the arrows
pointing to a lower position in a hierarchy represent reification steps (forward
engineering) from abstract to a real world interface. Meanwhile, arrows pointing
to upper positions reflect the process of inference abstract descriptions from the
run-time code (reverse engineering).
To denote a UI at any level of abstraction, it’s required a User Interface
Description Language (UIDL) [Flor06]. One of theses description model based
languages is UsiXML (UsiXML which stands for User Interface eXtensible Mark-
up Language). This language incorporates the four abstraction levels of Fig. 2 as
described in [Limb04].

Figure 2-9: The CAMELEON Reference framework

Chapter 2. State of the Art

 22

2.3 User Interface Description Languages

A User Interface Description Language is a XML-based declarative language that
is used to describe a UI. There is a plethora of User Interface Description
Languages (UIDLs) here we are going to focus in the ones used in Web design.

2.3.1 XML-based User Interface Description Languages

Some of the reviewed UIDLs have already been analysed in [Souc03]. And can
be, as well, used in desktop or in web environments.

2.3.1.a XIML

The eXtensible Interface Markup Language (XIML) is a XML-based language for
developing UIs that include various models: task, domain, user, presentation and
dialogue [Puer02].

2.3.1.b UIML

User Interface Mark-up Language (UIML) is a XML-based language for
describing a User Interface with some levels of abstraction, for instance, in the
definition of UIML there is a very important element the <peers> tag that
provides the needed mapped parameters to produce a final user interface
according to some specific toolkit and the UI logic [Abra99]. It’s one of the oldest
attempts to produce a neutral representation of the UI.

2.3.1.c UsiXML

The USer Interface eXtensible Markup Language (UsiXML) is a XML-based
language created to define the UI over multiple contexts of use. The UsiXML
language covers all the layers of the Camaleon framework and includes a set of
interrelated models to support a model-based approach for developing UIs (for
instance, a task& domain model, an abstract User Interface Model, a Concrete
User Interface model and a interesting addition is its transformation model that
can be used to translate instances of the model from abstract levels to concrete
ones in a forward engineering process or the other way around to recover the
abstract user interface in a reverse engineering process) [Limb04].

2.4 User Interface Modelling in Web development

2.4.1 HTML

HTML (Hypertext Mark-up Language) remains the principal mark-up language
on the web. This language describes the layout, appearance and content in a

Chapter 2. State of the Art

 23

nested structure of tags and human readable [Ragge99]. The combination of
features besides the low learning curve are its major strength, this last feature has
produced hordes of authors with no programming skills.

2.4.2 XHTML

The Extensible Hypertext Mark-up language (XHTML) is the successor of
HTML, in fact is a XML version of HTML, this implies that a XHTML
document must have a well-formed structure. Also describes the distribution of
the elements in the page, content and the structure [Pemb02].

2.4.3 DISL

It’s a XML-dialect created to design UI for Mobil devices, (especially in this
derivation SDML). This version of DISL/UIDL was created to model UIs that
must be transmitted in a low band network where data structures have to be
stored in some buffer and then transmitted in series of bytes. As stated by the
authors for a specific scenario Mobil phones applications. The main distinction
with the other version (UIDL) is the definition of all the elements as lists where
each element could be tracked using node-list attributes (for instance, next-widget
or child-widget ids) [Muel04].

2.4.4 XAML

The Extensible Application Mark-up Language (XAML) is another XML-based
language used for definition of UIs and their properties and components (UI
elements) and also their interactions (events and data binding). The MS Windows
Standard Development Kit for the new operating system Vista contains a
Representation subsystem called Avalon which integrates XAML [XAML06].

2.4.5 Open Laszlo (LZX)

LZX is a XML-based language for describing UIs based on a declarative language
very similar to HTML that after the creation of the UI. The interface is converted
into FLASH or DHTML [Open06].

2.4.6 XFORMS

XFORMS is a XML-based language for data processing over web pages. It’s the
next generation of the standard web form. Some of its features are the inclusion
of layers to deal in an independent way with the data, its structure, submission
methods and form controls [Boye06].

Chapter 2. State of the Art

 24

2.4.7 MXML

MXML is a XML-based language to produce User Interfaces within the Adobe
Flash [Flas06] environment to produce UIs and also to control the logic and
behaviour of the defined elements [Kazo07].

2.4.8 XUL

XUL is a XML-based language intended to create UI structures for the Mozilla
Browser, include a set of general widgets. XUL is built upon existing web
standards, including CSS, EMAscript and DOM elements [Hyat01].

2.4.9 XBL

XML Binding Language (XBL) is a XML-based language created to bind the
behaviour and look of XUL UIs, this language is in the process of being
standardized by the W3C [Hyat00].

2.4.10 SVG

Scalable Vector Graphics (SVG) is a XML-based markup language proposed and
created by the W3C to define the structure of 2D vector graphics. It also covers
static as well as animated graphics. Since is a text representation, the internal
search and accessibility is possible in SVG definitions. Includes features like:
nested transformations, clipping paths, alpha masks, filter effects, template objects
and extensibility [Ferr03].

2.4.11 AJAX

Asynchronous JavaScript and XML (Ajax) is the recycling of already known
technologies for developing interactive web applications with data recuperation
avoiding the refreshment of web pages, better speed, usability and functions. Ajax
uses a combination of: XHTML (or HTML) and CSS, for marking up and styling
information. A key element is the XMLHttpRequest object that is used to
exchange data asynchronously with the web server. [Garr05].

2.5 Comparison between UIDLS

The result of our study is summarized in the following tables, the strengths and
drawbacks of each of the languages make us conclude that the idea behind the

Chapter 2. State of the Art

 25

recycle already known technologies is the best path because none of the UIDLs as
far as the ones compared have/include all the features needed to cover the full
spectrum of webapps.

Name A B C D E F G
1 HTML S + ++ - ++
2 XHTML G + + ++
3 DISL - S + - +
4 XAML S ++ + +
5 LZX S ++ + - ++
6 XFORMS G + - - ++
7 MXML S + - ++
8 XUL S - - ++
9 XBL S ++ - - ++
10 SVG G ++ - - +
11 XIML G + + -
12 UIML G ++ + ++ +
13 UsiXML ++ G ++ ++ + ++ +

Table 2-1 Global comparison of UIDLs

Code Name
A Extensibility
B Purpose
C Transformation Model
D Behaviour Integration
E Ease implementation
F Modality independence
G Web integration

Table 2-2 Evaluated features in the UIDLs

Note: Purpose = {General, Specific}
Good = ++
Medium = +
Low = -

Chapter 2. State of the Art

 26

2.6 Comparison between Client-Server Dialogues

Name A B C D E
1 HTML S C, O Y N Y
2 DHTML S C, O Y N Y
3 XHTML A C, O Y N Y
4 AJAX A C, O Y Y Y
5 LZX A C, O Y Y Y
6 XFORMS A C, O Y N Y
7 MXML A C, O Y Y Y
8 XUL/XBL S C, O Y Y Y
9 JAVA applets A C, O Y Y N

Table 2-3 Global comparison of dialogue features

Code Name
A Communication between client/server

{SYN, ASYN}
B Server technology {CGI-bin/JAVA

technology, Own}
C CSS {Y,N}
D Client engine {Y,N}
E ECMAScript support {Y,N}

Table 2-4 Description of abbreviations

2.7 Comparison between normal webapps and RIAs

In this section we include some features to establish a comparison point between
normal/classical/typical webapps and RIAs. This is not an exhaustive study
because the idea was to create a starting point and over this light classification in
iterative cycles create new comparisons that could be contrasted to this one in
order to include each time more details.

Chapter 2. State of the Art

 27

The comparison of frameworks is very restrictive because some of the so
proclaimed RIA frameworks are only APIS for JavaScript with the inclusion of
the XMLHttpRequest object. This list (while I’m writing this) and at the time of
reading as well is getting old.

 SWA Comments RIA
Partial screen

updates
 Using frames

it’s possible to
mimic this
behaviour

Asynchronous
communication

Widgets supporting
direct manipulation

Multiple
coordinated

windows

 Partial

Modal dialogs Partial
Menus

Keyboard
navigation

Table 2-5 Comparison of features between SWA and RIAs

Development
language

AJAX Mixed AJAX Java Flash

Framework Rico GWT TIBCO flash Open
Laszlo

Maintainability - +/- - + +/- +

Reliability +/- + +/- + + +/-

Availability + + + +/- +/- +/-

Scalability - +/- - + + +/-

Performance +/- +/- +/- - + +/-

Security - - - + +/- +/-

IDE available - Eclipse
(-)

own Eclipse
netbeans

 (+)

Flash suite
(+)

Eclipse
(-)

Table 2-6 Available frameworks for RIA platforms

[+] = good, [] = null, [-] = Low, [+/-] = medium

Chapter 2. State of the Art

 28

2.8 Conclusions

The reviewing of the literature show us an increasing interest in the generation of
frameworks and re recycling of known technologies to avoid one of the biggest
problems of the Web: the compatibility and standardization. Also we present a very
brief description of concepts, advantages and shortcomings of some of the most
promising frameworks and languages in the Web field. The result of this process is
the validation of UsiXML as one of the most versatile tools. Nevertheless, it is
imperative the inclusion of improvements to model with ease the RIAs and with this
work we begin this task.

Chapter 3. Task and Domain Modelling

 29

Chapter 3 Task and Domain
modelling

3.1 Task modelling

The task model is the definition of all the assignments and sub-assignments
needed to fulfil a job. Meanwhile, the Domain model defines the type and scope
of the elements involved in a task and we can add extra details not present in task
model. In this chapter we are going to review in deep these models in order to
built the “Germ of a User Interface” that is a hierarchy of tasks and relationships
upon methods and data variables which are the basis of the UI. The graphical
summarization of this chapter could be seen in figure 3-1.

Figure 3-1: In step 1 the task and domain models are created as well as

the interaction of the User Interface

Since we are working with UsiXML the selected tool for the task modelling is an
extended version of the ConcurTaskTree notation [Pate99]. Such representation is
capable of deal with the logical and temporal ordering of the user tasks and its
benefits are: software engineering orientation, formal description based on
LOTOS notation and easy communication (through a simple graphical notation)
[Limb03]. Note: A bigger description is included in annex C.

Chapter 3. Task and Domain Modelling

 30

3.1.1 Introduction of case study

Here we introduce the case study that is used in the whole document. It’s the web
site of the company of Mobalpa [Moba07] see figure 3-2, which has been selected
because the combination of elements/amenities besides its design and use of the
SPA approach. For the sake of simplicity in order to present a clear example we
are going to model only the kitchens section, big enough to show the features of a
RIA application.

Figure 3-2: Mobalpa site

3.1.2 Task model of the Mobalpa Running Example (MRE)

The initial step of designing a UI is the creation of a task model for MRE. a
possible CTT tree is shown in figure 3-3, where the selection for expanding some
of the tasks tries to present a general idea of the webapp.

Chapter 3. Task and Domain Modelling

 31

Figure 3-3: MCS Task model

Chapter 3. Task and Domain Modelling

 32

3.1.3 Task types: Are the RIA tasks different from other tasks?

The tasks performed in a software system have been studied in many works:
[Leno84], [Fole84], [Calh84], [Gree88], [Bles90] and [USIX07]. According to
[Leno84] tasks are divided in three types:

a) Goal-oriented: related with the user objective,
b) Manipulation-oriented: related to the operation of the application,
c) System-oriented: related to the execution of the internal logic of the

application.

For instance, in a RIA application where the user is pursuing the goal of login to
the system (see figure 3-4): there, the root level (a) and maybe some inner nodes
of the task tree denote the goal level, the task that is the reason of the user
interaction with the application. The operation of the system is shown in (b) and
these activities are the manipulation of the application in order to fulfil the goal
(these activities are composed by leave nodes; this is based on [Prib02]). Finally,
The System tasks (c) also leave nodes are tasks that involve the running of the
internal logic of the application but at two separated places: some logic is
executed in the client realm (d) and other in the server realm (e). Then, the
previous categorization should divide the last type to cover the notion of
distributed execution.

Figure 3-4: Task types in a RIA application

Chapter 3. Task and Domain Modelling

 33

In table 3-1 from [Gonz07] there is a proposal of a task type classification that
could be used for our purposes with some modifications. The main difference
with the RIA realm (and Webapps in general) is the possibility of a range of hues.
For instance, the stop task should not be integrate as the same or synonym other
terms as complete since this concept could imply a different state of the task and
second we have to include the modification of the task in the client or server
sides. Third, we propose here a modification based in the integration of hybrid
task types to model a kind of visualization that is included in the MRE: the star
field visualization [Casn91]. Also in [Casn91] the author suggests that the success
of applying certain graphic is how well support a specific task. Here, the selection
of prices according to series of dimensions that are connected to create this
dispersion of elements (that’s why the name of star field) where the user could see
in a very compact way the price range (see figures 3-5 and 3-6).

Figure 3-5: The Star field visualization of the price range (unselected).

Figure 3-6: The Star field visualization of the price range (selected)

The problem with this presentation is that the task required to model it is a
combination of the tasks: perceive and select then we propose a modification for
this new task (see table 3-1). This new hybrid task implies relations of dependency
between the tasks, especially in the modification of their state. For instance, the
last task proposed Communication-navigation implies that we are navigating
and generating a communication for instance if the whole application is a map the
menu is the application itself then there is a flow of info caused by the
navigation3.

3 http://maps.google.com

Chapter 3. Task and Domain Modelling

 34

Task Type Client or Server effects Definition

Stop|Suspend
Exit|Cancel|Terminate

Waiting for acknowledge from
the user (Client/server sides)

Specifies the end of an
action (abnormal or
anticipate action)

End| Finish |Complete
Sending acknowledge from
system (client/server)

Specifies the end of an
action (normal or
fulfilled action)

Perceive-Select Modifying presentation
(client)

The selection updates
the visualization

Communication-
Navigation

The visualization is updated
(client)

The Navigation
involves
communication

Table 3-1 extension of Taxonomy for including RIA task types

Task Type Synonyms/sub-task types Definition
Communicate Convey, Transmit, call,

acknowledge, respond/answer,
suggest, direct, instruct,
request

The action to exchange
information

Create Input/Encode/Enter Associate,
name, group, introduce, insert,
(new), assemble, aggregate,
overlay (cover), add

Specifies the creation of an
item instance

Delete Eliminate, Remove/cut,
ungroup, disassociate,
ungroup

The action of deleting an item

Duplicate Copy Specifies the copy of an item
Filter Segregate, set aside The action of filtering an item
Mediate Analyze, synthesize, compare,

evaluate, decide

The action of intercede task
items

Modify Change Alter, transform,
tuning, rename, segregate,
resize, and collapse/expand?

An action of modifying an
item

Move Relocate, Hide,show?
position? Orient? Path or
travel? X

the action to change the
location of an item

Navigation Go/To the action to find the way
through containers

Perceive Acquire/detect/search
for/scan/extract, identify /
discriminate / recognize,
Locate, Examine, monitor,
scan, detect,

The action of identifying items
and/or information from the
items

Reinitialize Wipe out, Clear, Erase The action of cleaning an item
Select/choose Pick selection between items
Start Initiate/Trigger, Play, Search,

active, execute, function,
record, purchase

Specifies the beginning of an
operation

Chapter 3. Task and Domain Modelling

 35

Stop End /
finish/exit/suspend?/complete?
/Terminate/Cancel

Specifies the end of an action

Toggle activate/ deactivate, /switch The existence of two different
states of an item

Table 3-2 Task types proposed in [Gonz07]

3.2 Domain modelling

Now, we have to define the domain of the elements used in our MRE, this can be
achieved using IDEALXML tool [Mont06]. The domain model diagram
presented is generated manually as the one produced by a software engineer
(Figure 3-5). Next, we have to define the relations between the task and domain
model. Some of the tasks in the task model are mapped to methods and attributes
of the domain model. For instance, showPriceScale and
showAvailableModelsInsert methods are included in the Catalog class. The
kitchen class include all the attributes that are required to present a kitchen in the
webapp.

Figure 3-7: MCS Domain model

Chapter 3. Task and Domain Modelling

 36

This model is a typical UML class diagram powerful enough to include the
relationship between data and functionality of the user activities but that lacks the
internal description of the multimedia elements that are described in [Lina07] this
department is going to be expanded in UsiXML. For the moment we are
considering the inclusion of the recommendation from W3C, the Synchronized
Multimedia Integration Language (SMIL) language for the manipulation and
integration of multimedia content [W3C05].

3.3 Derivation of RIA level from Task and Domain
models

We are going to use a categorization of RIAs proposed in [Muño06] to infer the
level that should have a RIA from its task and domain models. The purpose of
this operation is to gather more information for guiding the selection of the best
UI for our application. This is not a simple task; that’s why the techniques and
dimensions are explained in the following sections and finally the procedure to
derivate the RIA level from the task and domain models.

3.3.1 Categorization of RIAs

The main problem behind the proposal of a RIA classification comes from the
fact that they are a compendium of known Web technologies (JavaScript, CSS,
XML and Java, among others) [Diaz97] that are used in novel ways including the
integration of new features as the XMLHttpRequest [W3C06]. The process of
classification could be seen as simple as tracking forward or backward in the
Data/Complexity continuum of Web Applications (see figure 3-6) but in fact it’s
more difficult.

The major dilemma is that the utilization of RIA technology does not imply in all
the cases that the application would exhibit an overwhelming set of multimedia
capabilities we have to be cautious of fast categorizations. For instance, it’s
possible to create discrete examples with frameworks as Open Laszlo [Open06]
that is one of the most popular and well established RIA threads nowadays and if
the user does not know about the technology behind could assume a classical
Web Application. Also the design and creation of a RIA is more complex than in
a classical web application but the result is closer to the desktop application in
features such as: changing shape cursors, Drag and Drop capabilities, embedded
plug-ins to control video and audio streaming. These characteristics were used in
[Prec05] to compare Web methodologies and in [Muño06] are used (among
others) to propose a categorisation of RIAs.

Chapter 3. Task and Domain Modelling

 37

This categorization of RIA applications is based on their extension and
application domain (see figure 3-7) and defines three levels:

 Complementary applications (Level I). These applications are mini gadgets
that are part of a bigger and usually more complex web application. They
are very specialised and limited, e.g. calculators for particular fields or
stream displayers.

 Utilitarian Applications (Level II). These applications are activated by
short time periods, e.g. a Web search engine service.

 Dominant Apps (Level III). The utilization period of these applications is
very long also they interact with other applications without the user
intervention from Web sources [Cran05]. An example could be a
dashboard application4.

Figure 3-8: The Data/Complexity continuum in Web Applications

4 An example of a dashboard application is discussed in [Paye02]

Chapter 3. Task and Domain Modelling

 38

Figure 3-9: a Rich Internet Applications Categorization

3.3.2 Dimensions of RIAs

The dimensions are the features that were used to identify a RIA. These features
are based on [Cran05], [Prec05] and [Bozz06]:

 Dynamic data retrieval i.e. streams of data from client to server and vice
versa at running time.

 Perceptive continuity that is the reduction of page refreshments and
freeze conditions.

 Adaptability that is the faculty of responding in autonomous way to the
user necessities.

 Multimedia. Here understood as the capability of managing embedded
graphics, video, audio and streaming.

 Collaborative faculties. That is the capability of cooperation between users
to resolve a share problem or task.

 User Interface Description Language. Most of RIA applications
include/propose a language for designing the UI.

 Push technology is the faculty of acquiring data that has not been
requested by the user in order to update the current information [Fran98].

 The Use of Browser area. The RIA application breaks the structure of the
classical web application and sometimes uses the whole window and
eliminates the navigation bar (to break the web page model in the user’s
mind).

Note: The dimensions and their evaluation values as they were presented in
[Muño06] are included in annex B (see table B-1).

Chapter 3. Task and Domain Modelling

 39

3.3.3 Derivation of RIA level from Task and Domain models

The procedure that we propose for the derivation of the RIA level is based on the
information recollected from the task and domain models and simple heuristics
that we are going to describe below. For this we propose the use of a decision tree
[Bres97] that could give us a rough estimate to infer the level of the RIA which is
in front of us. The root of the decision tree deals with the size here understood
as the amount of levels in the task tree that we get from a Breadth-first search i.e.,
aligning the siblings and counting the line as one level (The importance of the
levels is discussed in the next chapter inside the container problematic). The
amount of levels gives us the first cut: applications of level I could not include big
arborescence structures so we presume/accept a maximum of three levels. The
alternative path filter information from the domain model the classes and their
methods. The procedure is straightforward having a major degree of complexity
implies be more near to the complex types: Level II and III. At the end an extra
consideration is pointed out, the appearance of Concurrent operators. This last
filter is related to adaptability and collaborative dimensions because a complex
application should include concurrent tasks. Nevertheless, this is a first
approximation that we have to improve with the inclusion of more details and
evaluation over other examples. The full decision tree is shown in figure 3-8.

But what is the purpose of this? For the moment is enough to say that the
knowledge of the level a priori of the construction of the UI could help us in the
selection of a better structure of containers/widgets. This will be discussed in
other sections (chapter 4, 5 and 6).

3.3.4 Applying to the Mobalpa Running Example

The task and domain models from the webapp of the Mobalpa Company are
available from previous sections so we can begin the analysis of the application:
the amount of levels in the MRE is eleven. Then we have to verify how many
classes contain this application in this example we found nine classes and a total
of fifteen methods. The last decision is the based on the number of concurrent
operators. The reason is that such operators are the “shadow” of tasks that at
concrete levels are going to become tasks related to collaborative, multimedia and
adaptability features of the application. In MRE we have found two in
consequence our example is a Level III application. The implications of such
result are for example that the design of our application is complex and probably
it would necessary to create a complex hierarchy of containers.

Chapter 3. Task and Domain Modelling

 40

Figure 3-10: Decision tree for derivate the RIA level.

3.4 The Role of XLST in the overall process of
reification

The reification process is the process to iterating from the abstract representation
to more concrete levels and ultimately arrives to the Final User Interface. This
overall procedure is called: forward engineering [Limb04]. The CAMALEON
framework requires from each UI representation a process of transformation to
deliver the next step.

We have suggested the Extensible Stylesheet Language Transformations (XSLT)
language to deliver these transformations. Then in each step the next level
requires the definition of a series of XSLT templates. In [Limb04] the
transformation schema is based on Graph tree transformations adducing lacking
of abstraction and verbosity of XSLT. Nevertheless, the cost and loosing of
abstraction power is exceeded by the capacity of deliver automatic processing of
the style sheets from a wide variety of XSL APIS besides the benefit of having an

Chapter 3. Task and Domain Modelling

 41

XML representation and a XML transformation method in the nowadays
standardization stage of the Web5.

3.4.1 The XLST language

Extensible Stylesheet Language Transformations (XSLT) is an XML-based
language that translates XML documents into documents with a different format
and specification6 (most of the times other XML document). The transformation
procedure includes three elements (see figure 1-2) and the mechanism for
implementing the transformation is straightforward: we have to define a rule
which is applied to a specific node that matches the imposed constraints from the
Stylesheet the result will be the creation of nodes in the result tree [Kay03]. In
[Mart06] we have used XSLT stylesheets to build some templates to transform the
UI representation from CUI to FUI (specifically from UsiXML to XAML
[XAML06]), this is a work in progress and the templates to cover the full set of
elements of UsiXML are still under development.

5 The current version is XSLT 2.0, which reached W3C recommendation level at begin of 2007.
6 http://www.w3.org/TR/xslt#section-Introduction

Chapter 4. Building the Abstract User Interface

 42

Chapter 4 Building the
Abstract User Interface

After gathering all the information of the germinal UI at Task & Domain levels
we are going to use it for building an abstract representation of our UI called
under CAMELEON framework: The Abstract User Interface (AUI). The
construction of the AUI implies a series of challenges: The identification of
Abstract Container Hierarchy, selection of Individual components and Menu
design and finally the generation of the AUI. We are going to discuss them in the
subsequent sections of this chapter.

Figure 4-1: Activities to create an Abstract User Interface

4.1 Identification of Abstract Container Hierarchy

The UI design for Web applications is moving from the Web page metaphor to
the Single Page Application (SPA) [Mahe06]. But this situation does not imply the
extinction of the pagination understood as the problem of dividing a complex and
big UI into a hierarchy of related widgets. As a matter of fact, it’s the migration to
a model that generates inner containers besides dynamic transposition of visible
and hidden areas to divide our UI into sub UIs that are the visual representation
of the task pursuit by the user. That’s why we include as part of the study of RUIs
the topic of container generation as well as a classification that would help us to
understand more the RUIs and finally construct them. Before we go any further,
the definition of container is provided:

The containers are widgets for grouping other widgets. They are
equivalents to the Abstract Data Structures used to gather classes/objects
and they share some of the same methods: add, remove and retrieve
elements/widgets (based on [Klei04]).

Chapter 4. Building the Abstract User Interface

 43

4.1.1 Containers and webapps

In the realm of webapps the problem has been studied from many angles. In
[Mand02] a run-time approach that evaluate the HTML code in order to identify
specific tags and after collecting a fixed amount produce a “division mark” used
to split the Web page and creates a new page. Other solution is the inclusion of a
specialized mark-up language in order to define information units or sections
within the UI (see [Spri03]). When the Web page is already created in [Chen05],
the Document Object Model (DOM) is parsed looking for HTML tags e.g., DIV
to define a division point. Using as base the HTML itself is acceptable but if you
are looking for a more generic definition of the UI some researchers as [Göbe01]
had used a User Interface Description Language (UIDL) in combination with
another language to describe the dialog and navigation. For instance, the language
XUL [Mozi07] used in [Ye04].
In [Chu04] the selected approach generates a widget hierarchy using a device-
independent schema besides a bottom-up algorithm, a split or not attribute is
applied to all the nodes of the tree of components the resultant sub trees are
marked as a page. However, the process does not include temporal information
from a task model and the division point is defined in a fixed schema. (Note: this
approach is near to our own work that is going to be described in chapters 5 and
6).

The idea presented in [Flor06] is based precisely in a task model that is going to
be explored. Here, the temporal operators play a capital role to provide
information to define how to create the containers (indeed, the container concept
fits barely in [Flor06]. Because, the process depicted in this work is based in the
concept of interaction spaces). The task model is traversed in a Breadth-first
search and using a set of principles begins a process of reduction from the most
complex to the simplest platform. This process is known as “graceful
degradation”. Also using as starting point the task model is [Prib02] where the
information is extracted from a domain model besides the identification of the
nature of the tasks that are divided in user goals and supplementary tasks. The
last method does not worry about the space limitations because is looking for the
relationships between tasks and subtasks in order to produce a general, device-
independent UI, [Limb04].

4.1.2 The Problem of creating the clusters and their associated containers

In [Dyck90] the container problem is divided in two main threads: In one hand,
the problem of trying to put all (or part) the elements into a single container with

Chapter 4. Building the Abstract User Interface

 44

the goal of maximize the container utilization in order to loose the less possible of
container space. In the other hand, the problem is to put the elements (widgets) in
one or more containers trying to do it in the minimal set of containers7. Here, we
are dealing with the second instance. Then, we could subdivide the problem in the
following aspects:

a. What should be the better position for a container?
b. How many containers should have a specific UI?
c. How to cluster the components (widgets and other containers)?

Briefly, we are going to tackle each of these questions as preamble to the
proposed solutions.

4.1.2.a What should be the better position for a container?

This question is related to spatial disposition or layout. The disposition inside the
UI should deal with the screen positioning, dimensioning of components and
arrangement [Boda94a] and at the same time each strategy requires to follow
some ergonomic guidelines to produce a stable UI [Boda94b].

4.1.2.b How many containers should have a specific UI?

This problem is very complex because it combines the limit of the user cognitive
load and the available space in the container father of the actual element or
elements. The conventional approach to solve the container loading problem is by
finite available space [Lim05]. Finally, the dimension of the solution space shows
that it’s not a trivial task that could be treated by brute force. For instance, if you
want to test all the combinations of a set containing 10 containers the amount of
variants is 115,975 [Weis07]. In this document we propose a solution that is
included as part of the general method.

4.1.2.c How to cluster the components (widgets and other containers)?

The process of gathering is supported by libraries of containers e.g., the java
SWING API [Java07] has a lot of components to support this task. An example
of this container hierarchy is shown in figure 4-1. First, we have a frontier-
element that interacts directly with the windows system of the operating system or
that is contained by a general reader/launcher application (e.g., the Web browser).
Its purpose is serving as background of the other containers of the application.

7 This is another variation of the well-known knapsack problem which is NP-hard.

Chapter 4. Building the Abstract User Interface

 45

It’s the limit of our application. Second, we have internal windows. Third,
container elements to hold up together the widgets for coherence and spatial
reasons while the last one it’s merely used for spatial distribution for a specific
layout disposition. In this schema we have four layers but it could be extended
since a window could include inner windows, dialogues or frames. This feature
does not apply to all the levels, in the lowest one the elements could be restricted
to hold up only widgets and no containers. This process of division is very
important for the software applications, for instance it’s better to divide than
incorporating vertical scroll widgets that could become later a usability issue
[Gill03].

Figure 4-2: a The Basic layers of a web application

Now we are going to describe the proposed method steps in order to create a
feasible set of containers that is conformed by four steps. Each following section
is dedicated to their definition and discussion. At this point the designer has
already built a task model. The gathering of the information as the sequential
order and the disposition of the operators is essential to create acceptable
container configurations.

4.1.2.d Normalization of task tree and definition of levels

In this step we have to normalize the whole tree to eliminate ambiguity but
instead of using operator priority we are going to create dummy tasks (both
possibilities were introduced in [Pate99]). The advantage of using the second

Chapter 4. Building the Abstract User Interface

 46

approach is simpler trees and the heuristic notion that these dummies sub trees
give us extra information of the relationship between tasks. First, we have to
determinate how many layers are acceptable for our platform. This means how
many elements of containment could be embedded in one another. For instance,
in the Java application of figure 4-2 we could count in the hierarchy of containers
three layers. The next step in our method requires that the developer define the
number of layers that are acceptable for the UI.

Figure 4-3: example of a Java GUI and its hierarchy of containers

4.1.2.e Division of the task tree into containers

Once the number of layers has been defined we have to follow this iterative
procedure to analyze our task model:

 x = 0, this is the number of containers
 y = number of layers
 Each node of the tree must be aligned with her siblings to generate a row

that we call “level”.
 While the clustering of nodes does not cover the root,
 The node located in the position most to the left and in the lowest level is

selected as anchor.
 Starting from the anchor we have to create a path to reach the father node

which is in first layer (for instance, if we have a similar structure to figure
4-1, we have to jump four levels). The entire sub tree from the father
node is going to be labeled as the next container (x is incremented).

Chapter 4. Building the Abstract User Interface

 47

At the end of this process we have x containers with y or fewer layers. A special
situation could arise if we have three or less remaining levels before reaching the
root, in that case we have a problem of fragmentation, similar to the problem of
memory allocation for the process in Operating Systems [Stal01], a plausible
solution is to agglutinate the root node to the last created container.

Figure 4-4: this minimal task tree shows the calculated values of x and y, 2 and 4

respectively

4.1.2.f Generation of the internal hierarchy of the containers

The previous step has provided us with an x set of containers. Each one should
be evaluated in order to get the internal hierarchy of containers. The evaluation
retakes part of the process used in [Limb04] to obtain an AUI and it could be
roughly explained as the definition of two types of elements: the Abstract
Containers (AC) and the Abstract Interface Components (AIC) (see figure 4-4).
The ACs are elements of the tree which are inner nodes and the AICs are the leaf
elements (Note: from this point the AC are called v (from virtual containers) to
make the differentiation from real ACs that should be generated in the next step
of reification of the CAMELEON/UsiXML method).

Chapter 4. Building the Abstract User Interface

 48

Figure 4-5: The identification of Abstract Containers (v containers) and their components

Again, using a Breadth-first walk over each container x we evaluate each sub
container v with the following sub container Generation formula G (n). Some
assumptions are defined here in order to simplify the process. First, if a group of
siblings contains a node that is also a father node then all are declared inner nodes
P otherwise are leaves L and second all O operators are from the same group.

()

() ()













∈∧∨∈←∪

∈∧∈←
∈∧∈←
∈∧∈
∈∧∈

←
←

=

SopQPwnBR

FopQw
FopPwn
CopQw
CopPw

nB
n

nG

0

1

)(

 (1)

Let
w = {sons tasks which father is the root of v}
op = operators interacting with the tasks

Chapter 4. Building the Abstract User Interface

 49

P = {inner tasks}
Q = {leave tasks}
C = {|||, |[]|, |=| } all the concurrent operators
F = {[]} the Selection operator
S = {>>, []>>,|>, [>} is the set of sequential operators
n = the amount of son tasks (Beginning with zero)

The total number of container combinations when we don’t have any restriction
is equivalent to the problem of location of elements in a set of boxes [Weis07]. It
could be calculated using the formula B (n).

The formula (2) stands for the Bell numbers [Weis07] which allows calculating the
number of possible partitions of a set with n elements. The recursive definition of
the Bell numbers is:

∑
=

+ 







=

n

k
kn B

k
n

B
0

1 (2)

Where n is the numbers of elements in the set and k the numbers of blocks.
In our case we introduce also a constrained version of B (n) named BR (n) that
includes the assumption of an integer order restriction that is the tasks in a
sequence must follow the order depicted in the tree model, so:

For each task t associated to operators in S,







 ≠∧∈

←
←

∅
=

otherwise
jiNjittvalid

R ji ,:p
(3)

Then

()11 ++ = nn BRBR (4)

The valid condition implies the inclusion of the configuration in the set of
acceptable dispositions. N is the set of all positive integers. The result of the
application of (1) is a set of plausible scenarios of the UI. As in [Flor06] the
selection of the preferred combination is leaved to the developer.

The function G (n) uses an operator based criteria besides the position of the
nodes in the tree for offering possible container configurations of the tasks. For

Chapter 4. Building the Abstract User Interface

 50

instance, if we have a v container (labelled F) as the one depicted in figure 4-5a
since we have three concurrent tasks (A, B, C) we can choose between five
different configurations for the containers (see figure 4-5b).

Figure 4-6: The possible configurations of the containers for three leave tasks affected by

concurrent operators

An example of the generation of the containers is shown in figure 4-6: the sons of
node F would be derived in a couple of containers according to their sequential
nature meanwhile the son tasks of w12 because of the selection of the designer is
gathered in a single compartment. All this information about the number and
configuration of containers is stored to be used in the next step (that will be
described in the following chapter). The election of zero containers derivates in
the elimination of the any AC sibling for example if w11 and w12 by designer’s
decision are together without labelling w12 as AC the result would the deletion of
the last one.

Chapter 4. Building the Abstract User Interface

 51

Figure 4-7: Possible configuration of containers

4.1.3 Applying to MRE

After the normalization we have to calculate the levels in the task tree. In our
running example we have eleven levels. The levels could be recovered from a
breadth-first walk over the tree. The result of this process is shown in Figure 4-7
also in the same figure we present the number of containers x and their sons v to
be treated with G (n).
The first anchor to be found, it’s the task in charge of selecting the hot spot in the
menu from this task we have to climb the tree to reach the father node which is
located in the first layer (here we maintain the assumption again of 4 layers). This
constitutes the first container x (figure 4-7.I). Now, looking at the same level we
have found the next task to be marked as anchor (Figure 4.7.II). The process
continues until we arrive to the last one in the first level which includes the root
node so we have seven containers with 4 layers and one with 3 layers (figure 4-7).

Figure 4-8: The levels and containers of MRE

Chapter 4. Building the Abstract User Interface

 52

The next step takes each container and creates the correspondent v sub containers
(see figure 14). Then, we have to treat each v container in order to use them as
input for the last step of the process and define their internal container
configuration. The number of sub containers (in the layers) depends on the
restrictions imposed by the formula (1) and the elections of the developer (A
capital consideration is that our method is not searching –at this point- to
produce the optimal neither the minimal configuration instead of that it’s looking
to produce multiples valid scenarios to leave the developer with more options.

Figure 4-9: The Containers X8 and X7 that are generated

Figure 4-10: The Container X6 with detail of navigation marker

Chapter 4. Building the Abstract User Interface

 53

The result of the application of G (n) to the X8 and X7 containers is shown in the
figure 4-9. It’s important to remember that the selection of the structure is a
“designer choice” e.g., the container that encapsulates the handle catalogue could
be divided in more containers than the ones shown in the figure 4-9c. The
function allow us to create all the combinations that do not break the sequence
order beginning with zero then our preference was to create only one container.
Meanwhile, in figure 4-9a because of the restrictions imposed by the choice
operators the result is strictly three containers and finally in figure 4-9b the
decision was to create two containers. Note: These selections were made to probe
the algorithm not with a specific purpose in mind.

In the next step we are going to create the AUI using IdealXML tool [Mont06]
where each X is mapped to a AC as well as the v containers that are populated
with AICs. Only three of the eight abstract containers are shown in the following
figures (4-11 to 4-13) for the sake of simplicity and focus in the method not in the
repetition of steps.

4.2 Selection of Individual Components

The purpose of this section is finding the right component for the right job
besides to deal with presentation and behaviour features, this information is going
to be used in the next chapter to construct a concrete model of the UI. Here, we
use information from the task model and domain model to generate the correct
AIC specification.

This specification is extracted from a set of characteristics that have to be defined
from the previous step: action types, action items, and task types, data types of
domain attributes, domain of value of domain concepts, enumerated domains,
inheritance and aggregations: That is the mapping between the task and domain
model. The process that is suggested here is based on the general UsiXML
method from [Limb04] with the difference of being based in XSLT
transformations. The facets (or purpose) of an AIC defined, could take one of
these values: input, output, control or navigation. (The pencil icon indicates an
input facet, the button a control facet, and the green arrow pointing south is for
navigation indications and finally, the magnifying glass is an output facet). The
result of the process depicted in Figures 4-11 through 4-13.

Chapter 4. Building the Abstract User Interface

 54

Note: the inclusion of the RIA task type for the identification is a depending task
that requires the verification of the task defined against a review of a more
extensive pool of RIA examples that right now is being collected.

Figure 4-11: The AUI with the selection of facets of containers X8

Figure 4-12: The AUI with the selection of facets of containers X7

Figure 4-13: The AUI with the selection of facets of containers X6

Chapter 4. Building the Abstract User Interface

 55

The next table is the resultant UsiXML specifications that were generated by
IdealXML.

<abstractContainer id="idao0" name="Handles">
<abstractContainer id="idao3" name="OtherHandles">
<abstractContainer id="idao9" name="idao9">
 <abstractIndividualComponent id="idao11" name="ShowHandlesList">
 <output id="idao13" name="idao13" />
 </abstractIndividualComponent>
<abstractContainer id="idao12" name="SelectCatalogueSection" splittability="true">
 <abstractIndividualComponent id="idao14" name="PickSection">
 <input id="idao16" name="idao16" />
 </abstractIndividualComponent>
 <abstractIndividualComponent id="idao15" name="ShowHandleSection">
 <output id="idao17" name="idao17" />
 </abstractIndividualComponent>
</abstractContainer>
</abstractContainer>
</abstractContainer>
<abstractContainer id="idao4" name="ShowStandardHandles">
 <abstractIndividualComponent id="idao6" name="ShowStandardHandles">
 <output id="idao7" name="idao7" />
 </abstractIndividualComponent>
</abstractContainer>
</abstractContainer>
<abstractContainer id="idao20" name="Navigation">
<abstractContainer id="idao21" name="SeeImageDetails">
<abstractContainer id="idao24" name="zoom">
 <abstractIndividualComponent id="idao26" name="zoom">
 <input id="idao27" name="idao27" />
 </abstractIndividualComponent>
</abstractContainer>
<abstractContainer id="idao25" name="SeeHotSpots">
<abstractContainer id="idao29" name="SelectHotSpot">
 <abstractIndividualComponent id="idao32" name="idao32">
 <input id="idao33" name="idao33" />
 </abstractIndividualComponent>
</abstractContainer>
<abstractContainer id="idao31" name="ShowHotSpotDetail">
 <abstractIndividualComponent id="idao34" name="idao34">
 <output id="idao35" name="idao35" />
 </abstractIndividualComponent>
</abstractContainer>
</abstractContainer>
</abstractContainer>
<abstractContainer id="idao22" name="GoPrevious">
 <abstractIndividualComponent id="idao37" name="idao37">
 <input id="idao38" name="idao38" />
 </abstractIndividualComponent>
</abstractContainer>
<abstractContainer id="idao23" name="GoNext">
 <abstractIndividualComponent id="idao39" name="idao39">
 <input id="idao40" name="idao40" />
 </abstractIndividualComponent>
</abstractContainer>
</abstractContainer>
<abstractContainer id="idao42" name="SeeDetails">
<abstractContainer id="idao43" name="MoreInfo">
 <abstractIndividualComponent id="idao46" name="idao46">
 <input id="idao47" name="idao47" />
 </abstractIndividualComponent>
</abstractContainer>

Chapter 4. Building the Abstract User Interface

 56

<abstractContainer id="idao44" name="OtherViews">
 <abstractIndividualComponent id="idao48" name="ShowView">
 <output id="idao51" name="idao51" />
 </abstractIndividualComponent>
<abstractContainer id="idao49" name="PickView">
 <abstractIndividualComponent id="idao52" name="idao52">
 <input id="idao53" name="idao53" />
 </abstractIndividualComponent>
</abstractContainer>
<abstractContainer id="idao50" name="DisplayView">
 <abstractIndividualComponent id="idao54" name="idao54">
 <output id="idao55" name="idao55" />
 </abstractIndividualComponent>
</abstractContainer>
</abstractContainer>
<abstractContainer id="idao45" name="TableChairs">
<abstractContainer id="idao58" name="idao58">
 <abstractIndividualComponent id="idao59" name="SeeChairCatalogue">
 <input id="idao66" name="idao66" />
 </abstractIndividualComponent>
 <abstractIndividualComponent id="idao60" name="ShowChairInfo">
 <output id="idao65" name="idao65" />
 </abstractIndividualComponent>
 <abstractIndividualComponent id="idao61" name="PickChair">
 <input id="idao64" name="idao64" />
 </abstractIndividualComponent>
 <abstractIndividualComponent id="idao62" name="ShowChairOptions">
 <input id="idao63" name="idao63" />
 </abstractIndividualComponent>
</abstractContainer>
</abstractContainer>
 <abstractIndividualComponent id="idao56" name="Handles">
 <navigation id="idao57" name="idao57" />
 </abstractIndividualComponent>
</abstractContainer>

Table 4-1 UsiXML code of the three containers shown in the previous section

4.3 Designing the menu

The RUI requires an especial attention in the designing of the menu because it’s
an exceptional element which contains the navigational and main control features
of the UI. Then we need a definition of what is a menu:

The concept of menu is the activation of a group of actions. A menu is
constituted by a name and a list of actions called menu items. Usually, a menu
item is followed by an accelerator, i.e. a combination of keywords that allows
selecting an item without mouse or keyboard selection. The advantage of menus
is allowing the utilization of the options of the application without worrying about
memorizing commands [Vand98].

Chapter 4. Building the Abstract User Interface

 57

4.3.1 Steps in menu selection

The steps that are required to interact with a menu are depicted in figure 4-8 this
task tree shows a general model or pattern of the interaction with a menu and it
allow us to divide the process in five sections that we are going to use to process a
algorithm to model the menus in a webapp.

Figure 4-14: The steps of interaction with a menu

4.3.1.a Select menu

We could find inside the application some regions that show us the list of
available options (menu) and we have to select one of these options. So in any
region of a task tree with choice operators should be marked as a possible menu.

4.3.1.b Show menu items

The second step includes a task that could be explicit in the model (inclusion of a
task node for it) or implicit (inside the logic of some interaction task).

4.3.1.c Select menu item

These elements of the menu could be seen as the task nodes in the sub tree of
each task associated to a choice operator.

4.3.1.d Execution of command

This step implies that we have reached a leave node and we have an interactive or
a system task in front of us. The work of a menu is leads to this point. Note
depending of the structure of the menu the user could select this step or the next
4.3.1.e.

Chapter 4. Building the Abstract User Interface

 58

4.3.1.e Select (sub) menu

This step implies that we have more options to specialize our task, this inner
menu use in a recursive way the task tree procedures of figure 4-8. But the node
could include a behaviour called in table 4-2 level inflexion that could be different
to the menu elements in upper levels.

4.3.2 Algorithm to generate menu objects

The algorithm that is presented here is a first approximation to the problem and
should be tested against more task models to verify the feasibility for now remains
as a probe of concept. Note: the menu structure that is generated in a semi-
automatic procedure requires the correction of the designer but simplifies her/his
work.

function Generate-Menu (CTT tree) returns menu-structure or failure
initialize the search tree to root node
loop do
if there are no candidate nodes for expansion then return exit
 choose a node and expand its sons
 if the sons of candidate node include only choice operators then
 include it in MenuList[] and its sons as menu items.
 if candidate node previously marked as menu item then
 change the label to submenu
 associate to upper menu element
 if candidate node is unconnected to hierarchy of MenuList then
 mark it as flying menu and localized /*isolated*/

Table 4-2 Menu generation Algorithm

4.3.2.a Application of algorithm to MRE

In our example we got eight menus and the full structure is described in the table
The algorithm that is presented here is a first approximation to the problem and
should be tested against

Chapter 4. Building the Abstract User Interface

 59

Figure 4-15: Menu in the task tree of MRE

Chapter 4. Building the Abstract User Interface

 60

Menu list Menu item or sub menu Member of

main menu,
or isolated

choose
section

M1

seeInformation,
InspectKitchenSection,
InspectBathroomSection,
InspectStowageSection,

InspectHouseHoldApplianceSection,
EnterMobalpaSpace

Main menu
member

Inspect
Kitchen
Section

M2

Choose a Line, LetUsHelpYou,
SeeNovelties, SeeMenage,

SeeTableChairs, ReviewingThePrice,
ReviewAccesories,

ReviewElectricalAppliances,
CreateMonSpaceMobalpaAccount

Main menu
member

Selection
M3

Tendance, Heritage, 100_Design isolated

Search
Criteria M4

SelectStyle, SelectRoomType,
SelectHouseType, SelectColor

Isolated

Catalogue
Manipulation

M5

Browsing, SeeDetails,
OtherModels, MonSpaceMobalpa,

BrowseColors

isolated

Select
implantation

M6

Essential, Expert, Excellence,
evaluateThroughPriceScale

isolated

SeeDetails
M7

MoreInfo, OtherViews, Handles,
TableChairs

isolated

Navigation
M8

SeeImageDetails, GoPrevious,
GoNext

isolated

Table 4-3 Resultant menu structure for MRE

4.3.3 Proposing a taxonomy of menu objects

The general features that menu in UI are shown in table 4-2 this is a compilation
of all the features that a menu could have.

Chapter 4. Building the Abstract User Interface

 61

 Features Possible values

Use of space Full screen, localized
Area Fixed, variable

Dimensions 1D, 2D, 3D
Representation Implicit, explicit

Selection method Key combination, Mouse, digital
device, voice recognition and

haptic devices
Influence area Full screen, localized

Persistence Application life, event life,
mixed

Presentation Locked, flying, user preference
Exploration Selection, continuous,

accelerators
Status Compacted, full or partially

opened (for instance more used
functions are available)

Reinforcer Menu path, text, tool tip
Roll over method Colour, animation, text

accentuation, none
Disposition Horizontal, vertical, oblique,

circular, polygonal, mixed

Menu

Modality types Textual, iconic, vocal, bimodal
 Level inflexion by

lower levels
Full, summarized, title, removed

 Orientation Left to right, centre, top-down

Submenu Level inflexion by
upper levels

Expandable, drop-down,
cascade, submenu, emergent

Menu item Type Command execution, dialogue

window, submenu, toggle item,
radio item

 Roll over method Colour, animation, text
accentuation, none

Table 4-4 Taxonomy of Menu elements

Chapter 4. Building the Abstract User Interface

 62

4.3.3.a Use of space

This feature means the space that is used by the menu. The options are: full
screen or a region of the available space (a special case is full Web browser space
that we are going to discuss later).

4.3.3.b Area

The menu can have an area (of course with 1D we would have a distance and a
volume in 3D) and this feature can be fixed or variable (this capability can be
modified by the user or for application adaptability).

4.3.3.c Dimensions

The dimension of a menu is related with the type of UI for instance in a GUI we
can have 2D or 3D menus meanwhile in a Character User Interface we have only
the command interpreter and one dimension.

4.3.3.d Representation

We have two possible options for the representation: the menu could be explicit
that is always available or implicit that is after some conditions is presented to the
user. Then we could see this feature as a subcategory of the persistence.

4.3.3.e Selection method

Here we count the possible ways to interact with the elements of the menu: Key
combination, Mouse, digital device, voice recognition and haptic devices.

4.3.3.f Influence area

The menu could exist in a specific area of the available space of the application
but the result could be reflected in other section that we call influence area. For
instance, typical webapps include a top menu which is living in a frame while the
result of the action of interacting with the menu is executed in other frame.

4.3.3.g Persistence

This feature is about the life span of the menu. Some menus have the same life
cycle than the application and others are available under demand as result of an
event trigger and some menus could me a combination. For instance, we could
configure our system to always bring at start some menus that normally are only
active by demand.

4.3.3.h Presentation

This feature contemplates the position of the menu and their possible
combinations: some menu are in a fixed position all the time (Locked), others are

Chapter 4. Building the Abstract User Interface

 63

presented near an event, e.g., a selection that trigger a flying menu (a non specific
position), or in other cases the user can modify their position according to her/his
preferences.

4.3.3.i Exploration

The way of navigate through the levels of the menu hierarchy. The first option is
by Selection, that is indicate that you want to explore a section and you have to
click (in the case of using a mouse) and after that the next section –if any- is
shown. Meanwhile the continuous option implies that moving over the elements
expand the inner levels, and finally the use of accelerators implies the use of key
combinations that expand the menu to the desired level.

4.3.3.j Status

The expression of menu depending on the design settings could be presented to
the user as compacted; full or partially opened (for instance more used functions
are available).

4.3.3.k Reinforcer

The interaction with the Menu could be frightening for the user so the menu has
to include information to reinforce the selection as the right path. First we could
have a path to show the user what was the exploration path over the menu, a brief
explanatory text, and finally a minimal text over the menu item in a flying box: a
tool tip.

4.3.3.l Rollover method

This is the feedback of the menu in respond to the user interaction: Colour,
animation, text accentuation, none.

4.3.3.m Disposition

The position of the menu in the overall structure of the application is very
important and could be disposed in one of these general categories: Horizontal,
vertical, oblique, circular, polygonal, mixed.

4.3.3.n Modality types

This feature deals with the interaction modality of the menu. The possible options
are: Textual, iconic, vocal, bimodal.

4.3.3.o Level Inflexion by lower levels

While the menu is explored and for the sake of the application space the higher
levels could be affected or not and change their status to: Full, summarized, title,
removed. The idea is to leave the user with the better presentation of the menu

Chapter 4. Building the Abstract User Interface

 64

without a saturation of levels. Because according to [Zaph01] the better
combinations are the ones with fewer levels in length than in width.

4.3.3.p Level inflexion by upper levels

The presentation of the submenus as the result of the selection of their parent
menus are: Expandable, drop-down, cascade, submenu, emergent.

4.3.3.q Type

The menu item could be of one of these types: Command execution, dialogue
window, submenu, toggle item, radio item. The sub menu in figure 4-8 is not
presented because the treatment of a menu or a submenu in terms of tasks to
fulfil is the same.

4.3.4 Menus on RIA applications

The menus have a capital importance in the RIAs because the menu could be
seen as a list of shortcuts to commands and operations within an application but
in RIA They are also the links between Web pages. There is an intrinsic sense of
navigation in the menu object. The menu objects in webapps are a reflex of the
navigation structure of the site and in the next table (4-3) we present the
extensions to the taxonomy that has been presented in the previous section.

 Features Possible values

Auto update Through Push technology
Broadband

saving version
Text, low resolution

Loading previous None, partial, loading icon,
RIA Menu

Leap None, animated, multimedia

Table 4-5 Taxonomy of Menu elements extended to RIA

4.3.4.a Auto update

The Elements of a RIA menu can be updated using push technology. For instance
in the case of an offer (in an e-commerce application) the menu could be updated
to present some new category of products.

Chapter 4. Building the Abstract User Interface

 65

4.3.4.b Broadband saving version

The amount of information sends it in the Web world through the wire is always
an issue, so the menus could have simpler versions to present information to the
user.

4.3.4.c Loading previous

The menus have to inform the user that some of the information is still
unavailable and present a progression icon or part of the information while the
rest is retrieved.

4.3.4.d Leap

The interaction with webapps is very scarce; the user is used to jump from web
place to another in seconds so in order to provide a one button option to reach
some section or fulfill some task the RIA menu include hot spots leaps to specific
sections. For instance, in some menus the site creators show you suggestions and
they send you to some specific section8 that does not require explore the menu
hierarchy (in a sense is an accelerator but more concise and punctual because the
accelerators also could imply more than one letter besides the control/alt key to
dig into the lower levels of the menu).

4.3.5 Implantation of the menu in the AUI

The heuristic for implant the menu derived of the analysis of the CTT tree is
again depending of the designer preferences. Because from tables 4-4 we have the
available combinations but here we propose a simple method: The inclusion of a
umbrella AC that would cover all the ACs that has already created and the
inclusion of an extra AC (the menu) that will include AIC with navigation facets
to each element of table 4-3. Then, all the ACs in an XSLT iterative process we
have to include a pair of AIC one with a navigation facet to return to the menu
and other with an input facet to prepare the AIC to the inclusion of an accelerator
in the CUI step.

8 An example of this menu option is the gold box of Amazon.com

Chapter 5. Concrete User Interface Representation

 66

Chapter 5 Concrete User
Interface Representation

In this chapter we are going to describe the step three (see figure 5-1) first we
discuss about the selection of the platform, then process to transform our AUI
into its CUI representation using XSLT transformations and finally the definition
of the behavior and presentation of our UI.

Figure 5-1: Sub steps of the transformation from AUI to CUI

5.1 Selection of target platform

The goal is still behind the hill, our UI need to pass to the next CAMELEON
level to look more like a typical UI with widgets more close to the ones of the
final platform. Here, we have to define the look and feel, the appearance and the
behavior. The CUI representation is dependent of the modality [Limb04] and in
most of the cases RIA applications have a graphic modality i.e., a combination of
graphic input and output (see figure 5-1). Nevertheless, the description of the
elements is independent from any existent toolkit or API the reason of this is
keeping the UI as general as possible to allow a simpler translation to the last step
(next chapter). In other words, the proximity to any real API could compromise
the translation for other platforms and languages. Our work is based in the CUI

Chapter 5. Concrete User Interface Representation

 67

model from UsiXML9 that include a collection of concrete Interaction objects.
That is a general toolkit not attached to a single platform or language besides a
relationship model.

Figure 5-2: Elements of graphic modality

5.2 Transformation of AUI in CUI

5.2.1 Selection of Concrete Interface Components

The selection of Concrete Interaction Objects (CIOs) is a process that includes
some XSLT templates. In the table 5-1, we define a possible set of CIOs which
can be obtained by the transformation of the AIC taking into account: facet types,
data types and cardinalities among others (from the AUI depicted in fig. 4-12).

AIC Facet
Specification

Relevant
Information

Possible
CIC

“ShowStandardHandles” Output Feedback Images
“ShowHandlesList” Output Data type

 Domain
Characteristics

Images

“Pick Section” Input Data type
 Domain

Characteristics
 Selection Value

An
ImageZone
(with a link)

“ShowHandleSection” Output Data type
 Domain

Characteristics

A window

Table 5-1 Fragment of AUI (some AIOs) from MRE and their equivalent CIOs

9 Available from Http://www.usixml.org

Chapter 5. Concrete User Interface Representation

 68

5.2.2 Defining CICs spatial position

The process of selecting the final position of CICs depends on the physical
constraints of the final size of the main container (Here, a web browser). The
Heuristic defined could be as simple as: put all the objects, one by one, following
tasks temporal relationships and taking the centre of the window as the axis of all
the CICs or it could involve more complex heuristics based on ergonomical
criteria.

5.2.3 Defining Navigation

Navigation leads the user while she or he is using the application. In short, defines
the visibility of components depending on tasks temporal relationships, the
navigation isn’t defined in an explicit form in our study case, it’s hidden in all the
triggers used. In some other application a back and forward buttons/links could
produce a more obvious way of navigation schema.

5.2.4 Resulting CUI UsiXML specification

The UsiXML representation of a CUI is shown in Figure 5-3 it’s from [Mart06].
The UsiXML document is much more extended and complex than the fragment
that is presented which included the resources and events associated to the
widgets besides information from the other levels. Some of the saved information
in this file would be very useful for retargeting tasks. This file was created using
the GrafiXML [Limb04].

<?xml version="1.0" encoding="UTF-8"?>
<uiModel xmlns="http://www.usixml.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.usixml.org/
http://www.usixml.org/spec/UsiXML-ui_model.xsd"

 id="FruitStore_31" name="FruitStore"
 creationDate="2006-03-31T11:03:50.109-06:00" schemaVersion="1.6.3" xsi:type="uiModel">
 <head>
 <version modifDate="2006-03-31T11:03:50.109-06:00">1</version>
 <authorName>Javier Martinez</authorName>
 <comment>Generated by GrafiXML 1.1.999 build id : 200602081036</comment>
 </head>
<window id="window_component_0" name="window_component_0"
 width="400" height="350">
 <box id="box_1" name="box_1" type="vertical">
 <imageComponent id="image_component_2"
 name="image_component_2"
 tooltip="/uiModel/resourceModel/cioRef[@cioId='image_component_2']/resource/@tooltip"
 defaultTooltip="Apples (£5)"
 content="/uiModel/resourceModel/cioRef[@cioId='image_component_2']/resource/@content"

Chapter 5. Concrete User Interface Representation

 69

 defaultContent="/resources/00/" isVisible="true"
 isEnabled="true" textColor="#000000"/>
 <imageComponent id="image_component_3"
 name="image_component_3"
 tooltip="/uiModel/resourceModel/cioRef[@cioId='image_component_3']/resource/@tooltip"
 defaultTooltip="Bananas (£7)"
 content="/uiModel/resourceModel/cioRef[@cioId='image_component_3']/resource/@content"
 defaultContent="/resources/00/" isVisible="true"
 isEnabled="true" textColor="#000000"/>
 <imageComponent id="image_component_4"
 name="image_component_4"
 tooltip="/uiModel/resourceModel/cioRef[@cioId='image_component_4']/resource/@tooltip"
 defaultTooltip="Grapes (£9)"
 content="/uiModel/resourceModel/cioRef[@cioId='image_component_4']/resource/@content"
 defaultContent="/resources/00/" isVisible="true"
 isEnabled="true" textColor="#000000"/>
 <imageComponent id="image_component_5"
 name="image_component_5"
 tooltip="/uiModel/resourceModel/cioRef[@cioId='image_component_5']/resource/@tooltip"
 defaultTooltip="Ready to buy? double click in basket"
 content="/uiModel/resourceModel/cioRef[@cioId='image_component_5']/resource/@content"
 defaultContent="/resources/00/" isVisible="true"
 isEnabled="true" textColor="#000000"/>
 </box>
 </window>

Figure 5-3: Fragment of a CUI UsiXML file

5.3 Refining presentation and behavior for CUI

5.3.1 Behavior a basic introduction

Before going any further we have to define what behaviour in the context of this
work is: Behaviour refers to the actions or reactions of an object or organism,
usually in relation to the environment [wiki07].

We can observe three general models of behaviour in software engineering:
Control flow, Data flow and State machines [Bock99].

5.3.1.a Control flow

This model describes the sequence of steps and simply assumes that next step is
going to be processed after the current step is complete. There is not a vigilance
of the inputs i.e. it’s not required to start a new step to observe the state of the
input as it’s assumed that between steps the needed information is gathered. For
instance, a store is open according to a schedule without looking to the presence
or not of customers. Control flow is used extensively in the imperative languages
e.g. C, Basic, FORTRAN, among many others. The specific tool was the flow
chart [Kern88], [Mart98] and [Kell98]. A drawback is the difficulty of modelling
concurrent steps.

5.3.1.b Data flow

This model works with the following idea: each step provides the inputs for the
next step (its own outputs). For instance, this approach is more suitable for
Object Oriented languages as Java. Because, objects are waiting for the needed

Chapter 5. Concrete User Interface Representation

 70

input for execution and also we could deal with several threads of execution since
we could have multiple object instances. One of the most used tools for this kind
of model is Petri Nets. [Grah96], [Film84].

5.3.1.c State Machines

This model uses/sees the input as a collection of events that would trig within the
environment of the application. The input of each step is processed as part of the
step. For instance, the state charts of UML. [Rational Software, et al, UML
Semantics, version 1.1, Rational Software Corporation, Santa Clara, CA,
September 1997, chapter 11. Harel, D., and M. Politi, Modeling Reactive Systems
With Statecharts: The Statemate Approach, McGraw Hill, 1998.]

We summarize the features of the three models in table 5-2,

 Control Flow Data Flow State Machine

Input is determined At start Before Start At Start
Start conditions Internal Internal External
Basic tool Flow chart Petri Net State charts
Better for Strong coupled

between input data
and step order

Weak coupled
between input data

and step order

Input data
provided by step

events

Table 5-2 Dimensions of Behaviour Modelling (modified from [Bock99])

5.3.2 Behavior of the CUI representation

So far, we are trying to figure out how to create a model of behaviour based in the
combination of these three models since the distributed nature of the RIAs could
be badly represented if we select only one medium. As we have discussed in the
previous chapter a nice candidate is the SMIL language that is also used as starting
point in [Lina07].

Chapter 6. Generation of Final User Interface

 71

Chapter 6 Generation of Final
User Interface

In this step are produced operational UIs that are executed, compiled or
interpreted on a particular platform (e.g., .NET, LZX, SWF and GWT among
others10). The code that is obtained is translated again with XLST stylesheets and
finally we have code in the target language that could be treated by the
interpreters, compilers, generators or converters of platform.

Figure 6-1: The final step: delivering a RUI

6.1 Processing the CUI to generate the Final User
Interface

In this phase we transform CUI specifications to native widgets sets present in
popular graphical toolkits (GWT or XAML among others) thanks to XSLT
transformations the CUI objects are translated to the platform/language specific
elements. An important feature of the method is its capability to redirect the
target FUI e.g., in the figure 6-2, as example we present three target
transformations: GWT [GWT07], Open Laszlo [open06] and XAML [XAML06]
to endeavour these transformations is needed to generate adequate XSLT
templates to translate CIOs described in UsiXML to the target language. This
section describes the way XSL transformations are applied to generate a
hypothetical (minimal) XAML output.

10 The creation of generators and converters of UsiXML to the Final code has already begun.

Chapter 6. Generation of Final User Interface

 72

Figure 6-2: The final step: delivering FUI code for the interpreters or compilers.

This is an excerpt of the final version of the XSLT template rules (Fig. 6-3) we
just add here some rules to make clear the example since the XML source
document is very different to the final document, some of the code is restricted to
default values.

The resulting XAML UI definition is shown below (Figure 6-4). The UI definition
in UsiXML documents describe the event response (code included in a separated
section). This is also the case of XAML that in a separated document, denoted by
the “CodeBehind” tag includes this information. Also, the size of the widgets is
omitted for the sake of simplicity.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:wf="http://schemas.microsoft.com/2003/xaml/" version="1.0">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="*|/">
 <wf:UserControl Name="WebForm1" ClientSize="200, 200" xmlns="http://schemas.microsoft.com/2003/xaml/"
xmlns:def="Definition" xmlns:wf="wf" def:Class="XamlonApplication8.WebForm1" def:CodeBehind="WebForm1.xaml.cs">
 <xsl:apply-templates select="/cuiModel/window"/>
 </wf:UserControl>
 </xsl:template>
 <xsl:template match="window">
 <wf:UserControl.Controls>
 <xsl:apply-templates select="/cuiModel/window/box/inputText"/>
 <xsl:apply-templates select="/cuiModel/window/box/button"/>
 <xsl:apply-templates select="/cuiModel/window/box/outputText"/>
 <xsl:apply-templates select="/cuiModel/window/box/slider"/>
 </wf:UserControl.Controls>
 </xsl:template>

 <xsl:template match="inputText">

Chapter 6. Generation of Final User Interface

 73

 <wf:TextBox Text="{@defaultContent}" TabIndex="1" Name="{@name}"/>
 </xsl:template>
 <xsl:template match="button">
 <wf:Button Text="{@defaultContent}" TabIndex="1" Name="{@name}"/>
 </xsl:template>
 <xsl:template match="outputText ">
 <wf:Label Text="{@defaultContent}" TabIndex="1" Name="{@name}"/>
 </xsl:template>
 <xsl:template match="slider ">
 <wf:TrackBar Text="{@defaultContent}" TabIndex="1" Name="{@name}"/>
 </xsl:template>
</xsl:stylesheet>

Figure 6-3: XSL transformation document

Then the code that was shown in figure 5-3 would deliver something like the code
presented in figure 6-4. Now we have the equivalent to the CUI windows
previously defined but settle down to Microsoft technology.

<wf:UserControl xmlns:wf="wf" xmlns="http://schemas.microsoft.com/2003/xaml/" xmlns:def="Definition" Name="WebForm1"
ClientSize="200, 200" def:Class="XamlonApplication8.WebForm1" def:CodeBehind="WebForm1.xaml.cs">

<wf:UserControl.Controls xmlns:wf="http://schemas.microsoft.com/2003/xaml/"><wf:TextBox Text="" TabIndex="1"
Name="input_text_component_9"/><wf:TextBox Text="" TabIndex="1" Name="input_text_component_11"/><wf:TextBox
Text="0.00" TabIndex="1" Name="input_text_component_13"/><wf:Button Text="Submit order" TabIndex="1"
Name="button_component_14"/><wf:Label Text="Name" TabIndex="1" Name="output_text_component_8"/><wf:Label
Text="Address" TabIndex="1" Name="output_text_component_10"/><wf:Label Text="Total to Pay:" TabIndex="1"
Name="output_text_component_12"/>
</wf:UserControl.Controls>

</wf:UserControl>

Figure 6-4: XAML resultant file

Chapter 7. Conclusion

 74

Chapter 7 Conclusion

The purpose of this work was to establish the master plan of our method to
develop RUIs (see complete method, figure 7-1). All the steps have been
presented in the current document. These steps are the beginning of a
variation/expansion of the UsiXML family of tools and models in order to target
RIAs is an ongoing work.

In this dissertation we proposed a novel approach to model RUIs which includes
the complete software development life cycle. The proposed method organizes
the development life cycle for RUIs from the conceptual to the final
implementation stages using as guide the user requirements instead of being focus
in the content, furthermore, our method is Model Driven Engineering compliant
since we are concern with the separation of different aspects of the problem
within abstract models that could be, progressively expanded to concrete models.
That is RIAUI development cycle is progressively refined from the Computing
Independent Models (CIM) as defined by OMG [OMG07] to the concrete
models: Platform Specific models.

7.1 Summary of contributions

The list of contributions is listed below:

 The contributions are expanded in a series of exploratory papers in which
we began to understand more the model of the RIAs:

o [Mart06], where present the first attempt to tackle the problem
o [Muño06] where we propose a taxonomy of RIAs
o [Mart06a] a study case based on XAML UIs.

 We have integrated here a proposal of extensions to the task types and
menu features relevant to RIAs (see chapter 3 and 4).

 A proposal of a method for the generation of the container structure
 And Finally, The generation of menus based on task trees

The goal of having a robust method to deliver RUIs is still far away but we have a
good starting point.

Chapter 7. Conclusion

 75

Figure 7-1: a development method for User Interfaces of RIAs

7.2 Brief discussion of future work

There are some activities that we are doing right now because are pending tasks
for instance the process of making grow our repository of the UI widgets used in
RIAs (for complete the XSLT templates). Also we want to pursuit the integration
of the RIA frameworks GWT into the GrafiXML tool as target language also the
integration of some elements to make simpler the translation between models,
specifically the collecting of patterns to reduce the process of conversion.

And finally, the web is a distributed environment, we have to profit of that and
integrate to the solution the power of the cooperative systems i.e., web agents.

References

 76

References

A
[Abra99]

Abrams, M., Phanouriou, C., Batongbacal, A. L., M. Williams, S. and Shuster, J.E.. Uiml: an
appliance-independent xml user interface language. In WWW ’99: Proceeding of the eighth
international conference on World Wide Web, pages 1695–1708, New York, NY, USA, 1999.
Elsevier North-Holland, Inc.

[Adler 95]

Adler, R. M. Distributed Coordination Models for Client/Sever Computing.Computer 28, 4 (April
1995): 14-22.

B
[Bles90]

Bleser, T. W. & Sibert, J.,.”Toto: a tool for selecting interaction techniques”. In: Proceedings of user
interface software and technology (Snowbird, Utah, Oct.3-5,1990) . New York: ACM, 1990,
pp. 135-142.

[Boda94a]

Bodart, F., Hennebert, A., Leheureux, J., and Vanderdonckt, J. 1994. Towards a dynamic strategy
for computer-aided visual placement. In Proceedings of the Workshop on Advanced Visual
interfaces (Bari, Italy, June 01 - 04, 1994). M. F. Costabile, T. Catarci, S. Levialdi, and G.
Santucci, Eds. AVI '94. ACM Press, New York, NY, 78-87.

[Boda94b]

Bodart, F. and Vanderdonckt, J. 1994. Guide ergonomique de la présentation des applications hautement
interactives. Namur : Presses Universitaires de Namur.

[Bock99]

Bock, C., "Three Kinds of Behaviour Model," Journal of Object-Oriented Programming, 12:4,
July/August 1999.

[Booc05]

Booch, G., Rumbaugh, J., and Jacobson, I., 2005.Unified Modeling Language User Guide, 2nd
Edition.Addison-Wesley.USA.

[Boui05]

References

 77

Bouillon, L., Limbourg, Q., Vanderdonckt, J., Michotte, B., 2005.Reverse Engineering of Web Pages
based on Derivations and Transformations, Proc. of 3rd Latin American Web Congress LA-
Web’2005 (Buenos Aires, October 31-November 2, 2005), IEEE Computer Society Press, Los
Alamitos, pp. 3-13

[Boye06]

Boyer, J.M., Landwehr, D., Merrick, R., Raman, T. V., Dubinko, M. and Klotz, L. L., XForms
1.0 (Second Edition), W3C Recommendation. World Wide Web Consortium, March 2006.

[Bozz06]

Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G. (2006), Capturing RIA concepts in a web
modeling language, Proc. of the 15th International Conference on World Wide Web WWW’2006
(Edinburgh, May 23-26, 2006), pp. 907-908.

[Bres97]

Breslow, L. A. and Aha, D. W., 1997. Simplifying decision trees: a survey. Knowledge Engineering
Review, 12(1):1–40.

C
[Cach02]

Cachero, C. and Gómez, J., 2002. Advanced conceptual modeling of Web applications: Embedding
operation interfaces in navigation design. In the 21st International Conference on Conceptual
Modelling (JISBD). El Escorial, Madrid, Spain.

[Calh84]
Calhoun, G. C.; Arbak, C. L. & Boff, K. R. “Eye-controlled switching for crew station design”. In:
Proceedings of the Human Factors Society 28th annual meeting, Santa Monica (CA): Human
Factors Society, 1984, pp. 258-262.

[Calv03]

G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt. “A
Unifying Reference Framework for Multi-Target User Interfaces”. Interacting with Computers, 15(3):
289–308, 2003.

[Canf90]

Canfield Smith,D., Irby, C., Kimball, R., Berplank, B. and Harslem, E. Designing the star user
interface. Pages 237–259, 1990.

[Casn91]

Casner, S. M. 1991. Task-analytic approach to the automated design of graphic presentations. ACM Trans.
Graph. 10, 2 (Apr. 1991), 111-151.

References

 78

[Ceri01]

Ceri, S., Fraternali, P., Matera, M., and Maurino, A.(2001). Designing Multie-Role, Collaborative
Web Sites with WebML: a Conference Management System Case Study. IWWOST'01, Valencia, Spain,
June 2001.

[Chen05]

Chen, Y., Xie, X., Ma, W.-Y., and Zhang, H.-J. Adapting Web Pages for Small-Screen Devices.
IEEE Internet Computing, 09(1) (2005), 50-56.

[Chu04]

Chu, H., Song, H., Wong, C., Kurakake, S., and Katagiri, M. Roam, a seamless application
framework. Journal of System and Software 69(3) (2004), 209-226.

[Cona02]

CONALLEN, J. 2002. Building Web Applications with UML. Addison-Wesley

[Cran05]

Crane, D., Pascarello, E., James, D. (2005), Ajax in Action, Manning Publications, USA.

[Cout87]

Coutaz, J., (1987). "PAC: an Implementation Model for Dialog Design". H-J. Bullinger, B.
Shackel (ed.) Proceedings of the Interact'87 conference, September 1-4, 1987, Stuttgart, Germany: pp. 431-
436, North-Holland.

D
[Detr03]

De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using WSDM, In
Proceedings of the Third International Workshop on Web-Oriented Software Technologies
(held in conjunction with ICWE2003), Eds. Daniel Schwabe, Oscar Pastor, Gustavo Rossi,
Luis Olsina, Oviedo, Spain (2003).

[Diaz97]

Díaz Pérez P., Catenazzi N., Aedo Cuevas, I. (1997), De la Multimedia a la Hipermedia, Ed.
Alfaomega, Spain.

[Dyck90]

Dychhoff, H. A typology of cutting and parking problems. European Journal of Operational
Research, 44:145–159, 1990.

References

 79

E
[Ecke95]

Eckerson, W. "Three Tier Client/Server Architecture: Achieving Scalability, Performance, and Efficiency in
Client Server Applications." Open Information Systems 10, 1 (January 1995): 3(20).

F
[Ferr03]

Ferraiolo, J., Jun, F., Jackson, D., Scalable Vector Graphics (SVG) 1.1 Specification, W3C
Recommendation. World Wide Web Consortium, January 2003.

[Flas06]

FLASH (2006).Retrieved March 26, 2007, from http://www.adobe.com/products/flash/

[Flex06]

FLEX (2006). Retrieved March 26, 2007, from http://www.macromedia.com/software/flex/

[Flor06]

Florins, M., Simarro, F. M., Vanderdonckt, J., and Michotte, B. 2006. Splitting rules for graceful
degradation of user interfaces. In Proceedings of the Working Conference on Advanced Visual
interfaces (Venezia, Italy, May 23 - 26, 2006). AVI '06. ACM Press, New York, NY, 59-66.

[Fiel00]

Fielding, R. T., Architectural Styles and the Design of Network-based Software Architectures, PhD thesis,
UC Irvine, 2000.

[Film84]
Filman, R. E. and D. P. Friedman, Coordinated Computing: Tools and Techniques for
Distributed Software, McGraw Hill, New York, NY, 1984, chapter 9

[Fole84]
Foley, V. W., Chan, V. "The human factors of computer graphics interaction techniques", In IEEE
Computer Graphics & Applications, (4), pp. 13-48 (1984).

[Fran98]

Franklin, M. and Zdonik, S. (1998), Data in your Face: Push Technology in Perspective, Proc. of ACM
SIGMOD International Conference on Management of Data SIGMOD’98 (Seattle, June 2-4,
1998), ACM Press, New York, 1998, pp. 516-519.

G

References

 80

[Garr05]

Garrett, J., Ajax: A new approach to web applications. Technical report, Adaptive Path, 2005.

[Gill03]

Giller, V., Melcher, R., Schrammel, J., Sefelin, R., and Tscheligi, M. Usability Evaluations for
Multi-device Application Development - Three Example Studies. In Proceedings of Mobile HCI’03
(Udine, Italy, Sept. 8-11, 2003).

[Göbe01]

Göbel, S., Buchholz, S., Ziegert, T., and Schill, A. Device Independent Representation of
Web-based Dialogs and Contents. In Proceedings of the IEEE YUFORIC ´01

(Valencia, Spain, Nov. 2001).

 [Gome02]

Gomez, J. and Cachero, C., OO-H: Extending UML to Model Web Interfaces. Information Modeling
for Internet Applications. Idea Group Publishing. 2002. Available at
http://www.dlsi.ua.es/~ccachero/papers/igp.pdf

[Gonz07]

Gonzalez Calleros, J.M., (2007), Model-based development of Three-dimensional user Interfaces,
EpreuveDeConfirmation . Université Catholique de Louvain, Belgium.

[Grah96]
Graham, P., ANSI Common Lisp, Prentice Hall, Englewood Cliffs, NJ, 1996.

[Gree88]
Greenstein, J. S. & Arnaut, L. Y. “Input devices”. In: M. Helander, (Ed.), Handbook of
Human-Computer Interaction, Amsterdam: North-Holland, 1988, pp. 495-519.

[GWT07]
Google Web Toolkit. Retrieved August 17, 2007, from http://code.google.com/webtoolkit/
overview.html

H
[Holl99]

Holland, S. and Oppenheim, D., Direct combination. In CHI ’99: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 262–269. ACM Press, 1999.

[Holm06]

Holmes, J., Struts: The Complete Reference, 2nd Edition, McGraw Hill/Osborne, 2006.

References

 81

[Honk07]

Honkala, M. (2007). Web User Interaction a Declarative Approach Based on XForms. PhD Thesis,
Helsinki University of Technology.

[Hyat01]

Hyatt, D., XML user interface language (XUL) 1.0. Mozilla.org, 2001.

[Hyat00]

Dave Hyatt. XBL - extensible binding language 1.0. Netscape, 2000.

J
[Jaco04]

Jacobs, I. (2004). Architecture of the World Wide Web, Volume One. Retrieved March 26, 2007,
from http://www.w3.org/TR/webarch/#def-representation.

[Java07]

Java Programming language (2007). Java Standard Edition, APIs and documentation. Retrieved
March 26, 2007, from http://java.sun.com/

K
[Kay03]

Kay, M. XSL Transformations (XSLT), Version 2.0. Technical report, W3C, 2003.
http://www.w3.org/TR/xslt20/.

[Kazo07]

Kazoun, C., Lott, J., Programming Flex 2: The comprehensive guide to creating rich media applications with
Adobe Flex (Programming).O'Reilly, 2007.

[Kell98]

Keller, G. and T. Teufel, SAP R/3 Process Oriented Implementation: Iterative Process
Prototyping, Addison-Wesley, MA, 1998

[Keps04]

Kepser, Stephan. A Simple Proof for the Turing-Completeness of XSLT and XQuery. In Proceedings
of Extreme Markup Languages 2004.

[Kern88]

Kernighan, B. W. and D. M. Ritchie, The C Programming Language, Prentice Hall, Englewood
Cliffs, NJ, 1988.

[Klei04]

References

 82

Klein, R., Six, H., Wegner, L., (2004). Computer Science in Perspective: Essays Dedicated to Thomas
Ottmann. Lecture Notes in Computer Science, vol. 2598, Springer-Verlag, Berlin, pp. 100-101.

[Koch02]

Koch, N. and Kraus, A. 2002. The expressive power of UML-based engineering. In Second
International Workshop on Web Oriented Software Techonlogy (CYTED). 105–119.

L
[Leno84]

Lenorovitz, D.R.; Phillips, M.D.; Ardrey, R.S. & Kloster, G.V. “A taxonomic approach to
characterizing human-computer interaction”. In: G. Salvendy (Ed.), Human-Computer Interaction.
Amsterdam: Elsevier Science Publishers, 1984, pp.111-116.

[Lewi04]

Lewis Ship, H., Tapestry in Action. Manning Publications. 2004.

[Limb03a]

Limbourg, Q. and Vanderdonckt, J., Comparing Task Models for User Interface Design, in Diaper,
D., Stanton, N. (Eds.), The Handbook of Task Analysis for Human-Computer Interaction,
Lawrence Erlbaum Associates, Mahwah, pp. 135-154.

[Lim05]

Lim, A. and Zhang, X. 2005. The container loading problem. In Proceedings of the 2005 ACM
Symposium on Applied Computing (Santa Fe, New Mexico, March 13 - 17, 2005). L. M.
Liebrock, Ed. SAC '05. ACM Press, New York.

[Limb04]

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, V. UsiXML: a Language
Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP Working Conference on
Engineering for Human-Computer Interaction jointly with 11th Int. Workshop on Design,
Specification, and Verification of Interactive Systems EHCI-DSVIS’2004 (Hamburg, July 11-
13, 2004). Lecture Notes in Computer Science, Vol. 3425, Springer-Verlag, Berlin, 2005, pp.
207-228.

[Lina07]

Linaje, M., Preciado, J.C., Sánchez-Figueroa, F., 2007. A Method for Model Based Design of Rich
Internet Application Interactive User Interfaces. In The Seventh International Conference on Web
Engineering (ICWE’07).

References

 83

M

[Mack86]

Mackinlay, J. 1986. Automating the design of graphical presentations of relational information. ACM
Trans. Graph. 5, 2 (Apr. 1986), 110-141.

[Mand02]

Mandyam, S., Vedati, K., Kuo, C. and Wang, W., User Interface Adaptations: Indispensible for Single
Authoring. In Workshop on Device Independent Authoring Techniques (St. Leon-Rot, 15-26
September 2002).

[Mart06]

Martínez-Ruiz, F.J., Muñoz Arteaga, J., Vanderdonckt, J., González-Calleros, J.M. (2006), A
first draft of a Model-driven Method for Designing Graphical User Interfaces of Rich Internet
Applications, Proc. of 4th Latin American Web Congress LA-Web’2006 (Puebla, October 25-
27, 2006), IEEE Computer Society Press, 2006.

[Mart06a]

Martínez-Ruiz, J., Muñoz Arteaga, J., Vanderdonckt, J., Transformation of XAML schema for
RIA using XSLT & UsiXML, Proc. of XlX Congreso Nacional y V Congreso Internacional de
Informática y Computación de la ANIEI, Avances en Tecnologías de la Información
CNCIIC'2006 (Tuxtla Gutiérrez, 25-27 October 2006), 2006

[Mart98]

Martin, J., and J. J. Odell, Object-Oriented Methods: A Foundation (UML edition), Prentice
Hall, Englewood Cliffs, NJ, 1998.

 [Mahe06]

Mahemoff, M., Ajax Design Patterns. O'Reilly & Associates, Inc., USA, 2006

[Moba07]

Mobalpa (2007). Mobalpa : cuisines, salles de bains et rangement (web site), Retrieved June 26,
2007, from http:// http://www.mobalpa.fr/

[Mont06]

Montero, F., López-Jaquero, V., Fast HI-FI prototyping by using IdealXML, Technical report
DIAB-06-03-1, Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha,
Albacete, 24 March 2006.

References

 84

[Mozi07]

Mozilla Foundation (2007). XML User Interface Language (XUL) 1.0, Retrieved March 26, 2007,
from http://www.mozilla.org/projects/xul/xul.html.

[Muel04]

Mueller, W., Schaefer, R., Bluel, S., “Interactive multimodal user interfaces for mobile devices”
Paderborn University, January 05 - 08, 2004. Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS'04) IEEE 2004

[Muño06]

Muñoz Arteaga, J., Martínez-Ruiz, Francisco J., Vanderdonckt, J., Ochoa, A., Categorization of
Rich Internet Applications based on Similitude Criteria.XI Simpósio de Informática e VI Mostra de
Software Acadêmico da PUCRS (SIMS 2006) - Brasil.

O
[Olso90]

Olson, R. and Olson, G. M., "The growth of cognitive modeling in human- computer
interaction since GOMS," Human-Computer Interaction, 5 (1990), pp. 221-265

[OMG07]

OMG (2007). The Object Management Group. Retrieved July 2nd 2007 from
http://www.omg.org.

[Open06]

Open Laszlo (2006). Open Laszlo documentation, Retrieved July 2, 2006, from
http://www.openlaszlo.org/documentation

P
[Paye02]

Payet, D. (2002), LYPO: vers une perception applicative du WEB, Proceedings of the 14th French-
speaking Conference on Human-Computer Interaction IHM’2002 (Poitiers, November 26-29,
2002), Association Francophone de l’Interaction Homme-Machine, 2002, pp. 231-234.

[Pisi95]

Pisinger, D., (1995).Algorithms for Knapsack Problems, Ph.D. thesis, DIKU, University of
Copenhagen, Report 95/1.

[Pate99]

Paternò F. Model-Based Design and Evaluation of Interactive Applications. Springer-Verlag, London,

References

 85

UK, 1999.

[Pemb02]

Pemberton, S., XHTML 1.0: The extensible hypertext markup language (2nd edition).W3C
Recommendation, August 2002.

[Prec05]

Preciado, J.C., Linaje, M., Sanchez, F., Comai, S. (2005), Necessity of methodologies to model Rich
Internet Applications, Proc. of 7th IEEE International Symposium on Web Site Evolution
WSE’2005, IEEE Computer Society Press, 2005, pp. 7-13.

[Prib02]

Pribeanu, C., Vanderdonckt, J., (2002). Exploring Design Heuristics for User Interface Derivation from
Task and Domain Models, Chapter 9, in Proceedings of 4th Int. Conf. on Computer-Aided
Design of User Interfaces CADUI'2002 (Valenciennes, 15-17 mai 2002), Kluwe Academics
Pub., Dordrecht, 2002, pp. 103-110.

[Pont04]

Pontico, F., Farenc, C., and Winckler, M., (2004). Une architecture de dialogue basée sur un modèle
pour les applications web. In Proceedings of the 16th Conference on Association Francophone
D'interaction Homme-Machine (Namur, Belgium, August 30 - September 03, 2004). IHM
2004. ACM Press, New York, NY, 251-254.

[Puer02]

Angel Puerta and Jacob Eisenstein. Ximl: a common representation for interaction data. In IUI ’02:
Proceedings of the 7th international conference on Intelligent user interfaces, pages 214–215,
New York, NY, USA, 2002. ACM Press.

R
[Ragge99]

Ragget, D., HTML 4.0.1 specification. W3C Recommendation, December 1999.

[Ross03]

ROSSI, L., SCHMID, H., AND LYARDET, F. 2003. Engineering business processes in web
applications: Modeling and navigation issues. In Third International Workshop on Web Oriented
Software Technology. Oviedo, Spain, 81–89.

S
[Schm06]

Schmidt, D.C., 2006. Guest Editor's Introduction: Model-Driven Engineering. Computer,
vol. 39, no. 2, pp. 25-31, Feb., 2006.

References

 86

[Schn83]

Schneiderman, B. Direct manipulation : a step beyond programming languages. IEEE Computer, 1983

[Sesh99]

Seshadri,G.,Understanding JavaServer Pages Model 2 architecture.Exploring the MVC design pattern.
JavaWorld.com, 12/29/99.

[Souc03]

Souchon, N. and Vanderdonckt, J. A review of XML-compliant user interface description languages. In
Proceedings of the 10th International Conference on Design, Specification,and Verification of
Interactive Systems, pages 377–391, Madeira, Portugal, June 4-6 2003. Springer-Verlag.

[Spri03]

Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M.,and Dermler, G. Flexible pagination
and layouting for device independent authoring. In WWW2003 Emerging Applications for Wireless
and Mobile access Workshop.

[Stal01]

Stallings, W., Operating Systems: Internals and Design Principles. Prentice-Hall Inc., 2001.

U
[USIX07]

UsiXML Consortium. UsiXML, a General Purpose XML Compliant User Interface

Description Language, UsiXML V1.8, 23 February 2007.

Available at http://www.usixml.org/index.php?view=page&idpage=6

V
[Vand98]

VANDERDONCKT J., Une description orientée objet des objets interactifs abstraits utilisés dans les
Interfaces Homme-Machine, FNDP, Namur, 1998.

W
[Weis07]

Weisstein, Eric W. "Bell Number." From MathWorld. A Wolfram Web Resource. Retrieved
March 26, 2007, from http://mathworld.wolfram.com/BellNumber.html

[Wiki07]
Wikipedia the free encyclopedia available on [http://en.wikipedia.org/wiki/Behavior]
(Accessed August 17, 2007).

References

 87

[W3C06]

W3C consortium, , XMLHttpRequest. 2006, http://www.w3.org/TR/XMLHttpRequest/

[W3C05]

W3C consortium, Synchronized Multimedia Integration Language, specification 2.1, W3C
Recommendation, 2005. Available at http://www.w3.org/TR/2005/REC-SMIL2-20051213/

X
[XAML06]

"Microsoft Extensible Application Markup Language (XAML)".Available:

http://msdn2.microsoft.com/en-us/library/ms752059.aspx. Accessed in June2006

Y
[Ye04]

Ye, J., and Herbert, J. User Interface Tailoring for Mobile Computing Devices. In Proceedings of
UI4All, 8th ERCIM Workshop « User Interfaces for All » (Vienna, Austria, 28-29 June 2004).

Z
[Zaph01]

Zaphiris, P. (2001). Age Differences and the Depth-Breadth Tradeoff in Hierarchical Online Information
Systems. In Stephanidis, C. (Ed.). Proceedings of 1st International Conference on Universal
Access in HCI UAHCI’2001 (New Orleans, August 5-10, 2001). Mahwah: Lawrence Erlbaum
Associates, pp. 540-544.

Annex A. Task Type Taxonomy

 88

Annex A. Task Type
Taxonomy

This task type taxonomy comes from [Gonz07]

Task Type Synonyms/sub-task types Definition
Communicate Convey, Transmit, call,

acknowledge, respond/answer,
suggest, direct, instruct,
request

The action to exchange
information

Create Input/Encode/Enter Associate,
name, group, introduce, insert,
(new), assemble, aggregate,
overlay (cover), add

Specifies the creation of an
item instance

Delete Eliminate, Remove/cut,
ungroup, disassociate,
ungroup

The action of deleting an item

Duplicate Copy Specifies the copy of an item
Filter Segregate, set aside The action of filtering an item
Mediate Analyze, synthesize, compare,

evaluate, decide

The action of intercede task
items

Modify Change Alter, transform,
tuning, rename, segregate,
resize, and collapse/expand?

An action of modifying an
item

Move Relocate, Hide,show?
position? Orient? Path or
travel? X

the action to change the
location of an item

Navigation Go/To the action to find the way
through containers

Perceive Acquire/detect/search
for/scan/extract, identify /
discriminate / recognize,
Locate, Examine, monitor,
scan, detect,

The action of identifying items
and/or information from the
items

Reinitialize Wipe out, Clear, Erase The action of cleaning an item
Select/choose Pick selection between items
Start Initiate/Trigger, Play, Search,

active, execute, function,
record, purchase

Specifies the beginning of an
operation

Stop End /
finish/exit/suspend?/complete?
/Terminate/Cancel

Specifies the end of an action

Toggle activate/ deactivate, /switch The existence of two different
states of an item

Table A-1: Task types

Annex B. Comparing Standard Web Applications

 89

Annex B. Comparing
Standard Web Applications
and RIAs

In order to create a categorization we need to define the range that every feature
should cover (see table 1) and the proposed weight given to every feature. The
most important characteristics have received a weight near 1 and characteristics
not relevant have scored almost 0.

Features Dynamical
retrieval

Perceptive continuity Adaptability Multimedia

Feature
Attribute

no yes none partial Full None partial Full none animation sound embedded
streaming
video/sound

Values 0 100 0 50 100 0 50 100 0 30 30 40
Dim.

Weight
1 0.8 0.8 0.6

Features Collaborative faculties User
Interface
language

Push
Technology

use of Browser area (main or popup one)

Feature
Attribute

none partial full no Yes no yes minimal partial Full

Values 0 50 100 0 100 0 100 30 60 100
Dim.

Weight
0.2 0.6 0.2 0.2

Table B-1 Features and Weights needed to categorize a RIA

A strategy that we take to contrast the sometimes not evident features of RIAs
was to compare a RIA version of some Web application to get a clearer image of
the differences. The results of these evaluations are grouped by pairs.

Annex B. Comparing Standard Web Applications

 90

 URL http://www.openlaszlo.org/lps/demos/amazon/amazon.lzo?fb=1&lzt=html
RIA

Dynamical retrieval Yes
Perceptive continuity Yes
UI Adaptability Yes
Multimedia Yes
Collaborative facilities No
User Interface description language
UIDL

Open Laszlo

Push Technology No

 Features

use of Browser area 100%
 URL http://www.amazon.com/Wolfgang-Amadeus-Mozart-Complete-

Works/dp/B000BLI3K2/sr=8-2/qid=1171641406/ref=pd_bbs_sr_2/105-5669443-
2613265?ie=UTF8&s=music

SWA

 Features Dynamical retrieval yes
 Perceptive continuity No /refresh page
 Adaptability No
 Multimedia No
 Collaborative faculties No
 User Interface language HTML
 Push Technology No
 use of Browser area 100%

Table B-2 Comparison between e-commerce applications

Annex B. Comparing Standard Web Applications

 91

 URL http://www.openlaszlo.org/lps/demos/weather/weather.html
RIA

Dynamical retrieval Yes
Perceptive continuity Yes
Adaptability Yes
Multimedia Yes
Collaborative faculties No
User Interface language Laszlo
Push Technology No

 Features

use of Browser area partial
 URL http://www.tv5.org/TV5Site/meteo/detail_ville.php?langue=fr&id_ville=1705&id_pays=0

&mVille=saisissez+le+nom+d%27une+ville
SWA

 Features Dynamical retrieval No
 Perceptive continuity No
 Adaptability No
 Multimedia Yes
 Collaborative faculties No
 User Interface language DHTML
 Push Technology No
 use of Browser area 100%

Table B-3 Comparison between weather web applications

Annex B. Comparing Standard Web Applications

 92

 URL https://login.yahoo.com/
RIA

Dynamical retrieval Yes
Perceptive continuity Yes
Adaptability Yes
Multimedia Yes
Collaborative faculties No
User Interface language AJAX
Push Technology Yes

 Features

use of Browser area 100%
 URL https://login.yahoo.com/

SWA

 Features Dynamical retrieval No
 Perceptive continuity No
 Adaptability Partial
 Multimedia No
 Collaborative faculties No
 User Interface language DHTML
 Push Technology No
 use of Browser area 100%

Table B-4 Comparison between web mail applications

Annex B. Comparing Standard Web Applications

 93

 URL http://maps.google.com/

RIA

Dynamical retrieval Yes
Perceptive continuity Yes
Adaptability Yes
Multimedia Yes
Collaborative faculties Yes The marks

can be
available
to other
users

User Interface language ajax
Push Technology Yes

 Features

use of Browser area partial
 URL http://www.maps-of-mexico.com/distrito-federal-df-mexico/mexico-df-

distrito-federal-mexico-map-main.shtml
SWA

 Features Dynamical retrieval No The map is

segmented
using low
resolution
thumbnails
to link to

Annex B. Comparing Standard Web Applications

 94

the real
size maps

 Perceptive continuity No
 Adaptability No
 Multimedia No
 Collaborative faculties No
 User Interface language HTML
 Push Technology No
 use of Browser area 100%

Table B-5 Comparison between map dispatcher applications

Annex B. Comparing Standard Web Applications

 95

 URL https://reservations.ihotelier.com/onescreen.cfm?hotelid=2054&
languageid=1&rezT=2054

RIA

Dynamical retrieval Yes
Perceptive continuity Yes
Adaptability Yes
Multimedia Yes
Collaborative faculties No
User Interface language MXML(not known) /Flash
Push Technology No

 Features

use of Browser area 100%
 URL http://www.mx.despegar.com/paginas/paquetes/busquedapaquetes.asp

SWA

 Features Dynamical retrieval No
 Perceptive continuity No
 Adaptability yes Using

javascript
 Multimedia
 Collaborative faculties No
 User Interface language Dhtml
 Push Technology No
 use of Browser area partial

Table B-6 Comparison between online reservation systems

