
Transformation of XAML schema for RIA
using XSLT & UsiXML

Francisco J. Martínez Ruiz 1, Jaime Muñoz Arteaga 2 and Jean Vanderdonckt 3.

1 Universidad Autónoma de Zacatecas. Departamento de Ingeniería en Computación,
Av. López Velarde No. 801, Zacatecas, Zac., 98060. México. jmartinez@uaz.edu.mx

2 Universidad Autónoma de Aguascalientes. México. jmunozar@correo.uaa.mx
3 Université Catholique de Louvain. Belgium. vanderdonckt@isys.ucl.ac.be

Abstract. User interface design and development for Rich Internet applications
is a difficult task with actual tools. The designers must be aware of the
computing platform, the user's characteristics (education, social background,
among others) and the environment within users must interact with the
application. Several model based technologies have been proposed and in this
study we review a XML-compliant User Interface Description language:
XAML and we propose a translation schema with XSLT for generate user
interface descriptions on UsiXML. This way, we can avoid the dependency to
proprietary engines for designing tasks.

Keywords: Rich Internet Applications, User Interface Design, Human-
Computer Interaction, Software engineering, Information systems.

1 Introduction

Building a model based application [1] requires a framework to define the design
steps needed for describe our computer system, including the features: Multi-level
abstraction, Modality independence, among others [2]. The Cameleon Reference
framework [3] expresses these features to describe an application. This framework
structures the development process within four levels of abstraction: Task and
concepts, Abstract User Interface (AUI), Concrete User Interface (CUI) and Final User
Interface (FUI). To denote a UI at any level of abstraction, it’s required a User
Interface Description Language (UIDL) [4]. One of theses description model based
languages is UsiXML (UsiXML which stands for User Interface eXtensible Markup
Language). This language incorporate the four abstraction levels of Fig. 1 as described
in [5]. UsiXML describes the UI for multiple contexts e.g., Character User Interfaces,
Graphical and Multimodal ones in a form that maintains design independent from
specific platforms [2].

The interest in building a Web Rich Client has been increasing since a couple of
years. This User Interface type has similar features of those provided in typical desktop
applications, e.g., robustness, better responsiveness and visually more appealing than
the classic HTML ones. RIAs technologies help us to reach this goal [6]. RIAs are
Web applications that transfer most of the load of processing the user interface to the
Web client while the predominant part of data (from control and maintaining to

business data) remains on the application server. A standard RIA architecture (Fig. 1)
includes an application controller and an application server that control the Web
Services Calls that use a XML dialect to transfer data and layout information. Note:
Recent Databases can handle also XML with this; the process of translation is pursuit
by XQuery language [7].

Fig. 1.Typical architecture of a RIA application.

2 Problem description

Our study problem is a well known scenario for developer teams: After embracing a
technology if you must build (or migrate) an application but in another technology is
mandatory recoding most of the project even with RIAs where as part of the core of
these technologies resides a XML-compliant Description Language. These languages
have a common objective: model the User Interface, The most popular options to
design and develop a RIA application (at FUI level) are: XUL[8] openlaszlo [9],
Flash&Flex from MacroMedia [10] and one proposed by Microsoft: XAML [11]. The
Windows Standard Development Kit for the new operating system Longhorn, WinFX
SDK [12] contains a Representation subsystem called Avalon which integrates XAML.
These languages are similar but no interchangeable so there is a problem when is
needed “retargeting”. The underlying problem is the translation from language1 to
language2 many solutions have been proposed in order to support this translation
(which can be called with these names UI forward engineering, reverse engineering,
and reengineering) e.g., techniques based on graph grammars and graph transformation
that produce after a successive series of transformations generates a target UI from a
initial one [13]. After the literature review, we recognize as one of the most promising
efforts XSLT transformation schema [1, 2, and 4] and we would like to exploit it in our
study.

3 Contribution

In this paper we proposed the construction and settling of the rules needed to
construct an XSLT specification to transform a source GUI defined in UsiXML in the
Concrete User Interface level into a XAML implementation. The proposed schema
results in the translation of the UI basic elements: windows, buttons, and textboxes,
among others. In order to do so, Xpath expressions [7] were written to get access to the
UsiXML nodes that match the XSLT rules of substitution.

This work would be the initial step for modeling RIA applications with UsiXML
and second, to provide a platform independent way to design RIA applications without
being attached to a proprietary solution, XAML in the near future is going to be one of
the most used solutions to create such applications and would be desirable to provide a
neutral development language to build RIA User Interfaces that is the goal of this
paper. The architecture of this transformation application is shown in figure 2. It’s a
typical XML to XML transformation schema; in Fig. 2.1 the input document is
specified in CUI layer of UsiXML that is a concrete version of the elements defined in
the abstract level besides layout and navigation behavior [3].

The widgets are recognizable UI elements still not attached to a particular toolkit.
That targeting to a specific toolkit is settled in the FUI (Fig. 2.4) which is the
production of UI code to be compiled or interpreted, here in XAML.

Fig. 2. XSL transformation schema from UsiXML to XAML.

4 Study Case: the poll form

In this section a study case is presented. Our scenario is the design of a minimalist
polling system. A basic form available in all of RIA languages [8, 9, 10, 11] composed
by a text label, three radio selectors and a submit button. The UsiXML presentation of
this UI is shown in Figure 3. The UsiXML document is much more extended and
complex than the fragment that is presented which included the resources and events
associated to the widgets besides information from the other levels. Some of the saved
information in this file would be very useful for retargeting tasks. Because, some data
is dismissed by some platforms but it’s very important to others e.g., “groupName”
(Fig. 4) is the name of a container to define a radio button set another example of these

optional features is the “isVisible” attribute that would or not be available in our target
language.

<cuiModel id="poll_system-cui_30" name="poll system-cui">
<window id="window_component_0" name="window_component_0">
<box id="box_1" name="box_1" type="vertical">
<radioButton id="radiobutton_component_2" name="radiobutton_component_2"
content="/uiModel/resourceModel/cioRef[@cioId='radiobutton_component_2']/resource/@content"
 defaultContent="Isaac ASimov" isVisible="true"
 isEnabled="true" textColor="#000000" groupName="asking"/>
<radioButton id="radiobutton_component_3"name="radiobutton_component_3"
content="/uiModel/resourceModel/cioRef[@cioId='radiobutton_component_3']/resource/@content"
 defaultContent="H.G. Wells" isVisible="true"
 isEnabled="true" textColor="#000000" groupName="asking"/>
<radioButton id="radiobutton_component_4" name="radiobutton_component_4"
content="/uiModel/resourceModel/cioRef[@cioId='radiobutton_component_4']/resource/@content"
 defaultContent="Arthur C. Clark" isVisible="true"
 isEnabled="true" textColor="#000000" groupName="asking"/>
<button id="button_component_5" name="button_component_5"
content="/uiModel/resourceModel/cioRef[@cioId='button_component_5']/resource/@content"
 defaultContent="send" isVisible="true"
 isEnabled="true" textColor="#000000"/>
<outputText id="output_text_component_6" name="output_text_component_6"
content="/uiModel/resourceModel/cioRef[@cioId='output_text_component_6']/resource/@content"
 defaultContent="What sci-fi author is your favorite?"
 isVisible="true" isEnabled="true" isBold="true" textColor="#000000"/>

</box>
</window></cuiModel>

 Fig. 3. Polling System UsiXML input.

4.1 Conversion to XAML

This section describes the way XSL transformations are applied to generate XAML
output. We write an XSL style sheet which can be used employing a XSLT processor
like <oXygen/> XML Editor[14]. This turns into XAML, our UsiXML input
document.

This is an excerpt of the final version of the XSLT template rules (Fig. 2) we just

add here the needed rules to process our study case since the XML source document is
very different to the final document, some of the code is restricted to default values
(specially, values that normally are defined by programmers at design time for
instance, widget positions).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:wf="http://schemas.microsoft.com/2003/xaml/" version="1.0">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="*|/">
 <wf:Form Text="Form1" Name="Form1" ClientSize="400, 400"
 xmlns="http://schemas.microsoft.com/2003/xaml/" xmlns:def="Definition" xmlns:wf="wf"
 def:Class="XamlonApplication1.Form1" def:CodeBehind="Form1.xaml.vb">
 <xsl:apply-templates select="/cuiModel/window"/>
 </wf:Form>

 </xsl:template>
 <xsl:template match="window">
 <wf:Form.Controls>
 <xsl:apply-templates select="/cuiModel/window/box/radioButton"/>
 <xsl:apply-templates select="/cuiModel/window/box/button"/>
 <xsl:apply-templates select="/cuiModel/window/box/outputText"/>
 </wf:Form.Controls>
 </xsl:template>
 <xsl:template match="radioButton">
 <wf:RadioButton Text="{@defaultContent}" TabIndex="3" Name="{@name}"/>
 </xsl:template>
 <xsl:template match="button">
 <wf:Button Text="{@defaultContent}" TabIndex="2" Name="{@name}"/>
 </xsl:template>
 <xsl:template match="outputText ">
 <wf:Label Text="{@defaultContent}" TabIndex="4" Name="{@name}"/>
 </xsl:template>
</xsl:stylesheet>

Fig. 4. XSLT document generated for processing our Poll System.

The resulting XAML UI definition is shown below. The UI definition in UsiXML

documents describe the event response (code included in a separated section). This is
also the case of XAML that in a separated document, denoted by the “CodeBehind”
tag includes this information. Also, the size of the widgets is omitted for the sake of
simplicity along with the problem described in section 5.2.

<wf:Form xmlns:wf="wf" xmlns="http://schemas.microsoft.com/2003/xaml/" xmlns:def="Definition"
Text="Form1" Name="Form1" ClientSize="400, 400" def:Class="XamlonApplication1.Form1"
def:CodeBehind="Form1.xaml.vb">

<wf:Form.Controls xmlns:wf="http://schemas.microsoft.com/2003/xaml/">
<wf:RadioButton Text="Isaac ASimov" TabIndex="3" Name="radiobutton_component_2"/>
<wf:RadioButton Text="H.G. Wells" TabIndex="3" Name="radiobutton_component_3"/>
<wf:RadioButton Text="Arthur C. Clark" TabIndex="3" Name="radiobutton_component_4"/>
<wf:Button Text="send" TabIndex="2" Name="button_component_5"/>
<wf:Label Text="What sci-fi author is ypur favorite?" TabIndex="4"
Name="output_text_component_6"/></wf:Form.Controls>

</wf:Form>
Fig. 5. Polling System example XAML output

5 Conclusions and Directions for Future Research

In this paper we have presented an approach for translating UIs defined in UsiXML
to XAML documents with XSL transformations in our preliminary evaluation we have
had satisfactory results. The result is a practical solution to the development of
platform independent RIA applications as was shown in our study case, the process of
reaching final implementation levels needs complementary information not available in
more abstract levels while the reconstruction of CUI models is simpler because the
process of abstraction is a simplifying task. Right now we are compiling a repository of
all the UI gadgets (components) defined in XAML for complete the XSLT translation
sheet in a java implemented prototype called RIAXML but in this early stage of

development, some interesting features are still non included e.g., how to deal with
alternatives in the widgets selection and define the most suitable.

While we concretize the template model of our application more details have to be
included. For instance, width and length of each element, colors, position within the
containers, among others. So, how to define this set of attributes? It’s a question that
requires the aid of ergonomic criteria to be answered. Furthermore, the presented
solution is targeted to XAML in future versions, the final implementation code should
be a free choice give it to developers.

Acknowledgments. We would like to thank the reviewers for their pertinent
comments, the University of Zacatecas (UAZ) and the BHCI lab members (especially
to Jose, Juan and Adrian) at the UCL-IAG department for their support in our visit.

References

[1] Miller, J., and Mukerji, J., MDA Guide Version 1.0.1, 2003, Object Management Group, Inc.
[2] Bouillon, L., Limbourg, Q., Vanderdonckt, J., Michotte, B., Reverse Engineering of Web

Pages based on Derivations and Transformations, Proc. of 3rd Latin American Web
Congress LA-Web’2005 (Buenos Aires, October 31-November 2, 2005), IEEE Computer
Society Press, Los Alamitos, 2005, pp. 3-13.

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt, A
Unifying Reference Framework for Multi-Target User Interfaces, Interacting with Comp.,
Vol. 15, No. 3, June 2003, pp. 289-308.

 [4] Luyten, K., Coninx, K, and Abrams, M., Integrating UIML, Task and Dialogs with Layout
Patterns for Multi-Device User Interface Design. The 11th International Conference on
Human-Computer Interaction, Las Vegas, Nevada, USA, July 22-27, 2005.

 [5] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, V. UsiXML: a
Language Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP Working
Conference on Engineering for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol. 3425,
Springer-Verlag, Berlin, 2005, pp. 207-228.

[6] O'Rourke, C., A Look at Rich Internet Applications. Oracle Magazine. July - August 2004.
[7] Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie J. and J.

Siméon, XML Path Language (XPath) 2.0. http://www.w3.org/TR/2005/WD-xpath20-
20050404/#id-references, (W3C, March 15th, 2006).

[8] XML User Interface Language (XUL) 1.0, http://www.mozilla.org/projects/xul/xul.html
(Mozilla Foundation, March 20th , 2006).

[9] Openlaszlo. http://www.openlaszlo.org/ (Laszlo Systems, Inc., March 20th , 2006).
[10] FLEX. http://www.macromedia.com/software/flex/ (Adobe Systems Incorporated, March

20th ,2006).
[11] XAML. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnintlong/ html/

longhornch01.asp (Microsoft, March 20th, 2006).
[12] WinFX SDK. http://msdn.microsoft.com/winfx/ (Microsoft, March 10th, 2006).
[13] Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood, A., “Transformation: The

Missing Link of MDA”.
[14] http://www.oxygenxml.com/ (SyncRO Soft Ltd, March 10th, 2006).

