
Software Life Cycle Automation for Interactive 
Applications: The AME Design Environment 

Christian Märtin 

Fachhochschule Augsburg, Fachbereich Informatik 
Baumgartnerstraße 16, D-86161 Augsburg, Germany 
Phone: +49-821-5586-454 – Fax: +49-821-5586-499 

E-mail: maertin@informatik.fh-augsburg.de 
WWW: http://www.fh-augsburg.de 

Abstract  

The model-based design environment AME offers CASE-tool support for all life 
cycle activities in the development process for interactive applications. The system 
allows the rapid automatic construction of interactive software from object-
oriented analysis models (OOA) and/or OO-modelling information specified at 
later design stages. AME provides functionality for UI-structure generation, interac-
tion object selection, layout prototype generation, dynamic behaviour generation, 
adaptation to user-specific requirements, integration of domain-methods and target 
code generation. Object-oriented and knowledge-based components provide 
automatic transition from one refinement stage to the next. System decisions can 
be visualised before code generation and may be revised by the designer. 

Keywords 

Design automation, life cycle, model-based approaches, object-oriented models, 
user interface generators, software engineering. 

Introduction 

In the next decade application system design will confront the software industry 
with a set of tough requirements with respect to complexity, usability, flexibility, 
multimedia-management, quality, time-to-market, ease of maintenance and other 
factors.  In order to meet these challenges, the fields of software engineering and 
human-computer interaction have to join forces. Object-oriented analysis and de-
sign methods (OOA/OOD) [Monarchi92] seem to provide a common denomina-
tor for integrating software process automation and user interface design: 

• Advanced object-oriented CASE-tools support all activities of the software life 
cycle. Object technology is now widely used and has become a major driving 
force for productivity and quality enhancements. 



58 Computer-Aided Design of User Interfaces 

• Object-orientation has also been the principal design approach for the con-
struction of interactive software, since the first applications with GUIs ap-
peared [Goldberg84]. 

Most automated design approaches for interactive systems, however, do not use 
software life cycle models to define the various user interface development tasks. 
As no unified life cycle models exist, the majority of existing design environments 
for interactive systems also fail to achieve a true integration of the development re-
quirements for the domain parts of the applications and for the user interface 
components. 

Life cycle models should define functionality, sequencing and data interface re-
quirements of all the activities in the development process for interactive systems: 
from analysis (problem definition) to design (solution specification) and implemen-
tation. It is also important to include mechanisms for concurrent design or cluster-
ing [Meyer95] of development tasks. Figure 1 shows an example of concurrent life 
cycles: the development process is divided into activities for the user interface and 
activities for the domain functionality of the system. Life cycle models also have to 
support incremental development requirements, especially if they aim to be ac-
cepted by designers of highly interactive systems.  

Supporting
Techniques 

and Tools for 
Problem
Domain 

Requirement
Analysis

(e.g.
OOA)

UI Design
Support

Problem
 Domain 
Design
Support

(e.g. OOD)

UI
Implementation 

Support

Problem
 Domain 

Implementation 
Support

Runtime 
Code 

Generation 
Support

(Problem 
Domain

 and
 UI Parts)

Figure 1. Concurrent life cycle support for user interface and problem domain 
software development 

The Application Modelling Environment AME, which is discussed in this paper, is 
designed around an object-oriented life cycle model for the concurrent develop-
ment of user interface and domain parts of interactive systems. AME is a prototypi-
cal model-based development environment for interactive business applications 
[Märtin93, Märtin95, Märtin96a]. AME offers high-level tools for the automatic re-
finement and generation of the standard parts of interactive systems as well as 
flexible specification tools for more domain-specific application components. At 
each life cycle step the designer may either choose to accept the generated solution, 
or to adapt it to her or his individual requirements. 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 59 

The following section examines related work and existing model-based approaches 
for designing interactive systems. Section 2 introduces AME´s architecture and 
goals. In section 3 the various activities of AME´s software life cycle are demon-
strated for an example application. 

1 Related Work 

The design of interactive applications can be supported by the following categories 
of tools: implementation- and system-level tools, model-based specification sys-
tems, model-based generators [Forbrig96]. 

1.1 Implementation- and System-Level Tools 

Toolkits and GUI editors are examples of implementation-level tools. UIMSs for user 
interface definition, generation and runtime support are system-level tools. Ap-
proaches based on UIMSs do not integrate the results of the design activities for 
user interface and domain parts before the final development stages. This is why 
results from earlier life cycle activities, i.e., analysis and global design, cannot be 
exploited for user interface construction. Visual programming environments that are 
coupled with extended (object-oriented) programming languages are also system-
level tools. They support the easy reuse and modification of existing interaction ob-
ject classes, but leave it to the developer to couple UI designs and program code 
interactively. 

Implementation- and system-level tools may be used as service-suppliers by high-
level-design tools that belong to one of the two research-oriented categories, dis-
cussed in the following sections. 

1.2 Model-Based Specification Systems 

Model-based specification systems allow system developers to specify the struc-
tural, functional and dynamic features of the user interface of applications in close 
co-ordination with the domain parts. 

Tools like UIDE [Sukaviriya93] or HUMANOÏD [Szekely93] yield a high-quality and 
flexible design-level model of the interactive system, which allows to represent 
both application-independent and application-specific interactive requirements in 
great detail. The systems support rapid prototyping rather than integrated life cycle 
models. The modelling process can be complex and time-consuming, however.  

Both systems demand the explicit specification of user interface functionality and 
dynamics. The systems provide mechanisms for representing runtime-dependent 
application dynamics. The result of the modelling process is a detailed design speci-
fication of the interactive system, which can be translated into a working prototype 
of the application. UIDE supports the generation of context-based help as well as 
layout generation [Kim93]. HUMANOÏD incorporates a co-operative design-goal 
management system [Luo93]. The MECANO approach, which is discussed in [Pu-



60 Computer-Aided Design of User Interfaces 

erta96b] includes the explicit modelling of design processes in the form of meta-
level models.  

The IDA environment [Reiterer94, Reiterer95] provides advanced tools for the 
construction of graphical user interfaces of high quality. IDA uses an object-
oriented approach for designing flexible, reusable interface templates. The con-
struction tool is coupled with a UIMS. A hypertext-based consulting system pro-
vides design guidelines and presentational support. A knowledge based quality as-
surance tool evaluates the modelled prototype and proposes ways for improving 
the design. 

Design critics for co-operative user interface development are also covered in [Fis-
cher93]. EXPOSE [Gorny94, Gorny95] is a consulting expert system for the design 
of highly-ergonomic user interfaces. The TADEUS system, provides decision sup-
port and guidance for user interface design on the basis of a task model, a problem 
domain model, a dialogue model and a user model [Elwert94]. The system FUSE 
[Lonczewski96] uses algebraic specification techniques for modelling the static and 
dynamic parts of interactive systems. 

1.3 Model-Based Generators 

Model based generators create user interface prototypes from domain data models. 
ERA models or abstract object-oriented models are exploited by such tools. Some 
generators need additional state-transition-specifications for dynamic modelling. 
Generators are supposed to raise software productivity and to help application 
domain experts with the design of consistent user interfaces. However, the flexi-
bility and the complexity of the generated user interfaces may be restricted. 

TRIDENT [Vanderdonckt93] exploits entity-relationship-attributes and attribute-
meta-data for a rule-based selection of interaction objects. Activity Chaining 
Graphs (ACG) specify the data flow during task execution and are used for gener-
ating dialogue dynamics. GENIUS [Janssen93] also exploits ERA models, additional 
meta-information and action-names for generating the static user interface of a 
window. Petri-net-like dialogue nets are interpreted for generating dialogue dynam-
ics. UIDE [de Baar92] exploits attributes of domain object classes, action names 
and meta-data for generating application windows and their menus. All of these 
systems require explicit information about which of the domain data or object at-
tributes will be grouped together in one target window. 

The JANUS-approach [Balzert93, Balzert94, Balzert95a] uses Coad/Yourdon ob-
ject-oriented models [Coad91a] for generating multi-window database applications. 
Each object class is mapped to a window of the user interface. Rules are used to 
translate object-attributes and operations to interaction objects or menu-entries. 
Inheritance, aggregation and association between object classes are exploited to 
construct the global structure of the user interface and to generate standard func-
tions for navigating between windows. In order to build exploitable OOA models, 
application designers have to know the system’s mapping rules. Specifications can-



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 61 

not be changed at the OOD-level. No explicit dynamic modelling is supported. 
The specification systems TADEUS [Schlungbaum96] and FUSE [Bauer96] include 
components for generating user interfaces from model specifications, which explic-
itly cover dynamic aspects. 

2 The AME Environment 

The Application Modelling Environment (AME), which is discussed in the follow-
ing, is an experimental CASE-environment with full life cycle support for interac-
tive systems development. AME integrates object-oriented and knowledge-based 
tools and is able to model, prototype and generate flexible business applications 
with graphical user interfaces. The generator produces a complete user interface: 
static structure, domain-independent and partly domain-dependent dynamic behav-
iour and dynamic links to domain object functionality. Adaptation to specific users 
or target environments is supported by standardised user and environment object 
classes. The generated prototype can directly be executed as an application under 
the target environment (e.g. MS-Windows). 

2.1 Design Automation for Interactive Systems 

It is a goal of AME to combine the ease of use of model-based generators with the 
design flexibility of model-based specification systems. As soon as an OOA model 
of the problem domain is available, automatic user interface prototype generation 
can be started. No explicit information about the user interface has to be given in 
the model. Structural, behavioural and presentational user interface design knowl-
edge is available to the generator in the form of design methods and forward-
chained rules. 

It is not always possible for AME´s generator tools to find optimal mappings from 
a given domain object pattern (e.g., [Coad92]) to a group of implementation-level 
objects with associated behaviour. Therefore, the designer may introduce addi-
tional specifications at a later stage of the supported software life cycle. Such speci-
fications may concern the mapping of domain object groups to interaction objects, 
object behaviour, user interface presentation and style, as well as user- or environ-
ment-specific features of the user interface. Additional information of this kind 
may lead to improved system performance or enhanced usability. 

The user interface, however, is only one side of an interactive application. It was 
also a goal to support the concurrent evolution of the non-interactive problem 
domain components during all life cycle activities. When using an object-oriented 
modelling approach, a model of an application can be seen as a set of object clus-
ters or groups with clear data-interface definitions between the groups. A group 
may contain classes for the interactive parts of the system and/or domain problem 
classes (e.g. for application functionality, database access, distributed object envi-
ronments etc.). Communication between groups has to be managed by specific ob-



62 Computer-Aided Design of User Interfaces 

jects. AME´s OOA tools support standard object modelling methodologies 
[Coad91a, Rumbaugh91] and their grouping concepts. 

An OOA model may be passed to AME´s generator tools. OOA classes, whose 
features and inter-class relations are exploitable for user interface generation, will 
then first be mapped to generated design patterns (OOD) and later to implementa-
tion classes (OO-language). Appropriate abstract interaction objects are selected 
and assigned to these classes. 

Before code generation, existing method source code is embedded into the gener-
ated class structures. Dummy calls are generated, if no method code for a domain 
or user interface class operation is available or can be generated. Although it was 
no explicit goal of AME to support method code generation for other than user in-
terface functionality, external CASE-tools for these purposes can be embedded 
into the environment. 

2.2 AME Architecture Levels 

AME is organised in three levels, as shown in figure 2 : modelling level, construction level 
and implementation level.  

OODevelopTool 
(OOA/OOD)

ODE (OMT)

Model Base

AME
Object-Oriented

Model 
Representation

Model Base

Presentation and 
Layout

Dynamic 
Behavior

Construction

Structure-
Refinement:

OOA to OOD

KAPPA-PC/
Windows3

Runtime 
Environment

AME/C++-
Code Generator

Open Interface
UIMS

Code Generator

Interaction Objects
User Profiles

Application Profiles

Structural and 
Presentational 

Knowledge

Domain Code 
Fragments

Modeling
Level

Construction
Level

Implementation
Level

 
Figure 2. AME architecture 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 63 

AME was developed under MS-Windows. The modelling tools and generator com-
ponents were implemented using KAPPA-PC by Intellicorp, Borland C++ and Mi-
crosoft Visual C++. At the modelling level AME offers tools for object-oriented 
analysis and design. OODEVELOPTOOL is a comprehensive CASE tool that sup-
ports the modelling elements of the OOA/OOD-method by Coad and Yourdon 
[Coad91a, Coad91b]. 

It provides OOA/OOD class-, attribute- and method-editors, OOD-support for 
user interface design, pre- and postconditioning [Meyer88], a design versioning sys-
tem and software documentation mechanisms. ODE is a compact tool for creating 
OOA object models using OMT [Rumbaugh91] plus a message-based dynamic 
link notation for specifying OOA-level dynamics. Both tools can also be used as 
stand-alone components. Models can be translated into AME´s internal object rep-
resentation and passed to the construction level. 

At the construction level, models are refined into detailed design specifications by a se-
ries of automatic design steps for OOD-structure generation, interaction object se-
lection, dynamic behaviour construction, presentation and layout design. This level 
also provides the functionality for adapting application models to specific target 
environment (e.g., MS-Windows 3.x) and individual users. Section 3 discusses the 
construction level in more detail. Model features, generated by any of the construc-
tion level components, may be modified interactively by the designer. The final de-
sign specification is passed to the implementation level. 

AME´s implementation level offers different ways for generating runtime applications. 
A C++-code generator translates static and dynamic parts of the user interface 
specification into C++-source code. It also embeds domain methods into the gen-
erated C++ implementation classes. The code is compiled into a Windows ap-
plication by the Borland C++-compiler. Other AME-tools generate UIMS-code 
for Open Interface, KAPPA-PC runtime applications from the specification model. 

2.3 Representing Application Models and Knowledge 

AME supports the following knowledge types: application models, user interface 
design knowledge and adaptation knowledge. 

2.3.1 Application Model 

The scheme for representing the application model in all its development states has 
to meet the following requirements: 

• Representation of classes and all typical intra- and inter-class modelling ele-
ments used in OOA- and OOD-methods. 

• Representation of all structural, functional and dynamic features of the model 
during its transition from a very abstract analysis model to a rather concrete de-
sign specification. 



64 Computer-Aided Design of User Interfaces 

• Representation of all generated or designer-specified components of the UI 
with their structural, presentational and layout properties. 

To provide the required expressiveness and to keep the formalism simple, an ob-
ject-oriented representation scheme built on top of the frame-like weak-typing ap-
proach of the KAPPA-PC environment was defined. Frame-based representation 
schemes were already used in earlier user interface generators [Wiecha89, Mär-
tin90]. 

AME introduces the class Application System Object (ASO) for representing any 
OOA or OOD class during the development process. An ASO-object offers about 
50 different attributes (slots) for representing the structural and semantic properties 
of the application model objects during their lifetime (figure 3). 

Application System Object
(ASO)

actions: multiple text
action_types: multiple text
as_action: multiple text               
as_components: multiple object 
as_construction: multiple text
as_content: text
as_frame: text
as_description: multiple text
as_name: text      
as_parent_profile: text
as_presentation: multiple text
as_type: text
Association: multiple object
Association_types: multiple text
attr: multiple text
contents: multiple text
content_types: multiple text
data_type: text
data_length: integer
de_instance: object
dialog_construction: multiple text
dialog_medium: text | multiple text
dialog_object: object | multiple object
dialog_preference: object
dialog_presentation: multiple text

WholePartRelationsFrom: multiple object
WholePartFrom_types: multiple text
WholePartRelationsTo: multiple object
WholePartTo_types: multiple text
GenSpecRelationsFrom: multiple object
GenSpecRelationsTo: multiple object
InstanceCounter: integer
MessageLinksFrom: multiple object
MessageFrom_names: multiple object
MessageFrom_priorities: multiple text
MessageFrom_types: multiple text
MessageLinksTo: multiple object
MessageTo_names: multiple text
MessageTo_priorities: multiple text
MessageTo_types: multiple text
name: text
prototype: object
semantic_neighbors: multiple object
sub_level: boolean
sub_object: multiple object
sub_level_conn_type: multiple text
synthetic: boolean
value: text | multiple text
visible: boolean

MakeDialogObject
Behavior
MakeLayout  

Figure 3. ASO class structure. Some attribute values (e.g. content_types, action_types) are inter-
nally specified in more detail to be exploitable by generator components 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 65 

After OOA-modelling, every class is mapped to an ASO-object. As each OOA-
class may have its own number of attributes, methods and relations to other model 
classes, OOA attribute-, method- and relation-specifications are mapped to the en-
tries of specific list-valued ASO-slots (contents, content_types, actions, action_types, 
WholePartRelationsTo, WholePartTo_types etc.). 

Most ASO-slots, however, are not specified by OOA tools. They are filled by AME 
components during the construction process (e.g., the slot dialog_object is only filled, 
if an appropriate abstract interaction object for the OOA class can be assigned). 
During the construction process all slot values may be modified dynamically.  

2.3.2  User Interface Design Knowledge 

AME´s design knowledge for selecting abstract interaction objects and generating 
the structural, dynamic, presentational and layout properties of the interactive tar-
get application is provided by methods of the construction level components and 
in the form of selection rules. 

AME offers separate class hierarchies of abstract interaction objects, interaction 
media and domain-specific interface templates. These hierarchies can be exploited 
for abstract interaction object selection. Selected abstract interaction objects are 
linked to ASO objects via the dialog_object slots. 

The presentational settings as specified by the abstract interaction objects are visu-
alised for prototype simulation. They can be modified by the designer or by applied 
presentation rules. 

The ASO structure may also serve as a runtime data model of the application. 
Communication between model objects is specified by the designer during OOA 
and by the system or the designer after OOD structure generation. After abstract 
interaction object selection, the required user interface behaviour specification is 
automatically extracted from the OOD model and mapped to the target system. 

2.3.3 Adaptation Knowledge 

Special classes are provided for representing user and environment profiles. Ob-
jects of these classes specify usability items. They may also include designer-defined 
rule groups, which support specific adaptation requirements for structure, presen-
tation and layout. 

3 AME Software Life Cycle 

The AME software life cycle is shown in figure 4. In the following sections, the 
typical steps of the life cycle are illustrated for a small example application. The 
purpose of the application, named TRANTOOL, is to provide language translation 
assistance for an existing text processor. 



66 Computer-Aided Design of User Interfaces 

Links to 
external CASE 

tools

Links to 
external CASE 

tools

Links to 
external CASE 

tools

Adding OOD-Structure 
manually

(e.g. Structure of 
Menu-Hierarchy)

Adding Interaction 
Objects manually

OOA-Modeling:
Specification

 of Attributes and 
Operations of

 Domain Classes 

Automatic
 Specification of 
UI-Behavior and 

Dynamics

Automatic Generation 
of User-Specific 

UI-Layout-Prototype

Generating C++-
Source Code / 

Embedding Domain 
Functionality / 

Compilation and 
Linking 

Automatic Generation 
of an OOD-Structure 
from an OOA-Model

Automatic Selection 
and Assignment of 
Interaction Objects

Activity 1: 
Analysis

Activity 2: 
Global Design

Activity 3: 
Detailed Object Design

Activity 4: 
Generating 
User Interface Behavior
Specification

Activity 5: 
Adaptation to Specific 
Users and Environments

Activity 6:
C++-Program Generation
and Compilation

 
Figure 4. AME´s automated life cycle for building interactive systems 

3.1 Analysis  

This is the first activity of the development process supported by AME. An OOA 
model is created by the designer. For each domain object class the following intra-
object class modelling data can be specified: 

• attributes (name, data type and starting value); 
• methods (name, calling parameters, data types of calling parameters, return 

value, return type). 

The following relation types are available for connecting OOA classes: 

• generalisation/specialisation (including multiple inheritance); 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 67 

• aggregation (including the specification of aggregation multiplicity); 
• association (including the specification of association multiplicity); 
• dynamic link (including the specification of a name, message contents, a type, a 

priority). 

This modelling information is exploited for automatic user interface construction 
by later life cycle activities. During OOA the designer does not explicitly specify 
any user interface properties. Functional specifications for OOA class methods 
may be provided. They can be exploited for domain method code generation by 
external CASE tools.  The designer may choose one of the available graphical edi-
tor tools OODEVELOPTOOL [Märtin93] or ODE to specify the domain object 
model of the application. Figure 5 shows an ODE screen during OOA modelling 
of the TRANTOOL application. 

 
Figure 5. OOA model for Trantool designed with the ODE-editor 

An OOA model can be translated into an internal AME representation by selecting 
the item Kappa from the menu Codeerzeugung (code generation). Thus, for each OOA 
class, an ASO object is instanciated. Attributes are mapped to contents-slot of the 
ASO object as a value list. Attribute types are mapped to a list of values for the con-
tent_types-slot. Content- and content_types-entries with the same index belong together. 
Methods and their types are mapped to the slots actions and action_types in a similar 
way. Inter-class relations are translated into directed pointers between ASO ob-
jects. 



68 Computer-Aided Design of User Interfaces 

3.2 Global Design 

This activity defines the object-oriented design structure of the application. The 
representation of the OOA model is expanded to an OOD model, which includes 
the window structure and the menu and command hierarchy of the application. 
OOA classes with multiple exploitable attributes are mapped to patterns of related 
OOD classes. This task is accomplished automatically by construction level com-
ponents. Additional manual design makes sense, whenever domain-dependent de-
cisions concerning the user interface structure, which are based on information not 
available to the system, have to be taken. Such decisions may include the assign-
ment of one or a group of specific interaction objects to a particular domain object 
or the command or menu representation of a domain method in the user interface. 
If the generated OOD-structure needs some modifications for efficiency or usabil-
ity reasons, the designer may also modify the OOD model. 

To provide global design automatically the system needs some basic information 
about the target runtime environment at this early stage. The AME prototype uses 
structural knowledge about the MS-Windows 3.11 environment (e.g., standard 
menus File, Edit, Help, View etc., which appear in typical applications, standard 
menu items and their synonyms). Textual pattern matching techniques are used to 
map the method names of OOA classes to the synonymous items of standard- or 
application-specific pull down-menus in the Windows environment. It is not easy 
to automate this task, because standard Windows applications provide pull down-
menus only for the main window of an application. Therefore, the matching algo-
rithm has to know which OOA class will be mapped to which window type (main 
window, window or dialogue box).  

For this and other structural purposes an object parser is provided. It examines and 
exploits the generalisation/specialisation, association and aggregation structure of 
the OOA domain model and the internal features of each OOA class. Each attrib-
ute or method can only be inherited once. The parser automatically assigns a win-
dow type to each complex object, i.e., each OOA class with aggregated classes or 
multiple exploitable attributes. 

The class at the top of the aggregation hierarchy or the topmost non-generic class 
in the generalisation/specialisation hierarchy is mapped to the application main 
window. If more candidate windows exist, the designer has to choose the main 
window. Other complex objects are mapped to dialogue boxes, if they contain Can-
cel and OK methods (name synonyms are accepted) or to ordinary windows, if not. 
The multiplicity-value of aggregations is used to specify whether one or more in-
stances of this window class may be created at the same time.  

Methods that belong to main window or window objects are mapped to pull down 
menu entries of the main window. Window methods for which no synonyms can 
be found are mapped to an application-specific pull down menu. If the OOA 
classes contain methods for standard services (e.g., Print, Find, Replace, Open, Close), 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 69 

these methods are mapped to the corresponding menu items and linked with stan-
dardised ASO objects, which represent the related dialogue box or default action. 

To resolve name collisions between methods a menu entry is only generated for 
the method that belongs to one window: the one which is itself the main window 
or the nearest one to the main window. A button is assigned to the other 
method(s). Dialogue box methods are always mapped to buttons or button groups. 
At this life cycle step, neither real menus nor buttons, but only ASO representation 
objects with the appropriate slot settings are created. For each OOA method, 
which could be mapped to a menu action or a button, a dynamic link to the OOA 
object is generated. At a later stage, the code generator exploits these links and cre-
ates code for calling the method, whenever the menu entry or button is selected.  

During global design each complex OOA class (e.g., a class representing a data entry 
form for a multilingual dictionary) has to be expanded to an aggregation of many 
(typically dozens or hundreds) simple OOD-classes. Each exploitable class attribute 
is mapped to one or more OOD-classes, representing one interaction object for 
some simple component of the entry form (e.g., a list box for selecting the target 
language). Each generated OOD class is linked to its origin class by an aggregation 
relation. For grouping attributes special content_types settings are available for the 
designer. Simple OOA classes (with only one content value or attribute) are directly 
adopted as OOD classes. 

To be exploitable an attribute needs a data type, known to the system and some 
qualifying meta information. These data are used for mapping each attribute and its 
contents to an abstract interaction object. The attribute Language of an OOA object 
Language Environment with a content_type string:20, for example, is mapped to two 
ASO objects, which represent a label with the value Language and an edit field of 
length 20. The values of the dialog_object slots, which specify the AIO, are set to Static 
and Edit. Two aggregations from the ASO representing Language Environment to the 
new ASO objects are generated. To facilitate layout generation the new ASO ob-
jects are connected by associations. 

3.3 Detailed Object Design 

During this life cycle activity the system selects abstract interaction objects for all 
OOD classes. AME uses similar selection techniques as the systems in [de Baar92, 
Vanderdonckt93]. Attribute data types, cardinalities and some meta information are 
evaluated for this purpose. To find interaction objects for method activations the 
calling parameters and return types of the methods are evaluated. 

Specific abstract interaction object types (Function, Code, Event) support the integra-
tion of domain functionality, code fragments or event based user interface dynam-
ics. OOD classes, whose dialog_object was already specified during global design, are 
revisited during detailed design. In some cases abstract interaction objects are re-
fined to more specific types (e.g., from a group of single buttons to a button group). 
The knowledge for selecting abstract interaction objects can be expressed in the 



70 Computer-Aided Design of User Interfaces 

form of rules. For efficiency reasons, these rules are coded as if-then-else cascades in 
a global resource method. The method MakeDialogObject, which was inherited by 
each ASO, calls the resource method for choosing the interaction object type. To 
make the selection process more flexible, a great number of data type synonyms is 
known to the system. A designer can easily change the generated interaction object 
assignments. 

3.4 Automatic Specification of Dialogue Behaviour and Dynamics 

The remaining construction level components map OOD object features to inter-
action object features (behaviour mapping) and build the specification for the dynamic 
properties of the entire interactive system.  

Each ASO object owns the same common Behaviour method. For each abstract in-
teraction object a specific Behaviour method (e.g., ComboBoxBehavior) is provided. Af-
ter an abstract interaction object was assigned to an ASO, the specific method is 
activated by Behaviour. It specifies how the contents of the relevant ASO slots 
should be mapped to the features of this specific interaction object type. The speci-
fication information is written to reserved ASO slots. 

In the target environment, the C++-code generator uses this information for creat-
ing concrete interaction object classes with correct interactive properties. The be-
haviour mapping process also provides information needed to generate menu acti-
vations, external application calls and code for embedding domain objects, which 
encapsulate event handlers or application code fragments. For generating these 
control specifications ASO-actions with specific action_types (e.g., Create, Delete, Acti-
vate) have to be evaluated together with the dynamic embedding structure of their 
ASO objects (see below). 

In pure object-oriented systems inter-object communication is specified by mes-
sages (dynamic links) between classes or objects. AME allows the specification of 
dynamic links between OOA classes. During global design, additional dynamic 
links are generated between each OOA class, representing a window, and all OOD 
classes, whose interaction objects (including menus) can dynamically be referenced 
by this window at runtime. The configuration of these dynamic links guides the 
C++-code generation for window activation and deactivation. Inter-class method 
calls are also modelled by typed dynamic links between OOA or OOD classes. 
Message based specification and generation of interactive dynamics in AME is dis-
cussed in more detail in [Märtin95]. 

An additional dynamics tool [Schmalzbauer95] is currently being integrated into the 
AME environment. This detailed design level tool allows the specification and gen-
eration of message based domain-dependent dynamics for MS-Windows platforms 
(e.g. the time- and situation dependent change of the appearance of graphical ap-
plication objects or the availability of menu-entries, if a condition evaluates to 
True). The tool allows the modelling of state-dependent conditions that control the 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 71 

dynamic behaviour, the specification of activation messages between OOD objects 
and the source code specification of the message handling methods. 

OOD attributes may be used as state variables. At runtime state changes (e.g. below 
value, above value, changed, exact value or more complex conditions involving multiple 
attributes) are watched by generated daemons. An extension to the C++ code gen-
erator exploits these specifications to generate the method implementations.  

 
Figure 6. Simulated Trantool user interface in interactive layout mode 

3.5 Layout and Style Generation 

To provide a realistic simulation of the application before code generation, proto-
typical instances of all specified interaction objects are created. Instances inherit the 
look-and-feel characteristics from AME´s interaction object class-hierarchy. 

A specific layout-method (MakeLayout) is assigned and adapted to each OOD ob-
ject that represents a window or a dialogue box. The window types and their layout 
methods are selected by counting the number of each interaction object type in a 
window. A set of window and layout classes and their layout routines were chosen 
as AME standard resources by evaluating and comparing the window and dialogue 
box types of existing commercial MS-Windows applications. A simplified example 
for selecting a layout type for a dialogue box x is shown in the following: 

 



72 Computer-Aided Design of User Interfaces 

If (x:number(ComplexInteractionObjects) > 0) /*e.g. spreadsheets*/ 
Then x:layout_type := linear 
Else If (x:number(Edit) > 4) Or (x:number(Editor) > 4)  
 Then x:layout_type := entry_mask 
 Else If (x:number(Edit) > 0) 
       Then x:layout_type := entry_dialog  
       Else If (x:number(Listbox) > 0) Or (x:number(Combobox) > 0) 
  Then x:layout_type := listbox_dialog  
  Else x:layout_type := message_box.  

The layout generator also evaluates the association relations specified between 
OOD classes to find semantically linked interaction objects. To facilitate layout 
generation, each window or dialogue box is divided into rectangular areas. Each re-
source layout type (e.g., entry_dialog) defines in which rectangle instances of a certain 
interaction object type typically appear. The detailed design (spaces between ele-
ments, row and column ordering, width and height of the window) depends on the 
actual number of each element of a given type. 

A preview of the layout of all windows is created by activating the layout methods. 
Presentational settings like colours, fonts or sizes are inherited from AME´s interac-
tion object resource hierarchy and can be changed by the designer. The user inter-
face specifications in the layout prototype are still independent of a specific GUI 
platform. A designer can also add application- or user-specific presentation and 
layout rules to the environment- and user-profile. Such rules are activated in a for-
ward-chained mode. Figure 6 shows the first simulation of the TRANTOOL user in-
terface. The designer may change the generated layout and presentation. Any 
changes will be stored and passed to the target code generator.  

3.6 Target Source Code Generation 

Finally, the detailed design model that includes the specification of structure, dy-
namics, layout and presentation of the interactive system can be passed to the im-
plementation level. A code generator at this level exploits the design model to create 
C++-source code. The source code can be translated by a Borland C++ compiler 
and automatically linked with domain method code. At the generator level, the de-
signer still may modify the specification, before it is parsed and translated into 
source code. To support different target platforms, OOD specifications of applica-
tions can be translated into Open Interface UIMS code. 

Conclusion 

To compare the AME design process with established conventional approaches 
several application prototypes were developed, including a spreadsheet application 
and a simple accounting system. As the system is still developing new application 
projects typically require some new interaction object classes and additional con-
struction knowledge. The integration of new resources and design knowledge is a 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 73 

relatively easy task. Once integrated the new functionality can be used by the sys-
tem like any other standard resources. This learning process turned out to be quite 
efficient, as most parts of the design knowledge are implemented as method-code. 
Many consistency problems of earlier rule-based generators could be avoided. 

Naturally, our approach does not offer solutions to all possible productivity prob-
lems. However, design time can be drastically reduced for those application design 
situations, where the existing design knowledge can be applied for generating the 
standard parts of the application. AME does not take the domain modelling task 
from the designer. If AME´s design resources fit the application domain, however, 
an OOA model will be automatically expanded into an OOD model with possibly 
several hundreds of ASO objects and their interaction objects. 

Without programming, the resulting application provides correct interaction object 
mappings, a raw layout, presentation and style attributes, links to all domain code 
methods, the menu hierarchy, application-independent interactive dynamics and 
part of the application-dependent dynamics. 

Acknowledgements 

The author would like to thank Johann S. Kempfle, Michael Schmalzbauer, Axel 
Struwe, Christian Winterhalder and all others, who did their diploma thesis work 
with the AME project, for their contributions. 

References 

[Balzert93] Balzert, H., Der JANUS-Dialogexperte: Vom Fachkonzept zur Dialogstruk-
tur, in Softwaretechnik Trends, Band 13, Heft 3, Proceedings der GI-Fachtagung 
Softwaretechnik, Dortmund (8-10 November 1993), pp. 62-72. 

[Balzert94] Balzert, H., Das JANUS-System: Automatisierte, wissensbasierte Generierung 
von Mensch-Computer-Schnittstellen, in Informatik-Forschung Entwicklung, Vol. 9, 
Springer-Verlag, Heidelberg, 1994, pp. 22-35. 

[Balzert95a] Balzert, H., From OOA to GUI - The JANUS-System, in Proceedings of 
the 5th IFIP TC13 Conference on Human-Computer Interaction INTERACT’95, 
Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and 
S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 319-324. 
http://www.swt.ruhr-uni-bochum.de/forschung/janus/lillehammer. html 

[Bauer96] Bauer, B., Generating User Interfaces from Formal Specifications of the Applica-
tion, in this volume, pp. 141-158. 

[Coad91a] Coad, P., Yourdon, E., Object-Oriented Analysis, Prentice-Hall, 1991. 

[Coad91b] Coad, P., Yourdon, E., Object-Oriented Design, Prentice-Hall, 1991. 

[Coad92] Coad, P., Object-Oriented Patterns, Communications of the ACM, Vol. 35, 
No. 9, September 1992, pp. 152-159. 



74 Computer-Aided Design of User Interfaces 

[de Baar92] de Baar, D.J.M.J., Foley, J., Mullet, K.E., Coupling Application Design and 
User Interface Design, in Proceedings of the Conference on Human Factors in Com-
puting Systems CHI’92 « Striking a balance » (Monterey, 3-7 May 1992), P. Bauers-
feld, J. Bennett, G. Lynch (Eds.), ACM Press, New York, 1992, pp. 259-266. 
ftp://ftp.gvu.gatech.edu/pub/gvu/ tech-reports/91-10.ps.Z. 

[Elwert94] Elwert, T., Forbrig, P., Schlungbaum, E., Meta Models for Task-oriented 
User Interface Development, in Proceedings of the 1st Workshop on Cognitive Model-
ling and Interface Development (Vienna, 15-17 December 1994), pp. 163-172. 

[Fischer93] Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., Sumner, T., Embedding 
Computer-Based Critics in the Context of Design, in Proceedings of the Conference on 
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » 
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 157-164. 

[Forbrig96] Forbrig, P., Märtin, C., Automatisierte Entwicklung interaktiver Software: 
Spezifikation, Generierung, CASE-Integration, Offene Systeme, Vol. 5, No. 1, 1996, 
pp. 11-25. 

[Goldberg84] Goldberg, A., Smalltalk 80. The Interactive Programming Environment, 
Addison-Wesley, 1984 

[Gorny94] Gorny, P. et al., Projekt EXPOSE, Expertensystem zur phasenorientierten Soft-
ware-Ergonomie-Beratung bei der Benutzerschnittstellen-Entwicklung, 2. Zwischenbericht, 
Universität Oldenburg und Universität Rostock, 1994. 

[Gorny95] Gorny, P., EXPOSE - An HCI-Counseling for User Interface Design, in [In-
teract95], pp. 297-304. 

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from 
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on 
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » 
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423. 

[Kim93] Kim, W.C., Foley, J.D., Providing High-level Control and Expert Assistance in 
the User Interface Presentation Design, in Proceedings of the Conference on Human 
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. 
White (Eds.), ACM Press, New York, 1993, pp. 430-437. 

[Lonczewski96] Lonczewski, F., Schreiber, S., The FUSE-System: an Integrated User 
Interface Design Environment, in this volume, pp. 37-56. ftp://hpeick7.informatik. tu-
muenchen.de/pub/papers/sis/fuse_cadui96.ps.gz 

[Luo93] Luo, P., Szekely, P., Neches, R., Management of Interface Design in HUMA-
NOID, in Proceedings of the Conference on Human Factors in Computing Systems 
INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April 1993), S. 



 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 75 

Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM Press, 
New York, 1993, pp. 107-114. http://www.isi.edu/isd/CHI93-manager.ps 

[Märtin90] Märtin, C., A UIMS for Knowledge Based Interface Template Generation and In-
teraction, in Proceedings of the 3rd IFIP TC13 Conference on Human-Computer 
Interaction INTERACT’90, Cambridge, 27-31 August 1990, D. Diaper, D. Gil-
more, G. Cockton and B. Shackel (Eds.), Elsevier Science Publishers, Amsterdam, 
1990, pp. 651-657. 

[Märtin93] Märtin, C., Winterhalder, C., Integrating CASE and UIMS for Automatic 
Software Construction, in [HCIint93], pp. 291-296. 

[Märtin95] Märtin, C., Generating the Dynamic Behavior of Interactive Applications from 
High-Level Object-Oriented Models, in Proceedings of the International Conference on 
Industry, Engineering and Management Systems IEMS´95 (Cocoa Beach,  1995), 
G.C. Lee (Ed.), Univ. of Central Florida, 1995, pp. 180-185. 

[Märtin96a] Märtin, Ch., Modellierung, Entwurf und automatische Konstruktion interaktiver 
Softwaresysteme, Entwurf der modellbasierten Entwicklungsumgebung Application 
Modeling Environment (AME), Ph.D. thesis, University of Rostock, 1996. 

[Meyer88] Meyer, B., Object-Oriented Software Construction, Prentice Hall, Englewood 
Cliffs, 1988. 

[Meyer95] Meyer, B., Object Success, Prentice Hall, Englewood Cliffs, 1995. 

[Monarchi92] Monarchi, D.E., Puhr, G.I., A Research Typology for Object-Oriented 
Analysis and Design, Communications of the ACM, Vol. 35, No. 9, September 1992, 
pp. 35-47. 

[Puerta96b] Puerta, A., The MECANO Project: Comprehensive and Integrated Support for-
Model-Based Interface Development, in this volume, pp. 19-35. 

[Reiterer94] Reiterer, H., User Interface Evaluation and Design, GMD-Report No. 237, 
Oldenbourg, 1994. 

[Reiterer95] Reiterer, H. IDA – A Design Environment for Ergonomic User Interfaces, in 
Proceedings of the 5th IFIP TC13 Conference on Human-Computer Interaction 
INTERACT’95, Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. 
Gilmore and S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 305-310. 

[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., 
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, 1991. 

[Schmalzbauer95] Schmalzbauer, M., Generierung der Dynamik interaktiver Anwendun-
gen aus abstrakten Objektmodellen unter Windows, Diploma Thesis, Fachhochschule 
Augsburg, Fachbereich Informatik, October 1995. 

 [Schlungbaum96] Schlungbaum, E., Elwert, T., Automatic User Interface Generation 
from Declarative Models, in this volume, pp. 3-18. http://www.informatik.uni-ros-
tock.de/~schlung/TADEUS/paper/CADUI96.html 



76 Computer-Aided Design of User Interfaces 

[Sukaviriya93] Sukaviriya, P., Foley, J.D., Griffith, T., A Second Generation User Inter-
face Design Environment: The Model and the Runtime Architecture, in Proceedings of the 
Conference on Human Factors in Computing Systems INTERCHI’93 « Bridges 
Between Worlds » (Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Hen-
derson, E. Hollnagel, T. White (Eds.), ACM Press, New York, 1993, pp. 375-382 

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based In-
terface Tools, in Proceedings of the Conference on Human Factors in Computing 
Systems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April 
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM 
Press, New York, 1993, pp. 383-390. http://www.isi.edu/isd/Interchi-be-yond.ps 

[Vanderdonckt93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent 
Automatic Interaction Objects Selection, in Proceedings of the Conference on Human 
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. 
White (Eds.), ACM Press, New York, 1993, pp. 424-429. http://www. 
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-93-005 

[Wiecha89] Wiecha, C., Bennett, W., et al., Generating Highly Interactive User Interfaces, 
in Proceedings of the Conference on Human Factors in Computing Systems 
CHI’89 « Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis 
(Eds.), ACM Press, New York, 1989, pp. 277-282. 


	Abstract
	Keywords
	Introduction
	1 Related Work
	1.1 Implementation- and System-Level Tools
	1.2 Model-Based Specification Systems
	1.3 Model-Based Generators

	2 The Ame Environment
	2.1 Design Automation for Interactive Systems
	2.2 Ame Architecture Levels
	2.3 Representing Application Models and Knowledge
	2.3.1 Application Model
	2.3.2  User Interface Design Knowledge
	2.3.3 Adaptation Knowledge


	3 Ame Software Life Cycle
	3.1 Analysis
	3.2 Global Design
	3.3 Detailed Object Design
	3.4 Automatic Specification of Dialogue Behaviour and Dynami
	3.5 Layout and Style Generation
	3.6 Target Source Code Generation

	Conclusion
	Acknowledgements
	References

