
UŚŕŢőŞşŕŠŻ CōŠŔśŘŕŝšő Őő LśšŢōŕŚ
LśšŢōŕŚ SŏŔśśŘ śŒ MōŚōœőřőŚŠ

Richer Web Applications
On Trends, Techniques and Standards

Supervisor: Prof. J. VōŚŐőŞŐśŚŏŗŠ

Master Ļesis:
Partial Fulŀllment of the Requirements for the Degree of

Master in Business Engineering

Charles MōŞşŕŘť
2323.05.00

INGE22MS/G
charles.marsily@student.uclouvain.be

Academic Year 2009-2010

.

.

Acknowledgment

I would like to thank my supervisor Prof. Jean VōŚŐőŞŐśŚŏŗ
for providing me a subject as interesting as rich web

applications. Writing this document has redeŀned how I use
the Web today.

e e e

In addition, this work might not have been possible without
my family’s continuous support.

. .

.

.

CśŚŠőŚŠş

CśŚŠőŚŠş i

LŕşŠ śŒ FŕœšŞőş iii

IŚŠŞśŐšŏŠŕśŚ v
Disclaimer . vi
Content & objectives . vi

1 UŚŐőŞşŠōŚŐŕŚœ RIAş 1
1.1 Deŀnition and criteria . 1

Ļick vs. thin applications . 3
Client/server applications vs. web applications . 4
RIA features and characteristics . 5
Deployment alternatives . 6

1.2 Why RIAs are emerging? . 6
1.3 Limitations . 8
1.4 Web applications vs. native apps: what to choose for the iPhone? 9
1.5 RIAs as a part of a broader Web 2.0 era . 11
1.6 RIAs for enterprises . 14

Customer-oriented applications . 14
Organizational-oriented applications . 16

2 TőŏŔŚŕŝšőş 17
2.1 Ajax-based applications . 18

jQuery . 19
SproutCore . 21
Google Web Toolkit . 22

2.2 Adobe Flash & Flex . 24

i

Development characteristics . 24
Deployment over Flash Player or AIR . 25

2.3 Curl . 27
2.4 OpenLaszlo . 27

Ļe LZX language . 28
Proxied & SOLO deployment . 29

2.5 JavaFX . 31
Development tools . 31
Deployment options . 31

2.6 Microsoft Silverlight . 32
2.7 Design patterns for rich web applications . 33

Model-view-controller & SproutCore MVC+SDR . 34
Model-view-presentation . 35
Model-view-viewmodel . 35
3-tier architecture . 36

2.8 UI layouts, controls and other components . 37
Screen layouts . 38
Controls . 38
Effects . 39

2.9 Features selection & platforms comparison . 39
2.10 A short discussion on web applications techniques . 42

3 OŚ SŠōŚŐōŞŐş... 47
3.1 Why Web standards? . 47
3.2 Key Web standards in use today . 49

HTML . 49
CSS . 50
JavaScript . 50

3.3 HTML5 . 51
HTML5 explained . 51
HTML5 features . 52
Other specs related to HTML5 . 54
What about Geolocation, SVG, MahML and XHR? . 55

3.4 A short discussion on web applications standards . 56

EŚŐ ŚśŠő 61

BŕŎŘŕśœŞōŜŔť 63

ii

. .

.

.

LŕşŠ śŒ FŕœšŞőş

1.1 Rich internet applications in use . 3
1.2 Ļick vs. thin clients . 4
1.3 A screenshot of Google Maps running in a SSB . 7
1.4 A tag cloud illustrating topics associated to Web 2.0 . 13
1.5 An overview of the Bivolino webstore . 15
1.6 An dashboard application built with Curl . 16

2.1 An overview of the Flash integrated platform . 17
2.2 Ļe Ajax application model: asynchronous communications 20
2.3 A screenshot of the source code of jQuery.com . 21
2.4 A full scale example of a web application using SproutCore 23
2.5 A SWF ŀle being deployed . 25
2.6 A SWF ŀle embedded to HTML document . 26
2.7 Ļe Curl platform . 28
2.8 A typical workłow in proxied mode with the OpenLaszlo Server 30
2.9 An overview of the JavaFX tools . 32
2.10 An overview of the Microsoft Silverlight platform . 33
2.11 Ļe Model-View-Controller paradigm . 34
2.12 Ļe common 3-tier model . 36
2.13 An example of the master/detail screen layout . 37
2.14 Illustration of some controls . 38
2.15 Ļe jQuery UI effect . 39
2.16 Ļe market penetration into the browser of Flash, Silverlight and Java 42

3.1 Ļe Web among devices. 48
3.2 Ļe deŀnition of the features among WHATWG and W3C documents 52
3.3 deviantART Muro . 57
3.4 HTML5-related features supported by modern browsers . 58

iii

. .

.

.

IŚŠŞśŐšŏŠŕśŚ

W ŔőŚ it comes to consumer applications, those can be classiŀed nowadays into two
main categories: desktop applications and Web applications. On one hand, desk-

top applications have to be completely installed on the host device, having the possibility
to use Internet for further communications (to update the application or to access email
services for example). On the other hand, Web applications run on Web servers, accessible
in a speciŀc environment which is commonly the Web browser.

Web applications were at ŀrst very primitive: an action from the user implied to refresh
the page. Interaction was minimal and responsiveness was limited. Ļe two having for
direct consequence a poor user experience compared to native applications pre-installed
on the computer.

But as the Web extended its importance to the world, the need for dynamism, usability
and responsiveness has rapidly grown. And richer Web applications are the answer to
that need. And the term Rich Internet Application is the one used by platform vendors
to describe the evolution of Web applications. Ļe appellation has been coined in a
Macromedia (acquired by Adobe Systems in 2005) White Paper in March 2002 [53],
but the concept was not totally new at the time.

Rich internet applications are usually seen as a mashup between desktop applications and
traditional web applications. Ļey are as interactive and responsive as desktop apps, while
being deployed over the Web. Ļe mashup usually implies to transfer part or all the
processing to the client, in contrast to Web apps that are running server-side, the browser
taking only care of the rendering part.

Web applications have nowadays become a day-to-day part of our lives. Ļey allow us
to perform a large variety of tasks making our lives (on the Web or not) easier: banking
transactions, social networking, entertainment and online shopping to name only a few.
On one end, their availability to nearly any Web-connected devices make them even more

v

vi IŚŠŞśŐšŏŠŕśŚ

appealing to the end-user. On the other end, it is a good opportunity for developers to
deploy their apps over a unique platform: the Web.

DŕşŏŘōŕřőŞ

Ļis paper focuses on Web-related technologies. Consequently, it should be noted that
technologies around the WWW and Internet are evolving rapidly. All the content present
in the thesis is up to date till mid-August 2010, the assigned period to submit the ŀnal
version of this document.

It can take only a couple of weeks for a technology to improve, and sometimes updates
can occur on a daily basis. Ļis is the case for the HTML5 speciŀcation for e.g.

CśŚŠőŚŠ ŧ śŎŖőŏŠŕŢőş

Ļe purpose of this document is to give an overview of what can be done today in terms
of rich web applications, and how it can be done. Ļe following questions are confronted
throughout the thesis:

• What is a rich web application? Where can we ŀnd them on the Web?

• How rich web clients are built? What is available out there to help developers
code RIAs?

• What are the standards related to Web applications? Can HTML5 lead to
signiŀcant changes in the Web app area?

Ļe web applications sphere is quite large and there is a lot to talk about. Ļis thesis
is subdivided in three main chapters, each one of them focusing on a particular subject
related to the questions addressed just before.

Ļe ŀrst chapter sets up the basics concerning rich internet applications. Ļe objective is to
understand what they are and why. Ļeir characteristics are explained and their limitations
discussed. Ļe chapter includes also the distinction between a Web application and a
client/server application, and between a thin and a thick client. Ļe point is to build
a baseline on which the subject can be studied without confusion. Topics such as the
Web 2.0, Web services and enterprise-class RIAs are also explored to put Web apps into
perspective. And ŀnally the ŀrst chapter includes a debate between the use of native apps

IŚŠŞśŐšŏŠŕśŚ vii

over web apps for the iPhone, which is a good opportunity to put the two alternatives face
to face in a real-life context.

Ļe second chapter presents different solutions in order to build rich internet applications,
and deploy them over the Web. Eight platforms have been selected: Flash, Silverlight,
JavaFX, Curl, OpenLaszlo, jQuery, Google Web Toolkit and SproutCore. Every single
solution has its own extent, and they do not exclusively compete with each other. Ļey can
indeed have different objectives. If Flash is competing directly with Silverlight, it is not
especially the case with jQuery for e.g. Ļe purpose of this chapter is to analyze shortly
every selected platform, and then compare them over a large range of features. It includes
also a discussion on how useful pre-built widgets and components can be.

And last but not least, the third chapter focuses on standards. Ļe Web has always been
seen as an open platform for all. Ļis was a key for its success and its expansion. And the
W3C was created in October 1994 to help maintain a cohesion between industry players
over Web technologies. Standards can play an important role on many different levels
which are discussed in this chapter. With the rise of Web applications, a need for new or
revised standards has grown up rapidly. Ļat is why speciŀcations such as HTML5 have
a strong emphasis on dynamic websites, interactivity and rich media content. Ļat is why
this chapter discusses traditional standards and Web app related standards. It also explains
how these can have a positive effect on the Web.

e e e

. . .1 .
UŚŐőŞşŠōŚŐŕŚœ RIAş

T Ŕŕş chapter aims to explain what is a rich internet application (RIA). Ļeir charac-
teristics are clariŀed and the reasons why they are becoming so popular are explained.

Ļeir limitations and their implications within the Web 2.0 era are also discussed. Ļis
chapter is important in order to understand why these richer web applications are useful
and when they can become inadequate.

1.1 DőŒŕŚŕŠŕśŚ ōŚŐ ŏŞŕŠőŞŕō

Ļe World Wide Web is one of the most accessed services that Internet can offer to its
users. Ļe system of inter-linked hypertext documents designed by Tim BőŞŚőŞş-Lőő¹
lets one view webpages containing text, images and other content trough a simple web
browser. To do so, the HTML markup language is used to deŀne the structure of the
document. Ļe document can be found with an URL, and retrieved from a remote server
with the help of the HTTP protocol. However, except the content itself and the fact that
an end-user could jump from one webpage to another one through hyperlinks, little or no
interactivity was available. Ļe WWW was only built around linked static pages.

However, the WWW was full of promises. Rapidly from static, the web page went dyna-
mic. Ļe web page could vary according different contexts and conditions, the DOM,
client-side scripting (JavaScript being the most popular language) and server-side script-
ing (PHP, Perl and others) helping to do so. Ļis is where the web application came
from. A traditional web application is hosted on a remote server and works according the

¹ He was also helped in his work by Robert CōŕŘŘŕōš, a Belgian working at CERN where the two have met
to work on the project.

1

2 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

request-wait-response model: the client makes an HTTP request to the server, waits for
the server to process the request (accessing databases, backend processing, etc.), and then
receives a formatted page into the browser as a response. Almost none of the processing
is done client-side.

However, static pages and traditional web applications were not enough anymore. A
transition to a new model was necessary and logical. Ļat is the reason why the concept
of a “rich web application” was born. RIAs are the direct improvement of traditional web
applications. Ļey are the answer to a growing need of interactivity and responsiveness
concerning websites and web applications. Ļe main objective being to improve user
experience.

But rich internet applications do not aim to kill HTML. Ļe markup language can still be
widely used for simple interfaces (static pages and low-dynamic websites), rendering text,
pictures and simple data. No need to use complex methods to write simple websites.

Ļere is no speciŀc deŀnition for the word “Rich Internet Application” to this date. How-
ever, we can narrow a meaning by the features rich web applications have in common. But
let’s start by analyzing the components of the “RIA” word, used by vendors to describe
their technologies regarding the future of web applications:

• Rich: what does “richness” mean? Ļe richness of an application can be
deŀned by the interaction the application has with its user. A rich interaction
model is one that can offer a wide range of input methods, high interactivity
with what’s on the screen, and responsiveness [118]. Traditional desktop
applications are considered to be rich.
So it means that rich web applications are more dynamic, interactive and
responsive. And that they can deal with a variety of content such as raw
data, text, pictures, audio and video.

• Internet: even if RIAs have now offline capabilities, a requirement of a RIA
is to be exclusively deployed over the Internet (through the WWW).

• Application: Richer web applications - like any other piece of software - are
designed and built with the purpose to help the user fulŀll a task.

RIAs are applications aiming to be as rich as desktop applications, while being accessed
with an Internet connection. It means they try to function like desktop applications,
allowing high interactions such as drag-and-drop, animations, efficient data manipulation,
real time events (email structure or password length veriŀcation to describe only a couple)
and so on... Also, it can be hard to distinguish a web application (richer or not) from the
webpage as they can use the same technologies.

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 3

To give a ŀrst glimpse to the reader, Fig. 2.14 illustrates 2 ways where RIAs can be proved
useful. Both examples are using the Ajax technique (more on this in Section 2.1, on
page 18). Ļe whole webpage (or website for that matter) is not an application like an
opened Google Docs editor, but the page includes richer components, allowing the user
to do speciŀc tasks without page refreshes. Another example, for a business in that case,
can been seen Fig. 1.5 on page 15.

Figure 1.1 - RIAs in use. On the left is the real-time search application of Wikipedia,
a common component now included easily in many websites [48]. And on the right

is the Apple Trailers website featuring the ŀlm Food, Inc. [13].

Ļe Wikipedia search engine gives the user search recommendations according the let-
ters he already has typed into the input ŀeld. And the Apple Trailers webpage for the
documentary Food, Inc. lets the user do various tasks such as watching different trailers
and having more information (by expanding the text to have a full synopsis or expand
the poster into a intra-page pop-up window) about the movie without being bothered by
multiple refreshes.

Ļick vs. thin applications

Compared to simple webpages and web applications where the processing is done server-
side, RIAs tend to execute a signiŀcant part of the processing client-side. Ļat is why
RIAs are often considered as “thicker” clients. Different architectures can be considered
according the amount of processing taking care of by the client and the server.

Every architecture has its advantages and limitations, and every architecture can be chosen
according the developer’s and the end-user’s needs. For example, the Apple iWork.com

4 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

Data

App Logic

Presentation
Logic

Rendering
Engine

DataDataData

Data

App LogicApp Logic

Presentation
Logic

Presentation
Logic

Presentation
Logic

App LogicApp Logic

Presentation
Logic

App Logic

Presentation
Logic

�ick �in

Rich Internet Applications

Figure 1.2 - Ļick vs. thin clients. On the far left are desktop applications. Ļe far
right represents web applications where nothing except the rendering is done client-

side.

online services (built with SproutCore) adopts a strategy where the business logic is trans-
ferred to the client, improving interaction and feedback, while keeping data remotely. Ļe
application and the data can be accessed with any web-enabled device as the web appli-
cation model permits it, but the application has ŀrst to be downloaded into the browser,
which can take some time. Ļe app can however be cached locally, and downloaded again
only if changes appear when the application is updated for e.g.

It should be noted that rich internet applications do not aim to kill HTML and the thin
model. It is still a remarkable markup language that can be used to render simple elements
such text, pictures and simple data. If a simple user interface is only needed to ŀll the need
of the website or the web application, HTML still stands as a viable, simple and fast
solution to do so.

Client/server applications vs. web applications

It’s important to make the difference between client/server applications and web applica-
tions. Client/server applications are applications following a model where a client can be
executed on the desktop, while having the ability to communicate with a remote server
for data and other services. It means that the most part of the processing (presentation
and business logic) is done on the client computer. Ļe application is installed on the
computer, and the data is generally stored locally.

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 5

Typical client applications following this architecture are web browsers (IE, Firefox and
others) and email clients (Outlook, Ļunderbird and others). Ļe applications are written
for a speciŀc platform (although a cross-platform language can be used to get rid of that
constrain) and have to be installed on the client device. It means also that the maintenance
of those applications can be tricky as updates have to be installed on the variety of clients
where the application has been implemented.

Web applications are available over the WWW, running commonly into the Web browser.

RIA features and characteristics

Web deployment: web deployment is a core characteristic of web applications, and con-
sequently of rich internet applications. No proper installation and conŀguration on the
client’s system device is required. Ļe administration of updates is made easy as the
application can be updated directly on the server. When the end-user will request the
application in its browser, he will interact immediately with the updated version. More-
over, web deployment made the application available for a variety of web-enabled devices.
It helps to make abstraction of operating systems differences. Ļe WWW is a fast, wide,
and cost-effective way to deploy applications.

Browser executing environment: web applications are typically executed within the web
browser. It means RIAs developers have to keep an eye on the variety of browser speciŀ-
cations. However, RIAs build around Flash and Java requires a plugin, the latter taking
care of the browsers differences, waving that responsibility from the application itself.
Nevertheless, solutions such as Adobe AIR are now available to execute rich internet
applications outside the browsers.

Continuous application usability: this feature is the main improvement of RIAs compared
to traditional web applications. Ļere is no page refreshes, no waiting while wondering
what’s the server doing. When communications with the server are needed, they are
made independently of the communications with the user. It makes the application more
responsive and helps interactivity as virtually no interruption is happening. It also means
behaviors will have to evolve as with RIAs we shift away from a well anchored “page model”
(i.e. clicking to access a new page). Ļe back and forward buttons well-known in browsers
may be useless in RIAs.

Complex graphical user interfaces: complex interfaces are needed to improve the web experi-
ence of users. It is by analyzing this feature that we can see a convergence between desktop
applications and web applications. Ļe better an end-user’s web experience is, the more
he will stay connected to the application. Ļe chances that he will be back and that he will
communicate about the application with others are similarly improved. A complex GUI
lets the user use the application without being annoyed by navigation issues for simple

6 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

tasks. Furthermore, data exploration and data interaction are much improved with richer
user interfaces.

Client-side processing: RIAs tend to be “thick clients”, meaning that some or a more signiŀ-
cant part of the processing will be done on the client, and not on the server. It helps freeing
the servers of numerous requests and reduce the processing power needed to complete
them.

Deployment alternatives

Ļere are different ways to execute a rich web application on the client device. Ļe
common way to run RIAs is with the Web browser. If the application is built exclusively
around Web standards, it can run directly into the browser. Ļe other typical browser
alternatives are plugins. RIA platforms provide a browser plugin to allow the execution of
their apps within the browser, but through their own runtime environment. Ļis is the
case for the Flash or the Silverlight platform. And if the plugin is not installed on the
client, the application can not run within the browser.

Aside of the browser, a few solutions provide a way to run web applications outside the
browser. Ļe apps can run as standalone applications, directly from the desktop, freed
of the browser. A runtime environment such as Adobe AIR or Curl RTE needs to be
installed on the client to launch properly the apps. Cross-platform desktop RTEs are
useful to deploy applications on a range of different devices with minimal or no code
rewriting.

A standalone web application is also referred to a “Site Speciŀc Browser” (SSB). SSBs
can be considered as lightweight browsers designed only for a speciŀc website or a web
app. Fig. 1.3 shows a SSB for Google Maps in action (the rendering is handled through
WebKit). It was created with Fluid, an app available only for Mac OS X. However,
Mozilla Prism can provide a similar feature on Windows. Ļis technique allows the user
to run his favorite web apps (Facebook, Flickr, Gmail, etc.) without having to be bothered
by multiple tabs in the browser.

1.2 WŔť RIAş ōŞő őřőŞœŕŚœŪ

We can witness a real emergence of rich internet applications the past few years, and it is
only the beginning. A few tendencies have helped RIAs to become what they are.

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 7

Figure 1.3 - A screenshot of Google Maps running in a SSB created by Fluid (OS X
only). Google Maps is available at [76].

First, Internet and the World Wide Web have become important parts of our lives. And
the Web 2.0 isn’t doing anything to change that fact. We communicate, participate, share,
trade and inform ourselves on the WWW. RIAs are one way the make the time we spend
on Internet more worthy and valuable. Complex web applications are improving the way
we interact with information and the content available on the Web. Broadband connec-
tions are also spreading rapidly all over the world, helping more bandwidth-consuming
web applications to be deployed.

Secondly, people have more and more mobile devices connected to Internet. We have
today laptops, tablets, smartphones and other web-enabled devices to complete or replace
desktop computers. Writing complex applications for each one of these devices can be
tricky, time and cost consuming. RIAs can help resolve that issue. Moreover, with users
going mobile, they may need the same application on different devices. A situation that
can be easily handled as web applications are one click in the browser away. RIAs are a
good way to deploy cross-devices applications.

Furthermore, the rise of personal computing helped the digitalization of our communica-
tions and information. People are using more and more computers and mobile devices to
assist them in their professional and personal lives. Why should we have stickies if we can
share our to-do list between the computer (accessible everywhere through the browser),

8 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

the smartphone, and even colleagues? Ļat is where a service like Remember Ļe Milk
can be very useful [34].

Finally, mainstream tech companies have done their move: Adobe is in the game for a
long time now with its Flash platform and Flex framework, Microsoft has Silverlight,
Sun Microsystems (and consequently Oracle) has JavaFX, IBM is putting forward its
WebSphere platform, Apple uses SproutCore, Google promotes its Google Web Toolkit,
and Mozilla RIA’s platform resides around Firefox. Solutions supported by enterprise-
centered IT companies (such Microsoft, IBM and Oracle) is crucial for the technology’s
adoption in the corporate world [106].

1.3 LŕřŕŠōŠŕśŚş

If RIA architectures have lots of advantages, the model has nonetheless numerous limita-
tions:

Network dependance: their strength can become their weakness. Web applications and
RIAs are dependent of an Internet connection. Moreover, broadband connection are more
and more required to execute rich internet applications quickly and easily. However, some
rich internet applications are becoming offline capable. It was the case recently for Google
Gmail.

Richness capability: if RIAs tend to be richer and richer after years, they cannot be com-
pared properly with the richness of traditional desktop applications. Microsoft Outlook
stays to this day more powerful in terms of interaction, integration and responsiveness
than a rich web-based application such as Gmail. Building richness itself is however
only limited to developers’ imagination and the platform used. It’s consequently highly
probable that further richer web applications will be written in the future, becoming as
good as desktop applications.

Complexity: enhanced experience for the end-user comes to a price. Compared to simple
HTML coding, RIAs are much more difficult to design, write, test, debug and support.
It’s a cost that enterprises and developers have to take into account in their decision process.

Sandbox: rich internet applications run traditionally in sandboxes. If they are secure
environment, they are nonetheless closed and with very limited access to system resources.

Scripting performance: a client-side scripting language such as JavaScript is nearly compul-
sory to run rich internet applications. It means it has to be enabled by web browsers for
the application to work properly. Scripting performances are consequently important: the
better the JavaScript engine is, the faster the script will be executed. We can see nowadays

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 9

that any major web browser vendor his trying to improve their JavaScript engine. It
should be noted that JavaScript is an interpreted language, resulting in lower performances
compared to compiled languages seen in desktop applications and Java applications.

Loading time: by moving part of the processing client-side, scripts have to be downloaded
and cached on the client. Ļis process can sometime take time. Ļe issue can be minimized
by compression, cache and optimization.

Search Engine Optimization (SEO): simple HTML documents are easily handled by search
engines such the ones of Google, Yahoo and Microsoft. Even if workarounds exist, search
engines have difficulties to index the content of richer web applications.

Monitoring and measuring: the asynchronous characteristic of rich internet applications
make performances monitoring and measuring more difficult.

Lack of tools: tools are needed to assist developers in their coding. Ļis point is important
as a good development platform attracts developers to use it, which in return can broader
the volume of applications built on the platform, which can help in its deployment on a
large variety of clients. Ļe tools available to build RIAs are relatively light and simple
compared to the ones used to write desktop applications [125].

1.4 WőŎ ōŜŜŘŕŏōŠŕśŚş Ţş. ŚōŠŕŢő ōŜŜş: ţŔōŠ Šś
ŏŔśśşő ŒśŞ ŠŔő ŕPŔśŚőŪ

Ļis section addresses the problematic of native applications against web applications when
they are used on the Apple iPhone. Ļis can be an interesting case study to see how Web
apps can be useful or become restricted in some situation. Ļe iPhone being a handheld
device, it is also the opportunity to review the use of Web applications within the mobile
device area, a market seen as the next battle ground for consumer devices.

On one side, iPhone apps run directly on iOS (Apple’s operating system for the iPhone,
iPod Touch and the iPad). Ļey have access to the iPhone’s content and hardware (such
as the accelerometers, used in games for e.g.). Ļey are developed for iOS only, meaning
they have to be entirely rewritten if the app want to be executed on another platform
(such as Palm WebOS for e.g.). Native applications are usually more suited for complex
and generally offline applications such as games.

On the other side, web applications run in the mobile version of Safari, the in-house
browser of the iPhone. Opera Mini, whose release has been approved by Apple, can be
used as an alternative tough. Ļey are developed with the Ajax technique, around standards
such as HTML, CSS and JavaScript. Ļey have very limited access to data and hardware.

10 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

Ļeir advantage resides in their inter-operability: they are accessible on nearly any other
device connected to the Web with minimal code adjustments [88].

However, technologies like Flash and Java are not supported on iOS, which means web
applications cannot have the beneŀts of these platforms. Websites and web apps using
these technologies are not rendered (if not totally) properly. Apple’s CEO Steve Jobs
addressed criticisms over Flash arguing that the technology is not open, unreliable, not
secure, not optimized for mobile uses, and that overall performances are discussable [90].
Apple pushes HTML5 as a replacement for Flash. Ļis can be problematic for a lot of web
authors as their websites can heavily rely on Flash (the animated advertisements for e.g.).

Web apps were the ŀrst and only way for third-party applications to run on the iPhone [51],
with Apple arguing that Web-based applications could have the look-and-feel of native
applications. Ļese applications could have accessed iPhone services (such as calls) “with-
out compromising its reliability or security” [51]. However, Apple went backwards and
the ŀrst iPhone SDK to help building native applications was released in March 2008.

If the native option is chosen, developers have to go through a validation process. Native
apps can only be deployed on iPhone’s through the App Store, Apple’s platform to sell
iOS applications to end-users. If the content of the application is deemed inappropriate,
the app is simply rejected, the developer having built it for nothing.

Furthermore, Apple retains 30% of the price tag if the application is sold, Apple explaining
that its share will cover the costs of their App Store platform. Ļe bright side of this app
platform is its uniqueness: developers do not have to set up their own place to sell their
apps, Apple taking care of that part for them. Also, developers can insert advertisements
through the iAd mobile platform. A way to integrate ads within the app which are released
in the App Store, Apple retaining again 40% of the revenues generated by its platform.

Even it Apple retains 30% of the app’s price, the App Store is a new way for developers
to make proŀt from their apps. Web applications are not suited to make money up front,
when the application is sold. However, native apps on the iPhone, often offering the same
services than websites and web apps, can be sold for a couple of bucks directly to the user.
Scalability helping, developers can make a signiŀcant proŀt from their work.

Web applications are not subjected to these restrictions. Inappropriate content is available
through web apps, and no revenue is taken from paid applications. Web applications can
also be updated more quickly. And this might be an even more important advantage in
the iPhone case. Ļe validation process can take some time before the app can be available
on the Store. And any update for a native app is subjected to the validation procedure. It
means developers can not update rapidly their apps, potentially harming user experience
and their revenue of they are expecting to sell them.

One can argue that the decision between native applications and web applications for the
iPhone is not black & white. Both worlds have strengths and weaknesses. But it seems

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 11

that the fascination of the iPhone and its App Store have generated a huge interest for
native applications. It is understandable that games and other power-consuming apps are
developed as native applications.

But on the iPhone, even news websites, with an underlying content much simple, are
developing native applications for the iPhone. Moreover, some argue that native iPhone
apps are still much more responsive than web apps. Ļey think they are not able to be as
good as native ones and that web apps can not provide a better user experience when an
native alternative is available for the iPhone [81, 83].

Maybe this trend is generated by the appeal the iPhone enjoys today, the smartphone
being seen as a must-have piece of technology to possess today. Ļe App Store, heavily
integrated to the iTunes integrated model, seems to work for either developers, users or
Apple. Other tech companies also deployed their very own applications store, but their
extent is much more limited compared to Apple’s.

1.5 RIAş ōş ō ŜōŞŠ śŒ ō ŎŞśōŐőŞ WőŎ 2.0 őŞō

Ļe term Web 2.0 can be misleading as it does not deŀne a new version of the World Wide
Web (technology speaking). Like RIAs, no succinct deŀnition exists, and trying to deŀne
it can be tricky. After consideration, it can be considered as an overused buzzword that
even Tim BőŞŚőŞş-Lőő consider as “a piece of jargon” [97]. However, the notion of Web
2.0 does exist for a reason. And as a matter of fact something has happened between the so-
called “Web 1.0” and the Web as we know it today. We will attempt to describe that shift
within this section, and take the opportunity to situate where rich internet applications
stand in this Web 2.0 era.

Ļe Web 2.0 can be seen as a new way the Web is used by the people and developers alike,
compared to the Web as it was during its ŀrst years of existence. To put it in simple words,
the Web 1.0 was mostly a medium used by the people to access information, and the Web
2.0 is seen as a participative platform ŀlled with user generated content. Ļe read Web
became the read & write Web, converging to the idea Tim BőŞŚőŞş-Lőő had in the ŀrst
place: a Web as a unique and global medium for collaboration. An idea that has been
forgotten in the ŀrst place.

Ļe Web 1.0 was mostly about few people creating content for a lot of end-users. Ļe
Web was used mainly as source of information, on which they didn’t own the material,
acting as simple readers. Ļe ŀrst ages of the Web built only a few places for participation

12 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

and interaction². Now the Web is all about participation and creating content. Ļe Web
2.0 lets end-users produce and manage their data, and websites are intermediaries helping
them to do so. On one side, the Web 1.0 is characterized by few people publishing for a
lot of people. And on the other side the Web 2.0 features many publishing for many, with
creators and end-users being able to switch their respective role.

Web 2.0 services is all about facilitating content sharing: Facebook takes care of your
personal information, YouTube of your videos, Flickr of your pictures and Delicious of
your bookmarks for example. YouTube and Flickr does not offer videos or pictures, but a
place to share the creations with others, without managing the content itself. Ļe more
the user base is large, the more the medium will be successful. Web 2.0 companies can
not survive without their user base and what they create.

Ļe Web as it is now is people-centric, a trend so massive that the Time magazine chose
as the “People of the Year” in 2006 all the contributors having uploaded individual content
on Web 2.0 websites. Ļe magazine put the word “You” on its December 25, 2006 cover.
Another conŀrmation that now every single person can select, rate, comment, publish,
control and more importantly create their content. People participate and interact with
what’s happening online. Ļey need to share. Ļey need to express themselves.

A core component of Web 2.0 is collective intelligence. Collective intelligence refers to
the cumulative value users can bring to content within the participative Web. Ratings
and comments are for e.g. primitive ways to build collective intelligence [151]. But we
have also evolved to folksonomies. “Folksonomy is the result of personal free tagging of
information and objects (anything with a URL) for one’s own retrieval. Ļe tagging is
done in a social environment (usually shared and open to others). Folksonomy is created
from the act of tagging by the person consuming the information” [146]. And tagging is
a major trend characterizing the Web 2.0. We tag people on Facebook, places on Flickr
and URLs on Delicious, to cite only a few...

Ļe notion of Long Tail is also often associated with Web 2.0. It implies that the truly
useful content is situated on the many smaller websites of the Web, referred as the Long
Tail [54], and not on the few major websites of the WWW (the big head). It is conse-
quently important to value the long tail, and not only the few big and popular areas of the
Web.

A good way to have an overall picture of the Web 2.0 phenomenon is to look at Fig. 1.4.
Ļe ŀgure illustrates popular subjects that are associated to the Web 2.0, some of them
being highly correlated with rich internet applications. It is the case for usability, design,
Ajax and CSS for example. But as mentioned before, the Web 2.0 is not an improvement

² It is worth noting that an alternative such as Usenet existed and still exists with limited popularity today.
Usenet was however created 10 years before the WWW, being a service running on the Internet as much as
the Web. Now one can access Usenet discussions on the Web with Google Groups

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 13

Figure 1.4 - A tag cloud illustrating topics associated to Web 2.0. From
Wikipedia [44].

of the technology itself. Even if the Web 2.0 tends to produce enhanced applications,
they are still based on current practices and implementations. Ļe new wave of Web
2.0 applications is just the answer to the users’ need of tools to create and control their
content. Ļey are supposed to help making the best of the Web 2.0 platform [113].
And that is exactly where RIAs can play a prime role. After all, would people still use
Flickr if they needed to take 2 hours of their time to upload a couple of pictures on their
online album? Probably not... Ļat is why RIAs and their underlying technologies such
as Ajax, JavaScript, Flash or Silverlight can ease the process of content generation and
manipulation.

Rich user interfaces brought a new class of web applications available on the WWW. Like
their desktop counterparts, we can now access within a browser an office production suite
such as Google Docs, or the online version of Photoshop. Instead of competing on desktop
platforms, now applications are also challenged on the Web. And this can only be good
for competition.

But the Web 2.0 is not without weaknesses. Ļe Web 2.0 trend has brought massive user-
generated content on a single platform. We assist now to a sort of information overload:
ŀnding valuable knowledge will become more and more difficult in the future. Finding
quality material can also be tricky as now a lot a Web publishers are amateurs. Ļey are
usually not remunerated from their online content [82].

Trust can also be problematic with the Web as we use it today. Can we trust the know-
ledge found on Wikipedia? Can we rely on banking applications to manage our banking
accounts? Can we be in conŀdence with people we’ve met on Facebook without having
seen them in our real lives? It seems that is the case for now.

14 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

1.6 RIAş ŒśŞ őŚŠőŞŜŞŕşőş

Ļe Web becoming a unique platform accessed by nearly everybody, it was only a matter
of time before companies used it to make business and to help them in their development.
Two kind of rich internet applications can be used by organizations: customer-oriented
applications (both for B2B and B2C) and decision-making support applications (RIAs
can be ideal for Business Intelligence services for e.g.).

If enterprise-class RIAs can bring a lot of good, they do have to confront challenges valued
by organizations [87]:

• Costs. RIA development costs can signiŀcantly increase according to the
complexity of the application.

• Security, more than never.

• Consistency. Companies cannot afford to change their systems at every
technology shift. Ļat is why Flash is so popular as the technology is well
anchored compared to burgeoning competitors such as SproutCore.

• Accessibility. Ļis even more important for customer-oriented applications.

Customer-oriented applications

Ļe Web has become an important market for businesses. Some of them are purely
businesses operating on the Web (Amazon or eBay), while other are using the platform as
another medium to sell their products and services (Apple). Ļe Web can not be ignored
nowadays. It is now used to provide a middle ground to promote, sell and support all kind
of products and services.

RIAs being cross-devices, ubiquity can be achieved without signiŀcant issues, while fre-
quent updates can easily improve the application as no installation is required. If the Web
is used wisely, it can lead to beneŀts for the businesses. And RIAs are one way to use the
Web effectively. Here is an example taken from an IBM white paper, showing how buyers
can be guided during their shopping process [87]:

“For example, you might create an RIA for ordering products from your Web site
and connect the RIA in realtime to your back-office system via a simple Web services
interface. Ļen, if a user enters a quantity of 10 for an item, you could immediately
display a message such as, “Next price break at 15,” to entice the user to increase the
size of the order to get a better.”

CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş 15

If a commerce-oriented RIA is written properly, it might lead to a customer engaged and
focused in the process. It means he might stay longer connected into the RIA, explore
it further, come back later and talk about it to its entourage. Visibility is enhanced,
satisfaction and loyalty are improved, error and customer support costs are reduced, and
sales are increased.

Figure 1.5 - An overview of the Bivolino self-service webstore. Ļe web application
lets the client creating (and then buying) tailor-made shirts ławlessly following a

series of steps [62].

Being more visual and by making abstraction of the request-wait-response model, RIAs
reduce the overall complexity of the process and enrich the user experience within the

16 CŔōŜŠőŞ 1. UŚŐőŞşŠōŚŐŕŚœ RIAş

application. Ļey allow features such as undo, redo and real-time events, all within the
same Web page and without refreshes.

Fig. 1.5 illustrates the general idea of what RIAs can do for businesses. Ļe website is
page-based at ŀrst, but a rich web-based application is used to customize the shirt itself.
As soon as the buyer has chosen the shirt characteristics and features, he will be redirected
to a new page to take care of the ŀnancial details.

Organizational-oriented applications

As employees have to decide faster and better, data, modeling tools and indicators (visual
or not) are becoming more and more pivotal for decision making. Here again RIAs, being
available on extranets for e.g., can be helpful for both employees and the organization.

On one hand, employees have access to performance indicators, real-time data and other
visualizations to help them quickly in their analyses. On the other hand, organizations
have an effective medium to provide the data, possibly coming from different sources,
while performances and accuracy are up, and waiting time is down. RIAs can be used to
create portals, dashboards, rich forms, and also as an information platform.

Figure 1.6 - An dashboard application built with Curl, representing information
around a wealth calculator [64].

e e e

. . .2 .
TőŏŔŚŕŝšőş

L śŠş of RIA frameworks comparison articles can be found on the Web and in the
literature. But here the approach is slightly different: instead of providing a tech-

nical comparison of RIA frameworks alone, RIA platforms are going to be analyzed and
compared as a whole, with the framework being only an element of them. Choosing a
speciŀc solution can be tricky as one has in front of him a panel of integrated solutions
to help him in his development and deployment. Ļe easiest example of such platform
would be Adobe’s Flash - including the Flex framework - illustrated in Fig. 2.1:

Figure 2.1 - An overview of the Flash integrated platform. Flex is the platform's
framework and the main component to build RIAs [69].

Ļe Flash solution contains designer tools, development tools, deployment tools and other
services useful to make powerful rich internet applications.

Ļe choice of the platforms presented in this paper has been tricky as new tools and
technologies are developed year after year. To keep this document within an acceptable
length, 8 platforms have been picked according either their popularity among developers

17

18 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

(businesses and individuals alike) or their use and support by ŀrst-line tech companies.
Ļe selected solutions are listed hereafter:

• JavaScript/Ajax-based solutions including jQuery, Google Web Toolkit and
SproutCore.

• Adobe Flash, pioneer in the matter.

• Microsoft Silverlight, seen as Microsoft’ answer to Flash.

• JavaFX, launched by Sun Microsystems to compete with Flash and leverage
its Java technology.

• OpenLaszlo, enterprise-centered.

• Curl, enterprise-centered.

Ļe comparison will be made according several technical and non-technical factors. It
will help the reader to differentiate prevalent RIA platforms to this date on many different
levels. Every single solution has its advantages and its limitations, and the purpose of this
chapter of the thesis is to emphasize the strengths and weaknesses of the elected platforms.
Every factors used is going to be described later, and the reason why they have been chosen
will be explained.

2.1 AŖōŤ-ŎōşőŐ ōŜŜŘŕŏōŠŕśŚş

Ajax is shorthand for “Asynchronous JavaScript and XML”. Ļe notion asynchronous is
important as it deŀnes the part of the Ajax paradigm that lets the user interact with the
interface without being interrupted by page refreshes. Asynchronous communication is a
key point for richer internet application. Ļe term was coined by Jesse James GōŞŞőŠŠ
in a article explaining “a new approach to web applications”. Ajax is not a brand, or
a commercial product, it just describes an approach to build web applications involving
several technologies to make it work:

• Ļe XMLHttpRequest (XHR) object to allow asynchronous data retrieval
with the server. An Ajax application can send HTTP requests directly to
the server, retrieve data, and have the response directly injected back into the
script. Ļis can be done with XML, JSON or plain text among others. Ļe
data retrieved can alter the DOM of an active document, inducing changes
for the user without having to reload the webpage.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 19

• XML and XLST for the interchange of data and its manipulation, respec-
tively. Both XML and XLST are not speciŀcally required. Alternative such
as JSON or pre-formatted plain text can be used for data interchange.

• A DOM, for dynamic presentation and interaction, and standard presenta-
tion languages such as (X)HTML and CSS for basic rendering.

• JavaScript to make all the above work together. JavaScript is the most pop-
ular client-side scripting language to execute Ajax-based applications as it
is included within popular browsers. However, JavaScript is not the only
scripting language that can be used to make it work.

Using properly all these technologies can improve the user experience with interactive and
responsive web applications. To make this work, an Ajax engine is loaded to the client
device. Written usually in JavaScript, the engine will coordinate the communication with
the server and coordinate the rendering of the interface. It is the role of the engine to
make the communications with the end-user independent to the communications with
the server, as seen in Fig. 2.2. As Ajax-based applications cannot handle rich media such
as audio and video, the engine will have to use a Flash or a QuickTime plugin to take care
of that speciŀc content.

jQuery

Many different tools - frameworks, toolkits or libraries - are able to help developers write
Ajax-based applications. jQuery is one of them. jQuery is a JavaScript library that has
become popular among web developers as it stands as a solid library to build more and more
complex, powerful and dynamic webpages. It offers effects, widgets, interactions, plugins
and range of Ajax functions and methods to allow new information to be used without
having to reload the web page. If fancy controls do not make a rich web applications,
asynchronous communications can help to do so. Hence it can be considered as a tool to
develop RIAs.

Ļere are basically three ways to build JavaScript code, and jQuery proposes two of them:

• Raw code. Everything is written from scratch. If this way is the most łexible
of all, it is also the one that can lead to lots of bugs.

• Libraries. A library such as Prototype, Mojo or jQuery provides a syntax for
pre-written code. Flexibility is possible as the developer still has to do some
writing. Libraries can help making less buggy apps and websites.

• Widgets. Ļey are pre-made applications. No speciŀc writing is necessary
but łexibility is nearly absent (skinning may be allowed for e.g.). Widgets

20 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Figure 2.2 - Ļe Ajax application model: asynchronous communications [74].

are tested for a variety of Web browsers. If a widget is compatible for a
speciŀc one, no bugs should arise.

jQuery aims to facilitate client-side scripting by simplifying the interaction between Java-
Script and HTML. Its focus is to “ŀnd elements” and then “perform actions with them”.
Ļe library is usually contained into a unique JavaScript ŀle, providing its common core
features: effects, DOM, Ajax and events. Other features can be added via a plugin. jQuery
UI, built on top of the jQuery library, provides high-level prebuilt widgets and low-level
interactions and effects. Ļese prebuilt components let developers take care of something
more complex and time-consuming than simply reinventing the wheel in many ways.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 21

jQuery might seem a bit light as a solution to develop richer web applications, but its
objective is more to ease and make the coding process faster than properly propose an
integrated platform. Ļe point is to code efficiently by using a particular syntax. For e.g.
jQuery includes a variety of functions (based on XHR) to make asynchronous requests
much easier than using the XHR object itself. Also jQuery UI provides prebuilt skinable
widgets (date picker), interaction (drag and drop) and effects (transitions).

To use the jQuery library, one copy has to be called within the HTML code with the scr
attribute within the script element. Only then one can use the functions of the library to
code the JavaScript part of his webpage or the web application, as shown in Fig 2.3. To
call a widget for example, the developer will use the id attribute in his code.

Figure 2.3 - A screenshot of the source code of jQuery.com [91].

SproutCore

SproutCore is an open-source platform to help create so-called cloud applications. Ļe
platform’s architecture is built around HTML5 and JavaScript, and aims to build cloud
applications that are scalable, using complex features, supporting keyboard and touch
events, rich animations, having offline capabilities, while being as responsive as desktop
applications. HTML5 and JavaScript make SproutCore applications able to be run on
modern web browsers without plugins. Although those can be used to add local storage
capabilities, video support and uploading support.

22 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Ļe business logic of SproutCore applications is downloaded to the browser, while the data
stays in the cloud. Doing so, SproutCore applications fell into the thick client category.
Ļe model can speed up interactions with the application as the processing is done on the
client, without giving up on scalability as the application will be accessible to anyone using
a modern browser.

SproutCore does not aim to enrich document-oriented web pages by interfering with
HTML. SproutCore’s objective is to build full web-capable applications, and does not
want to compete with JavaScript libraries such as jQuery.

Built SproutCore apps have an index.html ŀle and some static resources. Static resources
can be cached for better performance, and GZIP compression can be enabled to load the
application faster. Ļe SproutCore JavaScript framework alone weights about 500Kb, but
can be compressed to about 100Kb [10].

SproutCore provides several frameworks to build full-scale cloud applications [7,9,10,14,
19, 36, 41, 42]:

• Ļe Runtime framework, providing the tools to write the core of the appli-
cation. It is used for e.g. to set up classes, to work with arrays, loops or to
run benchmarks.

• Ļe DataStore framework. It handles structured data in SproutCore appli-
cations. Ļe component can communicate with the server for data for e.g.

• Ļe Foundation framework, that contains the basics (event handling, Ajax
requests, and more) to make the application run properly in the browser.

• Views, which handles the application’s visuals. SproutCore comes with pre-
built views (such as controls) that can be used directly within the applications.

• Ļe UnitTesting tool.

• Ļe BuildTools to produce optimized JavaScript, HTML and CSS ŀles from
the source code. Ļe tools help developers to keep a well structured project,
easy to maintain, and cache management.

Google Web Toolkit

Google Web Toolkit (GWT) is the platform supported by Google to build Ajax-based web
applications. It has the characteristics to produce JavaScript code in the Java language. As
the web application is written in Java, the developer is free to use any Java development tool
of his choice. Google provides also a plugin for Eclipse IDE. GWT mission statement

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 23

Figure 2.4 - A full scale example of a web application using SproutCore. Ļis is the
Bong.TV application, which mainly provides recording services for the end-user. Ļe
app provides dynamic features such as tab browsing and popup window (inside the

app) for video details [63].

is “[…] to radically improve the web experience for users by enabling developers to use
existing Java tools to build no-compromise AJAX for any modern browser” [80].

A GWT application can be embedded into an HTML document with the script tag.
Ļat webpage can be seen as the host page of the web application, which not necessarily
includes any strict HTML content (it means that the GWT application could use the
whole webpage for its UI for example). However, GWT is also built to improve part
of webpages by including speciŀc widgets to the wanted areas of the HTML document.
Attaching a widget can be done via the id attribute or by using the RootPanel.get() method.
Ļe host page doesn’t have to be strictly static, the HTML can also be dynamically created
by a servlet or a JSP page.

GWT is organized into modules such as the USER module containing the core function-
alities (UI components, DOM programming) or the JUnit module to provide a testing
framework. Each module can be added independently (via the inherits tag) to a project so

24 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

only the necessary ones are used during the compilation. Modules can contain associations
to external JavaScript code or CSS ŀles.

When the GWT application is written and compiled, the developer has in his hands
HTML and JavaScripts ŀles, with all the necessary ŀles such as the CSS stylesheets and
pictures to go with them. Ļese ŀles will be deployed on a web server or a Java servlet with
the appropriate server-side coding to make them available on the Web. It’s also possible
to deploy GWT application on the Google App Engine.

Any GWT application will have at a given time to communicate with backend servers. A
GWT optimized RPC can be used to interchange data with a Java servlet. GWT RPC is
independent from the protocol used to make the calls. Custom HTTP requests can also
be done to interchange HTML, plain text, JSON, XML or other form of data.

2.2 AŐśŎő FŘōşŔ ŧ FŘőŤ

Flash is Adobe’s ecosystem to provide a set of technologies helping to create and distribute
applications and content. Ļe core of this solution for RIAs development is Flex, which is
described on the editor website as “[…] a free, open source framework for building highly
interactive, expressive web applications that deploy consistently on all major browsers,
desktops, and operating systems”. A common end-product illustration of this platform
would be Mint.com, a website providing personal ŀnance management services. Adobe
platform provides tools to build from simple rich internet components in websites to full-
scale browser applications and browserless web applications.

Development characteristics

Flex applications are built with 3 programming languages (MXML, ActionScript and
CSS) and more than one hundred prebuilt rich application components if necessary (both
Flex and 3rd party). MXML is used for the UI and the behavior of the application.
ActionScript (in its 3.0 version to this date) is the programming language used to code
the client-side business logic and to create classes.

Ļe free Flex SDK offers a compiler and a debugger. Developers have also the possibility
to use the commercial product Flash Builder (formerly named Flex Builder) to help them
create Flex applications. Adobe’s IDE is built on top of the Eclipse platform and can be
used as a standalone application or directly on Eclipse with the help of a plugin. Flash
Builder includes a design view, an enhanced code views, a visual debugger, a visual proŀler,

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 25

a network monitor and a services view. Code source ŀles (.mxml and .as) are compiled into
a Flash SWF format binaries ready to be run in Flash Player or Adobe AIR.

Deployment over Flash Player or AIR

Figure 2.5 - A SWF ŀle being deployed [2].

Flex content and applications can be rendered the to user via two client-side solutions:
Flash Player and Adobe AIR. Ļe two RTEs can help distribute developer’s work across
browsers, desktops and devices such as smartphones, netbooks and other handheld de-
vices. Both solutions can be used on a large range of operating systems, hardware and
browsers. Flash Player is one strong advantage for Adobe’s platform as 98% of internet-
enabled personal computers are compatible with Flash. Moreover Flash beneŀts of a long
history of rich content delivery as the technology have been used for advertisement, game
applications and video delivery since its early versions.

Flash Player lets the end-user open rich applications within the browser on both desktop
computers and mobile devices. No application installation is required and updates can
be pushed directly to the website. If the the RIA runs within a browser, all information
will be lost when this one is closed. Moreover, UI controls are directly linked on how the
browser application is integrated to the desktop. Limited desktop integration and local
storage are possible, but all restricted by the browser.

When the development is done, the SWF ŀle is moved to the server where it can be
requested by the user. Ļe SWF ŀle is then downloaded on the client where it will
run (the application does not run on the server). Ļe RIA can communicate with server

26 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

technologies (PHP, ColdFusion, ASP.NET and JSP) as needed. If the application needs
further data, a request is sent to the server, which in turn can make a request to back-end
resources (a database for e.g.). Ļe data is sent back to the server, and then to the client on
which the Flex application will update ławlessly its state according to the data received.

In order to implement a SWF ŀle into a webpage, the Web developer can use an HTML
wrapper. Flex can also work with JavaScript on the client. If the Player is installed on the
client, the Flex application will be executed properly with the HTML document in the
browser:

Figure 2.6 - A SWF ŀle embedded to HTML document [69].

Ļe other alternative is to use the object tag to embed the łash application. An example
code taken form the W3Schools website is shown below to illustrate how it is coded [145].
A Silverlight application can be embed in a HTML page in a similar manner.

<object width="550" height="400">
<param name="movie" value="somefilename.swf">
<embed src="somefilename.swf" width="550" height="400">
</embed>
</object>

Adobe AIR gives the developer the ability to build applications that run without a speciŀc
browser. It provides the client applications a better desktop integration, more convenience
and more functionality such as clipboard access, system events and more. SWF applica-
tions can be downloaded and installed like a desktop application or installed directly from
the browser. An API is provided to ease updates. AIR RIAs can store and access local
data and run offline. Compared to a Flash Player installed on nearly all internet-capable
desktop computers, Adobe AIR has to be installed by the end-user. Ļe installation can
be done both manually or automatically when an RIA built for AIR requires it. Moreover,
Adobe AIR can be used to run HTML, JavaScript and AJAX built applications.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 27

2.3 CšŞŘ

Curl has been marketed has a platform to seamlessly migrate client-server applications to
the internet without giving up on interactive features. Ļe platform is highly enterprise-
centered and aims to produce B2B and B2C applications capable to handle larger datasets
and complex interfaces. Ļe Curl platform includes the following components:

• Ļe Curl programming language, designed speciŀcally for developing on the
web, offers rich text formatting and GUI layouts like HMTL does, the full
object-oriented programming paradigm of C++, C# and Java , and delivers
the eases of the JavaScript scripting language.

• An RTE to run Curl applications and render code, text and graphics on the
client. Available as a browser plugin, the end-user simply requests for the
Curl application with its URL. Curl applications can also be installed and
run directly from the desktop (like Adobe’s AIR), offline using local data if
necessary.

• An IDE providing the tools needed by developers to build Curl RIAs. It
includes a visual ”WYSIWYG” editor, a source code editor, a debugger and
deployment tools among others. It is available as a standalone application or
as a set of plugins for Eclipse (Curl CDE).

• Ļe Curl Web Services Software Development Kit (Curl WSDK) to provide
a way to use data resources and web services directly into Curl applications.
Ļis can be done with SOAP Web Services and WSDL, or by using the
WSDK XML document model.

• Ļe Curl Data Kit (CDK) and Data Kit Data Services (CDK-DS) eases the
development of data-centered applications. Ļe ŀrst one provides support
of local SQLite databases and facilitates the development of occasionally
(OCC) connected applications. Ļe second one provides a library to help
building applications that need to interact with servers for data resources.

2.4 OŜőŚLōşŦŘś

OpenLaszlo (OL), by Laszlo Systems, is an integrated platform to build and deploy rich
internet applications. Ļe platform is characterized by two major features: a custom
XML-type language known as LZX and a Java servlet that officiates as a proxy server
if the developer desires it.

28 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Figure 2.7 - Ļe Curl platform [65].

Ļe LZX language

“LZX is an object-oriented, tag-based language that uses XML and JavaScript syntax to
create the presentation layer of rich Internet applications” [109]. XML and JavaScript
being popular languages for the Web, the learning curve for LZX shouldn’t be steep for
experienced Web developers. LZX code is compiled into the SWF format to be executed
in Flash Player, or it is compiled into DHTML ŀles which are run directly in the browser.
DHTML contains JavaScript, however it is not the JavaScript the developer may have
coded, but more a new JavaScript code generated during the compilation process.

LZX provides everything needed to handle animations, layout, databinding, event han-
dling or server interchange. Ļe XML part of the language will take care of the presen-
tation, while the JavaScript part will take care of the application logic. Pre-built widgets
and components are also available for common controls. Ļe code of whole application
can be contained from a single to multiple ŀles.

Like HTML and XML, LZX code can be written with a simple text editor. Eclipse IDE
(IDE4Laszlo) can however be used to ease the development of OL applications. Ļe
application can be compiled in the IDE if necessary, though the OL Server can take care
of that part. When the LZX ŀles are in the proper server directory, the application can be
tested via the browser. If changes appear in the ŀles, the app is re-compiled and cached
to be available right away in the browser (but more on deployment options hereafter).

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 29

Ļe platform also contains an Unit Testing API, a debugger, and a size and speed proŀler
to pinpoint where performance drops may happen.

Proxied & SOLO deployment

On the deployment side, OpenLaszlo has a variety of options to offer. First a developer
has the choice between using the OpenLaszlo Server as a proxy, or deploy what he’s built
as a standalone application (called “SOLO” deployment).

• Proxied applications are deployed as LZX ŀles and the OL Server compiles
source code when needed. Ļe output ŀles are sent and executed on the
client. Data interchange and client/server communications are all proxied
by the OL Server. Ļe OL Server is a Java application executed in a servlet
(OL Server comes with the Tomcat servlet by default). It contains 4 major
parts: the Interface Compiler, the Media Transcoder, the Data Manager and
a Cache. Ļe OL Server takes care of the communications with backend
resources whenever needed.
- Ļe Interface Compiler converts OL code into the necessary

output ŀles. Ļe ŀles are cached and sent to the client. Ļe
Cache contains the latest version of the compiled application,
preventing compilation at every request.

- Ļe Media Transcoder prepares the media content in a single
format to be sent to the client. Ļe objective is to have an
unique way to take care of the media.

- Ļe Data Manager compresses the data in a format readable by
OL applications. It provides also data connectors to help appli-
cations retrieve data with XML, thus exposing the applications
to backend resources such as databases and XML-based Web
services.

• SOLO applications are precompiled and can be deployed on other servers
than the OL Server. No proxy is needed in this mode. Ļis option is
easier and faster for delivering web applications but it’s less rich in features
compared to the proxied mode. For example, the SOLO mode does not
support SOAP and XML-RPC requests, or media ŀles other than SWF,
MP3 and JPG [110].

An OL application contains the Laszlo Foundation Class (LFC), a runtime library pro-
viding application services, graphics rendering and media playback, a data loader/binder
to associate coming data to the proper presentation elements (menu or ŀelds for e.g.), and
an event system to deal with events such mouse clicks or server pushes. All communica-

30 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Figure 2.8 - A typical workłow in proxied mode with the OpenLaszlo Server [108].

tions are usually done over HTTP(S), including streaming and notiŀcations. However,
streaming is possible over RTMP with to help of a Media Server [111].

Apart from the proxy or SOLO deployment decision, the developer has also the option
between 2 runtime environments: Flash or DHTML. If the application has to be executed
in Flash Player, LZX code will be compiled in the SWF ŀle format. Ļe SWF is either
sent embed in HTML document, or sent as a simple SWF ŀle, and Flash Player is used
for rendering purposes (Flash services are not used here). If one wants to develop an OL
application that runs natively within the browser, he can then compile a DHMTL output
(HTML, JavaScript & CSS ŀles). If audio and video are wanted in DHTML mode, a
SWF player can be embed in the HTML. Ļe platform is open to any future RTE that
can become popular in the future.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 31

2.5 JōŢōFX

JavaFX is the platform developed by Sun Microsystems to build and deliver rich internet
applications. Ļe platform is powered by the Java technology: web applications are written
in JavaFX Script (although Java code can also be integrated into the program), the source
code is compiled into a Java bytecode that can be executed on any desktop or browser that
supports the Java Runtime Environment (JRE), or any mobile phone that supports the
Java ME.

Development tools

Ļree tools bundles are made available to help the development of JavaFX applications:

• A developer bundle: containing NetBeans IDE for JavaFX, a development
environment to build, preview and debug JavaFX applications. It comes with
the JavaFX SDK. If one already possesses NetBeans IDE, he can use the
plugin to support the development of JavaFX applications in the software.

• A designer bundle: consisting of JavaFX Production Suite. Ļe Production
Suite contains plugins for Adobe Photoshop and Adobe Illustrator allow-
ing to save creative media into the JavaFX format. Saving creative content
into the right format helps to visualize how the content will look when the
application will be executed on the client end, allowing designers to make
the right changes to ŀt the needs of the application. Ļe Production Suite
contains also JavaFX Media Factory, able to convert SVG graphics into the
JavaFX format and to visualize any JavaFX creative content.

• Ļe JavaFX SDK: a stand-alone SDK is available for the ones who want to
develop JavaFX application in a command-line interface. Ļe SDK contains
a desktop runtime, a mobile and TV emulators, APIs and their documenta-
tion, a compiler and samples.

Deployment options

JavaFX applications are powered by Java, which is available on millions of computers and
other devices. JavaFX applications can only run on desktop computers, laptop computers
and mobile phones for now. But compatibility with televisions and other devices will be
added later. JavaFX can be delivered as a Java applet within the browser, with the Java
Web Start technology, or as a standalone desktop application requiring no web browser.

32 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Figure 2.9 - An overview of the JavaFX tools [23].

Java Web Start applications are almost like standalone Java applications with the difference
that they are delivered via the browser when the application is required the ŀrst time. Ļe
application is downloaded and the user has to accept a security certiŀcate to validate the
application. Updates for Java Web Start applications are automatically downloaded.

2.6 MŕŏŞśşśŒŠ SŕŘŢőŞŘŕœŔŠ

Microsoft Silverlight has been seen as an answer to Adobe’s Flash platform. Microsoft’s
platform helps develop web applications for the browser, the desktop and mobile devices,
either running online or offline. A Silverlight application has the possibility to contain
media content, graphics, effects and interactivity running in a unique runtime environ-
ment. Ļe Silverlight platform contains three major components:

• A core presentation framework: to focus on UI matters. Ļe framework is
used for UI rendering (graphics, animations and text), input controls (key-
board, mouse, etc.), media playback and management, using the deep zoom,
accessing widgets, the layout, data binding, handling digital rights manage-
ment, and for providing XAML to spice up the presentation layout. XAML
is also used as a joint between the .NET framework and the presentation
layer.

• A .NET framework for Silverlight: is a subset of the .NET framework
specially design for Silverlight, containing libraries and other components
to build Silverlight applications. It contains WPF controls, the base class
library, the common language runtime, and data handling tools.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 33

• An installer and an uploader: to help ŀrst users to install the Silverlight
applications and manage their updates.

Figure 2.10 - An overview of the Microsoft Silverlight platform [99].

To help developers building applications, Microsoft can offer tools featuring all they need
for Silverlight development. Visual Studio can be used for design creation, such as UI
development for e.g. And Microsoft Expression Blend can be used to create graphics,
animations and interactions.

2.7 DőşŕœŚ ŜōŠŠőŞŚş ŒśŞ ŞŕŏŔ ţőŎ ōŜŜŘŕŏōŠŕśŚş

A pattern can be seen as a solution solving common recurring problems regarding software
design. Using design patterns for software development have a variety of beneŀts. Ļe
software will be easier to maintain, to test, to expand and to understand the app code in

34 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

the future. Ļey set up a template regarding the construction of the application, and how
it should be coded.

A design pattern can ease the development of large applications by providing a way for
developers to work together on the same code, while keeping a lean code. Ļis works
usually because focus is divided in multiple parts like we will see hereafter. A ŀrst good
example of a design pattern would be the Model-View-Controller (MVC).

Model-view-controller & SproutCore MVC+SDR

MVC applications divide their code into three separate sets, each one of them being
responsible of their part. Ļe pattern divides data, interface and application logic.

• Ļe model element manages data and the business logic of the application.
Ļe model does not care how the output will be rendered for e.g.

• Ļe view element takes care of the display and the user interface (which is
not necessarily the device screen). Ļe view does not care of what will be
done when it receives an input for e.g.

• Ļe controller ŀlls the gap between the previous parts. A controller modiŀes
the model according user inputs, or sometimes it can directly modify the
view without touching the model

Figure 2.11 - Ļe Model-View-Controller paradigm [25].

MVC is a pattern commonly used for desktop applications design. Ļis is the case for
Cocoa applications (Apple’s native programing environment). However, it can also be
used for web applications, most notably for SproutCore applications. SproutCore MVC
is loosely based on Cocoa MVC, and expands the MVC pattern with three other sets (to
address web apps new challenges):

• Ļe server interface handles the data circulating between the server and the
model layer.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 35

• Ļe display renders the user interface. It takes care of the actual “painting”.
It can use library such as jQuery and the web browser to render the interface.
View on the otherhand controls the display and responds to events such as
mouse clicking or keyboard presses.

• Ļe responder layer controls the state of the SproutCore application (for
example using a speciŀc UI to do a speciŀc task). Ļis is the part to control
models, views and factors according a state or other factors.

Ļe MVC+SDR model is a pattern embracing the overall architecture of the SproutCore
application. Other design patterns can be implemented at a smaller level. Ļese include
run loops, singletons, observers, bindings, delegates and many more.

A singleton for example is one object of a particular class, having its own properties and
methods. Controllers in SproutCore are usually singletons.

Model-view-presentation

Ļe model-view-presentation pattern can be seen as a derivative of the MVC model.

• Ļe model contains the data of the application, and provides a way to access
it.

• Ļe view provides a way to display something on the screen.

• Ļe viewmodel is “intended to be an abstraction of the UI” [31]. It also binds
the data between the model and the view.

Ļe MVP model is the pattern chosen to work with the Google Web Toolkit. Google ar-
guing it is better for separating concerns, testing and develop large scale applications [117].
Ļe GWT add however a new component: AppController. Ļe new element handles the
logic that does not concern the presenters.

Model-view-viewmodel

Ļe MVVC model is another architectural design pattern used to engineer applications.
It is coming from Microsoft, and it is based on the MVC pattern. It works well to develop
Silverlight applications.

• Ļe model contains the data to be retrieved or manipulated

• Ļe view provides the UI and displays the model’s content to the user.

36 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

• Ļe presenter ŀlls the gap between the model and the view by accessing the
model to retrieve data. It also handles user inputs and adjusts the model in
consequence.

3-tier architecture

When it comes to RIA architecture, the n-tier model is often mentioned. Ļe three-tier
architecture is the N-tier model commonly used. It has the 3 following tiers:

• Ļe presentation tier contains everything related to the user interface. It will
make the requests needed to render the content.

• Ļe logic tier contains the business logic of the application. Low-level pro-
cessing and number crunching are done at this level.

• Ļe data tier contains the resources such as raw data to be displayed.

Figure 2.12 - Ļe common 3-tier model [116].

Adopting a n-tier model have several beneŀts. First, separating core components (pre-
sentation, logic and data in the 3 layers approach for e.g.) of the application make them
upgradable indepently from each other. Large applications are also easier to develop as
developers can separate the work between themselves according speciŀc concerns. Sepa-
rating web applications into tiers make them also more scalable [116].

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 37

Figure 2.13 - An example of the master/detail screen layout [57].

2.8 UI ŘōťśšŠş, ŏśŚŠŞśŘş ōŚŐ śŠŔőŞ ŏśřŜśŚőŚŠş

When it comes to analyze rich web applications development platforms, it is often ad-
vertised what and how many prebuilt elements are available to developers. Ļese are
important to facilitate the development of websites and web apps. First, they let the
developer use prebuilt commonly used components without to code them on every single
new project he is working on. And secondly, they help less experienced developers to
use complex functionalities [53]. Re-usability is encouraged, that is why they can be
considered as patterns. Ļey try to ŀt what the end-user wants: a creative application,
an informative application, or a platform to realize a speciŀc task [105]. Ļe UI (layout,
behavior, controls, effects, etc.) may differ according to these needs. But patterns can
emerge.

Using these elements alone does not built a rich internet application. Ļey can however
contribute to it. Ļat is why platforms usually provide sets of prebuilt elements to the
developers. Some libraries and toolkits are also available with the simple goal to provide
those elements. Ļere are several kind of prebuilt elements for Web development: screen

38 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

layouts, controls (or widgets), or effects. And here are examples of some of them. It
should be noted that a popular article written by T. NőŕŘ [102] (including also [103,104])
on the Web provides a large collection of patterns of all sorts. Some following examples
are directly inspired from that article.

Screen layouts

Layout patterns deŀnes how the general user interface is constructed. Ļere is no best or
worst patterns, but a pattern that ŀts the user the best. Typical layout patterns include the
master/view, the palette/canvas or the dashboard layout. Ļe master/view layout is illus-
trated in Fig. 2.13 (page 37). Ļe palette/canvas pattern can be illustrated by Fig. 3.3 on
page 57. Fig. 1.6 (page 16) shows the dashboard layout in action with a Curl application.
NőŕŘ’s article describes 12 of them.

Controls

Controls (also called widgets) are parts of the graphical user interface. Ļey are commonly
implemented to be manipulated by the user. Again, some re-usable patterns emerge and
can be implemented directly by the developer into his website or web app. When they are
available out of the box in a particular platform, they can be integrated with a minimum
amount of code, and are usually skinable (through CSS for e.g.). NőŕŘ’s article illustrates
30 common controls and comments in which solutions (jQuery, Flex, SproutCore, etc.)
they are available. Popular controls include the date picker, the carousel, the dialog box,
progress bars, buttons, sliders or the auto search suggestions (the search engine being
illustrated in Fig. 2.14.

Figure 2.14 - From left to right, illustrations of sliders [119], buttons [119] and a
date picker [94].

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 39

Effects

Effects are important for websites and web applications as they can be used to indicate a
change of state. Ļey include (among others) show and hide, bounce, highlight, anima-
tions and 2D and 3D transitions. Fig. 2.15 demonstrates the animate effect provided by
the jQuery UI library.

Figure 2.15 - Ļe animate effect, part of jQuery UI [92].

2.9 FőōŠšŞőş şőŘőŏŠŕśŚ ŧ ŜŘōŠŒśŞřş ŏśřŜōŞŕşśŚ

Ļis section focuses on the technical details of every single solution that was discussed in
this chapter. Ļird-party expansions are not considered here. So for example when it is
said that jQuery does not support the offline feature, it is not entirely true as the jQuery
Offline plugin could be used to that end. Ļe features elected for the comparison are
explained hereafter:

Programming language
Indicates which languages can be used to write the rich internet application. JavaScript
is common used client-side scripting language to help spice up UIs and websites within
the browser. However, it isn’t an exclusive language to build rich internet applications (or
standard web applications for that matter).

Client-side Technology
Represents the technologies used to run the application on the client. Ļe triplet HTML,

40 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

CSS and JavaScript is the Web standards alternative. SWF ŀles (Flash platform) are also
popular among the Web.

Srever-side Architecture
Details which technologies can be use to power the server communicating with the client.
Common technologies include .NET, PHP or simple HTTP servers.

Client/Server Communication
Attempts to deŀne which technologies can be used for client-server communications, to
retrieve data from remote databases for example.

Platform tools
Ļey are all the tools that are included within the solutions. Ļey can include a SDK,
designer tools and developer tools. Ļird-party softwares or support will not be detailed
here.

RTE
Stands for runtime environment. Ļe RTE is a key component for web applications as
it is exactly where the application will be executed when the app is requested. If the
runtime is poorly written, the experience using the application can be affected badly.
Most traditional web applications are using a raw web browser as environment, as they
can execute JavaScript natively for e.g. Ļings are different among the RIA world: some
solutions use the web browser, and others make a browser plugin available to execute their
applications. Browserless RTEs are also available in some platforms.

Browser support and other devices support
Detail on which devices the applications of a speciŀc platform can be run in. Ubiquity can
be an important factor for a developer who wants to make its application available to the
larger public possible.

Consistency
Remarks if consistencies may appear between different clients using the same application
(a SproutCore app used in Safari and Firefox for e.g.).

Offline capabilities
Details if the a platform supports offline apps. It means usually that the web application
will have to be cached or installed on the client host. As desktop installation, offline
capabilities let web applications feel more like desktop applications.

Desktop installation
Mentioned if it is possible to install an application from a speciŀc platform on the desktop,
freeing its execution within the browser. Ļis option puts RIAs one step closer from
standard desktop applications.

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 41

External Input Support
What inputs can receive the client application? Keyboard and mouse are common, but
other inputs such as touch are becoming more and more needed for example.

Components and widgets
Ļey are commonly included into RIA solutions to help developers not reinventing the
wheel. Ļe point is to let developers access a base of reusable components they can include
in their applications. Some platforms includes more components and other widgets than
others.

Effects and animations
Effects and transitions are important to help the user to understand a change of state
within the application.

Audio and video
Is video and audio support natively available on the platform? Some solution requires a
plugin (Flash Player or QuickTime) to take care of video and audio playback within their
applications, while other platforms let their applications execute natively video and audio
content within their RTE.

Hardware optimization
Optimization is possible in some solutions. It can indeed be interesting to allow the
processing of HD video playback directly to the GPU for e.g., freeing CPU cycles for
something else.

Local Data Storage
Do web applications have the possibility to store data locally? Ļis is important for further
web/desktop integration, thus enhancing user experience.

Accessibilty
Ļe Web has always wanted to be accessible to everybody, even people with disabilities.
Hence a criteria to show how platforms are doing regarding accessibility.

Printing
Does printing is possible. It is for applications using HTML, CSS and JavaScript. How-
ever, things can be a bit more complex with other platforms.

SEO
Stands for Search Engine Optimization. Ļis ŀeld details if the solution is optimized for
search engines or not. SEO is one main limitation of web applications as search engines
cannot usually index properly the content available trough the applications. However,
workarounds can be found to help the process.

42 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Latest analyzed version
Is just mentioned to specify which version of the platform was used to make the table.

Price
Ļe minimum fee to pay to use the tools of a speciŀc platform.

Adoption Examples
Shows a few remarkable clients using the technology being analyzed.

Ļe comparison tables can be seen on page 45 and 46. Ļe information was retrieved on
vendors’ websites [1, 8, 15, 22, 33, 38, 39, 91].

2.10 A şŔśŞŠ ŐŕşŏšşşŕśŚ śŚ ţőŎ ōŜŜŘŕŏōŠŕśŚş
ŠőŏŔŚŕŝšőş

Flash has a strong presence in the industry, and Adobe is developing RIA tools for a long
time now. Ļe Flash player can be considered as an “industry standard” because of its
importance on the Web. More than 95% of browsers are Flash-compatible (i.e. Flex
compatible). But it is interesting to see how its opponents perform in terms of runtime
market penetration (cf. Fig. 2.16).

Figure 2.16 - Ļe market penetration into the browser of Flash, Silverlight and
Java [122].

Ļe data comes from the website statowl.com [122], and shows that Silverlight has the
least market share of all three. When, it comes to the Ajax technique, no plugin is

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 43

necessary as HTML, CSS and JavaScript are directly handled in the browser. It means
no stats has to be calculated as virtually all browsers supports HTML4 (it is different for
HTML5, but more on that in Chapter 3), CSS2 and JavaScript.

OpenLaszlo uses either Flash Player or directly the browser, so its penetration is at least
equals to Flash’s. Ļere is however no viable data for Curl RTE’s market penetration.

A runtime market penetration is important as the factor can orientate developers more
towards one platform than the other. Ajax is popular because it relies on Web standards,
meaning the web application will run directly into every modern browser, assuming that
JavaScript is allowed. For this concern, Ajax techniques and Flash applications have the
advantage. However, Silverlight market share increases steadily, so it will be interesting to
see where it stands in the coming months.

If HTML5 features are used to design the web application, problems may arise with
Internet Explorer 8 as the browser does not support well the latest standard. However,
IE9 (expected at the end of the year) promises to assure HTML5 compatibility.

Apart form market penetration, developers will also evaluate the UI elements included
in the platform solution. Tools to build third-party components and to skin existing
components are also appreciated. Re-usability is important. Ļese characteristics give
an advantage to jQuery, Flash and Silverlight.

Tools are also crucial to help the developer in his task. He will need usually an IDE, a
unit testing tool and a debugging tool. Designer tools are also an advantage. From this
perspective, Flash, JavaFX and Silverlight lead the way with their fully integrated design
and development tools.

Each platform has its own goals. Flash, Silverlight and OpenLaszlo can be seen as di-
rect competitors, but they do not compete directly against Curl (enterprise-centered) and
jQuery (just a low-level JavaScript library) for example.

Flash has a good reputation in the industry, and enjoys a signiŀcant market penetration
of its runtime Flash Player. Adobe came in the game when they bought Macromedia in
2005, bringing in house all their competencies in the matter. Flash Player is ideal as it is
not too heavy nor the light (Ajax engines are lighter), providing a good option to access
rich experiences in the browser [126].

It is worth noting that since iOS devices do not support Flash, some websites have con-
verted their Flash content (videos, ads, etc.) into HTML5. Ļis can not be seen as
signiŀcant threat for Flash to this day, but maybe we will see in the future more and more
websites whose content will be rendered with HTML5, CSS3 and JavaScript exclusively.
Flash is not dead anyway as it is excellent technology applicable in a wide range of domains
(such as games for example).

44 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

Ajax is an extremely popular technique to build interactive web apps. Ļe use of web stan-
dards without plugins contributes to its appeal. However, Ajax relies heavily on JavaScript.
Ļat is why consistency is not assured among the large variety of browsers available out
there. JavaScript performances play also a key part in the overall usability of the web
applications.

Silverlight can be seen as the greatest menace of Flash. Both technologies work the same
way, through a plugin, and propose the same features. Microsoft did a great job in terms
of market penetration as in only a couple of years they managed to have a bit less than 50%
of desktops installed with their plugin. Microsoft is a serious menace for Adobe because
the company is much larger in scale and importance.

e e e

CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş 45
F

ea
tu

re
s

&
 C

h
ar

ac
te

ri
st

ic
s

jQ
u

er
y

S
p

ro
u

tC
o

re
F

le
x/

F
la

sh
S

il
ve

rl
ig

h
t

Ja
va

F
X

C
u

rl
O

p
en

L
as

zl
o

P
ro

gr
am

m
in

g
L

an
gu

ag
e

Ja
va

S
cr

ip
t

Ja
va

S
cr

ip
t

Ja
va

C
u
rl

L
Z

X

C
li

en
t-

si
d

e
T

ec
h

n
o

lo
g

y
H

T
M

L
 +

 C
S

S
 +

 J
S

H
T

M
L

 +
 C

S
S

 +
 J

S
H

T
M

L
 +

 C
S

S
 +

 J
S

S
W

F
Ja

va
C

u
rl

S
er

ve
r-

si
d

e
A

rc
h

it
ec

tu
re

JS
O

N
 &

 X
M

L

P
la

tf
o

rm
 T

o
o

ls
jQ

u
er

y
L

ib
ra

ry

G
o

o
gl

e
W

eb

T
o

o
lk

it

M
X

M
L

,
A

ct
io

n
S

cr
ip

t
&

C

C
S

A
n

y
.N

E
T

L

an
gu

ag
e

Ja
va

F
X

 S
cr

ip
t

&

Ja
va

S
il

ve
rl

ig
h

t
(.

xa
p

)
S

W
F

 o
r

H
T

M
L

 +

C
S

S
 +

 J
S

H
T

T
P,

C

ol
d

F
u
si

on
, P

H
P,

A

S
P.

N
E

T
, P

er
l,

R
ai

ls
 &

 O
th

er
s

H
T

T
P,

C

ol
d

F
u
si

on
, P

H
P,

A

S
P.

N
E

T
, P

er
l,

R
ai

ls
 &

 O
th

er
s

H
T

T
P,

C

ol
d

F
u
si

on
, P

H
P,

A

S
P

.N
E

T
, P

er
l,

R
ai

ls
 &

 O
th

er
s

P
H

P,
 C

ol
d

F
us

io
n

,
B

la
ze

D
S

,
L

iv
eC

yc
le

 D
at

a
S

er
vi

ce
, H

T
T

P,

W
eb

 S
er

vi
ce

s,

J2
E

E
 &

 A
S

P.
N

E
T

A
S

P.
N

E
T

, P
H

P
 &

JS

P
J2

E
E

 &
 W

eb

S
er

vi
ce

s
J2

E
E

, .
N

E
T

 &

W
eb

 S
er

vi
ce

s

S
ta

n
d

ar
d

 H
T

T
P

S

er
ve

r
o
r

O
p

en
L

as
zl

o
S

er
ve

r
(T

ro
u
gh

 J
2
E

E
 o

r
Ja

va
 C

on
ta

in
er

)

C
li

en
t/

S
er

ve
r

C
o

m
m

u
n

ic
at

io
n

A
ja

x
R

eq
u
es

ts
 &

JS

O
N

JS
O

N
, X

M
L

 &

G
W

T
 O

p
ti

m
iz

ed

R
P

C

X
M

L
, S

O
A

P,

H
T

T
P,

 A
M

F,

R
E

S
T

 &
 R

T
M

P

H
T

T
P,

 S
O

A
P,

P

O
X

, W
C

F
 &

JS

O
N

H
T

T
P,

 X
M

L
 &

JS

O
N

 +

E
ve

ry
th

in
g

C
om

in
g

W
it

h
 J

av
a

X
M

L
, S

O
A

P
 &

H

T
T

P
(S

)

X
M

L
-R

P
C

,
R

E
S

T
,S

O
A

P,

Ja
va

R
P

C
, H

T
T

P

&
 R

T
M

P

S
p

ro
u
tC

or
e

F
ra

m
ew

or
k

G
W

T
 S

D
K

,
E

cl
ip

se
 P

lu
gi

n
 &

S

p
ee

d
 T

ra
ce

r

F
le

x
S

D
K

, F
la

sh

C
at

al
ys

t,
 F

la
sh

B

u
il

d
er

, C
S

 S
u

it
e

(F
o
r

C
re

at
iv

e
C

on
te

n
t)

 &

E
cl

ip
se

 S
u
p

po
rt

(S

ta
n

d
al

on
e

o
r

P
lu

gi
n

)

E
xp

re
ss

io
n

 S
tu

d
io

&

 V
is

u
al

 S
tu

d
io

Ja
va

F
X

 S
D

K
,

N
et

B
ea

n
s

ID
E

S

u
p

p
or

t
&

 J
av

a
P

ro
d

uc
ti

o
n

 S
ui

te

(F
o
r

C
re

at
iv

e
C

on
te

n
t)

C
ur

l
ID

E
, C

u
rl

C

D
E

, C
u
rl

W

S
D

K
, C

D
K

 &

C
D

K
-D

S

O
L

 S
D

K
 &

E

cl
ip

se
 P

lu
gi

n

F
ea

tu
re

s
&

 C
h

ar
ac

te
ri

st
ic

s
jQ

u
er

y
S

p
ro

u
tC

o
re

F
le

x/
F

la
sh

S
il

ve
rl

ig
h

t
Ja

va
F

X
C

u
rl

O
p

en
L

as
zl

o

R
T

E
W

eb
 B

ro
w

se
r

W
eb

 B
ro

w
se

r
W

eb
 B

ro
w

se
r

JR
E

 &
 J

av
a

M
E

C
u
rl

 R
T

E

B
ro

w
se

r
S

u
p

p
o

rt

O
th

er
 C

li
en

ts
 S

u
p

p
o

rt

P
la

tf
o

rm
 C

o
n

si
st

en
cy

N
o

D
if

er
en

ce
s

N
o

D
if

er
en

ce
s

N
o

D
if

er
en

ce
s

N
o

D
if

er
en

ce
s

O
f

in
e

C
ap

ab
il

it
ie

s
N

ot
 N

at
iv

e
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

D
es

k
to

p
 I

n
st

al
la

ti
o

n
N

o
N

o
N

o
Y

es
 (

T
ro

u
gh

 A
IR

)
Y

es
Y

es
 (

JR
E

)
Y

es
 (

C
u
rl

 R
T

E
)

N
o

E
xt

er
n

al
 I

n
p

u
t

S
u

p
p

o
rt

?

G
o

o
gl

e
W

eb

T
o

o
lk

it

F
la

sh
 P

la
ye

r
&

A

IR
.N

E
T

 C
om

m
on

R

u
n

ti
m

e
F

la
sh

 P
la

ye
r

o
r

W
eb

 B
ro

w
se

r

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
ll

 M
o
d

er
n

B

ro
w

se
rs

A
n

y
W

it
h

 W
eb

B

ro
w

se
r

A
n

y
W

it
h

 W
eb

B

ro
w

se
r

A
n

y
W

it
h

 W
eb

B

ro
w

se
r

A
n

y
D

ev
ic

e
R

u
n

n
in

g
F

la
sh

P

la
ye

r
(i

.e
. N

o
iO

S
)

V
er

y
L

im
it

ed

(O
n

ly
 o

n
 S

ym
b
ia

n

O
S

 f
or

 N
ow

, W
P

7

P
la

n
n

ed
)

A
n

y
D

ev
ic

e
S

u
p

p
o
rt

in
g

JR
E

 o
r

JM
E

. T
V

, B
lu

-R
ay

P

la
ye

rs
 a

n
d

 G
am

e
C

on
so

le
s

A
re

P

la
n

n
ed

 (
N

o
iO

S
)

N
o
 (

O
n

ly
 v

ia
 C

u
rl

R

T
E

 o
n

 D
es

kt
op

C

om
p

u
te

rs
)

A
n

y
D

ev
ic

e
R

u
n

n
in

g
F

la
sh

P

la
ye

r
(i

.e
. N

o

iO
S

)

D
if

er
en

ce
s

M
ay

A

p
p

ea
r

D
if

er
en

ce
s

M
ay

A

p
p

ea
r

D
if

er
en

ce
s

M
ay

A

p
p

ea
r

N
o
 D

if
er

en
ce

s
If

F

la
sh

 I
s

U
se

d

K
ey

b
oa

rd
 &

M

ou
se

K
ey

b
oa

rd
, M

ou
se

&

 T
ou

ch
K

ey
b
oa

rd
 &

M

ou
se

K
ey

bo
ar

d
, M

ou
se

,
W

eb
ca

m
,

M
ic

ro
p

h
on

e
&

M

u
lt

it
o
u
ch

S

u
p

p
or

t

K
ey

bo
ar

d
, M

ou
se

,
W

eb
ca

m
,

M
ic

ro
p

h
on

e
&

M

u
lt

it
o
u
ch

S

u
p

p
or

t

K
ey

b
oa

rd
, M

ou
se

&

 T
ou

ch

K
ey

bo
ar

d
, M

ou
se

,
W

eb
ca

m
 &

M

ic
ro

p
h

on
e

46 CŔōŜŠőŞ 2. TőŏŔŚŕŝšőş

F
ea

tu
re

s
&

 C
h

ar
ac

te
ri

st
ic

s
jQ

u
er

y
S

p
ro

u
tC

o
re

F
le

x/
F

la
sh

S
il

ve
rl

ig
h

t
Ja

va
F

X
C

u
rl

O
p

en
L

as
zl

o

W
id

ge
ts

 &
 C

o
m

p
o

n
en

ts
Y

es
 (

A
 L

ot
)

Y
es

 (
A

 F
ew

)
Y

es
 (

M
od

er
at

e)
Y

es
 (

A
 L

ot
)

Y
es

 (
A

 L
ot

)
Y

es
 (

M
od

er
at

e)
Y

es
Y

es

E
f

ec
ts

 &
 A

n
im

at
io

n
s

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

A
u

d
io

/V
id

eo
 S

u
p

p
o

rt
Y

es
Y

es
Y

es
A

u
d

io
Y

es

H
ar

d
w

ar
e

O
p

ti
m

iz
at

io
n

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

L
o

ca
l D

at
a

S
to

ra
ge

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

A
cc

es
si

b
il

it
y

N
/A

?
?

P
ri

n
ti

n
g

Y
es

Y
es

Y
es

Y
es

Y
es

S
E

O
P

ar
ti

al
 (

T
ag

s)
P

ar
ti

al
 (

T
ag

s)
P

ar
ti

al
 (

T
ag

s)
?

L
at

es
t

A
n

al
yz

ed
 V

er
si

o
n

1
.4

.2
1
.0

.1
4
6

2
.0

.4
4
.0

.0
.1

4
1
5
9
 (

F
le

x)
4
.0

.5
0
5
2
4

1
.3

7
.0

4
.8

.0

L
ic

en
se

M
IT

 L
ic

en
se

A
p

ac
h

e
L

ic
en

se
 2

.0
V

ar
io

u
s

E
U

L
A

?

P
ri

ce
F

re
e

F
re

e
F

re
e

F
re

e
F

re
e

R
T

E
 P

en
et

ra
ti

o
n

A
n

y
B

ro
w

se
r

A
n

y
B

ro
w

se
r

A
n

y
B

ro
w

se
r

<
9
5
%

>
5
0
%

>
8
0
%

?
<
9

5
%

A
d

o
p

ti
o

n
 E

xa
m

p
le

s
A

p
p

le
 (

M
ob

il
e.

m
e)

G
o

o
gl

e
W

eb

T
o

o
lk

it

Y
es

 (
P

lu
gi

n
s

or

H
T

M
L

5
)

Y
es

 (
P

lu
gi

n
s

or

H
T

M
L

5
)

Y
es

 (
P

lu
gi

n
s

or

H
T

M
L

5
)

W
A

I-
A

R
IA

S

u
p

p
or

t
W

A
I-

A
R

IA

S
u
p

p
or

t

20
+
 P

re
bu

il
t

A
cc

es
si

b
le

 U
I

C
om

p
on

en
ts

 &

M
S

A
A

 S
u
p

p
or

t

M
S

A
A

 &

A
cc

es
si

b
le

C

om
p

on
en

ts

M
S

A
A

 P
ar

ti
al

S

u
p

p
or

t

A
s

S
ta

n
d

ar
d

W

eb
p

ag
e

A
s

S
ta

n
d

ar
d

W

eb
p

ag
e

A
s

S
ta

n
d

ar
d

W

eb
p

ag
e

P
ar

ti
al

 (
T

ro
u
gh

M

et
ad

at
a)

P
ar

ti
al

 (
T

ro
u
gh

M

et
ad

at
a)

P
ar

ti
al

 (
T

ro
u
gh

M

et
ad

at
a)

P
ar

ti
al

 (
T

ro
u
gh

M

et
ad

at
a)

G
P

L
 o

r
M

IT

L
ic

en
se

M
S

-E
U

L
A

 &

M
S

-P
L

C
om

m
on

 P
u
b
li

c
L

ic
en

se

F
le

x
S

D
K

 i
s

F
re

e.

T
oo

ls
 f

ro
m

U

S
$
2
4
9
+

S
D

K
 i

s
F

re
e.

E

xp
re

ss
io

n
 S

tu
d

io

fr
om

 U
S

$
5
9
9
+

B
as

ic
 V

er
si

on
 F

re
e

&
 P

ro
 V

er
si

o
n

fr

om
 U

S
$
1
2
0
0
0
+

T
w

it
te

r,
N

et
f

ix
 &

A

m
az

on
G

o
og

le
 (

G
m

ai
l)

 &

B
on

g.
T

V

M
in

t.
co

m
 &

N

A
S

D
A

Q
 M

ar
ke

t
R

ep
la

y

H
el

n
ix

 M
ed

ia

S
h

ow
N

ex
u
s

&
 H

it
at

ch
i

D
is

p
la

ys
V

er
iz

on
 &

W

al
M

ar
t

. . .3 .
OŚ SŠōŚŐōŞŐş...

T Ŕő World Wide Web Consortium (W3C), founded and directed by Tim BőŞŚőŞş-
Lőő, is the predominant organization to maintain standards related the WWW. Ļe

W3C is working on numerous projects, with some of them leading to ŀnal Recommen-
dations, which can be used to build a more consistent Web. Ļe Internet Engineering
Task Force (IETF) is another organization working on standards, but it is focused more
on Internet standards (such as IPv4, IPv6 or TCP/IP) than stricto sensus Web standards.
However, it works closely with the W3C on some projects. Ecma International is noted for
its ECMAScript standardized scripting language, from which JavaScript is implemented.

Some speciŀcations and work-in-progress projects are closely related to web applications
and their enhanced version which are RIAs. For e.g. a major discussion among Web
professionals is HTML5. Ļe new implementation of the markup language could play
a key role in the WWW’s future. It is developed by the W3C HTML WG and the
WHATWG, and is reviewed in further details in Section 3.3, starting page 51.

Ļe point of this chapter is to review all the standards, or standards to be, concerning the
development of richer web applications.

3.1 WŔť WőŎ şŠōŚŐōŞŐşŪ

Ļis section attempts to understand why standards are important for the sake of the Web,
and its stakeholders (users, authors, developers, businesses, etc.).

A major advantage of the Web is its ubiquity. Internet and the WWW are available nearly
everywhere, but on devices that can be radically different. Fig. 3.1 emphasizes that fact.
Ļe Web is commonly accessed on desktop computers, with the use of a Web browser. A

47

48 CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş...

Desktop Computers
& Laptops

Mobile Devices

Other Devices
Printers, Screen Readers, TVs, etc.

Search Engines

Chrome, Safari, Firefox, Opera, IE, etc.

With Different Rendering Engines

Running On OS X, Windows, Linux, etc.

Phones, Tablets, E-readers, Game Consoles, etc.

With Different OS, Browsers And Screens

With Different Systems And Outputs

Figure 3.1 - Ļe Web among devices.

variety of browsers are available according the OS used: Firefox, Safari, Chrome, Internet
Explorer, etc. Every browser having a speciŀc rendering engine which can interpret the
code differently.

Aside of them, the mobile market cannot be ignored as more and more handheld devices
are connected to WWW. We are talking here about mobile phones, portable game consoles
or tablets... Again, different solutions are available to access the Web on these devices: IE
Mobile, Safari, Opera Mobile, NetFront, BlackBerry browser, etc. Issues like the screen
size or the bandwidth are becoming predominant.

Along with desktop and mobile uses, the Web can also be accessed on TV, printed on
paper, read through a screen reader and so on. An adequate layout for these uses is also
needed.

And ŀnally, it can be useful if its content can be indexed by robots, to make it searchable
via Google or Yahoo.

Content accessibility and compatibility on a variety of devices can be problematic. Stan-
dards can play a key role to ease the process of making the information available on every
wanted end. Ļat is exactly why standards such as HTML, CSS and JavaScript have been
developed.

But the cross-device compatibility is not the only advantage of Web standards. Other
qualities are on the side of standards such as HTML, CSS and JavaScript:

• Performances can be improved in many ways. A lean code is interpreted
faster on the client browser. A standardized code usually leads to a smaller

CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş... 49

code, which can have favorable consequences on the bandwidth consump-
tion.

• Maintenance is facilitated. A standardized code is easier to read, so it is
easier and quicker to make updates if needed. And if a new developer has to
work on the code, it is easier for him to understand what has been done.

• Backward and forward compatibility. Backward compatibility means that
even if a browser is too old, content will still be rendered even if some features
will not be available. Forward compatibility is crucial as the code written
today is better off if it is readable in the future on new devices.

• Accessibility can be improved for people with disabilities. Standards set up
guidelines to make Web content easily manageable on screen readers such
text-to-speech softwares or Braille devices.

• No dependance to proprietary lock-in. Ļe WWW always has been de-
signed has an open platform.

• It is easier for search engines to interpret standardized content. Standards
can help optimize a website to make it more noticeable to search engines. It
is important as it can lead to a better visibility among everything that can be
found on the Web.

3.2 Kőť WőŎ şŠōŚŐōŞŐş ŕŚ šşő ŠśŐōť

Most of the Web is built around three core standardized technologies: a description
structure featuring the content with HTML or XHTML, a presentation layer usually
written with CSS, and a behavior block to manipulate the content and the presentation
(JavaScript being the most common client-side scripting language). Ļe DOM is also a
common Web-related standard. On top of the standards, other pieces such as Flash or
Silverlight components can be added and manipulated to enhance webpages if needed.

HTML

HTML stands for HyperText Markup Language. HTML documents are constituted of
elements which are delimitated by start tags and end tags: <head> and </head> for e.g.. An
HTML spec deŀnes a set of elements and how they can be used. Elements can contain
attributes, speciŀed in the start tag, and controlling how the elements should work. To

50 CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş...

create an hyperlink with the word “demo”, the a element and the href attribute can be
used: demo.

XHML (for Extended TyperText Markup Language) does the same job than HTML,
but differently. XHTML uses XML for its syntax.

CSS

If HTML is describing the content, CSS is taking care of its presentation. CSS is used to
set up the look and feel of webpages. Ļe CSS language handles layouts, colors and fonts
apart from the content, and can be used to deŀne different presentation styles according
to the end device (various screen sizes, printer, screen reader, etc.).

Ļe presentation has been separated from the content to answer the following issues [131]:

• Accessibility to assistive technologies, such as screen readers that cannot
interpret properly presentational code. Striping the document from its pre-
sentational information makes it more accessible to more users.

• Document sizes: presentational markups are usually redundant, increasing
the size of the document.

• Maintenance: the code can be more simple if presentation and content are
separated. A single CSS stylesheet can affect an entire website.

JavaScript

JavaScript is a variant of the ECMAScript language. It is used for client-side scripting in
Web browsers to spice up user interfaces and websites. Scripts written in JavaScript are
embed in the HTML document with the script element.

JavaScript interacts with the DOM (Document Object Model). Ļe DOM is a W3C
Recommendation deŀned as a “[...] language-neutral interface that will allow programs
and scripts to dynamically access and update the content, structure and style of docu-
ments” [127]. Ļe document being in our case an HTML webpage. It is by interfering
with the DOM that JavaScript adds interaction and dynamism into webpages and web-
sites.

CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş... 51

3.3 HTML5

HTML5 explained

HTML5 is the ŀfth major revision of HTML, the main markup language for the WWW.
It is also supposed to be the successor of XHTML1.1 and DOM Level 2. If we refer the
speciŀcation’s words, HTML5 attempts to address the issues raised by “a vague subject
referred to as Web Applications” [131]. It includes several signiŀcant features to help
authors shape a better Web, answering a need of tools to build rich and interactive web
content. Although it aims the backward compatible to make content written in HTML5
still available for older Web browsers.

HTML5 is maintained by the Web Hypertext Application Technology Working Group
(WHATWG) since 2004, and the W3C HTML Working Group (W3C HTML WG)
since 2007. Ļe HTML5 speciŀcation is a work in progress in both groups, but parts of
HTML5 are already supported by several browser.

Ļe WHATWG was created due to concerns towards W3C’s former decision to focus
on XHTML rather than HTML. Ļe venue was then constituted by Apple, Mozilla and
Opera, with its members working on several projects with the successor of HTML as
a primary focus. Aside from the WHATWG HTML spec, the group is also working
actively on the Web Workers spec along with the W3C WebApps Working Group. All the
WHATWG work, including specs other than HTML and Web Workers, are regrouped
under the Web Applications 1.0 document [149]. Ļese other specs (cf. Fig. 3.2) are
however better known to be published at the W3C or the IETF [150].

In 2007 the W3C HTML WG was formed with the intention to work on HTML after
all, using the WHATWG work as a base for its development. Ļere are no plans to
merge both groups, but they are working together on HTML5 since then. Ļey do have
nonetheless the same editor - Ian HŕŏŗşśŚ of Google, Inc. - in both groups to keep a
proper continuity between both versions of the spec [131,148].

Ļe work in both groups is not exactly the same. Ļe W3C decided to develop some
features included in the WHATWG HTML spec as standalone projects, or to support
them in future versions of HTML (and not HTML5, the most notable postponed feature
being the device element). If the core of HTML5 is nearly the same in both groups, they
do have different timelines, and different ambitions. Ļe WHATWG is for e.g. working
on a larger HTML spec, which the actual Working Draft includes experimental features,
and goes beyond HTML5.

Fig. 3.2 helps to understand where the features are speciŀed among the documents avail-
able in both sides.

52 CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş...

Features WHATWG Documents W3C Documents

HTML5 Only Main Spec (HTML WG)

S.A. Spec (HTML WG)

2D Context S.A. Spec (HTML WG)

Cross-document Messaging
S.A. Spec (HTML WG)

Channel Messaging

Device Element S.A. Spec (HTML WG)

Web Workers S.A. Spec (WebApps WG)

Web Storage

In Web Applications 1.0

S.A. Spec (WebApps WG)

Web Sockets API S.A. Spec (WebApps WG)

Web Sockets Protocol S.A. Spec (IETF)

Server-Sent Events S.A. Spec (WebApps WG)

Web SQL Database - S.A. Spec (WebApps WG)

In WHATWG HTML & Web
Applications 1.0

Microdata

S.A. Spec & In Web
Applications 1.0

Figure 3.2 - Ļe deŀnition of the features among WHATWG and W3C documents.
S.A. Spec stands for standalone speciŀcation, and WebApps WG refers to the W3C
Working Group taking care focusing on web applications specs. Modiŀed version from

the WHATWG FAQ [147].

HTML5 features

From now on the rest of this section will have the W3C point-of-view in mind. It should
also be noted again that HTML5 is a work in progress, so differences with the present
Working Draft may arise before it becomes a ŀnal Recommendation. Ļese remarks being
said, HTML5 can be proved interesting in the richer web applications area. Most notably
with the section 5.6, 6 and 7 of the Working Draft deŀning respectively offline Web apps,
Web apps APIs and user interaction speciŀcations. Hereafter are selected features and
changes focusing on or impacting web applications:

• No presentational markup anymore. Elements such as font or big, and at-
tributes like align or size are no longer authorized in HTML5. Ļis follows
the trend established by HTML4 which despised presentational markup
within the document, and favoring instead the use of CSS stylesheets [131].

• HTML5 introduces several new elements for the content’s structure: sec-
tion, article, aside, hgroup, header, footer, nav, figure and figcaption. Other
new elements include also [131,132]:
- video and audio elements to render rich media content. Ļis

improvement was highly publicized when YouTube demon-

CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş... 53

strated a part of its videos available directly with HTML5,
without using Flash Player.

- embed for plugin content.
- canvas to render graphs, games and other 2D visuals on the ły.
- new values for the type attribute of the input element: tel,

search, url, email, datetime, date, month, week, time, datatime-
local, number, range and color. Ļey provide predeŀned data
ŀelds (or forms) that can used with user interfaces (a date picker
for e.g.), and offers a way to check the data before it is sent
server-side. Ļe point is to improve user experience and reduce
waiting time [131, 132]. Ļese can also be used to change the
virtual keyboard according the context: an @ or the numerical
keyboard can be added when the email ŀeld or the tel ŀeld has
to be ŀlled for e.g.

• A set of new APIs to help web applications development [132]. Ļese APIs
aim to provide ways to build a better user experience on the Web:
- A drag & drop API, used with the draggable attribute. Ļis

feature can let the user drag and drop ŀles within the browser
and from the browser to the desktop (and vice-versa) for e.g.

- An API for video and audio content that can be used with
the video and audio elements. Ļe API provides controls such
play() and pause() to manipulate the multimedia content for e.g.
It means that no plugins such as Flash Player or Quicktime
Player are required to run the multimedia content.

- An API for content editing.
- An API for undo history. Undo history is regularly used in

desktop applications to undo errors. It has to be differentiated
from navigational history, commonly represented by the back
button on the browser [70].

- An API for offline Web applications. Ļe objective being to
allow users to use Web applications without an Internet con-
nection. Ļe browser is able to download the necessary ŀles
(designated in a manifest) locally to keep the Web app running
without a connection.

- An API to enable websites or webapps to register themselves
as possible handler for speciŀc protocols or content. For e.g. if
a website registers itself as an handler for a type of content that

54 CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş...

is not supported by any desktop application, the browser could
then advice to use the website to open that content.

Other specs related to HTML5

Aside from the stricto sensus HTML5, the W3C deŀnes other speciŀcations (cf. Fig. 3.2
to get an overall picture) that can be determinant to build more powerful Web application.
Even if they are not exactly part of the HTML spec, they are often associated to HTML5
as they were included in the WHATWG Web Applications 1.0 document. Ļat is why
we are discussing them in this section.

• Ļe 2D Canvas Context providing a way to work with the canvas element.
Ļe drawing API helps carve canvas elements and it features basic shapes,
complex shapes (paths), lines, strokes, shadows, gradients, ŀllings, pixel mani-
pulation, and text rendering among others [130].

• Ļe Web Storage speciŀcation explains two ways to store structured data on
the client: session storage and local storage. In both cases, these methods
can do more than the actual and limited cookies [140].
- Session storage is limited in life by the opened window. Ļe

data is accessible from any page from the website if it is still in
the window. If more than one window from the same website
is open, than every session (i.e. window) will have it is own
storage space without interfering with the other sessions.

- Local storage goes beyond the current session, and provides
storage for more than one window simultaneously. Each web-
site will have its own storage space, and it can persist after the
browser is closed. Ļat kind of storage can help to increase
performances as large quantity of data can be stored locally.

• Ļe Web Worker spec “[...] deŀnes an API for running scripts [called work-
ers] in the background independently of any user interface scripts” [141].
Ļis provides a way to execute background tasks without interrupting the
user interface and vice versa. Ļe workers are typically used to crunch data
client-side or to update a database stored locally for e.g.

• Ļe WebSocket API spec allows to use the WebSocket protocol (standard
developed by the IETF) for bi-directional communications between web-
pages (and consequently webapps) and remote servers [138].

CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş... 55

• Ļe Web Messaging spec describes 2 ways to communicate between browser
contexts: cross-document messaging and channel messaging [133,149].
- Cross-document messaging refers to documents from different

source domains communicating with each other. Usually this
is a feature not allowed for security issues, however the spec
explains a way to do it safely.

- Channel messaging allows different browser contexts (from
window to window or window to another inner-window con-
text for e.g.) to communicate with each other.

• Ļe Server-Sent Events spec “[...] deŀnes an API for opening an HTTP
connection for receiving push notiŀcations from a server in the form of
DOM events. Ļe API is designed to be extendable to work with other
push notiŀcation schemes such as Push SMS” [136].

• Web SQL Database is a spec deŀning a set of APIs to create and handle
databases located on the client with a SQL variant [139]. Ļis can be useful
to store data locally to resolve performance issues and for offline uses [58].

All these speciŀcations, still in the Working Draft stage at the W3C, aim to complete
HTML5 to build enhanced Web applications. Ļe objective is to standardize these meth-
ods to make an efficient Web available for everybody, while answering some issues and
limitations of the actual foundations of the Web.

What about Geolocation, SVG, MahML and XHR?

Other features have been affiliated (often by the press) to HTML5, but that are not even
discussed in the Web Applications 1.0 speciŀcation document. It is the case for the W3C
Geolocation API. Ļe latter is used to attempt accessing geographical location information
concerning the used device. Sources include user input, GPS, WiFi and Bluetooth MAC
addresses, IP address and GSM/CDMA cell IDs.

SVG is also a key technology - however mis-associated to HTML5 - for the Web future. It
can be seen as a vector-based alternative to the canvas and its 2D API. SVG can produce
2D still, animated and interactive graphics with a language deviated from XML. SVG
Tiny 1.2 is the latest W3C Recommendation since its development in 1999. SVG Full
1.2 is currently a Working Draft at the W3C.

Ļe Mathematical Markup Language (MathML) is another Recommendation from the
W3C, which aims to handle properly scientiŀc content and mathematics on the World
Wide Web, the same way HTML handles text on the Web [134].

56 CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş...

As seen in Chapter 2, Section 2.1, the XMLHttpRequest (XHR) object plays a key role in
asynchronous communications between the client and the server. It enables sending and
receiving in the background XML data that can affect the HTML document and what
the user sees. Ļe XHR is a work in progress at the W3C. Apart from the XHR spec,
the W3C is working also on the XHR Level 2 spec to extend the object with new features
such as cross-domain requests or progress events [142,143].

3.4 A şŔśŞŠ ŐŕşŏšşşŕśŚ śŚ ţőŎ ōŜŜŘŕŏōŠŕśŚş
şŠōŚŐōŞŐş

HTML5 has lots of qualities in its pocket: native multimedia support, canvas for advances
2D rendering, Web app APIs to enable drag & drop or offline uses, and many others.
And the objective of the previous section was to show a glimpse of what HTML5 can
do for Web applications. And the spec deŀnes ways to built fully-capable, real-time, web
applications. Fig. 3.3 shows a good example on how far HTML5 can go in terms of
features in rich web applications.

Apart from its own staff, people who are working on W3C speciŀcations are also coming
from the companies that implement them. HTML5’s editor is working at Google for
example.

HTML5 can however attain its full strength only if the speciŀcations are completely
supported by Web browsers. And this is a major issue for HTML5, as cross-browser
consistency can be problematic, even more when it is compared to plugin-based technolo-
gies such as Flash or Silverlight. Fig. 3.4 shows how parts of HTML5 and other related
specs are supported in diverse modern Web browsers:

We can see that Internet Explorer 8 does not support well latest standards. Ļis can
be problematic because developers might give up using HTML5 features to make their
websites and web apps if they cannot be available on Internet Explorer, the most used web
browser to this day. However IE9 will feature a broader support of HTML5 and CSS3.
Browser support of standards is essential for their propagation. If 80% of web browsers
cannot handle a speciŀc technology, the developer who wants to reach as much audience
as possible will probably not use that technology.

And that is a main challenge for standards and their ideals. If they are providing a good,
it does not mean they are used everywhere. Today most websites are not compliant with
standards [96]. Education and business problems are often cited as main causes to the
lack of interest to Web standards [43, 96].

CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş... 57

Figure 3.3 - A screenshot of deviantART Muro. A webapp designed to produce
artworks directly in the browser, without plugins. It works with any browser
supporting HTML5 so far. It means it can run on any modern browser, excluding
Internet Explorer 8, but including Safari Mobile on the iPad (a touch platform that

could be useful for this kind of applications) [67].

In many ways, HTML5 overcomes HTML4 limitations, and sometimes can do better
than Flash. However, HTML5 is still a spec in development, meaning the document
can change before it reaches its Recommendation status. Ian HŕŏŗşśŚ, HTML5’s editor,
estimates that the spec could obtain its Candidate Recommendation status in 2012. Final
Recommendation status is estimated for 2022 or later [147]. However, mature parts of
HTML5 are already being supported by many modern Web browsers.

And even if the video tag has generated a lot of attention around the HTML5 spec, as it
enables video playback without plugins, problems may however arise due to patent issues.
Ļe HTML5 document does not deŀne a video format or a video codec that should be
use in the browser. So developers have then the liberty to choose the format they deem
relevant. Like its predecessor, HTML5 is ŀle format neutral. Safari and Chrome support
the H.264/MPEG-4 AVC codec¹ (MP4 container). But Mozilla, the company behind

¹ Ļe H.264/MPEG-4 AVC codec is appreciated for its quality, compression ratio and hardware
acceleration. However, the codec is subject to patents which are licensed by the MPEG LA organization.

58 CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş...

Features Firefox Safari Opera Chrome IE

3.6.8 5.0.1 10.61 6.0.486.0 8

Canvas Basics Yes Yes Yes Yes No

Cross-document Messaging Yes Yes Yes Yes Yes

Device Element No No No No No

Offline Web Applications Yes Yes Yes Yes No

Web Workers Yes Yes Yes Yes No

Web Storage Yes Yes Yes Yes Yes

Web Sockets No Yes No Yes No

Server-Sent Events No Yes Partial No No

Web SQL Database No Yes Yes Yes No

Yes Yes Yes Yes No

Drag and drop Yes Yes No Yes Partial

Forms Partial Partial Yes Partial No

Video and Audio Yes Yes Yes Yes No

MathML Yes No Partial No No

SVG Basics Yes Yes Yes Yes No

Embed Yes Yes Yes Yes Yes

XHR Yes Yes Yes Yes Yes

File API Yes No No No No

Geolocation

Figure 3.4 - A comparison of the HTML5-related features supported by modern
browsers. Rework from [45,47].

Firefox, may not want to pay the royalties needed to enable H264 videos natively within
the video tag. Ļe fact that the codec is closed does not ŀt Mozilla’s philosophy. Ļat is
why they backed up on the Ogg Ļeora codec (which does not rely on known patents) and
the Ogg container.

On one side, choosing HTML5 may imply to write the website or the webapp having in
mind the differences of every single Web browser out there. More code may have to be
built in consequence, with a different version for each end. On the other side, a SWF ŀle
can be compiled, running on every browser on which the Flash Player is installed.

Aside from consistency, Flash has features that are still being standardized by the W3C.
For example, local webcams and microphones are fully supported by Flash, compared to
the device tag planned for a post-HTML5 spec. Ļat is a reason why Flash has still a role
to play to built rich websites and web applications.

CŔōŜŠőŞ 3. OŚ SŠōŚŐōŞŐş... 59

Regarding tech companies promoting standards closed to web applications, the industry
is divided. On one hand, we have Adobe et Microsoft promoting their in-house products
such Flash and Silverlight, whose technologies are not entirely opened. Flash can be seen
as an “industry standard” as 98% on web-enabled computers have Flash installed out of
the box. It is estimated that 75% of the video available on the web are seen on Flash.

On the other hand, we have Apple and Google promoting latest web standards such as
HTML5, CSS3 and Javascript. Apple has a showcase on its website to demonstrate the
power of HTML5² [56]. Furthermore, Apple uses SproutCore, a JavaScript framework
heavily relying on HTML5, for its cloud applications. On the Google side, if GWT
applications are written in Java, they are nonetheless compiled into standard ŀles (HTML,
CSS and JavaScript) for direct use in the browser.

And last but not least, it is interesting to conclude this chapter by noticing that the W3C
or the WHATWG do not use the term “rich internet application” to describe the im-
provements discussed in their relative specs. Ļey are indeed talking about simple “web
applications”, even when the specs deŀne a way to make them richer. Ļe only time the
notion of RIA is used is in the WAI-ARIA initiative to promote accessibility in richer
internet application. After all RIAs are web applications. Ļey are just supposed to be
better.

e e e

² Ļe showcase can only be seen on Safari (both on OS X and Windows), a limitation that generated some
criticisms as the viewer could believe that HTML5 is only available on Safari, which is not the case. Demos
from Google are also available in their own showcase [79].

. .

.

.

EŚŐ ŚśŠő

R ŕŏŔ web applications and web applications in general have changed the way we use
the Web. Connected, we have a direct access to information, but we have also a way

to create and realize different tasks. Some of these tasks can even be part of our daily life:
Remember the Milk is a good application to manage ToDo’s on the Web for example. And
banking applications have emerged to provide us a new medium to manage our accounts
and savings (after banks’ offices, faxes and phones).

Ļe ŀrst year of the Web have been characterized with web applications having their
logic located server-side, while the client had only few processing to do locally (simple UI
rendering). Ļe issue with that particular model is its dependance on the network. Lots
of requests have to be done to the servers, which can saturate in case of heavy usage of the
app. Ļat is a matter RIAs can handle better as some or all the processing is done client-
side, freeing the servers from requests and substantial communications. Doing so, richer
web applications are able to provide us more usable, faster and better web applications, all
within the browser.

But web applications are not a new concept, but it is only with the emergence of Ajax in
2005 that we can see plentiful of truly rich applications are becoming available on the Web.
New technologies and new platforms have come aboard the rich internet application ship,
pushing new limits in terms of interaction and user experience. Some of the applications
having even integrated our desktops via technologies such as AIR.

We have seen there are a lot of solutions to design and build richer web applications. From
lighter tools such the jQuery JavaScript library to the fully integrated platform that Flash
and Flex can provide. Ļese tools are improving on a regular basis to propose new features
and new technologies to make web applications even better than before. Ļere is still a
long way to go before having the same developing power that developers can enjoy when
they write native applications.

61

62 EŚŐ ŚśŠő

Rich internet applications give end-users and businesses alike a lot of opportunities to take
advantage of the Web. Ļe following quote illustrates well how far web applications could
change the way we interact with applications:

“[...] Dr. Michael B. Johnson of Pixar gave a lunchtime presentation where he
pointed out that if you don’t need 64-bit addressing, multithreading, or other desktop-
only features, it makes a lot of sense to deploy apps using the web” [68].

If this quote makes a lot of sense, it has also to be nuanced. It is true that heavy-processing
applications such as video-editing softwares and compositing softwares do not belong in
the browser. It is too restrictive, and complex applications need in fact to access directly
both software and hardware resources on the computer. But if simpler applications were
great in the web browser, their native alternatives are still better. One cannot compare
Google Docs to Microsoft Office. Ļe latter stays more responsive and more capable than
a suite deployed on the Web. Same thinking for Adobe Photoshop: the online version
of the software cannot compete with its native version in terms of processing power and
features.

Ļe Web is an amazing platform, which will become even more important with the rise of
mobile devices. Ļese devices are seen as the next battleground for businesses alike. And
web apps can be an interesting way to deploy cross-platform applications for multiple ends.
With only few re-writing, a web application could be available on smartphones, tablets,
game consoles, and other handheld devices along with more the more traditional desktops
and laptops. But even now the trend seems to be for native applications. Apple’s App
Store works incredibly well, and Android OS, Nokia and RIM have also their store for
native applications.

Maybe rich web applications are not entirely ready to provide a fully engaging experience
as of today. Technologies cannot compete with their native equivalent for now, but it looks
like the human’s ingenuity will transcend these issues, and provide a way to develop richer
web applications as good as desktop applications. Because after all, it makes sense to use
applications directly on the World Wide Web.

e e e

. .

.

.

BŕŎŘŕśœŞōŜŔť

[1] “Adoble Flex.” [Online]. Available: http://www.adobe.com/products/flex/.” Last
checked in August 2010

[2] “An animated overview of Flex.” [Online]. Available: http://learn.adobe.com/
wiki/display/Flex/Animated+Overview.” Last checked in August 2010

[3] “App Store.” [Online]. Available: http://en.wikipedia.org/wiki/App_Store.” Last
checked in August 2010

[4] “Architectural pattern (computer science).” [Online]. Available: http://en.
wikipedia.org/wiki/Architectural_pattern_(computer_science).” Last checked in
August 2010

[5] “Basics-Design Patterns.” [Online]. Available: http://wiki.sproutcore.com/
Basics-Design+Patterns.” Last checked in August 2010

[6] “Basics-Introducing SproutCore MVC (SproutCore Wiki).” [Online].
Available: http://wiki.sproutcore.com/Basics-Introducing+SproutCore+MVC.”
Last checked in August 2010

[7] “BuildTools About (SproutCore Wiki).” [Online]. Available: http://wiki.
sproutcore.com/BuildTools-About+Build+Tools.” Last checked in August 2010

[8] “Curl.” [Online]. Available: http://www.curl.com/.” Last checked in August 2010
[9] “DataStore About (SproutCore Wiki).” [Online]. Available: http://wiki.

sproutcore.com/DataStore-About.” Last checked in August 2010
[10] “Deployment Introduction (SproutCore Wiki).” [Online]. Available: http:

//wiki.sproutcore.com/Deployment-Introduction.” Last checked in August 2010
[11] “Design pattern (computer science).” [Online]. Available: http://en.wikipedia.

org/wiki/Design_pattern_(computer_science).” Last checked in August 2010
[12] “Dynamic HTML and XML: Ļe XMLHttpRequest Object,” Adobe

Developper Connection. [Online]. Available: http://developer.apple.com/
internet/webcontent/xmlhttpreq.html. Last checked in August 2010

[13] “Food, Inc. Apple Trailers Website.” [Online]. Available: http://trailers.apple.
com/trailers/magnolia/foodinc/.” Last checked in August 2010

63

http://www.adobe.com/products/flex/
http://learn.adobe.com/wiki/display/Flex/Animated+Overview
http://learn.adobe.com/wiki/display/Flex/Animated+Overview
http://en.wikipedia.org/wiki/App_Store
http://en.wikipedia.org/wiki/Architectural_pattern_(computer_science)
http://en.wikipedia.org/wiki/Architectural_pattern_(computer_science)
http://wiki.sproutcore.com/Basics-Design+Patterns
http://wiki.sproutcore.com/Basics-Design+Patterns
http://wiki.sproutcore.com/Basics-Introducing+SproutCore+MVC
http://wiki.sproutcore.com/BuildTools-About+Build+Tools
http://wiki.sproutcore.com/BuildTools-About+Build+Tools
http://www.curl.com/
http://wiki.sproutcore.com/DataStore-About
http://wiki.sproutcore.com/DataStore-About
http://wiki.sproutcore.com/Deployment-Introduction
http://wiki.sproutcore.com/Deployment-Introduction
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://trailers.apple.com/trailers/magnolia/foodinc/
http://trailers.apple.com/trailers/magnolia/foodinc/

64 BŕŎŘŕśœŞōŜŔť

[14] “Foundation About (SproutCore Wiki).” [Online]. Available: http://wiki.
sproutcore.com/Foundation-About.” Last checked in August 2010

[15] “Google Web Toolkit.” [Online]. Available: http://code.google.com/webtoolkit/.”
Last checked in August 2010

[16] “HTML.” [Online]. Available: http://en.wikipedia.org/wiki/HTML.” Last
checked in August 2010

[17] “HTML5.” [Online]. Available: http://en.wikipedia.org/wiki/HTML5.” Last
checked in August 2010

[18] “iAd.” [Online]. Available: http://en.wikipedia.org/wiki/Iad.” Last checked in
August 2010

[19] “Introducing SproutCore (SproutCore Wiki).” [Online]. Available: http://wiki.
sproutcore.com/Basics-Introducing+SproutCore.” Last checked in August 2010

[20] “iOS (Apple).” [Online]. Available: http://en.wikipedia.org/wiki/IOS_(Apple).”
Last checked in August 2010

[21] “iPhone.” [Online]. Available: http://en.wikipedia.org/wiki/IPhone.” Last
checked in August 2010

[22] “JavaFX.” [Online]. Available: http://javafx.com/.” Last checked in August 2010
[23] “JavaFX Overview.” [Online]. Available: http://javafx.com/about/overview/.” Last

checked in August 2010
[24] “JavaScript.” [Online]. Available: http://en.wikipedia.org/wiki/JavaScript.” Last

checked in August 2010
[25] “Model-View-Controller,” Apple Developper Connection. [Online].

Available: http://developer.apple.com/mac/library/documentation/General/
Conceptual/DevPedia-CocoaCore/MVC.html. Last checked in August 2010

[26] “Model-View-Controller.” [Online]. Available: http://en.wikipedia.org/wiki/
Model–view–controller.” Last checked in August 2010

[27] “Model-View-Presenter.” [Online]. Available: http://en.wikipedia.org/wiki/
Model-view-presenter.” Last checked in August 2010

[28] “Model-View-Presenter Framework.” [Online]. Available: http://www.mimuw.
edu.pl/~sl/teaching/00_01/Delfin_EC/Overviews/ModelViewPresenter.htm.”
Last checked in August 2010

[29] “Model-View-ViewModel.” [Online]. Available: http://en.wikipedia.org/wiki/
Model_View_ViewModel.” Last checked in August 2010

[30] “Multitier architecture.” [Online]. Available: http://en.wikipedia.org/wiki/
Multitier_architecture.” Last checked in August 2010

[31] “MVVM – Philosophy and Case Studies - Introduction.”
[Online]. Available: http://devlicious.com/blogs/rob_eisenberg/archive/2009/
07/07/mvvm-philosophy-and-case-studies-introduction.aspx.” Last checked in
August 2010

[32] “Object Oriented Design.” [Online]. Available: http://www.oodesign.com/.” Last
checked in August 2010

[33] “OpenLaszlo.” [Online]. Available: http://www.openlaszlo.org/.” Last checked in
August 2010

http://wiki.sproutcore.com/Foundation-About
http://wiki.sproutcore.com/Foundation-About
http://code.google.com/webtoolkit/
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/Iad
http://wiki.sproutcore.com/Basics-Introducing+SproutCore
http://wiki.sproutcore.com/Basics-Introducing+SproutCore
http://en.wikipedia.org/wiki/IOS_(Apple)
http://en.wikipedia.org/wiki/IPhone
http://javafx.com/
http://javafx.com/about/overview/
http://en.wikipedia.org/wiki/JavaScript
http://developer.apple.com/mac/library/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
http://developer.apple.com/mac/library/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
http://en.wikipedia.org/wiki/Model–view–controller
http://en.wikipedia.org/wiki/Model–view–controller
http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model-view-presenter
http://www.mimuw.edu.pl/~sl/teaching/00_01/Delfin_EC/Overviews/ModelViewPresenter.htm
http://www.mimuw.edu.pl/~sl/teaching/00_01/Delfin_EC/Overviews/ModelViewPresenter.htm
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Multitier_architecture
http://devlicious.com/blogs/rob_eisenberg/archive/2009/07/07/mvvm-philosophy-and-case-studies-introduction.aspx
http://devlicious.com/blogs/rob_eisenberg/archive/2009/07/07/mvvm-philosophy-and-case-studies-introduction.aspx
http://www.oodesign.com/
http://www.openlaszlo.org/

BŕŎŘŕśœŞōŜŔť 65

[34] “Remember Ļe Milk: Online to do list and task management.” [Online].
Available: http://www.rememberthemilk.com/.” Last checked in August 2010

[35] “Rich Internet Application Design,” Adobe Developper Connection. [Online].
Available: http://www.adobe.com/devnet/flex/articles/design_patterns02.html.
Last checked in August 2010

[36] “Runtime Introduction (SproutCore Wiki).” [Online]. Available: http://wiki.
sproutcore.com/Runtime-Introduction.” Last checked in August 2010

[37] “Scalable Vector Graphics.” [Online]. Available: http://en.wikipedia.org/wiki/
Scalable_Vector_Graphics.” Last checked in August 2010

[38] “Silverlight.” [Online]. Available: http://www.silverlight.net/.” Last checked in
August 2010

[39] “SproutCore.” [Online]. Available: http://www.sproutcore.com/.” Last checked in
August 2010

[40] “Ļe Model-View-Controller Design Pattern,” Adobe Developper Connection.
[Online]. Available: http://www.adobe.com/devnet/flash/articles/mv_controller.
html. Last checked in August 2010

[41] “UnitTesting About (SproutCore Wiki).” [Online]. Available: http://wiki.
sproutcore.com/UnitTesting-About+Unit+Testing.” Last checked in August 2010

[42] “Views About (SproutCore Wiki).” [Online]. Available: http://wiki.sproutcore.
com/Views-About.” Last checked in August 2010

[43] “WaSP: Fighting for Standards.” [Online]. Available: http://www.webstandards.
org/about/mission/.” Last checked in August 2010

[44] “Web 2.0.” [Online]. Available: http://en.wikipedia.org/wiki/Web_2.0.” Last
checked in August 2010

[45] “Web Design Checklist.” [Online]. Available: http://www.findmebyip.com/
litmus/#target-selector.” Last checked in August 2010

[46] “Web Storage.” [Online]. Available: http://en.wikipedia.org/wiki/Web_Storage.”
Last checked in August 2010

[47] “When Can I Use?” [Online]. Available: http://caniuse.com/.” Last checked in
August 2010

[48] “Wikipedia, the free encyclopedia.” [Online]. Available: http://en.wikipedia.org/
wiki/Main_Page.” Last checked in August 2010

[49] “XMLHttpRequest.” [Online]. Available: http://en.wikipedia.org/wiki/
XMLHttpRequest.” Last checked in August 2010

[50] “Curl – Building RIA Beyond AJAX,” White Paper, 2006. [Online]. Available:
http://www.curl.com/products/whitepaper/curl-ria.pdf. Last checked in August
2010

[51] “iPhone to Support Ļird-Party Web 2.0 Applications,” Apple Inc., 11 June 2007.
[Online]. Available: http://www.apple.com/pr/library/2007/06/11iphone.html.
Last checked in August 2010

[52] M. AŎőŞŚőŠŔť, ““working with jquery, part 2: Building tomorrow’s web
applications today“,” IBM, 23 September 2008. [Online]. Available: http://
www.ibm.com/developerworks/web/library/wa-jquery2/index.html. Last checked

http://www.rememberthemilk.com/
http://www.adobe.com/devnet/flex/articles/design_patterns02.html
http://wiki.sproutcore.com/Runtime-Introduction
http://wiki.sproutcore.com/Runtime-Introduction
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://www.silverlight.net/
http://www.sproutcore.com/
http://www.adobe.com/devnet/flash/articles/mv_controller.html
http://www.adobe.com/devnet/flash/articles/mv_controller.html
http://wiki.sproutcore.com/UnitTesting-About+Unit+Testing
http://wiki.sproutcore.com/UnitTesting-About+Unit+Testing
http://wiki.sproutcore.com/Views-About
http://wiki.sproutcore.com/Views-About
http://www.webstandards.org/about/mission/
http://www.webstandards.org/about/mission/
http://en.wikipedia.org/wiki/Web_2.0
http://www.findmebyip.com/litmus/#target-selector
http://www.findmebyip.com/litmus/#target-selector
http://en.wikipedia.org/wiki/Web_Storage
http://caniuse.com/
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/XMLHttpRequest
http://en.wikipedia.org/wiki/XMLHttpRequest
http://www.curl.com/products/whitepaper/curl-ria.pdf
http://www.apple.com/pr/library/2007/06/11iphone.html
http://www.ibm.com/developerworks/web/library/wa-jquery2/index.html
http://www.ibm.com/developerworks/web/library/wa-jquery2/index.html

66 BŕŎŘŕśœŞōŜŔť

in August 2010
[53] J. AŘŘōŕŞő, “Macromedia Flash MX - A next-generation rich client,” White

Paper, Macromedia, March 2002. [Online]. Available: http://www.adobe.com/
devnet/flash/whitepapers/richclient.pdf. Last checked in August 2010

[54] C. AŚŐőŞşśŚ’ş, “Ļe Long Tail,” 1 October 2005. [Online]. Available:
http://www.thelongtail.com/the_long_tail/2005/10/web_20_and_the_.html. Last
checked in August 2010

[55] D. AŚŐőŞşşśŚ, “HTML5, XHTML2, and the Future of the Web,” 10 April
2007. [Online]. Available: http://www.digital-web.com/articles/html5_xhtml2_
and_the_future_of_the_web/. Last checked in August 2010

[56] AŜŜŘő, “HTML5 and web standards.” [Online]. Available: http://www.apple.
com/html5/.” Last checked in August 2010

[57] ——, “iPhone Support - Wiŀ.” [Online]. Available: http://www.apple.com/
support/iphone/wifi/.” Last checked in August 2010

[58] A. AŢŞōř, “Chrome 4 Now Supports the HTML5 Web SQL Database API,”
InfoQ, 18 Fabruary 2010. [Online]. Available: http://www.infoq.com/news/2010/
02/Web-SQL-Database. Last checked in August 2010

[59] S. BőŏŗőŞ, “Sproutcore - a next-gen javascript frame-
work.” [Online]. Available: http://www.slideshare.net/joydivider/
sproutcore-a-next-gen-javascript-framework.” Last checked in August 2010

[60] T. BőŞŚőŞş-Lőő, “Realising the full potential of the web,” W3C, 3 December
1997. [Online]. Available: http://www.w3.org/1998/02/Potential.html. Last
checked in August 2010

[61] ——, “Ļe World Wide Web: A very short personal history,” 1998 7 May.
[Online]. Available: http://www.w3.org/People/Berners-Lee/ShortHistory.html.
Last checked in August 2010

[62] BŕŢśŘŕŚś, “Customized Shirts on the Web.” [Online]. Available: http:
//www.bivolino.com/en/default.html.” Last checked in August 2010

[63] BśŚœ.TV, “Bong.TV.” [Online]. Available: http://www.bong.tv/
[64] CšŞŘ, “Curl Demo - Wealth Calculator.” [Online]. Available: http://www.curl.

com/demos/wealthcalculator/start.curl.” Last checked in August 2010
[65] ——, “Product data sheet.” [Online]. Available: http://www.curl.com/pdf/

Curl-DataSheet.pdf.” Last checked in August 2010
[66] ——, “RIA for the Enterprise.” [Online]. Available: http://www.curl.com/pdf/

Curl-CorpBrochure.pdf.” Last checked in August 2010
[67] ŐőŢŕōŚŠART, “deviantART Muro.” [Online]. Available: http://muro.deviantart.

com/.” Last checked in August 2010
[68] D. E. DŕŘœőŞ, “Cocoa for Windows + Flash Killer = SproutCore,” 14

June 2008. [Online]. Available: http://www.roughlydrafted.com/2008/06/14/
cocoa-for-windows-flash-killer-sproutcore/. Last checked in August 2010

[69] FŘőŤ DőŢőŘśŜőŞ CőŚŠőŞ, “Understanding Flex in the client/server model.”
[Online]. Available: http://www.adobe.com/devnet/flex/articles/fcf_flex_client_
server.html.” Last checked in August 2010

http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.thelongtail.com/the_long_tail/2005/10/web_20_and_the_.html
http://www.digital-web.com/articles/html5_xhtml2_and_the_future_of_the_web/
http://www.digital-web.com/articles/html5_xhtml2_and_the_future_of_the_web/
http://www.apple.com/html5/
http://www.apple.com/html5/
http://www.apple.com/support/iphone/wifi/
http://www.apple.com/support/iphone/wifi/
http://www.infoq.com/news/2010/02/Web-SQL-Database
http://www.infoq.com/news/2010/02/Web-SQL-Database
http://www.slideshare.net/joydivider/sproutcore-a-next-gen-javascript-framework
http://www.slideshare.net/joydivider/sproutcore-a-next-gen-javascript-framework
http://www.w3.org/1998/02/Potential.html
http://www.w3.org/People/Berners-Lee/ShortHistory.html
http://www.bivolino.com/en/default.html
http://www.bivolino.com/en/default.html
http://www.bong.tv/
http://www.curl.com/demos/wealthcalculator/start.curl
http://www.curl.com/demos/wealthcalculator/start.curl
http://www.curl.com/pdf/Curl-DataSheet.pdf
http://www.curl.com/pdf/Curl-DataSheet.pdf
http://www.curl.com/pdf/Curl-CorpBrochure.pdf
http://www.curl.com/pdf/Curl-CorpBrochure.pdf
http://muro.deviantart.com/
http://muro.deviantart.com/
http://www.roughlydrafted.com/2008/06/14/cocoa-for-windows-flash-killer-sproutcore/
http://www.roughlydrafted.com/2008/06/14/cocoa-for-windows-flash-killer-sproutcore/
http://www.adobe.com/devnet/flex/articles/fcf_flex_client_server.html
http://www.adobe.com/devnet/flex/articles/fcf_flex_client_server.html

BŕŎŘŕśœŞōŜŔť 67

[70] P. FśŤ, “Flex vs. HTML5,” 2009. [Online]. Available: http://www.scribd.com/
doc/20822331/Flex-vs-HTML5. Last checked in August 2010

[71] M. N. FŞōŚŏŕş, “Ļe Basics of HTML,” Opera, 8 July 2008.
[Online]. Available: http://dev.opera.com/articles/view/12-the-basics-of-html/.
Last checked in August 2010

[72] ——, “Ļe history of the Internet and the Web, and the evolution of Web
standards,” Opera, 2 July 2008. [Online]. Available: http://dev.opera.com/articles/
view/2-the-history-of-the-internet-and-the-w/. Last checked in August 2010

[73] M. V. V. GōŐœő, “Technology options for rich internet applications,” IBM, 25
July 2006. [Online]. Available: http://www.ibm.com/developerworks/web/library/
wa-richiapp/. Last checked in August 2010

[74] J. J. GōŞŞőŠŠ, “Ajax: A New Approach to Web Applications,” 18 Fabruary 2005.
[Online]. Available: http://www.adaptivepath.com/ideas/essays/archives/000385.
php. Last checked in August 2010

[75] S. GŘőŐŔŕŘŘ, “Corporate Web Standards,” July 16 2007. [Online]. Available:
http://www.digital-web.com/articles/corporate_web_standards/. Last checked in
August 2010

[76] GśśœŘő, “Google Maps.” [Online]. Available: http://maps.google.com/.” Last
checked in August 2010

[77] ——, “GWT Overview.” [Online]. Available: http://code.google.com/webtoolkit/
overview.html.” Last checked in August 2010

[78] ——, “HTML5 Presentation.” [Online]. Available: http://slides.html5rocks.com/
#slide1.” Last checked in August 2010

[79] ——, “HTML5Rocks.” [Online]. Available: http://www.html5rocks.com/.” Last
checked in August 2010

[80] ——, “Making GWT Better.” [Online]. Available: http://code.google.com/
webtoolkit/makinggwtbetter.html.” Last checked in August 2010

[81] P. GŞōŔōř, “Apple is not evil. iPhone developers are stupid.” [Online].
Available: http://www.quirksmode.org/blog/archives/2009/11/apple_is_not_ev.
html.” Last checked in August 2010

[82] ——, “Web 2.0,” November 2005. [Online]. Available: http://www.paulgraham.
com/web20.html. Last checked in August 2010

[83] J. GŞšŎőŞ, “iPhone Web Apps as an Alternative to the App Store,” 23 November
2009. [Online]. Available: http://daringfireball.net/2009/11/iphone_web_apps_
alternative. Last checked in August 2010

[84] C. HőŕŘřōŚŚ, “CSS basics,” Opera, 26 September 2008. [Online]. Available:
http://dev.opera.com/articles/view/27-css-basics/. Last checked in August 2010

[85] M. HśŘŦşŏŔŘōœ and S. KōŕşőŞ, “FAQ - Ļe Web Standards Project,” WaSP,
27 Fabruary 2002. [Online]. Available: http://www.webstandards.org/learn/faq/.
Last checked in August 2010

[86] IBM, “Rich Internet Applications (RIAs).” [Online]. Available: http://www-01.
ibm.com/software/info/web20/mashups-rias/ria.html.” Last checked in August
2010

http://www.scribd.com/doc/20822331/Flex-vs-HTML5
http://www.scribd.com/doc/20822331/Flex-vs-HTML5
http://dev.opera.com/articles/view/12-the-basics-of-html/
http://dev.opera.com/articles/view/2-the-history-of-the-internet-and-the-w/
http://dev.opera.com/articles/view/2-the-history-of-the-internet-and-the-w/
http://www.ibm.com/developerworks/web/library/wa-richiapp/
http://www.ibm.com/developerworks/web/library/wa-richiapp/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.digital-web.com/articles/corporate_web_standards/
http://maps.google.com/
http://code.google.com/webtoolkit/overview.html
http://code.google.com/webtoolkit/overview.html
http://slides.html5rocks.com/#slide1
http://slides.html5rocks.com/#slide1
http://www.html5rocks.com/
http://code.google.com/webtoolkit/makinggwtbetter.html
http://code.google.com/webtoolkit/makinggwtbetter.html
http://www.quirksmode.org/blog/archives/2009/11/apple_is_not_ev.html
http://www.quirksmode.org/blog/archives/2009/11/apple_is_not_ev.html
http://www.paulgraham.com/web20.html
http://www.paulgraham.com/web20.html
http://daringfireball.net/2009/11/iphone_web_apps_alternative
http://daringfireball.net/2009/11/iphone_web_apps_alternative
http://dev.opera.com/articles/view/27-css-basics/
http://www.webstandards.org/learn/faq/
http://www-01.ibm.com/software/info/web20/mashups-rias/ria.html
http://www-01.ibm.com/software/info/web20/mashups-rias/ria.html

68 BŕŎŘŕśœŞōŜŔť

[87] ——, “Putting the power of Web 2.0 into practice,” White Paper, July 2008.
[Online]. Available: ftp://ftp.software.ibm.com/software/lotus/lotusweb/product/
expeditor/LOW14003-USEN-00.pdf. Last checked in August 2010

[88] IŚŒśBőōŚş, “iPhone Native Apps vs Web Apps,” June
2009. [Online]. Available: http://www.slideshare.net/infobeans/
iphone-web-and-native-apps-comparison. Last checked in August 2010

[89] IŚŒśTőŏŔ RőşőōŞŏŔ GŞśšŜ, “RIA - What’s the Business Case,” Research
Note, 3 December 2008. [Online]. Available: http://www.infotech.com/research/
rich-internet-applications-whats-the-business-case. Last checked in August 2010

[90] S. JśŎş, “Ļoughts on Flash,” Apple Inc. [Online]. Available: http://www.apple.
com/hotnews/thoughts-on-flash/. Last checked in August 2010

[91] ŖQšőŞť, “Ļe Write Less, Do More, JavaScript Library.” [Online]. Available:
http://jquery.com/.” Last checked in August 2010

[92] ŖQšőŞť UI, “Animate Effect.” [Online]. Available: http://jqueryui.com/demos/
animate/.” Last checked in August 2010

[93] C. KōřŎōŘťōŘ, “3-Tier Architecture.” [Online]. Available: http:
//channukambalyal.tripod.com/NTierArchitecture.pdf

[94] Kōťōŗ, “Kayak homepage.” [Online]. Available: http://www.kayak.com/.” Last
checked in August 2010

[95] J. LōŚő, “Ļe Web standards model - HTML, CSS and JavaScript,”
Opera, 8 July 2008. [Online]. Available: http://dev.opera.com/articles/view/
4-the-web-standards-model-html-css-a/. Last checked in August 2010

[96] ——, “Web standards – beautiful dream, but what’s the reality?”
Opera, 8 July 2008. [Online]. Available: http://dev.opera.com/articles/view/
5-web-standards-beautiful-dream-bu/. Last checked in August 2010

[97] S. LōŚŕŚœŔōř, “developerWorks Interviews: Tim Berners-Lee,” 22 August
2006. [Online]. Available: http://www.ibm.com/developerworks/podcast/dwi/
cm-int082206txt.html. Last checked in August 2010

[98] MŕŏŞśşśŒŠ SŕŘŢőŞŘŕœŔŠ, “Search Engine Optimization for Silverlight
applications.” [Online]. Available: http://www.silverlight.net/learn/whitepapers/
seo-for-silverlight/.” Last checked in August 2010

[99] ——, “Silverlight Architecture.” [Online]. Available: http://msdn.microsoft.com/
en-us/library/bb404713(VS.95).aspx.” Last checked in August 2010

[100] ——, “Silverlight Overview.” [Online]. Available: http://www.silverlight.net/
getstarted/overview.aspx.” Last checked in August 2010

[101] C. MŕŘŘş, “Introduction to Ļe Web Standards Curriculum,” Opera,
8 July 2008. [Online]. Available: http://dev.opera.com/articles/view/
1-introduction-to-the-web-standards-cur/. Last checked in August 2010

[102] T. NőŕŘ, “12 Standard Screen Patterns.” [Online]. Available: http://
designingwebinterfaces.com/designing-web-interfaces-12-screen-patterns.” Last
checked in August 2010

[103] ——, “15 Common Components.” [Online]. Available: http://
designingwebinterfaces.com/15-common-components.” Last checked in August

ftp://ftp.software.ibm.com/software/lotus/lotusweb/product/expeditor/LOW14003-USEN-00.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/product/expeditor/LOW14003-USEN-00.pdf
http://www.slideshare.net/infobeans/iphone-web-and-native-apps-comparison
http://www.slideshare.net/infobeans/iphone-web-and-native-apps-comparison
http://www.infotech.com/research/rich-internet-applications-whats-the-business-case
http://www.infotech.com/research/rich-internet-applications-whats-the-business-case
http://www.apple.com/hotnews/thoughts-on-flash/
http://www.apple.com/hotnews/thoughts-on-flash/
http://jquery.com/
http://jqueryui.com/demos/animate/
http://jqueryui.com/demos/animate/
http://channukambalyal.tripod.com/NTierArchitecture.pdf
http://channukambalyal.tripod.com/NTierArchitecture.pdf
http://www.kayak.com/
http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-a/
http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-a/
http://dev.opera.com/articles/view/5-web-standards-beautiful-dream-bu/
http://dev.opera.com/articles/view/5-web-standards-beautiful-dream-bu/
http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html
http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html
http://www.silverlight.net/learn/whitepapers/seo-for-silverlight/
http://www.silverlight.net/learn/whitepapers/seo-for-silverlight/
http://msdn.microsoft.com/en-us/library/bb404713(VS.95).aspx
http://msdn.microsoft.com/en-us/library/bb404713(VS.95).aspx
http://www.silverlight.net/getstarted/overview.aspx
http://www.silverlight.net/getstarted/overview.aspx
http://dev.opera.com/articles/view/1-introduction-to-the-web-standards-cur/
http://dev.opera.com/articles/view/1-introduction-to-the-web-standards-cur/
http://designingwebinterfaces.com/designing-web-interfaces-12-screen-patterns
http://designingwebinterfaces.com/designing-web-interfaces-12-screen-patterns
http://designingwebinterfaces.com/15-common-components
http://designingwebinterfaces.com/15-common-components

BŕŎŘŕśœŞōŜŔť 69

2010
[104] ——, “30 Essential Controls.” [Online]. Available: http://designingwebinterfaces.

com/essential_controls.” Last checked in August 2010
[105] ——, “Designing rich applications.” [Online]. Available: http://www.slideshare.

net/theresaneil/designing-rich-applications.” Last checked in August 2010
[106] T. NśŐō and S. HőŘţŕœ, “Technical Comparison and Case Studies of AJAX,

Flash, and Java based RIA,” UW E-Business Consortium, 16 November
2005. [Online]. Available: http://www.uwebc.org/opinionpapers/archives/docs/
RIA.pdf. Last checked in August 2010

[107] F. NśŚŚőŚřōŏŔőŞ, “Web standards for business,” Ļe Web Standards Project,
November 2003. [Online]. Available: http://www.webstandards.org/learn/articles/
web_standards_for_business/. Last checked in August 2010

[108] OŜőŚLōşŦŘś, “Chapter 1. OpenLaszlo Architecture (OL Documentation).”
[Online]. Available: http://www.openlaszlo.org/lps4.8/docs/developers/
architecture.html.” Last checked in August 2010

[109] ——, “Chapter 2. Language Preliminaries (OL Documentation).”
[Online]. Available: http://www.openlaszlo.org/lps4.8/docs/developers/
language-preliminaries.html.” Last checked in August 2010

[110] ——, “Chapter 25. Proxied and SOLO Applications (OL Documentation).”
[Online]. Available: http://www.openlaszlo.org/lps4.8/docs/developers/proxied.
html.” Last checked in August 2010

[111] ——, “Chapter 42. Audio and Video (OL Documentation).” [Online]. Available:
http://www.openlaszlo.org/lps4.8/docs/developers/video.html.” Last checked in
August 2010

[112] ——, “OpenLaszlo - An Open Architecture Frameworkfor Advanced Ajax
Applications,” White Paper, November 2006. [Online]. Available: http:
//www.openlaszlo.org/whitepaper/LaszloWhitePaper.pdf. Last checked in August
2010

[113] T. O’RőŕŘŘť, “What is Web 2.0 - Design Patterns and Business Models for
the Next Generation of Software,” 30 December 2005. [Online]. Available:
http://oreilly.com/web2/archive/what-is-web-20.html. Last checked in August
2010

[114] ——, “Web 2.0 and Cloud Computing,” 26 October 2008. [Online].
Available: http://radar.oreilly.com/2008/10/web-20-and-cloud-computing.html.
Last checked in August 2010

[115] T. O’RőŕŘŘť and J. BōŠŠőŘŘő, “Web Squared: Web 2.0 Five Years On,” Special
Report, October 2009. [Online]. Available: http://assets.en.oreilly.com/1/event/
28/web2009_websquared-whitepaper.pdf. Last checked in August 2010

[116] J. PőŠŞşőŚ, “Beneŀts of using the n-tier approach for Web applications,” Adobe.
[Online]. Available: http://www.adobe.com/devnet/coldfusion/articles/ntier.html.
Last checked in August 2010

[117] C. RōřşŐōŘő, “Large scale application development and MVP,” Google Developer
Relations. [Online]. Available: http://code.google.com/intl/fr/webtoolkit/articles/

http://designingwebinterfaces.com/essential_controls
http://designingwebinterfaces.com/essential_controls
http://www.slideshare.net/theresaneil/designing-rich-applications
http://www.slideshare.net/theresaneil/designing-rich-applications
http://www.uwebc.org/opinionpapers/archives/docs/RIA.pdf
http://www.uwebc.org/opinionpapers/archives/docs/RIA.pdf
http://www.webstandards.org/learn/articles/web_standards_for_business/
http://www.webstandards.org/learn/articles/web_standards_for_business/
http://www.openlaszlo.org/lps4.8/docs/developers/architecture.html
http://www.openlaszlo.org/lps4.8/docs/developers/architecture.html
http://www.openlaszlo.org/lps4.8/docs/developers/language-preliminaries.html
http://www.openlaszlo.org/lps4.8/docs/developers/language-preliminaries.html
http://www.openlaszlo.org/lps4.8/docs/developers/proxied.html
http://www.openlaszlo.org/lps4.8/docs/developers/proxied.html
http://www.openlaszlo.org/lps4.8/docs/developers/video.html
http://www.openlaszlo.org/whitepaper/LaszloWhitePaper.pdf
http://www.openlaszlo.org/whitepaper/LaszloWhitePaper.pdf
http://oreilly.com/web2/archive/what-is-web-20.html
http://radar.oreilly.com/2008/10/web-20-and-cloud-computing.html
http://assets.en.oreilly.com/1/event/28/web2009_websquared-whitepaper.pdf
http://assets.en.oreilly.com/1/event/28/web2009_websquared-whitepaper.pdf
http://www.adobe.com/devnet/coldfusion/articles/ntier.html
http://code.google.com/intl/fr/webtoolkit/articles/mvp-architecture.html

70 BŕŎŘŕśœŞōŜŔť

mvp-architecture.html. Last checked in August 2010
[118] B. SřőőŠş, U. BśŚőşş, and R. BōŚŗŞōş, Beginning Google Web Toolkit: From

Novice to Professional. Apress, 2008.
[119] SŜŞśšŠCśŞő, “Sample Controls.” [Online]. Available: http://demo.sproutcore.

com/sample_controls/.” Last checked in August 2010
[120] M. SŠōŏŔśţŕōŗ, “Proposal to Adopt HTML5,” 9 April 2007. [Online].

Available: http://lists.w3.org/Archives/Public/public-html/2007Apr/0429.html.
Last checked in August 2010

[121] A. SŠōřśş and Z. Lōŏŗőť, “Attacking AJAX Web Applications,” iSEC
Partners, 3 August 2006. [Online]. Available: https://www.isecpartners.com/files/
iSEC-Attacking_AJAX_Applications.BH2006.pdf. Last checked in August 2010

[122] SŠōŠOţŘ, “Rich Internet Application Market Share.” [Online]. Available:
http://www.statowl.com/custom_ria_market_penetration.php.” Last checked in
August 2010

[123] M. ŞšŏōŚ, “SVG or Canvas? Choosing between the two,” ROBO
Design. [Online]. Available: http://www.robodesign.ro/coding/svg-or-canvas/.
Last checked in August 2010

[124] B. SšŐō, “Introduction to the mobile Web,” Opera, 23 June 2009. [Online].
Available: http://dev.opera.com/articles/view/introduction-to-the-mobile-web/.
Last checked in August 2010

[125] A. ŠšƢŚŖōŞ, “RIA and AJAX,” December 2006. [Online]. Available: http:
//en.wikipedia.org/wiki/User:Aleksandar_Šušnjar/RIA_and_AJAX. Last checked
in August 2010

[126] R. VōŘŐőş, E. KŚŕŜŜ, D. M. SřŕŠŔ, G. PŔŕŒőŞ, and M. DŞŕŢőŞ, “MarketScope
for Ajax Technologies and Rich Internet Application Platforms,” Gartner RAS
Core Research, 31 December 2009. [Online]. Available: http://www.adobe.com/
enterprise/pdfs/gartner-ajax-ria.pdf. Last checked in August 2010

[127] W3C, “Document object model.” [Online]. Available: http://www.w3.org/
DOM/.” Last checked in August 2010

[128] ——, “History of HTML.” [Online]. Available: http://www.w3.org/html/wg/
wiki/History.” Last checked in August 2010

[129] ——, “HTML & CSS.” [Online]. Available: http://www.w3.org/standards/
webdesign/htmlcss.” Last checked in August 2010

[130] ——, “HTML Canvas 2D Context.” [Online]. Available: http://dev.w3.org/
html5/2dcontext/Overview.html.” Last checked in August 2010

[131] ——, “HTML5 - A vocabulary and associated APIs for HTML and XHTML.”
[Online]. Available: http://dev.w3.org/html5/spec/Overview.html.” Last checked
in August 2010

[132] ——, “HTML5 differences from HTML4.” [Online]. Available: http://dev.w3.
org/html5/html4-differences/.” Last checked in August 2010

[133] ——, “HTML5 Web Messaging.” [Online]. Available: http://dev.w3.org/html5/
postmsg/Overview.html.” Last checked in August 2010

[134] ——, “MathML.” [Online]. Available: http://www.w3.org/Math/

http://code.google.com/intl/fr/webtoolkit/articles/mvp-architecture.html
http://code.google.com/intl/fr/webtoolkit/articles/mvp-architecture.html
http://demo.sproutcore.com/sample_controls/
http://demo.sproutcore.com/sample_controls/
http://lists.w3.org/Archives/Public/public-html/2007Apr/0429.html
https://www.isecpartners.com/files/iSEC-Attacking_AJAX_Applications.BH2006.pdf
https://www.isecpartners.com/files/iSEC-Attacking_AJAX_Applications.BH2006.pdf
http://www.statowl.com/custom_ria_market_penetration.php
http://www.robodesign.ro/coding/svg-or-canvas/
http://dev.opera.com/articles/view/introduction-to-the-mobile-web/
http://en.wikipedia.org/wiki/User:Aleksandar_Šušnjar/RIA_and_AJAX
http://en.wikipedia.org/wiki/User:Aleksandar_Šušnjar/RIA_and_AJAX
http://www.adobe.com/enterprise/pdfs/gartner-ajax-ria.pdf
http://www.adobe.com/enterprise/pdfs/gartner-ajax-ria.pdf
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/html/wg/wiki/History
http://www.w3.org/html/wg/wiki/History
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3.org/standards/webdesign/htmlcss
http://dev.w3.org/html5/2dcontext/Overview.html
http://dev.w3.org/html5/2dcontext/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/html4-differences/
http://dev.w3.org/html5/html4-differences/
http://dev.w3.org/html5/postmsg/Overview.html
http://dev.w3.org/html5/postmsg/Overview.html
http://www.w3.org/Math/whatIsMathML.html

BŕŎŘŕśœŞōŜŔť 71

whatIsMathML.html.” Last checked in August 2010
[135] ——, “Scripting & Ajax.” [Online]. Available: http://www.w3.org/standards/

webdesign/script.” Last checked in August 2010
[136] ——, “Server-Sent Events.” [Online]. Available: http://dev.w3.org/html5/

eventsource/.” Last checked in August 2010
[137] ——, “Ļe Mobile Web.” [Online]. Available: http://www.w3.org/2007/Talks/

0222-3gsm-tbl/.” Last checked in August 2010
[138] ——, “Ļe WebSocket API.” [Online]. Available: http://dev.w3.org/html5/

websockets/.” Last checked in August 2010
[139] ——, “Web SQL Database.” [Online]. Available: http://dev.w3.org/html5/

webdatabase/.” Last checked in August 2010
[140] ——, “Web Storage.” [Online]. Available: http://dev.w3.org/html5/webstorage/.”

Last checked in August 2010
[141] ——, “Web Workers.” [Online]. Available: http://dev.w3.org/html5/workers/

Overview.html.” Last checked in August 2010
[142] ——, “XMLHttpRequest.” [Online]. Available: http://dev.w3.org/2006/webapi/

XMLHttpRequest/.” Last checked in August 2010
[143] ——, “XMLHttpRequest Level 2.” [Online]. Available: http://dev.w3.org/2006/

webapi/XMLHttpRequest-2/.” Last checked in August 2010
[144] ——, “W3C Publishes HTML5 Draft, Future of Web Content,” 22 January

2008. [Online]. Available: http://www.w3.org/2008/02/html5-pressrelease. Last
checked in August 2010

[145] W3SŏŔśśŘş, “Flash Embedded in HTML.” [Online]. Available: http://www.
w3schools.com/flash/flash_inhtml.asp.” Last checked in August 2010

[146] T. V. WōŘ, “Folksonomy,” February 2 2007. [Online]. Available: http:
//www.vanderwal.net/folksonomy.html. Last checked in August 2010

[147] WHATWG, “FAQ.” [Online]. Available: http://wiki.whatwg.org/wiki/FAQ.”
Last checked in August 2010

[148] ——, “HTML5 (including next generation additions still in development).”
[Online]. Available: http://www.whatwg.org/specs/web-apps/current-work/.”
Last checked in August 2010

[149] ——, “Web Applications 1.0.” [Online]. Available: http://www.whatwg.org/
specs/web-apps/current-work/complete.html.” Last checked in August 2010

[150] ——, “WHATWG Speciŀcations.” [Online]. Available: http://www.whatwg.
org/specs/.” Last checked in August 2010

[151] B. WŔŕŠő, “Ļe Implications of Web 2.0 on Web Information Systems,” in Web
Information Systems and Technologies. Springer Berlin Heidelberg, 2007, vol. 1, pp.
3–7.

http://www.w3.org/Math/whatIsMathML.html
http://www.w3.org/Math/whatIsMathML.html
http://www.w3.org/standards/webdesign/script
http://www.w3.org/standards/webdesign/script
http://dev.w3.org/html5/eventsource/
http://dev.w3.org/html5/eventsource/
http://www.w3.org/2007/Talks/0222-3gsm-tbl/
http://www.w3.org/2007/Talks/0222-3gsm-tbl/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/workers/Overview.html
http://dev.w3.org/html5/workers/Overview.html
http://dev.w3.org/2006/webapi/XMLHttpRequest/
http://dev.w3.org/2006/webapi/XMLHttpRequest/
http://dev.w3.org/2006/webapi/XMLHttpRequest-2/
http://dev.w3.org/2006/webapi/XMLHttpRequest-2/
http://www.w3.org/2008/02/html5-pressrelease
http://www.w3schools.com/flash/flash_inhtml.asp
http://www.w3schools.com/flash/flash_inhtml.asp
http://www.vanderwal.net/folksonomy.html
http://www.vanderwal.net/folksonomy.html
http://wiki.whatwg.org/wiki/FAQ
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://www.whatwg.org/specs/
http://www.whatwg.org/specs/

	Contents
	List of Figures
	Introduction
	Disclaimer
	Content & objectives

	Understanding RIAs
	Definition and criteria
	Thick vs. thin applications
	Client/server applications vs. web applications
	RIA features and characteristics
	Deployment alternatives

	Why RIAs are emerging?
	Limitations
	Web applications vs. native apps: what to choose for the iPhone?
	RIAs as a part of a broader Web 2.0 era
	RIAs for enterprises
	Customer-oriented applications
	Organizational-oriented applications

	Techniques
	Ajax-based applications
	jQuery
	SproutCore
	Google Web Toolkit

	Adobe Flash & Flex
	Development characteristics
	Deployment over Flash Player or AIR

	Curl
	OpenLaszlo
	The LZX language
	Proxied & SOLO deployment

	JavaFX
	Development tools
	Deployment options

	Microsoft Silverlight
	Design patterns for rich web applications
	Model-view-controller & SproutCore MVC+SDR
	Model-view-presentation
	Model-view-viewmodel
	3-tier architecture

	UI layouts, controls and other components
	Screen layouts
	Controls
	Effects

	Features selection & platforms comparison
	A short discussion on web applications techniques

	On Standards...
	Why Web standards?
	Key Web standards in use today
	HTML
	CSS
	JavaScript

	HTML5
	HTML5 explained
	HTML5 features
	Other specs related to HTML5
	What about Geolocation, SVG, MahML and XHR?

	A short discussion on web applications standards

	End note
	Bibliography

