Université Catholique de Louvain

Faculté des Sciences Appliquées

Département d’Ingénierie Informatique

Reverse engineering of
Graphical User Interfaces
based on Resource Files

Promoteur : Mémoire présenté en vue

de l’obtention du grade de
Pr. J. Vanderdonckt

licencié en informatique

par Julien Marion

Louvain-la-Neuve
Année académique 2005-2006

Parmi les personnes qui m’ont
permis de réaliser ce mémoire, je
tiens tout particulierement a
remercier M. Jean Vanderdonckt
et M. Laurent Bouillon pour
leurs conseils, leur disponibilité
et leur gentillesse d’avoir
accepté de m’encadrer dans ce
travail. Je tiens a remercier ma
famille, et en particulier mes
parents pour leur soutien tout au
long de mes études.

Contents

T INErodUCTIONooiniiiiiie ettt e st e st e e st e e eabeeesabeeennreeens 5
2 State Of the Artcooiiiiiiii et 7
3 Reverse engineering methodccooooiiiiiiiiiiii 9
3.1 General MEthOQooviiiiiiie e e e e e e e e e e e e e enaaeas 9
3.2 Methodological ChOICES.ccoiiiiiiiieiiiieeieece e 13
33 Examples used and decompilation tOOIScc.eeviiiiiiiiiiniiiiiiiiiiicceceeeeeeee 16
34 Selected MEhOMc...oouiiiiiiiiiee et 17

4 Windows resource files ..o 19
4.1 EXaMPIESs Of TESOUICES.....eeeiuiiieiiieeiiie ettt e et e et e teeeseaeeeaaeeenaaaeesaeeenns 19
4.1.1 First example from SCITEccccoiiiiiiiiiiee e 19
4.1.2 Second example from 7-Zip File Managercccceevveeviiieeniiieeniieeiee e 20
4.1.3 Third example from RGB Editorcccoooiiiiiiiiiiiiiiiiicceeceeee 21
4.14 Fourth example from WinDirStatcoooviviiiiiiiiiiiiecceeee e 22
4.1.5 Fifth example from the Common Dialog Librarycccccceeviiiiiiiinninnnneen. 23
4.1.6 Sixth example from TablIEditcccoviiiiiiiiiieeieceee e 24

4.2 Resource files MOdeliZationc.coeiiiiiiiiiiiiiienieeiee et 26
4.2.1 Menus Class dIAZIAMNeeeiviieiiieeiiee ettt etee e e e e e eaeeesebeeenaeeeneeeeas 26
422 Dialog boxes class diagram...........ccueeeuiieriiieeiiieeniieeniee e 26
423 DOCUMENTATION ...ttt ettt et 28
424 CONSITAINESceeuieeeiiieeeite ettt ettt e ettt e et e e s bt e e s bt e e sabeeessbeesbbeeeabeesans 33

4.3 ReSOUTICE fIleS SIIUCTUIEeeeutiiiiiiiieiieeieeteecee ettt 35
4.3.1 Resources of type dialog DOXccoouiiiiiiiiiiiiiiiiieiieeee e 35
4.3.1.1 Dialog boX teMPIALEcccviieiiieeiiieeiieeeiie e 35

4.3.1.2 Controls definitioN.ccccveeiiiiiiiiiiieie ettt 39

432 Shortcut notations in the dialog box template..........ccccveevviveeriiieeriiieenieeeieens 45
433 Resource of type MeNU..........ooiiiiiiiiiiiiiiieieeeeee e 46
434 Other tyPeS Of TESOUITESuvvierurieeriiieiiieeeitieeriteeeiteeesteeesaeeesseeessseeensseeensseennns 47

4.4 About the decompilation tOOLSc..eeriiiiiriiiiiiiiiieiieeiee et 48

S USEXIML ..ottt sttt sttt sttt anenae e 50
5.1 Structure Of USIXIML c...coiiiiiii et 50
5.2 Concrete User Interface model..........occueiiiiiiiiiiiiiiiiiiieeece e 55

6 Importing resource files in GrafiXML.................cccooiiiiiiiiiicieee e 59
6.1 Transformation of resources into CUIcoooiiiiiiiiiiiiiieeeeee 59
6.1.1 Correspondences table..........coouiiiiiiiiiiieiiie e 59
6.1.1.1 Resources of type dialog DOXcccvuiiiiiiiiiiieeiiieeiee et 60

6.1.1.2 Resources Of tyPe MENUceoriiiiriiiriiiieiiieeeieeeeie ettt sieee e 66

6.1.2 Derivation TUIEScc.uiiiiiiiiieiieecee ettt 66

6.2 Plug-in deVeIOPMENLccooiiiiiiiiiiiiieeiieeeiee ettt sttt e 70

6.2.1 HOW 0 TUN T2ttt e e et e e e et e e e enaaeeeennnne 70
6.2.2 HOW £0 USE 1871t 71
6.2.3 SPECIIICALIONS ...ttt ettt et e et esbteesaree e 72
6.2.4 Description of my implementation.............c.eeerveeeriieenieeriieeniieeeiee e ens 73
T CONCIUSION. ..ottt ettt st ettt et e st e e 83
BibLIOGIaPRYoooiiiiiiii e ettt e e e nareeea 85

Appendix A Example of complete resource file

Appendix B Comparison of the resource files given by the decompilers
Appendix C Documentation of UML diagrams modeling a resource file
Appendix D Source code

1 Introduction

Software development as it’s commonly practiced today doesn’t look much like engineering,
but it should. Methods, models and automated tools composing software engineering practices
are requited to deliver software of high quality', and with low costs. The major source of
software problems is poor requirements specification. The extraction of these requirements is
the hardest function of software engineering, as the most important one since the cost of late
corrections is prohibitive. The user interface in particular rarely satisfies the real expectations
at the first time, it’s from the look and the manipulation of the final product that we see really
what is wrong. The requirements are also volatile. A feedback of users during the
development is needful to provide a pleasant interface, statically (the presentation®) as
dynamically (the dialog®). Traditional process models to lay out the different activities in the
development life cycle are also not always appropriated, especially for the conception of user
interfaces. For example, the waterfall model is a simple sequential composition of the
activities (requirements, specifications, design, implementation, integration, maintenance).
This model is too general and unrealistic to design user interfaces particularly because it not
address early validation. To reduce the risk of inappropriate user interface, better models still
make it possible the creation of interface prototypes and then more interactions with the users
during the development. For example, exploratory models allow successive revisions of the
software specifications based on prototypes quickly implemented from which we can obtain
users feedback (when the expectations are reached, we then apply the other traditional
software engineering phases). Another example is the spiral model allowing an iterative and
incremental development (certainly the stronger process model to minimize risks).

The life duration of a product is an important aspect. We wish that the code we write for big
applications will run for a long time, not that it becomes out-dated after few years. It’s also
needful to be able to produce a vast range of products (that is, multiple versions), and not only
one product. Software’s are subject to continual changes in their life cycle, and organizations
devote significant resources to their maintenance and evolution. [The problem is to quickly
adapt the user interface of interactive applications to these changes.]As the technologies
evolve (mobile devices, e-commerce...), the requirements evolve too (additional versions,
interface migration to the web ...). The today constant evolution of the variety of computing
platform (a specific software and hardware environment) requires more efforts to cope with
software portability4.

! The usability of a product is a factor of quality.

% For example, the service has to be easily visible and the critical services easily accessible.
? For example, a good scheduling of the actions to be performed has to be defined.

* The portability of a product is another factor of quality.

Graphical user interfaces are important parts of today’s interactive applications. If we
examine the code of interactive applications, a large part is generally devoted to the user
interface portion. The development of user interface can then be strong component in the
global cost engendered (dominated by the maintenance). It is then normal that software
engineering also include well established methods to develop the user interface, uncoupling it
from the application. The various aspects to take into consideration (such as the interactive
task to perform, the domain, the context of use’ , the presentation of information and the
dialog between the user and the system) are generally captured by means of models. These
specific models explicitly capture knowledge about the user interface with appropriate
abstraction. The importance of having user interface engineering models justifies the need of
providing appropriate automated tools to create each of these models. The design can be
rapidly prototyped and implemented (possibly even before the application code is written) and
it’s easier to incorporate changes discovered through user testing. The motivation is also to
facilitate the creation of user interfaces that work on any platform available today.

The goal of this thesis is to develop a tool aimed to capture the essence of an application’s
graphical user interface and recreate a model at a more abstract level (specifying the user
interface without the multiple details linked to the implementation in a specific language). It
will serve principally as automated support for reengineering activities such as the redesign of
existing interfaces for another platform.

A method which performs abstraction is reverse engineering. The results can be then reused in
a forward engineering phase to regenerate user interface code, achieving a reengineering
cycle. The originality is that the model will not be extracted by the examination of the entire
source code, but from the resource file of an application storing user interface information.

My approach to reuse an existing application’s graphical user interface especially for
different platforms can be stated as the specification of this interface starting from the
resource file of the application and describing it and at a higher level of abstraction,

allowing a subsequent reengineering process adapted to any platform.

> The platform, the user and its environment define together the context of use.

2 State of the art

I will mension here some related works to the reverse engineering of application’s user
interfaces to show that this method is commonly used today. Many organizations for example
are choosing to reengineer their critical applications to better fit their needs and to take
advantage of the new technologies. Most of these researches lead to reverse engineering of
legacy systems6 user interfaces.

MORPH [1] is a process for reengineering the user interfaces of text-based legacy systems to
graphical user interfaces. The resulting model is used to transform the abstractions in the
model to a specific graphical widget toolkit. The process is composed of three steps. In the
detection step, the source code is analyzed to identify user interaction components in the
legacy system thanks to a detection engine. In the representation step, an abstract model is
build expressing the existing user interface (as derived from the detection step). The model is
then stored in the knowledge base. In the transformation step, human analyst can refine the
model thanks to the transformation engine which makes it possible to manipulate, augment
and restructure of the resulting model to a graphical environment. The transformation stage
suggests specific graphical implementations and integrates them for user interface
abstractions into the legacy code.

The AIUDL [2] environment was a pioneer approach in user interface (UI) reengineering.
The original UI is first translated in AUIDL (Abstract Ul Description Language). This
language is able to represent UI objects in terms of both structure and behaviour. Different
levels of abstractions can be defined. To translate the interface in AUIDL, user actions and
system responses have to be identified using pattern matching techniques’. The Milner’s
process algebra is used to map out the behaviour of the system. The spatial organization of
display objects is explicitly described with two mechanisms: containment and importation of
attributes from other objects®. An abstract syntax tree is first obtained from the source code of
the system. A module extracts UI fragments from it, and the abstract specification of the Ul is
then constructed. This last step is semi-automated: a part of the code is parsed and
automatically abstracted and the remaining is left to the programmer. Finally, the AUIDL
specifications are translated in the EASEL language (this language allows the automated

® A legacy system is a computer system or application program which has been in place for a long time and
which continues to be used because an organization does not want to support the costs of replace or redesign it.

" The code of a Ul is parsed to build a manipulable representation of it. Interface fragments are then extracted
from this representation, and a pattern matcher identifies syntactic patterns in the fragments. Using the code
fragments as a basis, details about modes of interaction and conditions of activation are identified with control
flow analysis.

¥ For example, an object imports the x-coordinate of another object to describe an alignment for these objects.

generation of screens for the IBM 3270 environment) and the generated code is linked with
application core.

Since there is an increased demand to make legacy systems accessible through the web in
order to support e-commerce activities, the problem of these systems’ user interface migration
to web-accessible platforms is becoming important. Instead of analysing the code to extract a
model of its structure, the Cellest [3] process analyse traces of the system-user interaction to
model the behaviour of the user interface. This produces a state-transition model which
specifies the screens (as state) and the possible commands leading from one screen to another
(as transitions between the states). To capture user interaction during the use of the legacy
system, Cellest is composed of a recorder and a pilot allowing. The recorder localizes aspects
of the legacy system relevant to a specific task. In this approach, an interface is viewed as a
collection of screens, each allowing a set of transition actions to other screens. The screens are
captured by the recorder that records each session (visited screens, actions in order to achieve
specific tasks). The pilot translates the transition actions in functionally equivalent actions in a
new graphical user interface. The code is not needed in this approach and the necessary
information is extracted to complete the tasks on the old system. The model produced is used
to construct models of the tasks performed in the system. These models are then used to
develop a new web-accessible interface for executing these tasks (in a forward engineering
phase).

The reverse engineering step is not only used for the reengineering of a Ul. For example, I
could still mension a process named GUI Ripping [4] which creates a model from a graphical
UI for testing. To detect defects in Uls, test cases can then be automatically generated.

3 Reverse engineering method

I present in this chapter the reverse engineering method that will be used to obtain the
specifications of an existing graphical user interface.

3.1 General method

Reverse engineering is the general process of analyzing a technology to see how it works.
Originally, it's a practice taken from industries that is now frequently used on computer
software. In the automobile industry, for example, a manufacturer may purchase a
competitor's vehicle, disassemble it, and examine the components to enhance their vehicles
with similar components. Reverse engineering as a method can also be used in the
development of software, including the user interface (UI) part giving access to its core
functionalities. Such method does not involve changing the existing source Ul or creating a
new Ul based on the reverse engineered source Ul It is a process of examination, not change
or replication.

To give a simple definition’, reverse engineering is "the process of analysing an existing
system to identify its components and their interrelationships and create representations of
the system in another form or at a higher level of abstraction. Reverse engineering is usually
undertaken in order to redesign the system for better maintainability or to produce a copy of

a system without access to the design from which it was originally produced."

In black box reverse engineering, systems are observed without examining internal structure.
For example, one might take the executable code of a program, run it to study how it behaved
with different input and then attempt to write a program which behaved identically (or better).
In white box reverse engineering the inner workings of the system are inspected.

We could think that reverse engineer a program is reversing a program's machine code back
into the source code that it was written in. But it’s a familiar use of the term. Here is a
diagram [5] of the most traditional form of reverse engineering, which is an in-depth analysis
(usually starting with source code) performing abstraction:

? From the free on-line dictionary of computing http://foldoc.doc.ic.ac.uk/foldoc/.

(alteration)

re-think |
Concepts Concepts

Forward Engineering
(refinement)

Reverse Engineerin :
an J Requirements | "eSPECify | poqvirements
(abstraction) >

. re-design .
Design 9 » Design
. re-code .
Implementation » Implementation
compare

Existing system Target system

functionality
quality

The most traditional method of development is referred to as forward engineering. In the
construction of UI, designers develop a product by implementing engineering concepts and
abstractions. By contrast, reverse engineering begins with final product, and works backward
to recreate the engineering concepts.

Due to the rapid changes and evolution of organisations and their business activities, the
challenge is to quickly adapt their Uls of their interactive applications to these changes.
Rather than create a new system, reengineering can be used to redesign the existing system.
Note that reengineering involves reverse engineering followed by forward engineering. It is
not a super type of the two.

The goal of maintenance in software engineering is to obtain a new version which responds
some modification requests. There are tree types of modification: a correction of detected
faults, an improvement to have a better quality (performance, usability...) and an adaptation
due to different, new or restricted requirements (called a variation, an extension and a
contraction respectively).'’ Reengineering is important since maintenance takes a great place
in software production. Actually, the distribution of efforts (and then of costs) is often
inadequate, and as consequence the cost to manage multiple versions for example is
exorbitant. According to observations [6], the average distribution of the total cost of
production (including development and maintenance costs) of a typical project can be
represented by this pie-chart:

unit tests

code
8%
design
requirements K
concepts [3% ————\\J

maintenance
67%

integration tests

1 The new version is a revision when the modification is a correction or an improvement, and a variant when the
modification is an adaptation.

10

The Ul is rarely perfectly designed at the first shot, and the UI code has often to be rewritten
completely when the software needs to be transformed for another platform. A substantial part
of the code written for interactive applications is devoted to the user interface. This code has
to be identified and replaced. UI design is then time-consuming and expensive in the
development life cycle. Techniques for reengineering are important since too few time and
effort are usually put in the specification and the conception of UI reliable, portable and
maintenable. Moreover, the source code of the software may not always be available. When
purchasing an application, the executable is often supplied to an organisation without any
source code. Or the source code can also be lost. If we want to get a version with an interface
in a more adapted language, correct errors and limitations in the existing interface or still
transform or redesign an obsolete product into a useful one by adapting them to a new
platform, the only way to present the information in a language that a programmer can
understand is to have recourse to the software decompilation (translating binary code into
source code). But the interpretation is a tedious task since original comments and
specifications are not present in the resulting code.

The general purpose of reverse engineer a Ul, which is the subject of my thesis, is to examine
an existing application’s Ul in order to extract an abstract representation. The method will be
able to provide an automated way to extract relevant information (and in case of poor or non-
existent documentation of the code, this also economizes efforts), to generate an additional
view more synthetic of the UI (that will aid its review or modification) and to facility reuse.
This contributes to the purpose of reengineer a Ul, which is the transformation of the UI for
another platform.

I describe in this thesis an approach to reverse engineer the Ul of applications designed for a
desktop machine directly from the executable file. A subsequent forward engineering process
can be triggered. Instead of looking in the source code (composed of the functional core and
the UI expressed in some programming language) for the part related to the UI, it’s sometime
possible to explore resources used and extract them from the executable file.

In addition to source code, most applications include resources used at runtime. Resources can
be composed of a wide range of elements, including elements that are necessary for the UI but
are not part of the application code itself and custom resources that contain data the
application needs. Resources are additional binary data stored in an executable file. They do
not reside in the executable program's data area (that is, the resources are not immediately
addressable by variables in the program's data segment), but are appended to the executable in
a separate area. When a program is loaded into memory for execution, it usually leaves
resources on disk. A particular resource is loaded into memory when an application needs to
use it for the first time. Just as multiple instances of the same program share the same code,
multiple instances also usually share resources. Without the concept of resources, a binary file
such as an icon for example would probably have to reside in a separate file that the
executable would read into memory to use. Or the icon would have to be defined in the

11

program as an array of bytes (which make it difficult to visualize the actual icon image). As a
resource, the icon is stored in a separate file and is bound into the executable file during the
build process. All the resources are usually defined in a main file which is added, once
compiled, to the application's executable file.

The following illustrates the general method that I’ll used to reverse engineer the Ul. The
process starts from an executable file (a binary file containing a program in machine language
which is ready to be executed).

Reverse Engineering
Executable

(binary file)

v

Resource file
extraction

F—

v

A A

Resource Reverse Engineering Tool

file

UIDL
~——

A4

User interface generator

)) code
Forward Engineering

The input of the tool to develop is a text-based resource file containing user interface

information extracted from an executable.

The extraction can be made by some decompilation tool (that is, a program that converts the
resource definition from machine language to some text programming language).
Decompilation can be reverse engineering, since it is increasing the level of abstraction. It's
just that it starts lower and ends lower (with the implementation, i.e. the source code) than
most reverse engineering. Then decompilation would be part of my reverse engineering
(although compilation is not considered part of forward engineering, since it is an automatic

step).
The given UI has to be described at a level of abstraction that is higher than the level where

code is manipulated. The output will be the UI expressed in a User Interface Description
Language (UIDL). A specification language has to satisfy some requirements to be qualified

12

as UIDL. The UIDL should be precise to enable automatic specifications processing. It should
be expressive enough to support software engineering techniques (such as model derivation).
It should be compact, expressed in a standard format and as much as possible human-readable
to allow designers and developers to exchange their specifications.

This transformation completes the reverse engineering part. The UIDL file then serves as
input for forward engineering to generate Ul code for a target computing platform.

3.2 Methodological choices

This section present the choices that I’ve made to instantiate the general method illustrated in
the previous section.

The reverse engineering tool presented in this thesis is limited to operate on Ul of MS
Windows’ applications. Its input is any Windows resource script file (*.rc), from which high-
level requirements will be extracted.

I’ve chosen to focus my investigation on Windows Uls since this operating system has broken
into the market. But the scope of the analysed Uls could be enlarged by considering other
formats of resource files. Resources such as nib (*.nib) or images (*.icns) resource files can
also be packaged with Mac OS-based applications. Nib resource files store Ul information,
including windows, dialogs, and Ul elements such as buttons, sliders, text objects, and help
tags for these elements.'’ They are a bundle, which means they are really a directory structure,
not a single file. I can mention also the screen definition files which are text files describing
the layout of the display.'* The method proposed could be generalized to these types of files.

A resource file associate to an executable MS Windows programs can include various types
of resources, such as principally accelerator table, bitmap, cursor, menu, dialog, icon, string
table and version information. An accelerator table is used to define key combinations that
generate a command message (often to duplicate the action of common menu options). Some
programs use customized mouse cursors to represent different operations of the program.
Programs usually use menus, dialog boxes and customized icons (such as the icon displayed
in the upper left corner of the title bar of the application window or shown as a shortcut on the
desktop). The data in a resource can also describe character strings not defined as variables in
the source code. The text used in a Ul is isolated in one file to make easier the translation of a
program in other languages and to reduce memory space. In addition to the standard

" An application can use several nib files, with one of them designated as the main nib file (containing the main
menu and any windows appearing when the application starts up). Other nib files can be loaded whenever
needed. A good rule for creating nib files is to use one nib for each separate kind of window in the application.

2 They learn each window (screen) in an application and each object within that window.

13

resources, a user-defined resource (also called a custom resource) can be used to attach any
data in a convenient format required by a specific application.

These resource are defined in a resource script file (*.rc). This file is an ASCII text file. It
contains representations of the resources that can be expressed in text, such as menus and
dialog boxes. It also contains references to binary files that contain non text resources, such as
icons and customized mouse cursors. All resources in a resource script file are defined using
identifiers that, together with the type of the resource being referenced, uniquely identify each
resource in an application. Once compiled, the resources are binary data. The binary compiled
resource file (*.res) is then added to the executable file.

The resources appended to an executable can be extracted thanks to existing freeware utilities.
I propose in the next section those that I’ve used. Thanks to these tools, image resources (such
as cursor, icon, bitmap, gif, avi, and jpg files) can be viewed, audio resources (such as wav
and midi files) can be played and the other type of resources (such as accelerator table, menu,
dialog, string table and version information) can be viewed as decompiled resource scripts.
Menus and dialog boxes can also be viewed as they would appear in a running application.
These programs are usually used to edit the resources (modify, add and delete resources). The
resources can also be saved as image files (*.ico, *.bmp etc.), as binary resource files (*.res)
or as resource script files (*.rc). This last functionality giving a text representation of the Ul is
integrated in my reverse engineering process. An example of resource script file generated by
one of these tools is given in appendix A.

The reverse engineering tool will provide as output a UsiXML (User Interface eXtensible
Markup Language) description of the given resource script file. This language gives an XML
UI description. It has been chosen to express the abstract representation of the UI because it’s
a UIDL that can be used to specify a platform-independent Ul and enabling multi-path UI
development. UsiXML can express various models depending on the level of abstraction. In
my case, the UI will be reverse engineered at a level of abstraction dependent of the modality
of interaction since it’s a graphical UI. The model produced at this level is the Concrete User
Interface (CUI) model. It can represent in a sufficient degree of expressiveness the elements
perceived in a Ul code in any specific language. A set of forward engineering tools using this
language are also today available. The UsiXML language and its level of details and
abstractions are introduced in chapter 5. XML is frequently used to describe and design UI for
any device, any target language and any operating system on the device. Another well-known
language is UIML, which is a relatively simple markup language (a little over two dozen
tags). Various other related languages exist today, such as XUL (Xml-based User interface
Language), XIML (eXtensible Interface Markup Language), AUIML (Abstract User Interface
Markup Language), useML (Useware Markup Language) or XICL (eXtensible user Interface
and user interface Components Language).

14

To accomplish the transformation of a Ul specification from one format to another, I’ve
decided to implement a new plug-in into the GrafiXML tool."”” In order to facilitate the
edition of a new Ul in UsiXML (at the CUI level), GrafiXML has been developed as a
graphical tool to draw Uls. It’s an editor based on

. . UsiXML
a classical element-based approach (that is, all the T ﬁ '\

elements are directly described by a physical form F — > HTML _ Java

we can identify and assign a meaning). The user
can draw in direct manipulation a Ul by placing elements and editing their properties in the
composer, which are instantly reflected in the XML editor.'* At any time, the user can see the
corresponding UsiXML specifications and edit it (and if a tag or the elements are modified,
the changes are propaged to the graphical representation). The user can then then save the Ul
in the UsiXML format. I will use this tool in order to reverse engineers a resource script file
and obtain a CUI model. By importing a resource script file into GrafiXML, the layout of the
specified UI will have to be displayed in the composer and the UsiXML specifications will
have to be generated in the XML editor. The UsiXML file can then for example serve as input
in forward engineering to generate Ul code designed for another platform.

Using GrafiXML in my method has several useful advantages. Firstly, this will considerably
facilitate my implementation: I can use built-in methods to generate and manage elements at
the desired level of abstraction after having defined transformations rules. Then, the designer
can view the result in a graphical form when reverse engineering a resource script file, and not
only a XML specification. This gives some confidence in the reliability of the tool without
having to implement some code giving the rendering. This graphical representation will also
help me to validate my tool in the testing phase. The actual result can be rapidly compared
with the expected one and the produced model can be easily analysed. Finally, GrafiXML is
able to automatically generate UI code in HTML, XHTML (Extensible HyperText Markup
Language'®), XUL and Java thanks to a series of plug-ins. Reengineering of a resource script
file can then be automated to obtain the code in these high-level languages.

The development of a new plug-in enhances also the functionalities of GrafiXML. Existing
Uls can be reused and incorporated in a project current edited in the tool. We can see the
utility of the plug-in that I will develop from two different points of view. As usual,
GrafiXML can be used as an editor to specify Uls in UsiXML (at the CUI level) where
Windows Uls can be imported. Or it can be used as a reverse engineering tool.

" This free and open source software is available on http://www.usixml.org/.
1 will show an illustration in the chapter 5.
' 1t’s a reformulation of HTML in XML.

15

3.3 Examples used and decompilation tools

I list here the Uls that will guide my analysis throughout my thesis. I will show in the next
chapter how they are specified in a resource script file (they are also illustrated in appendix
B). I list after the tool that I’ve used to extract the resource script files.

I've selected five 32bit Windows applications'®: S¢iTE v1.62 (a source code editor), 7-Zip
File Manager v4.15 (an file archiver), Windirstat v1.1.0 (a disk usage statistics viewer and
cleanup tool), RBG Editor v3.9 (a small utility for selecting and creating RGB - Red, Green
and Blue — colors) and TablEdit v2.60d5 (a program for creating, editing, printing and
listening to tablature and sheet music). For each of these applications, I’ve pick up one
resource to analyse.

Resources are additional data accompanying a Windows application. They are usually stored
with the executable. They can also be stored in a separate file named Dynamic Link Libraries
(*.dll). As the name suggests, these libraries are not linked into the executable (*.exe) file
during its creation, rather they get loaded dynamically into the system memory at runtime
(that is, they are linked to applications are loaded in memory). Windows is operating system
which uses dynamic linking. This means that the same block of library code can be shared
between several applications rather than each application containing copies of code. Another
exemple is not a resource from a particulary application, but from the Windows Common
Dialog Library (comdlg32.dll) that provide common dialog boxes used by Windows
applications (such as the 'open file' and 'print' dialog boxes).

A decompiler can be used to offer a thorough look at all of the resources in the compiled
executable file. To bring into relief eventual variances in the informations they produce, I’ve
used four resource editors'’ (including a decomplilation tool): Resource Tuner v1.95,
Restorator v3.00, Resource Builder v2.3.0.8 and Resource Hacker v3.4.0. Sush utilities
enable to view, modify, add or delete resources in executables, but also to extract them in a
file with a .rc extention, displaying readable information about the structure of the individual
resource. I discuss the differences in the files they generate at the end of the next chapter.

I can already see the link between the two text files describing a Windows Ul (a resource file
generated by a decompilation tool and another file expressed in the UsiXML language): by
reproducing manually the UI in the GrafiXML editor, I can obtain a first specification. The
two types of file obtained, describing on its own manner the interface, are always a textual
representation of the resource. They can be then compared.

' They can be found on the net. The three first applications are sharewares (from http://www.framasoft.net and
the two others are free for try.

" They can be downloaded on http://www.restuner.com, http://www.bome.com/Restorator (a shareware version
limited to a 30-day trial period), http://www.resource-builder.com (also limited to a 30-day trial period) and
http://www.angusj.com/resourcehacker respectively.

16

3.4 Selected method

The goal to achieve in this thesis can be reformulate as the development of a reverse
engineering tool which will read any Windows resource script file and generate into
GrafiXML the corresponding UsiXML specifications (at the CUI level). Here is an illustration
of the selected method:

2
dll file
v

- Java
el
11 Restorator XHTML
\ XUL

GrafiXML UsiXML
file

We have beforehand to extract the resource script file from an executable (Windows uses the

filename extension ".exe"), here for example with Restorator. Note that these tools
incorporate also an internal resource script compiler (called a RC compiler). Once a resource
compiled, the resources are modified in the application's executable file.

17

18

4 Windows resource files

In the previous chapter I’ve stated my problem which is the reverse engineering of Windows
resource script files. I see in this chapter the content of these source files and give a meta-
model describing them. In the next chapter, I present the target language which will be used to
specify these file in a higher level of abstraction.

4.1 Examples of resources

In this section I show the examples that I’ve chosen and how they are described in the
resource script file (*.rc). Each resource is extracted by one particular decompiler. To
compare the information generated, the resources given by the other decompilers are in
appendix B. In the fourth section I'll make a discussion over the different decompilers and
suggest my favourite. Each example come from one application mentioned in the chapter 3:
the files that have been used in the decompilation tools to obtain these resources are
SciTE.exe, 7zFM.exe, windirstat.exe, rgb.exe, comdlg32.dll and tabledit.exe.

4.1.1 First example from SciTE

The first graphical object is a dialog box called up by selecting “Find” from the “Search”
menu, and will serve as main illustration for this chapter:

Find E'
Find what: || v| | FindNed |
[Match whole ward anly Dirsction Mark Al
[Match case O e
[Regular exprassion © Down L
Wrap around
[] Transform backslash expressions

With a resource editor, the resources can be saved in an ASCII resource script file. This is
what is generated by Restorator:

19

400 DIALOG 30, 73, 275, 84

STYLE DS_SETFONT | DS_MODALFRAME | DS_3DLOOK | WS_POPUPWINDOW | WS_CAPTION

CAPTION "Find"

FONT 8, "MS Shell DIg"

{
LTEXT "Fi&nd what:", -1, 5, 7, 45, 8
COMBOBOX 222, 50, 5, 145, 50, CBS_DROPDOWN | CBS_AUTOHSCROLL
AUTOCHECKBOX "Match &whole word only", 232, 5, 22, 120, 10, WS_GROUP
AUTOCHECKBOX "Match &case", 233, 5, 34, 130, 10, WS_GROUP
AUTOCHECKBOX "Regular &expression", 239, 5, 46, 120, 10, WS_GROUP
AUTOCHECKBOX "Wrap aroun&d", 240, 5, 58, 120, 10, WS_GROUP
AUTOCHECKBOX "Transform &backslash expressions", 241, 5, 70, 160, 10, WS_GROUP
GROUPBOX "Direction", -1, 135, 22, 60, 34, WS_GROUP
AUTORADIOBUTTON "&Up", 234, 140, 30, 45, 12, WS_GROUP | NOT WS_TABSTOP
AUTORADIOBUTTON "&Down", 235, 140, 42, 45, 12, NOT WS_TABSTOP
DEFPUSHBUTTON "&Find Next", 1, 205, 5, 65, 14, WS_GROUP
PUSHBUTTON "&Mark All", 245, 205, 23, 65, 14
PUSHBUTTON "Cancel", 2, 205, 41, 65, 14

The first line gives a name to the dialog box (in this case, 400). The name is followed by the
keyword DIALOG and four numbers. The first two numbers are the x- and y-coordinates of
the dialog box when the dialog box is invoked by the program. The second two numbers are
the width and height of the dialog box.'® These coordinates and sizes are not pixels, but are
based on the size of a system font character (in this case, an 8-point MS Shell Dlg font'"): x-
coordinates and width are expressed in units of 1/4 of an average character width and y-
coordinates and height are expressed in units of 1/8 of a character height.”” Because system
font characters are often approximately twice as high as they are wide, the units on both the x-
and y-axes are about the same. The second line defines some style for the dialog box (a
combination of window style and dialog style). Within the left and right brackets are defined
the child window controls that will appear in the dialog box. This dialog box uses six types of
child window controls: a left-justified text, a combo box, a group box, radio buttons and push
buttons. The first number is a value that the child window uses to identify itself when
communicating to its parent (the dialog box window).”’ The next four numbers set the
position of the child window control (relative to the upper left corner of the dialog box's client
area) and the size. Some style flag can also follow to define more precisely the appearance
and functionality of the control.

4.1.2 Second example from 7-Zip File Manager

I take an interest here to the menu bar of an application. With a resource editor (here Resource
Hacker), menus and Dialogs can also be viewed as they would appear in a running
application. The following is the extracted menu resource.

'8 Notice that if the dialog boxe has a caption bar (which is the case here), these measurements concern the
dialog box's client area, and the caption bar will be shown above the y-coordinate.

' In fact, MS Shell Dlg is not a physical font, rather a face name of a nonexistant font. It ensure the previous
Windows operating system compatibility. It can be specified in either the Setup file during the installation
process or when customizing a local system by double-clicking Control Panel's Regional Options icon. Because
the font generated using MS Shell Dlg is different on different versions of Windows, the dialog box can look
different depending on the version.

% This allows using coordinates and sizes that will retain the general dimensions and look of the dialog box
regardless of the resolution of the video display.

! Because the text control does not send messages back to its parent, this value is set to -1.

20

EX Menu - 103
VI Favorites Tools Help

Large Icons Ctri+1
Small Icons Ctrl+2
List Ctrl+3

v Details Ctrl+4
Name Ctrl+F3
Type Ctrl+F4
Date Ctrl+F5
Size Ctrl+Fa
Unsorted Ctrl+F7
2 Panels Fa 1 8)

Archive Toolbar
| Standard Toolbar

Cpen Root Folder |
Up One Level Backspace Large Buttons

Folders History... Alt+F12 Show Buttons Text

Refresh Ctrl+R]

4.1.3 Third example from RGB Editor

103 MENU
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
{
POPUP "&File" {...}
POPUP "&Edit" {...}
POPUP "&View"
{
MENUITEM "Lar&ge Icons\tCtrl+1", 410
MENUITEM "S&mall Icons\tCtrl+2", 411
MENUITEM "&List\tCtrl+3", 412
MENUITEM "&Details\tCtrl+4", 413, CHECKED
MENUITEM SEPARATOR
MENUITEM "Name\tCtrl+F3", 420
MENUITEM "Type\tCtrl+F4", 421
MENUITEM "Date\tCtrl+F5", 422
MENUITEM "Size\tCtrl+F6", 423
MENUITEM "Unsorted\tCtrl+F7", 424
MENUITEM SEPARATOR
MENUITEM "&2 Panels\tF9", 450
POPUP "Toolbars"
{
MENUITEM "Archive Toolbar", 461
MENUITEM "Standard Toolbar", 460
MENUITEM SEPARATOR
MENUITEM "Large Buttons", 462
MENUITEM "Show Buttons Text", 463
>
MENUITEM SEPARATOR
MENUITEM "Open Root Folder\t\\", 430
MENUITEM "Up One Level\tBackspace", 431
MENUITEM "Folders History...\tAlt+F12", 432
MENUITEM SEPARATOR
MENUITEM "&Refresh\tCtrl+R", 440
>
POPUP "F&avorites" {...}
POPUP "&Tools" {...}
POPUP "&Help" {...}
¥

The next example is the options dialog from the “File” menu of the application. It’s now

Resource Tuner that is used to see the resource:

1000 DIALOG 0, 0, 320, 172

STYLE DS_SETFONT | DS_MODALFRAME | WS_CAPTION | WS_POPUP
CAPTION "General"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 8, "MS Sans Serif"

{
CONTROL 1999,-1,"STATIC",SS_BITMAP|SS_REALSIZEIMAGE|SS_SUNKEN,7,7,18,20

ICON 2655, -1, 132, 7, 18, 20

AUTOCHECKBOX "&Launch Multiple Instances", 108, 167, 5, 99, 8
AUTOCHECKBOX "&Place Icon in Taskbar Tray", 111, 167, 17, 99, 8
AUTOCHECKBOX "Confirm Program &Exit", 112, 167, 29, 79, 8

LTEXT -1, 118, 40, 195, 1, NOT WS_GROUP | SS_ETCHEDHORZ

LTEXT "Select the Type of Macro to be Copied to Clipboard",-1,125,43,165,8
ICON 2535, -1, 130, 55, 18, 20

AUTORADIOBUTTON "&RGB Macro", 101, 167, 55, 52, 8, WS_GROUP
AUTORADIOBUTTON "He&xadecimal", 102, 167, 65, 56, 8
AUTORADIOBUTTON "HTML &Macro", 103, 167, 75, 56, 8

LTEXT -1, 118, 86, 195, 1, SS_ETCHEDHORZ

LTEXT "Specify the Color Swatch Size for Clipboard Copies",-1,125,90,165,8
ICON 2000, -1, 130, 103, 18, 20

LTEXT "&Width", -1, 167, 103, 22, 8

EDITTEXT 104, 193, 100, 30, 12, ES_AUTOHSCROLL | ES_NUMBER
CONTROL "Spinl", 106, "msctls_updown32", 0x000000B7, 222, 100, 10, 12
LTEXT "&Height", -1, 167, 115, 22, 8

EDITTEXT 105, 193, 114, 30, 12, ES_AUTOHSCROLL | ES_NUMBER
CONTROL "Spin2", 107, "msctls_updown32", 0x000000B7, 222, 114, 10, 12
LTEXT -1, 118, 129, 195, 1, NOT WS_GROUP | SS_ETCHEDHORZ

ICON 2815, -1, 130, 131, 18, 20

AUTOCHECKBOX "&Camera Shutter Sound when Copying",109,167,137,133,8

ICON 2525, -1, 131, 149, 18, 20
AUTOCHECKBOX "&Sounds with Warning Dialog Boxes",110,167,154,126,8

¥

ﬁ 3 [Launch Multiple Instances

Dialog: 1000

3] Place lean in Taskbar Trap
[Confirm Program Exit

Select the Type of Macro to be Copied to Clipboard
) RGE Macro

() Hexadecimal

) HTML Macro

Specify the Colar Swatch Size for Clipboard Copies
width [0 2
Height 0 3

a [] Camera Shutter Sound when Copying
4]) [] Sounds with ' aming Dislog Boses

It happens that styles are expressed with hexadecimal number instead of flag identifiers. In

reality, a flag correspond to a bit (or a group of bits for some mutual excusive flags)

positioned in a word of 32 bits in memory (as in the binary .res resource file): 1 if the style is

present, O else. In this case, the hexadecimal number B7 for the up-down control to the binary

21

number 10110111, which correspond to the UDS_WRAP | UDS_SETBUDDYINT |
UDS_ALIGNRIGHT | UDS_AUTOBUDDY | UDS_ARROWKEYS | UDS_NOTHOUSANDS flags
combination. Note also that the bitmap (the first control) has not the same dimension in
Resource Tuner that in the application (see in appendix).

4.1.4 Fourth example from WinDirStat

This example corresponds to the dialog box called up by selecting “Configure WindirStat...”
from the “Options” menu. Notice that the tab control doesn’t appear to the right. In fact, there
is one dialog box specification in the resource file for each tab item (the dialog box called
“WinDirStat” which aggregates them is missing).

KA Dialog - 143

=
838 87 18 91 Static

FElidN [T | (i |
ELlAN

Static Static Static Static

L

Bright- Cushion Height Scale

ness Shading Factor Bright- Cushion Height Scale
ness Shading Factor
Style [show Grid — T Light Incidence Style . iy Static
@) kpirstat L] ok I~ Show Grid S Light Incidence
Reset o " wistat =
) Sequoiaview Highlight Rectas Defaults
l l PITIE = (" sequoiaView Highight Rectangle |

The following is the related part of the resource script file (from Resource Hacker):

143 DIALOGEX 0, 0, 380, 202

STYLE DS_FIXEDSYS | WS_CHILD | WS_DISABLED | WS_CAPTION | WS_SYSMENU

CAPTION "Treemap"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 8, "MS Shell DIg", FW_NORMAL, FALSE, 1

{
CONTROL "&Bright-\nness", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 237, 122, 32, 18
CONTROL "%, 1212, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 245, 17, 16, 104
CONTROL "&Cushion\nShading", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 271, 122, 32, 18
CONTROL "", 1211, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 279, 17, 16, 104
CONTROL "&Height", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 305, 122, 32, 18
CONTROL "", 1210, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 313, 17, 16, 104
CONTROL "&Scale\nFactor", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 339, 122, 32, 18
CONTROL "", 1209, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 347, 17, 16, 104
CONTROL "&Light Incidence", -1, STATIC, SS_RIGHT | WS_CHILD | WS_VISIBLE | WS_GROUP, 246, 147, 59, 8
CONTROL "Static", 1220, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 313, 146, 58, 48
CONTROL "", 1034, BUTTON, BS_PUSHBUTTON | BS_MULTILINE | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 242, 167, 55, 22
CONTROL "St&yle", -1, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE, 7, 146, 63, 49
CONTROL "&KDirStat", 1213, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 12, 159, 42, 10
CONTROL "Se&quoiaView", 1214, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 12, 176, 53, 10
CONTROL "Show &Grid", 1022, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 76, 150, 54, 10
CONTROL "Grid &Color", 1030, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 134, 150, 85, 14 , 0x00001000
CONTROL "H&ighlight Rectangle",1202, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 76, 175, 143, 14 , 0x00001000
CONTROL "Static", 1219, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 339, 7, 32, 8
CONTROL "Static", 1218, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 305, 7, 32, 8
CONTROL "Static", 1217, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 271, 7, 32, 8
CONTROL "Static", 1216, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 237, 7, 32, 8
CONTROL "Static", 1215, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 7, 7, 211, 124

22

In this case, the two hexadecimal numbers 1000 means that the thirteenth bit from the right22
is set to 1, which correspond to the flag WS_EX_RIGHT (since it is an extended dialog, the
controls can have extended styles that occur here to the end of a line). Using this style with a
push button control has the same effect as using the BS_RIGHT style that right-justifies the text
in the button rectangle.

4.1.5 Fifth example from the Common Dialog Library

I’ve noticed that the ‘open file’ dialog box was not present in the resource of SciTE. In fact,
the application uses one of the Windows dialog boxes stored in a specific file (comdlg32.dll)
that many applications import in their interfaces.” This is precisely the dialog often displayed
by selecting ‘open’ from the ‘file’ menu (or by pressing CTRL + O) that serve as example
here:

£ Dialog - 1552

Dpen

Look in; |bResc_urca Builder 2.0 v'| @ j; E® v Lock in: ;J

L@ [CIDFM_CEilders
- [CIDFM_Delphit
e T
@rbcore.dll
= ¥ Resbidr 2. ex0
@ @ ResBuilder.chm
Desktap E sicmplr.dll

@ sircc32.exe
unins000.dat

._’J & Lnins000. exe L L]

9
e My Computer|

Iy Carnputer
File name ; | v | [Open _.] File name : I _'_l Open
. Files of type - [40 Files -4 a3 [Files of type - L =] Cancel
My Networl: ™ Open as read-anly) s . Open as read-only

1552 DIALOGEX 0, 0, 370, 237
STYLE DS_MODALFRAME | DS_CONTEXTHELP | WS_POPUP | WS_VISIBLE | WS_CLIPCHILDREN | WS_CAPTION | WS_SYSMENU
CAPTION "Open"
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
FONT 8, "MS Shell Dig"
{
CONTROL "Look &in :", 1091, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 4, 7, 57, 8, 0x00001000
CONTROL "', 1137, COMBOBOX, CBS_DROPDOWNLIST|CBS_OWNERDRAWFIXED|CBS_HASSTRINGS | WS_CHILD|WS_VISIBLE|WS_VSCROLL|WS_TABSTOP,
66, 4, 174, 300
CONTROL "', 1088, STATIC, SS_LEFT | WS_CHILD, 248, 4, 80, 14
* CONTROL "", 1184, "ToolbarWindow32", 0x50012B4C, 4, 22, 58, 208 , 000000200
CONTROL "', 1120, LISTBOX, LBS_NOTIFY | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | WS_CHILD | WS_BORDER | WS_HSCROLL, 66, 22, 300, 156
CONTROL "File &name :", 1090, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 67, 187, 71, 8
CONTROL "', 1152, EDIT, ES_LEFT | ES_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP, 144, 184, 164, 12
CONTROL "', 1148, "ComboBoxEx32", 0x50210042, 144, 184, 164, 150
CONTROL "Files of &type :", 1089, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 67, 203, 71, 8
CONTROL "', 1136, COMBOBOX, CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_TABSTOP, 144, 201, 164, 100
CONTROL "Open as &read-only", 1040, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 144, 217, 160, 8
CONTROL "&0Open", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 316, 184, 50, 14
CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 316, 200, 50, 14

The first static control has also the number 1000 as extended style corresponding to
WS_EX_RIGHT, which for static controls has the same effect as using SS_RIGHT. For the tool
bar control, the number 50012B4C is equivalent to the styles WS_CHILD, WS_VISIBLE,
WS_TABSTOP, CCS_NORESIZE, CCS_NOPARENTALIGN, CCS_NODIVIDER, TBSTYLE_TOOLTIPS,

2 The number 1000 in hexadecimal is equivallent to 1000000000000 in binary.
» I've found another decompiler (eXeScope) which lists in addition the .dIl files used by an application.

23

TBSTYLE_WRAPABLE, TBSTYLE_CUSTOMERASE and TBSTYLE_FLAT, and the number 200 is
equivalent to the extended style WS_EX_CLIENTEDGE. For the extended combo box, the
number 50210042 is equivalent to WS_CHILD, WS_VISIBLE, WS_VSCROLL, WS_TABSTOP,
CBS_DROPDOWN and CBS_AUTOHSCROLL. This control superposes the edit control (see the size
nurnbers).24

4.1.6 Sixth example from TablEdit

The last example is a dialog box that appears when clicking the “New” push button from the
dialog “Chord Manager” called up from the “Edit” menu.

Chord Builder

Chord Builder
Fundamental: Chord Chart Fundamental: Chard Chart

= OO O.0.0. w C = 5 O Py
il &l Inzert Chard... Chord: el | PY R
i - b _1 ‘
Fifth FsE 5 | EditDiagiam Fith [~ 5 5 PY ® Edlt Diagiam
Minth: | LT T1234 Mirith: Wi mh
Inwversions: Inwersions:
Floal r | Raat .1 CEGCG B
Ornit; 21 b
W E E -

- Mame: - 1 X Close rc |~ Basic Chord Pasition 1 X Close

[o s e B

_1 2l v | | v 0K

;

When pushing on “Edit Diagram”, the dialog box changes of look. But all the new emerged
controls (and those that disappear) belong to the same dialog box, and are specified in
sequence in the resource script file. It makes it difficult to know what the dialog look like with
only the information below. The program determines if a child window is currently hidden
and disabled (it’s not enough to be not visible, it has to no longer respond to mouse or
keyboard input), for example by a call to the Windows functions ShowWindow (with
SW_HIDE as one of the parameter) and EnableWindow (with FALSE as one of the parameter).

There is the resource with Resource Builder:

22 DIALOG 76, 29, 284, 174
STYLE DS_3DLOOK | DS_SETFONT | DS_MODALFRAME | DS_NOIDLEMSG | DS_CONTEXTHELP | WS_POPUP | WS_SYSMENU | WS_CAPTION
CAPTION "Chord Builder"
FONT 8, "MS Sans Serif"
LANGUAGE LANG_NEUTRAL, 0
BEGIN
CONTROL "&Fundamental:", 24, "STATIC", SS_LEFT | WS_CHILD | WS_VISIBLE, 8, 4, 60, 10
CONTROL "", 101, "COMBOBOX", CBS_DROPDOWNLIST | WS_CHILD | WS_VSCROLL | WS_TABSTOP | WS_VISIBLE , 8, 15, 76, 115
CONTROL "&Chord:", 25, "STATIC", SS_LEFT | WS_CHILD | WS_GROUP | WS_VISIBLE, 8, 31, 54, 10
CONTROL "', 102, "COMBOBOX", CBS_DROPDOWNLIST | WS_CHILD | WS_VSCROLL | WS_TABSTOP | WS_VISIBLE , 8, 42, 76, 100
CONTROL "&Fifth:", 26, "STATIC", SS_LEFT | WS_CHILD | WS_VISIBLE , 8, 62, 32, 10
CONTROL "5+", 301, "BUTTON", BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 47, 61, 21, 10
CONTROL "5-", 302, "BUTTON", BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE, 69, 61, 21, 10
CONTROL "&Ninth:", 27, "STATIC", SS_LEFT | WS_CHILD | WS_VISIBLE , 8, 74, 38, 10
CONTROL "9+", 401, "BUTTON", BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 47, 73, 21, 10
CONTROL "9-", 402, "BUTTON", BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 69, 73, 21, 10
CONTROL "&Inversions:", 28, "STATIC", SS_LEFT | WS_CHILD | WS_VISIBLE, 8, 90, 63, 10
CONTROL "', 103, "COMBOBOX", CBS_DROPDOWNLIST | WS_CHILD | WS_VSCROLL | WS_TABSTOP | WS_VISIBLE , 8, 101, 76, 55
CONTROL "&1", 700, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_GROUP | WS_TABSTOP | WS_VISIBLE , 98, 149, 17, 10

T don’t see the reason because a drop-down combo box has also an edition field...

24

CONTROL "&2", 701, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE , 116, 149, 17, 10

CONTROL "&3", 702, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE , 135, 149, 17, 10

CONTROL "&4", 703, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE , 154, 149, 17,10

CONTROL "&5", 704, "BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_VISIBLE , 176, 149, 17, 10

CONTROL "", 106, "BUTTON", BS_GROUPBOX | WS_CHILD | WS_GROUP | WS_VISIBLE , 92, 138, 116, 29

CONTROL "", 600, "SCROLLBAR", SBS_HORZ | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 93, 107, 81, 9

CONTROL "", 601, "SCROLLBAR", SBS_VERT | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 155, 56, 9, 64

CONTROL "&0Omit:", 799, "BUTTON", BS_GROUPBOX | WS_CHILD | WS_GROUP | WS_VISIBLE , 8, 118, 76, 49

CONTROL "", 800, "BUTTON", BS_CHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 14, 128, 30, 10

CONTROL "", 801, "BUTTON", BS_CHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 50, 128, 30, 10

CONTROL "", 802, "BUTTON", BS_CHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 14, 140, 30, 10

CONTROL "", 803, "BUTTON", BS_CHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 50, 140, 30, 10

CONTROL "", 804, "BUTTON", BS_CHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 14, 152, 30, 10

CONTROL "", 805, "BUTTON", BS_CHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 50, 152, 30, 10

CONTROL "Chord Chart", 30, "STATIC", SS_CENTER | WS_CHILD | WS_VISIBLE , 108, 2, 68, 10

CONTROL "", 999, "STATIC", SS_SIMPLE | WS_CHILD , 92, 12, 116, 108

CONTROL "&Close", 2, "BUTTON", BS_OWNERDRAW | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 222, 135, 56, 14

CONTROL "&Add", 1, "BUTTON", BS_OWNERDRAW | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 222, 153, 56, 14

CONTROL "&Play", 131, "BUTTON", BS_OWNERDRAW | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 222, 11, 56, 14

CONTROL "&Insert Chord...", 105, "BUTTON", BS_PUSHBUTTON | WS_CHILD | WS_TABSTOP |WS_VISIBLE , 222, 30, 56, 14

CONTROL "",107, "EDIT", ES_LEFT | WS_CHILD | WS_BORDER | WS_TABSTOP | WS_VISIBLE , 97, 149, 88, 12

CONTROL "?", 109, "BUTTON", BS_AUTOCHECKBOX | BS_PUSHLIKE | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 189, 149, 13, 12

CONTROL "&Edit Diagram"”, 108, "BUTTON", BS_CHECKBOX | BS_PUSHLIKE | WS_CHILD | WS_TABSTOP | WS_VISIBLE , 222, 55, 56, 14

CONTROL "",110, "LISTBOX", LBS_ MULTICOLUMN |LBS_NOINTEGRALHEIGHT|WS_CHILD|WS_BORDER|WS_TABSTOP|WS_VISIBLE, 221,73,58,11
END

It happens that a dialog box looks different in the resource editor tools, but it’s especially the

case in this example:

E4 Dialog - 22
, Chord Builder Chard Builder 2%
Fundamental: Eherd Chart o Chord Chart Frteria Chord Chart
| =] Floy = Blay
Chord: Insett Chard... Chord Irseit Chord Chord Insest Chord
| r = |
Fifth: s 5 & Fifth: &5 I™ Edit Disgram s s 5 &l M]
Ninth: e« s = Minth: 99 Hirth = -8
Iriversions: Inversions: Inversions:
— — s
5. @i i __J -
Ot < “Omit.— = - Omit: - | ‘j_j
] i 1= [m
0 r r Gose | - - - . Cosa |
0 BTOz0304 07 W s ‘l ra i | B ! 2] s
Resource Tuner Resource Builder Resource Hacker

The objective of my thesis will be to attempt to faithfully reproduce in GrafiXML the
graphical interface described by a given resource file, not what we really see on the screen
when we use the application. A resource file gives us only a point of view, things can be
managed internally in the program (a control with WS_VISIBLE can be not visible). Depending
on the consistency of these input files, the interface specified can be different from the actual
interface. The result described in UsiXML cannot naturally be better. My task is still to utilize
as much as possible the informations from a resource script file to restore the interface, even
though a first loss of informations can occur before the reverse engeneering process. The
content of this files is what I will see in the next sections.

In addition, some elements not covered in UsiXML can be also lost. If it hasn’t the
counterpart of the property that a chexk box can look like a push button for example (this is
what means the flag BS_PUSHLIKE for the check box labeled “Edit Diadram™), the control
cannot have the desired appearence in the final result. In chapter 6 I'll see this other potential
loss of information.

25

4.2 Resource files modelization

The purpose of this section is to structure informations that can be found in a resource script
file. To modelize the problem in a standart way, I’ve used the UML (Unified Modeling
Language) notation. This will also enable to have a direct model-to-model mapping. Indeed,
the CUI model is represented with the UML notations, so the source and target meta-models
use the same formalism. Only the resources of type menu and dialog box will reveal
important. The two first sections give the related class diagrams.

4.2.1 Menus class diagram

MENUBAR
MenulD
Language : String
Sublanguage : String

0..1 1

0..* 0.*

POPUPMENU
| Text : String

/ State : {enabled,disabled,grayed} 0.1
| Position : Integer "

0..” } o
MERUITEM SEPARATOR
ltemID T
Text : String Position : Integer

Checked : Boolean
State : {enabled,disabled,grayed}
Position : Integer

The class diagram modeling a resource of type menu is simple. Note that it’s a modelization
of a resource file, and not of the real user interface specified by the file. The link between a
menu item and a dialog box cannot be represented because this relation is not specified in the
file. This class diagram is then separated from the next one. It is uncommon to see menu items
directly in a menu bar (represented by the aggregation relationship), but it’s a valid

composition.
4.2.2 Dialog boxes class diagram

Note that here I still include the relationships named “Glue To” and “Regroup” because they
can be deduced from the positions and dimensions of controls specified in the file (even if

these relationships are not explicitly specified).

26

WINDOW

Text : String

Border : Boolean

Caption : Boolean
ClipChildren : Boolean
ClipSimblings : Boolean
Disabled : Boolean
DialogFrame : Boolean
Group : Boolean

TabStop : Boolean
HorizontalScrollBar : Boolean
MaximizeBox : Boolean
Maximized : Boolean
MinimizeBox : Boolean
Minimized : Boolean
SystemMenu : Boolean
ThickFrame : Boolean
VerticalScrollBar : Boolean
Visible : Boolean
ClientEdge : Boolean
DialogModalFrame : Boolean
StaticEdge : Boolean
WindowEdge : Boolean
AcceptFiles : Boolean
AppWindow : Boolean
ControlParent : Boolean
ExContextHelp : Boolean
Layered : Boolean
LayoutRTL : Boolean

Left : Boolean
LeftScrollBar : Boolean
LTRReading : Boolean
MDIChild : Boolean
NoActive : Boolean
NolnheritLayout : Boolean
NoParentNotify : Boolean
Right : Boolean
RightScrollBar : Boolean
RTLReading : Boolean
ToolWindow : Boolean
TopMost : Boolean
Transparent : Boolean

GeneralStyle : {popup, overlapped, child}

DIALOG

DigiD

Extended : Boolean

X: Integer

Y - Integer

Width : Integer

Hight : Integer

HelplD : Integer

3DLook : Boolean
AbsoluteAlignment : Boolean
Center : Boolean
CenterMouse : Boolean
ContextHelp : Boolean
DialoglsControl : Boolean
FixedSys : Boolean
LocalEdit : Boolean
ModalFrame : Boolean
NoFailCreate : Boolean
NoldleMessage : Boolean
SetForeGround : Boolean
Language : String
Sublanguage : String
SetFont : Boolean
FontName : String
FontSize : Integer

Italic : Boolean

Weight : Integer
ShellFont : Boolean

|

CONTROL
CtrlID : Integer
X : Integer
Y : Integer
\Width : Integer
Hight : Integer
HelplD : Integer
Position : Integer

+is the buddy window of

Glue To

Regroup

BUTTON
VerticalAlignment : {top,center,bottom}
HorizontalAlignment : {left,center,right}
Flat : Boolean
Multiline : Boolean
Notify : Boolean

PUSHBUTTON

GROUPBOX
L

Default : Boolean
Content : {text,bitmap,icon}

L1

LISTBOX

EDIT

Sorted : Boolean

i ion : Boolean
DisableNoScroll : Boolean
ExtendedSelection : Boolean
Multicolumn : Boolean
NoSelection : Boolean

Notify : Boolean
OwnerDrawFixed : Boolean
(OwnerDrawVariable : Boolean
HasStrings : Boolean
NolntegralHeight : Boolean
UseTabstops : Boolean
'WantKeyBoardinput : Boolean
NoData : Boolean

NoRedraw : Boolean

Alignment : {left,right,center}
Multiline : Boolean
AutoHorizontalScroll : Boolean
AutoVerticalScroll : Boolean
PasswordField : Boolean
LowerCase : Boolean
UpperCase : Boolean
NoHideSelection : Boolean
ReadOnly : Boolean
Number : Boolean
WantReturn : Boolean
OEMConvert : Boolean

RICHEDIT
DisableNoScroll : Boolean

COMBOBOX

Type : {simple,dropDown,dropDownList}
Ci itive : Boolean

RADIOBUTTON
Auto : Boolean
RightButton : Boolean
PushLike : Boolean

CUSTOMBUTTON

NoEditimage : Boolean
NoSizeLimit : Boolean

CHECKBOX

: Boolean

NoCallO : Boolean
NoIME : Boolean

SelfIME : Boolean

Sunken : Boolean

Vertical : Boolean

UPDOWN
Alignment : {left,right,none}
ArrowKeys : Boolean
AutoBuddy : Boolean
Horizontal : Boolean
HotTrack : Boolean
NoThousands : Boolean
SetBuddy nt : Boolean
Wrap : Boolean

TRACKBAR
AutoTicks : Boolean
DowilsLeft : Boolean
EnableSelectionRange : Boolean
FixedLenght : Boolean
NoThumb : Boolean
NoTicks : Boolean
Orientation : {horizontal,vertical}
Reversed : Boolean
TickMarks : {bottom,top,left,right,both}
ToolTips : Boolean

HEADER
Buttons : Boolean
DragDrop : Boolean

STATIC FilterBar : Boolean

Auto : Boolean
3state : Boolean

SCROLLBAR

PROGRESSBAR

RightButton : Boolean

PushLike : Boolean

Type : {horizontal,vertical,sizeBox,sizeGrip}
Alignment : {left,right, top,bottom, i

topLef,none}

Type : {normal,marquee,smooth}
Vertical : Boolean

TREEVIEW

TAB

LISTVIEW

Flat : Boolean

CheckBoxes : Boolean
DisableDragDrop : Boolean
EditLabels : Boolean
FullRowSelect : Boolean
HasButtons : Boolean
HasLines : Boolean

InfoType : Boolean
LinesAtRoot : Boolean
NoHorizontalScroll : Boolean
NonevenHeight : Boolean
NoScroll : Boolean
NoToolTips : Boolean
RightToLeftReading : Boolean
ShowSelectionAlways : Boolean
SingleExpand : Boolean
TrackSelect : Boolean

Type : {text,frame,image,enhencedMetafile,ownerdraw}
Sunken : Boolean

Notify : Boolean

TextStyle : {left,right,center,simple,leftNoWordWrap, undefined}
NoPrefix : Boolean

EndEllipsis : Boolean

FullDrag : Boolean
Hidden : Boolean
Horizontal : Boolean
HotTrack : Boolean

Type : {tabs,buttons}
Bottom : Boolean
FixedWidth : Boolean
FlatButtons : Boolean
FocusNever : Boolean
FocusOnButtonDown : Boolean
ForceLeft : {none,icon,label}
HotTrack : Boolean
Multiline : Boolean
Multiselection : Boolean
OwnerDrawFixed : Boolean
RaggedRight : Boolean
Right : Boolean

RightJustify : Boolean
ScrollOpposite : Boolean
ToolTips : Boolean

Vertical : Boolean

TOOLBAR

ALTDrag : Boolean
CustomErase : Boolean
Flat : Boolean

PathEllipsis : Boolean

WordEllipsis : Boolean REBAR

Transparent : Boolean

AutoSize : Boolean
BandBorders : Boolean

Frame : {black,gray,white,undefined}
Rectangle : {black,gray white,undefined}
Etched : {frame,horizontal,vertical,undefined}
Icon : Boolean

Bitmap : Boolean

Centerimage : Boolean

RealSizelmage : Boolean

RightAdjust : Boolean

FixedOrder : Boolean
NoDivider : Boolean
RegisterDrop : Boolean
VarHeight : Boolean

Vertical : Boolean

DoubleClickToggle : Boolean

VerticalGripper : Boolean

List : Boolean
RegisterDrop : Boolean
ToolTips : Boolean
WrapAble : Boolean
NoResize : Boolean
NoParentAlign : Boolean
Bottom : Boolean
NoDivider : Boolean
Adjustable : Boolean

View : {icon,smalllcon,list,report}
Alignment : {left,top}
EditLabels : Boolean
OwnerData : Boolean
SharelmageLists : Boolean
ShowSelectionAlways : Boolean
SingleSelect : Boolean
SortAscending : Boolean
SortDescending : Boolean
CheckBoxes : Boolean
OneClickActivate : Boolean
TrackSelect : Boolean
TwoClickActivate : Boolean
AutoArrange : Boolean
NoLabelWrap : Boolean
NoScroll : Boolean
NoColumnHeader : Boolean
NoSortHeader : Boolean
OwnerDrawFixed : Boolean
FullRowSelect : Boolean
GridLines : Boolean
HeaderDragDrop : Boolean
SubltemImages : Boolean

STATUTBAR
SizeGrip : Boolean
ToolTips : Boolean
Top : Boolean

CUSTOMCONTROL

ClassName : String

PAGER

AutoScroll : Boolean
DragAndDrop : Boolean
Direction : {horizontal,vertical}

ANIMATION
AutoPlay : Boolean
Center : Boolean
Transparent : Boolean

DATETIMEPICKER

MONTHCALENDAR

AppCanParse : Boolean

RightAlign : Boolean
ShowNone : Boolean
UpDown : Boolean

Format : {longDate,shortDate,shortDateCentury, time}

DayState : Boolean
Multiselection : Boolean
NoToday : Boolean
NoTodayCircle : Boolean

WeekNumbers : Boolean

4.2.3 Documentation

The full documentation of the diagrams is in appendix C. In this section I explain some
concepts related to my examples.

There are three general styles of window (WINDOW class): a popup window is a temporary
subsidiary window, a child window can divide a window in various regions and an overlapped
window is a program's main application window.

In a graphical Windows-based application, dialog boxes (DIALOG class) are windows
(rectangular areas of the screen) and then inherit the window’s attributes. A dialog box, used
to communicate with the user and to supply services that are too complicated to be in a menu,
takes form of a pop-up window (GeneralStyle = popup) containing various child window
controls through which the user interacts. Note that there is a curiosity in the fourth example :
the dialog is defined as a child window. This is certainly because it is not really a dialog box,
but a part of the dialog box to confogure the software (a child window stay always in the same
position relative to their parent when the user moves the parent). Dialog boxes can be modal
or modeless, with frame often encountered.

A modal dialog box (ModalFrame = true) demands the user's attention before anything else
can be done : when displayed, the user cannot switch between the dialog box and the window
that created it (the user must explicitly end the dialog box, for instance by clicking a the
Cancel button). The user can however switch to another program while displayed.” It is
usualy a pop-up window having a thick border, but a double border (with DialogFrame =
true) is also common for modal dialog box. Some can also have a title bar (Caption = true)
that identifies the dialog’s purpose with the text put in it (value of Text), with sometimes a
question mark as in the fifth and sixth example (ContextHelp = true).

A modeless dialog box allows the user to switch between the dialog box and the parent
window, prefered when the user would find it convenient to keep the dialog box displayed for
a while. It is often a pop-up window having a thin border (Border = true) and a caption bar
(to let the user move the dialog box to another area of the display using the mouse). The
dialog box can also have a system menu box (SystemMenu = true) to allows the user to select
Move or Close from the system menu.

The controls (CONTROL class), contained in a dialog box to perform input and output tasks,
are child windows (GeneralStyle = child). They can use some window’s frame, as thin-line
border (Border = true). You can see that the tool bar from the fifth uses a border with a

» Some dialogs do not allow even that the user can switch to another program while displayed: the dialog must
be ended before the user does anything else in Windows (see SysModal).

28

sunken edge (ClientEdge = true). That is what the last check box should look like with such

frame:
[] Wrap around

|| Transform backslash expressions

A control can use other window’attributes. For example, it is displayed in gray rather than

black when visible and disabled (Disabled = true) :
[] Wrap around

LIichi_c¥

To illustrate the use of the TAB key and the arrow keys in a dialog box, let’s go over the first
example to see how they are used in a resource file (from Resource Hacker):

CONTROL "Fignd what:", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 5, 7, 45, 8
CONTROL "", 222, COMBOBOX, CBS_DROPDOWN | CBS_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 50, 5, 145, 50

CONTROL "Match &whole word only", 232, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 22, 120, 10
CONTROL "Match &case", 233, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 34, 130, 10

CONTROL "Regular &expression"”, 239, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 46, 120, 10
CONTROL "Wrap aroun&d", 240, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 58, 120, 10

CONTROL "Transform &backslash expressions", 241, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 70, 160, 10

CONTROL "Direction”, -1, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE | WS_GROUP, 135, 22, 60, 34

CONTROL "&Up", 234, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP, 140, 30, 45, 12

CONTROL "&Down", 235, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 140, 42, 45, 12

CONTROL "&Find Next", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 205, 5, 65, 14
CONTROL "&Mark All", 245, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 205, 23, 65, 14

CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 205, 41, 65, 14

When the Find dialog box is first invoked, the default input focus is set to the first control

specified in the resource that has the ws_TABSPTOP flag (TabStop = true), that is the

combobox control.’® The other controls will

Find

usually receive their input focus when they are

X

Firid what: ||_o v | Fnd Nm@

clicked with the mouse, but the user can also

. . [Match whole word only Direction m
move among the controls having this flag thoe ot ory) O lp :

[Match case

using the TAB key (in the order they figure in | []Reguar expression €3 © Down

Wrap around 6

the file*’ and with a cycle from the last control
[] Transform backslash expressions e

to the first). At first sight it is not the case

with the ‘Down’ radio button, but in practice is is attainable. The style is probably added to
the default checked radio when the window control is created. When the input focus is
changed from a radio button to the another within a group, the system automatically assign
the style to the newly checked control. This ensures that the input focus will always be on the
most recently selected control when the user moves to the group using the TAB key. From
this it may be deduced that flags can be added and removed for convenience in the run time
by the program (see also the LISTVIEW class and think of a user arranging items in other
views™). We have here again the feeling that resource files don’t always give a full desciption
of a dialog box.

%% And that is visible and not disabled. If no such control exists, the system sets the default input focus to the first
control in the template.

" The order of definition in a dialog resource is represented by the Position attribute.

 Note that in the fifth example Windows use a list box control instead of a list-view control.

29

The user can use the arrow keys to shift the input focus between the two radio buttons®’, that
is from the first radio button that has the WS_GROUP flag (Group = true) up to, but not
including, the next control thas has this flag (the default push button). The tree push buttons
are then also grouped, the flag added to the static control marking the end of the group.”
Nevertheless, all the check box controls get the flag to prevent the arrow keys from doing
anything when these controls have the input focus (the group contain only one control, so
pressing a arrow key has no effect). Should the combobox had this flag? If the combobox
control and the static control are in a group, the interface should be not quite correct if the
former got the focus (because it can’t do anything with it). It’s not important since the cursor
change in the combobox edition field and move around when pressing the arrow keys.

There is a state shart describing the input focus in this dialog box:

< B = PressingKey(tab)
I Opening [l = PressingKey(arrows)

FocusOnCombobox [#———————_

"Match whole word only" 1
J
FosusOnRadioButtons ; ‘ 4 \
egular expression f 15 \

{ v v L

: E "Mark aH'j |

[FocusOmTheCurrent\ySeIected]

o
FocusOnCheckBoxes

FocusOnButtons

"Find next"

f‘Transform backslash expressioms”] ’ A

v
v

-

é [FocusOmTheNewlySe\ected]

. S

There is another keyboard interface which can be specified in the value of the Text attribute:
the mnemonic is the letter that follows an ampersand (&). The user can then move the input
focus to any controls by pressing the ALT key and the mnemonic. However, for static control
the focus moves to the first control having Tabstop set to true defined in the file after the
static control definition and containing the specified mnemonic (see “Fi&nd wath” above).

In addition to those inherited, each control has specific attibutes. I will define some of them.

The text (value of Text) in the rectangle of the first static control (STATIC class) from the first
example is left-justified (TextStyle = left), which is not the case for example for the first one
from the fourth example (TextStyle = center). But static controls can be used to draw frames
or lines separating other controls like in the third example: three static controls are 1 dialog
unit high with etched top and bottom edges (EtchedHorizontal = true). They can also be used
to display images like the second control of the same example (Icon = true). In this case, the
width and the height values are ignored, the control is automatically resized to fit the image.

¥ The selected radio button is turned on and others in the group are turned off automatically.
30 The user can also move between these buttons with the TAB key, but only in one order (SHIFT+TAB to move
to the previous control)

30

But the first control (Bitmap = true) uses a style that prevents this (RealSizeImage = true).
This is why the 154x256 bitmap image (according to Resource Tuner bitmap resource)
doesn’t fit all the left area of the dialog as in reality.”’

As mentioned in the fourth example (where two controls have HorizontalAlignment = right),
text in a push button (PUSHBUTTON class) can also be positioned in different way in the
rectangle. In the same example, the text of a push button will be wrapped to multiple lines
lines if it is too long to fit on a single line in the rectangle (Multiline = true).”” There are other
button controls that provides input to an application by notifying the parent window when the
user clicks on the control with a mouse, like radio buttons (RADIOBUTTON class). When they
have RightButton = true, they look like that one labelled ‘Down’ below. When they have

PushLike = true, they look like that one labelled ‘Up’. Direction Direction
O Up
Down) {3 Down

The check box (CHECKBOX class) ‘Edit diagram’ from the sixth example has also this last
property. Other buttons can be owner-drawn buttons (CUSTOMBUTTON class). This type
allows complete freedom in the button’s appearance. Buttons from the sixth example have

§ Py | X cCoe | & K j

this style to have image and text together:

A scroll bar control (SCROLLBAR class) is not a scroll bar added at the right or the bottom of
a window by setting to true the window attribute VerticalScrollBar or HorizontalScrollBar,
but a child window control that can appears anywhere in the parent window, vertically (Type
= vertical) or horizontally (Type = horizontal). There is such controls in the sixth example.

The list box (LISTBOX class) from the sixth example (as from the fifth example) has two
specific properties. Items are arraged arranged in multiple columns and the list box scrolls
horizontally instead of vertically (Multicolumn = true).” J&IT 1 2 3 4

The size of the control is exactly the size specified when created (NoIntegralHeight =true).
By default, Windows resizes a list box to not display partial items.

We can see in the third example two edit controls (EDIT class) which scrolls text to the right
when the user types a digit (only allowed with Number = true) at the end of the line
(AutoHorizontalScroll = true). This controls are the buddy windows of up-down controls
(UPDOWN class) used to increment or decrement the value. To the user, they look like a
single controls. It can be specified that an up-down control automatically selects the previous

3! In my opinion the developer have made a mistake in their resource statement resolved after in the program (it
is true that when we read the flag name we could think to the opposite of what said the definition).

2 But it’s surprising that the label doesn’t in he resource file...

3 In the sixth a horizontal scroll bar (HorizontalScrollBar = true) is added, but it is hidden because the list box is
large enough to display all the items at once.

31

window in the z-order’ as its buddy window. Let’s look at the first up-down control (X =
222, Y = 100). Alignment = right positions it to next to the right edge of its buddy window

(X =193, Y =100), the buddy window is then moved
to the left and its width (30) is decreased to
193 |

accommodate the width of the up-down control (10).

100 | 50 110
ArrowKeys = true allows the user to press the arrow PR
keys to increment and decrement the position when | === 7777777 width |0 ‘A ‘112

the buddy window has the focus.

The combo box (COMBOBOX class) from the first example is a drop-down one, those from

the sixth example are drop-down list combo boxes. The simple ddmIgDowﬁl‘ .
. ropDownLis
first has a list box which is displayed when the user 1 i
selects an icon next to the edit control (not all times as a = =

simple combo box) and the current selection in the list is
displayed in the edit control. The second is similar, except that the edit control is replaced by
a static text item displaying the current selection. This table summarizes the three existing

types: drop-down list | edit control
Type = dropDown v v/
Type = dropDownList v/ X
Type = simple X v/

In the dialog of the fourth example, the user can move a track bar, using either the mouse or
the direction keys when the control has focus, to change the brightness of the treemap (in a
range of 1 through 100). This vertical trackbars (TRACKBAR class and Orientation =
vertical) have NoTiks = true (to not display any tick marks) and TickMarks = both (causes
tick marks to be displayed on both sides of the control). The effect is that the thumb of the
control appears as a rectangular box.

Because tool bars (TOOLBAR class) are especially used in an application’s main window, it is
unfrequent to find them in a resource files. We can still see this control in the Open dialog box
illustrated in the fourth example (see the line with an asterisk). The user can then acces
directly some directories (like “My Computer’”’) when loking for a file. Tool tips (Tooltips =
true) are descriptive text boxes that pop up when the user points to a tool bar button with the
mouse cursor. As Flat is true the tool bar has a transparent look (both the tool bar and the
buttons) that allows the client area under the tool bar to show through and enables hot
tracking (a button is highlighted when the cursor moves over it). WrapAble set to true means
by definition that the tool bar can have multiple lines of buttons. The buttons wrap to the next
line when the tool bar becomes too narrow to include all buttons on the same line. Normally,
the size and position of the tool bar window automatically set itself. The height is based on

** The term "z-order" refers to the order of objects along the Z-axis. In coordinate geometry, X typically refers to
the horizontal axis, Y to the vertical axis, and Z to the axis perpendicular to the plane (representing the depth of
the stack of windows). The z-order information thus specifies the front-to-back ordering of objects on the screen.

32

the height of the buttons in the tool bar, the width is the same as the width of the parent
window’s client area and the control is positioned along the top of the parent window’s client
area. This behavior is turned off if NoResize is true (the control uses its specified width and
height) and NoParentAlign is true (the control keeps its specified position within the parent
window).

Such controls are controls that exist in Windows, corresponding to predefined window classes

!

in Windows programming. But a custom-made child EEESEE
window (CUSTOMCONTROL class) can also be used, n 162

by defining its own window class. For example, some Octifl.2008 17:50:91
by Neil Hodgson.

may want to replace a normal rectangle push button | December 1998-October 2004.

. . .. http://www.scintilla.org
with rouded corner with an elliptical push button. | (3 seripting language by TeCGraf, PUC-Rio

B

Another example is the first control from the “About Co:tt:ﬁ;{l i;"r“;’f"’"“a"’rg
SciTE” dialog box shown to the right, and specified in a Atsuo Ishimoto
. Mark Hammond
resource file as: Francois Le Coguiec
ABOUT DIALOG 26, 41, 350, 242 Dale Nagata
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU - [TN P, D S B . ¥
CAPTION "About SciTE" = ! =
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US @[0K
FONT 8, "MS Sans Serif"

{

CONTROL "", 221, "Scintilla", 0x50000000, 1, 1, 346, 218

CONTROL "SciTE", -1, STATIC, SS_ICON | WS_CHILD | WS_VISIBLE, 1, 221, 32, 32

CONTROL "OK", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 26, 222, 322, 20
¥

This control has been created to display a text using a specific font and various colors. Its only
specific attribute ClassName set to “Scintilla” designates the name of the class that has been
registered and defining the control. The name will be for example “ellipticalPushButton™ if
we suppose that a customized class with this name exist to use a personalized button.

4.2.4 Constraints

I talk here over some contraints that are not expessed in the class diagrams.

The inheritance from the WINDOW class is attribute-defined : controls are child window and
dalog boxes are pop-up window. A dialog can inherit from extended window attributes (from
ClientEdge to Transparent) only if it is also an extended dialog, that is if Extended = true. A
control can inherit of an extended window attribute only if the dialog box that contain it is an
extended one.”” But we can see that some window attributes (extended or not) are not relevant
for controls (and also for diolog boxes). Attributs that are usually used by controls are Child,
Disabled, Visible, Border, TabStop, Group , VerticalScrollBar, HorizontalScrollBar. Note
also that a combo box cannot used all the specific attributes of a list box and edit controls : it
can use only the AutoHScroll, LowerCase, OEMConvert, UpperCase, Sort, DisableNoScroll,
HasStrings, NolntegralHeight, OwnerDrawFixed and OwnerDraw Variable attributes.

3> Some attributes specific to the COMBOBOX and RICHEDIT classes can also be used in this condition.

33

A remark has to be made with the font in a dialog box. If one of the SetFont and ShellFont
attributes is set to true, there is additional data in the resource file specifying the font and the
size to use for text in the dialog box and each of its controls (and sometimes weight and italic
informations). If SetFont = true, the system selects (if possible) a font according to the
specified font data. If ShellFont = true, the system selects a font using the font data specified
in the FontSize, Weight, and Italic attributes. The system font can vary between different
versions of Windows. So having ShellFont = true with FontName = MS Shell Dlg for an
extended dialog box, the application can use the system font no matter which system it is
running on. The system maps this typeface such that the dialog box will use the Tahoma font
on Windows XP, and the MS Sans Serif font on earlier systems. But ShellFont = true has no
effect if the typeface is not MS Shell Dlg and the dialog is not extended. By default, the
system draws all text in a dialog box using the default font of the system. The system always
uses the system font for the dialog box title.

Most of constraints are already expressed with type declaration with enumerate values. For
example, a menu item can be desabled and grayed in the same time. There still exists other
contraints between attributes, like an attributes that can or not be combined with an other one.
For example, a title bar cannot contain a question mark (ContextHelp = true) with a maximine
box or a minimize box (MaximizeBox or MinimizeBox = true), or to make appear tabs at the
left side of a tab control, multiple rows of tabs have to be able to be displayed when necessary
(Vertical = true is valid only when Multiline = true). But this is the concern of graphical user
interface programming. I wil have an input file which is supposed to be correct, and even if it
isn’t, [have not to correct it (my task is to restore the dialog box in another language like it is
specified). Moroever, the reason for these contrains can guarantee that a resource file respects
them. The constraints that we can found in Windows documentation express in fact
incompabilities for flag identifiers. As I’ve yet mentioned it, the style flag is represented in
memory by one bit at a specific position in a word or by # bits if it is mutually exclusive with
others (where 7 is the minimum number of bits to represent the set S of exclusive flag, that is,
2" < cardinal number of § < 2"). For example, the 19 different types of static controls are
grouped in the five first bits (which can represent 2° = 36 flags):

4 3210 4 3210
ss_LEFTOEDE SS_USERITEM[]VICIVIC]
SS_CENTER || Ss_SIMPLE[|V] VIV
SS_RIGHT VIl SS_LEFTNOWORDWRAP[I[/]/]I[]
SS_ICON SS_OWNERDRAW[_|[/1VI[]¥]
SS_BLACKRECT[|CIVICIC] Ss_BITMAP[VIV
SS_GRAYRECT[|[]IC1v] SS_ENHMETAFILE[||/
SS_WHITERECT[[][CIZIIC] SS_ETCHEDHORZ [/
SS_BLACKFRAME[][]/ SS_ETCHEDVERT[/] 7
SS_GRAYFRAME[IVICICIC] SS_ETCHEDFRAME 7
SS_WHITEFRAME[|[ZICICI¥]

A decompiler that checks the presence of bits when generating its resource text file could not
specify for example that the text of a static control is both centered and right-justified in the
rectangle (this is an icon).

34

4.3 Resource files structure

I show in this section the format of a resource script file and how the user interface specified
in this language instanciates my UML class diagrams (the meta-model).

4.3.1 Resources of type dialog box

4.3.1.1 Dialog box template

We have seen in my examples that a dialog box is described in a specific language, specifying
its height, width, style, and the controls it contains (with again a specific size, placement and
style). This type of resource is defined in a dialog box template included in the resource script
file. Here is the format:

<id> DIALOG[EX] <x>, <y>, <width>, <height> [, <helpld>]
STYLE <style>*

[EXSTYLE <ex_style>*]

CAPTION '"<text>"

LANGUAGE <language>, <sublanguage>

FONT <pointsize>, "<typeface>" [, <weight>, <italic>]

{
by

<control_def>

Note that the order of the lines after the first and before the controls block can sometime be
different. With Resource Builder, <control_def> also go between BEGIN and END instead of {
and }. Restorator put a comma after the keyword EXSTYLE.

I’ve used the regular BNF notations as meta-language to define the syntax. In this way, it will
be easier show the correspondence between a class or an attribute of the class diagram and a
token of the language at a specific place in the template. The next table lists these
correspondences. Before, I give the notation used to express the rules in the table. The
keywords in bold appear as it stand in the resource file. Except for the first line which is
always specified, these keywords are missing in the template when nothing follows (that is,
the entire line is missing).

Meta-laguage used to describe the syntax :

e <S> :any entity of syntaxical category S

e <S>*:suite of 0, 1 or more entity of category S, separated by the token |

® text, typeface : a character string (fext may contain escape caracters, €.g. quote \”’, new
line \n, tab \t, backslash \\)

® id: entire number or a character string

® x,y, width, height, helpld, pointsize : entire numbers

e style : window flag begining with WS_ or a dialog box flag begining with DS_

35

e ex_style : extended window style flag (begining with WS_EX_)

e Janguage : primary language identifier flag begining with LANG_

® sublanguage : sublanguage identifier flag begining with SUBLANG_

e A :=B:Aisdefined by B

e ab:afollowed by b

¢ a&b:aandb (note that this meta-language symbol is different from the language
token | used to combine several styles)

e val(A) : value of the attribute A

e upper(A) : converts the text A in upper case.

e [A]: A may occur only in a exended dialog box template (that is, a DIALOGEX resource

and not a DIALOG resource)

® control_def : may contain any combination of control definitions (one by line)

As noticed in the examples, a numeric value can be specified in a resource script file instead

of style flag identifiers. When two or more style flags are numerically represented in the same

group, the values are added to form only one number. The table show also the hexadecimal

number associated with each flag.

class diagram (logic name) <> resource script file (physic name)

dialog box template :

<id> DIALOGI[EX] <x>, <y>, <width>, <height> [, <helpIld>]
STYLE <style>*

CAPTION "<text>"

[EXSTYLE <ex_style>*]

LANGUAGE <language>, <sublanguage>

FONT <pointsize>, "<typeface>" [, <weight>, <italic>]

<control_def>

b
Class Flag value
DIALOG DIALOG
Aggregation relationshi
n > 1 is the number of relationship instances { } and n > 1 is the number of lines in <control_def>
in which the instance of DIALOG participates
Attibutes
DigID <id> ::= val(DIgID)
Extended = true DIALOGEX *
X <x> = val(X)
Y <y> = val(Y)
Width <width> ::= val(Width)
Height <height> ::= val(Height) *’
HelpID # -1 <helpld> ::= val(HelpID)
3Dlook = true <style> ::= DS_3DLOOK 0x00000004
AbsoluteAligment = true <style> ::= DS_ABSALIGN 0x00000001
Center = true <style> ::= DS_CENTER 0x00000800

3 And additional information can be found between hooks (‘[...]’) in the dialog box template.
3" The measurements in a dialog box template are specified in dialog template units, not in screen units (pixels).
The system uses the average character width of the dialog box font to calculate the position and dimensions of

the dialog box.

% For example, Language=french and Sublanguage=belgian gives SUBLANG_FRENCH_BELGIAN.

36

CenterMouse = true
ContextHelp = true
DialogIsControl = true
FixedSys = true
LocalEdit = true
ModalFrame = true
NoFailCreate = true
NoldleMessage = true
SetForeGroud = true
SysModal = true
val(Language) not NULL
val(Sublanguage) not NULL
SetFont = true

FontName

FontSize

Italic = true

Italic = false

Weight # -1

ShellFont = true

<style> ::= DS_CENTERMOUSE

<style> ::= DS_CONTEXTHELP

<style> ::= DS_CONTROL

<style> ::= DS_FIXEDSYS

<style> ::= DS_LOCALEDIT

<style> ::= DS_MODALFRAME

<style> ::= DS_NOFAILCREATE

<style> ::= DS_NOIDLEMSG

<style> ::= DS_SETFOREGROUND

<style> ::= DS_SYSMODAL

<language> ::= LANG_upper(val(Language)) **
<sublanguage>::=SUBLANG_<language>_upper(val(Sublanguage))
<style> := DS_SETFONT

<typeface> ::= val(FontName)

<pointsize> ::= val(FontSize)

<italic> ::= TRUE

<italic> ::= FALSE

<weight> ::= val(Weight)

<style> ::= DS_SHELLFONT

0x00001000
0x00002000
0x00000400
0x00000008
0x00000020
0x00000080
0x00000010
0x00000100
0x00000200
0x00000002

0x00000040

0x00000048

Other attributes can be inherited from the WINDOW class (in addition to the attribute GeneralStyle always set to popup)

Class

WINDOW

Attibutes

Text

<text> ::= val(Text) *

GeneralStyle = popup <style> ::= WS_POPUP 0x80000000
GeneralStyle = overlapped <style> ::= WS_OVERLAPPED 0x00000000
GeneralStyle = child <style> ::= WS_CHILD 0x40000000
Border = true <style> ::= WS_BORDER 0x00800000
Caption = true & Border = true <style> ::= WS_CAPTION * 0x00C00000
ClipChildren = true <style> ::= WS_CLIPCHILDREN 0x02000000
ClipSimblings = true <style> ::= WS_CLIPSIMBLINGS 0x04000000
Disabled = true <style> ::= WS_DISABLED 0x08000000
DialogFrame = true & Caption = false <style> ::= WS_DLGFRAME 0x00400000
Group = true <style> ::= WS_GROUP 0x00020000
TabStop = true <style> ::= WS_TABSTOP 0x00010000
HorizontalScrollBar = true <style> ::= WS_HSCROLL 0x00100000
MaximizeBox = true <style> ::= WS_MAXIMIZEBOX 0x00010000
Maximized = true <style> ::= WS_MAXIMIZE 0x01000000
MinimizeBox = true <style> ::= WS_MINIMIZEBOX 0x00020000
Minimized = true <style> ::= WS_MINIMIZE 0x20000000
SystemMenu = true <style> ::= WS_SYSMENU 0x00080000
ThickFrame = true <style> ::= WS_THICKFRAME 0x00040000
VerticalScrollBar = true <style> ::= WS_VSCROLL 0x00200000
Visible = true <style> ::= WS_VISIBLE ' 0x 10000000
ClientEdge = true <ex_style> ::= WS_EX_CLIENTEDGE 0x00000200
DialogModalFrame = true <ex_style> := WS_EX_DLGMODALFRAME 0x00000001
StaticEdge <ex_style> := WS_EX_STATICEDGE 0x00020000
WindowEdge = true <ex_style> ::= WS_EX_WINDOWEDGE 0x00000100
AcceptFiles = true <ex_style> := WS_EX_ACCEPTFILES 0x00000010
AppWindow = true <ex_style> ::= WS_EX_APPWINDOW 0x00040000
ControlParent = true <ex_style> ::= WS_EX_CONTROLPARENT 0x00010000
ExContextHelp = true <ex_style> ::= WS_EX_CONTEXTHELP 0x00000400
Layered = true <ex_style> ::= WS_EX_LAYERED 0x00080000
LayoutRTL = true <ex_style> ::= WS_EX_LAYOUTRTL 0x00400000
Left = true <ex_style> ::= WS_EX_LEFT 0x00000000
LeftScrollBar = true <ex_style> ::= WS_EX_LEFTSCROLLBAR 0x00004000
LTRReading = true <ex_style> ::= WS_EX_LTRREADING 0x00000000
MDIChild = true <ex_style> ::= WS_EX_MDICHILD 0x00000040
NoActivate = true <ex_style> ::= WS_EX_NOACTIVATE 0x08000000
Eg{;ﬁ:ﬁ&g‘tf&“t i;;lf <ex_style> ::= WS_EX_NOINHERITLAYOUT 8183(1)88882
Right - true y <ex_style> = WS_EX_NOPARENTNOTIFY x00001000
! <ex_style> ::= WS_EX_RIGHT
E?EESCYSFBM = true <ex_style> ::= WS_EX_RIGHTSCROLLBAR gxgggggggg
ToolWindow - rue <exstyle> = WS_EX _RTLREADING 0x00000080
<ex_style> ::= WS_EX_TOOLWINDOW
TopMost = true <ex_style> := WS_EX_TOPMOST ¥ 0x00000008
Transparent = true <ex_style> ::= WS_EX_TRANSPARENT 0x00000020
* For a dialog box, the line CAPTION "..." will place that string in the caption of the dialog only if the flag

WS_CAPTION is present.
“0 The value of this flag includes also the WS_BORDER style.

37

Remarks:

- When a flag is not specified, the corresponding attribute of type Boolean is set to false.

- The flags by default are also denoted in the table. They correspond to a null value (in
bold in the flag value column). When nothing else is specified, the presence or not of
these flags makes no difference since they involve any additionnal value to the style
(and in any case the associated attribute in the left column has to take the appropriate
value).

- Some flags in the table have synonyms: WS_CHILD = WS_CHILDWINDOW,

WS_OVERLAPPED = WS_TILED, WS_MINIMISE = WS_ICONIC and WS_SIZEBOX =
WS_THICKFRAME
- The definition of WS_DLGFRAME was curiously enought: a window with this flag (with

a thicker frame) cannot have a title bar.* The problem was that this flag is sometimes
specified for a dialog box having still a title bar, as in the resource file given by

Resource Tuner associated to my first example (the ‘Find’ dialog box) :
STYLE DS_SETFONT | DS_MODALFRAME | DS_3DLOOK | WS_POPUPWINDOW | WS_DLGFRAME

As we will see in the shortcut notations (section 4.3.2), the flag WS_POPUPWINDOW
includes WS_BORDER. With the numerical values, we can see that WS_CAPTION set the
bits at positions 23 and 24 of to 1, whereas WS_DLGFRAME and WS_BORDER set only
the bit at position 23 and 24 respectively to 1 (the three flags are grouped in two bits).
So, if the two last flag are specified for a dialog box, it’s as if the first flag was
specified. In fact, WS_DLGFRAME implies no title bar.

- The numerical value of DS_SHELLFONT* is equal to DS_FIXEDSYS | DS_SETFONT. The
value of DS_SHELLFONT was surely chosen so that older operating systems would
accept the flag while nevertheless ignoring it. This allowed people to write a single
program that got the Windows XP look when running on Windows XP and got a
classic look when running on older systems. Older systems accepted the flag since it
was indeed a valid flag, but they also ignored it because the DS_SETFONT flag takes
precedence.

- For the font, identifiers are generally specified in the resource script file instead of
particular numeric values.

Value of Weight: Windows identifiers:

0 FW_DONTCARE
100 FW_THIN
200 FW_EXTRALIGHT or FW_ULTRALIGHT

*! This flag is not required for a modal dialog box. If not present, the system will set it even so visible. For a
control, if this flag is not present, the child window will not be displayed until the function ShowWindow is
called with SW_SHOWNORMAL as a parameter (needless if present).

*2 The flag DS_SYSMODAL is also possible. It is obsolete but included for compatibility with 16-bits versions of
Windows. When specified the system creates the dialog box with the WS_EX_TOPMOST style.

And also the definition of WS_CAPTION (giving a title bar): this flag includes WS_BORDER (a thin-line border).
“ Windows 2000 or later uses a different system font than Windows NT 4.0 and Windows 95/98. To have an
application that use the system font no matter which system it is running on, DS_SHELLFONT can be specified.
The system then maps this typeface such that the dialog box uses the Tahoma font on Windows 2000 and the MS
Sans Serif font on earlier systems.

38

300 FW_LIGHT

400 FW_NORMAL or FW_REGULAR

500 FW_MEDIUM

600 FW_SEMIBOLD or FW_DEMIBOLD
700 FW_BOLD

800 FW_EXTRABOLD or FW_ULTRABOLD
900 FW_HEAVY or FW_BLACK

- When no style are specified for a dialog box, the default style is WS_POPUP |
WS_BORDER | WS_SYSMENU.

4.3.1.2 Controls definition

Inside the dialog box template, the part between { and } defines a set of controls that a dialog
box contains. <control_def> is a suite of 0, 1 or more text lines defining a child window
control and having this syntax:

CONTROL '"<text>",<id>,<class>,<style>* ,<x>,<y>,<width>,<height>[,<ex_style>* ,<helplD>]

Meta-language (continuation) :
e style : is now a window style flag (begining with wWS_) or a child window control
style flag (begening with ES_, BS_, SS_, LBS_, SBS_ or CBS_)
e class : a predefined window class *°

dialog box template (continuation) :

CONTROL "<text>", <id>, <class>, <style>*, <x>, <y>, <width>, <height>
[, <ex_style>*, <helpID>]

CONTROL CONTROL Value
Attibutes
CtrlID <id> ::= val(CtrlID)
X <x> = val(X)
Y <y> :=val(Y)
Width <width> ::= val(Width)
Height <height> ::= val(Height)
HelpID # -1 <helpID> ::= val(HelpID)
Position control specitied at line val(Position) of <control_body>
Class
BUTTON <class> ::= BUTTON
Attributes
Vertical Alignment =top <style> ::= BS_TOP 0x00000400
Vertical Alignment = center <style> == BS_VCENTER 0x00000C00
Vertical Alignment = bottom <style> ::= BS_BOTTOM 0x00000800
HorizontalAlignment = left <style> ::= BS_LEFT 0x00000100
Horizontal Alignment = center <style> ::= BS_CENTER 0x00000300
Horizontal Alignment = right <style> ::= BS_RIGHT 0x00000200
Flat = true <style> ::= BS_FLAT 0x00008000
Multiline = true <style> ::= BS_MULTILINE 0x00002000

* Notice from the examples that class can occur between quotes (like "BUTTON") in the resource script file (this
is the case with Resource Builder), and also in lower case (like "button").

39

Notify = true <style> ::= BS_NOTIFY 0x00004000
Class
GROUPBOX <style> ::= BS_GROUPBOX 0x00000007
Class
RADIOBUTTON
Attributes
Auto = false <style> ::= BS_RADIOBUTTON 0x00000004
Auto = true <style> ::= BS_AUTORADIOBUTTON 0x00000009
RightButton = true <style> ::= BS_RIGHTBUTTON 0x00000020
PushLike = true <style> ::= BS_PUSHLIKE 0x00001000
Class
PUSHBUTTON
Attributes
Default = false <style> := BS_PUSHBUTTON 0x00000000
Default = true <style> ::= BS_DEFPUSHBUTTON 0x00000001
Content = text <style> ::= BS_TEXT *® 0x00000000
Content = bitmap <style> ::= BS_BITMAP 0x00000080
Content = icon <style> ::= BS_ICON 0x00000040
Class
CHECKBOX
Attributes
Auto = false & 3State = false <style> ::= BS_CHECKBOX 0x00000002
Auto = true & 3State = false <style> ::= BS_AUTOCHECKBOX 0x00000003
Auto = false & 3State = true <style> ::= BS_3STATE 0x00000005
Auto = true & 3State = true <style> ::= BS_AUTO3STATE 0x00000006
RightButton = true <style> ::= BS_RIGHTBUTTON 0x00000020
PushLike = true <style> ::= BS_PUSHLIKE 0x00001000
Class
PUSHBOX <style> ::= BS_PUSHBOX
Class
CUSTOMBUTTON <style> ::= BS_OWNERDRAWN *’ 0x0000000B
Class
SCROLLBAR <class> ::= SCROLLBAR
Attributes
Type = horizontal <style> ::= SBS_HORZ 0x00000000
Type = vertical <style> ::= SBS_VERT 0x00000001
Type = sizeBox <style> ::= SBS_SIZEBOX 0x00000008
Type = sizeGrip <style> ::= SBS_SIZEGRIP 0x00000010
Alignment = left <style> ::= SBS_LEFTALIGN 0x00000002
Alignment = right <style> ::= SBS_RIGHTALIGN 0x00000004
Alignment = top <style> ::= SBS_TOPALIGN 0x00000002
Alignment = bottom <style> ::= SBS_BOTTOMALIGN 0x00000004
Alignment = bottomRight <style> ::= SBS_SIZEBOXBOTTOMRIGHTALIGN 0x00000004
Alignment = topLeft <style> ::= SBS_SIZEBOXTOPLEFTALIGN 0x00000002
Class
LISTBOX <class> ::= LISTBOX
Attributes
Sorted = true <style> ::= LBS_SORT 0x00000002
MultipleSelection = true <style> ::= LBS_MULTIPLESEL 0x00000008
DisableNoScroll = true <style> ::= LBS_DISABLENOSCROLL 0x00001000
ExtendedSelection = true <style> ::= LBS_EXTENDEDSEL 0x00000800
Multicolumn = true <style> ::= LBS_MULTICOLOMN 0x00000200
NoSelection = true <style> ::= LBS_NOSEL 0x00004000
Notify = true <style> ::= LBS_NOTIFY 0x00000001
OwnerDrawFixed = true <style> ::= LBS_OWNERDRAWFIXED 0x00000010
OwnerDraw Variable = true <style> ::= LBS_OWNERDRAWVARIABLE 0x00000020
HasStrings = true <style> ::= LBS_HASSTRINGS 0x00000040
NolntegralHeight = true <style> ::= LBS_NOINTEGRALHEIGHT 0x00000100

“6 If fact, the BS_TEXT flag (even though it exists) is missing most of time. So Content = text when neither
BS_BITMAP nor BS_ICON are present (push buttons have this style by default).
7 BS_USERBUTTON is also possible but this flag obsolete. It is provided for compatibility with 16-bit versions of

Windows. Applications should use BS_OWNEDRAWN instead. The value of this flag is 0x00000008.

40

UseTabstops = true <style> ::= LBS_USETABSTOPS 0x00000080
WantkeyboardInput = true <style> ::= LBS_ WANTKEYBOARDINPUT 0x00000400
NoData = true <style> ::= LBS_NODATA 0x00002000
NoRedraw = true <style> ::= LBS_NOREDRAW 0x00000004
Class
COMBOBOX
Attributes
Type = Simple <style> ::= CBS_SIMPLE 0x00000001
Type = DropDown <style> ::= CBS_DROPDOWN 0x00000002
Type = DropDownList <style> ::= CBS_DROPDOWNLIST 0x00000003
Extended = false <class> ::= COMBOBOX
Extended = true <class> ::= "ComboBoxEx32"
CaseSensitive = true <ex_style> ::= CBES_EX_CASESENSITIVE 0x00000010
NoEditlmage = true <ex_style> ::= CBES_EX_NOEDITIMAGE 0x00000001
NoSizeLimit = true <ex_style> ::= CBES_EX_NOSIZELIMIT 0x00000008
PathwordBreakProc = true <ex_style> ::= CBES_EX_PATHWORDBREAKPROC 0x00000004
Inherited attributes from LISTBOX and EDIT
Sorted = true <style> ::= CBS_SORT 0x00000100
AutoHorizontalScroll = true <style> ::= CBS_AUTOHSCROLL 0x00000040
LowerCase = true <style> ::= CBS_LOWERCASE 0x00004000
OEMConvert = true <style> ::= CBS_OEMCONVERT 0x00000080
UpperCase = true <style> ::= CBS_UPPERCASE 0x00002000
DisabledNoScroll = true <style> ::= CBS_DISABLENOSCROLL 0x00000800
HasStrings = true <style> ::= CBS_HASSTRINGS 0x00000200
NolntegralHeight = true <style> ::= CBS_NOINTEGRALHEIGHT 0x00000400
OwnerDrawFixed = true <style> ::= CBS_OWNERDRAWFIXED 0x00000010
OwnerDraw Variable = true <style> ::= CBS_ OWNERDRAWVARIABLE 0x00000020
Class
EDIT = true <class> ::= EDIT
Attributes
Alignment = Left <style> = ES_LEFT 0x00000000
Alignment = Right <style> := ES_RIGHT 0x00000002
Alignment = Center <style> ::= ES_CENTER 0x00000001
Multiline = true <style> ::= ES_MULTILINE 0x00000004
AutoHorizontalScroll = true <style> ::= ES_AUTOHSCROLL 0x00000080
AutoVerticalScroll = true <style> ::= ES_AUTOVSCROLL 0x00000040
PasswordFile = true <style> ::= ES_PASSWORD 0x00000020
LowerCase = true <style> ::= ES_LOWERCASE 0x00000010
UpperCase = true <style> ::= ES_UPPERCASE 0x00000008
NoHideSelection = true <style> ::= ES_NOHIDESEL 0x00000100
ReadOnly = true <style> ::= ES_READONLY 0x00000800
Number = true <style> ::= ES_NUMBER 0x00002000
WantReturn = true <style> ::= ES_WANTRETURN 0x00001000
OEMConvert = true <style> ::= ES_OEMCONVERT 0x00000400
Class
RICHEDIT <class> ::= RICHEDIT (ou "RichEdit20A" reshack???)
Attributes
DisableNoScroll = true <style> ::= ES_DISABLENOSCROLL 0x00002000
NoCallOlelnitialize = true <ex_style> ::= ES_EX_NOCALLOLEINIT 0x01000000
NoIME = true <style> ::= ES_NOIME 0x00080000
SelfIME = true <style> ::= ES_SELFIME 0x00040000
Sunken = true <style> ::= ES_SUNKEN 0x00004000
Vertical = true <style> ::= ES_VERTICAL 0x00400000
Class
PROGRESSBAR <class> ::= "msctls_progress32"
Attributes
Type = marquee <style> ::= PBS_MARQUEE 0x00000008
Type = smooth <style> ::= PBS_SMOOTH 0x00000001
Vertical = true <style> ::= PBS_VERTICAL 0x00000004

Class
STATIC

<class> ::= STATIC

41

Attributes <style> ::=SS_ENHMETAFILE 0x0000000F
Type = enhencedMetafile <style> ::= SS_OWNERDRAW*® 0x0000000D
Type = ownerdraw <style> ::= SS_SUNKEN 0x00001000
Sunken = true <style> ::= SS_NOTIFY 0x00000100
Notify = true <style> ::=SS_LEFT 0x00000000
Type = text & TextStyle = left <style> ::= SS_RIGHT 0x00000002
Type = text & TextStyle = right <style> ::= SS_CENTER
Type = text & TextStyle = center <style> ::= SS_SIMPLE 0x00000001
Type = text & TextStyle = simple <style> ::= SS_LEFTNOWORDWRAP 0x0000000B
Type = text & TextStyle = leftNoWordWrap | <style> ::= SS_NOPREFIX 0x0000000C
NoPrefix = true <style> ::= SS_ENDELLIPSIS 0x00000080
EndEllipsis = true <style> ::= SS_PATHELLIPSIS 0x00004000
PathEllispsis = true <style> ::= SS_WORDELLIPSIS 0x00008000
WordEllipsis = true <style> ::= SS_BLACKFRAME 0x0000C000
Type = frame & Frame = black <style> ::= SS_GRAYFRAME 0x00000007
Type = frame & Frame = gray <style> ::= SS_WHITEFRAME 0x00000008
Type = frame & Frame = white <style> ::= SS_BLACKRECT 0x00000006
Type = frame & Rectangle = black <style> ::= SS_GRAYRECT 0x00000004
Type = frame & Rectangle = gray <style> ::= SS_WHITERECT 0x00000005
Type = frame & Rectangle = white <style> ::= SS_ETCHEDHORZ 0x00000009
Type = frame & Etched = frame <style> ::= SS_ETCHEDVERT 0x00000010
Type = frame & Etched = horizontal <style> ::= SS_ETCHEDFRAME 0x00000011
Type = frame & Etched = vertical <style> == SS_ICON ¥ 0x00000012
Type = image & Icon = true <style> ::= SS_BITMAP ¥ 0x00000003
Type = image & Bitmap = true <style> ::= SS_CENTERIMAGE 0x0000000E
CenterImage = true <style> ::= SS_REALSIZEIMAGE 0x00000200
RealSizeImage = true <style> = SS_RIGHTIUST 0x00000800
RightJustify = true 0x00000400

Class
TRACKBAR <class> ::= "msctls_trackbar32"

Attributes
AutoTicks = true <style> ::= TBS_AUTOTICKS 0x00000001
DownlsLeft = true <style> ::= TBS_DOWNISLEFT 0x00000400
EnableSelectionRange = true <style> ::= TBS_ENABLESELECTIONRANGE 0x00000020
FixedLenght = true <style> ::= TBS_FIXEDLENGHT 0x00000040
NoThumb = true <style> ::= TBS_NOTHUMB 0x00000080
NoTicks = true <style> ::= TBS_NOTICKS 0x00000010
Orientation = horizontal <style> ::= TBS_HORZ 0x00000000
Orientation = vertical <style> ::= TBS_VERT 0x00000002
Reversed = true <style> ::= TBS_REVERSED 0x00000200
TickMarks = bottom <style> ::= TBS_BOTTOM 0x00000000
TickMarks = top <style> ::=TBS_TOP 0x00000004
TickMarks = left <style> ::= TBS_LEFT 0x00000004
TickMarks = right <style> ::= TBS_RIGHT 0x00000000
TickMarks = both <style> ::= TBS_BOTH 0x00000008
Tooltips = Boolean <style> ::= TBS_TOOLTIPS 0x00000100

Class
UPDOWN <class> ::= "msctls_updown32"

Attributes
Alignment = left <style> ::= UDS_ALIGNLEFT 0x00000008
Alignment = right <style> ::= UDS_ALIGNRIGHT 0x00000004
ArrowKeys = true <style> ::= UDS_ARROWKEYS 0x00000020
AutoBuddy = true <style> ::= UDS_AUTOBUDDY 0x00000010
Horizontal = true <style> ::= UDS_HORZ 0x00000040
HotTrack = true <style> ::= UDS_HOTTRACK 0x00000100
NoThousands = true <style> ::= UDS_NOTHOUSANDS 0x00000080
SetBuddyInt = true <style> ::= UDS_SETBUDDYINT 0x00000002
Wrap = true <style> ::= UDS_WRAP 0x00000001

* SS_USERBUTTON (value 0x0000000A) is also possible but this flag is obsolete.

“ For this type of control, a remark must be mentioned with <text> ::= val(Text). When defining an SS_ICON
static control in the template, the icon must be defined elsewhere in the resource file. As I noted earlier the icon
resource name must be specified as the text for the control. When the icon’s name is a number, I notice that there
are no more quotes in the template. For example, we can have the line CONTROL 10,-1,
STATIC,WS_CHILD|WS_VISIBLE|SS_ICON|WS_GROUP,5,10,15,20 and elsewhere in the resource file 10 Icon
"MyIcon.ico".

0 Same remark than for an icon.

42

Class

HEADER <class> ::= "SysHeader32"
Attributes
Buttons = true <style> := HDS_BUTTONS 0x00000002
DragDrop = true <style> ::= HDS_DRAGDROP 0x00000040
FilterBar = true <style> ::= HDS_FLAT
Flat = true <style> ::= HDS_FILTERBAR
FullDrag = true <style> ::= HDS_FULLDRAG 0x00000080
Hidden = true <style> ::= HDS_HIDDEN 0x00000008
Horizontal = true <style> ::= HDS_HORZ
HotTrack = true <style> ::= HDS_HOTTRACK 0x00000004
Class
REBAR <class> ::= "ReBarWindow32"
Attributes
AutoSize = true <style> ::= RBS_AUTOSIZE 0x00002000
BandBorders = true <style> ::= RBS_BANDBORDERS 0x00000400
DoubleClickToggle = true <style> ::= RBS_DBLCLKTOOGGLE 0x00008000
FixedOrder = true <style> ::= RBS_FIXEDORDER 0x00000800
NoDivider = true <style> ::= CCS_NODIVIDER 0x00000040
RegisterDrop = true <style> ::= RBS_REGISTERDROP 0x00001000
VarHeight = true <style> ::= RBS_VARHEIGHT 0x00000200
VerticalGripper = true <style> ::= RBS_VERTICALGRIPPER 0x00004000
Vertical = true <style> ::= CCS_VERT 0x00000080
Class
TREEVIEW <class> ::= "SysTreeView32"
Attributes
CheckBoxes = true <style> ::= TVS_CHECKBOXES 0x00000100
DisableDragDrop = true <style> ::= TVS_DISABLEDRAGDROP 0x00000010
EditLabels = true <style> ::= TVS_EDITLABELS 0x00000008
FullRowSelect = true <style> ::= TVS_FULLROWSELECT 0x00001000
HasButtons = true <style> ::= TVS_HASBUTTONS 0x00000001
HasLines = true <style> ::= TVS_HASLINES 0x00000002
InfoType = true <style> ::= TVS_INFOTIP
LinesAtRoot = true <style> ::= TVS_LINESATROOT 0x00000004
NoHorizontalScroll = true <style> ::= TVS_NOHSCROLL
NonevenHeight = true <style> ::= TVS_NONEVENHEIGHT 0x00004000
NoScroll = true <style> ::= TVS_NOSCROLL 0x00002000
NoTootips = true <style> ::= TVS_NOTOOLTIPS 0x00000080
RightToLeftReading = true <style> ::= TVS_RTLREADING 0x00000040
ShowSelectionAlways = true <style> ::= TVS_SHOWSELALWAYS 0x00000020
SingleExpand = true <style> ::= TVS_SINGLEEXPAND 0x00000400
TrackSelect = true <style> ::= TVS_TRACKSELECT 0x00000200
Class
TOOLBAR <class> ::= "ToolbarWindow32"
Attributes
ALTDrag = true <style> ::= TBSTYLE_ALTDRAG 0x00000400
CustomErase = true <style> ::= TBSTYLE_CUSTOMERASE 0x00002000
Flat = true <style> ::= TBSTYLE_FLAT 0x00000800
Transparent = true <style> ::= TBSTYLE_TRANSPARENT 0x00008000
List = true <style> ::= TBSTYLE_LIST 0x00001000
RegisterDrop = true <style> ::= TBSTYLE_REGISTERDROP 0x00004000
ToolTips = true <style> ::= TBSTYLE_TOOLTIPS 0x00000100
WrapAble = true <style> ::= TBSTYLE_WRAPABLE 0x00000200
NoResize = true <style> ::= CCS_NORESIZE 0x00000004
NoParentAlign = true <style> ::= CCS_NOPARENTALIGN 0x00000008
Bottom = true <style> ::= CCS_BOTTOM 0x00000003
NoDivider = true <style> ::= CCS_NODIVIDER 0x00000040
Adjustable = true <style> ::= CCS_ADJUSTABLE 0x00000020
Class
TAB <class> ::= "SysTabControl32"
Attributes
Type = tabs <style> ::= TCS_TABS 0x00000000
Type = buttons <style> ::= TCS_BUTTONS 0x00000100
Bottom = true <style> :=TCS_BOTTOM 0x00000002
FixedWidth = true <style> ::= TCS_FIXEDWIDTH 0x00000400
FlatButtons = true <style> ::= TCS_FLATBUTTONS 0x00000008

43

FocusNever = true <style> ::= TCS_FOCUSNEVER 0x00008000
FocusOnButtonDown = true <style> ::= TCS_FOCUSONBUTTONDOWN 0x00001000
ForceLeft = icon <style> ::= TCS_FORCEICONLEFT 0x00000010
ForceLeft = label <style> ::= TCS_FORCELABELLEFT 0x00000020
HotTrack = true <style> ::= TCS_HOTTRACK 0x00000040
Multiline = true <style> ::= TCS_MULTILINE 0x00000200
Multiline = false <style> ::= TCS_SINGLELINE 0x00000000
MultiSelection = true <style> ::= TCS_MULTISELECT 0x00000004
OwnerDrawFixed = true <style> ::= TCS_OWNERDRAWFIXED 0x00002000
RaggedRight = true <style> ::= TCS_RAGGEDRIGHT 0x00000800
Right = true <style> := TCS_RIGHT 0x00000002
RightJustify = true <style> ::= TCS_RIGHTJUSTIFY 0x00000000
ScrollOpposite = true <style> ::= TCS_SCROLLOPPOSITE 0x00000001
ToolTips = true <style> ::= TCS_TOOLTIPS 0x00004000
Vertical = true <style> ::= TCS_VERTICAL 0x00000080

Class
DATETIMEPICKER <class> ::= "SysDateTimePick32"

Attributes
AppCanParse = true <style> ::= DTS_APPCANPARSE 0x00000010
Format = longDate <style> ::= DTS_LONGDATEFORMAT 0x00000004
Format = shortDate <style> ::= DTS_SHORTDATEFORMAT 0x00000000
Format = shortDateCentury <style> ::= DTS_SHORTDATECENTURYFORMAT 0x0000000C
Format = time <style> ::= DTS_TIMEFORMAT 0x00000009
RightAlign = true <style> ::= DTS_RIGHTALIGN 0x00000020
ShowNone = true <style> ::= DTS_SHOWNONE 0x00000002
UpDown = true <style> ::= DTS_UPDOWN 0x00000001

Class
LISTVIEW <class> ::= "SysListView32"

Attributes
View =icon <style> := LVS_ICON 0x00000000
View = smalllcon <style> ::= LVS_SMALLICON 0x00000002
View = list <style> 1= LVS_LIST 0x00000003
View = report <style> ::= LVS_REPORT 0x00000001
Alignment = left <style> ::= LVS_ALIGNLEFT 0x00000800
Alignment = top <style> ::= LVS_ALIGNTOP 0x00000000
EditLabels = true <style> ::= LVS_EDITLABELS 0x00000200
OwnerData = true <style> ::= LVS_OWNERDATA 0x00001000
ShareImageLists = true <style> ::= LVS_SHAREIMAGELISTS 0x00000040
ShowSelectionAlways = true <style> ::= LVS_SHOWSELALWAYS 0x00000008
SingleSelect = true <style> ::= LVS_SINGLESEL 0x00000004
SortAscending = true <style> ::= LVS_SORTASCENDING 0x00000010
SortDescending = true <style> ::= LVS_SORTDESCENDING 0x00000020
CheckBoxes = true <ex_style> ::= LVS_EX_CHECKBOXES 0x00000004
OneClickActivate = true <ex_style> ::= LVS_EX_ONECLICKACTIVATE 0x00000040
TrackSelect = true <ex_style> ::= LVS_EX_TRACKSELECT 0x00000008
TwoClickActivate = true <ex_style> ::= LVS_EX_TWOCLICKACTIVATE 0x00000080
AutoArrange = true <style> ::= LVS_AUTOARRANGE 0x00000100
NoLabelWrap = true <style> ::= LVS_NOLABELWRAP 0x00000080
NoScroll = true <style> ::= LVS_NOSCROLL 0x00002000
NoColumnHeader = true <style> ::= LVS_NOCOLUMNHEADER 0x00004000
NoSortHeader = true <style> ::= LVS_NOSORTHEADER 0x00008000
OwnerDrawFixed = true <style> ::= LVS_OWNERDRAWFIXED 0x00000400
FullRowSelect = true <ex_style> := LVS_EX_FULLROWSELECT 0x00000020
GridLines = true <ex_style> := LVS_EX_GRIDLINES 0x00000001
HeaderDragDrop = true <ex_style> := LVS_EX_HEADERDRAGDROP 0x00000010
SubltemImages = true <ex_style> := LVS_EX_SUBITEMIMAGES 0x00000002

Class
MONTHCALENDAR <class> ::= "SysMonthCal32"

Attributes
DayState = true <style> ::= MCS_DAYSTATE 0x00000001
Multiselection = true <style> ::= MCS_MULTISELECT 0x00000002
NoToday = true <style> ::= MCS_NOTODAY 0x00000008
NoTodayCircle = true <style> ::= MCS_NOTODAYCIRCLE 0x00000010
WeekNumbers = true <style> ::= MCS_WEEKNUMBERS 0x00000004

Class

ANIMATION

<class> ::= "SysAnimate32"

44

Attributes <style> ::= ACS_AUTOPLAY 0x00000004
AutoPlay = true <style> ::= ACS_CENTER 0x00000001
Center = true <style> ::= ACS_TRANSPARENT 0x00000002
Transparent = true

Class
PAGER <class> ::= "SysPager"

Attributes
AutoScroll = true <style> ::= PGS_AUTOSCROLL 0x00000002
DragAndDrop = true <style> ::= PGS_DRAGNDROP 0x00000004
Direction = horizontal <style> ::= PGS_HORZ 0x00000001
Direction = vertical <style> ::= PGS_VERT 0x00000000

Class
STATUTBAR <class> ::= "msctls_statusbar32"

Attributes
SizeGrip = true <style> ::= SBARS_SIZEGRIP 0x00000100
Tooltips = true <style> ::= SBT_TOOLTIPS 0x00000800
Top = true <style> ::= CCS_TOP 0x00000001

Class
CUSTOMCONTROL

Attribute
ClassName <class> ::= "val(ClassName)" *!

Note: the button style flag BS_RIGHTBUTTON is synonymous with BS_LEFTTEXT.

4.3.2 Shortcut notations in the dialog box template

Shortcut notations can be used to define child window controls in the dialog box template. As

we can see in the first exemple, other identifiers than CONTROL are used in the dialog box

template. They imply a predefined window class and some style flags that do not have to be

specified. For example, LTEXT indicates that the class of the child window control is STATIC
and that the style is WS_CHILD | SS_LEFT | WS_VISIBLE | WS_GROUP. Resource Tuner and
Restorator use shortcuts in the resource file they generate, whereas Resource Builder and

Resource Hacker use the full notation.

The following table links the control types which can be specified and their equivalent

notation (window class and style flags):

<control_type> | <class> <style>*
PUSHBUTTON BUTTON WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON|WS_TABSTOP
DEFPUSHBUTTON BUTTON WS_CHILD|WS_VISIBLE|BS_DEFPUSHBUTTON|WS_TABSTOP
CHECKBOX BUTTON WS_CHILD|WS_VISIBLE|BS_CHECKBOX|WS_TABSTOP
AUTOCHECKBOX BUTTON WS_CHILD|WS_VISIBLE|BS_AUTOCHECKBOX|WS_TABSTOP
RADIOBUTTON BUTTON WS_CHILD|WS_VISIBLE|BS_RADIOBUTTON|WS_TABSTOP
AUTORADIOBUTTON | BUTTON WS_CHILD|WS_VISIBLE|BS_AUTORADIOBUTTON|WS_TABSTOP
GROUPBOX BUTTON WS_CHILD|WS_VISIBLE|BS_GROUPBOX
LTEXT STATIC WS_CHILD|WS_VISIBLE|SS_LEFT|WS_GROUP
CTEXT STATIC WS_CHILD|WS_VISIBLE|SS_CENTER|WS_GROUP
RTEXT STATIC WS_CHILD|WS_VISIBLE|SS_RIGHT|WS_GROUP
ICON STATIC WS_CHILD|WS_VISIBLE|SS_ICON|WS_GROUP
EDITTEXT EDIT WS_CHILD|WS_VISIBLE|ES_LEFT|WS_BORDER|WS_TABSTOP
LISTBOX LISTBOX WS_CHILD|WS_VISIBLE|LBS_NOTIFY|WS_BORDER|WS_VSCROLL
COMBOBOX COMBOBOX | WS_CHILD|WS_VISIBLE|CBS_SIMPLE |WS_TABSTOP
SCROLLBAR SCROLLBAR | WS_CHILD|WS_VISIBLE|SBS_HORZ

5

! ex: CONTROL"&Find Next",1,"ellipticalPushButton",WS_CHILD | WS_VISIBLE|WS_GROUP|WS_TABSTOP,205,5,65,14

45

Notice that many of the controls that interact with the user include WS_TABSTOP as a default.
However, radio buttons other than the first of each radio group lack WS_TABSTOP by default.
The static controls include WS_GROUP by default, which conveniently mark the end of a group

For all these control types, the format to define the control is

<control_type> "<text>",<id>, <x>,<y>,<width>,<height>,<style>*[,<ex_style>*,<helpID>)
except for the EDITTEXT, SCROLLBAR, LISTBOX, and COMBOBOX styles where the text field is
excluded. The RC resource compiler understands the two notations.

So, the line from my first example DEFPUSHBUTTON'&Find Next",1,205,5,65,14,WS_GROUP is equivalent
tO CONTROL"&Find Next",1,BUTTON,BS_DEFPUSHBUTTON|WS_CHILD|WS_VISIBLE|WS_GROUP|WS_TABSTOP,205,5,65,14.
These two syntaxes are encoded identically in the .res file and the .exe file. The second syntax
is less convenient but more complete: with the identifiers, a push button can always be
accessed with the TAB key for instance. The NOT keyword can occur in the template to

precisely resolve this drawback : DEFPUSHBUTTON"&Find Next",1,205,5,65,14,NOT WS_TABSTOP,WS_GROUP.

The decompilers that use shortcut notations use naturally also the generic notation for the
control of another class than those listed above. However, I’ve remarked that WS_CHILD and
WS_VISIBLE are also implicit in their generic notation (these flags are never specified).

Some style flags can also be used as shortcut notations.
- WS_EX_OVERLAPPEDWINDOW
combines the WS_EX_CLIENTEDGE and WS_EX_WINDOWEDGE styles.
- WS_EX_PALETTEWINDOW
combines the WS_EX_WINDOWEDGE and WS_EX_TOPMOST styles.
- WS_OVERLAPPEDWINDOW or WS_TILEDEDWINDOW
combines the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX and WS_MAXIMIZEBOX styles.
- LBS_STANDARD
combines the LBS_NOTIFY, LBS_SORT and WS_BORDER styles.

- WS_POPUPWINDOW
combines the WS_BORDER, WS_POPUP and WS_SYSMENU styles.

4.3.3 Resource of type menu

The resource script file can also contain a menu resource, which is a collection of information
that defines the appearance and functions of an application menu. As you can see in the
second example, the syntax is more intuitive:

<id> MENU
LANGUAGE <language>, <sublanguage>

{
¥

<menu_body>

46

menu_body may contain any combination of popup menu and menu item (one by line).

A popup menu has the following syntax: POPUP <text>, <options> { <popup_body> }
options 1s an optional list of one or more identifiers such INACTIVE, GRAYED or CHECKED
(separated by commas or spaces). popup_body may contain any combination of menu item,
separator or popup menu (one by line).

A menu item has the following syntax: MENUITEM <text>, <id>, <options>
A separator has the following syntax: MENUITEM SEPARATOR

It’s easy to link the attributes from the class diagram with this syntax. Note that the Position
attribute corresponds to the line where the item is defined in <menu_body> or <popup_body>.

4.3.4 Other types of resources

The other resources described in a resource script file are not helpful for the development of
my plug-in. However, the resource editors can habitually extract the icon and bitmap from the
executable and save them anywhere. Then, the user will be able to manually put a missing
image in its GrafiXML project.

When accelerators are defined for menu items (key combinations), they should be found in
the resource of type Accelerators. If I go back to my second example, there is this resource
from Resource Hacker:

209 ACCELERATORS
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

{
VK_N, 251, NOINVERT, CONTROL, VIRTKEY
VK_F1, 610, NOINVERT, VIRTKEY
VK_F12, 432, NOINVERT, ALT, VIRTKEY
VK_F7, 250, NOINVERT, VIRTKEY

bs

Only one menu item is matching: MENUITEM "Folders History...\tAlt+F12", 432. And there are
often some curiosities. So, this type of resource will not be exploited. Anyway, this
information should be in the text string of a menu item (if not, this lost of information is not
really important since the user will not know the existence of the key combinations).

47

4.4 About the decompilation tools

I’ve not here to motivate the choice of a particularly tool by saying which one is the better to
use or the more developed to edit resources for example. It’s the produce .rc resource file
which interests me.

We can see in appendix B fragments of resource files given by the different decompilers and
extracted from the same executable. The tools decompiling a binary file give in general the
same information. I can see that they cover all the existing style flags since a numeric value is
still specified if a tool doesn’t recognize a flag identifier in its implementation. It’s the
remaining value from a word of 32 bits stored in the binary file after extracting all the other
recognized flags. The first difference in the generated files is the use of the generic or shortcut
notation to define the controls. From those that use the generic notation, Resource Hacker
seems more reliable than Resource Builder. Between the two other tools, I prefer Restorator
than Resource Tuner. In the tests that I’ve made, the last gives sometimes oddities in the
specification of the resources (see for example the frame that I’ve drawn in the specification
of the sixth example).

The difference rests principally in the complete resource script file. In appendix A, we can see
a file given by Resource Hacker. Note that the resources specifying the accelerators and
version information are detailed in this file. Resource Builder includes in addition a text
representation of binary files which are normally only referenced in the resource script file.
There is how are specified an icon or a bitmap image (it’s only a fragment, the icon resource
for example have 511 lines of hexadecimal numbers...):

SCITE ICON
MOVEABLE PURE LOADONCALL DISCARDABLE
LANGUAGE LANG_ENGLISH, 1

BEGIN

'00 00 01 00 04 00 30 30 00 01 00 00 00 00 A8 OE '
'00 00 46 00 00 00 20 20 00 01 00 00 00 00 A8 08 '
'00 00 EE OE 00 00 10 10 00 01 00 00 00 00 68 05 '
(.
'00 01 CO 00 00 03 CO 00 00 03 EO 00 00 07 FO 00 '
'00 OF F8 00 00 1F FC 00 00 3F FE 00 00 7F FF 80 '
'01 FF FF FO OF FF "'

END

100 BITMAP

MOVEABLE PURE LOADONCALL DISCARDABLE
LANGUAGE LANG_ENGLISH, 1

BEGIN

‘42 4D EE 00 00 00 00 00 00 00 76 00 00 00 28 00 '
'00 00 10 00 00 00 OF 00 00 00 01 00 04 00 00 00"
‘00 00 78 00 00 00 12 0B 00 00 12 0B 00 00 10 00 '

()
'FF FF FF FF FO 77 77 70 FF FF FF FF FO 77 77 70 '
'FF FF FF 00 00 77 77 70 FF FF FF OF 07 77 77 70 '
'FF FF FF 00 77 77 77 70 00 00 00 07 77 77 '

END

48

These numbers should have perhaps been exploited to restore an image in my reverse
engineering process. Icon and bitmap image (as cursors) are in reality a collection of bits in an
array of any number of rows and columns (for a black and white icon for example, each bit
corresponds to one display pixel). A deeper analysis to make the connection of an image and
these numbers has not been undertaken in my thesis.

Restorator show how the resources appended to the executable are really structured. Only the
text resources of type menu and dialog box are stored in the main .res file (the .rc file
compiled). The other resources are defined (associated with an identifier) in this file but are
stored in separated files. There is the resource file extracted from the same executable by
Restorator (without the specifications of the menu and the dialog boxes):

// from file "C:\Program Files\wscite\SciTE.exe" last modified on 18/04/2005 15:40:52
[l ======== resources of type Bitmap -----------
100 Bitmap 100.bmp

[======m== resources of type Menu -----------

(...

[======m== resources of type Menu -----------

(...)

[s======= resources of type Accelerator -----------

ACCELS Accelerators ACCELS.txt

[s=====m=s resources of type Icon -----------
SCITE Icon SCITE.ico

[l ======== resources of type Version -----------
1 Version 1.res

[======m== resources of type 24 -----------
124 1.txt

The resource 24 is a resource in the XML format. This tool adds also some comments. With
Resource Tuner, each text resource is saved in a separated .rc file (one for each menu and
dialog box for example). If we want save all the resources at once, the tool creates a repertory
for each type of resource.

49

5 UsiXML

The first section of this chapter presents UsiXML (User Interface eXtensible Markup
Language) and its levels of abstraction. The second section gives the UML diagram modelling
the Concrete User Interface level. In the previous chapter I have seen the language used in a
Windows resource file. The goal of the next chapter will be to make an abstraction from the
Final User Interface level expressed in this language up to the Concrete User Interface level
expressed in the UsiXML language.

5.1 Structure of UsiXML

UsiXML is then not a new language for UI implementation, but a User Interface Description
Language (UIDL) based on XML. It specifies the multiple models involved in UI design
which are structured according the layers of the Cameleon™ reference framework. To talk
about the UsiXML language, this framework has first to be presented. The following
illustrates the development process for two contexts of use. Four layers (development steps)
compose the framework: Task and Concepts (T&C), Abstract User Interface (AUI), Concrete
User Interface (CUI) and Final User Interface (FUI).

Source context Target context
Task & Concepts |, * Task & Concepts
P 3 T
Abstract Ul e i Abstract Ul
t (I
Concrete Ul p " Concrete Ul
(i s
Final Ul < . Final Ul

T Abstraction V Reification i Translation

The Cameleon framework is intended to express the Ul development life cycle for context-
sensitive interactive applications. The context of use, related to the notion of task, determines
the conception choices. It is defined by tree elements:

32 Context Aware Modelling for Enabling and Leveraging Effective interactiON. For more information about
this framework, see http://giove.cnuce.cnr.it/cameleon/documents.html.

50

- The interactive task will be realized by a particular user stereotype (or profile).”

- This task will be performed on a particular platform (a set of devices and software
which enables supporting the interactive task).>*

- The user is immersed in a physical environment when realizing its task on the

platform.”

The FUI is the UI produced at the last step of the reification process. It consists of the Ul
coded in any language (like Java, HTML or the language used in a resource script file) to be
interpreted or compiled. It is then the operational Ul running on a particular computing
platform (like a PC, a Macintosh Mac OS, web terminal, a pocket PC, a mobile phone...).
There is for instance the rendering of the dialog box from my first example that I have
simplified:

| Find Next]
Markc All

The CUI level abstracts a FUI independently of any platform. The above push button control
labelled “Find next” is for example abstracted into a button at the CUI level. A CUI can also
be considered as a reification of an AUI concretizing the UI for a given context of use into
Concrete Interaction Objects (CIOs) so as to define widgets layout and interface navigation.
Widgets™ are building blocks of the graphical UI each performing a specific function (e.g.,
text fields, buttons or check boxes). The interface is then composed of existing Ul widgets
with a set of properties (e.g., background colour, size, font) and a set of values associated with
the properties (e.g., black, Tahoma, 8pt), but these widgets are independent of any particular
toolkit:

dialogBox

| inputText | | button | | button |

The AUI level is assumed to abstract the CUI independently of any modality of interaction. In
the example, it’s a graphical interaction. But we could have also video-based interaction,
vocal interaction (with eventually speech recognition), tactile interaction, haptic interaction
(as vibrations in a joystick) or even soon olfactory interaction. In the other direction, an AUI

>3 For example, supposing a distributed application in a hospital which manages information about patients, a
doctor in an ambulance using a pocket PC when detecting an urgent situation has a complex experience of
analyse. The emergency ward can then be prepared to receive the patient.

> In the example, say an IPAQ with a large tactile screen usable with the fingers.

% In the example, the doctor is in a stressful environment.

% A widget evokes "window gadget".

51

express the rendering of the domain concepts and tasks independently of a modality. An
element used in this level’’ can be then the abstraction of an existing widget, while
representing a subtask defined at the upper level. There is how my simple example is in turn
abstracted at the AUI level:

container

| inputerl | activatorl | activatorl

The T&C level describes the interactive tasks to be carried out by the end user (here,
searching for a word in a text) and the domain concepts as they are required by these tasks to
be performed. A task is typically hierarchically decomposed into sub-tasks to end up with
actions (the leaves) which can be no longer decomposed and are carried out. The tasks are
also ordered with temporal relationship. The same example is graphically represented below,
where the []>> operator indicates that sequence is needed and information is passed and the []
operator expresses the constraint of a choice between two tasks.

search word

launch search to
find all occurrences

launch search to
find next occurrence

enter word

[15>—

The framework exhibits three types of relationships:

- An abstraction transforms any specifications into specifications at a higher level of
abstraction.

- Reification transforms any specifications into specifications at a lower level of
abstraction.

- A translation is about transformation of the interface from one type of platform to
another, or more generally, from one context to another. The term adaptation is also
often used: an existing system is adapted to a new context of use. If the adaptation is
performed at a high level of abstraction, the resulting process will be more flexible.

These relationships allow a multi-path Ul development. The development can be started at
any entry point of the framework. Reverse engineering follows abstractions (an existing
system is recuperated). My thesis is concerned with FUI reverse engineering. Forward
engineering follows reifications (a new system is produced). Lateral engineering follows
translations (for example, when a Ul in HTML is already designed for a desktop, we may
design a corresponding Ul in Java for a mobile phone).

37 An Abstraction Interaction Objects (AIO).

52

Other terms exist to define specific development paths. Transcoding tools perform lateral
engineering at the FUI level: a FUI for a source platform is directly transformed into another
FUI for a target platform. The re-engineering combines reverse engineering and forward
engineering. The retargeting is the re-engineering for another computing platform, for
example through the CUI level (as illustrated below): a CUI for a source platform (say that

one that I have to generate from a Windows resource file) is transformed | @
into another CUI for a target platform5 8 (as a pocket PC), that I turn leads to = Z‘
a new FUI for that platform: e
I~ Wrep around
Personal Computer Pocket PC I Tarwloatbacaleresdons
. [2""3‘:"' i Find Newt
‘ Concrete Ul | -->| Concrete Ul | ks vt
z 1 Cancel
1 3 * | e ‘
‘ Windows Ul code | | Final Ul | @@, @@

UsiXML is based on XML, which is a compliant specification language suitable for any
interface. This language describes a Ul at any above mentioned levels of details and
abstractions, depending of the context of use.

It specifies multiple models, structured according to the four layers of the Cameleon
framework. This approach is a model-driven architecture (MDA): the interactive system to be
build is described by a series of models and transformations between them all expressed in a
unified notation. The models produced can be listed and maintained in a model repository,
which is fed and accessed by a series of tools, to be reused in an efficient way.

The basics models are the task, domainsg, AUI, CUI and context®® models. The language can
also specify the relationship between these models, with the mapping®' and transformation®”
models. The AUI and CUI models reflect the AUI and CUI levels. The following presents
UsiXLM in terms of a UML class diagram (that is, the meta-model of the language). The
topmost superclass (uiModel) contains common features shared by all component models of a
UL

% Graceful degradation techniques may be applied in this case to take into account the constraints imposed by
the target platform.

% The domain model is a description of the classes of object manipulated by a user when interacting with a
system.

% The context model describes the tree aspects of the context of use.

%' The mapping model expresses the correspondence between elements of the models (following the reification,
abstraction and translation relationships).

52 The transformation model formalizes explicitly the transformation between two models with the graph
transformation techniques in conformity with the transformation definition (generated from a mapping
specification).

53

uiModel

EcreatlonDate string
schemaVer5|on string

comment

e LR I

0..n 0..n | authorName

1.

n .
version

E8modifDate : string

0.1 0.1 0.1 .. 0..1 0..n 0..1
transformationModel ‘ ‘ domainModel ‘ ‘ taskModel ‘ ‘ awModel ‘ ‘ cuiModel ‘ ‘ mappingModel ‘ ‘ contextModel ‘ ‘ ResourceModel
1
\ I \ \ \ \ \ \ \

A unified language specifying these models allows designers to exchange and share fragment
of specifications and enables tools to operate on these specifications.

UsiXML is currently supported by several tools® (as IdealXML which specifies the task,
domain, AUI and mapping models, GrafiXML which is a CUI editor or ReversiXML which
enables FUI reverse engineering of HTML files). To design a user interface, the techniques
proposed can follow a forward engineering. The designer uses first Ideal XML to build a task
and a domain model (which is a UML class diagram, an entity-relation model or an object-
oriented model) and establish different types of mappings between the two models (as, in my
simple example, mapping the task “enter word” with an attribute or the task “launch search”
with an operation). The abstract UI can be then obtained using several rules (for example, the
structure of the AUI can be determined from the task model: if a task is decomposed in sub-
tasks, then the parent task is put in a container). A set of model-to-model® transformation
functions, transforming a UsiXML specification into another UsiXML specification, is
automated in TransformiXML. A first arborescence of widgets is then elaborate for each
container. The CUI is created, with graph transformations, after choosing the modality. A
platform and a language are finally chosen to have a FUI by rendering (interpretation) or code
generation. In this manner, the Ul is derived from the task model. We reuse what it is made at
the previous levels. All these tools can be combined and automatism is privileged to keep the
model consistent as modifications occur (when the requirements change). Other path can be
followed as well. We can use the fact that UsiXML supports a mutli-path development of UI.
The development process can be initiated from any level of abstraction and proceed towards
obtaining one or many FUI for various context of use:

%3 See http://www.usixml.org/ for the list of these available tools.
% Model-to-model transformations support any change between models while model-to-code transformations are
associate with code production (automated or not).

54

Interpi XML
‘ TransformiXML: | QtkXML

FlashiXML

| IdealXML |

Generative
programming

UsiXML models: UsiXML model: UsiXML model:

Rendering

FUI

task, domain i AUI i Cul

VisualiXML

Derivation rules|

ReverseXML

KnowiXML GrafiXML
VisiXML

SketchiXML
FormiXML

The task that my GrafiXML plug-in should assume is to open a resource script file describing
the Ul of a Windows-based application (that is, a FUI) and generate the UI definition in
UsiXML at the CUI level into GrafiXML. The CUI model is presented in the next section.

5.2 Concrete User Interface model

My plug-in is devoted to generate UsiXML specifications at the Concrete User Interface
(CUI) level from a resource file of Windows-based application. Therefore, the model which
interests me particularly is the CUI model.

This model describes, in a certain degree of expressiveness, the appearance and behaviour of
a Ul. A UI represented by this model is dependent of the modality. An instance of the model
addresses then a single modality at a time. In my case, the interaction is graphical.

A CUI is however independent of the platform. The elements populating a CUI realize an
abstraction of common language used to develop Uls, like Windows.

The CUI model is hierarchically decomposed in Concrete Interaction Objects (CIOs). A CIO
is any entity that the user can perceive and manipulate used for the acquisition or restitution of
information. CIOs are grouped into two types: graphical containers (such as a window, a
dialog box or a group box) and graphical individual components (such as an image, a check
box or a progression bar). In my plug-in implementation, I will have to generate and
manipulate such CIOs into GrafiXML.

The layout of a CUI is not defined with absolute coordinates as in the resource files presented
in chapter 4, but with a box embedding mechanism. Alignments between CIOs can be defined
with some relationships.

There is the CUI from the first section edited in GrafiXML. It’s the simplified dialog box of
my first example containing a text field and two push buttons and allowing the user to find a
word in a text. A CUI is like a blueprint from which a FUI is created on a particular platform,
giving the final look.

55

. GrafiXmL

File Edit Tools Options Help

== -

J: x SeilE_Find |

Composer | wML Eﬁur || RTF Manager | Context editor

% Dptinns | Hisrarchy Yiew| i | | dislog_bos_component_0

A

dialog_box_component_0 —
widthy
423

input_text_component_4

[button_com..

height

(172

[button_com..

repetition

[o

sAlwaysOnTop
[false:

|

>

At any time, the user can see the corresponding UsiXML specifications in the XML editor.
Note that UsiXML cannot naturally be executed by its own, but relies on an implementation

in a third-party rendering engine.® The following is the description of the CUI in UsiXML.

<?xml version="1.0" encoding="UTF-8"?>
<cuiModel id="SciTE_Find-cui_23" name="SciTE_Find-cui">

<dialogBox id="dialog_box_component_0" name="dialog box 400 simplified"

defaultContent="Find" width="423" height="172">

<box id="box_1" name="box_1" type="horizontal" relativeWidth="100" relativeHeight = "100">

<box id="box_1_1" name="box_1_1" type="vertical" relativeWidth="70" relativeHeight="100" >
<inputText id="input_text_component_4" name="edit control 222"

isVisible="true" isEnabled="true" isEditable="true"

textSize="8" textFont="Microsoft Sans Serif" maxLength="35"
numberOfLines="1" numberOfColumns="35" glueHorizontal = "right"/>

</box>

<box id="box_1_2" name="box_1_2" type="vertical" relativeWidth="30" relativeHeight="100">

<button id="button_component_2" name="default push button 1"
defaultContent="Find Next" isVisible="true" isEnabled="true"

textSize="8" textFont="Microsoft Sans Serif" glueHorizontal = "middle"/>
<button id="button_component_3" name="push button 245"

defaultContent="Mark All" isVisible="true" isEnabled="true"

textSize="8" textFont="Microsoft Sans Serif" glueHorizontal = "middle"/>

</box>
</dialogBox>
</cuiModel>

A cio is characterized by various attributes sush as id, name or defaultContent. All the CIOs
in this CUI model are graphicalCio, which inherits from cio and has specific attributes such
as isVisible, isEnabled, textFont or textSize. A graphicalCio can belong to one of the two
possible types: graphicalContainer or graphicallndividualComponent. For example, a

dialogBox and a box are from the first type and an inputText and a button are from the second

type. The properties of each final element in the hierarchy (that is, their specific and inherited

attributes) are limited to describe characteristics of high common interest, independently from

the future rendering.

% FlashiXML (which is currently being implemented) can also opens a CUI UsiXML file and renders it in Flash,

QtkXML in the Tcl/Tk environment, and JaviXML for Java.

56

The UML class diagram of the CUI model is given at the next page. The full documentation
of the diagram can be found on http://www.usixml.org. Each CUI model expressed in

UsiXML will be an instance of this meta-model. I can then compare the meta-model with that
one given in the previous chapter, and find correspondences between them. This mapping is
covered in the next chapter.

mapping
UML model [« >

F 3
instance of

CUI model

Once the resource file will be transformed in UsiXML at the CUI level, code in another
language can be generated, even automatically with GrafiXML (in HTML, Java, XHTML or
XUL).

57

logicalOperator

&3conditionType : {pre,post}

condition — 1]
isPositive : boolean
isNegative : boolean

0.n_action

BJvalue : (AND, OR, XOR, IMPLIES})

ruleMapping

&Ftargetld : string

urceld : string

transformationSystem

0.n

&id : string
MethodCall

transition

Bname : string
&3description : string

ethodName : Strmg‘ }itmnsnionldRel : sning‘
]]

T,

methodCallParam
JcomponentidRef : string

&JretumValue : string

attributeCondition
BJexpression : string

roperty : string

Bidefaulticon : uri
BdefaultHelp : uri

BourrentValue : string

BJcreationDate : string
&3schemaVersion : string

uiModel

cuiRelationship

88id : string
0..n [BFname : string

5=

BJtargetld : string

BJsourceld : string
1

graphicalRelationship

graphicalCio
BJisVisible : boolean
BisEnabled : boolean
&statusBarContent : uri
B3defaultStatusBarContent : string
3gColor : string

BSborderColor : String
&5tool TipDefaultContent : string
BtoolTipContent : uri

&StransparencyRate : integer

vocalCio |

Interruptible - bca\ean‘

%

inalComponent |
location : uri ‘
]

vocalContainer

vocalTransition
BJtransitionType : string

graphicalAlignment
&Jis Vertical : boolean

string| | |BBisUpDown : string

&isHorizontal : boolean
BisRightCentralLeft : string

[vocalConfirmation |

vocalForm | [vocalMenu |
! |

separator

graphicalContainer
3width : integer
Bheigth : integer
bgimage : uri

graphicalindividualCompone
nt

BglueVertical : string
&glueHorizontal : string
idefaultMnemonic : String

BisDetachable : boolean
isMigrateable : boolean

MenuPopUp

8¢

table

[BBxSize : integer
B8ySize : integer
B¥zSize : integer

tabbedDialogBox

)
N

MenuBar

&5isResizableHorizontal : boolean
BisResizableVertical : boolean
&relativeMinWidth : integer
&relativeMinHeight : integer

ridHeight : string

B statusBar

cell
BxIndex : integer
&y Index : integer
&zIndex : integer
JisHeader : boolean
BJisFooter : boolean

window
BiwindowLeftMargin : integer|
3windowTopMargin : integer|
BJisResizable : boolean

BtextColor : String

mnemonic : String

vocalOutput

vocalinput

[BSvolume : integer
[EBintonation : integer|
[BBpitch : string

BJellapsedTime : integer|
[Bgrammar : string

[vocalFeedback | I

vocalMenutem |
|

vocalPrompt

graphicalTransition

graphicalEmphasis
grahicalCointainment

BJtransitionType : string
string

graphicalAdjacency

videoComponent
BBaltematelmage : uri
BJautoplay : boolean
&3isLoop : integer
JouiltinControl : boolean
btitle : boolean
BJsubtitleContent : uri

EdefalitState

o
BoroupName :

: boolean

comboBox

string

jisEditable : boole;

button

outputText

imageComponent

JdefaultHy perLink Target : uri
BShyperLinkTarget : uri
BvisitedLinkColor : string
BJactiveLinkColor : string

inputText - integer

&JisEditabl

EtextVerti

Efilter : uri
RidefaultFi

BStextMargin : integer

WordWrapped : boolean
GforceWordWrapped : boolean
BImaxLength : integer
B3numberOfColumns : integer
B3numberOfLines : integer

B5textHorizontalAlign : string

BSisPassword : boolean

BtextVerticalAlign : string

le : boolean extHorizontalAlign : string

icalAlign : string

&3scrollDelay : integer
inumberOfColumns : integer
EinumberOfLines : integer

iter : string

@JimageHeight : integer
JimageWidth : integer

&
BhyperLinkTarget : uri
&3 defaultHyperLinkTarget : uri

0.n
imageZone
B3hyperLinkTarget : uri
BSdefaultHyperLinkTarget : uri

hape : string
&coordinates : coord

b
teger

g

toggleButton

B3defaultState : boolean

checkBox
B¥defaultState : boolean
&groupName : string

colorPicker

- string

1
menuttem

Btype : string
BkeyboardShortcut : string
&JdefaultKeyboardShortcut : string

 E—
1
menu
ipopUpMenu : boolean datePicker
EtoolBarMenu : boolean
[
1
1.0

BiminValue : integer
BmaxValue : integer
rientation : string

cursor

B3defaultPosition : integer|

boolean

filePicker

maxineVisible : integer
isEditable : boolean
multiple_selection : boolean

listBox

6 Importing resource files in GrafiXML

So far, I’ve presented the specification languages used as input and output of my reverse
engineering method. This chapter covers the transformation process from a resource script file
(*.rc) up to the generation of Concrete Interaction Objects (widgets provided by a toolkit) in
the editor tool GrafiXML. The first section studies this transformation and proposes
derivation rules, and the second section explains how it has been implemented as a plug-in of
GrafiXML.

6.1 Transformation of resources into CUI

I will explore here how the content of a resource file can be transformed into the CUI model.

6.1.1 Correspondences table

I have to detect the similarities between the two meta-models: on the one hand the class
diagram modeling a resource file, on the other hand the class diagram of the CUI model. The
objective will be to give a value to a maximum of attributes of the second diagram with the
information found in a given resource file (instance of the first diagram). The question that
guides this section is to determine which objects (from the real world, to refer to databases
vocabulary) composing of a graphical user interface and which characteristics defining the
appearance and functionality of an object are covered both by the two languages. This
corresponds to the crosshatched zone in the picture below. For example, a mnemonic of a
menu item can be specified in a resource file as well in the CUI model. From a simple combo
box, we have in part the information that the current selection is editable, but the fact that its
list box is displayed at all time is not covered in the CUI model.

- graphicalCio, toolTipDefaultContent = "Save the file to disk"

CUI

COMBOBOX, Type = simple
combobox, isEditable = true

WINDOW, Text = "&Save"
graphicallndividual Component, defaultMnemonic = S

¥~ < - 3 LISTBOX, Multicolumn = true

cio, defaultcontent = "Save"

59

The following list of tables will serve as guidelines for my implementation. The Windows
objects are placed in the left column and their corresponding objects of the CUI model (CIOs)
in the right column. An attribute name appears in italic and a class name in bold to dissociate
them. Note that there are some elements in the table that not really correspond, but that I’ve
still decided to associate in my implementation (as such an identifier in a resource file with a
name of a CIO).

6.1.1.1 Resources of type dialog box
RC — CUI

DIALOG dialogBox or window
graphicalCio isVisible = true

box type = vertical

dlgID =n cio name =n

Width = w graphicalContainer width = w*4/xChar + 2*border width
(where xChar is the average width of the dialog box font
character in pixel)

box width = w*4/xChar

Height =h graphicalContainer height = h*8/yChar + title bar height

+ bottom border width (where yChar is the average height of
the dialog box font character in pixel)

box height = h*8/yChar

Text =t and Caption = true and t # null cio defaultContent = t

FontName = n and SetFont = true graphicallndividualConponent rextFont = n

ShellFont = true and graphicallndividualConponent rextFont = "Tahoma"

FontName = "MS Shell DLG"

ShellFont = true and graphicallndividualConponent rextFont = "Tahoma"

FontName # "MS Shell DLG"

FontSize = s and graphicallndividualConponent rextSize = s

(SetFont = true or ShellFont = true)

SetFont = false and ShellFont = false graphicallndividualConponent fexzSize = 8,
textFont = "Tahoma"

Extended = true and (SetFont = true or graphicallndividualConponent isBold = true

ShellFont = true) and Weight > 550

Extended = true and (SetFon = true t or graphicallndividualConponent is/talic = true

ShellFont = true) and Italic = true

Disabled = true graphicalCio isEnabled = false

ThirckFrame = true window isResizable = true

TopMost = true graphicalContainer isAlwaysOnTop = true

I choose Tahoma as default font, which is the default system font of Windows 2000 and upper
(it was MS Sans Serif for older versions). The size of the font is always 8 when not specified.
It’s the dimension of the dialog box client area that is specified in a resource file. In the CUI
model®, a dialog box or a window has always a caption bar and a border which are included
in the dimension (a border will be 5 pixels wide and a caption bar will be 30 pixels high).
Remember that the units of measure are not the same. The dimension of a graphical container
is expressed in pixels, whereas a resource file expresses the measures in horizontal dialog
units and vertical dialog units®’. The dimensions in Windows are then defined in term of

% In reality in the implementation of GraphiXML (still currently being implemented). It’s principally to restore
in the composer the same layout that the original dialog box that I have adapted the dimension of the container.
57 One horizontal (vertical) unit equals 1/4 (1/8) of an average character width (height) of the font used.

60

characters. Three versions of a dialog box with the same specified dimensions but with
different font used are illustrated in this paragraph. Although it should be possible (the system
do it), I’ve not the necessary time and means in my thesis to calculate the average character
width and height of each existing font (considering also the size of the font) in order to get the
exact dimension of a dialog box in pixels.”® To

estimate the values of xChar and yChar in the table | ... l =]
above, I’ve used an empiric method. I’ve choose a |1 Machuhoe wod ony [Direetion——— MakAl |
A . . I Match case “ Up ’ 137
dialog box using the default 8-point Tahoma font |r fega cmpression © Down Cancel |
I™ Wrap around

(or an 8-point MS Sans Serif font which seems to

I™ Transform backslash expressions . 7

have the same character width and height because

the resulting dimension is the same), and I've | ... | —— " —)
watcl.led its dimension in pixels. For tha‘lt one fror‘n :::ag = o ‘ varkal | 137
my first example, I observe that the client area iS | reguar expression " Down caneel |
413 pixels wide and 137 pixels high.” So, we have |p o2 l
for the relations from the table: < 413 o

4 8h

413=—2— and 137=
xChar yChar

Where the width w is 275 and the height £ is 84 in dialog units. We have then the estimations:

1100 672

xChar =—— and yChar =——
413 137

Seeing that another font size s can be employed, these values must still be multiplied by s/8. If
another type of font is used (as Courier New), I decide that the dimensions in the dialog box
will not be adapted and some texts may be clipped. It’s not frequent to see another font used

in a dialog box of a Windows application.70 After

all, when the user changes the font in a GrafiXML m el ——— |

[Match case e

project, this not affects the size values firstly |r secen wnote vora omy Dizestion Maze 311
specified. The user has to change manually the size (’

" Down Cancel

I 1 Regulsr expressicocn

of the dialog box, as the size of some components if | #=e aromd

|_ Transform backslash expressions

text with new font fits in the graphical component. < 781

Y

Note finally that the colours are not in my UML diagram. That is, they are not specified in a
resource file but specific to Windows’'. Such data that could be deduced seeing that Windows

% 1 don’t know if we can find documentation about this pixel information. I just know that the Windows function
GetClientRect obtains the dimensions in pixels (and the function MapDialogRect converts the character
coordinates in the dialog box to pixel coordinates in the client area.

% To do this, I’ve edited the desired font in a decompiler, made a print screen and used MSPaint (in "C:\Program
Files\Accessories") the number of pixels.

' In fact, I've never seen that in a resource file.

"I Here I some examples in Windows XP. The grey colour "#d8e9ec" is the surface color of a dialog box and the
backgroud color of a control to agree with the color of the client area of the dialog box in which it is designed to
be displayed. By default, the colour of an active title bar is blue ("#e45403") and the white ("#ffffff") bold text
has the Trebuchet MS font of size 10. The colour of text displayed in the client area of a dialog box is always
black ("#000000").

61

interfaces are used could not be transformed into the CUI model. This concerns the FUI

model.

CONTROL

Position =n cio name = "control_" + n

X, Y, Width, Height serve to the creation of boxes with eventually some
graphicalAlignment between two components inside a box

Disabled = true graphicalCio isEnabled = false

Visible = false graphicalCio isVisible = false

Text =tand ‘&’ is a character of t and the graphicallndividual Component defaultMnemonic = the

control is a radio button, a push button, a character following ‘&’ in t

customized button or a check box

In my transformation, the identifier of a resource corresponds in general to the name of a
CIO.”™ The user can then still connect the produced object with the resource in the file after
the reverse engineering process. However, for child window controls, I use the line number of
their definition in the template for the name. They can be then easier localised and most of all
in a unique way: the controls who not receive user input (as static controls) have all -1 as
identifier.

For a component, the concept of position and dimension inside a window is absent from the
CUI model. To place each component, horizontal and vertical boxes will have to be defined
using the position and dimension values of all controls specified in the resource file.
Alignment properties can also be defined between two components inside a box. Look at the
measures in the dialog box from my first example, which are not always visually identifiable
for some controls:

Fodwia: 8 _v_ji FndNed §

i: Metch whole wrd orly PDRE T L kA
Match case = =r Qp. :] H .
Regulargxpres;iun i .lf_go.‘:ﬂ__:_l x S
Wirap around i X
Transform backslash E;pressions E

We could divide the client area in different ways. The following illustrates one possibility to
create the first boxes:

hbox1113% Find what:

I~ Match whole word only i - Direction : Mark Al ' | l
HC U —

hbox112} L Metcheme 12 {hbox1 |]
™ Regular expression ; LDown :
[~ Wrap around vbox1121 ! vbox1122 : | |
hbox113#% | Transform backslash expressions

vbox11l vbox12

> And not to the attribute id of a CIO. These two identifiers have not the same utility.

62

GROUPBOX

box (containing each control that participates in the Group

relationship)

graphicalCio borderWidth = 1, borderType = line,
borderColor = "#000000"

Width = w, Height =h

box width = w*4/xChar, height = h*8/yChar

Text =t and size of t>0 "

graphicalCio defaultBorderTitle = t

HorizontalAlignment = left

graphicalCio borderTitleAlign = left

HorizontalAlignment = center

graphicalCio borderTitleAlign = middle

HorizontalAlignment = right

graphicalCio borderTitleAlign = right

RADIOBUTTON PushLike = false

radioButton

Text =t

cio defaultContent = t without any ‘&’characters

Group = true

radioButton groupName = a given group name for each
radio buttons following this radio button in the template and
having Group = false

RADIOBUTTON PushLike = true

toggleButton

PUSHBUTTON

button

Text =t and Content = text

cio defaultContent = t without the ‘&’character

Text =t and Content # text "

cio defaultContent = t

Default = true graphicalEmphasis

CUSTOMBUTTON button

CHECKBOX PushLike = false checkBox

Text=t cio defaultContent = t without any ‘&’characters
PushLike = true toggleButton

Group = true

checkBox groupName = a given group name for each check
boxes following this check box in the template and having
Group = false

LISTBOX

listBox isEditable = false

heigth =h

listBox maxLineVisible = h/(11*s/8) (where / is an integer
division”, and s is the size of the font use in the dialog box)

ExtendedSelection = true

listBox multipleSelection = true

EDIT Width =w

inputText isEditable = true, numberOfColumns = w/4

Alignment = left

inputText rextHorizontalAlign = left

Alignment = center

inputText rextHorizontalAlign = middel

Alignment = right

inputText rextHorizontalAlign = right

MultiLine = false

inputText numberOfLines = 1

MultiLine = false and
AutoHorizontalScroll = false

inputText maxLength = w/4

PasswordField = true

isPassword = true

Number = true

defaultFilter = [0-9]

Heigth = h and MultiLine = true

inputText numberOfLines = h/(11*s/8) (where s is the size
of the font)

MultiLine = true and AutoHorizontalScroll =
false and HorizontalScrollBar = false

inputText wordWrapped = true, forceWordWrapped = true

Width = w and MultiLine = true and
AutoVerticalScroll = false and
VerticallScrollBar = false

inputText maxLength = w/4 * numberOfLines

COMBOBOX Heigth = h and Type = simple

listBox isEditable = true, mulipleSelection = false,
maxLineVisible = h/(11*s/8) (where s is the size of the font)

COMBOBOX Heigth = h and Type # simple

comboBox maxLineVisible = h/(11*s/8) -1 (where s is the
size of the font)

COMBOBOX Type = dropDown

comboBox isEditable = true

COMBOBOX Type = dropDownList

comboBox isEditable = false

3 In my implementation, the text in the control definition will be never null (contrary to a dialog box which can
have no title specified in the caption bar) as in the syntax of the generic notation (in any case, the variable storing
the text will be initialised to an empty sting before parsing the text).

™ That is, an icon or bitmap.

7> The fractional part of the result is truncated and discarded.

63

I’ve chosen to represent a simple combo box (that is, the list box is displayed at all times and
the current selection is editable) in Windows with an editable list box in the CUI model. For
drop-down and drop-down list combo boxes, care must be taken when reading the height
specified in the resource file, as we can see in the same example illustrated above:

< (oo]

Find what: _I

T™ Match whgle word orly Direction——— Mark Al !
I Match caze C Up ‘

™ Regular ggpression _FQT S &j

I~ Wrap around
™ Transform backslash expressions

The problem is that the drop-down list is counted in the height of the control. The height must
be revised when creating boxes by considering only the field of the current selection (14
horizontal dialog units when the font size is 8, then 14*s/8 when the font is s).

Note that the dimensions of graphical individual components are not explicitly specified in the
CUI model. This will pose a problem for a button. The dimension of this CIO (as the
dimension of a radioButton, checkbox or toogleButton) is defined by the length of the text put
in it, and then it cannot have a larger size (and be aligned with other as illustrated above). In
addition, if an image is put in the button instead of text, its size is undefined since this
resource (and then the size of the image) is not available. The width of a listBox depends also
of the length of its items. The problem is the same: the strings contained in a list box are not
specified in a resource file.

PROGRESSBAR progressionBar
Type = marquee indeterminate = true
Type # marquee indeterminate = false

Vertical = true (false) orientation = vertical (horizontal)

STATIC Type = ownerDraw,
Width = w, Height =h

outputText numberOfColumns = w/4,
numberOfLines = h/8

STATIC Type = text,
Width = w, Height =h

outputText fextVerticalAlign = top,
numberOfColumns = w/4, numberOfLines = h/8

Text =t, NoPrefix = false cio defaultContent = t without any ‘&’characters

Text =t, NoPrefix = false
and ‘&’ is a character of t

graphicallndividual Component defaultMnemonic = the
character following ‘&’ in t

Note : here the attribute is set to the cio which is the
abstraction of the first control having Tabstop=true after this
static control in the resource file

Text =t, NoPrefix = true cio defaultContent = t

TextStyle = left or simple or leftNoWordWrap

textHorizontalAlign = left

TextStyle = center

textHorizontalAlign = middle

TextStyle = right

textHorizontalAlign = right

STATIC Type = image

imageComponent

Text =t

cio name =t

RealSizelmage =true, Width = w, Height =h

imageComponent width = w*4/xChar, height = h*8/yChar

Border = true or Sunken = true

imageComponent imageBorder = 1

STATIC Type = frame, Width = w, Height = h,
Etched # horizontal or vertical

box width = w*4/xChar, height = h*8/yChar
(containing each control that participates in the Group

64

relationship)

graphicalCio borderWidth = 1, borderType = line
Etched = horizontal, Height = 1 box width = w*4/xChar, height = 1

graphicalCio borderWidth = 1, borderType = line
Etched = vertical, Width = 1 box width = 1, height = h*8/yChar

graphicalCio borderWidth = 1, borderType = line
STATIC Type = enhancedMetafile imageComponent width = w*4/xChar, height = h*8/yC

For a static control used to display an image, the given text is the name of an icon or a bitmap
(not a filename) defined elsewhere in the resource file. For example, if the text of such control
1s "SCITE", the file (here from Restorator) has somewhere the line: SCITE ICON SCITE.ico
But when we extract the resource and save it to the disk with a decompiler (*.ico), the name it
gives to the file is not necessary the same as specified (for example, we have a file names
Icon_1.ico). So, I’ve not exploited this information (an image file name is normally put in the
defaultContent attribute of an ImageComponent). The user can insert the image in the
GrafiXML project, knowing the name of the image resource (put in the name attribute for an
ImageComponent overriding the name that I have defined for each control). We can’t know
the real size of an image resource from a resource file. The user should also put these values
manually in the GrafiXML composer.

The width and height values specified in the resource file for a static control displaying an
image are also ignored in Windows (except if RealSizelmage = false): the control auto sizes
itself to accommodate the image. This will complicate the creation of boxes since these values
can be not reliable information.

A static control can also represent frames corresponding to container in the CUI model. The
following illustration summarizes the different types of static controls used to draw frames.

- -

étched

Frame Frame Frame Etched = horizontal

= black = gray = white = frame

Rectangle

= white
Etched

“ | I — | = vertical

The values for the colour do not necessary mean that the colour are black, gray or white but
are based on a Windows system colour: the colour used to draw window frame, to fill the
screen background or to fill the window background. And the default values can be changed.
So, this colour information in a resource file is in reality not present.76 In Windows, the flags
SS_ETCHEDHORZ and SS_ETCHEDVERT are always used to have an etched looking vertical or
horizontal line in a rectangle one unit high or wide (as in my third example).

7% In my implementation, I’ve still set these default values ("#636f71" for black, "#99a8ab" for gray and "#ffffff"
for white) to the bgColour and borderColor attributes for the corresponding box to visually identify the
container in the GrafiXML editor.

65

TRACKBAR slider

Orientation = horizontal Orientation = orizontal
Orientation = vertical Orientation = vertical
UPDOWN AutoBuddy = true spin

EDIT (participating to the relationship GlueTo)

TREEVIEW tree
DATETIMEPICKER format # time datePicker
DATETIMEPICKER format = time hourPicker

If the buddy window (the previous window in the z-order) of an up-down control is an edit
control, this last object should be ignored when parsing the file (a spin has already an editable
field in the CUI model).

6.1.1.2 Resources of type menu

MENUBAR menuBar position = up

Memuld =n cio name =n

POPUPMENU menuPopUp

Text =t cio defaultContent = t without the ‘&’character

Sate = enabled graphicalCio isEnabled = true

Sate # enabled graphicalCio isEnabled = false

MENUITEM menultem

Itemld =n cio name =n

Text =t cio defaultContent = t without the ‘&’character

Sate = enabled graphicalCio isEnabled = true

Sate # enabled graphicalCio isEnabled = false

Checked = true menultem fype = toggle

Text =tand ‘&’ is a character of t graphicallndividual Component defaultMnemonic = the
character following ‘&’ in t

Text=tand “...” is a substring of t menultem 7ype = command

Text =tand “\t’ is a character of t menultem defaultKeyboardShortcut = the key combination
specified after ‘\t’ in t

SEPARATOR separator

In Windows’ menus, the programmer usually indicates that a menu item invokes a dialog box
by adding an ellipsis (...) to the text. If I found such characters in the text of a menu item, I
make the assertion that it correspond to menu item of type command in the CUI model. For a
pop-up menu, the mnemonic cannot be exploited since this attribute is currently not present
for a container in the CUI model.

Note that I’'ll have to create a window graphical container before creating a menu bar object
into GrafiXML to represent the overlapped window (the program’s main application window)
which is not specified in a resource file.

6.1.2 Derivation rules

66

This section gathers some mapping rules’’ specifying the correspondence between the two
models: that one modeling a Windows resource (of type menu or dialog box) and the CUI
model. The list is not exhaustive, but is shown to see the nature of such rules and show that
they can be elaborated with a Windows resource file as source of the mapping. Only rules
concerning a dialog box will be developed. I will first explain a specific notation for reverse
engineering derivation rules, and I will then define precisely in this notation a subset of the
rules appearing in tables of the previous section.

A standard notation [11] can be used to express formally reverse engineering derivation rules
for a UI specified in any language (or source model). The rules are applied on trees
representing a Ul: 7 is the source tree (an instance of the diagram modeling a Windows
dialog box resource) and 7, is the target tree (an instance of the CUI model). The nodes of a
tree T store hierarchically the elements composing the Ul. Each connection (or arc) represents
a containment relationship between the parent and the child.”® Each node of the tree represents
the different elements composing the UI. Each node can possess zero or more attributes. To
construct 73, I will use the following predefined basic update operations:
- AddNode(class, id): add a new node with the identifier id storing an element which is
an instance of class.
- AddAttribute(id, name, value): add to the node id the attribute name initialised to
value.
- ModifyAttribute(id, name, newname, newvalue): suppress the attribute name of the
node id and add the attribute newname with the value newvalue.

- AddArc (idSource,idTarget): connect the parent node idSource with its child node
idTarget.

Rules identifying containers

This first group of rules is applied first and the two new nodes are linked once created. The
first rule of each group corresponds to the detection of a node in the source tree that causes
the creation of a node in the target tree.

V x € Ts: x =DIALOG — AddNode("dialogBox", rootld)
A AddAttribute (rootld, "id", rootld) A AddAttribute (rootld, "name", x.Dlgld)
A AddAttribute (rootld, "isVisible", "true") A AddAttribute (rootld, "isEnabled", NOT x.Disabled)
A AddAttribute (rootld, " width", 3304 X x.Weight/275 x x.FontSize + 10)
A AddAttribute (rootld, "height", 274 x x.Height/21x x.FontSize + 35) where rootld = X node€ T
V x € Ts:x = DIALOG A x.Caption = true — AddAttribute (rootld, " defaultContent", x.Text)
V x € Ts:x =DIALOG A x.TopMost = true — AddAttribute (rootld, "isAlwaysOnTop", "true")
V x € Ts: x = DIALOG — ConstrBox (boxId," vertical") A AddArc (rootld, boxId) where boxId = > nodee T

"7 The mapping is direct because the two models are expressed in the same formalism (UML diagrams).
8 Remark that the maximum height of 7, is one: the only container in a Windows dialog box is a window which
can contains child windows.

67

The function ConstrBox(id,type) is defined as:

AddNode("box",id) A AddAttribute (id, "type", type) A AddAttribute (id, "isEnabled", " true")
A AddAttribute (id, "isVisible", "true") A AddAttribute (id, "id", id)

The next group identify group boxes (not containers in Windows).

V x € Ts: x =GROUPBOX — ConstrBox(boxId, vertical) A AddAttribute(boxId,"borderWidth","1")
A AddAttribute(boxId,"borderType", "line") A AddAttribute(boxId,"name", x.Ctrlld)
where boxId =2 nodee T:
V x € Ts: x =GROUPBOX A (ParentNode(x).SetFont = true v ParentNode(x).ShellFont = true) —
AddAttribute(boxId," width", 3304 x x.Weight/275 x ParentNode(x).FontSize)
A AddAttribute(boxId,"height", 274 x x.Height/21x ParentNode(x).FontSize)
V x € Ts: x =GROUPBOX A ParentNode(x).SetFont = false A ParentNode(x).ShellFont = false —
AddAttribute(boxId," width", 413X x.Weight/275) A AddAttribute(boxId,"height", 137 x x.Height/84)
V x € Ts: x = GROUPBOX A Size(x.Text) # 0 A x.Horizontal Alignment # center —
AddAtribute(boxId, "defaultBorderTitle", x. Text)
A AddAttribute(boxId,"borderTitleAlign", x.Horizontal Alignment)
V x € Ts: x =GROUPBOX A Size(x.Text) # 0 A x.Horizontal Alignment = center —
A AddAttribute(boxId,"borderTitleAlign", "middle")
V x € Ts: x = GROUPBOX A x.Disabled = true — ModifyAttribute(boxId, "isEnabled","isEnabled"," false")
V x € Ts: x = GROUPBOX A x.Visible = false — ModifyAttribute(boxId, "isVisible","isVisible", "false")

Parentnode(x) returns the parent node of node x. The rule is similar for a static control
drawing a frame in a dialog box.

Rules identifying components

I give as example two groups of rules relative to a combo box and radio buttons.

V x € Ts: x =COMBOBOX A x.Type # simple = AddNode("comboBox", combold)
A AddAttribute(combold, "name", x.Ctrlld) A AddAttribute(combold, "id", combold)
where combold = nodee Tt
V x € Ts: x =COMBOBOX A x.Type # simple
A (ParentNode(x).SetFont = true v ParentNode(x).ShellFont = true) —
AddAttribute(combold, "maxLineVisible", ParentNode(x).Height/(11x ParentNode(x).FontSize) - 1)
V x € Ts: x =COMBOBOX A x.Type # simple A ParentNode(x).SetFont = false
A ParentNode(x).ShellFont = false —
AddAttribute(combold, "maxLineVisible", ParentNode(x).Height/11-1)
V x € Ts: x =COMBOBOX A x.Type =dropDown — AddAttribute(combold, "isEditable"," true")
V x € Ts: x =COMBOBOX A x.Type =dropDownList — AddAttribute(combold, "isEditable"," false")
V x € Ts: x =COMBOBOX A x.Disabled = true — ModifyAttribute(boxId,"isEnabled","isEnabled", "false")
V x € Ts: x =COMBOBOX A x.Visible = false — ModifyAttribute(boxId, "isVisible", "isVisible", " false")

68

V x € Ts: x =RADIOBUTTON A x.PushLike = false - AddNode("radioButton", radiold)
A AddAttribute(radiold, "name", x.Ctrlld) A AddAttribute(radiold, "id", radiold)
A AddAtribute(boxId, " defaultContent", WithoutAmper(x.Text))
where radiold = nodee Tt

V x € Ts: x =RADIOBUTTON A x.PushLike = false A '&'e x.Text —
AddAtribute(boxId, " defaultMnemonic", CharAfterAmper(x.Text))

V x € Ts:x =RADIOBUTTON A x.PushLike = false A x.Disabled = true —
ModifyAttribute(radiold,"isEnabled","isEnabled", "false")

V x € Ts: x =RADIOBUTTON A x.PushLike = false A x.Visible = false —
ModifyAttribute(radiold, "isVisible", "isVisible", "false")

WhithoutAmp(#) gives returns the text ¢ without any ampersand (&). CharAfterAmp(z)
returns the letter that follows the first ampersand of z.

Rules for the exclusion of radio button

V x,z3ye Ts,dae Ti: x = RADIOBUTTON A x.Group = false A y.Position < x.Position
Ay = RADIOBUTTON A y.Group = true A z.Position > y.Position A z.Position < x.Position
Az =RADIOBUTTON A z.Group = false A a = itao(x) — AddAttribute(a.id, " groupName", y.id)

itao(x) (“is the abstraction of”’) returns a node of 7; which is the result of an abstraction of the
node x (from 7;). A relation is automatically created for each creation of nodes in the target
tree. This relation can be of the type one to many or one to one.

Rules relative to the font

V xe Ti,3ye Ts: isRoot(y) = true A y.SetFont = true A (x = inputText v x = outputText v x = button
v x = radioButton v x = toggleButton v x = checkBox v x = spin v x = comboBox v x = tree
v x = listBox v (x = box Aitro(x) = GROUPBOX)) — AddAttribute(x.id, " textFont", y.FontName)
A AddAttribute(x.id, " textSize", y.FontSize)

V x e Ti,3ye Ts: isRoot(y) = true A y.SetFont = false A (x = inputText v x = outputText v x = button
v x = radioButton v x = toggleButton v x = checkBox v x = spin v x = comboBox v x = tree
v x = listBox v (x = box Aitro(x) = GROUPBOX)) — AddAttribute(x.id," textFont"," Tahoma")

A AddAttribute(x.id, " textSize","8")

itro(x) (“is the reification of”’) returns a node of 7 which is the result of an reification of the

node x (from 7).

69

6.2 Plug-in development

I see in this section how are implemented the set of derivation rules. The programming
language used to implement the plug-in is Java (seeing that GrafiXML is developed in Java).
The source code, well documented, is in appendix D.

6.2.1 How to run it?

To integrate a plug-in into GrafiXML”, the ImportPlugin interface has to be implemented.
This interface is in the be.ac.ucl.isys.grafixml.plugins package, which is the first import

declaration of my program.

public interface ImportPlugin extends ImportExportPlugin {

/* load the file chosen by the user and do something with it */
public boolean load(File file);

/* used to have a preview of the given file */

public boolean loadFileContent (File file);

}

public interface ImportExportPlugin extends Plugins {

}

/* return the

extensions of the files that can be imported */

public String[] getExtensions{();

/* return the
public String

type name */
getExtensionName () ;

public interface Plugins {

/* return the
public String
/* return the
public String
/* return the
public String
/* return the
public String
/* return the
public String

plugin name */
getPluginName () ;

author name of the plug-in */
getPluginAuthor();

versions of GrafiXML that supports the plug-in */
getPluginDepend() ;
plugin version */
getPluginVersion () ;
plugin description */
getPluginDesc () ;

{7 resources.jar
-~ plugin.desc
(7 resources/
[j Resources.class

It’s Resources.java that implements the ImportPlugin interface. I’ve
also define seven other auxiliary classes to carry out my task. Once
compiled, all my classes are put in a jar file with the structure shown
to the right, where plugin.desc is a text file which contains the line
“main-class=resources.Resources” which is the path to the main
class of the plug-in. I put then this jar file in the Windows repertory
\Document And Settings\user_name\.grafixml.plugins.

: B RcFile.class
[sdffile.class
B XibFile.class
[Resource.class
0 FlagTrie.class
§~[3 TNode.class

L E Grafi.class

My plug-in can finally be run and tested by launching for example GrafiXML with Java Web

Start.*® A new submenu will appear when selecting the menu item ‘import’.

7 See the wiki page http://www.usixml.org/index.php?view=wiki&title=GrafiXMLImportPlugins.

% Go on http://www.usixml.org/index.php?view=page&idpage=10 to download grafixml.jnlp.

70

6.2.2 How to use it?

I’ve decided to divide my implementation into two phases. When a resource file is imported,
the text is first scanned to find the available resources. If the search fails (the file is empty, or
the resources found are not exploitable, that is are not of the type dialog box or menu), a
message is displayed to the user. Else, the set of available resources are shown is the ‘Import
Resources’ dialog box and the user can select those to import in a project. The location in the
file of the selected resources is then memorized (if there is no selection when the user presses
the ‘OK’ button, or if the ‘Cancel’ button is pressed, nothing happens and the plug-in
execution end). This module is the scan phase. In the second module (the process phase), the
chosen resources are then each in turn analysed and transformed into GrafiXML by
implementing my correspondence rules (see section 6.1). The architecture of my plug-in is
pictured below.

£ Quvrir

FRiechercher dans : ‘a SeilE v| 5 ‘_\]li =
72 B 2s5.0c
!z 400.rc
Mes r 401.rc
documents |'—_.‘
récents W ABOUT.rc
i B accEs
[L] L resources.i
g . coune.rc
urea) . GRe.rc
. MENU.rC
a7 I, PARAMETERS rc
¥ PARAMETERSNONMODAL.rc
Mes documents B TABSIZE.rc
Foste de travail

o

Mom defichier: | ALL_RESOURCES e [[owi]

Favaiis 18583l Ficriers dy type | Resource script files (“rc) "| l Anniuler]

set S of avalable
resources {

= Import Resources

—S empty S Can phase > Select resources For imports Importing resources:
< [# MENU - MENU
- = DIALOG BOX £ DIALOG BOX
S not empty ABOUT = 100 |
- GOLINE
subset of S - aRep
- INSABBREY
(non-empty) - PARAMETERS o
- PARAMETERSNONMODAL
- TABSIZE
Process phase e
=4 | 2
\ 4
message resourse(s) generated

into GrafiXML

This section will serves also as user manual and show that the interaction with the plug-in is
simple. The graphical interface is composed of two dialog boxes. I’ve chosen the javax.Swing
package®' to create in Java the graphical interfaces. The user has to choose a file to load, and
the resources to import. The user can then continue its works on the editor of grafiXML. Note
that before importing a file, the user must before create a new project (or open an existing
one).

81 See http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/package-summary.html.

71

6.2.3 Specifications

I state here clearly the requirements of the plug-in (the what). Pre-specifications and post-
specifications of my program are established as:

Input : An existing Windows resource script file (*.rc) f.

Output : fis closed and unchanged. The user-selected resources of type dialog box or of type
menu from f are transformed into CUI in GrafiXML, or a message if f doesn’t contain any
exploitable resource (that is, it doesn’t exist in f a dialog box or menu resource described in
the expected syntax).

An error message will also be displayed if the file cannot be found (pre-specification not
satisfied). Notice that only Windows resource can currently be processed in the plug-in,
nothing happens if a file with another format (as an Apple resource file or a screen definition
file) is imported. So, the specification should change if a future expansion of my work is
undertaken. As yet mentioned, the design can be logically decomposed into two modules. The
following is the tasks that each module should perform.

Module 1 : the scan phase

Input : An existing Windows resource script file f of a valid structure, that is, each
different resource must be separated by at least one empty line of text. An empty line is
a line containing only white space (consists of blanks, tabs and new line characters).

Output : fis closed and unchanged. An array a is returned, containing the line numbers
in f of all the dialog box and menu resources or a subset of them depending of the
selection of the user. a cannot be null and its length is O if there is no such resource in f
(this includes the case of an empty file f). The first in f line starts at 1.

The expected syntax of a resource of type dialog box and menu are defined in sections 4.3.1
to 4.3.3. I suppose here that the user hasn’t to modify the file given by a decompiler, and that
suppressing a separator of resource (an empty line) is as well serious that suppressing the
identifier or the second keyword of a resource. In the two cases, a potential resource is lost.

Module 2 : the process phase
Input : An array a of integers with a.length > 1 containing line numbers of an existing
Windows resource script file f (at least one resource has then been found in f and

selected by the user). The first line of f starts at 1.

Output : f is closed and unchanged. The n resources defined at line a[i] (0 <i<n)inf
are transformed into CUI in GrafiXML.

The program is robust in the sense that it handles unexpected input in the second phase. Some

scenarios are inserted in the source code comments. In the first phase, some resources will be
simply ignored if the structure of the resource script file is not valid.

72

6.2.4 Description of my implementation

I explain here briefly how my program accomplish its requirements (the Zow) and consider
some design questions. This regroups some concepts, some choices I've made during the
development, the data structures that I’ve used and the principal algorithms.

One programming requirement was to read information from an external source (a .rc file on
disk). A stream is the underlying mechanism for accomplishing any I/O operation in Java.
The java.io package® proposes many ways to create streams. We couldn’t make head or tail
of the classes that can be used to create and manage streams in the Java Standard library. To
make a good choice and have a suitable solution to my problem, things can be clarified by
subdividing all these classes in two primary ways. Firstly, a program treats a stream as either
an input stream or an output stream. In my case, I’ll use an input stream object from which
we read information. Secondly, some classes deal with character data and other with byte data
of binary information. I’ll naturally use a character stream, that are designed to manage 16-
bit Unicode characters (resources information are stored in a file as character data) and not 8-
bit bytes of row binary data that are not interpreted. These classes are cleanly divided in the
class inheritance hierarchy. The InputStream and OutPutStream classes (and all their
descendants) represent a byte stream, and the Reader and Writer classes (and all their
descendants) represent a character stream:
4' CharArrayReader |

InputStream
PipedReader
OutputStream StringReader

BufferedReader LineNumberReader I
Writer FilterReader <] PushbackReader
4|lnput5treamﬂeader « FileReader

There is another way to divide the classes in the java.io package. A class can acts as either a
source or destination (called a data stream), or can provide the means to perform some sort of
manipulation on the data in the stream (called a processing stream, or also a filtering stream).
This is the same classes, but categorized in another way. The four mentioned primary class in
the hierarchy can be further subdivided into those that represent data streams and those that
represent processing streams. The Java I/O classes can be combined in many different ways to
provide an input stream that behaves exactly as I wish.

These streams have a sequential access to the file (that is, the file is processed from the start to
the end). Other specific classes exist in the package. The RandomAccessFile class,
inputstream | supporting both reading and writing to a random access file,
could be convenient. It behaves like a large array of bytes
with a kind of index, called the file pointer. Input operations
reager] Tead any bytes starting at the file pointer and advance the
file pointer past the bytes read. The StreamTokenizer class
is useful for parsing a text file into a sequence of tokens, and
L [RandomAccessriie] €3N recognize words, numbers, comments and quoted stings.
It’s not actually an input stream as such. A Reader must be

used between the file and the tokenizer.

QutputStream

ll

Writer

82 See http://java.sun.com/j2se/1.4.2/docs/api/java/io/package-summary.html

73

Let’s see some methods from the class that could be interesting for my problem.

The Reader class is an abstract class for reading information stored in text form (Unicode
character streams). The only methods that a subclass must implement are the two first:

- abstract void close() : Close the stream.
- int read() : Read a single character in the file (-1 if eof).
- void mark (int readLimite) : Mark the present position in the stream. Subsequent

calls to reset() will attempt to reposition the stream to this point. readLimite is a limit
on the number of characters that may be read while still preserving the mark.

- void reset () : Reset the stream.

The BufferedReader class does not represent any particular data source, but filter data on a
given stream by buffering it into more accessible units. In particular, it introduces a new
method that enables to read a line at time and returns a String (or null when the end of file is
encountered).

- BufferedReader (Reader in): create a buffering character-input stream that uses a

default-sized input buffer (2048).

- String readLine () : read a line of text.

The string returned can then be processed if I use the StringTokenizer class in addition. It
allows to break a string into a sequence of tokens (defined by delimiters, e.g. space), but the
tokenization process is much simpler than that used by the StreamTokenizer.

The LineNumberReader class is also a buffered character-input stream but that keeps track
of line numbers.

- LineNumberReader (Reader in): create a new line-numbering reader, using the

default input-buffer size.

- int getLineNumber () : get the current line number.

- void setLineNumber (int 1n): setthe current line number to In.

The InputStreamReader class is an InputStreamReader is a bridge from byte streams to
character streams: it reads bytes and decodes them into characters using a specified char set.

- InputStreamReader (InputStream in): create an InputStreamReader that uses the

default char set.
The FileReader class represents an input file that contains character data. It is convenient for
reading character files. Its constructors set up the relationship between the program and the file,
opening a stream from which data can be read.

- FileReader (File f): creates a new FileReader, given the File f to read from.
The RandomAccessFile class has a file pointer that can be read by the getFilePointer
method and set by the seek method. It can also read an entire line and then be combined with
a StringTokenizer.

By combining these classes, I can have the kind of interaction and character manipulation
needed for my situation. Let’s see some possibilities:

- A RandomAccessFile, allowing reading any byte at any location. The file pointer
position associated with each resource can be recorded in the scan phase so the
selected resources will be localised in the process phase.

- Several instances of BufferedReader and FileReader on the same file. A reference to a
stream object is stored each time a resource location has to be memorized in the scan
phase. We continue to read the file with a specific BufferedReader in the process
phase. But when a resource is found, we have to search the next one from the start of
the file.

74

- A FileReader and a BufferedReader combined with a StringTokenizer. All resources
found are stored in a string after the first scan. We could also make an easy preview of
each resource to give more information to the user in the dialog box:

< Import Resources EJ
Select resources For import: Importing resources: Preview:
& MENL - MENL 200 DIALOG 30, 73, 275, 5% Al
= DIALOG BOX = DIALOG BOX STYLE DS_3DLOOK |DS_SETFONT |DS_NOD. |
L ABOUT 2 CAPTION "Find"
GOLINE FONT 8, "M3 Shell Dlgr
- GREP LANGUAGE LANG_ENGLISH, 1
- INSABEREY i
- PARAMETERS 55 CONTROL "Fignd what:', 65535, "STAT
- PARAMETERSHONMODAL CONTROL "",222, "CUMBOBUX", CES_DRO!
L TABSIZE CONTROL "Match &whole word only™,.
755 CONTROL "Match &case", 233, "BUTTON
401 CONTROL "Regular gsexpression®™,239
CONTROL "Wrap aroun&d",z40, "BEUTTCI
CONTROL "Transforw &hackslash exp:
CONTROL "Direction", 65535, "BUTTON
CONTROL "&Up", 234, "BUTTCN", BS_AUT
CONTROL "&Down",Z35, "BUTTON",BS_4°
CONTROL "&Find Mext", 1, "EUTTON", B«
& I | & L I ¥

But for space usage raison, it is not effective to have an array of many references to
long String objects when a large file is processed (even if the garbage collector will
deallocate the memory for some objects, set to null when not selected by the user).*
It’s better to leave the information on disk, and to extract them as and when we need
required. Moreover, a preview is not very needful since the user has not to know this
syntax to use this functionality, and the decompiler used by the user to obtain the
imported file displays already this information (and an id is already associated with it,
even better with a graphical representation of the resource which helps more the user
in its choice®). I've opted for the simplicity of information given to the user, and not
the surcharge.

- A FileReader and a LineNumberReader. We scan through the entire text a first time to
find resources and sore line numbers, and we go through the text a second time after
the user’s selection to extract and process each resource at a specified line. The file is
then read sequentially twice.

My choice is to combine a FileReader, a LineNumberReader and a StringTokenizer in the
module 1 (first scan) to read the file f line by line keeping track of line numbers when an
exploitable resource in encountered and to parse the first line of a paragraph. A non-empty
sequence <Li, Li+1, ... , Lj-1, Lj> of text lines from f forms a paragraph if there is no empty line
and Li-1 (if it’s not the first line of f) as Lj+1 (if it’s not the last line of f) are empty lines.
Paragraphs are separated by at least one empty line, and comments at the beginning are not
part of a paragraph. The second word of each paragraph of f is checked. A non-empty
sequence <Ci, Ci+l, ... , Cj-1, Ci> of characters from f is a word if there is no white space
character and Ci-1 (if it’s not the first character of f) as Cj+1 (if it’s not the last character of f)
are white space characters. If the checked word is MENU or DIALOG, then the line number is
stored and the located resource will be proposed to the user (with its id). Only the lines
corresponding to resources selected by the user will be conserved.

% The full .rc file from the sixth example (TablEdit) contains 81 dialog boxes and Restorator gives 2756 lines.

% 1t’s for this same reason that just the id of a resource will be displayed in my dialog box, without the caption as
for example 400 ("Find"). It’s not quite meaningful, the user will still have to see in the decompiler to which
resource the caption correspond, or worste in the original application searching for the dialog box having this
caption.

75

Algorithm :

r < new FileReader (f);

Inr < new LineNumberReader (7);

while line = Inr.readLine() not null do
st «<— new StringTokenizer (line," \t"); /* tab and space are delimiters */
token <« read the second token
if roken = "DiALOG" or "MENU" then

strore the current line number

skip the lines of the same paragraph

I combine a FileReader, a LineNumberReader and a StreamTokenizer in the module 2
(process phase). Note that this tokenizer can also know the number of the current line, but it
should be time consuming to break a useless part of the file f into a sequence of tokens. Each
line of f is read at once and skipped until reaching the next line specified. The associated
resource is then parsed to store all the necessary information into variables. Each object will
be then created with all its characteristics in GrafiXML, by applying my derivation rules.

Algorithm :
r < new FileReader (f)
Inr «<—new LineNumberReader (7);
st «— new StreamTokenizer (Inr);
prepare the tokenizer for recource script style tokenizing rules
[nr.setLineNumber(1) /* the default first line is O for Inr and 1 for st */
while there is still a stored line number do
store the resource starting at the next line number
generate the resourse into GrafiXML

The two modules correspond to a physical partition into two main methods scan (File f) and
process(int[] a) from the RcFile class.

So, for each object, in particular for each dialog box and controls defined inside a dialog box
template, I first read and store the information which concerns it into variables that hold a
primitive value (as a position or a dimension number) or a reference to a String object (as an
id or a class name for a control). It’s only at the end of a loop (of a nested loop for controls)
that a method charged to generate the object into GrafiXML is called. I've not decided to
make a transformation as soon as a data is read in the file. To store the style flags, each flag is
first translated in its numeric representation and is then added to a single variable of type
integer. In fact, as mentioned in the chapter 4, a flag corresponds to a reserved bit (or to a
group of bit for some mutually exclusive flags) in a word of 32 bits. Each set of style flags
and extended style flags of a dialog box or a control from a particular class is represented by a
word in memory. To illustrate, let’s look at the style of the tool bar from my fifth example:

10[1]o[1]ofo]o]o]o]o[ofo[o[o[o[1]0f0[1][0[1[0[1[1]0[1]0]0[1][1]0[0]

WS_CHILD l

WS_VISIBLE WS_TABSTOP TBSTYLE_TOOLTIPS, TBSTYLE_WRAPABLE,
TBSTYLE_FLAT, TBSTYLE_CUSTOMERASE, CCS_NORESIZE,
CCS_NOPARENTALIGN and CCS_NODIVIDER

76

The variable I use to store such number is of the signed Java data
type int, meaning that 32 bits are used to represent the value in
two's complement binary form. Note that beyond85 a certain

0[1111

1111]2% -1

[o]1010

1100 0x50012B4C

threshold the resulting stored number will be not the same that the [, ,,fo]oooo 0010]2
original hexadecimal number read in the file: this type of primitive | C|£| 0000 0001] 1
data can represent only 2°' positive integers, and not 2* as desired. L1570 0000 0000] 0
This is not a problem since it’s the position of a bit that is ﬂ@ 1111 1111]-1
significant, which is not altered considering the linear logic of the Al 1110]-2
two’s complement representation of numbers: if we add 1 to the
highest value that can be represented (overflow), we get the lowest |\, 0000 5601
value (if signed numbers were represented for example with a bit of 31
+I31[o000 .. 0000]-2

sign, we would get the second representation of the number 0, then -
1 and so on).

My basic motivation to group all flags in a numeric value comes from the fact that a style in a
resource file for a particular control is often specified with identifiers, less often with a
hexadecimal number, but sometimes both. And in the last case, it is not naturally duplicated
information. The two formats are additive: the number represents the other flags that are not
textually specified whose numeric values are added to form this number. Concerning the style
illustrated above, Resource Hacker gives 0x5001284Cc when Resource Tuner gives ws_TABSTOP
(0x00010000) and oxo0002B4C, plus implicitly ws_cHiLo (0x40000000) and ws_VISIBLE
(0x10000000) seeing that it uses of the shortcut notation.

To know if a flag used in my derivation rules is specified for a particular control or dialog
box, all I have to do is to check if an individual bit is positioned to 1 at a specific position.
The following is my method which read bits by using some Java bitwise operators. For
example, readBits (x,0,3) returns the number formed by tree first bits of x (n >1 is used
when mutual exclusive flags are specified by a group of bits), and readBits (x,5,1) returns
1 if the bit at the fifth position is 1 or O if this bit is O.

// return the n bits starting at the position p in x (0<p< 31 and n<32-p)

// << shift bits left, filling in with zeros
// >>> shift bits right, filling in with zeros

/] & bitwise AND

/]~ bitwise complement (prefix unary operator)

public int readBits (int x, short p, short n) {
return (x >>> pt+tl-n) & ~(~0 << n);

}

The expression (x >>> p+1-n) shifts the selected bits to the right of the word. ~0 is a word
whose bits are set to 1. Once shifted to the left with ~0 << n , its n right bits are set to 0. The
complement of this word (~ (~0 << n)) gives a mask whose n right bits are set to 1.

There are 42 different style flags for a dialog box that can appear after the STYLE keyword.
For a dialog box containing 10 controls each having 5 flag identifiers to define its style from a
set of more than possible 200 flag®, there will be in the worst case more than 10x5%x200 =
10000 strings comparisons needed to store the style of all the controls in a numeric form.
Even if I compare the flag string with a smaller set knowing to which class the control belong,
the numerous remaining comparisons in many nested if statements will be executed. Another
algorithm has to be used.

% That is, when the flag WS_POPUP, the style for a dialog box, is present (= the highest bit).
%1 have listed in chapter four 15 style flags for a dialog box (DS_), 27425 style flags for a window (WS_ and
WS_EX) and 258 style flags for a control.

77

I use a trie for flag identifiers reading in order to support fast pattern matching. When a flag is
encountered (e.g. WS_CAPTION), a query is performed on a fixed memorised collection of
possible flag.

A trie is a tree-based data structure that store strings. It is typically used to see if a word
belongs or not to a set of words contained in a text (the name “trie” come from the word
“retrieval”). One primary application for tries is to determine if a given pattern matches one of
the words of a text exactly (that is, word matching), but with a simple extension prefix
matching queries can be performed. My problem can be saw as a string searching (the flag
just read in the file) in a text composed of the set S of all the flag identifiers listed in section
4.3.When the word matching occurs, the numeric value of the flag is returned.

I use a standard tries which is an ordered tree T with the following properties:

-Each node of T (except the root) is labelled with a character of the alphabet {A;Z}U{3,_}.
-The ordering of the children of an internal node of T is determined using the lexicographical
convention.”’

-T has s external nodes (leaf), each uniquely associates with a string of S: the concatenation of
the labels of the nodes on the path from the root to an external node yields a string of S. T has
then s external nodes. Note that the trie stores the common prefixes that exist among the set of
the flag string.

This assumes that in S no string is a prefix of another string. This is not the case for the
following flag:

DS_CENTER and DS_CENTERMOUSE

ws_cHILD and ws_cHiLbwINDOW (here not important because these flags are synonyms)
WS_MAXIMIZEBOX and WS_MAXIMIZE
WS_MINIMIZEBOX and WS_MINIMIZE
WS_OVERLAPPED and WS_OVERLAPPEDWINDOW
ws_PopPup and WS_POPUPWINDOW

wS_TILED and WS_TILEDWINDOW

WS_EX_LEFT and WS_EX_LEFTSCROLLBAR
WS_EX_RIGHT and WS_EX_RIGHTSCROLLBAR
BS_LEFT and BS_LEFTTEXT

BS_RIGHT and BS_RIGHTBUTTON

CBS_DROPDOWN and CBS_DROPDOWNLIST
MCS_NOTODAY and MCS_NOTODAYCIRCLE
sBs_sIzeBOX and SBS_SIZEBOXBOTTOMRIGHTALIGN
SBS_SIZEBOX and SBS_SIZEBOXTOPLEFTALIGN
SS_CENTER and SS_CENTERIMAGE

SS_LEFT and SS_LEFTNOWORDWRAP

SS_RIGHT and SS_RIGHTIUST

TCS_RIGHT and TCS_RIGHTIJUSTIFY

I can then satisfy this assumption by adding a special character that is not in the original
alphabet, for example #*, at the end of each flag string. An internal node can then have in
theory between 1 and 29 children (the size of the alphabet), and the height of 7 is equals to the
length of the longest string in S +1.

¥3<A<Z<_
B4<3

78

© (®) O, W)

® O, ® O,
I can implement such trie with an ordered tree storing ? ¢ Q =
characters at its nodes. The same fixed tree will be create S & QY QX
once (and only if a resource of type dialog box exists in © © O ® 06O
the file or has been selected by the user) before ® O O, ® ®eO
processing the resources and will be used for each © ® (0) © OO0
resource of type dialog to process. To the rightisatie ® ® © ® ® 00O
for S = {cBS_DROPDOWN, CBS_DROPDOWNLIST, CBS_SIMPLE, ©® O ®H ® ® (©
SS_LEFT, BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON, &y &y @) ®
WS_BORDER, WS_CAPTION, WS_CHILD}.

W © O

In this implementation, single characters are compared (N © ©
instead of the entire read string (the length of the longest, O ® ®
SBS_SIZEBOXBOTTOMRIGHTALIGN, is 27). The running time ® @ O
for searching a string of length [/ is O(l) : we visit at most ® ® @
I + 1 nodes of T and the time spent at each node is © @
proportional to the size of the alphabet, which is a ©
constant (29). It is independent of the number of possible ®
flags (the size of S).

Supposing that the tree store a well-known and exhaustive set S of style flags (and not words
contained in any text), the difference with a classic pattern matching problem is that we know
that a flag f will match.*” That we want to know is with which flag s it has matched to return
the corresponding numeric value. When a flag is read from the file, a search is performed in T
for a flag f by tracing down from the root the path indicated by the characters in f. When an
external node is reached, then we know which flag is in question and the corresponding
hexadecimal value is returned. But it is not necessary to put in § all the existing flag. It is
much convenient to put only those that are used in my corresponding rules (see chapter 6).
Then, if we terminate in an internal node, fis not in S and the value O is returned. Supposing
later it’s turned out that other flags have to be considered (because my rules was not
exhaustive or the UsiXML language evolves), they could be added to the tree. Moreover, all
the flag whose numeric values are equals to zero (0x00000000) are needless and can be
suppressed from the tree.

In fact, it is even not necessary to check if the node reached is an internal one or a leaf: one of
its attribute, containing a numeric value, has just to be returned. While a new flag string is
inserted in the tree, each new node object is created and added with this attribute set to zero,
except if it correspond to the last character of the string (that is, it will be a leaf). In the last
case, this attribute takes to the numeric representation of the flag inserted. So, it is no longer
required to add a special character (‘#’) at the end of each flag. Whatever the current node
when the searching stops, its flag value is returned (not only leaves can store a value different
from zero).

To construct the trie for a set S of strings, we insert the strings one at time in the constructor.
We insert a flag s having the numeric value val by calling addFlag(s, val). The path associated
with s is first traced. Three situations can then occur:
- s 1s already in the trie because it is a prefix of a string already inserted. We stop at an
internal node v and the end of s is reached. val is then stored in v.

% Supposing also that the flag read in a generated .rc file has a valid syntax, and has not been modified in the
text by the user.

79

- s is not in the trie, but a prefix of s corresponds to a flag already inserted in the trie. We
stop at an external node v before reaching the end of s. The chain of nodes is continued
after v to store the remaining characters of s, the last contains val.

- s 1s not already in the trie and we stop at an internal node v before reaching the end of s.
A new chain of nodes descendents of v is created to store the remaining characters of s,
the last contains val.

It still remains potential space inefficiency in this scheme: the tree will often terminate with
long branches of linearly arranged nodes because common prefix of the style flags are usually
short. Indeed, there is no need to continue to access the character stored in the nodes to
compare with those of the input string when we reach a certain level of the tree, the matching
flag can already be identified. When each node (except a leaf) of a subtree has only one child,
only the top node (the root of this subtree) should be conserved and the existence of other
nodes being connected below is a waste. But care must be taken if a node between the root of
this subtree and the leaf store a flag value different from zero: all its ancestors’ must also be
conserved. If not, a flag representation in the trie is lost and an erroneous value will be
returned (the value of the flag having same prefix) when searching the lost flag. To compress
the trie, we could use an iterative algorithm. For each node, starting from a leaf, we suppress
the node if its parent has just one child and store zero as flag value, or else we set its flag
value to the one stored by the initial leaf. But this supposes to use for example a preorder
traversal to access each external node. We must also add a new attribute to each node storing
the reference to its parent. I use preferably the following recursive algorithm, performed on
the trie (after having added all the necessary flag strings) by calling compress(trie.root) :

Algorithm compress(u) :
for each child v of u do
if isInternal(v) then
WV
while isInternal(w) and w has only one child and w.flagValue = 0 do
w «— child(w)
if isExternal(w) then
/* w is a leaf, and the chain of nodes after v consists of redundant nodes */
v.flagValue < w.flagValue()
supress(child(v))
else
/* w has several children or child(w).flagValue # 0 */
recursively compress the subtree rooted at w by calling compress(w)

When constructing the trie, it is important to also insert flags which are not in my
correspondence rules but that have as prefix a string in the compressed trie. If we forget them,
some parsed flag in the resource file that should normally not be taken into consideration
could give the value of another flag stored in the trie. Below is the implemented trie for the
same above-mentioned set, without ss_LEFT (because its numeric value is 0) and enlarged with
CBS_SORT to not get the value of cBs_siMPLE when matching this flag. The nodes are
augmented with indications of the stored numeric value. The matching will be made when we
reach the end of the input string f or when a leaf is reached.

% In the terminology, an ancestor of a node is either the node itself or an ancestor of the parent node.

80

Algorithm match(f) :
v «— trie.root
i<—0
repeat
success < false
for each child w of v do
if w.label = f[i] then
Ve w
success < true
i—i+1
break out of the for loop
until { = flength() or not success
return v.flagValue

Remark: In the shortcut notation, cs_simpLE (binary value O1) is a default flag for a control of
type comoBoxX. I suppose that this default can be automatically inhibited by the RC compiler
if cBs_DrRoOPDOWN (binary value 10) or cBs_DROPDOWNLIST (binary value 11) are specified (the
3 flags are mutual exclusive and grouped in two first bits), because I've remarked (in the .rc
files relative to my first example) that Restorator specify only ceBs_DrRopDOWN (should add the
binary value 10 to the default, that gives the value of cBs_DropDOWNLIST) while Resource
Tuner specify NOT cBS_SIMPLE | cBS_DROPDOWN (add 10 to the default and subtract 01, that
gives 10). A corrective operation must substract 1 to the style if NOT CBS_SIMPLE is not
specified in the control definition line. For the others default flags (see section 4.3.2), there is
no problem because they are not mutually exclusive with other flags and the only way to
cancel their effect is to use the NOT keyword (that is, one bit is reserved to them, they are not
part of group of bits). But the simpler solution is to use the OR bitwise operation instead of an
addition (as probably the RC compiler does). If the bit is not already set to 1, it is positioned.

When a control is defined with the shortcut notation, the algorithm that I used to identifying
the control type is much simpler that with the style flags. But if we look at it, is not very
different in the sense that as soon as the current checked character is different to the
characters of the other words of the same set and at the same position, we know which flag is
in question :

token < nextToken()
case roken[0]
is 'A' : if token[4] = 'C' then type < "AuTOCHECKBOX" else fype «— "AUTORADIOBUTTON"
is 'C': if token[1] = 'H' then type < "cHECKBOX"
elseif token[1] = 'O’ then type < "comsosox" else type « "cTexXT"
is 'D': type «— "DEFPUSHBUTTON"
is 'E' : type «— "EDITTEXT"
is 'G': type < "GROuUPBOX"
is 'T' : type < "1CON"
is 'L': if token[1] = 'T' then type < "LTEXT" else type < "LiSTBOX"
is 'R': if roken[1] = 'A’ then type < "RADIOBUTTON" else fype «— "RTEXT"
is 'P': type < "PUSHBUTTON"
is 'S': type < "SCROLLBAR"

81

Such conditional statement becomes feasible seeing that only 15 different class names can
match with the string read from the text. Once the type identified, I know the class of the
control and the flags and the style flags to add to the style variable. The is treated

Each resource of type dialog box is then parsed and stored in variables, even the style flags
(converted in numeric). Each control expressed in the shortcut notation is treated as if it was
defined with the generic notation (the default flags are added in addition to those specified to
the value storing the styles before the transmormation in GrafiXML is processed). I call then a
method to apply my derivation rules and to generate into GrafiXML the corresponding
objects. This method 1is 1in a separated class which uses the package
be.ac.ucl.isys.grafixml.gui.editor’’ containing the methods needed to create and manage
CIOs. The entire interface with the GrafiXML’s methods is confined in one specific class,
which will facilitate future modifications. The resources of type menu are easier to parse and
to generate.

o See http://www.usixml.org/javadocs/grafixml/be/ac/ucl/isys/grafixml/gui/editor/package-summary.html.

82

7 Conclusion

My thesis is focused to the reverse engineering of a given Windows resource file. The scope
of the analysis is then limited to Windows user interfaces. I could have iterated the method
used with other types of resource file, as for example with Apple resource files™.

There is a possible loss of information between the original interface perceived by the user
and the interface described only by a resource script file (without looking at source code of
the application). The file used contains only text resources (principally dialog boxes and
menus). The non text resources appended to an application are stored in separated binary files.
Icons are examples of loss at the presentation level since the images themselves are not
available (a binary file is just referenced in the definition of such resources) and their size
often defines the place taken in the dialog box. Text information can also be missing, such as
items contained in a list box for example. Concerning the dynamic aspects of the interaction,
the transition between a menu and a dialog box and the navigation among dialog boxes are
not specified. Moreover, the input of my method relies on the specific implementation of a
decompilation tool used to generate the file.

The UsiXML specification language has been chosen to express the abstract representation of
a user interface. This language can specify a set of models defining the user interface at
multiple levels of abstraction. This language support also a multi-path user interface
development: the development process can be initiated from any level of abstraction. The goal
of my reverse engineering method was to recuperate an existing user interface and to produce
directly a model specifying the user interface at a level of abstraction dependent of the
modality of interaction but independent of the platform. This model which allows capturing
the appearance and behaviour of a graphical interface (the Concrete User Interface) can be
reused by an ulterior forward engineering step to generate new code in another specific
language.

There is a second loss of information in the reverse engineering process when going from a
resource file to the CUI model. We cannot come to the conclusion when analysing
correspondences that the language specific to the resources is covered by UsiXML. Some
properties of elements composing a Windows user interface could still be generalised. The
UsiXML language is still currently in development and may then evolve in the future. In
addition, the layout defined for a dialog box is different (box mechanism instead of relative
coordinates) which complicates its exact restitution.

°2 But documentation is turned out to be more difficult to find (on the web for example), and the format of such
files cannot be obtained by decompilation using a PC.

83

This work is concretized by the implementation in Java of a reverse engineering tool
intagreted into GrafiXML and capable of extracting the model from a given resource file.
Unfortunately, algorithm for the construction of boxes will be not implemented. This
evolution can be imagined as a future work. A simple solution at the present time is to let the
user draw manually the boxes in the reproduced dialog box (the relative coordinates can be
still used to generate object in the composer of GrafiXML). The layout will be then
automatically specified in UsiXML in the XML editor. The current implementation makes
also the assumption that each resource is separated by an empty line in the resource file (as
it’s the case in files generated by the proposed decompilation tools). This choice has been
made for efficacity reasons, but this detail can be easily modified if needed.

My tool has also been implemented in a perpective of reusability. If my transformation rules
are modified or if the implementation of GrafiXML®” and the UsiXML language envolve, a
new Windows style flag for instance can be easily considered by creating a new tree data
structure storing flags used in my transformation rules. The interface with the GrafiXML
program is also encapsulated in a separated class enabling to implement a new rule (using for
example the new flag given in the parameters) without having to anderstand my own code.” I
think this work constitute a good basis if it is carried out. This thesis provides also a good

documentation of the source language.

% This tool is still in work in progress.
% The plug-in and its source code will be avalable on http://www.usixml.org.

84

Bibliography

10.

11.

12.

M.M. Moore, S. Rugaber, P. Seaver, Knowledge Based User Interface Migration, in
Proceedings of the 1994 International Conference on Software Maintenance (Victoria,
British Columbia, September 1994).

Merlo E., Gagné P.Y., Thiboutot A., Inference of Graphical AUIDL Specifications for
the Reverse Engineering of User Interfaces, Proc. International Conference on
Software Maintenance, Victoria, BC, Canada, Septembre 19-23, 1994, pp.80-88Byrne,
E., "A Conceptual Foundation for Software Re-Engineering," The International
Conference on Software Maintenance 1992, pp. 226-235.

E. Stroulia, M. El-Ramly, P. Iglinski, P. Sorenson: User Interface Reverse Engineering
in Support of Interface Migration to the Web, Automated Software Engineering
Journal, 2003, Kluwer Academic PublishersBoehm B., "Software Engineering
Economics", Prentice Hall, 1981.

A. Memon, I. Banerjee and A. Nagarajan. GUI Ripping: Reverse Engineering of
Graphical User Interface for Testing. Proc. of Working Conference on Reverse
Engineering, November 2003.

Byrne. E., "A Conceptual Foundation for Software Re-Engineering." The International
Conference on Software Maintenance 1992, pp. 226-235.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, Prentice-
Hall, Inc.

Boehm, B. W., E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W.
Brown, S. Chulani and C. Abts (2000). Software Cost Estimation with COCOMO 1II.
NJ, Prentice Hall.

Sneed, H. M. (2004). A Cost Model for Software Maintenance and Evolution. 20th
IEEE International Conference on Software Maintenance (ICSM'04), Chicago,
Illinois, September 11 - 14, pp 264-273.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Victor Lopez Jaquero,
UsiXML: a Language Supporting Multi-Path Development of User Interfaces, Proc. of
9th IFIP Working Conference on Engineering for Human-Computer Interaction jointly
with 11th Int. Workshop on Design, Specification, and Verification of Interactive
Systems, EHCI-DSVIS'2004 (Hamburg, July 11-13, 2004).

Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.,
UsiXML: a User Interface Description Language for Specifying Multimodal User
Interfaces, in Proc. of W3C Workshop on Multimodal Interaction WMI'2004 (Sophia
Antipolis, 19-20 July 2004).

L.Bouillon, Q.Limbourg, J.Vanderdonckt, B.Michotte, Reverse Engineering of Web
Pages based on Derivations and Transformations, in Proceedings of LAWEB 2005
(Buenos Aires, 31 Oct.-2 Nov., 2005), IEEE Computer Society Press, Los Alamitos,
2005, pp. 3-13.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., Trevisan, D.,
UsiXML: A User Interface Description Language for Context-Sensitive User
Interfaces, in Proceedings of the ACM AVI2004 Workshop "Developing User
Interfaces with XML: Advances on User Interface Description Languages" (Gallipoli,
May 25, 2004), Luyten, K., M. Abrams, Limbourg, Q., Vanderdonckt, J. (Eds.),
Gallipoli, 2004, pp. 55-62.

85

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

26.

27.

Limbourg, Q., Vanderdonckt, J., UsiXML: A User Interface Description Language
Supporting Multiple Levels of Independence, in Matera, M., Comai, S. (Eds.),
"Engineering Advanced Web Applications", Rinton Press, Paramus, 2004
Vanderdonckt, J., A MDA-Compliant Environment for Developing User Interfaces of
Information Systems, Proc. of 17th Conf. on Advanced Information Systems
Engineering CAiSE'O5 (Porto, 13-17 June 2005), O. Pastor & J. Falc@o e Cunha (eds.),
Lecture Notes in Computer Science, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-
31.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers. Vol. 15, No. 3, June 2003, pp. 289-308.

Bouillon L., Vanderdonckt J., User Interface Reverse Engineering, Proc. of 2nd Int.
Conf. on Universal Access in Human-Computer Interaction UAHCI2003 (Creete, 22-
27 June 2003), Vol. 4, Stephanidis, C. (Eds.), Lawrence Erlbaum Associates,
Mahwah, 2003, pp. 1509-1513.

Goodrich, M.T. et R. Matassia, Data Structures and Algorithm in Java (2nd. Edition),
John Wiley & Sons, 2001.

Petzold, C., Programming Windows (Sth. Edition), Microsoft Press, 1998.

Georgia Tech’s reverse engineering group, Georgia tech, 30 apr 2001, available at
http://www.cc.gatech.edu/reverse/

Wiki page of UsiXML, available at http://www.usixml.org/?view=wiki/
Documentation of resources on the MSDN Library, available at
http://msdn.microsoft.com/library/

Apple Human Interface Guidelines, avalaible at
http://developer.apple.com/documentation/

XML Markup Languages for User Interface Definition, available at
http://www.oasis-open.org/cover//userInterfaceXML.html

XML tutorial, available on http://www.w3schools.com/xml/xml_ whatis.asp

BCHI-ISYS research on reverse engineering, availale on
http://www.isys.ucl.ac.be/bchi/research/vaquita.htm

State of the art on reverse engineering and transcoding of Uls, available on
http://www.isys.ucl.ac.be/bchi/research/soare.htm

86

Example of complete resource file

led resource file (*.res).

inary compi

example (SciTE.exe) generated by Resource Hacker. This is the ACSI resource script that can

There is an example of file (ALL_RESOURCES.rc) containing all the resources from my first
be saved by a decompiler, not the b

Appendix

EEP 50291810 PUI BUr PeAU0TE, WALINNEN
{

ZEp AT, WALINNEW

TER 9. WALINNEW
OEp 47 4% E2. WALINNIW v
SPRIRLD PUT SUTTE, didOd
HOLYYYdES WILINNIW
9Tw L ANO-PEIEE. WALINNEW
STr ‘andming deiw, WALINNIW
PIE f.02408, WALINNEW
Tor LHSE F20eA, WALINNAW
£Tr “LBIHE SOl Wd0, WALINNIW
095 ‘491 U0 SARMNE, WALINNIW

H

LSuandom, n..-n...-M
TTF “9d+HITNEURS YEMEE, WILINNTW
0ZF 'S4+UYS1IANENGE B30, WALINNIW
LOE . pd+ 45T\ PERSENY SNOIASAIE, WALINNIW
QOE . pA\PEESSR JXENE. WALINNGW
HOLVHYdAS WALINNIW
POE “Essg+noibunnoaxs dose, WALINNIW
£0E "LE4100E. WALINNTW
T0E . NdE. WILINNIW
T0E LLdHNDNEIdWa R, WALINNIW

¥
SSICOLR, n__..naM
TP LB +HIYSI SRR E, WALINNIW
60 ‘LEWIN0E, WALINNIW
sor Ry PIods. WALINNGW
500 “MEEWE, WILINNIW
L0W ' ESIRGUNN AUTE, WALINNTW
pOl *SIPING UONEIUSPUTE, WALINNTW
£0F LE+HUINSHHIZNEUN 40 PUTE. WALINNTIW
Tk LEHUINSHHDNEIRASINUAE, WALINNTIW
HOLVHVAIS WILINNIW
TIF 489 5258, WALINNIW
OTF '9@9 991, WALINNIW
@0k *.9E 19018, WALINNIW
196 LTTHWESES INd. WALINNIW
HOLVHYAIS WILINNIW
9T LEPIC 11FF BIBEDL, WALINNIW
SEZ '.P19y Juaanog 21B60L, WALINNIW ’
MBI, n__.EaM
FIT CSHRL0OT (Y S99, WALINNIW
TZE AL Ta+AoiEeweog 216601, WALINNIW
£T7 LT+ WHSIIRUNO0E SOINERId, WALINNIW
1T L THVHRLEI00g 10ah, WALINNEW
OZT "D+ T0] 9578, WALINNIW
HOLVHYAIS WILINNIW
TET LIHUGHADI THIRES PIEUMUEOUL, WALINNIW
LA “EEETEY, WALINNIW
STT . A+HIMSHUIIN T FE U1 PUNSS, WALINNGW
TIZ LEd+usiiFanonasg puid, WILINNGW
TIT LE\IENE Puld, WALINNTGW
OTZ *ud+14000 " PULE, WALINNIW

}
MHARISE, ddOd

i
{

SFT LMESE. WILINNIW
BFT MO0, WRLINNIW

87

>
Jydesfigriey, dndod
THT LNHHIDNSERIBMETE UDHRHAS 3R, WALTNNEW
OFE ‘N+UINS DY EsEReddn UoRaR|FEY SR, WALINNGM
PP LD UINS HITUTRLALOD WIS, WILTNNEW
org LE+UIUSHNIY UL Ygog, WALINNEW
£ LDHA0TURLLICILN SO JUAILRE]) Y30|9, WBLINNEW
LT HAUING HIDNUCREIALIGEY 1SS, WALTNNTEW
TV LEHEDNEeRR ARGy PURDXTE, WILINNEW
PET AMUI+HHIINPICAE M@|dwed, MELINNEW
EET ‘IHADequins maidwae], WaLINNEW
7e7 *S0RdS+UNS+HEARIED MOUES, WALTNNEW
TET LAHWING ST R 091 2PHAS, WALINNEW
DET “.3+MI33\3204E8 4R, WILINNEW
HOLVHVATS WALINNEW
S¥Z LdB1Y 78 AdoD, WILINNEW
L0T . +HIDMINE PIRS, WALTNNEW
307 “JRQNERTE. WILINNEW
ST LAFHHIDNIEIIE., WILINNEW
FOT L DHA0NASe0E, WILINNEW
£0T XHIAIITANZ, WALINNGW
HOLYHVATS WILINNTEW
TOT LAHOTOPFEE., WILINNEW
T0Z LZ+HDIePUE. WALINNEW >
APTE. &.E_u.m
OFT 93, WILINNEW
HOLVEVATS WILINNTGW
EET ', uoIsseE aNges, WILINNEW
ZET USIESES PRCTE. WALINNDW
HOLYHVATS WILINNTEW
TET Ld+A010 T IHAS, WELINNGW
DET “Ldngies sfed, WALINNEW
HOLVHVAIS :u.::z-_m
LTT LIRS S, WALINNAMW
STT % HELETE 5. WALINNAW
ETT ‘.7 40d% 5. WALINNAW
TTT LU ALHE Fy. WALINNTW
TTT 7 TWLHE 5v. WALINNEW 3
30X, n_._nc_n
PST LAR90TE -41M. WALINNIW
£5T “LE-ALTE. WALINNEW
TST ‘MRIPLT 93T T-50M. WALINNAW
TST ‘ueipud g 7-500N. WALINNEW
05T %019 9%, WALINNGW 3
Sguipasud, dNdod
SIT d+NS+aDN " AdgoD & 3nES, WALINNEW
OTT ".S#UNSHIDI T FE 9495, WALINNEH
0T LS+HMONFARSE, WILINNIW
50T LMAHINEETE. WALTNNEW
POT EHA0NIAREE, MELINNEW
£0T ‘LO+HIYSHHIDNSWRLEAPIE PRRRRS URED, WILINNGW
70T Lo+l uedon, WILINNEW
TOT “N+HIDIMANE. WILINNEW 3
E: &._nn.n
SN"HSTISNG SNYTENS ‘HSTIONT SN 39VNONYT
NNIW 3LOS

Ldwg T deung, JYWLIE 00T

NNIWSAS SM | NOLLAWD 5M | dNdDd™SM T1ALS
S8 '0ET 'Tr ‘9T DOTVIA TYAHENONSEALIWYEYS

{
»1 'S5 ‘05 ‘D¢ ‘dorsavl sm | 3191S1A7sm | 0TIHDTSM | NOLLNGHSNE 58 'NOLLNE ‘T 193u%D, TOMLNDD
#1 'S5 ‘08 ‘9 'JOLSEVL SM | 31EISIASM | O1IHDTSM | NOLLNGHSNd43a 58 ‘NOLLNG ‘T .an3exTe, T0ULNGD
T1'0TT "£9 ‘ST ‘d0LsavL M | W30u08 sm | 181s5IA sm | O1IHD sm | TIoWDSHoLNY 53 | 143753 ‘ATl .man .._. TOHLNOD
9 '8 59 *5 'anous”sm | TaIsin sm | atHo T sm | 143717SS “TwLs - - TOHLNOD
TT'0TT "g¥ ‘ST 'doLsavl sm | HITHOT s | EISIASM | a1IHDsM | TNoYDsKoLny s3 | 1437 53 ‘uraa man i
9 ' '0S s 'anous sm | 1a1sIa sm | aTHTsm | 143155 'IILVLS T-
T1'0TT “££ ‘ST ‘doLsavLl sm | H3Hod S | EISIASM | aTIHD T sM | TIoEDsSHoLNY 53 | L3753 “i1aa ‘10t
g '8 "SE "5 'anowo sm | JaIsIA sm | a1THD T sM | 193755 “OTUVLS T-
1011 "81 ‘5T ‘aowsavism | H3gHod sm | Tgrsinsm | ario sm | TiososHoLny 53 | L4352 ‘1103 ‘00t
'8 0T 5 'anows sm | 3aIsIA sm | 31IHD T SM | 1437755 “OTUVLS T- TR, TOULNGD
7071 'S ‘5 ‘anoeD sm | 39S sm | OIHD T sM | LET S5 DILAVAS ‘TFT . TOMLNDD >
JUBS SURS S ‘F LNOJ
SN HS9MI SNY1ENS "HSOSNT oMY 39VNINYT
JSAELRIRA, NOILAYD
NHIWSAS SM | HOLLAYD 5M | dnd0d™ 5 | IWVHEITWOOW 50 31A4S
DOT 'DET “T¥ ‘07 DOTVIO SHALIWYEYE

{
¥T 05 57 ‘a1 ‘doLsave sm | TaIsinsm | a1moTsm | NOLLINEHSNE 58 NOLLNE T LIPUED. TOULNDD
P '05 '9Z ‘0 ‘'doLsaEvL SM | 3TEISIA S | aIHDTSM | NOLLNEMSNd430 58 ‘NOLLNE 'T Ls5uTE. TOULNGD
8 ‘90T "9 ‘0¢ 'doLsevl sm | TIoEIsATSM
| Tr|rsIa sm | aIHo T sM | SONTELSSYH SEDILE0s S80I TI0HISHOLNY 5801 NMOOIOHd SE0°XOS0aW0d it .. TOULNGD
@ '5% '8 ‘5 'anouD s | TIEISIA SM | aIHDTSM | 43T 55 *DILVAS T- LS uonenaIq e, TOULNGD >
JUBS SURS S ‘F LNOJ
SN HS9MI SNY1ENS "HSOSNT oMY 39VNINYT
LCTHRIABIGEY WISUL, NOLLAYD
NHIWSAS SM | HOLLAYD SM | dnd0d™ 5 | IWVEITWOOW 50 31ALS
S¥ 181 'Tr "97 9OTVIA ATHREVSNL

{
¥T 05 "T¥ 10£ ‘90LSEVL SA | 3TEISIA SM | OTIHDTSM | NOLLMAHSId 58 'NOLLNG ‘CrT ‘. esmelgn. TOMLNGD
#T "07 ‘T "58Z ‘JOLSEVL S | 31915105 | OIHD SM | NOLLNEHSNd 58 'NOLLNE ‘59T 7. TOULNOD
PT 05 'E7 'T0E "d0OLsAVL SM | Z18ISIn SM | OIHDTSM | NOLLNGHSNE 59 'NOLLNE ‘T "I9IUED, TOHLNGD
#T'05 'S ‘T0€ ‘doLsEVL S | 3EISTA SM | OTIHD TS | NOLLMEMSNd430 58 ‘NOLLNG ‘T “.PUilds. TOHLNOD
05 '0ETTE S 'doLsavL sm | 3na1siaTsm | a1IeD T sM | TIoNDSHOLNY 580 | NMOG40WT 580 "XOG09W0D 'FIT . TOHLNOD
7 ‘0% "EF 'S 'anDuDsM | 3MISIATSM | OTIHDTSM | L4355 “DLLVAS T- % A0PRTE. TOULNGD
05 'spT ‘g'os’'doLsave sm | 3na1sIaTsm | aeD sM | TIONDSHOLNY 580 | NMOO40W0 580 "XOG0aW0D ‘TT . TOHLNDD
B ‘O ‘ST 'S ‘AnouD san | 3791SIATSM | ANIHDTSM | 1437755 'DILVLS T- YL nEd, TOUANDD
05 'S¥T ‘5705 ‘OLSEVL SM | 319ISIATSM | OTIHD T SA | TIOUDSHOLMY 580 | NMOCdoED 580 'XOS09W0oD ‘777 .. TOULNGD
@ 'or 'L 5 'anowD sm | 3TBISIA SM | OTTHD S | 14377 S5 "DTLVLS 'T- LRum pugid, TOULNGD .
JUBS SURS S ‘F LNOJ
SN HSIISMNI SNY1ENS "HSOISNT DN 39VNSNY1
JEI Ul pUIL, NOTILAYD
NHIWSAS SM | HOLLAYD SM | dNd0d™ 5 | IWVHEITWaOW 50 31ALS
19 '35E ‘TF 97 DOIWIA JTED

PT ‘55 'TF 'S0Z '4OLSEVL SMIENEISIA SMITTIHD SMINOLLNEGHSNd 58 'NOLLNE T “J59UED, TOMLNGD

*T'59 '£T 'S0Z ‘d0LsavLl smIInaIsia salaTHD T SMINOLLNEHSNE S8 ‘NOLLNE ‘ST IV HEWE. TOULNGD

#1 '39 75 'S07 “doLsavL SMIdNowD SMIZTEISIA SMITTIHD SA I NOLLNEHSNd430 58 'NOLLNE ‘T LIxaN Pulds. TOHLNOD

TT 'Sk TP '0PT ‘TIEISIAT SMITTIHD T SMINOLLNGOTOVHCLTY S8 'NOLLNG ‘SET LuMadE. TOMLNGD

ZT 'St '0E ‘OFT dnodD SMlTIaISIA SMITIIHD T SMINOLLNE0IaVEOLNY 58 "NOLLNE 'FE7 *.4me. TOULNOD

¥E *09 'ZT "SET WNoUD SMITTEISIA SMITTIHD T SMIX084NoHD 58 'NOLLNG ‘T- LuctRaag, TOULNGD
0T'09T'0L%5 ‘dOLSEVL SM

| anods smlTarsIA SMITIHD SMIXCENIIHDO0LNY 3 NOLLNE TP’ Suaissaldan Eeisaeqg wicsusl], TOMLNGD

OT ‘0T 85 *5 'dOLSEVL SMIdN0WD SMITIEISIA SMIATIHI SMIX0EH0IHO0LNY S8 ‘NOLLNE ‘0pT "Faunce nﬂ_,._. TOHLNOD
ot ‘prTiar's

'JOLSEVL SMIdNOED” SMIFTAISIA SMITTIHD SMIXOEHIAHIOLNY SE NOLLNA'GET Lolssasd g 2 NBay, TOULNGD

0T DET b€ 'S 'dOLSAVL SM |anouD SMITIEISIA SMITTIMD T SMIXCEHIIHI0LNY 58 "NOLLNG ..mmm.._unuu__w E.uﬁ_. TOHLNOD
orfoTiEe

d0LSAYL SMIAMOWD T SM 13N8ISIA SMITTIHD SMIXCENIIHD0LNY SA NOLLIE'TEZ AINC Peom BI0uME 412K, TOHLNOD

05 'SeT 'S 05 ‘doLsavl smilTarsia smlaHa smIToEDsHOLNY Sa2 MM0ad0 D S0 XO90aW0D ‘71T ‘.. TOULNDD

3 %5p ¢ 's ‘anoys sMIITEISIATSMITIIHD T SMILITTTSS DILVLS ‘T~ LRy pURL. TOMLNOD

¥ 'Sy "9z ‘05T ‘eousEvl sm | 3TEISIATSM | aTIHDTSM | NOLLNEHSNd 58 NOLLNE ‘T "J3ED. TOHLNDD
#T'5p ‘9 ‘06T ‘doLsave sm | 3E1s1ATsm | aTIHD TS | NOLLNEKSNdS30 58 "NOLLNG 'T oL 029, TOMLNOD
@ '0E 'pg ‘se 'Tgisia sm | Q1D SA | 1937 SS “TAWAS 92T LL9SPETT. TOULNGD
B ‘05 "wE 'S ‘FITEISIA SM | OTIHDTSM | L4T17SS DIAVAS 'T- LIaun 5. TOELNOD
B '0E '1T '05T ‘T1a1s1A S | OTIHD T SM | L9355 “OTAVLS EpT LSS FETT. TOULNOD
9’55 1z 51T famarsin s | aHD s | 14317 Ss onLvas - AL iewnjoD, TOMLNDGD
& "0E "1 ‘s¢ ‘T1EISIASM | QMO SM | 1937 55 “DTLVAS 'STT LLSSFETT. TOMLNDD
@08 "1Z '5 'MYISIA S | OTIHD SM | L4377 55 DTLWLS 'T- U usung, TOHLNOD
Z1 'og '3 'St ‘doLsavl sm | vaauoa sm | 3RIsin s | auHoTsm | agmnnTsa | 1431753 A1ad 56T V.. TOMLNOD
752 '8 "STT 'an0¥D sM | 181518 Sm | O1IHDTSM | 1437755 “ITLVLS 'T- Suwnpsg., TOMLNDD
TT '€ 'z 's¢ ‘dolsavl sm | ¥3ascd sa | 398IstA s | a1l san | 939WnnTS3 | 149753 L1a 02T Y. TOMLNDD
8 0L '8 'S 'anowD”sm | 3NEISIATSM | O1THDTSM | L4377S5 “ITLVLS 'T- LIS Loneuisee. TOELNOD)
JUaS SRS SH, 'S LNOd
SN HSIIONT SHYIANS HSTIDNZ SHY1 39VNaNYT
.91 95, NOLL4¥2
NMAWSAS SM | NOLLAYZ " SM | dNdOd™SM | AWrd4TvaoW 50 TIALS
05 'OFT 'TF ‘9T DOTVIA ANIIOD

{
0T'TTETTT 9T 40LFEVL SM | T1EISTA S | OTIHD T SM | NOLLNAEKSNd430 58 ‘NOLLNE 'T ‘.40, TOULNOD
zE ‘e 't T famaisn s | amiHo Tsm | NODTTSS 'DIAWLS - LALPs., TOMLNDD

BTT ‘9 ‘T 'T '00000005%0 LEIANES, ‘TIT L. TOHLNOD)

SURS SURS S, ‘3 LNOd

SN HSIIONT SHYIANS HSTIDNZ SHY1 39VNaNYT

WALTE 09y, NOLLVD

NMAWSAS SM | NOLLAWD 5M | dNdOd SM | SWvddTvaOW 50 TIALS

TP '0SE "T¥ '3T DOIVIA LNoAY

{
{
706 *.311P5 INoqys, WALINNEW
£06 'O ALOSE., WILINNIW
106 TdNARHE., WALINNTH)
.n_u:m__.n.._n_un
P05 A #AESE., WALINNIW
. WILINNTH
81 . WILINNAW
105 L84+ WIYSI\ERenaISE, WELTNNTH s
..“;t:ma_....._n__um
HOLVHYAIS WILINNTH)
JsbanbueTg, dNdod
{

HOLVEVAIS WALINNIW

Ay Ladreaes dnuers en usdd, WALINNTW

£9% LB SUCHRIABIGTEY USH0., WILINNIW

Tar .8 SuendD RO USOO, WALTNNGH

TP LB SUSRED s usiD, WALINNIK

o9k 9 suondoeg 9207 usdo, WALINNEW

HOLVHVAAS WALINNIH

05k ‘L TT4HA0NWOY PRoRdsouaws w50, WILINNT MW

oFr ‘RS0 shunies uonepauspu] sbusyD, WALINNEW
HOLVHVAAS WALINNIH

88

ATHLYIA ‘LT ‘00T T %A
ATHLYIA TOHLNOD ‘SET "ATEILTNMW A
ATHLHIA ‘LITHS “TOHLNOD ‘557 'LBT
ATHLHIA “TOMLNOD 'PET MENLIH A
ATNLHIA ‘LITHS TOHLNOD ‘opT '8 Hn
ATHLHIA ‘LATHS “JOHLNOD ‘5T "0 HA
ATNLHIA “VOHLNOD ‘8T "D 7HA
ATNLHIA ‘LITHS “TOMLNOD “£5T ‘N 30
ATALYIA “TOHLNOD “T5T “N 0
ATHLMIA LJTHS TOMLNOD ‘197 'L 30
ATHLHIA TOMLNOD 097 'L A
ATNLHIA VOMLNOD ‘TIT T M0
ATNLHIA ‘LITHS “TOMLINOD “LPT “d 50
ADALYIA “TOHLNOD ‘TrT '3 0
ATALMIA “TOMANOD 'EET “I0VAS HA
ATHLYIA ‘LITHS “TOMLNOD ‘TE7 ‘30wds 30
ATMLETA 'L4THS 'JOHMLNOD 'TE7 ‘T 50
ATHLEIA “TOHLNOD '0EZ ‘3 HA
ATMLHIA “TOHLNOD ‘07T 'S WA
ATHLETA “TOMLNOD ‘917 'H A
ATALYIA ‘LITHS “TOHLNOD ‘STZ 4 HA
ATMLYIA TOHLINOD "0TT ‘470
ATHLHIA “TOULNOD “TET 4 A
ATHLHIA ‘L4THS “TOHLNOD ‘91T 4 30
ATNLHIA ‘LITHS “TOMLNOD ‘07T 'S 0
ATALYIA TOHLNOD ‘50T 'S HA
ATHLEIA “TOHLNOD 'SOT 434
ATALYIA TOMANOD “FOT “d 0
ATHLHIA ‘LATHS “TOHLNOD ‘0T ‘0750
ATMLHIA JOHLNOD ‘TOT 'O WA

ATHLEIA “TOMLNOD "T0T ‘N HA N

SN HSMINE DNYIENS 'HSITDNT DY 29VNENYT

SHOLVHI 1332V 513007

@ 0% 96 "05T "IMEISIASA | QMDY SM | L4377 55 "ILAVAS ‘rT LL9SPETT. TOMLNOD
B '55 '95 'DET ‘anowD sm | 3BIsIn sm | OIHD s | 193055 "DLAVAS T- S suewaaeiday, T0MANGD
PT 06 “2L ‘05T ‘dOLSEVLSM | 31EISIASM | ONIMDTSM | NOLLNAMSNG 58 ‘NOLLNE ‘T 5590, TOHLNOD
PT ‘06 ‘65 06T 'JOLSEVL SM | 31EISIA SM | 1IHDTSM | NOLLNEHSNd 58 'NOLLNE "IET LUSRemsg v a3eidey, T0MLNGD
¥1 ‘06 ‘T “D5T ‘40LSAVL SM | ITAISIA SM | ONIMDTSM | NOLLNAMSNd 58 *NOLLNE 'LET "JIee 2321854, TOHLNOD
»T '06 “E7 '06T "dOLSEVL SM | 31FISIA SM | O1IHDTSM | NOLLNGHSNd 58 'NOLLNE '9cT “esedengs, TOMLNGD
P '0E's 06T doLsEvL SA | dnous san | 3marsin s | oD sM | NOLLNEMSNE43T 58 'NOLLNE T x5 PUdE. TOHLNOD
OT '0ST %06 *5 ‘d0LSaVL SM
I dnowa~sm | 3n81SIASM | QMDY SM | XOENIIHDOLNY 58 "NOLLNE ‘THT 5uaissaudas ysepiaeqy ﬁﬁu_m!r TOHLNOD
0T 021 '8L s
‘dOLSEVLSM | AN s 1 1EISIASM | OIIHD 56 | XOEHD3HD0LNY 58 "NOLLNE ‘0¥ T ‘.pRuNC.E wz_,..m_. TOHLNOD
o7 ‘07T "9
‘doLsEYL SM | dnodD sm | 31RISIASA | OTIHD T SM | X0EX0aHI0LNY 59 'NOLLNE 'S8T ‘L ucssaadueg 12 nBay, TOHLNOD
OT'0ST'PE"5 dOLSEYL M | dNowD smi 3T8ISIY SM | KD SM | X0EXDIH0LTY S8 'NOLLNE ET LSRR YRR, TOMLNOGD
0T "0£T ‘TF 'S ‘dOLSaWL SM
| anows™sm | 31EIsIA SM | a1HD A | XORM0IHD0LNY 58 "NOLLNA ‘ZET LAua PIcm 3Iagme 43300, TOHLNOD
05 'STTET09 ‘doLsavL sm | :18ISIA SM | OTTHD S | TIoWDSHOLNY S8 | NWOOd08d 580 "XOG0aW0D 'TET .. TOHLNOD
8 ‘55 ‘57 'S ‘dnoYD SM | T1EISIATSM | ONIHITSM | 1431755 TDILLVLS T- CLim soeieay, TOMLNDD
05 'STT'S 09 ‘dOLSEVL SM | T18ISIA SM | O1THD SM | TIOHDSHOLNY 582 | NMOOdoua 582 J_Bnn-:nu ‘ZTT ' TOHLNOD
9455 '2 'S "aN0ED SM | TMEISIA SM | QUIHD SM | 1337 55 ‘DTAVAS “T- \11Rum pigu, .__..E._.-.__uuw
10 1945 S ‘F LNOJ
SN HSTIINI SNWIENS “HSTEDNT SN I9VNDNYT
LHIR|CTE, NOLLAYD
NNIWSAS S0 | HOLLAYD SM | dNdOd™ 5 | IWVESTVaOW 50 31ALS
01T ‘587 ‘v ‘9L DOTVIA TOVF

i
¥T '59 ‘T ‘SO7 'JOLSAVL SM | T1EISIATSM | ONIHDTSM | MOLLNGHSNE 58 'NOLLNE ‘T ©I193uED, TOHLNDD

P ‘59 £Z ‘5027 ‘dOLSAvL SM | 3TEISIATSM | aTIHITSM | NOLLNAHSN S8 ‘NOLLNE *S¥T 'V 1/5W3. TOULNDD
T ‘59 '5's0z ‘'dorsawl sm | 4nous sa | 3181SIATsM | OTIHDTsM | NOLLNEHSNAS30 53 ‘NOLLNG ‘T 3*9N PuIfe, TOMLNGD
ZT 'Sk 'Zr OFT 'TEISIA SM | OTIHDTSM | NOLLAAOIOVHOLNY 58 ‘NOLLNE 'SET ©LUMeTd. TOULNDD
TT 'sk '0f "0pT Yno¥Dsw | 318ISIASM | aTIHD T EM, | NOLLNGoIOv4OLTY 58 'NOLLNG ‘PET LAME. TOULNDD
vE 09 'zz 'SeT 'anows sm | TErsinTsm | Mo Tsm | X084n0us TS 'NOLLNE 'T- ‘uensand., TOHLNGD
o1 '091 "0L '5 'S0LSAVLSM
| anodesa | 2SI sM | OTIHD san | X0903H00LNY 58 'NOLLNE "TrE \sucrssaadxa ;H_nfﬂ.mw:o.mﬂh.t TOHLNOD
0T "0ET S
‘soLsavL s | dnoED sm | 318ISIATSM | aTHDTSM | XOSHIIHIOLNY 58 'NOLLNE ‘b L.__,mz_“E. _w_-.,_._.._,m_. TOHLNOD
ot '0ZT ‘o
‘d0LSAYL SMIdNOWD T SMI TIEISIASMIETTIHE SMIX0EHDIHI0LNY S NOLLNA‘'SET wassasd ey Jen iy, TOHLNOD
OT'0E T e 'S HOLSEVL SMI4NTHD S | T1EISIATSM | O1IHDTSM | XOEH0IIHD0LNY S8 “NOLLNG ‘CIT "A5RT% YNEW., TOULNOD
0% ‘0z1 ‘zz s ‘doLsavlsm
| dnoeo”sm | N8ISIA SM | OTHD TS | XOEXIHD0LNY 58 NOLLNE ‘TET AINC Piom S10umg YHEW., TOHLNOD
05 “SPT'S ‘05 ‘'G0LsEvL SM | IaISIA sm | aH2TSM | TIoH2SHOLTY 582 | MMO0OdoNd $82 ‘X090EN0D ‘71T L. TOHLNOD
B ‘¥ ¢ ‘s ‘anoda”sm | 3narsinsm | aimMe s | 1437755 IIAVAS T- LRum pURlL TOMLNDD 3
«B10 1945 SH. ‘T LNOd
SN HSIIONT SHYIANS HSTIDNZ SHY1 39VNONYT
LU, NOLLEYD
NNAWSAS™SM | NOLLAWD"SM | dndod™sm | 431N30750 | IWvddsTVaOW 50 TIALS
¥E 522 '£4 '0E DOIVIA 00

{
PT'9T ‘0 'EZT ‘dOLSEVL SM | ITEISIASA | @IHDTSM | HOLLNEMSNE43d 58 'NOLLNE PST <. TOULNOD
0000z000% ' 7T ‘ST T e
‘goLsavl san | 3marsia s | anmeD T sm | MW eI 53 | TI0dISHoLNY 53 | 1437753 *A1a1 “I5T .. TOULNOD
8 ‘o 'z ‘v 'anousTsm | 1asIASM | O1THDTSM | 193755 SITAVLS T- N0 yReRas, TOUANDD >
JUBS SURS SW. 'S LNOd
SN HSIIONT SHYIANS HSTISNI SHY] 39VNaNYT
- NOLLA¥D
dnd0d SM | 10WLNOD ST | SWWHITA0W 50 | TWO0WSAS 50 T1ALS
¥1 'EFZ "0 0 X3D0IVIA 55T

{
¥T ‘05 ‘97 ‘00T 'S0USEVL SM | 3TEISIASM | OTIMDTSM | NOLLMAHSNd 58 "NOLLNG 7 "J3ueD, TOULNDD
#T %05 '9 ‘00T ‘goLsEVL SM | 3TBISIASM | OTIHDTSM | NOLLNEKSNd43a 5d in..._._._n._ T hmxm__. TOHLNOD
Z1 06 ‘or ‘p
‘GOLSAVL SMI dnodDTsA | 3TEISTA SM 10TIHD T SMILELYTY S8l X0aNDIH00LNY 58 "NOLLNE 0ET 5989 #5710, TOMLNOD
TT'ST T ‘6 ‘dousavl sm | wagwod s | 3mEIsin s | gD SM | W3EWnKT ST | 1431753 L1aE ST .. TOHLNOD
@ D¢ "9 *5 'anous_sSM | ITEISIA_SM | OTIHDTSM | 1437755 "ILLVLS ‘T- L9215 WRPUTE. TOMLNDD
TT'ST "3 ‘6L ‘dOLsEvLl sm | ¥adwod sa | 3ersiy s | aieo s | H3aWnN 53 | 1437 53 ‘L1103 ‘GTT .. TOULNDD
B'02 "5 'S "dnodD s | 318ISIA S | @HD T SM | 1437 55 DLAVAS T- LIDS 9918, TOHLNOD 3
SUFS SURS S, ‘T LNOd
SN HSTIONG SKHYTIANS WSTIDNT SNY1 3SVNONYT
Jshunas uoneuapul, NOTLAYD
NMIWSAS SM | NOILEWD 5M | aNd0d SM | IWvHSTvaoW 5O TIALS
55 's5T ‘I¥ ‘57 SOVIA 3Z15avL

{
¥1 '35 ‘59 ‘0f ‘doLsEvL SM | 31RISTY SM | OTIHD S | NOLLTERSNd 58 ‘NDLLNG ‘7 135D, TOELNOD
»T '35 ‘59 ‘9 ‘40LsEVL M | 3TEISIASM | TIHDTSA | NOLLNEHSNdS30 58 ‘NOLLNA *T ".4559. TOHLNOD
TT 01T ‘Br ST 'dolsaEvism | ¥3aeod sa | 3marsy s | gt sm | TIoWISHoLNY 53 | 143753 “ATaE *E0E .. TOULNDD
B '8 05 'S ‘dnoyD s | 378150 5 | a2 TSM | 1497 55 "ILAVAS ‘T- LT, TOULNDD
TT 07T ‘EE ‘ST ‘doisevl sm | u3auod sa | 3marsia s | o sm | TIoWIsHoLNY 53 | 143753 \AT1aE T0E Y. TOMLNOD
B '3 S 'S ‘dnoda s | 3781518 S | aIHDTSM | 14T775S 'ILAVAS T- LIEE. TOULNDD
TT 01T ‘BT ‘ST ‘doLsevi sm | ¥3quod sa | 3marsiy s | g sm | TIoWIsHoLnY 53 | 1437753 'A1aE *T0E .. TOMLNDD
B '3 07 'S ‘dnodasa | 378158 S | a2 TSM | 1497755 'ILAVAS ‘T- LiTE. TOULNDD
ZT 01T 'E ST ‘dousevL sm | u3guoa s | 3TEISIn SM | 9D SM | TIouDSHoLTY 53 | 1437 53 ‘L1ad 00E .. TOULNDD
B '8 5 'S "dnoWD 5 | 31EISIATSM | M3 SM | L4377 55 "ILLVAS ‘T- Y. TR, TOMLNDD 3
JHBS SURS S, 'S LNOd
SN HSIIONS DSHYIANS *HSTIONI SHYT I9VNONYT
LEIRHUEIE], NOLLAYD

89

AT BRQL P T

{
{
TEFO0 EOPED fLonRELRIL, AMTYA
*
SRR, HIOTE
{
{
WTET. LUCEIRAENRIA, FMIVA
1125, 4 WL Enpod., IMIVA
NI ILES, | awsusEy
JuosBpoy 18N AQ pOOZ-ES6T Wbuidag, LiyBuidenieta, amTva
AOUPT JHRL PASEG BIMUIRS B - 2SS, L uondissage, FNIVA
LB RuEs@y e uwospoy e, L ewsniuedwal, FMIVA
b

<3E0E0FL HOOTE

}

WA Bugs, HU.U..“
=) 3441370

FOD0EN} SO

0°2'9'T NOISHAALINO OB
0°2'9'T NOISHINA T
CdNTNOTSHIA T

LA Lea], NODT 3L0S

{
ATHLYIA “TOHLNOD LIV "T57 T Ha
ATHLEIA “TOHLNOD "#0T D HA
ATMLYIA “VOHLMOD ‘E0T K A
ATHLYIA “TOHLNOD "T0T "5 HA
ATNLYIA “VOHLMOD ‘TOT T A
ATALYIA “TOMLNOD P0L TIIMED HA
ATALYIA “LAIMS LTV 70T "MI0E HA
ATHLYIA LTV “TOT “HIvE AR
ATALYIA “TOHLNOD ‘205 "Wl HA
ATHLHIA LATHS “TOULNOD "T0S "BWL_Ah
ATMLEIA “TOULNOD D5F TT4 HA
ABMLYIA “T96 “TTd A
ATHLHIA ‘LATHS “TOULNOD "TTL 64 Ha
ATMLHIA “TOHLNOD "TTL ‘64 HA
ABMLHIA 'ETE ‘64 A
ATNLHYTA "LATHS "PTE ‘64 HA
ATNLEIA LATHS ‘TTR ‘94 A
ATMLHIA GOF ‘24 HA
ABMLMIA "TOE ‘£ A
ATMLHIA “TOMLNOD "TOC “Ld HA
ATHLHIA ‘LITHS “TOULNOD "TIF "34 HA
ATBMLMIA T05 ‘94 A
ATMLHIA “VOHLNOD TZF "3d HA
ATNLEIA ‘LATHS "T0S ‘94 A
ATNLYTA "LATHS OTF 'S4 HA
ABMLYIA ‘E0C ‘5S4 MM
ATMLHIA “TOMLNOD 'SOT “Fd HA
ABALYIA "LATHS "L0E ‘P AR
ATMLHIA "90E ‘P4 HA
ABALYIA "LATHS "TOULNOD "PIT £ HA
ATHLHIA “TOULNOD ‘ETT ‘24 HA
ATMLYIA "LATHS TTT ‘T4 HA
ABMLHIA "TTT £4 MM
ATHLYIA "LITHS "LV 97T T4 HA
ABMLAIA LTV 'STT T4 A
ATMLHIA “TOULANOD ‘TTT T4 A
ABNLHIA ‘LATIHS CIT ‘T4 HA
ABMLMIA "TZT “Ed A
ABMLHIA 106 ‘T4 HA
ATHLYIA ‘LATHS “TOULNOD ‘OFF T_dh
ATHLYIA LATHS “TOHLNOD "T0F "6 Ha
ATHLYIA ‘LITHS “TOHLNOD ‘T0F 'E_HA
ATHLYIA “TOHLNOD "7 N HA
ATHLYIA "LITHS “JOHLNOD “0FT M HA
ATMLHIA LTV ‘5071 ‘D MA
ATHLHIA LTV *50TT "5 HA
ATMLHIA LTV “L0TT "B
ATHLHIA LTV *30TT "2 WA
ATALHIA LTV "50TT "9 AA
ATHLHIA LTV "FOTT 'S HA
ATALHIA LTV "Z20TT 'F AR
ATMLHIA LTV ‘T0TT 'E_MA
ATHLHIA LTV *TOTT ' AA

90

Appendix

Appendix B

Comparison of the resource files given by the decompilers

First example

Edit

Find

Find what: || V| l Find Mext]
[] Match whole word only Dirsction Marke Al

[Match case Olp

. Ot
Wrap around

[Transform backslash expressions

Search View) Tools Cphons

- [3lx]

[

Resource Tuner :

400 DIALOG 30, 73, 275, 84
STYLE DS_SETFONT | DS_MODALFRAME | DS_3DLOOK | WS_POPUPWINDOW | WS_DLGFRAME
CAPTION "Find"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 8, "MS Shell DIg"

{

Restorator :

LTEXT "Fi&nd what:", -1, 5, 7, 45, 8

COMBOBOX 222, 50, 5, 145, 50, NOT CBS_SIMPLE | CBS_DROPDOWN | CBS_AUTOHSCROLL
AUTOCHECKBOX "Match &whole word only", 232, 5, 22, 120, 10, WS_GROUP
AUTOCHECKBOX "Match &case", 233, 5, 34, 130, 10, WS_GROUP

AUTOCHECKBOX "Regular &expression", 239, 5, 46, 120, 10, WS_GROUP
AUTOCHECKBOX "Wrap aroun&d", 240, 5, 58, 120, 10, WS_GROUP

AUTOCHECKBOX "Transform &backslash expressions", 241, 5, 70, 160, 10, WS_GROUP
GROUPBOX "Direction", -1, 135, 22, 60, 34, WS_GROUP

AUTORADIOBUTTON "&Up", 234, 140, 30, 45, 12, NOT WS_TABSTOP | WS_GROUP
AUTORADIOBUTTON "&Down", 235, 140, 42, 45, 12, NOT WS_TABSTOP
DEFPUSHBUTTON "&Find Next", 1, 205, 5, 65, 14, WS_GROUP

PUSHBUTTON "&Mark All", 245, 205, 23, 65, 14

PUSHBUTTON "Cancel", 2, 205, 41, 65, 14

400 DIALOG 30, 73, 275, 84

STYLE DS_SETFONT | DS_MODALFRAME | DS_3DLOOK | WS_POPUPWINDOW | WS_CAPTION
CAPTION "Find"

FONT 8, "MS Shell DIg"

{

LTEXT "Fi&nd what:", -1, 5, 7, 45, 8

COMBOBOX 222, 50, 5, 145, 50, CBS_DROPDOWN | CBS_AUTOHSCROLL
AUTOCHECKBOX "Match &whole word only", 232, 5, 22, 120, 10, WS_GROUP
AUTOCHECKBOX "Match &case", 233, 5, 34, 130, 10, WS_GROUP
AUTOCHECKBOX "Regular &expression", 239, 5, 46, 120, 10, WS_GROUP
AUTOCHECKBOX "Wrap aroun&d", 240, 5, 58, 120, 10, WS_GROUP
AUTOCHECKBOX "Transform &backslash expressions", 241, 5, 70, 160, 10, WS_GROUP
GROUPBOX "Direction", -1, 135, 22, 60, 34, WS_GROUP

AUTORADIOBUTTON "&Up", 234, 140, 30, 45, 12, WS_GROUP | NOT WS_TABSTOP
AUTORADIOBUTTON "&Down", 235, 140, 42, 45, 12, NOT WS_TABSTOP
DEFPUSHBUTTON "&Find Next", 1, 205, 5, 65, 14, WS_GROUP

PUSHBUTTON "&Mark All", 245, 205, 23, 65, 14

PUSHBUTTON "Cancel", 2, 205, 41, 65, 14

91

Appendix B

Resource Builder :

400 DIALOG 30, 73, 275, 84

STYLE DS_3DLOOK |DS_SETFONT |DS_MODALFRAME |DS_CENTER |WS_POPUP |WS_SYSMENU |WS_CAPTION

CAPTION "Find"

FONT 8, "MS Shell DIg"

LANGUAGE LANG_ENGLISH, 1

BEGIN
CONTROL "Fi&nd what:",65535,"STATIC",SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,5,7,45,8
CONTROL "",222,"COMBOBOX",CBS_DROPDOWN |CBS_AUTOHSCROLL |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,50,5,145,50
CONTROL "Match &whole word only",232,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,5,22,120,10
CONTROL "Match &case",233,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,5,34,130,10
CONTROL "Regular &expression",239,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |[WS_GROUP |WS_TABSTOP |WS_VISIBLE ,5,46,120,10
CONTROL "Wrap aroun&d",240,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |[WS_GROUP |[WS_TABSTOP |WS_VISIBLE ,5,58,120,10
CONTROL "Transform &backslash expressions",241,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,5,70,160,10
CONTROL "Direction",65535,"BUTTON",BS_GROUPBOX |WS_CHILD |WS_GROUP |WS_VISIBLE ,135,22,60,34
CONTROL "&Up",234,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_GROUP |WS_VISIBLE ,140,30,45,12
CONTROL "&Down",235,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_VISIBLE ,140,42,45,12
CONTROL "&Find Next",1,"BUTTON",BS_DEFPUSHBUTTON |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,205,5,65,14
CONTROL "&Mark All",245,"BUTTON",BS_PUSHBUTTON |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,205,23,65,14
CONTROL "Cancel",2,"BUTTON",BS_PUSHBUTTON |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,205,41,65,14

END

Resource Hacker :

400 DIALOG 30, 73, 275, 84

STYLE DS_MODALFRAME | DS_CENTER | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION "Find"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 8, "MS Shell DIg"

{
CONTROL "Fi&nd what:", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 5, 7, 45, 8
CONTROL "", 222, COMBOBOX, CBS_DROPDOWN | CBS_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 50, 5, 145, 50
CONTROL "Match &whole word only", 232, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 22, 120, 10
CONTROL "Match &case", 233, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 34, 130, 10
CONTROL "Regular &expression", 239, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 46, 120, 10
CONTROL "Wrap aroun&d", 240, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 58, 120, 10
CONTROL "Transform &backslash expressions", 241, BUTTON, BS_ AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 70, 160, 10
CONTROL "Direction", -1, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE | WS_GROUP, 135, 22, 60, 34
CONTROL "&Up", 234, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP, 140, 30, 45, 12
CONTROL "&Down", 235, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 140, 42, 45, 12
CONTROL "&Find Next", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 205, 5, 65, 14
CONTROL "&Mark All", 245, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 205, 23, 65, 14
CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 205, 41, 65, 14

Second example

9i=0E3

&R 7-Zip File Manager

oo I

I-10 14:35

File Edit BTN Favorites Tools Help
: [Large Icans Cirl+1 | o
E * Small Icons Ctrl+2 x 1
: Add | List Ctrl43 slete Info
? C:'n,Dé ® Details Ctrl+2 WMémaire-C\Décompilateurs\d_ResHacker), v
Na}jne Name _CtrI-H=3 Size' | Modified Created Accessed
E | Type Crl+F4 14K 2002-01-2522:46 2004-12-1522:13 2005-11-10 14:15
1
El Read¥| pate Cirl4Fs 49106 2002-03-24 23:44 2004-12-15 22113 2005-10-27 12:47
[BresHad gie Cirl+Fs 2676 2001-01-27 22:37 2004-12-15 22:13 2005-11-07 13:05
FlresHad Unsorted Cirl4+F7 861K 2002-03-2420:23 2004-12-15 22:13 2005-11-10 1441
RESHaC = 10K 2005-11-07 13:06 2005-05-08 17:00 2005-11-07 13:06
@)ResHay 2Panels £ s 455 K__INN7.03-74 2345 2004-12-15 22:13 2005-11-08 17:51

2004-12-15 22114

2005-11-10 14:35

E) Version gpen Root Folder | | v StandardToobar 4543347 2004-12-1522:13 2005-05-08 16:59
LUp One Level Backspace Large Buttons
Folders History... Alt+F12 v Show Buttons Text
Refresh Ctrl+R
S R
0 object(s) selected

All the tools give the same information about the menu (except that Resource Builder use

BEGIN ... END instead od {...}).

92

Third example

File Edit View Help

B Editor Opti

General] Explorarl Version]

Appendix B

I Launch Multiple Instances
[Placelconin Taskbar Tray
¥ Confirm Program Exit

O=009FA151 RGE [81.167.159]
= | 81
L e et T L T S R T T I S T}
F=)) 161
] j 159

Select the Tupe of Macro to be Copied to Cliphoard

* RGB Macio
" Hexadecimal
7 HTML Macmo

Specify the Color Swatch Size for Clipboard Copies

width [32 =
Height [32 =]

Resource Tuner :

I Camera Shutter Saund when Copying

¥ Sounds with Warhing Dialog Boxes

Annuler Aide

o]

1000 DIALOG 0, 0, 320, 172
STYLE DS_SETFONT | DS_MODALFRAME | WS_CAPTION | WS_POPUP

CAPTION "General"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
FONT 8, "MS Sans Serif"

{

CONTROL 1999, -1, "STATIC", SS_BITMAP | SS_REALSIZEIMAGE | SS_SUNKEN, 7, 7, 18, 20
ICON 2655,-1,132,7,18, 20

AUTOCHECKBOX
AUTOCHECKBOX
AUTOCHECKBOX

"&Launch Multiple Instances", 108, 167, 5, 99, 8
"&Place Icon in Taskbar Tray", 111, 167, 17, 99, 8
"Confirm Program &Exit", 112, 167, 29, 79, 8

LTEXT -1,118, 40, 195, 1, NOT WS_GROUP | SS_ETCHEDHORZ
LTEXT "Select the Type of Macro to be Copied to Clipboard", -1, 125, 43, 165, 8
ICON 2535, -1, 130, 55, 18, 20

AUTORADIOBUTTON

AUTORADIOBUTTON "He&xadecimal", 102, 167, 65, 56, 8
AUTORADIOBUTTON "HTML &Macro", 103, 167, 75, 56, 8
LTEXT -1, 118,86, 195, 1, SS_ETCHEDHORZ

LTEXT "Specify the Color Swatch Size for Clipboard Copies", -1, 125, 90, 165, 8
ICON 2000, -1, 130, 103, 18, 20

LTEXT "&Wwidth", -1, 167, 103, 22, 8

EDITTEXT 104, 193, 100, 30, 12, ES_AUTOHSCROLL | ES_NUMBER

CONTROL "Spin1", 106, "msctls_updown32", 0x000000B7, 222, 100, 10, 12

LTEXT "&Height", -1, 167, 115, 22, 8
EDITTEXT 105, 193, 114, 30, 12, ES_AUTOHSCROLL | ES_NUMBER

CONTROL "Spin2", 107, "msctls_updown32", 0x000000B7, 222, 114, 10, 12

LTEXT -1, 118, 129, 195, 1, NOT WS_GROUP | SS_ETCHEDHORZ
ICON 2815,-1,130, 131, 18, 20

"&Camera Shutter Sound when Copying", 109, 167, 137, 133, 8
ICON 2525, -1, 131, 149, 18, 20
"&Sounds with Warning Dialog Boxes", 110, 167, 154, 126, 8

AUTOCHECKBOX

AUTOCHECKBOX

Restorator :

1000 DIALOG 0, 0, 320, 172
STYLE DS_SETFONT | DS_MODALFRAME | WS_POPUP | WS_CAPTION

CAPTION "General"

FONT 8, "MS Sans Serif"

"&RGB Macro", 101, 167, 55, 52, 8, WS_GROUP

{

CONTROL 1999, -1, "STATIC", SS_BITMAP | SS_REALSIZEIMAGE | SS_SUNKEN, 7, 7, 18, 20
ICON 2655, -1, 132, 7, 18, 20

AUTOCHECKBOX "&Launch Multiple Instances", 108, 167, 5, 99, 8
AUTOCHECKBOX "&Place Icon in Taskbar Tray", 111, 167, 17, 99, 8
AUTOCHECKBOX "Confirm Program &Exit", 112, 167, 29, 79, 8
CONTROL "", -1, "STATIC", SS_ETCHEDHORZ, 118, 40, 195, 1

LTEXT "Select the Type of Macro to be Copied to Clipboard", -1, 125, 43, 165, 8

ICON 2535, -1, 130, 55, 18, 20

AUTORADIOBUTTON "&RGB Macro", 101, 167, 55, 52, 8, WS_GROUP
AUTORADIOBUTTON "He&xadecimal", 102, 167, 65, 56, 8
AUTORADIOBUTTON "HTML &Macro", 103, 167, 75, 56, 8

93

Appendix B

CONTROL "", -1, "STATIC", SS_ETCHEDHORZ | WS_GROUP, 118, 86, 195, 1
LTEXT "Specify the Color Swatch Size for Clipboard Copies", -1, 125, 90, 165, 8
ICON 2000, -1, 130, 103, 18, 20

LTEXT "&Width", -1, 167, 103, 22, 8

EDITTEXT 104, 193, 100, 30, 12, ES_AUTOHSCROLL | ES_NUMBER
CONTROL "Spinl", 106, "msctls_updown32", 0x000000B7, 222, 100, 10, 12
LTEXT "&Height", -1, 167, 115, 22, 8

EDITTEXT 105, 193, 114, 30, 12, ES_AUTOHSCROLL | ES_NUMBER
CONTROL "Spin2", 107, "msctls_updown32", 0x000000B7, 222, 114, 10, 12
CONTROL "', -1, "STATIC", SS_ETCHEDHORZ, 118, 129, 195, 1

ICON 2815, -1, 130, 131, 18, 20

AUTOCHECKBOX "&Camera Shutter Sound when Copying", 109, 167, 137, 133, 8
ICON 2525, -1, 131, 149, 18, 20

AUTOCHECKBOX "&Sounds with Warning Dialog Boxes", 110, 167, 154, 126, 8
b

Resource Builder :

1000 DIALOG 0, 0, 320, 172
STYLE DS_SETFONT |DS_MODALFRAME |WS_POPUP |WS_CAPTION
CAPTION "General"
FONT 8, "MS Sans Serif"
LANGUAGE LANG_ENGLISH, 1
BEGIN
CONTROL 1999,65535,"STATIC",SS_SUNKEN |SS_REALSIZEIMAGE |SS_BITMAP |WS_CHILD |WS_VISIBLE ,7,7,18,20
CONTROL 2655,65535,"STATIC",SS_ICON |WS_CHILD |WS_VISIBLE ,132,7,18,20
CONTROL "&Launch Multiple Instances",108,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,5,99,8
CONTROL "&Place Icon in Taskbar Tray",111,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,17,99,8
CONTROL "Confirm Program &Exit",112,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,29,79,8
CONTROL "",65535,"STATIC",SS_ETCHEDHORZ |WS_CHILD |WS_VISIBLE ,118,40,195,1
CONTROL "Select the Type of Macro to be Copied to Clipboard",65535,"STATIC",SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,125,43,165,8
CONTROL 2535,65535,"STATIC",SS_ICON |WS_CHILD |WS_VISIBLE ,130,55,18,20
CONTROL "&RGB Macro",101,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,167,55,52,8
CONTROL "He&xadecimal",102,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,65,56,8
CONTROL "HTML &Macro",103,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,75,56,8
CONTROL "",65535,"STATIC",SS_ETCHEDHORZ |WS_CHILD |WS_GROUP |WS_VISIBLE ,118,86,195,1
CONTROL "Specify the Color Swatch Size for Clipboard Copies",65535,"STATIC",SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,125,90,165,8
CONTROL 2000,65535,"STATIC",SS_ICON |WS_CHILD |WS_VISIBLE ,130,103,18,20
CONTROL "&Width",65535,"STATIC",SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,167,103,22,8
CONTROL "",104,"EDIT",ES_NUMBER |ES_AUTOHSCROLL |ES_LEFT |[WS_CHILD |WS_BORDER |WS_TABSTOP |WS_VISIBLE ,193,100,30,12
CONTROL "Spin1",106,"msctls_updown32",WS_CHILD |WS_VISIBLE |0xB7,222,100,10,12
CONTROL "&Height",65535,"STATIC",SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,167,115,22,8
CONTROL "",105,"EDIT",ES_NUMBER |ES_AUTOHSCROLL |ES_LEFT |WS_CHILD |WS_BORDER |WS_TABSTOP |WS_VISIBLE ,193,114,30,12
CONTROL "Spin2",107,"msctls_updown32",WS_CHILD |WS_VISIBLE |0xB7,222,114,10,12
CONTROL "",65535,"STATIC",SS_ETCHEDHORZ |WS_CHILD |WS_VISIBLE ,118,129,195,1
CONTROL 2815,65535,"STATIC",SS_ICON |WS_CHILD |WS_VISIBLE ,130,131,18,20
CONTROL "&Camera Shutter Sound when Copying",109,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,137,133,8
CONTROL 2525,65535,"STATIC",SS_ICON |WS_CHILD |WS_VISIBLE ,131,149,18,20
CONTROL "&Sounds with Warning Dialog Boxes",110,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,167,154,126,8
END

Resource Hacker :

1000 DIALOG O, 0, 320, 172

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION

CAPTION "General"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 8, "MS Sans Serif"

{
CONTROL 1999, -1, STATIC, SS_BITMAP | SS_REALSIZEIMAGE | SS_SUNKEN | WS_CHILD | WS_VISIBLE, 7, 7, 18, 20
CONTROL 2655, -1, STATIC, SS_ICON | WS_CHILD | WS_VISIBLE, 132, 7, 18, 20
CONTROL "&Launch Multiple Instances", 108, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 167, 5, 99, 8
CONTROL "&Place Icon in Taskbar Tray", 111, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 167, 17, 99, 8
CONTROL "Confirm Program &Exit", 112, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 167, 29, 79, 8
CONTROL "', -1, STATIC, SS_ETCHEDHORZ | WS_CHILD | WS_VISIBLE, 118, 40, 195, 1
CONTROL "Select the Type of Macro to be Copied to Clipboard", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 125, 43, 165, 8
CONTROL 2535, -1, STATIC, SS_ICON | WS_CHILD | WS_VISIBLE, 130, 55, 18, 20
CONTROL "&RGB Macro", 101, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 167, 55, 52, 8
CONTROL "He&xadecimal", 102, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 167, 65, 56, 8
CONTROL "HTML &Macro", 103, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 167, 75, 56, 8
CONTROL "", -1, STATIC, SS_ETCHEDHORZ | WS_CHILD | WS_VISIBLE | WS_GROUP, 118, 86, 195, 1
CONTROL "Specify the Color Swatch Size for Clipboard Copies", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 125, 90, 165, 8
CONTROL 2000, -1, STATIC, SS_ICON | WS_CHILD | WS_VISIBLE, 130, 103, 18, 20
CONTROL "&Width", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 167, 103, 22, 8
CONTROL "", 104, EDIT, ES_LEFT | ES_AUTOHSCROLL | ES_NUMBER | WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,193,100,30,12
CONTROL "Spin1", 106, "msctls_updown32", UDS_WRAP | UDS_SETBUDDYINT | UDS_ALIGNRIGHT | UDS_AUTOBUDDY | UDS_ARROWKEYS |

UDS_NOTHOUSANDS | WS_CHILD | WS_VISIBLE, 222, 100, 10, 12
CONTROL "&Height", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 167, 115, 22, 8
CONTROL "", 105, EDIT, ES_LEFT | ES_AUTOHSCROLL | ES_NUMBER | WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,193,114,30,12
CONTROL "Spin2", 107, "msctls_updown32", UDS_WRAP | UDS_SETBUDDYINT | UDS_ALIGNRIGHT | UDS_AUTOBUDDY | UDS_ARROWKEYS |
UDS_NOTHOUSANDS | WS_CHILD | WS_VISIBLE, 222, 114, 10, 12

CONTROL "', -1, STATIC, SS_ETCHEDHORZ | WS_CHILD | WS_VISIBLE, 118, 129, 195, 1
CONTROL 2815, -1, STATIC, SS_ICON | WS_CHILD | WS_VISIBLE, 130, 131, 18, 20
CONTROL "&Camera Shutter Sound when Copying",109,BUTTON,BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE |WS_TABSTOP,167,137,133,8
CONTROL 2525, -1, STATIC, SS_ICON | WS_CHILD | WS_VISIBLE, 131, 149, 18, 20
CONTROL "&Sounds with Warning Dialog Boxes", 110, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP,167,154,126,8

94

Fourth example

Appendix B

Style ! Light Inddence
st [show Grid | | Grid Color &
ir
Reset to
@ sequoiaview | [Highlight Rectangle] Defaults

t Cleanlp Treemap =iun Jptians Help
r RYEBO X O RS T

Subtree Percentage | Percentage = Size Items Files Subdirs | Last Change 25
e (C:) —————— | [1:395] 30,0 GB 74,769 63,268 6,501 11/10/2005 8:12:;36 PM
H i_ﬂ Documents and Settings I 78.5% 23.5GB 25,746 24,332 1,414 11/10/2005 8:12:06 PM
=) [Program Files u 10,6% 3268 23,773 21,619 2,154 11/10/2005 7:56:47 PM
[i_ﬂ WINDOWS | 6.8% 2.0GB 13,221 12,607 614 11j10/2005 8:11:14PM =
_r- <Files > | 2.9% B895.2MB 4+ 44 0 11/10/2005 10:13:20 AM
B S 540 2,300 8/7/2005 8:17:17 PM
Y inDirStat - Settings &1 4 11/10/2005 7:45:33 PM
B 54 1 10/30/2005 10:49:23 AM —
o 9 1 2/25/2005 9:54:43 AM
2 B 1 0 2/25/2005 9:58:11 AM
D 1 0 10/7/2005 12:55:28PM |
& | @

-

Cushion Height

Shading

Scale
Factor

Bright-
ness

[ok

Appliguer

][Anmuler J

Resource Tuner :

Restorator :

143 DIALOGEX 0, 0, 380, 202, 0

STYLE DS_SETFONT | DS_FIXEDSYS | WS_CAPTION | WS_CHILD | WS_DISABLED | WS_SYSMENU
CAPTION "Treemap"

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 8, "MS Shell DIg"

{
CTEXT "&Bright-\r\nness", -1, 237, 122, 32, 18
CONTROL "", 1212, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 245, 17, 16, 104
CTEXT "&Cushion\r\nShading", -1, 271, 122, 32, 18
CONTROL "", 1211, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 279, 17, 16, 104
CTEXT "&Height", -1, 305, 122, 32, 18
CONTROL "', 1210, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 313, 17, 16, 104
CTEXT "&Scale\r\nFactor", -1, 339, 122, 32, 18
CONTROL "', 1209, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 347, 17, 16, 104

RTEXT "&Light Incidence", -1, 246, 147, 59, 8
LTEXT "Static", 1220, 313, 146, 58, 48, WS_TABSTOP
PUSHBUTTON "', 1034, 242, 167, 55, 22, BS_MULTILINE
GROUPBOX '"St&yle", -1, 7, 146, 63, 49
AUTORADIOBUTTON "&KDirStat", 1213, 12, 159, 42, 10, WS_GROUP
AUTORADIOBUTTON "Se&quoiaView", 1214, 12, 176, 53, 10, NOT WS_TABSTOP
AUTOCHECKBOX "Show &Grid", 1022, 76, 150, 54, 10
PUSHBUTTON "Grid &Color", 1030, 134, 150, 85, 14, 0, WS_EX_RIGHT
PUSHBUTTON "Hgighlight Rectangle", 1202, 76, 175, 143, 14, 0, WS_EX_RIGHT
CTEXT "Static", 1219, 339, 7, 32, 8
CTEXT "Static", 1218, 305, 7, 32, 8
CTEXT ‘"Static", 1217, 271, 7, 32, 8
CTEXT "Static", 1216, 237, 7, 32, 8
LTEXT "Static", 1215, 7, 7, 211, 124
¥

143 DIALOGEX 0, 0, 380, 202, 0

STYLE DS_SETFONT | DS_FIXEDSYS | WS_CHILD | WS_DISABLED | WS_CAPTION | WS_SYSMENU
CAPTION "Treemap"

FONT 8, "MS Shell DIg", 400, TRUE

95

Appendix B

{

CTEXT "&Bright-\r\nness", -1, 237, 122, 32, 18

CONTROL "', 1212, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 245, 17, 16, 104
CTEXT "&Cushion\r\nShading", -1, 271, 122, 32, 18

CONTROL "', 1211, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 279, 17, 16, 104
CTEXT "&Height", -1, 305, 122, 32, 18

CONTROL "', 1210, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 313, 17, 16, 104
CTEXT "&Scale\r\nFactor", -1, 339, 122, 32, 18

CONTROL "', 1209, "msctls_trackbar32", WS_TABSTOP | 0x0000001A, 347, 17, 16, 104
RTEXT "&Light Incidence", -1, 246, 147, 59, 8

LTEXT "Static", 1220, 313, 146, 58, 48, WS_TABSTOP

PUSHBUTTON "", 1034, 242, 167, 55, 22, BS_MULTILINE

GROUPBOX "St&yle", -1, 7, 146, 63, 49

AUTORADIOBUTTON "&KDirStat", 1213, 12, 159, 42, 10, WS_GROUP
AUTORADIOBUTTON "Se&quoiaView", 1214, 12, 176, 53, 10, NOT WS_TABSTOP
AUTOCHECKBOX "Show &Grid", 1022, 76, 150, 54, 10

PUSHBUTTON "Grid &Color", 1030, 134, 150, 85, 14, 0, WS_EX_RIGHT

PUSHBUTTON "H&ighlight Rectangle", 1202, 76, 175, 143, 14, 0, WS_EX_RIGHT
CTEXT "Static", 1219, 339, 7, 32, 8

CTEXT "Static", 1218, 305, 7, 32, 8

CTEXT "Static", 1217, 271, 7, 32, 8

CTEXT "Static", 1216, 237, 7, 32, 8

LTEXT "Static", 1215, 7, 7, 211, 124

b

Resource Builder :

143 DIALOGEX 0, 0, 380, 202, 0

E
S
C
F

XSTYLE 0

TYLE DS_FIXEDSYS | DS_SETFONT | WS_CHILD | WS_CAPTION | WS_SYSMENU | WS_DISABLED
APTION "Treemap"

ONT 8, "MS Shell DIg", 400, 0, 1

LANGUAGE LANG_ENGLISH, 1

EGIN
CONTROL "&Bright-\x0D\x0Aness",65535, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 237,122,32,18, 0x0,0
CONTROL "",1212,"msctls_trackbar32", WS_CHILD | WS_TABSTOP | WS_VISIBLE | 0x1A, 245, 17, 16, 104, 0x0,0

CONTROL "&Cushion\x0D\x0AShading", 65535, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 271,122,32,18, 0x0,0
CONTROL "",1211,"msctls_trackbar32", WS_CHILD | WS_TABSTOP | WS_VISIBLE | 0x1A, 279,17,16,104, 0x0,0

CONTROL "&Height",65535,"STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 305,122,32,18, 0x0,0

CONTROL "",1210,"msctls_trackbar32", WS_CHILD | WS_TABSTOP | WS_VISIBLE | 0x1A, 313,17,16,104, 0x0,0

CONTROL "&Scale\x0D\x0AFactor", 65535, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 339,122,32,18, 0x0,0
CONTROL "",1209,"msctls_trackbar32", WS_CHILD | WS_TABSTOP | WS_VISIBLE | 0x1A, 347,17,16,104, 0x0,0

CONTROL "&Light Incidence", 65535, "STATIC", SS_RIGHT | WS_CHILD | WS_GROUP | WS_VISIBLE, 246,147,59,8, 0x0,0

CONTROL "Static", 1220, "STATIC", SS_LEFT | WS_CHILD | WS_GROUP | WS_TABSTOP | WS_VISIBLE, 313,146,58,48, 0x0,0

CONTROL "", 1034, "BUTTON", BS_PUSHBUTTON | BS_MULTILINE | WS_CHILD | WS_TABSTOP | WS_VISIBLE, 242,167,55,22, 0x0,0
CONTROL "St&yle", 65535, "BUTTON", BS_GROUPBOX | WS_CHILD | WS_VISIBLE, 7,146,63,49, 0x0,0

CONTROL "&KDirStat",1213,"BUTTON",BS_AUTORADIOBUTTON|WS_CHILD|WS_GROUP|WS_TABSTOP|WS_VISIBLE,12,159,42,10,0x00
CONTROL "Se&quoiaView", 1214, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 12,176,53,10, 0x0,0

CONTROL "Show &Grid", 1022, "BUTTON", BS_AUTOCHECKBOX | WS_CHILD | WS_TABSTOP | WS_VISIBLE, 76,150,54,10, 0x0,0

CONTROL "Grid &Color", 1030, "BUTTON", BS_PUSHBUTTON | WS_CHILD | WS_TABSTOP | WS_VISIBLE, 134, 150, 85, 14, WS_EX_RIGHT, 0
CONTROL "Hgighlight Rectangle",1202,"BUTTON",BS_PUSHBUTTON |WS_CHILD|WS_TABSTOP|WS_VISIBLE,76,175,143,14, WS_EX_RIGHT, 0
CONTROL "Static", 1219, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 339, 7, 32, 8, 0x0, 0

CONTROL "Static", 1218, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 305, 7, 32, 8, 0x0, 0

CONTROL "Static", 1217, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 271, 7, 32, 8, 0x0, 0

CONTROL "Static", 1216, "STATIC", SS_CENTER | WS_CHILD | WS_GROUP | WS_VISIBLE, 237, 7, 32, 8, 0x0, 0

CONTROL "Static", 1215, "STATIC", SS_LEFT | WS_CHILD | WS_GROUP | WS_VISIBLE, 7, 7, 211, 124, 0x0, 0

ND

Resource Hacker :

1
S
[o
L
F
{

43 DIALOGEX 0, 0, 380, 202

TYLE DS_FIXEDSYS | WS_CHILD | WS_DISABLED | WS_CAPTION | WS_SYSMENU
APTION "Treemap"

ANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

ONT 8, "MS Shell DIg", FW_NORMAL, FALSE, 1

CONTROL "&Bright-\nness", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 237, 122, 32, 18
CONTROL "', 1212, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 245, 17, 16, 104
CONTROL "&Cushion\nShading", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 271, 122, 32, 18

CONTROL "', 1211, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 279, 17, 16, 104
CONTROL "&Height", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 305, 122, 32, 18

CONTROL "', 1210, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 313, 17, 16, 104
CONTROL "&Scale\nFactor", -1, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 339, 122, 32, 18

CONTROL "', 1209, "msctls_trackbar32", TBS_VERT | TBS_BOTH | TBS_NOTICKS | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 347, 17, 16, 104
CONTROL "&Light Incidence", -1, STATIC, SS_RIGHT | WS_CHILD | WS_VISIBLE | WS_GROUP, 246, 147, 59, 8

CONTROL "Static", 1220, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 313, 146, 58, 48

CONTROL "', 1034, BUTTON, BS_PUSHBUTTON | BS_MULTILINE | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 242, 167, 55, 22

CONTROL "St&yle", -1, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE, 7, 146, 63, 49

CONTROL "&KDirStat", 1213, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 12, 159, 42, 10
CONTROL "Se&quoiaView", 1214, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 12, 176, 53, 10

CONTROL "Show &Grid", 1022, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 76, 150, 54, 10

CONTROL "Grid &Color", 1030, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 134, 150, 85, 14 , 000001000
CONTROL "H&ighlight Rectangle",1202, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 76, 175, 143, 14 , 0x00001000
CONTROL "Static", 1219, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 339, 7, 32, 8

CONTROL "Static", 1218, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 305, 7, 32, 8

CONTROL "Static", 1217, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 271, 7, 32, 8

CONTROL "Static", 1216, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE | WS_GROUP, 237, 7, 32, 8

CONTROL "Static", 1215, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 7, 7, 211, 124

96

Appendix B

Fifth example

Resource Tuner :

1552 DIALOGEX 0, 0, 370, 237, 0
STYLE DS_SETFONT | DS_MODALFRAME | DS_3DLOOK | DS_CONTEXTHELP | WS_POPUPWINDOW | WS_VISIBLE | WS_CLIPCHILDREN | WS_DLGFRAME
CAPTION "Open"
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
FONT 8, "MS Shell DIg"
{
LTEXT "Look &in :", 1091, 4, 7, 57, 8, SS_NOTIFY, WS_EX_RIGHT
COMBOBOX "', 1137, 66, 4, 174, 300, CBS_DROPDOWN | CBS_OWNERDRAWFIXED | CBS_HASSTRINGS | WS_VSCROLL
LTEXT "", 1088, 248, 4, 80, 14, NOT WS_VISIBLE | NOT WS_GROUP
CONTROL "", 1184, "ToolbarWindow32", WS_TABSTOP | 0x00002B4C, 4, 22, 58, 208, WS_EX_CLIENTEDGE
LISTBOX "', 1120, 66, 22, 300, 156, NOT WS_VISIBLE | LBS_SORT | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | WS_HSCROLL
LTEXT "File &name :", 1090, 67, 187, 71, 8, SS_NOTIFY
EDITTEXT ", 1152, 144, 184, 164, 12, ES_AUTOHSCROLL
CONTROL "', 1148, "ComboBoxEx32", WS_VSCROLL | WS_TABSTOP | 0x00000042, 144, 184, 164, 150
LTEXT "Files of &type :", 1089, 67, 203, 71, 8, SS_NOTIFY
COMBOBOX "', 1136, 144, 201, 164, 100, CBS_DROPDOWN | WS_VSCROLL
AUTOCHECKBOX "Open as &read-only ", 1040, 144, 217, 160, 8
DEFPUSHBUTTON "&Open", 1, 316, 184, 50, 14, WS_GROUP
PUSHBUTTON ‘"Cancel", 2, 316, 200, 50, 14, WS_GROUP

For tool bar control, “wS_TABSTOP|0x00002B4C” is the same as “0x50012B4C”, seeing that

WS_CHILD (0x40000000) and ws_VISIBLE (0x10000000) are implicit with the shorthand
notation.

Restorator :

1552 DIALOGEX 0, 0, 370, 237, 0

STYLE DS_SETFONT|DS_MODALFRAME|DS_3DLOOK|DS_CONTEXTHELP|WS_POPUPWINDOW | WS_VISIBLE|WS_CLIPCHILDREN|WS_CAPTION
CAPTION "Open"

FONT 8, "MS Shell DIg", 0, TRUE

{

LTEXT "Look &in :", 1091, 4, 7, 57, 8, SS_NOTIFY, WS_EX_RIGHT

COMBOBOX 1137, 66, 4, 174, 300, CBS_DROPDOWNLIST | CBS_OWNERDRAWFIXED | CBS_HASSTRINGS | WS_VSCROLL

LTEXT "", 1088, 248, 4, 80, 14, NOT WS_VISIBLE | NOT WS_GROUP

CONTROL "", 1184, "ToolbarWindow32", WS_TABSTOP | 0x00002B4C, 4, 22, 58, 208, WS_EX_CLIENTEDGE

LISTBOX 1120, 66, 22, 300, 156, LBS_SORT | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | NOT WS_VISIBLE | WS_HSCROLL
LTEXT "File &nhame :", 1090, 67, 187, 71, 8, SS_NOTIFY

EDITTEXT 1152, 144, 184, 164, 12, ES_AUTOHSCROLL

CONTROL "", 1148, "ComboBoxEx32", WS_VSCROLL | WS_TABSTOP | 0x00000042, 144, 184, 164, 150

LTEXT "Files of &type :", 1089, 67, 203, 71, 8, SS_NOTIFY

COMBOBOX 1136, 144, 201, 164, 100, CBS_DROPDOWNLIST | WS_VSCROLL

AUTOCHECKBOX "Open as &read-only", 1040, 144, 217, 160, 8

DEFPUSHBUTTON "&Open", 1, 316, 184, 50, 14, WS_GROUP

PUSHBUTTON "Cancel", 2, 316, 200, 50, 14, WS_GROUP

>

Resource Builder :

1552 DIALOGEX 28, 85, 370, 237, 0

EXSTYLE 0

STYLE DS_3DLOOK |DS_SETFONT |DS_MODALFRAME |DS_CONTEXTHELP |WS_POPUP |WS_VISIBLE |WS_CLIPCHILDREN |WS_SYSMENU |WS_CAPTION
CAPTION "Open"

FONT 8, "MS Shell DIg", 400, 0, 0

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

BEGIN

CONTROL "Look &in :",1091,"STATIC",SS_NOTIFY |SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,4,7,57,8, WS_EX_RIGHT ,0

CONTROL "",1137,"COMBOBOX",CBS_OWNERDRAWFIXED|CBS_HASSTRINGS|CBS_DROPDOWNLIST|WS_CHILD|WS_VSCROLL|WS_TABSTOP|WS_VISIBLE,
CONTROL "",1088,"STATIC",SS_LEFT |WS_CHILD ,248,4,80,14,0x0,0 66,4,174,300,0x0,0
CONTROL "",1184,"ToolbarWindow32",WS_CHILD |WS_TABSTOP |WS_VISIBLE |0x2B4C,4,22,58,208,0x0,0

CONTROL "",1120,"LISTBOX",LBS_MULTICOLUMN |LBS_NOINTEGRALHEIGHT|LBS_SORT|LBS_NOTIFY|WS_CHILD|WS_BORDER|WS_HSCROLL,66,22,300,156,0x0,0
CONTROL "File &name :",1090,"STATIC",SS_NOTIFY |SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,67,187,71,8,0x0,0

CONTROL "",1152,"EDIT",ES_AUTOHSCROLL |ES_LEFT |WS_CHILD |WS_BORDER |WS_TABSTOP |WS_VISIBLE ,144,184,164,12,0x0,0

CONTROL "",1148,"ComboBoxEx32",WS_CHILD |[WS_VSCROLL |WS_TABSTOP |WS_VISIBLE |0x42,144,184,164,150,0x0,0

CONTROL "Files of &type :",1089,"STATIC",SS_NOTIFY |SS_LEFT |WS_CHILD |WS_GROUP |WS_VISIBLE ,67,203,71,8,0x0,0

CONTROL "",1136,"COMBOBOX",CBS_DROPDOWNLIST |[WS_CHILD |WS_VSCROLL |WS_TABSTOP |WS_VISIBLE ,144,201,164,100,0x0,0

CONTROL "Open as &read-only ",1040,"BUTTON",BS_AUTOCHECKBOX |BS_LEFT |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,144,217,160,8,0x0,0

CONTROL "&0Open",1,"BUTTON",BS_DEFPUSHBUTTON |BS_VCENTER |BS_CENTER |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,316,184,50,14,0x0,0
CONTROL "Cancel",2,"BUTTON",BS_PUSHBUTTON |BS_VCENTER |BS_CENTER |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,316,200,50,14,0x0,0
END

Resource Hacker :

1552 DIALOGEX 0, 0, 370, 237

97

Appendix B

STYLE DS_MODALFRAME | DS_CONTEXTHELP | WS_POPUP | WS_VISIBLE | WS_CLIPCHILDREN | WS_CAPTION | WS_SYSMENU
CAPTION "Open"
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
FONT 8, "MS Shell Dig"
{
CONTROL "Look &in :", 1091, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 4, 7, 57, 8, 000001000
CONTROL "', 1137, COMBOBOX, CBS_DROPDOWNLIST|CBS_OWNERDRAWFIXED|CBS_HASSTRINGS |WS_CHILD|WS_VISIBLE|WS_VSCROLL|WS_TABSTOP,
66, 4, 174, 300
CONTROL "', 1088, STATIC, SS_LEFT | WS_CHILD, 248, 4, 80, 14
CONTROL "", 1184, "ToolbarWindow32", 0x50012B4C, 4, 22, 58, 208 , 0x00000200
CONTROL "', 1120, LISTBOX, LBS_NOTIFY | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | WS_CHILD | WS_BORDER | WS_HSCROLL, 66, 22, 300, 156
CONTROL "File &name :", 1090, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 67, 187, 71, 8
CONTROL "', 1152, EDIT, ES_LEFT | ES_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP, 144, 184, 164, 12
CONTROL "', 1148, "ComboBoxEx32", 0x50210042, 144, 184, 164, 150
CONTROL "Files of &type :", 1089, STATIC, SS_LEFT | SS_NOTIFY | WS_CHILD | WS_VISIBLE | WS_GROUP, 67, 203, 71, 8
CONTROL "', 1136, COMBOBOX, CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_TABSTOP, 144, 201, 164, 100
CONTROL "Open as &read-only", 1040, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 144, 217, 160, 8
CONTROL "&0Open", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 316, 184, 50, 14
CONTROL "Cancel", 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 316, 200, 50, 14

The first static control has also the number 1000 as extended style corresponding to
WS_EX_RIGHT, which for static controls has the same effect as using SS_RIGHT. The
hexadecimal number “0x50012B4C” for the tool bar control is the same as
“TBSTYLE_TOOLTIPS | TBSTYLE_WRAPABLE | TBSTYLE_FLAT | TBSTYLE_CUSTOMERASE |
CCS_NORESIZE | CCS_NOPARENTALIGN | CCS_NODIVIDER | WS_TABSTOP | WS_CHILD |
WS_VISIBLE”, and the number “0x00000200” is the same as “WS_EX_CLIENTEDGE”. The
number 50210042 for the combo box control correpond to the styles CBS_DROPDOWN,
CBS_AUTOHSCROLL, WS_TABSTOP, WS_VSCROLL, WS_VISIBLE and WS_CHILD.

Sixth example

TablEdit - [Suite Bwy 995 - Prelude-00.tef]

File
[1]
[0 [El
C
1]
22 Fundamental: Chord Chart r r
B : R
B - XXX K XK & Py | E
T Chord: - Insert Ehord...l | 422 e
iﬁ D e L e o e Rt i | |
E PH P
B Fithe Cers ! Edit Diagrarn ¥ c 0-3 2— ®
G il 112——212-4-5—15—4 | :
D Ninith: [l R ET12314 f 6 5 1513+
A l 0
E Ireersions: L
ii:.r.u-! = i _I L]+ |=== — d ==
I~ ABCDEF
Suite B 955 - Prelude Johann Sebastian Bach M

Resource Tuner :

22 DIALOG 76, 29, 284, 174

STYLE DS_SETFONT | DS_MODALFRAME | DS_NOIDLEMSG | DS_3DLOOK | DS_CONTEXTHELP | WS_POPUPWINDOW | WS_DLGFRAME
EXSTYLE WS_EX_DLGMODALFRAME | WS_EX_CONTEXTHELP

CAPTION "Chord Builder"

LANGUAGE LANG_NEUTRAL, SUBLANG_NEUTRAL

FONT 8, "MS Sans Serif"

98

Appendix B

LTEXT "&Fundamental:", 24, 8, 4, 60, 10, NOT WS_GROUP
COMBOBOX 101, 8, 15, 76, 115, CBS_DROPDOWN | WS_VSCROLL
LTEXT "&Chord:", 25, 8, 31, 54, 10

COMBOBOX 102, 8, 42, 76, 100, CBS_DROPDOWN | WS_VSCROLL
LTEXT "&Fifth:", 26, 8, 62, 32, 10, NOT WS_GROUP
AUTOCHECKBOX "5+", 301, 47, 61, 21, 10

AUTOCHECKBOX "5-", 302, 69, 61, 21, 10

LTEXT "&Ninth:", 27, 8, 74, 38, 10, NOT WS_GROUP
AUTOCHECKBOX "9+", 401, 47, 73, 21, 10

AUTOCHECKBOX "9-", 402, 69, 73, 21, 10

LTEXT "&Inversions:", 28, 8, 90, 63, 10, NOT WS_GROUP
COMBOBOX 103, 8, 101, 76, 55, CBS_DROPDOWN | WS_VSCROLL
AUTORADIOBUTTON "&1", 700, 98, 149, 17, 10, WS_GROUP
AUTORADIOBUTTON "&2", 701, 116, 149, 17, 10, NOT WS_TABSTOP
AUTORADIOBUTTON "&3", 702, 135, 149, 17, 10, NOT WS_TABSTOP
AUTORADIOBUTTON "&4", 703, 154, 149, 17, 10, NOT WS_TABSTOP
AUTORADIOBUTTON "&5", 704, 176, 149, 17, 10, NOT WS_TABSTOP
GROUPBOX 106, 92, 138, 116, 29, WS_GROUP

SCROLLBAR 600, 93, 107, 81, 9, WS_TABSTOP

SCROLLBAR 601, 155, 56, 9, 64, SBS_VERT | WS_TABSTOP
GROUPBOX "&Omit:", 799, 8, 118, 76, 49, WS_GROUP

CHECKBOX 800, 14, 128, 30, 10

CHECKBOX 801, 50, 128, 30, 10

CHECKBOX 802, 14, 140, 30, 10

CHECKBOX 803, 50, 140, 30, 10

CHECKBOX 804, 14, 152, 30, 10

CHECKBOX 805, 50, 152, 30, 10

CTEXT "Chord Chart", 30, 108, 2, 68, 10, NOT WS_GROUP

CONTROL "", 999, "STATIC", NOT WS_VISIBLE | NOT WS_GROUP | SS_GRAYFRAME, 92, 12, 116, 108

AUTORADIOBUTTON "&Close", 2, 222, 135, 56, 14, 0x00000002
AUTORADIOBUTTON "&Add", 1, 222, 153, 56, 14, 000000002
AUTORADIOBUTTON "&Play", 131, 222, 11, 56, 14, 000000002

PUSHBUTTON "&Insert Chord...", 105, 222, 30, 56, 14

EDITTEXT 107, 97, 149, 88, 12

AUTOCHECKBOX "?", 109, 189, 149, 13, 12, BS_PUSHLIKE

CHECKBOX "&Edit Diagram", 108, 222, 55, 56, 14, BS_PUSHLIKE

LISTBOX 110, 221, 73, 58, 11, NOT LBS_NOTIFY | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | WS_TABSTOP

Restorator :

22 DIALOG 76, 29, 284, 174

STYLE DS_SETFONT | DS_MODALFRAME | DS_NOIDLEMSG | DS_3DLOOK | DS_CONTEXTHELP | WS_POPUPWINDOW | WS_CAPTION
EXSTYLE = WS_EX_DLGMODALFRAME | WS_EX_CONTEXTHELP

CAPTION "Chord Builder"

FONT 8, "MS Sans Serif"

{

LTEXT "&Fundamental:", 24, 8, 4, 60, 10, NOT WS_GROUP

COMBOBOX 101, 8, 15, 76, 115, CBS_DROPDOWNLIST | WS_VSCROLL

LTEXT "&Chord:", 25, 8, 31, 54, 10

COMBOBOX 102, 8, 42, 76, 100, CBS_DROPDOWNLIST | WS_VSCROLL

LTEXT "&Fifth:", 26, 8, 62, 32, 10, NOT WS_GROUP

AUTOCHECKBOX "5+", 301, 47, 61, 21, 10

AUTOCHECKBOX "5-", 302, 69, 61, 21, 10

LTEXT "&Ninth:", 27, 8, 74, 38, 10, NOT WS_GROUP

AUTOCHECKBOX "9+", 401, 47, 73, 21, 10

AUTOCHECKBOX "9-", 402, 69, 73, 21, 10

LTEXT "&Inversions:", 28, 8, 90, 63, 10, NOT WS_GROUP

COMBOBOX 103, 8, 101, 76, 55, CBS_DROPDOWNLIST | WS_VSCROLL
AUTORADIOBUTTON "&1", 700, 98, 149, 17, 10, WS_GROUP
AUTORADIOBUTTON "&2", 701, 116, 149, 17, 10, NOT WS_TABSTOP
AUTORADIOBUTTON "&3", 702, 135, 149, 17, 10, NOT WS_TABSTOP
AUTORADIOBUTTON "&4", 703, 154, 149, 17, 10, NOT WS_TABSTOP
AUTORADIOBUTTON "&5", 704, 176, 149, 17, 10, NOT WS_TABSTOP

GROUPBOX "", 106, 92, 138, 116, 29, WS_GROUP

SCROLLBAR 600, 93, 107, 81, 9, WS_TABSTOP

SCROLLBAR 601, 155, 56, 9, 64, SBS_VERT | WS_TABSTOP

GROUPBOX "&Omit:", 799, 8, 118, 76, 49, WS_GROUP

CHECKBOX "", 800, 14, 128, 30, 10

CHECKBOX "", 801, 50, 128, 30, 10

CHECKBOX "", 802, 14, 140, 30, 10

CHECKBOX "", 803, 50, 140, 30, 10

CHECKBOX "", 804, 14, 152, 30, 10

CHECKBOX "", 805, 50, 152, 30, 10

CTEXT "Chord Chart", 30, 108, 2, 68, 10, NOT WS_GROUP

CONTROL "", 999, "STATIC", SS_SIMPLE | NOT WS_VISIBLE, 92, 12, 116, 108
CONTROL "&Close", 2, "BUTTON", BS_OWNERDRAW | WS_TABSTOP, 222, 135, 56, 14
CONTROL "&Add", 1, "BUTTON", BS_OWNERDRAW | WS_TABSTOP, 222, 153, 56, 14
CONTROL "&Play", 131, "BUTTON", BS_OWNERDRAW | WS_TABSTOP, 222, 11, 56, 14
PUSHBUTTON "&Insert Chord...", 105, 222, 30, 56, 14

EDITTEXT 107, 97, 149, 88, 12

AUTOCHECKBOX "?", 109, 189, 149, 13, 12, BS_PUSHLIKE

CHECKBOX "&Edit Diagram", 108, 222, 55, 56, 14, BS_PUSHLIKE

LISTBOX 110, 221, 73, 58, 11, NOT LBS_NOTIFY | LBS_NOINTEGRALHEIGHT | LBS_MULTICOLUMN | WS_TABSTOP
¥

Resource Builder :

22 DIALOG 76, 29, 284, 174

99

Appendix B

STYLE DS_3DLOOK |DS_SETFONT |DS_MODALFRAME |DS_NOIDLEMSG |DS_CONTEXTHELP |WS_POPUP |[WS_SYSMENU |WS_CAPTION
CAPTION "Chord Builder"
FONT 8, "MS Sans Serif"
LANGUAGE LANG_NEUTRAL, 0
BEGIN
CONTROL "&Fundamental:",24,"STATIC",SS_LEFT |WS_CHILD |WS_VISIBLE ,8,4,60,10
CONTROL "",101,"COMBOBOX",CBS_DROPDOWNLIST |[WS_CHILD |WS_VSCROLL |WS_TABSTOP |WS_VISIBLE ,8,15,76,115
CONTROL "&Chord:",25,"STATIC",SS_LEFT |[WS_CHILD |WS_GROUP |WS_VISIBLE ,8,31,54,10
CONTROL "",102,"COMBOBOX",CBS_DROPDOWNLIST |WS_CHILD |WS_VSCROLL |WS_TABSTOP |WS_VISIBLE ,8,42,76,100
CONTROL "&Fifth:",26,"STATIC",SS_LEFT |WS_CHILD |WS_VISIBLE ,8,62,32,10
CONTROL "5+",301,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,47,61,21,10
CONTROL "5-",302,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,69,61,21,10
CONTROL "&Ninth:",27,"STATIC",SS_LEFT |WS_CHILD |WS_VISIBLE ,8,74,38,10
CONTROL "9+",401,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,47,73,21,10
CONTROL "9-",402,"BUTTON",BS_AUTOCHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,69,73,21,10
CONTROL "&Inversions:",28,"STATIC",SS_LEFT |WS_CHILD |WS_VISIBLE ,8,90,63,10
CONTROL "",103,"COMBOBOX",CBS_DROPDOWNLIST |WS_CHILD |WS_VSCROLL |WS_TABSTOP |WS_VISIBLE ,8,101,76,55
CONTROL "&1",700,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_GROUP |WS_TABSTOP |WS_VISIBLE ,98,149,17,10
CONTROL "&2",701,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_VISIBLE ,116,149,17,10
CONTROL "&3",702,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_VISIBLE ,135,149,17,10
CONTROL "&4",703,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_VISIBLE ,154,149,17,10
CONTROL "&5",704,"BUTTON",BS_AUTORADIOBUTTON |WS_CHILD |WS_VISIBLE ,176,149,17,10
CONTROL "",106,"BUTTON",BS_GROUPBOX |WS_CHILD |WS_GROUP |WS_VISIBLE ,92,138,116,29
CONTROL "",600,"SCROLLBAR",SBS_HORZ |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,93,107,81,9
CONTROL "",601,"SCROLLBAR",SBS_VERT |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,155,56,9,64
CONTROL "&0Omit:",799,"BUTTON",BS_GROUPBOX |WS_CHILD |[WS_GROUP |WS_VISIBLE ,8,118,76,49
CONTROL "",800,"BUTTON",BS_CHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,14,128,30,10
CONTROL "",801,"BUTTON",BS_CHECKBOX |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,50,128,30,10
CONTROL "",802,"BUTTON",BS_CHECKBOX |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,14,140,30,10
CONTROL "",803,"BUTTON",BS_CHECKBOX |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,50,140,30,10
CONTROL "",804,"BUTTON",BS_CHECKBOX |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,14,152,30,10
CONTROL "",805,"BUTTON",BS_CHECKBOX |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,50,152,30,10
CONTROL "Chord Chart",30,"STATIC",SS_CENTER |WS_CHILD |WS_VISIBLE ,108,2,68,10
CONTROL "",999,"STATIC",SS_SIMPLE |WS_CHILD ,92,12,116,108
CONTROL "&Close",2,"BUTTON",BS_OWNERDRAW |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,222,135,56,14
CONTROL "&Add",1,"BUTTON",BS_OWNERDRAW |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,222,153,56,14
CONTROL "&Play",131,"BUTTON",BS_OWNERDRAW |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,222,11,56,14
CONTROL "&Insert Chord...",105,"BUTTON",BS_PUSHBUTTON |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,222,30,56,14
CONTROL "",107,"EDIT",ES_LEFT |WS_CHILD |WS_BORDER |WS_TABSTOP |WS_VISIBLE ,97,149,88,12
CONTROL "?",109,"BUTTON",BS_AUTOCHECKBOX |BS_PUSHLIKE |WS_CHILD |[WS_TABSTOP |WS_VISIBLE ,189,149,13,12
CONTROL "&Edit Diagram",108,"BUTTON",BS_CHECKBOX |BS_PUSHLIKE |WS_CHILD |WS_TABSTOP |WS_VISIBLE ,222,55,56,14
CONTROL "",110,"LISTBOX",LBS_MULTICOLUMN |LBS_NOINTEGRALHEIGHT|WS_CHILD|WS_BORDER|WS_TABSTOP|WS_VISIBLE,221,73,58,11
END

Resource Hacker :

22 DIALOG 76, 29, 284, 174

STYLE DS_MODALFRAME | DS_NOIDLEMSG | DS_CONTEXTHELP | WS_POPUP | WS_CAPTION | WS_SYSMENU
EXSTYLE WS_EX_DLGMODALFRAME | WS_EX_CONTEXTHELP

CAPTION "Chord Builder"

LANGUAGE LANG_NEUTRAL, SUBLANG_NEUTRAL

FONT 8, "MS Sans Serif"

{

CONTROL "&Fundamental:", 24, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE, 8, 4, 60, 10

CONTROL "", 101, COMBOBOX, CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_TABSTOP, 8, 15, 76, 115
CONTROL "&Chord:", 25, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 8, 31, 54, 10

CONTROL ", 102, COMBOBOX, CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_TABSTOP, 8, 42, 76, 100
CONTROL "&Fifth:", 26, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE, 8, 62, 32, 10

CONTROL "5+", 301, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 47, 61, 21, 10

CONTROL "5-", 302, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 69, 61, 21, 10

CONTROL "&Ninth:", 27, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE, 8, 74, 38, 10

CONTROL "9+", 401, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 47, 73, 21, 10

CONTROL "9-", 402, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 69, 73, 21, 10

CONTROL "&Inversions:", 28, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE, 8, 90, 63, 10

CONTROL ", 103, COMBOBOX, CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_TABSTOP, 8, 101, 76, 55
CONTROL "&1", 700, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 98, 149, 17, 10
CONTROL "&2", 701, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 116, 149, 17, 10

CONTROL "&3", 702, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 135, 149, 17, 10

CONTROL "&4", 703, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 154, 149, 17, 10

CONTROL "&5", 704, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 176, 149, 17, 10

CONTROL "", 106, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE | WS_GROUP, 92, 138, 116, 29

CONTROL "", 600, SCROLLBAR, SBS_HORZ | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 93, 107, 81, 9

CONTROL "", 601, SCROLLBAR, SBS_VERT | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 155, 56, 9, 64

CONTROL "&0Omit:", 799, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE | WS_GROUP, 8, 118, 76, 49

CONTROL "", 800, BUTTON, BS_CHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 14, 128, 30, 10

CONTROL "", 801, BUTTON, BS_CHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 50, 128, 30, 10

CONTROL "', 802, BUTTON, BS_CHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 14, 140, 30, 10

CONTROL "', 803, BUTTON, BS_CHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 50, 140, 30, 10

CONTROL "", 804, BUTTON, BS_CHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 14, 152, 30, 10

CONTROL "', 805, BUTTON, BS_CHECKBOX | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 50, 152, 30, 10

CONTROL "Chord Chart", 30, STATIC, SS_CENTER | WS_CHILD | WS_VISIBLE, 108, 2, 68, 10

CONTROL "', 999, STATIC, SS_SIMPLE | WS_CHILD, 92, 12, 116, 108

. CONTROL "&Close", 2, BUTTON, BS_OWNERDRAW | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 222, 135, 56, 14
| CONTROL "&Add", 1, BUTTON, BS_OWNERDRAW | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 222, 153, 56, 14
| CONTROL "&Play", 131, BUTTON, BS_OWNERDRAW | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 222, 11, 56, 14

CONTROL "&Insert Chord...", 105, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 222, 30, 56, 14

CONTROL ", 107, EDIT, ES_LEFT | WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP, 97, 149, 88, 12

CONTROL "?", 109, BUTTON, BS_AUTOCHECKBOX | BS_PUSHLIKE | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 189, 149, 13, 12

CONTROL "&Edit Diagram"”, 108, BUTTON, BS_CHECKBOX | BS_PUSHLIKE | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 222, 55, 56, 14
CONTROL "",110,LISTBOX,LBS_NOINTEGRALHEIGHT|LBS_MULTICOLUMN |WS_CHILD|WS_VISIBLE|WS_BORDER|WS_TABSTOP, 221,73,58,11
by

100

Appendix C

Appendix
C Documentation of UML diagrams modeling a resource file

WINDOW

In a graphical Windows-based application, dialog boxes and controls are windows
(rectangular areas of the screen where the application displays output and receives input from
the user).

Text (String)

If the dialog box has a caption bar (also called title bar), it is the text put in it. Text can also be
displayed with each button or static child window (for all the other control the value is an
empty string). In this case, an ampersand (&) inside the value causes the letter that follows to
be underlined in the interface to indicate the keyboard shortcut for that control (the
mnemonic), and the ampersand is not displayed.”> The input focus can then be moved to any
of these controls by pressing ALT+mnemonic.”

“walue of Text:

I walue of Text
value of Text |

" walue of Text

walue of Text

GeneralStyle ({popup, child, overlapped})
There are three general styles of window: a popup window is a temporary subsidiary window,

a child window can divide a window in various regions and an overlapped window is a
program's main application window. Only the two first will be relevant here (that is the
inherited GeneralStyle will never take the value overlapped).

Border (Boolean)
Specifies the frame around the the window. If true, it has a normal thin-line window border.

Caption (Boolean)

Specifies the frame around the dialog box. If true, it has a caption bar and a normal window
border (implies Border = true). A caption bar allows the user to move the dialog box to
another area of the display (often not provided with modal dialog box for example, because
the user can't do anything in the underlying window anyway). Caption and DialogFrame
cannot both be true (see DialogModalFrame beyond).

ClipChildren (Boolean)
If true, excludes the area occupied by child windows when drawing occurs within the parent
window (style used when creating the parent window).

% Unless otherwise specified by the NoPrefix attribute from the STATIC class.
% For a static control, the focus move to the first control having Tabstop=true after the static control containing
the specified mnemonic.

101

Appendix C

ClipSimblings (Boolean)
If true, clips child windows relative to each other. That is, when a particular child window

receives a paint message’’, all other overlapping child windows are clipped out of the region
of the child window to be updated. If false and child windows overlap, it is possible, when
drawing within the client area of a child window, to draw within the client area of a
neighbouring child window.

Disabled (Boolean)
Specifies the initial state of the window (dialog box or control). If true, it is initially disabled.
To receive mouse and keyboard input, a control must be both visible and enabled (by default).

DialogFrame (Boolean)
Specifies the frame around the dialog box. If true, it has a thicker frame (double border)

typically used with dialog boxes. A window with this style cannot have a title bar.

Group (Boolean)

If true, it’s the first control of a group of controls in which the user can move from one control
to the next with the arrow keys. In a resource file, all controls without this style (Group =
false in the class diagram) after such control belong to the same group. The next control with
this style starts the next group (that is, one group ends where the next begins).

TabStop (Boolean)

If true, the user can move by using the TAB key through the controls. The TAB key moves
the user to the next control having this style. The first control in each group usually has this
attribute set to true so that the user can move from group to group. These key interfaces that
Windows adds to a dialog box are important with radio buttons. After using the TAB key to
move to the currently checked radio button within the group, the arrow keys can be used to
change the input focus from that radio button to another within this group. The system
automatically assigns the style to the newly checked control when the user moves between
controls in the group. This ensures that the input focus will always be on the most recently
selected control when the user moves to the group using the TAB key.

HorizontalScrollBar (Boolean)

If true, a horizontal scroll bar is added at the bottom of the window. Also valid for child
windows: when the multiline edit controls have the automatic scrolling style, it's sometimes
useful to add window scroll bars to the edit control.

MaximizeBox (Boolean)
If true (although unusual), an icon is displayed in the upper left corner that allow the user to
maximize the dialog box (and the maximize option in the system menu is enabled).

Maximized (Boolean)
Specifies the initial state of the dialog box. If true, it is initially maximized. Without specific
initial state, it appears as specified by its coordinate and dimension.

MinimizeBox (Boolean)
If true, an icon is displayed in the upper left corner that allow the user to minimize the dialog
box (and the minimize option in the system menu is enabled).

T The WM_PAINT message.

102

Appendix C

Minimized (Boolean)
Specifies the initial state of the dialog box. If true, it is initially minimized.

SystemMenu (Boolean)
If true, the window has a system menu box in its caption bar (implies Caption = true). You

can then close or minimize the dialog, move it around the display using the keyboard, etc. A
popup window has often just the Close option.

ThickFrame (Boolean)
If true, a thick frame is added so the user can resize the dialog box (and the Size option in the
system menu is enabled).

VerticalScrollBar (Boolean)

If true, a vertical scroll bar is added at the right of the window. Also valid for child windows:
a scroll bar can be added to a multiline edit control with the automatic scrolling style and to a
list box.

Visible (Boolean)
Specifies the initial state of the window. If true, this ensures for example that a control is
visible when the dialog box is displayed.

The remaining attributes adds extended styles to the window.

ClientEdge (Boolean)
If true, the client area of the window has a 3D look — that is, a border with a sunken edge.

DialogModalFrame (Boolean)
If true, the window has a double border that may (optionally) be created with a title bar (if
Caption = true).

StaticEdge (Boolean)
If true, the window has a three-dimensional border style intended to be used for items that do
not accept user input.

WindowEdge (Boolean)
If true, the window has a border with a raised edge.

AcceptFiles (Boolean)
If true, the window accepts drag-and-drop files.

AppWindow (Boolean)
If true, forces a top-level window onto the taskbar when the window is visible.

ControlParent (Boolean)
If true, the dialog manager recurses into children of this window when performing navigation
operations such as handling the TAB key, an arrow key, or a keyboard mnemonic.

ExContextHelp (Boolean)
If true, a question mark is included in the title bar of the window. When the user clicks it, the
cursor changes to a question mark with a pointer. If the user then clicks a child window, the

103

Appendix C

child receives a help message™. The control should pass the message to the dialog box
procedure. The help application displays a pop-up window that typically contains help for the
control. ExContextHelp and MaximizeBox or MinimizeBox cannot be true together.

Layered (Boolean)

If true, it’s a layered window. Using a layered window can significantly improve performance
and visual effects for a window that has a complex shape, animates its shape, or wishes to use
alpha blending effects (that is, to be partially translucent).

LayoutRTL (Boolean)
If true and for Arabic and Hebrew versions of Windows, creates a window whose horizontal
origin is on the right edge (increasing horizontal values advance to the left).

Left (Boolean)
If true, the window has generic left-aligned properties. This is the default.

LeftScrollBar (Boolean)

If true and if the shell language is Hebrew, Arabic, or another language that supports reading
order alignment, the vertical scroll bar (if present) is to the left of the client area. For other
languages, the style is ignored.

LTRReading (Boolean)
If true, the window text is displayed using left-to-right reading-order properties. This is the
default.

MDIChild (Boolean)

If true, it’s a MDI child window. The multiple-document interface (MDI) technique uses a
single primary window, called a parent window, to visually contain a set of related document
or child windows, as shown in the figure below. Each child window is essentially a primary
window, but it is constrained to appear only within the parent window instead of on the
desktop. These applications allow to display multiple documents at the same time, with each
document displayed in its own window.

NoActivate (Boolean)

If true, the top-level window does not become the foreground window and activated when the
user clicks it. The system does not bring this window to the foreground when the user
minimizes or closes the foreground window. The window does not appear on the taskbar by
default. To force the window to appear on the taskbar, AppWindow has to be true.

NolnheritLayout (Boolean)
If true, the window does not pass its window layout to its child windows.

NoParentNotify (Boolean)

If true, a child window does not send a message’ to its parent window when it is created or
destroyed. All child windows, except those that have this attribute to true, send this message
to their parent windows. By default, child windows in a dialog box have this attribute to true.

% The WM_HELP message.
% The WM_PARENTNOTIFY message.

104

Appendix C

Right (Boolean)

If true and if the shell language is Hebrew, Arabic, or another language that supports reading-
order alignment, the window has generic right-aligned properties. Otherwise, the style is
ignored. Using this attribute for static or edit controls has the same effect as using TextStyle =
right or Alignment = right respectively. Using this attribute with button controls has the same
effect as using Horizontal Aligment = right and RightButton = true (for check boxes and radio
buttons).

RightScrollBar (Boolean)
If true, the vertical scroll bar (if present) is to the right of the client area. This is the default.

RTLReading (Boolean)

If true and if the shell language is Hebrew, Arabic, or another language that supports reading-
order alignment, the window text is displayed using right-to-left reading-order properties.
Otherwise, the style is ignored.

ToolWindow (Boolean)

If true, it’s a tool window, i.e. a window intended to be used as a floating toolbar. A tool
window has a title bar that is shorter than a normal title bar, and the window title is drawn
using a smaller font. A tool window does not appear in the task bar or in the window that
appears when the user presses ALT+TAB.

TopMost (Boolean)

If true, the window is placed above all no topmost windows and stay above them even when
the window is deactivated. The dialog is then always displayed in the application. This style
does not prevent the user from accessing other windows on the desktop. It is often used to
signal there is a problem from the system, like lack of resources, no memory.

Transparent (Boolean)
If true, the window is transparent. That is, any windows that are beneath the window are not

obscured by the window.

DIALOG

This class defines a dialog box, which is used to communicate with the user and to supply
services that are too complicated to be in a menu. It's a temporary subsidiary window, and
takes form of a pop-up window containing various child window controls through which the
user interacts.

DigID (either a unique name or a unique 16-bit unsigned integer value in the range 1
t0 65,535)

This unique identifier (often a number) is the reference of the program to identify the dialog

box.

Extended (Boolean)
If true, it's an extended dialog (i.e. with extended window styles).

X (Integer)

105

Appendix C

Specifies the X-coordinate (in horizontal dialog units'®) of the upper left corner of the dialog
box, relative to the client area of its parent when the dialog box is invoked by the program.

Y (Integer)

Specifies the Y-coordinate (in vertical dialog units'®") of the upper left corner of the dialog
box, relative to the client area of its parent when the dialog box is invoked by the program.

Width (Integer)
Specifies the width of the dialog box (in dialog box units).

Height (Integer)
Specifies the height of the dialog box (in dialog box units).

HelpID (Integer)
Specifies a numeric expression that indicates the identifier of the dialog box during help

messages processing. The value is -1 if

3DLook (Boolean)
If true, gives three-dimensional borders to child controls in the dialog box and draws the
entire dialog box using the three-dimensional colour scheme

AbsoluteAlignment (Boolean)
If true, indicates that the coordinates of the dialog box are screen coordinates. If not, the
system assumes they are client coordinates.

Center (Boolean)
If true, centers the dialog box in the working area.

CenterMouse (Boolean)
If true, places the dialog box so that the mouse cursor is centered in the dialog box.

ContextHelp (Boolean)
If true, includes a question mark in the title bar of the dialog box. ContextHelp designates

only a placeholder. When the dialog box is created, the system checks for this style and, if it is
there, adds the extended style (see ExContextHelp in the WINDOW class) to the dialog box.

DialoglsControl (Boolean)
If true, the dialog appears like a control (not child), with no frame.

FixedSys (Boolean)

By default, the system draws all text in a dialog box using the SYSTEM_F ONT'? font. If true,
causes the dialog box to use the SYSTEM_FIXED_FONT'® instead of the default
SYSTEM_FONT.

1% One horizontal dialog unit is equal to 1/4 of the average character width.

1" One vertical dialog unit is equal to 1/8 of the character height.

192 This is a proportional font based on the Windows character set, and is used by the operating system to display
window titles, menu names, and text in dialog boxes. The System font is always available. Other fonts are
available only if they have been installed.

'3 This is a monospace font compatible with the System font in 16-bit versions of Windows.

106

Appendix C

LocalEdit (Boolean)
If true, directs edit controls in the dialog box to allocate memory from the application's data
segment. Otherwise, edit controls allocate storage from a global memory object.'™

ModalFrame (Boolean)

Dialog boxes are either modal or modeless. If true, it's a modal dialog box (with a thick
border). It demands the user's attention before anything else can be done: when displayed, the
user cannot switch between the dialog box and the window that created it (the user must
explicitly end the dialog box, for instance by clicking the Cancel button). The user can
however switch to another program while displayed. If false, it's a modeless dialog box,
allowing the user to still work on the parent window. It is similar to normal window, usually
with a caption bar and a system menu, and is preferred when the user would find convenient
to keep the dialog box displayed for a while.

NoFailCreate (Boolean)
If true, creates the dialog box even if errors occur (for example, if a child window cannot be
created or if the system cannot create a special data segment for an edit control).

NoldleMessage (Boolean)

If true, suppresses messages'” that the system would otherwise send to the owner of a modal
dialog box that is entering an idle state. A modal dialog box enters an idle state when no
messages are waiting in its queue after it has processed one or more previous messages.

SetForeGround (Boolean)

If true, brings the dialog box to the foreground.m(’ This style is useful for modal dialog boxes
that require immediate attention from the user regardless of whether the owner window is the
foreground window.

Language (String)
A language identifier specifying the language of the dialog box.

Sublanguage (String)
A sublanguage identifier.

SetFont (Boolean)

If true, indicates that FontName (see beyond) contains the font to use for text in the client area
and controls of the dialog box. If possible, the system selects a font according to the specified
font data.

FontName (String)

Specifies the name of the typeface for the font that the system uses to draw text in the dialog
box (this attribute enables then to set something other than the system font for use with dialog
box text).

1% Applies to 16-bit applications only.

19 The WM_ENTERIDLE messages.

1% Causes the system to use the SetForegroundWindow function. This function puts the thread that created the
window into the foreground and activates the window. Keyboard input is directed to the window, and various
visual cues are changed for the user. The system assigns a slightly higher priority to the thread that created the
foreground window than it does to other threads.

107

Appendix C

FontSize (Integer)

Specifies the size (in points) of the font used for the text in the dialog box and its controls. A
point is .013837 of an inch (roughly 1/72 inch) or 2.54 of a centimetre. The value is generally
determined by measuring the distance from the bottom of a lowercase g to the top of an
adjacent uppercase M, as shown in the illustration.

Italic (-1, false, true) L

If true, the font is italic. The value is -1 if there is no information about this property (default
value).

Weight (Integer)

Specifies the weight of the font in the range 0 through 1000. For example, 400 is normal and
700 1s bold. If the value is zero, a default weight is used. The value -1 is the default value
(nothing specified).

ShellFont (Boolean)

If true, indicates that the dialog box should use the system font. FontName must be set to MS
Shell Dlg. Otherwise, this style has no effect. The system selects a font using the font data
specified in the Fontsize, Weight, and Italic attributes.

CONTROL

This class defines controls. Every control is a child window that an application uses in
conjunction with another window to perform simple input and output (I/O) tasks (type text,
choose options, and direct a dialog box to complete its action). Common controls in a dialog
box are push buttons, check boxes, radio buttons, edit boxes, list boxes, combo boxes, text
stings and scroll bars. Such controls are predefined in Windows. When an overlapped window
(program's main application window) is moved, a popup window stay up. This is not true for
child windows, witch follow their parent around the display (and are never displayed outside
the client area of their parent).

CtrlID (either a unique name or a unique 16-bit unsigned integer value in the range 1
t0 65,535)

Is the value that the child uses to identify itself when sending messages to its parent (when

you click a button with the mouse for instance, the child window control sends a messagelm,

with notification code CLICKED, to its parent window). The value is set to -1 when the

control does not send messages back to its parent (like text and icon control witch do not

accept mouse or keyboard input).

X (Integer)

Specifies the X-coordinate (in dialog box units) of the upper left corner of the child window
relative to the upper left corner of the parent window’s client area.

Y (Integer)

Specifies the Y-coordinate (in dialog box units) of the upper left corner of the child window
relative to the upper left corner of the parent window’s client area.

"7 The WM_COMMAND message.

108

A

|
'Y
|
Width (Integer) « — — —
Specifies the width of the child window (in dialog box units). X child window "’Heigh ¢
\4
Height (Integer) «--—--- >
Specifies the height of the child window (in dialog box units). Width
HelpID (Integer)

Specifies a numeric expression that indicating the identifier of the control during help
messages processing.

Position (Integer)

Is a positive number that defines the order the controls are specified in the resource script file.
This value is used in conjunction with the Group and TabStop attributes from the WINDOW
class.

The child classes correspond to predefined window classes in Windows used to create child
window controls. Additional window styles are used to define more precisely the appearance
or functionality of these controls.

BUTTON

This class defines a button child window. A button control typically provides input to an
application by notifying the parent window when the user clicks on the control with a mouse.
It can be used either alone or in groups, and can appear either with or without a label (the text
is specified in the window class).

VerticalAlignment ({top, center, bottom, none})
Places text at the top, centers text vertically or places text at the bottom in the button
rectangle.

HorizontalAlignment ({left, center, right, none})
Left aligns the text, centers text horizontally or right aligns the text in the button rectangle (or
in the remainder rectangle after removing the check box or radio button).

Flat (Boolean)
If true, the button is two-dimensional. It does not use the default shading to create a 3-D
image.

Multiline (Boolean)
If true, wraps the button text to multiple lines if the text string is too long to fit on a single line
in the button rectangle.

Notify (Boolean)
If true, enables a button to send notification messages'® to its parent window which tells that
the button has been double clicked, lost the keyboard focus or gained the keyboard focus. A

1% Notification messages are submessage codes that the child use to tell the parent in more detail what the
message means (like the control has been clicked, double clicked etc.). Here, the control can use the
BN_DBLCLK, BN_KILLFOCUS and BN_SETFOCUS codes.

109

Appendix C

button sends always a notification message'” which tells the parent that the button has been
clicked, regardless of whether it has this style.

The next six classes define various types of button.

PUSHBUTTON

A push button is a rectangle with rounded corners enclosing text that the user can click with a
mouse. The rounded rectangle takes up the full height and width of the dimensions given. The
text is centered within the rectangle. This control is used to trigger an immediate action.'"

Default (Boolean)

If true, it is the default push button and has a heavier outline. Pressing the Enter key has the
same effect that clicking on it with the mouse. That enables the user to quickly select the most
likely option (the default option).

Content ({text, bitmap, icon})
The push button can displays text, which for normal window is the text that appears in the
caption bar (this is the default). It can be also labelled with an icon or a bitmap instead of text.

PUSHBOX

A push box is identical to a push button, except that it does not display a button face or frame.
Only the text appears.

GROUPBOX

A group box is an oddity in the button types because it can not be selected
. Frame
and neither process input nor sends a message to its parent. This button is
just a rectangular outline with its window text at the upper-left corner. It is
used to enclose other controls.

CHECKBOX

A check box is a square box usually aligned with the left edge and centered within the top and
bottom dimensions of the child window’s rectangle, with text that appears to the right.'"’
Clicking the box once causes an X appear, clicking again toggle the X off. There are
incorporated in an application to allow a user to select options.

™ Cresckbom
Auto (Boolean)

If true, the check state automatically toggles between checked and cleared each
time the user selects the check box.'"*

19 A message withe the BN_CLICKED notification.

"% The button posts a WM_COMMAND message to the owner window when the user selects the button.

" Unless LeftText=true.

" That is the control itself toggles the check mark on and off, and WM_COMMAND messages are ignored by its
parent. Otherwise, the program must control the checking and un-checking of the box (after receiving
WM_COMMAND, the parent window send BM__SETCHECK message to the child control) .

110

Appendix C

3state (Boolean)

If true, the box can display a third state: it can be dimmed as well as checked. A grey colour
within the check box indicates to the user that the box cannot be checked - i.e., that it is has
been disabled.

RightButton (Boolean)
If true, positions the check box's square on the right side of the button rectangle (the text
appears to the left).

PushLike (Boolean)
If true, makes a check box look and act like a push button. The button looks raised when it
isn't pushed or checked, and sunken when it is pushed or checked.

RADIOBUTTON

A radio button looks like a check box except that it uses a circle rather than a box. A dot
within the circle indicates that it has been checked. Text is usually displayed to its right.'”?
Only one check may be made if there are multiple buttons: groups of radio buttons are
conventionally used to indicate mutually exclusive options. Unlike check boxes, they do not
work as toggle (that is, when you click it a second time, its state remains unchanged).

_Auto (Boolean) W EERE
If true, when the user selects it, the system automatically sets the button's check state to
checked and automatically sets the check state for all other buttons in the same group to
cleared.

RightButton (Boolean)
If true, positions the radio button's circle on the right side of the button rectangle (the text
appears to the left).

PushLike (Boolean)
Makes a radio button look and act like a push button. The button looks raised when it isn't
pushed or checked, and sunken when it is pushed or checked.

CUSTOMBUTTON

It’s an owner-drawn button, that is, a button that the program is responsible for drawing.114

LISTBOX

This class defines child window controls called list boxes. A list box contains a collection of
items'" displayed as a scrollable columnar list within a rectangle from which a user can chose
(such filenames in the current directory when the user select Open from the File menu). The
user can view and select an item by highlighting it with a left mouse click.''® If the list box is
not large enough to display all the list box items at once, the list box can also provide a scroll

'3 Unless RightButton=true.

4 The owner window receives the WM_DRAWITEM message.

"5 Ttems can be represented by text strings, bitmaps, or both.

1% Selecting a list box item changes its visual appearance, usually by changing the text and background colors.

111

Appendix C

bar (if VerticalScrollBar from the WINDOW class is set to true''’). By default, the list box

displays only the list of items without any border around it. A border can be added with
Border set to true (from the WINDOW class).

Itern O
Sorted (Boolean) Iiﬂ 12
If true, strings in the list box are sorted alphabetically. lien 3

MultipleSelection (Boolean)
If true, turns string selection on or off each time the user clicks a string in the list box. Any
number of strings can be selected at a time. A list box is by default simple selection.

DisableNoScroll (Boolean)

If true, the list box shows a disabled scroll bar when the list box does not contain enough
items to scroll. Otherwise, the scroll bar is hidden when the list box does not contain enough
. 118

items.

ExtendedSelection (Boolean)
If true, the user can select multiple items using the SHIFT key and the mouse or special key
combinations.

Multicolumn (Boolean)

If true, it’s a multi column list box that is scrolled horizontally. A multi column list box places
items into as many columns as are needed to make vertical scrolling unnecessary (a vertical
scroll bar is never displayed). The user can use the keyboard to navigate to columns that are
not currently visible. To have a horizontal scroll bar displayed that allows the user to scroll to
columns that are not currently shown in the visible region of the list box requires the addition
of HorizontalScrollBar = true from the WINDOW class.

NoSelection (Boolean)
If true, the list box contains items that can be viewed but not selected.

Notify (Boolean)

If true, the list box notifies its parent whenever the user clicks a string (list boxes detect also
double-clicks'"?). List boxes almost always notify their parent window about action done by
the user.

OwnerDrawFixed (Boolean)

If true, the owner of the list box is responsible for drawing, sorting, and storing its contents
and the items in the list box are all the same height. The owner window receives a messagelzo
when a visual aspect of the list box has changed.

OwnerDrawVariable (Boolean)

If true, the owner of the list box is responsible for drawing, sorting, and storing its contents
and the items in the list box are variable in height. The owner window receives a message
when a visual aspect of the list box has changed.

"7 Note that a horizontal scrollbar can only be displayed with a multi column list box.

18 And the vertical scrollbar is added when there are more items than will fit in the visible area of the listbox.
1o They can sent LBN_DBLCLK notification code.

120 The WM_DRAWITEM message.

112

Appendix C

HasStrings (Boolean)
If true, the list box contains items consisting of strings. The list box maintains the memory

and pointers for the strings so the application can use a message'”' to retrieve the text for a
particular item. By default, all list boxes except owner-drawn list boxes have this style.

NolntegralHeight (Boolean)

If true, the size of the list box is exactly the size specified by the application when it created
the list box. By default, Windows sizes a list box so that the list box does not display partial
items.

UseTabstops (Boolean)
If true, causes the list box to recognize and expand tab characters when drawing its strings.

WantKeyBoardInput (Boolean)

If true, the owner of the list box receives messages'** whenever the user presses a key and the
list box has the input focus. This enables an application to perform special processing on the
keyboard input.

NoData (Boolean)

If true, it’s a no-data list box. Useful when the count of items in the list box will exceed one
thousand. A no-data list box resembles an owner-drawn list box except that it contains no
string or bitmap data for an item.

NoRedraw (Boolean)
If true, the list box's appearance is not updated when changes are made.

EDIT

This class defines an edit child window. It's a rectangle containing editable text based on
dimension of the child window. An edit box typically allows the user to enter
and edit text by typing on the keyboard. |

Alignment ({left,right,center})
Specifies if the text in a single-line or multiline edit control is left-justified, right-justified or

centered in the rectangle.

Multiline (Boolean)
If true, it's a multiline edit control. By default, the control has a single-line entry field.

AutoHorizontalScroll (Boolean)

If true, the control automatically scrolls text to the right when the user types a character at the
end of the line. When the user presses the ENTER key, the control scrolls all text back to
position zero. Otherwise, only text that fits within the visible area is allowed for single-line
edit controls. For multiline edit controls, if false, the text is wrapped to the beginning of the
next line when necessary.'” If an edit control has HorizontalScrollBar set to true, this
property is applied automatically.

2! The LB_GETTEXT message.
122 wM_VKEYTOITEM messages.
' If true, the user must press the ENTER key to start a new line.

113

Appendix C

AutoVerticalScroll (Boolean)

If true, the edit control automatically scrolls text up when there is more text than can be
displayed within the control. This style is applicable to multiline edit controls only. With this
style off, the edit control ignores input that cannot be displayed. If an edit control has
VerticalScrollBar set to true, this property is applied automatically.

PasswordField (Boolean)
If true, displays all characters as an asterisk (*) as they are typed into the edit control (valid
only for single-line edit controls).

LowerCase (Boolean)

If true, converts all characters to lowercase as they are typed into the edit control.'**

UpperCase (Boolean)
If true, converts all characters to uppercase as they are typed into the edit control.

NoHideSelection (Boolean)

Normally, an edit control hides the selection when the control loses the input focus and
inverts the selection when the control receives the input focus. If true, delete this default
action (the selected text is inverted, even if the control does not have the focus).

ReadOnly (Boolean)
If true, prevents the user from entering or editing text in the edit control.

Number (Boolean)
If true, allows only digits to be entered into the edit control.

WantReturn (Boolean)

When the multiline edit control is in a dialog box, pressing the ENTER key has the same
effect as pressing the default push button. If true, a carriage return is inserted when the user
presses the ENTER key while entering text into a multiple-line edit control.'”

OEMConvert (Boolean)

If true, text entered in the edit control is converted from the Windows character set to the
OEM character set and then back to the Windows character set. This ensures proper character
conversion when the application calls the function to convert a Windows string in the edit
control to OEM characters.'*

RICHEDIT

This class defines a rich edit control. It’s a window in which the user can enter, edit, format,
print, and save text. The text can be assigned character and paragraph formatting, and can
include embedded Component Object Model (COM) objects. Rich edit controls support
almost all of the messages and notification messages used with multiline edit controls. Thus,
applications that already use edit controls can be easily changed to use rich edit controls.

124 For combo box (see further), text in both the selection field and the list is converted.

123 This style has no effect on a single-line edit control.

12 This style is most useful for edit controls that contain filenames that will be used on file systems that do not
support Unicode.

114

Appendix C

Additional messages and notifications enable applications to access the functionality unique
to rich edit controls.

The following attributes are unique to rich edit controls.'*’

DisableNoScroll (Boolean)
If true, the scroll bar is disabled instead of hide when it is not needed.

NoCallOlelnitialize (Boolean)
If true, prevents the control from calling the Olelnitialize function when created (this function
initializes global data for the session and prepares the OLE libraries to accept calls).

NoIME (Boolean)
If true, disables the Input Method Editor (IME) operation (available for Asian language
support only).

SelfIME (Boolean)
If true, directs the rich edit control to allow the application to handle all IME operations
(available for Asian language support only).

Sunken (Boolean)
If true, displays the control with a sunken border style so that the rich edit control appears
recessed into its parent window.

Vertical (Boolean)
If true, draws text and objects in a vertical direction (available for Asian-language support
only).

[6{0)171:10):10).¢

A combo box is a combination of an edit box and a list box. It can use the
AutoHorizontalScroll, LowerCase, OEMConvert and UpperCase | | -
attributes from the EDIT class, and the Sort, DisableNoScroll, HasStrings,

NolntegralHeight, OwnerDrawFixed and OwnerDrawVariable attributes from the LISTBOX
class. For example, if HorizontalScroll is true, and if the combo box's edit control is
completely filled with text and the user enters more text at the end of the edit control line, the
existing text is automatically scrolled. Else, if the edit control is completely filled with text, no
more text is allowed to be entered into the edit control.

Type ({simple,dropDown,dropDownlList})

There are three types of combo boxes. For a simple combo box, the list box is displayed at all
times. The current selection in the list box is displayed in the edit control. A drop-down
combo box is similar to simple one, except that the list box is not displayed unless the user
selects an icon next to the edit control. A drop-down list box is similar to drop-down one,
except that the edit control is replaced by a static-text item that displays the current selection
in the list box (edit control is set to read-only).

127" A tich edit control inherits from EDIT class, but can not have the LowerCase, OEMConvert and UpperCase
attributes set to true (it does not support these styles).

115

Appendix C

Extended (Boolean)

Additionally, some combo box controls that display icons with |—1-ﬂl
items'*® (extended combo box controls) can use the next j:,

attributes. Note that for these controls, the EDIT- and il;
LISTBOX-specific attributes are not supported. = Bum L

CaseSensitive (Boolean)
If true, searches in the list will be case sensitive. This includes searches as a result of text
being typed in the edit box.

NoEditImage (Boolean)
If true, the edit box and the dropdown list will not display item images.

NoSizeLimit (Boolean)
If true, allows the control to be vertically sized smaller than its contained combo box control.
If it is sized smaller than the combo box, the combo box will be clipped.

PathwordBreakProc (Boolean)

If true, the edit box will use the slash (/), backslash (\), and period (.) characters as word
delimiters. This makes keyboard shortcuts for word-by-word cursor movement effective in
path names and URLs.

STATIC

This class defines a static child window. They are used to put information in the dialog and
often act as labels for other controls (the text is given in the window class), but can used to
draw frames or lines separating other controls, or to display icons. They do not expect user
input and do not send back messages to their parent.

This iz a Static control

Type ({text,frame,image,enhencedMetafile,ownerdraw })
The control can display text, a frame, an image or an enhanced metafile'*’. The owner of the
static control can also be responsible for drawing the control.

Sunken (Boolean)
If true, a half-sunken border is drawn around a static control.

Notify (Boolean)
If true, allow the parent window to receive notification messages'"° when the user clicks the
control.

8T make item images easily accessible, an other type of combo box controls in Windows provide image list
support (see the LISTVIEW class for image lists). These controls provide the functionality of a standart combo
box without having to manually draw item graphics (they create a child combo box and perform owner draw
tasks based on the assigned image list). If an image list is not assign to the control, it displays item text only.

12 A metafile is a collection of structures that store a picture in a device-independent format. Device
independence is the one feature that sets metafiles apart from bitmaps (drawback : they are generally drawn more
slowly than bitmaps, so if an application requires fast drawing and device independence is not an issue, it should
use bitmaps instead of metafiles). The given text of the control is the name of a metafile. An enhanced metafile
static control has a fixed size. The metafile is scaled to fit the static control's client area.

130 Messages with STN_CLICKED, STN_DBLCLK, STN_DISABLE, and STN_ENABLE notifications.

116

Appendix C

Several attributes exist to define more precisely its layout. The first defines the basic text
styles for static controls.

TextStyle ({left,right,center,simple,leftNoWordWrap,undefined})

As in edit child window, the three first values specify if the text is left-justified, right-justified
or centered in the rectangle. Words that extend past the end of a line are automatically
wrapped to the beginning of the next line. Words that are longer than the width of the control
are truncated. simple designates a simple rectangle and displays a single line of left-justified
text in the rectangle. The line of text cannot be shortened or altered in any way."'
leftNoWordWrap designates a simple rectangle and displays the given text left-justified in the
rectangle. Tabs are expanded, but words are not wrapped. Text that extends past the end of a
line is clipped.

The next attributes can modify a static control that has any of the previous text styles.

NoPrefix (Boolean)

Normaly, Windows will interpret an ampersand (&) character in the control's text to be a
prefix character for the keyboard access key: the ampersand is removed and the next character
in the string is underlined.'*? This feature is not always wanted. If true, the static control
displays an ampersand as an ordinary character.

EndEllipsis (Boolean)
If true, replaces part of the given string (characters at the end of the string) with ellipses, if
necessary, so that the result fits in the specified rectangle.

PathEllipsis (Boolean)

If true, replaces part of the given string (characters in the middle of the string) with ellipses, if
necessary, so that the result fits in the specified rectangle. If the string contains backslash (\)
characters, preserves as much of the text after the last backslash as possible.

WordEllipsis (Boolean)
Truncates any word that does not fit in the rectangle and adds ellipses.

Static controls can be used to draw frames.

Frame ({black,gray,white,undefined})

Defines a box that is not filled, and does not display text. The three first values do not
necessary mean that the color are black, gray and white. It is based on a system color.

black : drawn with the color used to draw window frames, the default is black.

gray : drawn with the color used to fill the screen background (desktop), the default is gray.
white : filled with the color used to fill the window background, the default is white.

Rectangle ({black,gray,white,undefined})

Like Frame, except that the rectangular outline is filled (with the color used to draw window
frames, with the color used to fill the desktop or with the color used to fill the window
background).

Etched ({frame,horizontal,vertical,undefined})

31 The control's parent window must not process the WM_CTLCOLOR message.
132 And the control displays two ampersands (&&) as a single ampersand.

117

Appendix C

The frame, the top and bottom edges or the left and right edges of the static control are drawn
using the EDGE_ETCHED'™ edge style.

Static controls can also be used to display images.

Icon (Boolean)

If true, an icon is displayed in the dialog box. The given text is the name of the icon (not a
filename). The control is automatically sized to fit the icon when it is displayed (the width and
height values specified are ignored).

Bitmap (Boolean)

If true, a bitmap is displayed in the dialog box. The given text is the name of the bitmap (not a
filename). The control automatically sizes itself to accommodate the bitmap (the width and
height values specified are ignored).

Centerlmage (Boolean)
If true and if the bitmap or icon is smaller than the client area of the static control, the rest of

the client area is filled with the color of the pixel in the top left corner of the bitmap or icon."*

RealSizelmage(Boolean)
If true, prevents a static icon or bitmap control from being resized as it is loaded or drawn. If
the icon or bitmap is larger than the destination area, the image is clipped.

RightJustify (Boolean)
If true, the lower right corner of a bitmap or icon static control is to remain fixed when the

control is resized. Only the top and left sides are adjusted to accommodate a new bitmap or
icon.

SCROLLBAR

This class defines a scroll bar child window. A window can display a content (such as a
document or a bitmap) that is larger than the window's client area. When provided with a
scroll bar, the user can scroll a content in the client area to expand the viewing space. This is

not a scrollbar added at the right and/or the bottom of a window, but it’s a child window
135

control that can appear anywhere in the parent window. | | I
A4 *
Type ({horizontal, vertical, sizeBox, sizeGrip})

There are two types of scroll bars: horizontal (by default) and vertical. If it is not aligned with
one of its edges, the scroll bar has the height, width, and position specified by the window’s
attributes. The control can also designate a size box. If it is not aligned with one of its corners,
the size box has the height, width, and position given in the window’s attributes. A size grip is
like a size box, but with a raised edge.

Alignment ({left, right, top, bottom, bottomRight, topLeft, none})

133 Combination of two outer-border flags : BDR_RAISEDOUTER (raised outer edge) and BDR_SUNKENOUTER
(sunken outer edge).

3 If the static control contains a single line of text rather than image, the text is centered vertically in the client
area of the control.

135 Unlike a button, edit and list box control, it do not send WM_COMMAND messages to the parent window, but
WM_HSCROLL and WM_VSCROLL messages.

118

Appendix C

left and right are used with a vertical scroll bar. The left (right) edge of the scroll bar is
aligned with the left (right) edge of the rectangle specified when created. The scroll bar has
the default width for system scroll bars. fop and bottom are used with a horizontal scroll bar.
The top (bottom) edge of the scroll bar is aligned with the top (bottom) edge of the rectangle
specified when created. The scroll bar has the default height for system scroll bars.
bottomRight and topLeft are used with size box. The lower-right (upper-left) corner of the size
box is aligned with the lower-right (upper-left) corner of the rectangle specified when created.
The size box has the default size for system size boxes.

TAB

A tab control is analogous to the dividers in a notebook. By using a tab control, an application
can define multiple pages for the same area of a dialog box. Each page consists of a certain
type of information or a group of controls that the application displays when the user selects
the corresponding tab. A tab control can have specific
characteristics, like the alignment and general appearance of the
control’s tabs.

Tabl | Tab2 | Tab3 |

Type ({tabs, buttons})
Tabs can appear either as tabs (this is the default) or as buttons. Tabs in the second type of tab
control should serve the same function as button controls (that is, clicking a tab should carry
out a command instead of displaying a page). Because the display area in a button tab control
is typically not used, no border is drawn around it.

Bottom (Boolean)
If true, tabs appear at the bottom of the control.

FixedWidth (Boolean)
By default, tab control automatically sizes each tab to fit its icon, if any, and its label. If true,
all tabs are the same width.

FlatButtons (Boolean)
If true, selected tabs appear as being indented into the background while other tabs appear as
being on the same plane as the background. This style is used only with button tab controls.

FocusNever (Boolean)
If true, specifies that the tab control does not receive the input focus when clicked.

FocusOnButtonDown (Boolean)
If true, the tab control receives the input focus when clicked. This attribute is typically used
only with button tab controls.

ForceLeft ({none, icon, label})

none centers the icon and label within each tab of the control, placing the icon to the left of
the label. The icon can be aligned with the left edge of each fixed-width tab, leaving the label
centered, when the attribute takes the value icon. Both the icon and label can be left-aligned
within each fixed-width tab by the value label. The two last values are used only when
FixedWidth = true.

HotTrack (Boolean)

119

Appendix C

If true, causes the control to exhibit hot tracking'*® behaviour (that is, an item is automatically
highlighted as the mouse pointer moves over it).

Multiline (Boolean)

By default, a tab control displays only one row of tabs and the user can scroll to see more
tabs, if necessary. If true, multiple rows of tabs are displayed, if necessary, so all tabs are
visible at once. The tabs are left-aligned within each row (unless RightJustify = true).

Multiselection (Boolean)
If true, multiple tabs can be selected by holding down when clicking. This style is used only
with button tab controls.

OwnerDrawFixed (Boolean)
If true, the parent window is responsible for drawing tabs in the control.

RaggedRight (Boolean)
If true, rows of tabs will not be stretched to fill the entire width of the control. This style is the

default.

Right (Boolean)
If true, tabs appear vertically on the right side of the control. This style is used only when
Vertical = true.

RightlJustify (Boolean)
If true, the width of each tab is increased, if necessary, so that each row of tabs fills the entire

width of the tab control. This style is used only with multiline tab controls.

ScrollOpposite (Boolean)
If true, unneeded tabs scroll to the opposite side of the control when a tab is selected.

ToolTips (Boolean)
If true, the tab control has a tool tip control'?’ associated with it to provide a brief description
of each tab.

Vertical (Boolean)
If true, tabs appear at the left side of the control, with tab text displayed vertically. This style
is valid only when Multiline = true.

UPDOWN

An up-down control is a pair of arrow buttons that the user can click to increment or
decrement an associated value (called its current position), such as a scroll position or a
number displayed with a companion control (called a buddy window). To the user, an up-
down control and its buddy window often look like a single control. It can be specified that an
up-down control automatically position itself next to its buddy window. For example, you can

136 An item becomes hot when the mouse passes over it. If hot tracking is enabled, the appearance of hot items
changes.

137 A tool tip is short, descriptive phrases that appear when the user holds the mouse pointer briefly over a
control or another part of the user interface.

120

Appendix C

use an up-down control with an edit control as its buddy window to prompt the user for
. 138
numeric mput :
P |32 3;

An up-down control without a buddy window functions as a sort of simplified scroll bar. For
example, a tab control sometimes displays an up-down control to enable the user to scroll
additional tabs into view :

Geheral I Debug | C/C++ I Lirik: | Hesourc&

Alignment ({left, right,none})

Positions the up-down control next to the left (right) edge of its buddy window, the buddy
window is then moved to the right (left) and its width is decreased to accommodate the width
of the up-down control. The control can also be unattached (none).

ArrowKeys (Boolean)

If true, provides a keyboard interface by causing the up-down control to increment and
decrement the position when the buddy window has the focus and the UP ARROW and
DOWN ARROW keys are pressed.

AutoBuddy (Boolean)
If true, automatically selects the previous window in the z-order as the up-down control's
buddy window.

Horizontal (Boolean)
If true, causes the up-down control's arrows to point left and right (instead of up and down)
for horizontal scrolling.

HotTrack (Boolean)
If true, the arrows on the control are highlighted as the pointer passes over them.

NoThousands (Boolean)
If true, a thousands separator is not inserted between every three decimal digits.

SetBuddylnt (Boolean)
If true, causes the up-down control to set the text of the buddy window whenever the current
position changes.'”

Wrap (Boolean)

By default, the current position does not change if the user attempts to increment it or
decrement it beyond the maximum or minimum value. If true, causes the position to "wrap" to
the opposite extreme if it is incremented or decremented beyond the ending or beginning of
the range.

TRACKBAR

A track bar is a window that contains a slider (also called a thumb) and optional small
indicators (called tick marks). Track bars are useful when you want the user to select a
discrete value or a set of consecutive values in a range.

138 A combination that is sometimes referred to as a spinner control.
139 1f the buddy window is a list box, an up-down control sets its current selection instead of its caption.

121

Appendix C

AutoTicks (Boolean)

A track bar displays tick marks at its beginning and end (unless the NoTicks attribute take the
true value). If true, the control displays additional tick marks at regular intervals along the
track bar. By default, it displays a tick mark for each increment in its range of values, but a
different interval can be specified.

DowlsLeft (Boolean)
By default, the track bar control uses down equal to right and up equal to left. If true, reverses
the default, making down equal left and up equal right.

EnableSelectionRange (Boolean)

If true, allows the user to select a range on the track bar (by holding the SHIFT key when
dragging). This selection restricts the user to a specified portion of the total range. The logical
units do not change, but only a subset of them is available for use. The tick marks at the
starting and ending positions of a selection range are displayed as triangles (instead of vertical
dashes), and the selection range is highlighted.140

FixedLenght (Boolean)
If true, allows the size of the slider to be changed.

NoThumb (Boolean)
If true, the track bar control does not display a slider.

NoTicks (Boolean)
If true, the control does not display any tick marks.

Orientation ({horizontal, vertical})
The track bar control can be oriented horizontally (this is the default orientation) or vertically.

Reversed (Boolean)
Normally, it is assumed that zero (0) percent is at the top of a vertical slider and at the left of a
horizontal slider. This causes a problem when the slider's maximum (100 percent) is at the top
or left side. If true, switches the values for the minimum and maximum slider positions. It has
no effect on the control, but is simply a label that can be checked to determine whether a track
bar is normal or reversed.

TickMarks ({bottom, top, left, right, both })

The slider is configured with a set of values from a minimum to a maximum. Therefore, the
user can specify a value included in that range. Equipped with tick marks, the slider can be
used to control exact values that the user can select in the range. bottom and top cause tick
marks to be displayed below or above a horizontal track bar control. left and right cause tick
marks to be displayed to the left or to the right of a vertical track bar control. both causes tick
marks to be displayed on both sides of the control.'*' There are examples of track bar controls
using the bottom and the both values respectively : J

10 This can be useful for example to select a certain portion of a sound or video file to use.
4! With this values, the thumb of the slider appears as a rectangular box (with the others, one of its borders
appears as an arrow).

122

Appendix C

ToolTips (Boolean)
If true, the control has a default tool tip control that displays the slider's current position.

PROGRESSBAR

A progress bar control is a window that an application can use to indicate the progress of a
lengthy operation. It consists of a rectangle that is gradually filled with the system highlight
color as an operation progresses.

Type ({normal, marquee, smooth})

marquee causes the progress bar to move like a marquee (usually used as an indefinite
progress bar). smooth causes the control to display a contiguous progress bar instead of the
default segmented bar (normal). This illustrates the result of the values :

i | | | (—]

Vertical (Boolean)
If true, the progress bar displays progress information vertically, from bottom to top.

TREEVIEW

A tree view control is a window that displays a hierarchical list of items, such as the headings
in a document, the entries in an index, or the files and directories on a disk. Each item consists
of a label and an optional bitmapped image, and each item can have a list of subitems
associated with it. By double-clicking an item'** (or by clicking its button if available), the
user can expand or collapse the associated list of subitems (that is, the

child items are displayed below the parent item or the child items are not | ® Hode
displayed).143 The starting item of the tree is called the root and represents : zzg:

the beginning of the tree (it is not unusual to have a tree list that has many ® Node
roots). Each item (including the root) that belongs to the tree is referred to @ Node

as a node.

CheckBoxes (Boolean)
If true, check boxes appear next to each item in the tree view control.

DisableDragDrop (Boolean)

If true, prevents the tree view control from sending a notification message'** to the parent
window when the user starts to drag an item with the left mouse button (so, prevents the
control to support drag-and-drop operations).

EditLabels (Boolean)

142 By single-clicks an item label, the tree-view control selects and sets the focus to the item. Then the user can
press the direction keys to navigate in the hierarchy (left and right to collapse and expand, up and down to move
the focus vertically in the tree), move the mouse before releasing the mouse button to optionally drag-and-drop
the item or even click again the label of the focused item to optionally edit it (a timer can make it possible for the
tree view to avoid entering edit mode immediately if the user double-clicks the label).

3 An item toggles between the expanded and collapsed state when the control sends the TVM_EXPAND
message.

'“* With the TVN_BEGINDRAG notification.

123

Appendix C

If true, makes it possible for the user to edit the labels of tree view items.

FullRowSelect (Boolean)
If true, enables full-row selection in the tree view. The entire row of the selected item is
highlighted, and clicking anywhere on an item's row causes it to be selected.

HasButtons (Boolean)

With a tree view control, the user can expand or collapse a parent item's list of child items by
double-clicking the parent item. If true, adds plus (+) and minus (-) buttons to the left side of
parent items showing the user whether the item is expanded or collapsed. The user can click
the button once instead of double-clicking the parent item to expand or collapse a parent
item's list of child items.'®

HasLines (Boolean)

If true, enhances the graphic representation of a tree view control's hierarchy by drawing lines
that link child items to their corresponding parent item (that is, displays lines connecting items
within a branch).'*

InfoTips (Boolean)
If true, the control sends a notification'*” when it is requesting additional text information to
be displayed in a tool tip.

LinesAtRoot (Boolean)

If true, displays lines connecting items at the root level, showing which items play the roles of
148

roots.

NoHorizontalScroll (Boolean)
If true, disables horizontal scrolling in the control. The control will not display any horizontal
scroll bars.

NonevenHeight (Boolean)
If true, sets the height of the tree view items to an odd height. By default, the height of items
must be an even value.

NoScroll (Boolean)
If true, disables both horizontal and vertical scrolling in the control. The control will not
display any scroll bars.

NoToolTips (Boolean)

If true, disables the automatic tool tip feature of tree view controls. This feature automatically
displays a tool tip, containing the title of the item under the mouse cursor, if the entire title is
not currently visible.

RightTolLeftReading (Boolean)

> Does not add buttons to items at the root of the hierarchy. To do so, HasLines and LinesAtRoot must also be
set at true.

146 Does not link items at the root of the hierarchy. To do so, LinesAtRoot must also be set at true.

"7 The TVN_GETINFOTIP notification.

"% This value is ignored if HasLines = false.

124

Appendix C

Usually, windows display text left-to-right (LTR). Windows can be mirrored to display
languages such as Hebrew or Arabic that read right-to-left (RTL). A tree view text is
displayed in the same direction as the text in its parent window. If true, causes text to be
displayed in the opposite direction from the text in the parent window.

ShowSelectionAlways (Boolean)

Normally, when the user clicks another control or another application, the node that was
selected loses its selection. If true, causes a selected item to remain selected when the tree
view control loses focus.

SingleExpand (Boolean)
If true, a previously expanded item will collapse automatically when a new item is expanded.

If the user holds the CTRL key down while clicking an item, the item being unselected will
not be collapsed.

TrackSelect (Boolean)
If true, enables hot tracking in a tree view control. Each tree node label takes on the
appearance of a hyperlink (underlined with a blue color) as the mouse pointer passes over it.

LISTVIEW

A list view control is a specialized window that displays a set of items. Each item consists of
an icon and a label. This window allows the user to arrange and display items (such as files)
in four ways : using their large icons, using their small icons, as a list, or as a report. Note
that, a resource file describing a control when the dialog box is first invoked, only one
particular view can be specified, but I suppose that specific properties of other future views
can still be specified.

View ({icon, smalllcon, list, report})

A list view control can display items in four different views. This attribute specifies the
current view. In icon view, each item appears as a standard icon with a label below it. In small
icon view, each item appears as a small icon with a label to the right of it. In list view, each
item appears as a small icon with a label to the right of it and is displayed in a single-column
list on the screen. In report view, additional information about each item is displayed in
columns to the right of the small icon and label. The user can drag the items to an arbitrary
location in the window only in icon or small icon view.

Additional attributes provide other options, such as whether a user can edit labels or select
more than one item at a time, whatever the view type.

Align ({left, top})
Specifies the way items are arranged in icon and small icon view. Items are either aligned
with the left or with the top (by default) of the control.

EditLabels (Boolean)
If true, the item text'*’ can be edited in place. Otherwise, the user can read only.

OwnerData (Boolean)

%9 Only the first field of each row in the report view.

125

Appendix C

If true, the control is a virtual list view control, being able to handle millions of items because
the owner receives the burden of managing item data. This allows using a list view control
with large databases of information, where specific methods of data access are already in
place. The control does not store any item information itself. Except for the item selection and
focus information, the owner of the control must manage all item information.

SharelmageLists (Boolean)
If true, an image list"™ will not be deleted when the control is destroyed. This style enables
the use of the same image lists with multiple list view controls.

ShowSelectionAlways (Boolean)
If true, the selection (if any) is always shown, even if the control does not have the focus.

SingleSel (Boolean)
By default, multiple items may be selected. If true, only one item at a time can be selected.

SortAscending (Boolean)
If true, item indexes are sorted based on item text in ascending order."’

SortDescending (Boolean)
If true, item indexes are sorted based on item text in descending order."?

Other attributes are sometimes used to provide enhanced options such as check boxes and hot-
tracking.

CheckBoxes (Boolean)
If true, displays a checkbox with each item."™

OneClickActivate (Boolean)

If true, hot tracking is enabled (that is, when the cursor moves over an item, it is highlighted),
and the user must still click the item once to select it (only one click is required to select any
item, so all items may be selected)."*

TrackSelect (Boolean)

If true, enables hot-track selection in a list-view control. Hot track selection means that an
item is automatically selected when the cursor remains over the item for a certain period of
time.

'3 An image list is a collection of images of the same size stored in memory, each of which can be referred to by
its index. Image lists are used to efficiently manage large sets of icons or bitmaps. By default, a list view control
does not display item images. To display icons, image lists must be created and associated with the control.
Upon creation, each image list is empty. The program repeatedly adds icons to the list, and each icon is assigned
a sequential number starting at 1. This is the number to which the program refers to display a particular icon in a
row or column header.

511 other words, rows in list and report view will be sorted in that way. For each of its items, a list view control
typically stores the image list index of the item's icons. Because in list and report views items are displayed in
the same order as their indexes, the results of sorting are immediately visible to the user. In icon and small icon
views item indexes are not use to determine the position of icons, and then the results of sorting are not visible.
152 jdem

'35 The control then creates and sets a state image list with two images. State image 1 is the unchecked box, and
state image 2 is the checked box.

'3 An item may be selected when it is in a state in which a single click will select it.

126

Appendix C

TwoClickActivate (Boolean)
If true, hot tracking is enabled, and the user must still click the item twice to select it (the item
may be selected only after it has been clicked once).

The next tree attributes apply to list view controls in icon or small icon view.

AutoArrange (Boolean)
If true, icons are automatically kept arranged in icon and small icon view.

NoLabelWrap (Boolean)
By default, item text may wrap in icon view. If true, item text is displayed on a single line in
icon view.

NoScroll (Boolean)
If true, scrolling is disabled. All items must be within the client area in icon and small icon
View.

The remaining attributes apply to list view controls in report view.
NoColumnHeader (Boolean)

By default, each column has a header in report view.'” If true, avoids displaying column
headers.

NoSortHeader (Boolean)
If true, column headers do not work like buttons. This style can be used if clicking a column
header in report view does not carry out an action, such as sorting.

OwnerDrawFixed (Boolean)
If true, the owner window can paint items in report view."

56

The following attributes enable enhanced options in report view.

FullRowSelect (Boolean)

If true, when a row is selected , all its fields are highlighted (item and subitems'”’).

GridLines (Boolean)
If true, displays gridlines around rows and columns.

HeaderDragDrop (Boolean)
If true, enables drag-and-drop reordering of columns in the control.

SubltemImages (Boolean)
If true, allows images to be displayed for fields beyond the first (subitems).

HEADER

155 1f the user clicks one of them, the list is sorted based on the sort criterion specified for the associated column.
S response to WM_DRAWITEM messages

157 A subitem is a string that, in report view, is displayed in a column separate from the item's icon and label. All
items have the same number of subitems (determined by the number of columns in the control).

127

Appendix C

A header control is a window that is usually positioned above columns of text or numbers. It
contains a title for each column. The user can drag the dividers that separate the parts to set
the width of each column. As example, this header has labelled columns giving detailed
information about files in a directory :

| Name ! Size I Type ! Modified |

Buttons (Boolean)

Each item in the control looks and behaves like a push button. This style is useful if an
application carries out a task when the user clicks an item in the header control. For example,
an application could sort information in the columns differently depending on which item the
user clicks.

DragDrop (Boolean)
If true, allows drag-and-drop reordering of header items.

FilterBar (Boolean)
If true, include a filter bar as part of the standard header control (this bar allows users to
conveniently apply a filter to the display).

Flat (Boolean)
If true, the header control is drawn flat when Microsoft Windows XP is running in classic
mode.

FullDrag (Boolean)
If true, the header control displays column contents even while the user resizes a column.

Hidden (Boolean)
If true, indicates a header control that is intended to be hidden (it’s sometimes useful to use
the control as an information container instead of a visual control).'*®

Horizontal (Boolean)
If true, the header control is oriented horizontal.

HotTrack (Boolean)
If true, enables hot tracking.

TOOLBAR

A toolbar control is a window that contains a group of buttons that bring the key functionality
of an application closer to the user: we can perform common tasks with a simple click rather
than performing various steps to access a menu. Typically, the buttons in a toolbar correspond
to items in the main menu, providing an additional way for the user to activate an
application's commands. Each button can include a bitmapped image, but also a string in
addition to, or instead of, the image.

ALTDrag (Boolean)

158 Tn fact, this does not hide the control. Instead, when the message is send to a header control to know its
layout, the control returns zero as height. It is hide by setting its height to zero.

128

Appendix C

If true, allows users to change a toolbar button's position by dragging it while holding down
the ALT key. Otherwise, the user must hold down the SHIFT key while dragging a button.
The Adjustable attribute must be true to enable buttons to be dragged.

CustomErase (Boolean)

If true, the control notifies its parent window about drawing operations when the window
background must be erased (for example, when a window is resized) to prepare an invalidated
portion of a window for painting.

Toolbar controls support a transparent look that allows the client area under the toolbar to
show through. There are two kinds of transparent toolbars, ones with flat buttons and ones
with three-dimensional buttons :

Flat (Boolean)
If true, it’s a flat toolbar. In a flat toolbar, both the toolbar and the buttons are transparent and
hot tracking is enabled. Button text appears under button bitmaps.

Transparent (Boolean)
If true, it’s a non-fat transparent toolbar. In a transparent toolbar, the toolbar is transparent but

the buttons are not. Button text appears under button bitmaps.

List (Boolean)
If true, it’s a flat toolbar with button text to the right of the bitmap (if no text is added to the
image, it is identical to Flat = true).

RegisterDrop (Boolean)
If true, the control requests a drop target object when the pointer passes over one of its

buttons."

ToolTips (Boolean)
If true, adds tool tips to the toolbar control.

WrapAble (Boolean)

If true, it’s a toolbar that can have multiple lines of buttons The buttons can wrap to the next
line when the toolbar becomes too narrow to include all buttons on the same line. When the
toolbar is wrapped, the break will occur on either the rightmost separator or the rightmost
button if there are no separators on the bar.'®

The size and position of the toolbar window automatically set itself. The height is based on
the height of the buttons in the toolbar, the width is the same as the width of the parent
window’s client area and the control is positioned along the top (or bottom if specified) of the
parent window’s client area. Also, the toolbar window procedure automatically adjusts the
size of the toolbar whenever the size of the parent window changes. The toolbar default sizing
and positioning behaviours is turned off if the two next attributes are set to true.'®!

NoResize (Boolean)

1% By sending a TBN_GETOBJECT notification message.

10 The attribute must be true to display a vertical toolbar control when the toolbar is part of a vertical rebar
control (see after).

161 This is the case for toolbar controls that are hosted by rebar controls (see after) because the rebar control sizes
and positions the toolbar.

129

Appendix C

If true, prevents the control from using the default width and height when setting its initial
size or a new size. Instead, the control uses its specified width and height.

NoParentAlign (Boolean)

If true, prevents the control from automatically moving to the top or bottom of the parent
window. Instead, the control keeps its position within the parent window despite changes to
the size of the parent.

Bottom (Boolean)
By default, the toolbar appears at the top of the parent window's client area. The toolbar
control can also be positioned along the bottom of the parent window’s client area (if true).

NoDivider (Boolean)
If true, prevents a two-pixel highlight from being drawn at the top of the control.

Adjustable (Boolean)

If true, the toolbar is customizable.. The user can drag a button to a new position or remove a
button by dragging it off the toolbar. In addition, the user can double-click the toolbar to
display the Customize Toolbar dialog box, which enables the user to add, delete, and
rearrange tools to select only the ones they need and organize them in a convenient way.

REBAR

Rebar controls act as containers for other child windows (often toolbar controls). A rebar
control hosts one or more bands, and each band can have any combination of a gripper bar, a
bitmap, a text label, and a child window. However, bands cannot contain more than one child
window. With both toolbar and rebar controls, applications are more flexible. Toolbars can be
moved, repositioned, minimized, and maximized within the rebar control. This is for example
a rebar control with two bands one that contains a combo box and another that contains a

toolbar : | v i

AutoSize (Boolean)
If true, the layout of a band will automatically change when the size or position of its control
changes.

BandBorders (Boolean)
If true, the rebar control displays narrow lines to separate adjacent bands.

DoubleClickToggle (Boolean)

If true, the rebar band will toggle its maximized or minimized state when the user double-
clicks the band. Otherwise, the maximized or minimized state is toggled when the user single-
clicks on the band.

FixedOrder (Boolean)
If true, the rebar control always displays bands in the same order. A user can move bands to
different rows, but the band order is static.

130

Appendix C

NoDivider (Boolean)
If true, prevents a two-pixel highlight from being drawn at the top of the control.

RegisterDrop (Boolean)
If true, the control generates notification messages when an object is dragged over a band in

the control.'®?

VarHeight (Boolean)

If true, the control displays bands at the minimum required height, when possible (the control
can then have variable band height). Otherwise, the rebar control displays all bands at the
same height, using the height of the tallest visible band to determine the height of other bands.

Vertical Gripper (Boolean)
If true, the size grip will be displayed vertically instead of horizontally in a vertical rebar
control.

Vertical (Boolean)
If true, the control is displayed vertically.

STATUTBAR

A status bar is a horizontal window at the bottom of a parent window in which an application
can display various kinds of status information. The status bar can be divided into parts to
display more than one type of information (like help text and the current cursor position). You
can see such control in the main window of Rational Rose shown above.

SizeGrip (Boolean)

If true, the status bar control will include a sizing grip at the right end of the status bar. A
sizing grip is similar to a sizing border. It is a rectangular area that the user can click and drag
to resize the parent window.

ToolTips (Boolean)
If true, enables tool tips.

Top (Boolean)
The default position of a status bar is along the bottom of the parent window’s client area. If
true, the control appears at the top of the parent window's client area.

PAGER

A pager control is a window container that is used with a window that does not have enough
display area to show all of its content. The pager control allows the user to scroll to the area of
the window that is not currently in view. For example, if an application has a toolbar that is
not wide enough to show all of its items, the toolbar can be assigned to a pager control and the
user will be able to scroll to the left or right to access all of the items.

EETIEEY j
AutoScroll (Boolean)

12 The RBN_GETOBJECT notification message.

131

Appendix C

If true, the pager control will scroll when the user hovers the mouse over one of the scroll
buttons.

DragAndDrop (Boolean)

The contained window can be a drag-and-drop target. The pager control will automatically
scroll if an item is dragged from outside the pager over one of the scroll buttons.

Direction ({horizontal, vertical})
Indicates if the pager control scrolls horizontally or vertically.

DATETIMEPICKER

A date and time picker (DTP) control provides a simple and intuitive interface through which
to exchange date and time information with a user (the user can select a value instead of
typing it). The control relies on a format string to determine how it will display fields of
information. For example, to display the current time with the format "07:50:23 PM" and the
current date with the format "Monday June 20, 2005", format strings can be "hh":'m":'s tt" and
"dddd MMM dd',' yyyy".'"” Date and time format elements will be replaced by the actual
date and time. Shown thereafter are two separate DTP controls.

750:23PM == | Monday June 20, 2005 j

AppCanParse (Boolean)
The user may want to edit the date value of the control. A DTP control is equipped to verify

the types of values that can be entered.'® If true, doesn’t let the control to make this task, but
allows the owner to parse user input and take necessary action. It enables users to edit within
the client area of the control when they press the F2 key.

Format ({longDate, shortDate, shortDateCentury, time })

There are three preset formats available for displaying the date and one for displaying time
(they cannot be combined).'® longDate displays the date in long format (like "Monday, June
20, 2005"). shortDate displays the date in short format (like "6/20/05"). shortDateCentury is
similar except the year is a four-digit field (like "6/20/2005"). time display the time (like
"7:50:23 PM").

RightAlign (Boolean)
By default, the DTP control displays a combo box. If the user clicks the arrow on the control,

a drop-down month calendar displays (see after). If true, the calendar will be right-aligned
with the control instead of left-aligned, which is the default.

ShowNone (Boolean)

It is possible to have no date currently selected in the control. If true, the control displays a
check box that users can check once they have entered or selected a date. Until this check box
is checked, the application will not be able to retrieve the date from the control because, in
essence, the control has no date.

163 i acts for one- or two-digit hour in 12-hour format, "m" for one- or two-digit minute, "s" for one- or two-

digit second, "tt" for two-letter AM/PM abbreviation, "dd" for two-digit day (single-digit day values are
preceded by a zero) and "dddd", "MMMM" and "yyyy" for full weekday, full month name and full year
respectively.

1% For example, the user cannot type the name of a month, only a number and the control would display the
corresponding name of the month.

19 1f the preset formats are not sufficient, a custom format can be created.

132

Appendix C

UpDown (Boolean)

If true, displays an up-down control to the right of the control (which is divided in different
sections that can each be changed individually) in place of the drop-down month calendar, as
shown here:

[or2eos 2] [ow2ar2005 v

A month calendar control implements a calendar-like user interface. This provides the user
with a very intuitive and recognizable method of entering or selecting a date. The title bar of
the control provided by the Win32 API displays two buttons and two labels. The left (right)
button allows the user to select the previous (next) month.'® The left (right) label displays the
currently selected month (year). To select any month of the

current year, the user can click the name of the month. This El gl ; =
displays the list of months and allows the user to choose one. To S,_”T” ic T“E W?d T:‘“ ;" Sgat

select a year, the user clicks the year number. This changesthe 4 5 § 7 2 3 10
year label into a spin button. To select a date on the control, the 11 12 13 14 15 16 17

. . ; . 1019 20 21 22 23 el
user clicks the desired date, which changes from the previous 25 25 27 22 29 10 31
selection. The user can still click the bottom label to return to b2 3 * &
today's date if at one time the calendar is displaying a date other

than today.

Today: 07/24/2005

DayState (Boolean)
If true, the control requests information about which days should be highlighted by displaying
them in bold.'®’

Multiselection (Boolean)
If true, the control allows the user to select a range of days. By default, the user can select
seven contiguous days maximum.

NoToday (Boolean)
If true, the control doesn’t display the label at the bottom of the control (the "today" date).

NoTodayCircle (Boolean)
If true, the control no longer circles the current day.

WeekNumbers (Boolean)
If true, the control displays week numbers (1-52) to the left side of each row of days.

ANIMATION

168

An animation control is a window that displays an AVI clip ™ that does not contain audio.

One common use for an animation control is to indicate system activity during a lengthy

operation. This is possible because the operation thread continues executing while the AVI

clip is displayed. For example, the Find dialog box of Explorer displays a moving magnifying

glass as the system searches for a file. This control is still used when a file copy is underway:
&

AutoPlay (Boolean) a i

1% The control can also display more than one month (if its width and height provide space).
17 By sending MCN_GETDAYSTATE notifications to know how individual days should be displayed.
'% An AVI (Audio-Video Interleaved) clip is a series of bitmap frames like a movie.

133

Appendix C

If true, starts playing the animation as soon as the AVI clip is opened.

Center (Boolean)
If true, centers the animation in the animation control's window.

Transparent (Boolean)
If true, allows an animation's background color to match that of the underlying window,

creating a "transparent” background.169

CUSTOMCONTROL

This class regroups any other controls that may appear in a dialog box. So far I’ve introduced
existing controls (corresponding to predefined classes in Windows programming'’®), but
nothing prevents us from using a customized child window.'”" An example is the calendar
used by Windows XP in the Date and Time Properties dialog box'"* :

F
2
& aF by A g
o2 13 14 1516 17
18 4% 20 21 2335
25 26 27 2/ 29 30

This class may also include other existing Windows controls not listed here.'” A custom

control inherits the attributes specific to the WINDOW class (because this is a child control,
has Style=child) and the CONTROL class (defining its classes position), and has one more
attribute ClassName.

ClassName (String)
Designates the name of the class defining the control (example: msctls_hotkey32 for a hot key
control).

MENUBAR

The next classes concern the menu of an application. This one defines a window’s menu bar,
also called the main menu or the top-level menu. A menu bar is displayed below the caption
bar and shows a list of menus (which in turn can shows submenus) that lets a user select
commands. [tems on the menu bar are almost always popup menus (rarely command items).

'% The control will send a message to its parent. It interprets the upper-left pixel of the first frame as the
animation's default background color, and will remap all pixels with that color to the value supplied in response
of the message.

70 These classes already exist within Windows. The programmer does not first define and register its own
window class to create a control based on one of these classes. The programmer simply use the window class
name (like “button” or “static”’), and some style flags, as parameters in the function to create a window.

"I By registering your own window class called ClassName, and using your own function to process messages
for your customized control.

72 The class name is "CalWndMain".

173 Like the IP address contol implemented in recent versions of Comctl32.dll (and defined in Commctrl.h), or a
hot key control (a window that enables the user to enter a combination of keystrokes to perform an action
quickly). They have no specific style.

134

Appendix C

MenulD (either a unique name or a unique 16-bit unsigned integer value in the range 1
t0 65,535)
Is the name identifying the menu (used to find menu data in program resources).

Language (String)
Is a language identifier that specifies the language of the menu.

Sublanguage (String)
Is a sublanguage identifier.

POPUPMENU

A popup menu can contain menu items and other popup menus (which are displayed when the
user highlight it). Items on the menu bar almost always invoke a popup menu (also called
drop-down menus).

Text (String)
This is what appears in the menu. An ampersand (&) inside the value designates the letter that
follows as the mnemonic.

State ({enabled, disabled, grayed})

A popup menu can be enabled (by default), disabled or grayed. When an item is not available
to the user, it is grayed or disabled. A disabled item looks just like an enabled item. When the
user clicks on a disabled item, the item is not selected, and nothing happens. A grayed item is
displayed in gray text. 174

Position (Integer)

Each popup menu is located in a specific position. The leftmost item in the menu bar, or the
top item in a popup menu, has Position = 1. The position value is incremented for subsequent
items.

MENUITEM

This class define a command item, which is checked or cleared to indicate whether an option
is (not) in effect, or which can invoke a dialog box to obtain input from the user that can’t be
easily managed through the menu

ItemID (Integer)
Is the number with which the item is identified by the program.

Text (String)

This is what appears in the menu. The string can contain this escape characters: \a to right-
align the following text and \t for a tab. An ellipsis (...) is habitually added to the end to
indicate that a menu item invokes a dialog box. An ampersand (&) designates the letter that
follows as the mnemonic.

Checked (Boolean)

' The corresponding submenu is not displayed when the item is disabled or grayed.

135

Appendix C

If true, a check mark (¥) is to the left of the menu text. This is useful to choose different
program options from the menu.

State ({enabled, disabled, grayed})

Menu items can be enabled (by default), disabled or grayed. Enabled or disabled items look
the same to the user (a disabled item is displayed but it cannot be selected). Disabled and
grayed item are used when options are not currently valid (but a grayed item is displayed in
gray text to let the user know the option is not valid). 173

Position (Integer)

Each menu item is located in a specific position. The leftmost item in the menu bar, or the top
item in a popup menu, has Position = 1. The position value is incremented for subsequent
items.

SEPARATOR

This class defines an inactive item that serves as a dividing bar between two items.

Position (Integer)

Each separator is located in a specific position. The leftmost item in the menu bar, or the top
item in a popup menu, has Position = 1. The position value is incremented for subsequent
items, including separators.

' The WM_COMMAND message is not send to the owner window when the item is disabled or grayed.

136

Appendix D

Appendix

Source code

//************‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k~k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k‘k*‘k*‘k*‘k~k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k‘k*‘k*‘k*‘k~k‘k*‘k*‘k*‘k*‘k*‘k‘k‘k*‘k*************
// This class, containing a main method, can be used to test my implementation without launching GrafiXML.
// It has not to be placed in the .jar when integrating the plug-in into GrafiXML.

J

// Put before running it a valid resource file in C:\\ named fichier.rc
//***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k************************

import importresources.RcFile;
import importresources.SdfFile;
import importresources.XibFile;

import java.io.FileNotFoundException;
import java.io.IOException;

import java.io.File;

public class plugin {

public static void main(String[] args) {
File resourceFile = displayDialog();
if ((resourceFile.getName()).endsWith(".xrc")) {

// a Windows .rc file is imported
int[] filePointers;

try{
// scan the file to locate resources and mark thoses selected by the user
filePointers = RcFile.scan(resourceFile);
if (filePointers.length != 0){
// one or more resource has been selected by the user
try{
RcFile.process(filePointers);
}
catch (FileNotFoundException e) {
System.out.println("File " + resourceFile.getName() +" not found!");
}
catch (IOException e) {
System.out.println(e);
}
}
}

catch (FileNotFoundException e) {
System.out.println("File " + resourceFile.getName() +" not found!");
}
catch (IOException e) {
System.out.println(e);
}
}

// Other formats of resource files
// for future developement
else
// BApple resource files
if ((resourceFile.getName()) .endsWith(".nib")) NibFile.process (resourceFile);
// Screan definition files
else SdfFile.process (resourceFile);

public static File displayDialog(){ // fichier pour tests
return new File("C:\\fichier.rc");

}

137

Appendix D

[] K kK kK ok ok ok ok K ok kK ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K K ok K ok ok K ok ok K ok K ok ok K kK ok ok K ok K K ok

// ImportResources.java

// This class implements the ImportPlugin interface used to add a plugin into GrafiXML.
//**

package importresources;

import
import
import
import
import

public

be.ac.ucl.isys.grafixml.plugins.ImportPlugin;
be.michotte.util.Utilities;
java.io.FileNotFoundException;
java.io.IOException;

java.io.File;

class ImportResources implements ImportPlugin {

// Load the given file.
public boolean load(File file) {

if (Utilities.getExtension(file).equals("rc")) {

}

// a Windows

try{

.rc file is imported
int[] filePointers;

Author

// scan the file to locate resources and mark thoses selected by the user

filePointers =

if (filePointers.length
// one or more resource has been selected by the user
try{

}
}

}

catch (FileNotFoundException e) {
System.out.println("File

}

catch (IOException e) {
System.out.println(e);

}

RcFile.scan(file);

= 0){

RcFile.process(filePointers);

catch (FileNotFoundException e) {

System.out.println("File " + file.getName ()

}

catch (IOException e) {
System.out.println(e);

}

// Other formats of resource files
// for future developement

else

// Apple resource files

if (Utilities.getExtension(file).equals(".xib"))

XibFile.process(file);
// Screan definition files
else SdfFile.process(file);

return true;

}

// Used to load a preview of the file

public boolean loadFileContent (File file) {return false;}

// Return the extensions used by this type.

public String[] getExtensions() {return new String[] {

// Return the
public String

// Return the
public String

// Return the
public String

// Return the
public String

// Return the
public String

// Return the
public String

type name.

getExtensionName ()

plugin name.

getPluginName () {return "Import Resources";}

plugin author.

getPluginAuthor () {return "Julien Marion";}

plugin version.

getPluginVersion()

plugin description.
getPluginDesc() {return "This plugin is used to import resources files";}

versions of GrafiXML which can use the plug-in.

{return "resources files";}

{return "0.1";}

getPluginDepend() {return "<=1.1.99";}

"nib",

" + file.getName ()

+" not found!");

"sdf" };}

4

not found!");

Julien Marion

138

Appendix D

//**
// RcFile.java Author : Julien Marion

// This class contains methods to read a Windows .rc file and to process it in CUI into GrafiXML
//**

package importresources;

import java.io.File;

import java.io.FileReader;

import java.io.LineNumberReader;
import java.io.IOException;
import java.io.StreamTokenizer;
import java.util.StringTokenizer;
import Jjava.util.Vector;

public class RcFile {

private static File fileName;
private static boolean dialogSelected = false;
private static FlagTrie T = null;

// Scan a specified file for resources and return an array of line numbers that locate resources the user has chosen
// to import in GrafiXML

public static int[] scan(File f) throws IOException{
fileName = f;
// Create the LinenumberReader to read from the supplied filename.

// Converts the original input stream into a character input stream.

FileReader r = new FileReader (fileName);

// Transform it into a LineNumberReader, which allows to use the readline method to get an entire line of
// character input in one operation, and keeps track of line numbers.

LineNumberReader lnr = new LineNumberReader (r);

// This vector contains Resource objects.

// It will dynamically grow as a new resource (of type menu or dialog)is found in the file.
// It will dynamically shrink as the user decide to import less resources than those found.
Vector resources = new Vector(25);

// Scan the file for resources (fill vector).
readLines (lnr, resources);

r.close();

/*test*/

for (int i = 0; 1 < resources.size(); i++){
System.out.println(((Resource)resources.elementAt (i)) .toString());
System.out.println(" ")}

System.out.println("\n\n");//*/

// Call the method which create the dialog box for resources selections.
displayDialog(resources);

/*tests*/

for (int i = 0; 1 < resources.size(); i++) {
System.out.println(((Resource)resources.elementAt (i)) .toString());
System.out.println(" "y ;

}

System.out.println("\n\n");

// Return the line numbers where are the selected resources to process.
int[] pointers;
int n = resources.size();
pointers = new int[n]; // If resources is empty, pointers.length() equals zero.
for (int index = 0; index < n; index++) {
// There is at least one resource to process.

pointers[index] = ((Resource)resources.elementAt (index)) .getLine();
if (!dialogSelected && ((Resource)resources.elementAt (index)) .getType() == 'D')
dialogSelected = true;
}
return pointers;
}
/T

// Scan the file for resources.
// Paragraph are separeted by line without token, comments at begining are not part of paragraph.
//
private static void readLines (LineNumberReader r, Vector v) throws IOException{
String delims = " \t";
String line; // Contents of a line, not including any line-termination characters.
String firstToken, secondToken;
StringTokenizer st;

while((line = r.readLine()) != null){ // Line is not null, the end of the stream has not been reached.
//if (line.length() == 0);
// '/n' (part of paragraph separator), not usefull because st.hasMoreToken ()==false

139

Appendix D

st = new StringTokenizer (line, delims);
if (st.hasMoreTokens()) {
// line contains at least one token (that is, line is not part of a paragraph
// separator containing '/n' and eventual withe space charachters).
firstToken = st.nextToken();
if (firstToken.startsWith("//"));
// Text after // and that extends to the end of the line is discarded.
else
if (firstToken.startsWith("/*"))
// Text between successive occurrences of /* and */, and after */ until EOL,
// is discarded.
while (line != null && line.indexOf("*/") == -=1) line = r.readLine();
else{
// Begining of a paragraph (after evantual skiped comments) .
if (st.hasMoreTokens()){
secondToken = st.nextToken();
// If there is matching, strore the resource with the current line.
if (secondToken.equals ("DIALOG") ||
secondToken.equals ("DIALOGEX") ||
secondToken.equals ("MENU"))
// The current line is normally r.getLineNumber ()-1, because
// after reading a line, the position in the file is set at
// the begining of the following line. But this value has to
// be considered for consistency with the streamTokenizer
// (which counts the lines starting from 1 and not 0)
// used to process resources.
v.add (new Resource (r.getLineNumber (),
firstToken, secondToken.charAt (0)));
}
// Skip lines of the same paragraph.
do line = r.readLine();
while(line != null && line.length() != 0);

}
//

// Create a dialog box to get user choices. For each object in the vector resources, an item is created in a list.
// I1If the user pushes on the Ok button, the vector is updated (suppress not selected objects).

// I1If the user pushes on the Cancel button, the vector becomes empty.

//

private static void displayDialog(Vector v){

ResourcesSelection frame = new ResourcesSelection(v);
frame.show();

public static void process(int[] p) throws IOException{

// Create the tokenizer to read from the supplied filename

// (note that a StreamTokenizer can return the line number)
LineNumberReader lnr = new LineNumberReader (new FileReader (fileName));
StreamTokenizer st = new StreamTokenizer (lnr);

// Prepare the tokenizer for recource script style tokenizing rules (specifies how tokens
// are recognized). By default, the tokenizer already remove quotes around strings when reading
// them ('\"' denotes a quotes string by default) and parse number.

// End of lines are treated as tokens (the nextToken method returns TT_EOL and also

// sets the ttype field to this value when an end of line is read). The default syntax

// table is configured to treat an end of lines character as white space, not as a separate token.
st.eolIsSignificant (true);

//

// Specifies a range of characters to be treated as part of words

// 'A' to 'Z' and 'a' to 'z' are already (by default) considered to be alphabetic.
st.wordChars('_','_"); // to recognize flags (e.g. WS_POPUP)

//

// Specifies the range of characters that serve to delimit tokens
// ' ' (space) and '\t' (tab) are by default delimiters
st.whitespaceChars('|',"'|");

st.whitespaceChars('=',"'="'); // Restorator use EXSTYLE=<ex_style>*
//

// Specifies the range of characters that are never part of tokens and should be returned as-is
st.ordinaryChars(', "', ',');

st.ordinaryChars('{"', '{');

st.ordinaryChars('}', '}');

//

// Causes comments (//<line> and /*<text>*/) to be ignored
st.slashSlashComments (true);
st.slashStarComments (true);

lnr.setLineNumber (1); // the first line is 1 (0 by default)

// Process the resources

140

if (dialogSelected) T =

String id;
// For each stored line number.
for (int i = 0; i1 < p.length; i++){
// Reach the resource begining at line i.

System.out.println("Next stored line in the vector:

while ((ln = lnr.getLineNumber()) < pl[il])
System.out.print ("From line " 41ln+": ");

Appendix D

new FlagTrie();// creer l'arbre des flags

" +p[i]); int 1n ;
{lnr.readLine();System.out.println("line " +1n);}

// Read the identifier of the menu or of the dialog.

st.nextToken () ;
if(st.ttype == StreamTokenizer.TT_NUMBER)
else id = st.sval;

// Read the type of the resource
st.nextToken () ;
if (st.sval.equals("MENU")) {
System.out.println("MENU "+id);
processMenu(id, lnr, st);
}
else(
// It's a resource of type dialog box.
System.out.println("DIALOG "+id);
processDialog(id,
}
}
Inr.close();

}

st.sval.endsWith ("EX"),

id = String.valueOf ((int)st.nval);

(the token is a word).

lnr, st);

//

// Process a resourse of type menu.

//

private static void processMenu(String id, LineNumberReader lnr,

}
//

StreamTokenizer st){

// Process a resourse of type dialog box.

//

private static void processDialog(String

short x, y, width, height;

int styles = 0, extendedStyles = 0;

String text = null, language = null, fontName =
byte fontSize = 8;

boolean bold = false, italic = false;

String ctrlClass = null;

id,boolean extended, LineNumberReader r,StreamTokenizer st)throws IOException{

"Tahoma";

// Parse the position and dimention numbers.

st.nextToken(); x = (short)st.nval; System.out.println("x-coordinate = "+x);
st.nextToken(); //skip ',"

st.nextToken(); y = (short)st.nval; System.out.println("y-coordinate = "+y);
st.nextToken(); //skip ','

st.nextToken(); width = (short)st.nval; System.out.println("width = "+4width);
st.nextToken(); //skip ','

st.nextToken(); height = (short)st.nval; System.out.println("height = "+4height);
// Go to the begining of the next line (optional [,helpId] is skiped).

while (st.nextToken ()

boolean hasControls = true;

!= StreamTokenizer.TT_EOL);

// Read the first keyword of each line and extract related information until the control definition

// part is reached.
while (st.nextToken()
switch (st.ttype) {
case StreamTokenizer.TT_WORD:

if (st.sval.equals("STYLE")) {

) o

// Extract the styles of the dialog box.

while (st .nextToken()
styles
st.nextToken();

}

System.out.println("styles:

}

else if (st.sval.equals("CAPTION")) {

!= StreamTokenizer.TT_EOL) {
|= T.match(st.sval).getFlagValue();

// bitwise OR operation

"+styles);

// Extract the text that appears on the caption bar.

st.nextToken();

text = st.sval;
System.out.println("caption =
// Go to the the next line.
st.nextToken () ;
}

else if (st.sval.equals("EXSTYLE")) {

"+ text);

// End-of-line token.

// Extract the extended styles of the dialog box.

while (st.nextToken ()
extendedStyles
st.nextToken();

!= StreamTokenizer.TT_EOL) {
|= T.match(st.sval).getFlagValue();

// bitwise OR operation

141

Appendix D

System.out.println("extended styles: "+extendedStyles);
}
else if (st.sval.equals("LANGUAGE")) {
// Extract the language used in the dialog box.
st.nextToken();
language=(st.sval.substring(st.sval.indexOf ("_")+1,st.sval.length())) .toLowerCase();

System.out.println("language = "+ language);
// Go to the the next line.
while (st.nextToken() != StreamTokenizer.TT_EOL);

}
else if (st.sval.equals("FONT")) {
// Extract the font that is used for controls in the dialog.
st.nextToken();
fontSize = (byte)st.nval;
st.nextToken(); st.nextToken();
fontName = st.sval;

if(st.nextToken() == ', '){// There is information about weight and italic.
st.nextToken();
if (st.ttype == StreamTokenizer.TT_WORD)

// FW_SEMIBOLD, FW_DEMIBOLD, FW_BOLD, FW_EXTRABOLD,
// FW_UTRABOLD, FW_HEAVY or FW_BLACK
if (st.sval.indexOf('B') != -1 || st.sval.equals("FW_HEAVY")) bold = true;
else
// st.ttype == StreamTokenizer.TT_NUMBER
if (st.nval >= 550.0) bold = true;
st.nextToken(); st.nextToken();
if (st.sval.equals("TRUE")) italic = true;
//Go to the the next line.

while (st.nextToken() != StreamTokenizer.TT_EOL);
} // Else it was an end of line token.
System.out.println("font = "4+ fontSize + ", " 4+ fontName + " " + bold + " " 4 italic);

else if (st.sval.equals("BEGIN")){ // Begin...END is sometimes used by Resource Builder instead of {...}
st.ttype="{";
// Causes the next call to the nextToken method to reread the token but return the
// current value in the ttype field, and not to modify the value in the nval or sval field.
st.pushBack(); }
else if (st.sval.equals("MENU") || st.sval.equals("CLASS")) {
// Other unfrequent but possible keywords in the dialog template (not implemented)
// the line is skiped. Example of scenario
/..
// 400 DIALOG 30, 73, 275, 84
// STYLE DS_SETFONT |DS_MODALFRAME |DS_3DLOOK |WS_POPUPWINDOW | WS_CAPTION
// CAPTION "Find"
// FONT 8, "MS Shell Dlg"
// MENU 403 //include a menu in the dialog box. it has to be defined in the menu resource
/.
r.readLine();

}

else {
// It is an id. Another resource has been reached because an empty line resources separator has
// not been respected and will not be processed (because not referenced in the pointers array) .
// Example of scenario
/).
// 400 DIALOG 30, 73, 275, 84
// STYLE DS_SETFONT |DS_MODALFRAME |DS_3DLOOK |WS_POPUPWINDOW | WS_CAPTION
// CAPTION "Find"
// FONT 8, "MS Shell Dlg"
// ABOUT DIALOG 26, 41, 350, 242
/..
hasControls = false;
st.ttype="{";
st.pushBack();
}
break;
case StreamTokenizer.TT_EOF: // Dialog box without child controls definitions, end of file has been reached.
hasControls = false;
st.ttype="'{";
st.pushBack () ;
break;

case StreamTokenizer.TT_EOL:
// Skip an empty line that has been reached (not normally occurs in a valid syntax dialog box template).
// Example of scenario:

/] ...

// 400 DIALOG 30, 73, 275, 84

//

// STYLE DS_SETFONT |DS_MODALFRAME | DS_3DLOOK | WS_POPUPWINDOW | WS_CAPTION
//

// CAPTION "Find"
// FONT 8, "MS Shell Dlg"

//
/7 A
//

break;

case StreamTokenizer.TT_NUMBER: // It's an id. Another resource has been reached because an empty line
hasControls = false; // resources separator is not respected in the file. Example of scenario:
st.ttype="{"; /).
st.pushBack() ; // 400 DIALOG 30, 73, 275, 84

142

Appendix D

break; // CAPTION "Find"
} // 401 DIALOG 36, 44, 285, 110
} //

// Generate into GrafiXML this dialog box.

Grafi.generateDialog(id, width, height, text, styles, extendedStyles);

// a faire (renvoyer aussi référence du container),

// a mettre dans une variable passée en paramétre lors des appels de création des components

// Specify the font that will be used in the conatiner generated.
Grafi.fontName = fontName;Grafi.fontSize = fontSize;Grafi.bold = bold;Grafi.italic = italic;

// Process the child window controls.
if (hasControls) {
// { (or BEGIN) has been encountered in the template. There is then a controls definition part.

styles = 0; extendedStyles = 0;
text = ""; // The size of the text field (always specified in the generic notation) is 0 when no value.

// TO DO: A first scan storing x, y, w, h in a tab of vector to construct boxes into the CUI model.
// r.mark(1024); // enought?

// Read the next token different from EOL.
while (st.nextToken() == StreamTokenizer.TT_EOL);

while (st.ttype != '"}') {
// It remains at least one line defining a child window control. Process the next line.
// st.ttype = StreamTokenizer.TT_WORD (the key word CONTROL or a control type)
String word = st.sval;
if (word.equals ("CONTROL")) {
System.out.println("héhoooo ?? bordel!");
// The line format is:
// CONTROL text,id,ctrlClass|[,styles],x,y,width, height[, extendedStyles[,helpId]]
st.nextToken(); text = st.sval;
st.nextToken(); //skip ','
System.out.print ("text = "+text);
st.nextToken();
if(st.ttype == StreamTokenizer.TT_NUMBER) id = String.valueOf ((int)st.nval);
else id = st.sval; System.out.print(", id = "+id);
st.nextToken(); //skip ','
st.nextToken(); ctrlClass = st.sval.toLowerCase();
System.out.print (", classe = "4ctrlClass);
st.nextToken(); //skip ','
st.nextToken();
if(st.ttype != StreamTokenizer.TT_NUMBER) {
while(st.ttype != ', "){
if (st.sval.equals("NOT")){
st.nextToken();
// be sure it is present (else will add the flag)
styles |= T.match(st.sval).getFlagValue();
styles A= T.match(st.sval).getFlagValue();
}
else styles |= T.match(st.sval).getFlagValue();
st.nextToken() ;
}
System.out.print (", styles: "+styles);
st.nextToken() ;

}

x = (short)st.nval; System.out.print (", x-coordinate = "4x);
st.nextToken(); //skip ','
st.nextToken(); y = (short)st.nval; System.out.print (", y-coordinate = "+y);
st.nextToken(); //skip ','
st.nextToken(); width = (short)st.nval; System.out.print(", width = "+4width);
st.nextToken(); //skip ','
st.nextToken(); height = (short)st.nval; System.out.print(", height = "+height);
st.nextToken();
if (st.ttype == ',') st.nextToken(); //skip optional ','
while(st.ttype != StreamTokenizer.TT_EOL && st.ttype != ', "){
extendedStyles |= T.match(st.sval).getFlagValue(); // bitwise OR operation

st.nextToken();

}

System.out.println(", extended styles: "+extendedStyles);
// Go to the begining of the next line (optional [,helpId] skiped).
while(st.ttype != StreamTokenizer.TT_EOL)st.nextToken();

else {

// Shortcut notation.
//The line format is:
// <control_type> [text,]id,x,y,width,height[,styles[,extendedStyles[,helpId]]]
styles |= 0x50000000; // WS_CHILD and WS_VISIBLE for any type of control.
// Text field in the line is excuded for EDITTEXT, LISTBOX, COMBOBOX and SCROLLBAR.
boolean textField = true;
switch (word.charAt (0)) {
case 'A':

ctrlClass = "button";

if (word.charAt (4)=='C")

// AUTOCHECKBOX, implies the flags BS_AUTOCHECKBOX and WS_TABSTOP.

143

Appendix D

styles |= 0x10003;

else
// AUTORADIOBUTTON, implies the flag BS_AUTORADIOBUTTON.
styles |= 9;

break;

case 'C':

if (word.charAt (1)=='H'"){
// CHECKBOX, implies the flags BS_CHECKBOX and WS_TABSTOP.
ctrlClass = "button";styles |= 0x10002;

}

else if (word.charAt(1l)=='0"){
// COMBOBOX, implies the flags CBS_SIMPLE and WS_TABSTOP.

ctrlClass = "combobox";styles |= 0x10001;textField = false;
}
else {
// CTEXT, implies the flags SS_CENTER and WS_GROUP.
ctrlClass = "static";styles |= 0x20001;
}
break;
case 'D':
// DEFPUSHBUTTON, implies the flags BS_DEFPUSHBUTTON and WS_TABSTOP.
ctrlClass = "button";styles |= 0x10001;break;
case 'E':
// EDITTEXT, implies the flags ES_LEFT (value 0), WS_BORDER and WS_TABSTOP.
ctrlClass = "edit";styles |= 0x810000;textField = false;break;
case 'G':
// GROUPBOX, implies the flag BS_GROUPBOX.
ctrlClass = "button";styles |= 7;break;
case 'I':
// ICON, implies the flags BS_ICON and WS_GROUP.
ctrlClass = "static";styles |= 0x20003;break;
case 'L':

if (word.charAt (1)=='T"'){
// LTEXT, implies the flags SS_LEFT (value 0) and WS_GROUP.

ctrlClass = "static";styles |= 0x20000;
}
else{
// LISTBOX, implies the flags LBS_NOTIFY, WS_BORDER and WS_VSCROLL.
ctrlClass = "listbox";styles |= 0xA00001;textField = false;
}
break;
case 'R':
if (word.charAt(l)=='A"){
ctrlClass = "button";styles |= 4;
// RADIOBUTTON, implies the flag BS_RADIOBUTTON.
}
else{
ctrlClass = "static";styles |= 0x20002;
// RTEXT, implies the flags SS_RIGHT and WS_GROUP.
}
break;
case 'P':
// PUSHBUTTON, implies the flags BS_PUSHBUTTON (value 0) and WS_TABSTOP.
ctrlClass = "button";styles |= 0x10000;break;
default: //word.charAt (0) == 'S’
ctrlClass = "scrollbar";textField = false;

// SCROLLBAR, implies the flag SBS_HORZ (value 0).
}

System.out.print ("class = "+ ctrlClass);

// Parse the line defining the control.
st.nextToken();
if (textField) {
text = st.sval;st.nextToken();//skip ',"
st.nextToken();

System.out.print (", text = "+text);

}
if(st.ttype == StreamTokenizer.TT_NUMBER) id = String.valueOf ((int)st.nval);

else id = st.sval; System.out.print(", id = "+id);

st.nextToken(); //skip ','
st.nextToken();x = (short)st.nval; System.out.print (", x-coordinate = "+x);
st.nextToken(); //skip ','
st.nextToken(); y = (short)st.nval; System.out.print(", y-coordinate = "+y);
st.nextToken(); //skip ','
st.nextToken(); width = (short)st.nval; System.out.print(", width = "+width);
st.nextToken(); //skip ','
st.nextToken(); height = (short)st.nval; System.out.print (", height = "+4height);

st.nextToken();
if (st.ttype == ',') st.nextToken(); //skip optional ',"
int fvalue;

while(st.ttype != StreamTokenizer.TT_EOL && st.ttype != ', "){
fvalue = T.match(st.sval).getFlagValue();
styles |= fvalue; // bitwise OR operation

// corrective operation when CBS_DROPDOWN is specified
// (without NOT CBS_SIMPLE as in Restorator)
if (fvalue==2){
if((styles & ~(~0 << 1)) == 1)
// if the first bit is set to 1

144

Appendix D

// (that is, NOT CBS_SIMPLE has not yet been specified)
// the first bit is inversed (that is, set to 0)
styles = styles * 1;
}
st.nextToken();
}
System.out.print (", styles: "+styles);
if (st.ttype == ',') st.nextToken(); //skip optional ','
while(st.ttype != StreamTokenizer.TT_EOL && st.ttype != ', "){
extendedStyles |= T.match(st.sval).getFlagValue(); // bitwise OR operation
st.nextToken() ;
}
System.out.println(", extended styles: "+extendedStyles);
// Go to the begining of the next line (optional [,helpId] skiped).
while(st.ttype != StreamTokenizer.TT_EOL)st.nextToken();

}
if (st.ttype == StreamTokenizer.TT_EOL) System.out.println("--- end of line ---");

// Generate into GrafiXML a control contained in this dialog box.
Grafi.generateControl(id, ctrlClass, x, y, width, height, text, styles, extendedStyles);

styles = 0; extendedStyles = 0;text = "";

// Go to the begining of the next line (eventual empty lines are skiped).
while(st.ttype == StreamTokenizer.TT_EOL)st.nextToken();

// BEGIN...END is sometimes used by Resource Builder instead of {...}

if (st.ttype == StreamTokenizer.TT_WORD && st.sval.equals("END")) st.ttype='}";

System.out.println("current line : "+ r.getLineNumber());
System.out.println("number of line read : " 4 st.lineno());

}

//**
// Resource.java Author : Julien Marion
// Represent a resource from the resource file which is proposed to the user in the 'import resources'dialog box.

// An instance stores the id of a resource, a type (dialog box or menu) and the location (line number) in the file.

// A resource object will be concerved if selected by the user, else will be destroyed.
//**

package importresources;

public class Resource {
private int line;
private String id;
private char type; // 'D' for DIALOG (or DIALOGEX), 'M' for MENU
private boolean selected;

public Resource (int 1, String i, char t){

line = 1;
id = 1i;
type = t;

selected = false;

}

public int getLine(){ return line; }

public String getId(){ return id; }

public char getType(){ return type; }

public boolean isSelected(){ return selected; }
public void select(){ selected = true; }
public void unselect () { selected = false; }

// & retirer (pour tests)
public String toString() {

String t;

if (type == 'D') t="dialog box"; else t="menu";
return t + " at line " + line + ": " 4+ id;

}

145

Appendix D

[] K kK kK ok ok ok ok K ok kK ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K K ok K ok ok K ok ok K ok K ok ok K kK ok ok K ok K K ok

// ResourcesSelection. java Author : Julien Marion

// Define the window used to let the user to select the resources that will be processed and generated into GrafiXML.
//**

package importresources;

import java.awt.Color;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import Jjava.util.Vector;

import javax.swing.Box;

import javax.swing.BoxLayout;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.ListSelectionModel;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class ResourcesSelection extends JDialog implements ActionListener {

private JLabel label;

private JList list;

private JButton ok, cancel;

private JPanel panel0, panell, panel2, panel3, panel4;
private Vector v;

//
// Set up the GUI

//
public ResourcesSelection(Vector resources){
super ((JFrame)null, "Import Resources",true);
v = resources;
setSize(410,295);
//setFont (new Font ("SansSerif",0,8));
setDefaultLookAndFeelDecorated (true);
WindowListener wlistener = new WindowListener();
addWindowListener (wlistener);
Color gray = new Color(236,233,216);

// Creates the components.

label= new JLabel ("Select resources to import:");
label.setAlignmentX (Component .CENTER_ALIGNMENT) ;
//label.setDisplayedMnemonic ('S");
label.setBackground (gray);

list = new JList (resources);

list.setSelectionMode (ListSelectionModel .MULTIPLE_INTERVAL_SELECTION) ;
list.setLayoutOrientation (JList.VERTICAL);
//list.setVisibleRowCount (10);

JScrollPane listScroller = new JScrollPane(list);
//listScroller.setPreferredSize (new Dimension (215, 375));

ok = new JButton (" Ok "),
//ok.setMnemonic ('0");

cancel = new JButton(" Cancel ");
//cancel.setMnemonic ('C'");
ok.setBackground (gray);
cancel.setBackground (gray);
ok.setEnabled(false);
cancel.setEnabled(true);

// Organize the components.

panell = new JPanel();

panell.setLayout (new BoxLayout (panell, BoxLayout.Y AXIS));
panell.add(Box.createRigidArea (new Dimension(0,12)));
panell.add(label);

panell.add(Box.createRigidArea (new Dimension(0,5)));
panell.add(listScroller);

panell.setBackground (gray);

panel2 = new JPanel();

panel?2.setLayout (new BoxLayout (panel2, BoxLayout.X_ AXIS));
panel2.add(Box.createRigidArea (new Dimension(12,0)));
panel2.add(panell);

panel2.add(Box.createRigidArea(new Dimension(12,0)));
panel2.setBackground (gray);

146

Appendix D

panel3 = new JPanel();

panel3.setLayout (new BoxLayout (panel3, BoxLayout.X_ AXIS));
panel3.add(ok);

panel3.add(Box.createRigidArea (new Dimension(5,0)));
panel3.add(cancel);

panel3.setBackground (gray);

paneld = new JPanel();

paneld.setLayout (new BoxLayout (paneld4, BoxLayout.Y_ AXIS));
paneld.add(panel2);

panel4.add(Box.createRigidArea (new Dimension(0,5)));
paneld.add(panel3);

paneld4.add(Box.createRigidArea(new Dimension(0,12)));
paneld.setBackground (gray);

setContentPane (paneld);

ok.addActionListener (this);
cancel.addActionListener (this);
list.addListSelectionListener (new ListListener());

// Handles the 'ok' and 'Cancel' buttons.

public void actionPerformed(ActionEvent e) {

Object b = e.getSource();

if (b==0k){
Object[] s = list.getSelectedvValues();
Vector temp = new Vector();
for (int i = 0; i<s.length; i++) temp.add(s[i]);
v.retainAll (temp) ;
this.dispose();

else {
v.removeAllElements () ;
this.dispose();}
}

//*k*k*k*k~kJ(*‘k*‘k*‘k*‘k*‘k*‘k*‘k*k*k*k*k*k
// An inner class to detect list selection events.
//********‘k***
private class ListListener implements ListSelectionListener {
public void valueChanged(ListSelectionEvent e) {
if (e.getValuelsAdjusting() == false) {
if (list.getSelectedIndex() == -1) {
//No selection, disable the 'ok' button.
ok.setEnabled(false);
} else {
//Selection, enable the 'ok' button.
ok.setEnabled(true);
}

}

/] %K kK ok ok K ok ok K ok ok ok ok ok ok ok K ok ok o ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok K ok kK ok ok

// An inner class to detect if the dialog box is closed.
//**************‘k*‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k*‘k*‘k‘k‘k‘k‘k*‘k*‘k‘k‘k‘k‘k*‘k*‘k‘k‘k‘k‘k****************

private class WindowListener extends WindowAdapter({
public void windowClosing(WindowEvent e) {

v.removeAllElements () ;
dispose();

147

Appendix D

[] K kK kK ok ok ok ok K ok kK ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K K ok K ok ok K ok ok K ok K ok ok K kK ok ok K ok K K ok

// FlagTrie. java Author : Julien Marion
// This class represent a trie used to identifying the styles and extended styles of a dialog box or a control when

// processing the .rc resource file.
//***************‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*************************‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**********************************

package importresources;

import java.util.Vector;

public class FlagTrie {

// Refer the root of the trie.

private TNode root;

// Store the depth of the last node returned by the match method.

// The depth of a node v is the number of ancestors of v, excluding v itself.

// Note that I could use a simple recursive algorithm to know the depth of a node v

// if isRoot (v) then return 0

// else return 1 + depth (parent (v))

// But I must then add a new attribute to each node storing the reference to its parent.
private short depth;

// Set up the trie with flags relevant to my transformation. It is considered as a constant (cannot be modified once
// created) .

public FlagTrie() {
root = new TNode();

// Add the flag used in my correspondence which are default in the shortcut notation:
// Button styles, that correspond to the 8 types of buttons

addFlag ("BS_DEFPUSHBUTTON", 0x1);addFlag("BS_CHECKBOX", 0x2);
addFlag ("BS_AUTOCHECKBOX", 0x3);addFlag("BS_RADIOBUTTON", 0x4);
addFlag ("BS_AUTORADIOBUTTON", 0x9);addFlag("BS_GROUPBOX", 0x7);

// This last button style is still inserted (even if its value is 0)
// because it has a common prefix with BS_PUSHLIKE

addFlag ("BS_PUSHBUTTON", 0x0);

// Static styles (note that value of SS_LEFT is 0x0)

addFlag ("SS_RIGHT", 0x2);addFlag("SS_CENTER", 0x1);addFlag("SS_ICON", 0x3);
// Edit style

// value of ES_LEFT is 0x0

// List box style

addFlag ("LBS_NOTIFY", 0x1);

// Combobox style

addFlag ("CBS_SIMPLE", 0x1);

// Scroll bar style

// value of SBS_HORZ is 0x0

// By default in the default notation (for each types)

addFlag ("WS_VISIBLE", 0x10000000);addFlag("WS_CHILD", 0x40000000);
addFlag ("WS_CHILDWINDOW", 0x40000000);

// By default in the default notation (for some types)

addFlag ("WS_BORDER", 0x800000);addFlag("WS_TAPSTOP", 0x10000);
addFlag ("WS_GROUP", 0x20000);addFlag("WS_VSCROLL", 0x200000);

// Add the remaining flag used in my correspondance rules

addFlag ("CBS_DROPDOWN", 0x2);addFlag("CBS_DROPDOWNLIST", 0x3);
addFlag ("DS_SETFONT", 0x40);addFlag("DS_SHELLFONT", 0x48);
addFlag ("WS_CAPTION", 0xC00000);addFlag("WS_THIRCKFRAME", 0x40000);
addFlag ("WS_SIZEBOX", 0x40000);addFlag("WS_DISABLED", 0x8000000);
addFlag ("WS_EX_TOPMOST", 0x8);addFlag("DS_SYSMODAL", 0x8);
addFlag ("BS_LEFT", 0x100);addFlag("BS_CENTER", 0x300);

addFlag ("BS_RIGHT", 0x200);addFlag("BS_PUSHLIKE", 0x1000);
addFlag ("BS_BITMAP", 0x80);addFlag("BS_ICON", 0x40);

addFlag ("BS_OWNERDRAW", 0xB);addFlag("BS_USERBUTTON", O0xB);
addFlag ("LBS_EXTENDEDSEL", 0x800);addFlag("ES_RIGHT", 0x2);
addFlag ("ES_CENTER", 0x1);addFlag("ES_MULTILINE", 0x4);

addFlag ("ES_AUTOHSCROLL", 0x80);addFlag("ES_PASSWORD", 0x20);
addFlag ("ES_NUMBER", 0x2000);addFlag("WS_HSCROLL", 0x100000);
addFlag ("ES_AUTOVSCROLL", 0x40);addFlag("PBS_MARQUEE", 0x8);
addFlag ("PBS_VERTICAL", 0x8);addFlag("SS_ENHMETAFILE", OxF);
addFlag ("SS_OWNERDRAW", 0xD);addFlag("SS_USERBUTTON", 0xD);
addFlag ("SS_SIMPLE", 0xB);addFlag("SS_LEFTNOWORDWRAP", 0xC);
addFlag ("SS_NOPREFIX", 0x80);addFlag("SS_BITMAP", O0xB);

addFlag ("SS_REALSIZEIMAGE", 0x800);addFlag("SS_SUNKEN", 0x1000);
addFlag ("SS_BLACKFRAME", 0x7);addFlag("SS_GRAYFRAME", 0x8);
addFlag ("SS_WHITEFRAME", 0x6);addFlag("SS_BLACKRECT", 0x4);
addFlag ("SS_GRAYRECT", 0x5);addFlag("SS_WHITERECT", 0x9);
addFlag("SS_ETCHEDHORZ", 0x10);addFlag("SS_ETCHEDVERT", O0x11);
addFlag ("SS_ETCHEDFRAME", 0x12);addFlag("TBS_VERT", 0x2);

addFlag ("UDS_AUTOBUDDY", 0x10);addFlag("DTS_TIMEFORMAT", 0x9);
addFlag ("WS_PALETTEWINDOW", 0x108);addFlag("LBS_STANDART", 0x800003);
addFlag ("WS_POPUPWINDOW", 0x80880000);

// Add flags not in my correspondance rules but that have a common prefix with one of the flag above.
addFlag ("CBS_SORT", 0x100);addFlag("DS_SETFOREGROUND", 0x200);
addFlag ("BS_RIGHTBUTTON", 0x20);

// Compress the trie.

148

Appendix D

compress (root) ;

// Return the node storing the value of flag if there is a match with one of the strings of the trie.
//
public TNode match(String flag) {
TNode v = root;
if (flag != null){
depth = 0; // Depth of the node we terminate tracing the path
boolean success = true;
while (success && depth < flag.length()){
success = false;
Vector children = v.getChildren();
for (int i = 0; i1 < children.size() && !success; i++){
TNode w = (TNode)children.elementAt (i);

if (w.element() == flag.charAt (depth)) {
v o= w;
success = true;
depth++;
}
}
}
}
return v;
}
T
// Add a new style flag identifier to the trie with a specified numeric value
//

private void addFlag (String flag, int value){
//depth = 0;
TNode v = match(flag);

if (depth < flag.length()) {
// The search stop at an internal or external node and it remains characters of flag to store in
// the trie. Add a chain of node after v corresponding to the characters from flag[depth] through
// flag[lenght-1]
TNode w = expand(v, flag.substring(depth));
// Store the value in the last node of the chain.
w.setFlagValue (value);

else
// depth == flag.length()
// The search stop at an internal node (since flag is not already represented in the trie).
// Since the trie is not yet compressed, only leaves have a positive flag value.
v.setFlagValue(value); // Add the value in v.

// If v is an external Node, transform v into an internal node by creating a new chain with the characters of s
// starting from v. If v is an internal node, create a new chain with the characters of s at the good place starting
// from v.
// Return the last node composing the new chain. The string s is composed by at least one character (s.length > 0).
//
private TNode expand (TNode v, String s) {
TNode w = null;
if (isExternal(v))
for (int i = 0; 1 < s.length(); i++) {
w = new TNode (s.charAt (i));
v.getChildren() .addElement (w) ;

v = w;
}
else {
// v is an internal node and its children are not labelled with the first character of s.
Vector children = v.getChildren();
int 1 = 0;
while (i !=children.size() && ((TNode)children.elementAt(i)).element ()<s.charAt(0)) i++;
TNode u = new TNode (s.charAt (0));
children.insertElementAt (u,i);
if(s.length() > 1) w = expand(u, s.substring(l));
else w = u;
}
return w;
}
/] T o
// Compress the subtree rooted at v
/] T o
private void compress (TNode u) {
Vector p = u.getChildren();

for (int i = 0; 1 < p.size(); i++){
TNode v = (TNode)p.elementAt (1i);
if (isInternal(v)){
Vector g = v.getChildren();
TNode w = v;
while (isInternal(w) && g.size()==1 && w.getFlagValue()==0) {
w = (TNode)qg.elementAt (0);

149

}

Appendix D

g = w.getChildren();
}
if (isExternal(w)){
//w is a leaf, and the chain of nodes after v consists of redundant nodes
v.setFlagValue (w.getFlagValue());
v.suppressChildren();
}
else
// g.size()>1 || w.getFlagValue() !=0
compress (w) ;

//

// Test wether node v is a leaf.

//

private boolean isExternal (TINode v){ return v.getChildren() .isEmpty(); }

private boolean isInternal (TINode v){ return !v.getChildren().isEmpty(); }

// Override the toString method to produce a parenthetic string representation of the created trie (for verification)

public

String toString() {return print (root);}

//

// Perform a printing of the elements in the subtree rooted at node v of this trie.

//

private String print (TNode v) {

String s = v.toString();
if (isInternal(v)){
Vector children = v.getChildren();
// Open parenthesis and recursively print the first subtree
char open, close;
if (children.size()>1) {open = '['; close = "]';} else {open = '('; close = '")';}
s += open + print ((TNode)children.elementAt (0));
for (int i=1; i<children.size(); i++) // size > 0 because v is internal.
// Recursively print the remaining subtrees
s += ", " + print((TNode)children.elementAt (i));
s += close;
}

return s;

[] KKk kK Sk k ok ok ok ok ok K ok ok K ok ok Kk ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K o ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K K ok

// TNode.java

Author : Julien Marion

// Represent a node of the trie labelled with a character.
//**

package importresources;

import Jjava.util.Vector;

public class TNode {

private int flagValue = 0; // Numeric value of a flag if the node is associated with a string of the trie, else 0.
private char label; // Each node is labelled with a character from {A;Z}U{3,_}.

private Vector children = new Vector(l);

// Default constructor (used for the root which store no character).

public

TNode () {label = '#';}

// Constructor with parameter.

public
// Set
public
// Set
public

TNode (char c){label = c;}

a numeric flag value to the node.

int getFlagValue () {return flagValue;}

a numeric flag value to the node.

void setFlagValue (int v) {flagValue = v;}

// Return the label at this position in the tree.

public

char element () {return label;}

// Return a vector containing the children of the node.

public

Vector getChildren () {return children;}

// Suppress all the children of the node.

public
// For
public

void suppressChildren() {children = new Vector(l);}
verification.
String toString() {return ""+label+":"+flagValue;}

150

Appendix D

[] K kK kK ok ok ok ok K ok kK ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K K ok K ok ok K ok ok K ok K ok ok K kK ok ok K ok K K ok

// Grafi.java Author : Julien Marion

// This class is used to implement my transformation rules and contain the interface with the code of GrafiXML.
//**

package importresources;
// Import declaration of package be.ac.ucl.isys.grafixml.gui.editor.component be will be defined here.
// See http://www.usixml.org/javadocs/grafixml/.

public class Grafi {
public static String fontName;
public static byte fontSize;
public static boolean bold, italic;

//
// Generate a dialog box into GrafiXML.

public static void generateDialog(String id,short width,short height, String text,int styles,int extendedStyles) {
System.out.println("Dialog box "+4id+" generated into GrafiXML");
System.out.println();
// TO DO
// change also the type void (return reference of the container)

// Generate a graphical component (or eventually a graphical container) corresponding to information given in
// parameters into GrafiXML.

public static void generateControl(String id,String ctrlClass,short x, short y,short width,short height, String text,
int styles,int extendedStyles) {

System.out.println("Control "+id+" generated into GrafiXML");
System.out.println();
// TO DO
}
//
// Generate a menu into GrafiXML.
//
public static void generateMenu() {
// TO DO
}

// Return the n bits starting at the position p in x (0?p? 31 and n? 32-p).

// << shift bits left, filling in with zeros

// >>> shift bits right, filling in with zeros

// & bitwise AND

// ~ bitwise complement (prefix unary operator)

T

private int readBits(int x, short p, short n){
return (x >>> p+l-n) & ~(~0 << n);

}
//
// Read the bit at the position p in x (0<=p<=31). Return true if the bit is 1, else false.
//
private boolean readBit (int x, short p) {
return ((x >> p) & ~(~0 << 1)) == 1;
}

/K ok kK ok ko ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok

// For future work.
//*****************‘k*‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k*‘k*‘k‘k‘k‘k‘k*‘k*******************

package importresources;
import java.io.File;

public class SdfFile {
public static void process(File f){
}

[] K kK kK ok ok ok ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok K K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok kK ok K ok ok K ok ok K ok ok o ok K ok K ok ok K ok ok K ok K ok ok K ok K ok ok o ok K K ok K ok ok K ok ok K ok K ok ok Kk kK ok ok K ok K K ok

// For future work.
//**

package importresources;
import java.io.File;
public class NibFile {

public static void process(File f){
}

151

Appendix D

152

