Universite Catholigue de Louvain

Faculté des Sciences Appliquées

Département d’ Ingénierie Informatique

Reverse engineering of
Graphical User Interfaces
based on Resource Files

Promoteur : Mémoire présenté en vue
de |’ obtention du grade de
Pr. J. Vanderdonckt
licencié en informatique

par Julien Marion

Louvain-la-Neuve
Année académique

Parmi les personnes qui m'ont
permis de réaliser ce mémoaire, je
tiens tout particulierement a
remercier M. Jean Vanderdonckt
et M. Laurent Bouillon pour
leurs conseils, leur disponibilité
et leur gentillesse davoir
accepté de n'encadrer dans ce
travail. Je tiens a remercier ma
famille, et en particulier mes
parents pour leur soutien tout au
long de mes études.

Contents

1

2

3

4

5

6

a8 oo [T o o USSR 5
= L= 01 L= S 7
Reverse engineering MEtNOUcooviiiiriiiieeee s 9
31 Genera MENOAcooiiiiee e e 9
3.2 MethodologiCal ChOICES.........ccuiiieieriese e 13
3.3 Examplesused and decompilation tooIScoeeeereeiiciie i 16
34 Selected MENOC ..o e e 17
WiNAOWS F€SOUI CE FIIES ...ttt et 19
4.1 EXAMPIES Of FESOUICES.......eeiveeeiieieesieeieseesteeaeseesteetesseesseesesseesseesesneesseenseeseesseenees 19
411 First example from SCITEooiieee e 19
412 Second example from 7-Zip File Managerccoveveeeeneeiescee e 20
413 Third example from RGB EQITOrccceiiiiininieneeeeie e 21
4.1.4 Fourth example from WIinDIrStatccoceveeeeeieene e 22
415 Fifth example from the Common Dialog Libraryccoceviienininnienenne 23
4.1.6 Sixth example from TabIEditcccceeeiiiereeece e 24
4.2 Resource fileSmMOdeliZatioNcoceeieiieieeiise e e 26
421 MeNUS ClasS AIaQraMcceeieeieeiece ettt e e ae e nne e 26
422 Dialog boXes Class diagram.........cceeieeiiiieneeie e 26
4.2.3 DOCUMEBNEALION ...ttt bbbt se et sbenaeas 28
424 (0007015 1 =] 1 £ TR PR S 33
4.3 ReSOUCE fIlES SLIUCIUIE......cueiueeieiieiesie e 35
43.1 Resources of type dialog DOXcooeriiiiiienieseereee e 35
4.3.1.1 Dialog bOX teMPIELE......cccueiieeieeie e ee e 35
4.3.1.2 ControlSAefiNitiON.......cooiuiieeiiee e e 39
432 Shortcut notations in the dialog box template...........cccceveveevevcesecre e, 45
4.3.3 RESOUICE Of LYPE MENU.....oviiiiiiieee e s 46
434 Other tyPeS Of FESOUICES........ccuveeereeiteeieeee st esteseesieesee e teeae e sreenaeeseesseenes a7
4.4 About the decoOmpilation tOOIScouiiiiieriere e 438
USIXIMIL ottt ettt sttt b ettt e e e te e e aeeaeeseeneene e e e ntentesnennenreas 50
51 SrUCIUre OF USIXIMIL ..ottt 50
52 Concrete User Interface MOdElc.ooeeiiiiiieneeeeee e 55
Importing resource fileSin GrafiXML ... 59
6.1 Transformation of resourceSintO CUILcooiiireriiiiienenese e 59
6.1.1 CorrespoNdeNnCES LADIE.coiiree e 59
6.1.1.1 Resources of type dialog DOXcccecuereereeiesierieee e 60
6.1.1.2 ReSOUrCeS Of LYPE MENU ...c..oieiiiiiiieie ittt 66
6.1.2 DEriVALION FUIBS......eiieiieee ettt nne s 66

6.2 Plug-iN deVEOPIMENToouiiiiieieeeee e 70

6.2.1 HOW T0 FUN TT2. ettt nnes 70
6.2.2 [[0 TV (0 T 0TS OSSPSR 71
6.2.3 S0 1c o 107 1o LRSS 72
6.24 Description of my implementation............cceoererirereneneneeeeeee e 73
A @ o o: ¥ Lo o S 83
(=]] o] Tl gr=T o] o |V ST PR 85

Appendix A Example of complete resourcefile

Appendix B Comparison of the resource files given by the decompilers
Appendix C Documentation of UML diagrams modeling a resource file
Appendix D Source code

1 Introduction

Software development as it's commonly practiced today doesn’t look much like engineering,
but it should. Methods, models and automated tools composing software engineering practices
are requited to deliver software of high quality’, and with low costs. The major source of
software problems is poor requirements specification. The extraction of these requirements is
the hardest function of software engineering, as the most important one since the cost of late
corrections is prohibitive. The user interface in particular rarely satisfies the real expectations
at the first time, it’s from the look and the manipulation of the final product that we see really
what is wrong. The requirements are also volatile. A feedback of users during the
development is needful to provide a pleasant interface, statically (the presentation?) as
dynamically (the dialog®). Traditional process models to lay out the different activities in the
development life cycle are also not always appropriated, especially for the conception of user
interfaces. For example, the waterfall model is a simple sequential composition of the
activities (requirements, specifications, design, implementation, integration, maintenance).
This model is too general and unrealistic to design user interfaces particularly because it not
address early validation. To reduce the risk of inappropriate user interface, better models still
make it possible the creation of interface prototypes and then more interactions with the users
during the development. For example, exploratory models allow successive revisions of the
software specifications based on prototypes quickly implemented from which we can obtain
users feedback (when the expectations are reached, we then apply the other traditional
software engineering phases). Another example is the spiral model allowing an iterative and
incremental development (certainly the stronger process model to minimize risks).

The life duration of a product is an important aspect. We wish that the code we write for big
applications will run for a long time, not that it becomes out-dated after few years. It's also
needful to be able to produce a vast range of products (that is, multiple versions), and not only
one product. Software’s are subject to continual changes in their life cycle, and organizations
devote significant resources to their maintenance and evolution. [The problem is to quickly
adapt the user interface of interactive applications to these changes.]As the technologies
evolve (mobile devices, e-commerce...), the requirements evolve too (additional versions,
interface migration to the web ...). The today constant evolution of the variety of computing
platform (a specific software and hardware environment) requires more efforts to cope with
software portability”.

! The usability of aproduct is afactor of quality.

2 For example, the service has to be easily visible and the critical services easily accessible.
% For example, agood scheduling of the actions to be performed has to be defined.

* The portability of aproduct is another factor of quality.

Graphical user interfaces are important parts of today’s interactive applications. If we
examine the code of interactive applications, a large part is generally devoted to the user
interface portion. The development of user interface can then be strong component in the
global cost engendered (dominated by the maintenance). It is then normal that software
engineering aso include well established methods to develop the user interface, uncoupling it
from the application. The various aspects to take into consideration (such as the interactive
task to perform, the domain, the context of use’, the presentation of information and the
dialog between the user and the system) are generally captured by means of models. These
specific models explicitly capture knowledge about the user interface with appropriate
abstraction. The importance of having user interface engineering models justifies the need of
providing appropriate automated tools to create each of these models. The design can be
rapidly prototyped and implemented (possibly even before the application code is written) and
it's easier to incorporate changes discovered through user testing. The motivation is also to
facilitate the creation of user interfaces that work on any platform available today.

The goa of this thesis is to develop a tool aimed to capture the essence of an application’s
graphical user interface and recreate a model at a more abstract level (specifying the user
interface without the multiple details linked to the implementation in a specific language). It
will serve principally as automated support for reengineering activities such as the redesign of
existing interfaces for another platform.

A method which performs abstraction is reverse engineering. The results can be then reused in
a forward engineering phase to regenerate user interface code, achieving a reengineering
cycle. The originality is that the model will not be extracted by the examination of the entire
source code, but from the resource file of an application storing user interface information.

My approach to reuse an existing application’s graphical user interface especially for
different platforms can be stated as the specification of this interface starting from the
resour ce file of the application and describing it and at a higher level of abstraction,
allowing a subsequent reengineering process adapted to any platform.

® The platform, the user and its environment define together the context of use.

2 Sateof theart

I will mension here some related works to the reverse engineering of application’s user
interfaces to show that this method is commonly used today. Many organizations for example
are choosing to reengineer their critical applications to better fit their needs and to take
advantage of the new technologies. Most of these researches lead to reverse engineering of
legacy systems® user interfaces.

MORPH [1] is aprocess for reengineering the user interfaces of text-based legacy systems to
graphical user interfaces. The resulting model is used to transform the abstractions in the
model to a specific graphical widget toolkit. The process is composed of three steps. In the
detection step, the source code is analyzed to identify user interaction components in the
legacy system thanks to a detection engine. In the representation step, an abstract model is
build expressing the existing user interface (as derived from the detection step). The model is
then stored in the knowledge base. In the transformation step, human analyst can refine the
model thanks to the transformation engine which makes it possible to manipulate, augment
and restructure of the resulting model to a graphical environment. The transformation stage
suggests specific graphical implementations and integrates them for user interface
abstractions into the legacy code.

The AIUDL [2] environment was a pioneer approach in user interface (Ul) reengineering.
The original Ul is first trandated in AUIDL (Abstract Ul Description Language). This
language is able to represent Ul objects in terms of both structure and behaviour. Different
levels of abstractions can be defined. To trandate the interface in AUIDL, user actions and
system responses have to be identified using pattern matching techniques’. The Milner's
process algebra is used to map out the behaviour of the system. The spatial organization of
display objects is explicitly described with two mechanisms: containment and importation of
attributes from other objects®. An abstract syntax tree is first obtained from the source code of
the system. A module extracts Ul fragments from it, and the abstract specification of the Ul is
then constructed. This last step is semi-automated: a part of the code is parsed and
automatically abstracted and the remaining is left to the programmer. Finally, the AUIDL
specifications are trandated in the EASEL language (this language allows the automated

® A legacy system is a computer system or application program which has been in place for a long time and
which continues to be used because an organization does not want to support the costs of replace or redesign it.

" The code of a Ul is parsed to build a manipulable representation of it. Interface fragments are then extracted
from this representation, and a pattern matcher identifies syntactic patterns in the fragments. Using the code
fragments as a basis, details about modes of interaction and conditions of activation are identified with control
flow analysis.

8 For example, an object imports the x-coordinate of another object to describe an alignment for these objects.

generation of screens for the IBM 3270 environment) and the generated code is linked with
application core.

Since there is an increased demand to make legacy systems accessible through the web in
order to support e-commerce activities, the problem of these systems’ user interface migration
to web-accessible platforms is becoming important. Instead of analysing the code to extract a
model of its structure, the Cellest [3] process analyse traces of the system-user interaction to
model the behaviour of the user interface. This produces a state-transition model which
specifies the screens (as state) and the possible commands |eading from one screen to another
(as transitions between the states). To capture user interaction during the use of the legacy
system, Cellest is composed of a recorder and a pilot allowing. The recorder localizes aspects
of the legacy system relevant to a specific task. In this approach, an interface is viewed as a
collection of screens, each allowing a set of transition actions to other screens. The screens are
captured by the recorder that records each session (visited screens, actions in order to achieve
specific tasks). The pilot trang ates the transition actions in functionally equivalent actionsin a
new graphical user interface. The code is not needed in this approach and the necessary
information is extracted to complete the tasks on the old system. The model produced is used
to construct models of the tasks performed in the system. These models are then used to
develop a new web-accessible interface for executing these tasks (in a forward engineering
phase).

The reverse engineering step is not only used for the reengineering of a Ul. For example, |
could still mension a process named GUI Ripping [4] which creates amodel from a graphical
Ul for testing. To detect defectsin Uls, test cases can then be automatically generated.

3 Rever se engineering method

| present in this chapter the reverse engineering method that will be used to obtain the
specifications of an existing graphical user interface.

3.1 General method

Reverse engineering is the general process of analyzing a technology to see how it works.
Originaly, it® a practice taken from industries that is now frequently used on computer
software. In the automobile industry, for example, a manufacturer may purchase a
competitor® vehicle, disassemble it, and examine the components to enhance their vehicles
with similar components. Reverse engineering as a method can aso be used in the
development of software, including the user interface (Ul) part giving access to its core
functionalities. Such method does not involve changing the existing source Ul or creating a
new Ul based on the reverse engineered source Ul. It is a process of examination, not change
or replication.

To give a simple definition®, reverse engineering is "the process of analysing an existing
system to identify its components and their interrelationships and create representations of
the system in another form or at a higher level of abstraction. Reverse engineering is usually
undertaken in order to redesign the system for better maintainability or to produce a copy of
a system without access to the design from which it was originally produced.”

In black box reverse engineering, systems are observed without examining internal structure.
For example, one might take the executable code of a program, run it to study how it behaved
with different input and then attempt to write a program which behaved identically (or better).
In white box reverse engineering the inner workings of the system are inspected.

We could think that reverse engineer a program is reversing a program® machine code back
into the source code that it was written in. But it's a familiar use of the term. Here is a
diagram [5] of the most traditional form of reverse engineering, which is an in-depth analysis
(usually starting with source code) performing abstraction:

® From the free on-line dictionary of computing http://foldoc.doc.ic.ac.uk/foldoc/.

(alteration)

re-think |
Concepts Concepts

Reverse Engineering
(abstraction)

) Forward Engineering
Requirements re_Spec'fy> Requirements (refinement)

. re-design .
Design 9 » Design
, re-code ,
Implementation » Implementation
Existing system csempare | Target system

functionality
quality

The most traditional method of development is referred to as forward engineering. In the
construction of Ul, designers develop a product by implementing engineering concepts and
abstractions. By contrast, reverse engineering begins with final product, and works backward
to recreate the engineering concepts.

Due to the rapid changes and evolution of organisations and their business activities, the
challenge is to quickly adapt their Uls of their interactive applications to these changes.
Rather than create a new system, reengineering can be used to redesign the existing system.
Note that reengineering involves reverse engineering followed by forward engineering. It is
not a super type of the two.

The goal of maintenance in software engineering is to obtain a new version which responds
some modification requests. There are tree types of modification: a correction of detected
faults, an improvement to have a better quality (performance, usability...) and an adaptation
due to different, new or restricted requirements (called a variation, an extension and a
contraction respectively).’® Reengineering is important since maintenance takes a great place
in software production. Actualy, the distribution of efforts (and then of costs) is often
inadequate, and as consequence the cost to manage multiple versions for example is
exorbitant. According to observations [6], the average distribution of the total cost of
production (including development and maintenance costs) of a typical project can be
represented by this pie-chart:

unit tests

code
8%
design
regquirements
concepts [3%——\\

maintenance
67%

integration tests

19 The new version is arevision when the modification is a correction or an improvement, and a variant when the
modification is an adaptation.

10

The Ul israrely perfectly designed at the first shot, and the Ul code has often to be rewritten
completely when the software needs to be transformed for another platform. A substantial part
of the code written for interactive applications is devoted to the user interface. This code has
to be identified and replaced. Ul design is then time-consuming and expensive in the
development life cycle. Techniques for reengineering are important since too few time and
effort are usually put in the specification and the conception of Ul reliable, portable and
maintenable. Moreover, the source code of the software may not always be available. When
purchasing an application, the executable is often supplied to an organisation without any
source code. Or the source code can also be lost. If we want to get a version with an interface
in a more adapted language, correct errors and limitations in the existing interface or still
transform or redesign an obsolete product into a useful one by adapting them to a new
platform, the only way to present the information in a language that a programmer can
understand is to have recourse to the software decompilation (translating binary code into
source code). But the interpretation is a tedious task since origina comments and
specifications are not present in the resulting code.

The general purpose of reverse engineer a Ul, which is the subject of my thesis, is to examine
an existing application’s Ul in order to extract an abstract representation. The method will be
able to provide an automated way to extract relevant information (and in case of poor or non-
existent documentation of the code, this also economizes efforts), to generate an additional
view more synthetic of the Ul (that will aid its review or modification) and to facility reuse.
This contributes to the purpose of reengineer a Ul, which is the transformation of the Ul for
another platform.

| describe in this thesis an approach to reverse engineer the Ul of applications designed for a
desktop machine directly from the executable file. A subsequent forward engineering process
can be triggered. Instead of looking in the source code (composed of the functional core and
the Ul expressed in some programming language) for the part related to the Ul, it's sometime
possible to explore resources used and extract them from the executabl e file.

In addition to source code, most applications include resources used at runtime. Resources can
be composed of a wide range of elements, including elements that are necessary for the Ul but
are not part of the application code itself and custom resources that contain data the
application needs. Resources are additional binary data stored in an executable file. They do
not reside in the executable program® data area (that is, the resources are not immediately
addressable by variables in the program® data segment), but are appended to the executable in
a separate area. When a program is loaded into memory for execution, it usualy leaves
resources on disk. A particular resource is loaded into memory when an application needs to
use it for the first time. Just as multiple instances of the same program share the same code,
multiple instances aso usually share resources. Without the concept of resources, a binary file
such as an icon for example would probably have to reside in a separate file that the
executable would read into memory to use. Or the icon would have to be defined in the

11

program as an array of bytes (which make it difficult to visualize the actual icon image). Asa
resource, the icon is stored in a separate file and is bound into the executable file during the
build process. All the resources are usualy defined in a main file which is added, once
compiled, to the application® executabl e file.

The following illustrates the general method that I'll used to reverse engineer the Ul. The
process starts from an executable file (a binary file containing a program in machine language
which is ready to be executed).

Reverse Engineering

Executable

(binary file)

v

Resource file
extraction

F—

v
A A

Resource Reverse Engineering Tool

file

UIDL
~——

A4

User interface generator

)) code
Forward Engineering

The input of the tool to develop is a text-based resource file containing user interface
information extracted from an executable.

The extraction can be made by some decompilation tool (that is, a program that converts the
resource definition from machine language to some text programming language).
Decompilation can be reverse engineering, since it is increasing the level of abstraction. It®
just that it starts lower and ends lower (with the implementation, i.e. the source code) than
most reverse engineering. Then decompilation would be part of my reverse engineering
(although compilation is not considered part of forward engineering, since it is an automatic

step).

The given Ul has to be described at alevel of abstraction that is higher than the level where
code is manipulated. The output will be the Ul expressed in a User Interface Description
Language (UIDL). A specification language has to satisfy some requirements to be qualified

12

asUIDL. The UIDL should be precise to enable automatic specifications processing. It should
be expressive enough to support software engineering techniques (such as model derivation).
It should be compact, expressed in a standard format and as much as possible human-readable
to alow designers and devel opers to exchange their specifications.

This transformation completes the reverse engineering part. The UIDL file then serves as
input for forward engineering to generate Ul code for atarget computing platform.

3.2 Methodological choices

This section present the choices that I’ ve made to instantiate the general method illustrated in
the previous section.

The reverse engineering tool presented in this thesis is limited to operate on Ul of MS
Windows' applications. Itsinput is any Windows resource script file (*.rc), from which high-
level requirements will be extracted.

I’ ve chosen to focus my investigation on Windows Ul s since this operating system has broken
into the market. But the scope of the analysed Uls could be enlarged by considering other
formats of resource files. Resources such as nib (*.nib) or images (*.icns) resource files can
also be packaged with Mac OS-based applications. Nib resource files store Ul information,
including windows, dialogs, and Ul elements such as buttons, sliders, text objects, and help
tags for these elements.*! They are abundle, which means they are really a directory structure,
not a single file. | can mention also the screen definition files which are text files describing
the layout of the display.'? The method proposed could be generalized to these types of files.

A resource file associate to an executable MS Windows programs can include various types
of resources, such as principally accelerator table, bitmap, cursor, menu, dialog, icon, string
table and version information. An accelerator table is used to define key combinations that
generate a command message (often to duplicate the action of common menu options). Some
programs use customized mouse cursors to represent different operations of the program.
Programs usually use menus, dialog boxes and customized icons (such as the icon displayed
in the upper left corner of the title bar of the application window or shown as a shortcut on the
desktop). The datain aresource can also describe character strings not defined as variablesin
the source code. The text used in a Ul isisolated in one file to make easier the trandlation of a
program in other languages and to reduce memory space. In addition to the standard

1 An application can use several nib files, with one of them designated as the main nib file (containing the main
menu and any windows appearing when the application starts up). Other nib files can be loaded whenever
needed. A good rule for creating nib filesisto use one nib for each separate kind of window in the application.

12 They learn each window (screen) in an application and each object within that window.

13

resources, a user-defined resource (also called a custom resource) can be used to attach any
datain a convenient format required by a specific application.

These resource are defined in a resource script file (*.rc). This file is an ASCII text file. It
contains representations of the resources that can be expressed in text, such as menus and
dialog boxes. It al'so contains references to binary files that contain non text resources, such as
icons and customized mouse cursors. All resources in a resource script file are defined using
identifiers that, together with the type of the resource being referenced, uniquely identify each
resource in an application. Once compiled, the resources are binary data. The binary compiled
resource file (*.res) is then added to the executablefile.

The resources appended to an executable can be extracted thanks to existing freeware utilities.
| propose in the next section those that I’ ve used. Thanks to these tools, image resources (such
as cursor, icon, bitmap, gif, avi, and jpg files) can be viewed, audio resources (such as wav
and midi files) can be played and the other type of resources (such as accelerator table, menu,
dialog, string table and version information) can be viewed as decompiled resource scripts.
Menus and dialog boxes can also be viewed as they would appear in a running application.
These programs are usually used to edit the resources (modify, add and delete resources). The
resources can aso be saved as image files (*.ico, *.bmp etc.), as binary resource files (*.res)
or asresource script files (*.rc). Thislast functionality giving atext representation of the Ul is
integrated in my reverse engineering process. An example of resource script file generated by
one of these toolsis given in appendix A.

The reverse engineering tool will provide as output a Uss XML (User Interface eXtensible
Markup Language) description of the given resource script file. This language gives an XML
Ul description. It has been chosen to express the abstract representation of the Ul becauseit’s
a UIDL that can be used to specify a platform-independent Ul and enabling multi-path Ul
development. UsiXML can express various models depending on the level of abstraction. In
my case, the Ul will be reverse engineered at a level of abstraction dependent of the modality
of interaction since it’s a graphical Ul. The model produced at this level is the Concrete User
Interface (CUI) model. It can represent in a sufficient degree of expressiveness the elements
perceived in aUl codein any specific language. A set of forward engineering tools using this
language are aso today available. The UsXML language and its level of details and
abstractions are introduced in chapter 5. XML is frequently used to describe and design Ul for
any device, any target language and any operating system on the device. Another well-known
language is UIML, which is a relatively simple markup language (a little over two dozen
tags). Various other related languages exist today, such as XUL (Xml-based User interface
Language), XIML (eXtensible Interface Markup Language), AUIML (Abstract User Interface
Markup Language), useML (Useware Markup Language) or XICL (eXtensible user Interface
and user interface Components Language).

14

To accomplish the transformation of a Ul specification from one format to another, I’ve
decided to implement a new plug-in into the GrafiXML tool.*® In order to facilitate the
edition of a new Ul in UsXML (at the CUI level), GrafiXML has been developed as a
graphical tool to draw Uls. It's an editor based on :
aclassical element-based approach (that is, al the |SXME ﬁ TN

elements are directly described by a physical form PTC _____ > HTML Java

we can identify and assign a meaning). The user
can draw in direct manipulation a Ul by placing elements and editing their properties in the
composer, which are instantly reflected in the XML editor.'* At any time, the user can see the
corresponding Usi XML specifications and edit it (and if a tag or the elements are modified,
the changes are propaged to the graphical representation). The user can then then save the Ul
in the UsiXML format. | will use this tool in order to reverse engineers a resource script file
and obtain a CUI model. By importing a resource script file into GrafiXML, the layout of the
specified Ul will have to be displayed in the composer and the UsiXML specifications will
have to be generated in the XML editor. The UsiXML file can then for example serve as input
in forward engineering to generate Ul code designed for another platform.

Using GrafiXML in my method has several useful advantages. Firstly, this will considerably
facilitate my implementation: | can use built-in methods to generate and manage el ements at
the desired level of abstraction after having defined transformations rules. Then, the designer
can view the result in a graphical form when reverse engineering aresource script file, and not
only a XML specification. This gives some confidence in the reliability of the tool without
having to implement some code giving the rendering. This graphical representation will also
help me to validate my tool in the testing phase. The actua result can be rapidly compared
with the expected one and the produced model can be easily analysed. Finaly, GrafiXML is
able to automatically generate Ul code in HTML, XHTML (Extensible HyperText Markup
Language™), XUL and Java thanks to a series of plug-ins. Reengineering of a resource script
file can then be automated to obtain the code in these high-level languages.

The development of a new plug-in enhances also the functionalities of GrafiXML. Existing
Uls can be reused and incorporated in a project current edited in the tool. We can see the
utility of the plug-in that | will develop from two different points of view. As usudl,
GrafiXML can be used as an editor to specify Uls in UsXML (at the CUI level) where
Windows Uls can be imported. Or it can be used as a reverse engineering tool.

13 This free and open source software is available on http://www.usixml.org/.
1 will show an illustration in the chapter 5.
It sareformulation of HTML in XML.

15

3.3 Examples used and decompilation tools

| list here the Uls that will guide my analysis throughout my thesis. | will show in the next
chapter how they are specified in a resource script file (they are aso illustrated in appendix
B). | list after the tool that I’ ve used to extract the resource script files.

I"’ve selected five 32bit Windows applications'®: SciTE v1.62 (a source code editor), 7-Zip
File Manager v4.15 (an file archiver), Windirstat v1.1.0 (a disk usage statistics viewer and
cleanup tool), RBG Editor v3.9 (a small utility for selecting and creating RGB - Red, Green
and Blue — colors) and TablEdit v2.60d5 (a program for creating, editing, printing and
listening to tablature and sheet music). For each of these applications, I’ve pick up one
resource to analyse.

Resources are additional data accompanying a Windows application. They are usualy stored
with the executable. They can also be stored in a separate file named Dynamic Link Libraries
(*.dll). As the name suggests, these libraries are not linked into the executable (*.exe) file
during its creation, rather they get loaded dynamically into the system memory at runtime
(that is, they are linked to applications are loaded in memory). Windows is operating system
which uses dynamic linking. This means that the same block of library code can be shared
between several applications rather than each application containing copies of code. Another
exemple is not a resource from a particulary application, but from the Windows Common
Dialog Library (comdig32.dll) that provide common dialog boxes used by Windows
applications (such as the ©pen fileG@nd @rint@lialog boxes).

A decompiler can be used to offer a thorough look at all of the resources in the compiled
executable file. To bring into relief eventual variances in the informations they produce, I’ve
used four resource editors’’ (including a decomplilation tool): Resource Tuner v1.95,
Restorator v3.00, Resource Builder v2.3.0.8 and Resource Hacker v3.4.0. Sush utilities
enable to view, modify, add or delete resources in executables, but also to extract them in a
file with a .rc extention, displaying readable information about the structure of the individual
resource. | discuss the differencesin the files they generate at the end of the next chapter.

| can already see the link between the two text files describing a Windows Ul (aresource file
generated by a decompilation tool and another file expressed in the UsiXML language): by
reproducing manually the Ul in the GrafiXML editor, | can obtain a first specification. The
two types of file obtained, describing on its own manner the interface, are always a textual
representation of the resource. They can be then compared.

!® They can be found on the net. The three first applications are sharewares (from http://www.framasoft.net and
the two others are free for try.

Y They can be downloaded on http://www.restuner.com, http://www.bome.com/Restorator (a shareware version
limited to a 30-day trial period), http://www.resource-builder.com (also limited to a 30-day trial period) and
http://www.angusj.com/resourcehacker respectively.

16

3.4 Selected method

The goal to achieve in this thesis can be reformulate as the development of a reverse
engineering tool which will read any Windows resource script file and generate into
GrafiXML the corresponding Usi XML specifications (at the CUI level). Hereisan illustration
of the selected method:

We have beforehand to extract the resource script file from an executable (Windows uses the
filename extension ".exe"), here for example with Restorator. Note that these tools
incorporate also an internal resource script compiler (called a RC compiler). Once a resource
compiled, the resources are modified in the application® executabl e file.

17

18

4 \Windows resource files

In the previous chapter I’ ve stated my problem which is the reverse engineering of Windows
resource script files. | see in this chapter the content of these source files and give a meta-
model describing them. In the next chapter, | present the target language which will be used to
specify these filein a higher level of abstraction.

4.1 Examples of resources

In this section | show the examples that I've chosen and how they are described in the
resource script file (*.rc). Each resource is extracted by one particular decompiler. To
compare the information generated, the resources given by the other decompilers are in
appendix B. In the fourth section I’ll make a discussion over the different decompilers and
suggest my favourite. Each example come from one application mentioned in the chapter 3:
the files that have been used in the decompilation tools to obtain these resources are
SciTE.exe, 7zFM .exe, windirstat.exe, rgh.exe, comdlg32.dll and tabledit.exe.

4.1.1 First example from SciTE

The first graphical object is a dialog box called up by selecting “Find” from the “Search”
menu, and will serve as main illustration for this chapter:

With a resource editor, the resources can be saved in an ASCII resource script file. Thisis
what is generated by Restorator:

19

% % (
())
% #$! $,- , L ((/

Y& #+90 (G /
"11% # 23- 00, 4 5 (0 (/
9B %, 1 # (/
%06 -7 #8%901%0 23- 00, 0 ((5 (/
sy ((5 /
3 ((/)
#.% (()
28 (5 (/
%9 I 5 (
% + | (5 (

Thefirst line gives a name to the dialog box (in this case, 400). The name is followed by the
keyword DIALOG and four numbers. The first two numbers are the x- and y-coordinates of
the dialog box when the dialog box is invoked by the program. The second two numbers are
the width and height of the dialog box.'® These coordinates and sizes are not pixels, but are
based on the size of a system font character (in this case, an 8-point MS Shell DIg font™): x-
coordinates and width are expressed in units of 1/4 of an average character width and y-
coordinates and height are expressed in units of 1/8 of a character height.”® Because system
font characters are often approximately twice as high as they are wide, the units on both the x-
and y-axes are about the same. The second line defines some style for the dialog box (a
combination of window style and dialog style). Within the left and right brackets are defined
the child window controls that will appear in the dialog box. This dialog box uses six types of
child window controls: a left-justified text, a combo box, a group box, radio buttons and push
buttons. The first number is a value that the child window uses to identify itself when
communicating to its parent (the dialog box window).” The next four numbers set the
position of the child window control (relative to the upper left corner of the dialog box® client
area) and the size. Some style flag can also follow to define more precisely the appearance
and functionality of the control.

4.1.2 Second example from 7-Zip File Manager

| take an interest here to the menu bar of an application. With aresource editor (here Resource
Hacker), menus and Dialogs can also be viewed as they would appear in a running
application. The following is the extracted menu resource.

18 Notice that if the dialog boxe has a caption bar (which is the case here), these measurements concern the
dialog box®client area, and the caption bar will be shown above the y-coordinate.

¥ 1n fact, MS Shell DIg is not a physical font, rather a face name of a nonexistant font. It ensure the previous
Windows operating system compatibility. It can be specified in either the Setup file during the installation
process or when customizing a local system by double-clicking Control Panel® Regional Options icon. Because
the font generated using MS Shell Dlg is different on different versions of Windows, the dialog box can look
different depending on the version.

% This alows using coordinates and sizes that will retain the general dimensions and look of the dialog box
regardless of the resolution of the video display.

2! Because the text control does not send messages back to its parent, this valueis set to -1.

20

1
&
$
%#" + 0<& &I=((
#7 B! + 0<& &!= ((
0&& &!= (
&00<& &!= (*
N <& &=
.3 & &= (
98 <& &=
> <& &= 5
0,-& <& &!=
% 10<&4
,,18%0
-+ 2, 18% 5(
& % ,,18% 5]
%")18 O 5
,$)1& 0 2& 5
3 &, -<&X<
3 ? 1<§ 9%903% (
LI 0% 0& -. <& 1& (.
6 0 <& &!=
#9%,- &0
,,10
#* 13

4.1.3 Third example from RGB Editor

The next example is the options dialog from the “File” menu of the application. It's now
Resource Tuner that is used to see the resource:

/ hoo=) I
%0 -6
(444 () @ (
5 ((
0 + 183! 0&+0 ((5 44
1%+ wW98% -% ((((5 (44
, 67 -,"-9% # 2& (((5 4 4
C (4 (/ e
1 +&& .3 ,6 %-, &8 ,3 & 138 % (((5
(((
#1) %, (((5 /
* #2% +7% ((5 5 5
* # %, ((5 5
(C 54 (*r e
3+6 & ,L,- $% > 6- !38,% ,30 ((4 (5
cc
& ((5 (
(4 ((*)
3 ((5 70+0 13 ,%$ 2) (O O
#x 0" & ((5 ((
C 4« (*)
3 (7 0+80 13 , $ 2) (C ¢
C(C 40 (/ - @
C CC CCC
9% -% 1&- ,1 $ 3. " (4(5 ((
CCCCac(
#,1 08& % " 9%"),20 (((5 ((5

It happens that styles are expressed with hexadecimal number instead of flag identifiers. In
reality, a flag correspond to a bit (or a group of bits for some mutual excusive flags)
positioned in aword of 32 bitsin memory (as in the binary .res resource file): 1 if the styleis
present, O else. In this case, the hexadecimal number B7 for the up-down control to the binary

21

number 10110111, which correspond to the A) B A

I Ix A) B A B A * flags
combination. Note also that the bitmap (the first control) has not the same dimension in
Resource Tuner that in the application (see in appendix).

4.1.4 Fourth example from WinDirStat

This example corresponds to the dialog box called up by selecting “Configure WindirStat...”
from the “Options’ menu. Notice that the tab control doesn’t appear to the right. In fact, there
Is one dialog box specification in the resource file for each tab item (the dialog box called
“WinDirStat” which aggregates them is missing).

The following isthe related part of the resource script file (from Resource Hacker):

#)-" &< 00 (*) / ((
((70+80 &%98% ; * * ;
10 , < % "

(((70+&0 &%98%
ong

((7 0+&80 &9698%
4% < W& - (

(4 70+80 &9%98% H
" & + + (/*
&+ (& H

() *)) * 5)) (5

& .| ()) C * :) (55 4
- & (()) * i) /) (4 (
#EL, % $ (()) * o) (5 (

VS # - () *) C * i)) 5 ((
(Ao e) *) *)) (((2 (
HUAT & &L () *) *)) 5 «(2 (
&+ * .

&+
&+
&+
&+

- - o <

—_— = ~— ~—

* *

—_— = ~— —
3]

—_——

(4
(
(
(5
(

22

In this case, the two hexadecimal numbers 1000 means that the thirteenth bit from the right*
is set to 1, which correspond to the flag c /* (sinceitis an extended dialog, the
controls can have extended styles that occur here to the end of aline). Using this style with a
push button control has the same effect as using the) /= stylethat right-justifies the text
in the button rectangle.

4.1.5 Fifth example from the Common Dialog Library

I’ ve noticed that the ‘open file' dialog box was not present in the resource of SCiTE. In fact,
the application uses one of the Windows dialog boxes stored in a specific file (comdig32.dil)
that many applicationsimport in their interfaces.® Thisis precisely the dialog often displayed
by selecting ‘open’ from the ‘file’ menu (or by pressing CTRL + O) that serve as example
here:

c) B
3
/ /)y /
nol
- B * 5) / 2 (
(()) c) / *) 5)
55
((
((., 18% $ 2 () 2
(() B) / *)) 55
L # 9% ' (4 B &) / 5 ((
((* *))) C C (5 (
((,78,),22 2 C C (5 (
10,6483 ' (4 B *) / 5 (
(5) * i) 3) ((5 (
3 W#- %D L () *) C *)) (((5
3 () *) *) /) (5 ((

%+ !) *) * o) /) (5 (

The first static control has also the number 1000 as extended style corresponding to

c /* ,which for static controls has the same effect as using /= . For the tool
bar control, the number 50012B4C is equivalent to the styles S S,
) , @, I, ; ,) B ,

?2 The number 1000 in hexadecimal is equivallent to 1000000000000 in binary.
2% |’ ve found another decompiler (eXeScope) which listsin addition the .dll files used by an application.

23

5

) B) ,) B and) B , and the number 200 is

equivalent to the extended style C /. For the extended combo box, the
number 50210042 is equivalent to L D ; ,))
) and) * . This control superposes the edit control (see the size
numbers).**

4.1.6 Sixth example from TablEdit

The last example is a dialog box that appears when clicking the “New” push button from the
dialog “Chord Manager” called up from the “Edit” menu.

When pushing on “Edit Diagram”, the dialog box changes of look. But all the new emerged

controls (and those that disappear) belong to the same dialog box, and are specified in

sequence in the resource script file. It makes it difficult to know what the dialog look like with

only the information below. The program determines if a child window is currently hidden

and disabled (it's not enough to be not visible, it has to no longer respond to mouse or

keyboard input), for example by a call to the Windows functions ShowWindow (with
* as one of the parameter) and EnableWindow (with as one of the parameter).

Thereis the resource with Resource Builder:

5 4 (
/ c* B
)11

%0 -6

/
#1 %W e) 5 (

(()) ¢))) (5 ((
/) ((

()) ¢))) 5 (
6 5 *) 5 (

=))) C)) 5

D))) C)) 54 5(((
& *) (
A=))) C)) (
4D))) C)) 54 ((
2-0, 0) 4 5 (

()) ¢))) (C 5
#())) /)) 4 (4 (

% don't see the reason because a drop-down combo box has aso an edition field...

24

()))) ((5 (4 (
)))) ((4 (
)))) ((4 (
)))) (54 (
(5)) !) C /) 4 (((5 4
5)) @ *)) 4 (4
5 ()) *)) (545
7 & 44))y) C / i) ((5 4
))) C *)) C ((
())) C)) ((
))) C)) (G (
))) C)) ((
))) C)) C (
))) C)) ((
%& (5 (
444 4 (((5 (
1,0)))) (5 (
)))) (5 (
#1% (()))) (C 5¢(
0 -& o ()) *) ;) 5 (
))) 4 (4 (
F (4) C))) (4040 (
& B-))) C))) 5 (

It happens that a dialog box looks different in the resource editor tools, but it's especially the
casein this example:

Resource Tuner Resource Builder Resource Hacker

The objective of my thesis will be to attempt to faithfully reproduce in GrafiXML the
graphical interface described by a given resource file, not what we really see on the screen
when we use the application. A resource file gives us only a point of view, things can be
managed internally in the program (a control with .) canbenot visible). Depending
on the consistency of these input files, the interface specified can be different from the actual
interface. The result described in UsiXML cannot naturally be better. My task is still to utilize
as much as possible the informations from a resource script file to restore the interface, even
though a first loss of informations can occur before the reverse engeneering process. The
content of thisfilesiswhat | will seein the next sections.

In addition, some elements not covered in UsiXML can be aso lost. If it hasn't the
counterpart of the property that a chexk box can look like a push button for example (this is
what means the flag) * for the check box labeled “Edit Diadram”), the control
cannot have the desired appearence in the final result. In chapter 6 I'll see this other potential
loss of information.

25

4.2 Resour cefiles modelization

The purpose of this section is to structure informations that can be found in a resource script
file. To modelize the problem in a standart way, I've used the UML (Unified Modeling
Language) notation. This will also enable to have a direct model-to-model mapping. Indeed,
the CUI model is represented with the UML notations, so the source and target meta-models
use the same formalism. Only the resources of type menu and dialog box will reveal
important. The two first sections give the related class diagrams.

4.2.1 Menus class diagram

MENUBAR
MenulD
Language : String
Sublanguage : String

0..1 1
0.* 0.*
POPUPMENU
| Text : String

| State : {enabled,disabled,grayed} 0.1
| Position : Integer v

0..*
|
MENUITEM SEPARATOR
ltemID] Position : Integer
Text : String

Checked : Boolean
State : {enabled,disabled,grayed}
Position : Integer

The class diagram modeling a resource of type menu is simple. Note that it's a modelization
of aresource file, and not of the real user interface specified by the file. The link between a
menu item and a dialog box cannot be represented because this relation is not specified in the
file. This class diagram is then separated from the next one. It is uncommon to see menu items
directly in a menu bar (represented by the aggregation relationship), but it's a valid

composition.
4.2.2 Dialog boxes class diagram

Note that here | till include the relationships named “Glue To” and “Regroup” because they
can be deduced from the positions and dimensions of controls specified in the file (even if

these relationships are not explicitly specified).

26

WINDOW

Text : String
GeneralStyle : {popup, overlapped, child}
Border : Boolean

Caption : Boolean
ClipChildren : Boolean
ClipSimblings : Boolean
Disabled : Boolean
DialogFrame : Boolean
Group : Boolean

TabStop : Boolean
HorizontalScrollBar : Boolean
MaximizeBox : Boolean
Maximized : Boolean
MinimizeBox : Boolean
Minimized : Boolean
SystemMenu : Boolean
ThickFrame : Boolean
VerticalScrollBar : Boolean
Visible : Boolean
ClientEdge : Boolean
DialogModalFrame : Boolean
StaticEdge : Boolean
WindowEdge : Boolean
AcceptFiles : Boolean
AppWindow : Boolean
ControlParent : Boolean
ExContextHelp : Boolean
Layered : Boolean
LayoutRTL : Boolean

Left : Boolean
LeftScrollBar : Boolean
LTRReading : Boolean
MDIChild : Boolean
NoActive : Boolean
NolnheritLayout : Boolean
NoParentNotify : Boolean
Right : Boolean
RightScrollBar : Boolean
RTLReading : Boolean
ToolWindow : Boolean
TopMost : Boolean
Transparent : Boolean

DIALOG CONTROL
DigID CtriD : Integer
Extended : Boolean X: Integer
X: Integer Y : Integer
Y : Integer Width : Integer

Hight : Integer
HelplID : Integer
Position : Integer

Width : Integer
Hight : Integer

HelplD : Integer

3DLook : Boolean
AbsoluteAlignment : Boolean
Center : Boolean
CenterMouse : Boolean

+is the buddy window of Glue To

ContextHelp : Boolean ‘ ‘ ‘ ‘
g'f'ﬁgf","gg;;ﬂ""'ea" LISTBOX EDIT TRACKBAR UPDOWN TREEVIEW TAB LISTVIEW STATUTBAR
s aJE;’i[B Regroup Sorted : Boolean Alignment : {left,right,center} AutoTicks : Boolean Alignment : {left,right,none}} CheckBoxes : Boolean Type : {tabs,buttons} View : {icon,smallicon,list,report} SizeGrip : Boolean
Ve Ermms Caske MultipleSelection : Boolean Multiline : Boolean DowisLeft : Boolean ArrowKeys : Boolean DisableDragDrop : Boolean Bottom : Boolean Alignment : {left,top} ToolTips : Boolean
NoFailCreate : Boolean DisableNoScroll : Boolean AutoHorizontalScroll : Boolean EnableSelectionRange : Boolean AutoBuddy : Boolean EditLabels : Boolean FixedWidth : Boolean EditLabels : Boolean Top : Boolean
NoldleMessaée‘ Boolean ExtendedSelection : Boolean AutoVerticalScroll : Boolean FixedLenght : Boolean Horizontal : Boolean FullRowSelect : Boolean FlatButtons : Boolean OwnerData : Boolean
SetForeGround : Boolean Multicolumn : Boolean PasswordField : Boolean NoThumb : Boolean HotTrack : Boolean HasButtons : Boolean FocusNever : Boolean SharelmageLists : Boolean
Language : Strlr;g BUTTON NoSelection : Boolean LowerCase : Boolean NoTicks : Boolean NoThousands : Boolean HasLines : Boolean FocusOnButtonDown : Boolean ShowSelectionAlways : Boolean CUSTOMCONTROL
Sublanguage : String VerticalAlignment : {top,center, bottom} Notify : Bc\olgan) 32&?;§;fe;5£:|-e§:o\ean ; 3 B I EHED N I dEccieen E:?QAF?RBS[@E:;%” :‘orﬁ.ﬂe‘? _: énonle,lcon,label} zggfssc?:gitﬁ l?cg)(l);a:an ClassName : String
SetFont : Boolean HorizontalAlignment : {left,center,right} OwnerDrawFixed : Boolean : eversed : Boolean) \Wrap : Boolean v : lotTrack : Boolean g
FontName : String Flat : Boolean OwnerDrawVariable : Boolean ReadOnly : Boolean TickMarks : {bottom,top,left,right,both}| NoHorizontalScroll : Boolean Multiline : Boolean SortDescending : Boolean
FontSize : imeger Multiline : Boolean HasStrings : Boolean Number : Boolean ToolTips : Boolean NonevenHeight : Boolean Multiselection : Boolean CheckBoxes : Boolean
s e Bl Notify : Boolean NolntegralHeight : Boolean WantReturn : Boolean NoScroll : Boolean OwnerDrawFixed : Boolean OneClickActivate : Boolean
8 : ;] HEADER Tips : Bool P KSelect : Bool PAGER
Weight : Integer UseTabstops : Boolean OEMConvert : Boolean NoToolTips : Boolean RaggedRight : Boolean TrackSelect : Boolean
ShellFont : Boolean WantKeyBoardinput : Boolean Buttons : Boolean RightToLeftReading : Boolean Right : Boolean TwoClickActivate : Boolean AutoScroll : Boolean
. NoData : Boolean DragDrop : Boolean ShowSelectionAlways : Boolean RightJustify : Boolean AutoArrange : Boolean DragAndDrop : Boolean
NoRedraw : Boolean STATIC FilterBar : Boolean SingleExpand : Boolean ScrollOpposite : Boolean NoLabelWrap : Boolean Direction : {horizontal,vertical}
= Flat : Boolean TrackSelect : Boolean ToolTips : Boolean NoScroll : Boolean
Type : {text,frame, image FullDrag : Boolean Vertical : Boolean NoColumnHeader : Boolean
RICHEDIT Su"ke_”' Boolean Hidden : Boolean NoSortHeader : Boolean
DisableNoScroll : Boolean ,’\r‘mg" Fwéle:("' D definec) Horizontal : Boolean TOOLBAR OwnerDrawFixed : Boolean ANIMATION
i R extStyle : {left,right,center,simple, leftNoWordWrap, undefine " . .
GROUPBOX PUSHBOX COMBOBOX NoCaJIQIeIn\llal\ze. Boolean NoPrefix : Boolean HotTrack : Boolean ALTDrag : Boolean FullRonglecl : Boolean AuloPIa.y. Boolean
PUSHBUTTON NoIME : Boolean Nl . I CustomErase : Boolean GridLines : Boolean Center : Boolean
Default : Boolean I Type : {simple,dropDown,dropDownList}| | SelfiME : Boolean E:N:EE"‘E’::S' B;;Of::n ks ey HeaderDragDrop : Boolean Transparent : Boolean
. C: itive : Boolean . : . .
Content : {text,bitmap,icon} T Sunken : Boolean WordEllipsis : Boolean REBAR Transparent : Boolean Subltemimages : Boolean
CUSTOMBUTTON o Vertical : Boolean . . - List : Boolean
N NoSizeLimit : Boolean Frame : {black,gray,white, undefined} AutoSize : Boolean N .
RADIOBUTTON roc : Boolean Rectangle : {black,gray,white,undefined} BandBorders : Boolean RegisterDrop : Boolean DATETIMEPICKER MONTHCALENDAR
~ ATToEE G CHECKBOX Etched : {frame,horizontal,vertical,undefined} DoubleClickToggle : Boolean Tﬂompsli Boolela" AppCanParse | Boolean DayState : Boolean
uto : Boolean _ . X . g 5
; : - Icon : Boolean FixedOrder : Boolean WrapAble : Boolean Format : {longDate,shortDate, shortDateCentury,time} Multiselection : Boolean
RightButton : Boolean| |Auto : Boolean Bitmap : Boolean NoDivider : Boolean NoResize : Boolean N
ike : . SCROLLBAR PROGRESSBAR N N R RightAlign : Boolean NoToday : Boolean
PushLike : Boolean 3state : Boolean : Boolean RegisterDrop : Boolean NoParentAlign : Boolean Srane Bl NoTodayCircle : Bool
RightButton : Boolean Type : {horizontal vertical,sizeBox,sizeGrip} Type : {normal,marquee,smooth}| | RealSizeimage : Boolean VarHeight : Boolean Bottom : Boolean 7 go °"!eB- ;’Oea" W° k SY 'gce; B°°Iea"
PushLike : Boolean Alignment : {left,right,top, bottom, bottomRight, topLef,none} Vertical : Boolean RightAdjust : Boolean VerticalGripper : Boolean NoDivider : Boolean pRown} [Eooiean eediumberspiEoolean
Vertical : Boolean Adjustable : Boolean

4.2.3 Documentation

The full documentation of the diagrams is in appendix C. In this section | explain some
concepts related to my examples.

There are three general styles of window (WINDOW class): a popup window is a temporary
subsidiary window, a child window can divide a window in various regions and an overlapped
window is a program@®main application window.

In a graphical Windows-based application, dialog boxes (DIALOG class) are windows
(rectangular areas of the screen) and then inherit the window’ s attributes. A dialog box, used
to communicate with the user and to supply services that are too complicated to be in a menu,
takes form of a pop-up window (GeneralStyle = popup) containing various child window
controls through which the user interacts. Note that there is a curiosity in the fourth example :
the dialog is defined as a child window. This is certainly because it is not really a dialog box,
but a part of the dialog box to confogure the software (a child window stay always in the same
position relative to their parent when the user moves the parent). Dialog boxes can be modal
or model ess, with frame often encountered.

A modal dialog box (ModalFrame = true) demands the user® attention before anything else
can be done : when displayed, the user cannot switch between the dialog box and the window
that created it (the user must explicitly end the dialog box, for instance by clicking a the
Cancel button). The user can however switch to another program while displayed.® It is
usualy a pop-up window having a thick border, but a double border (with DialogFrame =
true) is also common for modal dialog box. Some can also have a title bar (Caption = true)
that identifies the dialog’'s purpose with the text put in it (value of Text), with sometimes a
question mark as in the fifth and sixth example (ContextHelp = true).

A modeless dialog box allows the user to switch between the dialog box and the parent
window, prefered when the user would find it convenient to keep the dialog box displayed for
awhile. It is often a pop-up window having a thin border (Border = true) and a caption bar
(to let the user move the dialog box to another area of the display using the mouse). The
dialog box can also have a system menu box (SystemMenu = true) to allows the user to select
Move or Close from the system menu.

The controls (CONTROL class), contained in a dialog box to perform input and output tasks,
are child windows (Genera Style = child). They can use some window’s frame, as thin-line
border (Border = true). You can see that the tool bar from the fifth uses a border with a

Some dialogs do not alow even that the user can switch to another program while displayed: the dialog must
be ended before the user does anything else in Windows (see SysM odal).

28

sunken edge (ClientEdge = true). That is what the last check box should look like with such
frame:

A control can use other window’ attributes. For example, it is displayed in gray rather than
black when visible and disabled (Disabled = true) :

To illustrate the use of the TAB key and the arrow keysin adialog box, let’s go over the first
example to see how they are used in aresource file (from Resource Hacker):

$ % GO G G A A) A GGG G
®@ ®)) G) A) * A * A) A ® 6@ ©
% #$,! $,- , L. G 0 G) *) CA * A ;) A A GG G &
Y& #+% G G)) *) CA * A) A A GG G &
“11% # 23- 00, G 40G) G *x) CA * A) A A G G 5G(G
5B %, 14 G O G) *) CA * A ;) A A GG G &
% 06 -7 #89#90%0 23- 00, 0G (G) G) *) CA * A ;) A A GG G(5 G
- +& GO OG) G I) CA * A) A G G G5 G
3G 0 0) A * A) A G G G G
#.,$ G 0O G)) A * A) 6 G G &
28 G(G) G) *) A * A) A A G G G5 G
%9 1G 0 o)) A *OA) A G G G5 G(
%+ 1G Q)) *) A * A ;) A G G (G5 G

When the Find dialog box is first invoked, the default input focus is set to the first control
specified in the resource that has the) flag (TabStop = true), that is the
combobox control.?® The other controls will

usually receive their input focus when they are

clicked with the mouse, but the user can also

move among the controls having this flag

using the TAB key (in the order they figure in

the file?” and with a cycle from the last control

to the first). At first sight it is not the case

with the ‘Down’ radio button, but in practice is is attainable. The style is probably added to
the default checked radio when the window control is created. When the input focus is
changed from a radio button to the another within a group, the system automatically assign
the style to the newly checked control. This ensures that the input focus will always be on the
most recently selected control when the user moves to the group using the TAB key. From
this it may be deduced that flags can be added and removed for convenience in the run time
by the program (see also the LISTVIEW class and think of a user arranging items in other
views?®). We have here again the feeling that resource files don’t always give a full desciption
of adialog box.

% And that is visible and not disabled. If no such control exists, the system sets the default input focus to the first
control in the template.

" The order of definition in adialog resource is represented by the Position attribute.

%8 Note that in the fifth example Windows use alist box control instead of alist-view control.

29

The user can use the arrow keys to shift the input focus between the two radio buttons®, that
is from the first radio button that has the / flag (Group = true) up to, but not
including, the next control thas has this flag (the default push button). The tree push buttons
are then also grouped, the flag added to the static control marking the end of the group.*
Nevertheless, all the check box controls get the flag to prevent the arrow keys from doing
anything when these controls have the input focus (the group contain only one control, so
pressing a arrow key has no effect). Should the combobox had this flag? If the combobox
control and the static control are in a group, the interface should be not quite correct if the
former got the focus (because it can't do anything with it). It’s not important since the cursor
change in the combobox edition field and move around when pressing the arrow keys.

There is a state shart describing the input focus in this dialog box:

There is another keyboard interface which can be specified in the value of the Text attribute:
the mnemonic is the letter that follows an ampersand (&). The user can then move the input
focus to any controls by pressing the ALT key and the mnemonic. However, for static control
the focus moves to the first control having Tabstop set to true defined in the file after the
static control definition and containing the specified mnemonic (see “Fi&nd wath” above).

In addition to those inherited, each control has specific attibutes. | will define some of them.

The text (value of Text) in the rectangle of the first static control (STATIC class) from the first
example is left-justified (TextStyle = left), which is not the case for example for the first one
from the fourth example (TextStyle = center). But static controls can be used to draw frames
or lines separating other controls like in the third example: three static controls are 1 dialog
unit high with etched top and bottom edges (EtchedHorizontal = true). They can aso be used
to display images like the second control of the same example (Icon = true). In this case, the
width and the height values are ignored, the control is automatically resized to fit the image.

» The selected radio button is turned on and others in the group are turned off automatically.
% The user can also move between these buttons with the TAB key, but only in one order (SHIFT+TAB to move
to the previous control)

30

But the first control (Bitmap = true) uses a style that prevents this (Real Sizel mage = true).
This is why the 154c256 bitmap image (according to Resource Tuner bitmap resource)
doesn't fit all the left areaof the dialog asin reality.®

As mentioned in the fourth example (where two controls have Horizontal Alignment = right),
text in a push button (PUSHBUTTON class) can also be positioned in different way in the
rectangle. In the same example, the text of a push button will be wrapped to multiple lines
linesif it istoo long to fit on asingle line in the rectangle (Multiline = true).* There are other
button controls that provides input to an application by notifying the parent window when the
user clicks on the control with a mouse, like radio buttons (RADIOBUTTON class). When they
have RightButton = true, they look like that one labelled ‘Down’ below. When they have
PushLike = true, they look like that one labelled *Up’.

The check box (CHECKBOX class) ‘Edit diagram’ from the sixth example has aso this last
property. Other buttons can be owner-drawn buttons (CUSTOMBUTTON class). This type
allows complete freedom in the button’s appearance. Buttons from the sixth example have
this style to have image and text together:

A scroll bar control (SCROLLBAR class) is not a scroll bar added at the right or the bottom of
awindow by setting to true the window attribute Vertical ScrollBar or Horizontal ScrollBar,
but a child window control that can appears anywhere in the parent window, verticaly (Type
= vertical) or horizontally (Type = horizontal). There is such controls in the sixth example.

The list box (LISTBOX class) from the sixth example (as from the fifth example) has two
specific properties. Items are arraged arranged in multiple columns and the list box scrolls
horizontally instead of vertically (Multicolumn = true).®

The size of the control is exactly the size specified when created (NolntegralHeight =true).
By default, Windows resizes alist box to not display partial items.

We can see in the third example two edit controls (EDIT class) which scrolls text to the right
when the user types a digit (only allowed with Number = true) at the end of the line
(AutoHorizontalScroll = true). This controls are the buddy windows of up-down controls
(UPDOWN class) used to increment or decrement the value. To the user, they look like a
single controls. It can be specified that an up-down control automatically selects the previous

%L 1n my opinion the developer have made a mistake in their resource statement resolved after in the program (it
is true that when we read the flag name we could think to the opposite of what said the definition).

% But it' s surprising that the label doesn’t in he resource file...

% In the sixth a horizontal scroll bar (Horizontal ScrollBar = true) is added, but it is hidden because the list box is
large enough to display all the items at once.

31

window in the z-order® as its buddy window. Let's look at the first up-down control (X =
222, Y = 100). Alignment = right positions it to next to the right edge of its buddy window
(X =193, Y = 100), the buddy window is then moved

to the left and its width (30) is decreased to

accommodate the width of the up-down control (10).

ArrowKeys = true alows the user to press the arrow

keys to increment and decrement the position when

the buddy window has the focus.

The combo box (COMBOBOX class) from the first example is a drop-down one, those from
the sixth example are drop-down list combo boxes. The
first has a list box which is displayed when the user
selects an icon next to the edit control (not all times as a
simple combo box) and the current selection in the list is
displayed in the edit control. The second is similar, except that the edit control is replaced by
a static text item displaying the current selection. This table summarizes the three existing
types.

drop-down list edit control

Type = dropDown
Type = dropDownL.ist
Type =simple

In the dialog of the fourth example, the user can move atrack bar, using either the mouse or
the direction keys when the control has focus, to change the brightness of the treemap (in a
range of 1 through 100). This vertical trackbars (TRACKBAR class and Orientation =
vertical) have NoTiks = true (to not display any tick marks) and TickMarks = both (causes
tick marks to be displayed on both sides of the control). The effect is that the thumb of the
control appears as a rectangular box.

Because tool bars (TOOLBAR class) are especialy used in an application’s main window, it is
unfrequent to find them in aresource files. We can still see this control in the Open dialog box
illustrated in the fourth example (see the line with an asterisk). The user can then acces
directly some directories (like “My Computer”) when loking for afile. Tool tips (Tooltips =
true) are descriptive text boxes that pop up when the user points to a tool bar button with the
mouse cursor. As Flat is true the tool bar has a transparent ook (both the tool bar and the
buttons) that allows the client area under the tool bar to show through and enables hot
tracking (a button is highlighted when the cursor moves over it). WrapAble set to true means
by definition that the tool bar can have multiple lines of buttons. The buttons wrap to the next
line when the tool bar becomes too narrow to include al buttons on the same line. Normally,
the size and position of the tool bar window automatically set itself. The height is based on

% The term "z-order" refers to the order of objects along the Z-axis. In coordinate geometry, X typically refersto
the horizontal axis, Y to the vertical axis, and Z to the axis perpendicular to the plane (representing the depth of
the stack of windows). The z-order information thus specifies the front-to-back ordering of objects on the screen.

32

the height of the buttons in the tool bar, the width is the same as the width of the parent
window’s client area and the control is positioned along the top of the parent window’s client
area. This behavior is turned off if NoResize is true (the control uses its specified width and
height) and NoParentAlign is true (the control keeps its specified position within the parent
window).

Such controls are controls that exist in Windows, corresponding to predefined window classes
in Windows programming. But a custom-made child
window (CUSTOMCONTROL class) can aso be used,
by defining its own window class. For example, some
may want to replace a normal rectangle push button
with rouded corner with an elliptical push button.
Another example is the first control from the “About
SciTE” dialog box shown to the right, and specified in a

resourcefile as:
) 5 (
8,1& +
/ / *) / /
%0 -6
(+ &% 2 ((5 (
+ (*) ((
() *) * i)) 5
This control has been created to display atext using a specific font and various colors. Its only
specific attribute ClassName set to “Scintilla’ designates the name of the class that has been
registered and defining the control. The name will be for example “elliptical PushButton” if

we suppose that a customized class with this name exist to use a personalized button.

4.2.4 Constraints
| talk here over some contraints that are not expessed in the class diagrams.

The inheritance from the WINDOW class is attribute-defined : controls are child window and
dalog boxes are pop-up window. A dialog can inherit from extended window attributes (from
ClientEdge to Transparent) only if it is also an extended dialog, that is if Extended = true. A
control can inherit of an extended window attribute only if the dialog box that contain it is an
extended one.* But we can see that some window attributes (extended or not) are not relevant
for controls (and also for diolog boxes). Attributs that are usually used by controls are Child,
Disabled, Visible, Border, TabStop, Group , VerticalScrollBar, HorizontalScrollBar. Note
also that a combo box cannot used all the specific attributes of a list box and edit controls : it
can use only the AutoHScroll, LowerCase, OEM Convert, UpperCase, Sort, DisableNoScrall,
HasStrings, NolntegralHeight, OwnerDrawFixed and OwnerDrawV ariabl e attributes.

% Some attributes specific to the ComBoBOx and RICHEDIT classes can also be used in this condition.

33

A remark has to be made with the font in a dialog box. If one of the SetFont and ShellFont
attributes is set to true, there is additional data in the resource file specifying the font and the
size to use for text in the dialog box and each of its controls (and sometimes weight and italic
informations). If SetFont = true, the system selects (if possible) a font according to the
specified font data. If ShellFont = true, the system selects a font using the font data specified
in the FontSize, Weight, and Italic attributes. The system font can vary between different
versions of Windows. So having ShellFont = true with FontName = MS Shell DIg for an
extended dialog box, the application can use the system font no matter which system it is
running on. The system maps this typeface such that the dialog box will use the Tahoma font
on Windows XP, and the MS Sans Serif font on earlier systems. But ShellFont = true has no
effect if the typeface is not MS Shell DIg and the dialog is not extended. By default, the
system draws all text in a dialog box using the default font of the system. The system always
uses the system font for the dialog box title.

Most of constraints are aready expressed with type declaration with enumerate values. For
example, a menu item can be desabled and grayed in the same time. There still exists other
contraints between attributes, like an attributes that can or not be combined with an other one.
For example, atitle bar cannot contain a question mark (ContextHelp = true) with a maximine
box or a minimize box (MaximizeBox or MinimizeBox = true), or to make appear tabs at the
left side of atab control, multiple rows of tabs have to be able to be displayed when necessary
(Vertical = true is valid only when Multiline = true). But this is the concern of graphical user
interface programming. | wil have an input file which is supposed to be correct, and even if it
isn't, | have not to correct it (my task is to restore the dialog box in another language like it is
specified). Moroever, the reason for these contrains can guarantee that a resource file respects
them. The constraints that we can found in Windows documentation express in fact
incompabilities for flag identifiers. As I’ve yet mentioned it, the style flag is represented in
memory by one bit at a specific position in aword or by n bitsif it is mutually exclusive with
others (where n is the minimum number of bits to represent the set Sof exclusive flag, that is,
2" < cardinal number of S 2"). For example, the 19 different types of static controls are
grouped in the five first bits (which can represent 2° = 36 flags):

A decompiler that checks the presence of bits when generating its resource text file could not
specify for example that the text of a static control is both centered and right-justified in the
rectangle (thisisanicon).

4.3 Resourcefiles structure

| show in this section the format of a resource script file and how the user interface specified
in thislanguage instanciates my UML class diagrams (the meta-model).

4.3.1 Resources of type dialog box

4.3.1.1 Dialog box template

We have seen in my examples that a dialog box is described in a specific language, specifying
its height, width, style, and the controls it contains (with again a specific size, placement and
style). This type of resource is defined in a dialog box template included in the resource script
file. Hereis the format:

<id> []<x> <y> <width> <height>[<helpld>]
<style>*
[<ex_style>*]
"<text>"
<language> <sublanguage>
<pointsize> "<typeface>" [<weight> <italic>]

<control_def>

Note that the order of the lines after the first and before the controls block can sometime be
different. With Resource Builder, <control def> also go between) / and instead of
and . Restorator put acomma after thekeyword ¢ B

I’ ve used the regular BNF notations as meta-language to define the syntax. In this way, it will
be easier show the correspondence between a class or an attribute of the class diagram and a
token of the language at a specific place in the template. The next table lists these
correspondences. Before, | give the notation used to express the rules in the table. The
keywords in bold appear as it stand in the resource file. Except for the first line which is
always specified, these keywords are missing in the template when nothing follows (that is,
the entireline is missing).

M eta-laguage used to describe the syntax :
<S> : any entity of syntaxical category S
<S>* : sauite of 0, 1 or more entity of category S, separated by the token
text, typeface : a character string (text may contain escape caracters, e.g. quote \”, new
line\n, tab \t, backslash \\)
id : entire number or a character string
X, Y, width, height, helpld, pointsize : entire numbers
style : window flag begining with or adialog box flag begining with

35

ex_style: extended window style flag (begining with

c)

language : primary language identifier flag begining with ~ /
sublanguage : sublanguage identifier flag begining with)

A =B : Aisdefined by B
ab: afollowed by b

a& b:aand b (note that this meta-language symbol is different from the language
token used to combine severa styles)
val(A) : value of the attribute A

upper(A) : convertsthe text A in upper case.

[A] : A may occur only in aexended dialog box template (that is, a /

and not a / resource)

control_def : may contain any combination of control definitions (one by line)

C resource

As noticed in the examples, a numeric value can be specified in a resource script file instead
of style flag identifiers. When two or more style flags are numerically represented in the same
group, the values are added to form only one number. The table show also the hexadecimal

number associated with each flag.

class diagram (logic name)

resource script file (physic name)

dialog box template :
<id> []<x> <y> <width> <height>[<helpld>]
<style>*
<text>
[<ex_style>*]

<language> <sublanguage>
<pointsize> <typeface> [<weight> <italic>]

<control_def>

Class Flag value
DIALOG
Aqggregation relationship
n 1isthe number of relationship instances andn 1isthe number of linesin <control_def>
in which the instance of DIALOG participates
Attibutes
DigID <id>::= va(DlgID)
Extended = true ;) ®
X <x> = va(X)
Y <y>=val(Y)
Width <width> ::= val(Width)
Height <height> ::= val(Height) ¥
HelpiID -1 <helpld> ::= val(HelpID)
3Dlook = true <style>::= 0x00000004
AbsoluteAligment = true <style> ::=) / 0x00000001
Center = true <style> ::= 0x00000800

% And additional information can be found between hooks (‘[...]’) in the dialog box template.
%" The measurements in a dialog box template are specified in dialog template units, not in screen units (pixels).
The system uses the average character width of the dialog box font to calculate the position and dimensions of

the dialog box.

% For example, Language=french and Sublanguage=belgian gives SUBLANG_FRENCH_BELGIAN.

36

CenterMouse = true
ContextHelp = true
DialoglsControl = true
FixedSys = true

Loca Edit = true
ModalFrame = true
NoFailCreate = true
NoldleMessage = true
SetForeGroud = true
SysModal = true
val(Language) not NULL
val(Sublanguage) not NULL
SetFont = true
FontName

FontSize

Italic = true

Italic = false

Weight -1

ShellFont = true

<style>::
<style>:
<style>::
<style>:
<style>:
<style>::
<style>::
<style>:
<style>::
<style>: B

<language> ::= LANG_upper(val (Language)) **

<sublanguage>::=) | <language> upper(val(Sublanguage))
<style>::=

<typeface> ::= val (FontName)

<pointsize> ::= val (FontSize)

/
/

<italic> ::=

<italic> ::=

<weight> ::= val(Weight)
<style> ::= *

0x00001000
0x00002000
0x00000400
0x00000008
0x00000020
0x00000080
0x00000010
0x00000100
0x00000200
0x00000002

0x00000040

0x00000048

Other attributes can be inherited from the WINDOW class (in addition to the attribute General Style always set to popup)

Class
WINDOW

Attibutes
Text <text> ::= val(Text)
General Style = popup <style>::= 0x80000000
General Style = overlapped <style>::= ; 0x00000000
General Style = child <style> ::= * 0x40000000
Border = true <style> ::=) 0x00800000
Caption = true & Border = true <style> ::= o 0x00C00000
ClipChildren = true <style> ::= * 0x02000000
ClipSimblings = true <style> ::=) / 0x04000000
Disabled = true <style> ::=) 0x08000000
DialogFrame = true & Caption = false <style>::= / 0x00400000
Group = true <style> ::= / 0x00020000
TabStop = true <style> ::=) 0x00010000
Horizontal ScrollBar = true <style> = * 0x00100000
MaximizeBox = true <style> ::= cC @) C 0x00010000
Maximized = true <style> = cC @ 0x01000000
MinimizeBox = true <style> .= @) C 0x00020000
Minimized = true <style> ::= @ 0x20000000
SystemMenu = true <style> = B 0x00080000
ThickFrame = true <style> ::= * 0x00040000
Vertical ScrollBar = true <style> ::= 0x00200000
Visible = true <style> ::= y “ 0x10000000
ClientEdge = true <ex_style> ::= C / 0x00000200
DialogModalFrame = true <ex_style> ::= c |/ 0x00000001
Stati CEdge <ex_sty|e> = C / 0x00020000
WindowEdge = true <ex_style> ::= c / 0x00000100
AcceptFiles = true <ex_style> 1= c 0x00000010
AppWindow = true <ex_style> ::= C 0x00040000
ControlParent = true <ex_style> = c 0x00010000
ExContextHelp = true <ex_style> 1= c C * 0x00000400
Layered = true <ex_style> 1= cC B 0x00080000
LayoutRTL = true <ex_style> 1= cC B 0x00400000
Left = true <ex_style> 1= c (0x00000000
LeftScrollBar = true <ex_style> 1= c) 0x00004000
LTRReading = true <ex_style> 1= c / 0x00000000
MDIChild = true <ex_style> 1= C * 0x00000040
NoActivate = true <ex_style> 1= c 0x08000000
NolnheritLayout = true <ex_style> o= Ie * B 0x00100000
NoParentNotify = true <ex_sty|e> e c B 0x00000004
Right = true <ex_style> o= c /* 0x00001000
RightScrolIBar = true <ex_style> = c /*) 0x00000000
RTLReading = true <ex_sty| o> = c / 0x00002000
ToolWindow = true <ex_style> = c 0x00000080
TopMost = true <ex_style> - c 42 0x00000008
Transparent = true <ex_style> = c 0x00000020

¥ For a dialog box, the line will place that string in the caption of the dialog only if the flag

is present.
“0 The value of thisflag includes aso the

) style.

37

Remarks:

When aflag is not specified, the corresponding attribute of type Boolean is set to false.
- Theflags by default are also denoted in the table. They correspond to a null value (in
bold in the flag value column). When nothing else is specified, the presence or not of
these flags makes no difference since they involve any additionnal value to the style
(and in any case the associated attribute in the left column has to take the appropriate

value).
- Some flags in the table have synonyms: * = *
: = : = and @) C =
- The definition of / was curiously enought: a window with this flag (with

athicker frame) cannot have atitle bar.* The problem was that this flag is sometimes
specified for a dialog box having till a title bar, as in the resource file given by
Resource Tuner associated to my first example (the ‘Find’ dialog box) :

As we will see in the shortcut notations (section 4.3.2), the flag

includes) . With the numerica values, we can see that set the
bits at positions 23 and 24 of to 1, whereas / and) set only
the bit at position 23 and 24 respectively to 1 (the three flags are grouped in two bits).
So, if the two last flag are specified for a dialog box, it's as if the first flag was

specified. In fact, / implies no title bar.
- The numerical value of bs_SHELLFONT* is equal t0 DS_FIXEDSYS | DS_SETFONT. The
value of * was surely chosen so that older operating systems would

accept the flag while nevertheless ignoring it. This allowed people to write a single
program that got the Windows XP look when running on Windows XP and got a
classic look when running on older systems. Older systems accepted the flag since it
was indeed a valid flag, but they also ignored it because the bs_seTFonT flag takes
precedence.

- For thefont, identifiers are generally specified in the resource script file instead of
particular numeric values.
Value of Weight: Windows identifiers:

(*

“I This flag is not required for a modal dialog box. If not present, the system will set it even so visible. For a
control, if this flag is not present, the child window will not be displayed until the function ShowWindow is

called with * as aparameter (needlessif present).

“2 Theflag B isalso possible. It is obsolete but included for compatibility with 16-bits versions of
Windows. When specified the system creates the dialog box with the C style.

3 And also the definition of (giving atitle bar): this flag includes) (athin-line border).
“ Windows 2000 or later uses a different system font than Windows NT 4.0 and Windows 95/98. To have an
application that use the system font no matter which system it is running on, * can be specified.

The system then maps this typeface such that the dialog box uses the Tahoma font on Windows 2000 and the MS
Sans Serif font on earlier systems.

38

5) .)
)
c) .)
4 * ;B,-)
- When no style are specified for a dialog box, the default style is A
) A B

4.3.1.2 Controlsdefinition

Inside the dialog box template, the part between and defines a set of controls that a dialog
box contains. <control_def> is a suite of 0, 1 or more text lines defining a child window
control and having this syntax:

"<text>" <id> <class> <style>* <x> <y> <width> <height>[<ex_style>* <helplD>]

M eta-language (continuation) :
style : is now a window style flag (begining with) or a child window control
styleflag (begening with ~ ,) ,) .,) or))
class : a predefined window class *°

dialog box template (continuation) :
<text> <id> <class> <style>* <x> <y> <width> <height>
[<ex_style>* <helplD>]

Class

CONTROL Vaue
Attibutes

CtrlID <id>::= val(CtrlID)

X <x> = va(X)

Y <y>=val(Y)

Width <width> ::= val(Width)

Height <height> ::= val (Height)

HelpiID -1 <helpID> ::= val(HelpI D)

Position control specified at line val(Position) of <control_body>
Class

BUTTON <class> ::=)
Attributes

Vertical Alignment =top <style>::=) 0x00000400

Vertical Alignment = center <style>::=) 0x00000C00

Vertical Alignment = bottom <style>:=)) 0x00000800

Horizontal Alignment = left <style>::=) 0x00000100

Horizontal Alignment = center <style> ::=) 0x00000300

Horizontal Alignment = right <style>::=) ! * 0x00000200

Flat = true <style> ::=) 0x00008000

Multiline = true <style> ::=) 0x00002000
“® Notice from the examples that class can occur between quotes (like)) in the resource script file (this

is the case with Resource Builder), and also in lower case (like 81&).

39

Notify = true <style>::=) B 0x00004000
Class
GROUPBOX <style> ::=)) C 0x00000007
Class
RADIOBUTTON
Attributes
Auto = false <style>::=)) 0x00000004
Auto = true <style>::=) 0x00000009
RightButton = true <style>::=) I*) 0x00000020
PushLike = true <style>::=) * 0x00001000
Class
PUSHBUTTON
Attributes
Default = false <style> ::=) *) 0x00000000
Default = true <style>::=) *) 0x00000001
Content = text <style> ::=) c ° 0x00000000
Content = bitmap <style>::=) 0x00000080
Content = icon <style> ::=) 0x00000040
Class
CHECKBOX
Attributes
Auto = false & 3State = false <style>::=) *) C 0x00000002
Auto = true & 3State = false <style>::=) * 0x00000003
Auto = false & 3State = true <style>::=) 0x00000005
Auto = true & 3State = true <style>::=) 0x00000006
RightButton = true <style> ::=) /*) 0x00000020
PushLike = true <style> ::=) * 0x00001000
Class
PUSHBOX <style>::=) *) C
Class
CUSTOMBUTTON <style>::=) 0x0000000B
Class
SCROLLBAR <class> ::=)
Attributes
Type = horizontal <style>::=) @ 0x00000000
Type = vertical <style>::=) 0x00000001
Type = sizeBox <style>:=) @) C 0x00000008
Type = sizeGrip <style>::=) @/ 0x00000010
Alignment = left <style> =) / 0x00000002
Alignment = right <style>:=) /* / 0x00000004
Alignment = top <style> =) / 0x00000002
Alignment = bottom <style>::=) 0x00000004
Alignment = bottomRight <style> =) @) © | * 0x00000004
Alignment = topL eft <style> =) @) C / 0x00000002
Class
LISTBOX <class> ::= C
Attributes
Sorted = true <style>::=) 0x00000002
MultipleSelection = true <style>:=) 0x00000008
DisableNoScroll = true <style>:=)) 0x00001000
ExtendedSelection = true <style>::=) C 0x00000800
Multicolumn = true <style>::=) 0x00000200
NoSelection = true <style>::=) 0x00004000
Notify = true <style> =) B 0x00000001
OwnerDrawFixed = true <style> ::=) C 0x00000010
OwnerDrawVariable = true <style> =)) 0x00000020
HasStrings = true <style> =) 0x00000040
NolntegralHeight = true <style> ::=) / / * 0x00000100

£ fact, the)
) nor)

47))

Windows. Applications should use)

c flag (even though it exists) is missing most of time. So Content = text when neither

are present (push buttons have this style by default).
isalso possible but this flag obsolete. It is provided for compatibility with 16-bit versions of
instead. The value of this flag is 0x00000008.

40

UseTabstops = true <style>::=)) 0x00000080
Wantkeyboardinput = true <style>:=) B) 0x00000400
NoData = true <style>:=) 0x00002000
NoRedraw = true <style>::=) 0x00000004
Class
COMBOBOX
Attributes
Type = Simple <style>::=) 0x00000001
Type = DropDown <style>::=) 0x00000002
Type = DropDownList <style>:=) 0x00000003
Extended = false <class> ::=)) C
Extended = true <class> ::= 78,),2 2
CaseSensitive = true <ex_style> =) C 0x00000010
NoEditlmage = true <ex_style> =) C 0x00000001
NoSizeLimit = true <ex_style> =) C 0x00000008
PathwordBreskProc = true <ex_style> =) C 0x00000004
Inherited attributes from LISTBOX and EDIT
Sorted = true <style> =) 0x00000100
AutoHorizontal Scroll = true <style> =) * 0x00000040
LowerCase = true <style> =) 0x00004000
OEMConvert = true <style> =) : 0x00000080
UpperCase = true <style> =) 0x00002000
DisabledNoScroll = true <style>::=)) 0x00000800
HasStrings = true <style> =) * / 0x00000200
NolntegralHeight = true <style>::=) / | * 0x00000400
OwnerDrawFixed = true <style> =) C 0x00000010
OwnerDrawVariable = true <style>::=) 0x00000020
Class
EDIT = true <class>::=
Attributes
Alignment = Left <style> ::= 0x00000000
Alignment = Right <style>::= | * 0x00000002
Alignment = Center <style>::= 0x00000001
Multiline = true <style> ::= 0x00000004
AutoHorizontal Scroll = true <style> ::= * 0x00000080
AutoVertical Scroll = true <style> ::= ; 0x00000040
PasswordFile = true <style> ::= 0x00000020
LowerCase = true <style> ::= 0x00000010
UpperCase = true <style> ::= 0x00000008
NoHideSelection = true <style> ::= * 0x00000100
ReadOnly = true <style> ::= B 0x00000800
Number = true <style> =) 0x00002000
WantReturn = true <style> ::= 0x00001000
OEMConvert = true <style> ::= : 0x00000400
Class
RICHEDIT <class>::= * H1 & - 0 %9FFFI
Attributes
DisableNoScroll = true <style> ::=) 0x00002000
NoCallOlelnitialize = true <ex_style> ::= Cc 0x01000000
NolME = true <style> ::= 0x00080000
SelfIME = true <style> ::= 0x00040000
Sunken = true <style> ::= 0x00004000
Vertical = true <style> ::= 0x00400000
Class
PROGRESSBAR <class>:= 7 0+&80 3-,"- 00
Attributes
Type = marquee <style>::=) J 0x00000008
Type = smooth <style>::=) * 0x00000001
Vertical = true <style>::=) 0x00000004
Class
STATIC <class> ::=

41

Attributes <style>::= * 0x0000000F
Type = enhencedMetefile <style> ::= 0x0000000D
Type = ownerdraw <style>::= 0x00001000
Sunken = true <style>::= B 0x00000100
Notify = true <style> ::= 0x00000000
Type = text & TextStyle = left <style> ::= ! * 0x00000002
Type = text & TextStyle = right <style>::=
Type = text & TextStyle = center <style>::= 0x00000001
Type = text & TextStyle=simple <style> .= 0x0000000B
Type = text & TextStyle = leftNoWordWrap | <style> ::= C 0x0000000C
NoPrefix = true <style> ::= 0x00000080
EndEllipsis = true <style> ::= * 0x00004000
PathEllispsis = true <style>::= 0x00008000
WordEllipsis = true <style> ::=) 0x0000C000
Type = frame & Frame = black <style> ::= / B 0x00000007
Type = frame & Frame = gray <style> = * 0x00000008
Type = frame & Frame = white <style> .=) 0x00000006
Type = frame & Rectangle = black <style> ::= / B 0x00000004
Type = frame & Rectangle = gray <style> = * 0x00000005
Type = frame & Rectangle = white <style> ::= * % @ 0x00000009
Type = frame & Etched = frame <style> ::= * 0x00000010
Type = frame & Etched = horizontal <style> = * 0x00000011
Type = frame & Etched = vertical <style> ::= 49 0x00000012
Type =image & Icon =true <style> ::=) 50 0x00000003
Type = image & Bitmap = true <style> = / 0x0000000E
Centerlmage = true <style> ::= @ 0x00000200
Real Sizelmage = true <style> = /* K 0x00000800
RightJdustify = true 0x00000400

Class
TRACKBAR <class>:= 7 0+80 &%+-98%

Attributes
AutoTicks = true <style>::=) 0x00000001
DownlsLeft = true <style>::=) 0x00000400
EnableSelectionRange = true <style>::=)) 0x00000020
FixedLenght = true <style>::=) Cc /* 0x00000040
NoThumb = true <style>::=)) 0x00000080
NoTicks = true <style>::=) 0x00000010
Orientation = horizontal <style>:=) * @ 0x00000000
Orientation = vertical <style> =) 0x00000002
Reversed = true <style> =) 0x00000200
TickMarks = bottom <style>:=)) 0x00000000
TickMarks = top <style> =) 0x00000004
TickMarks = |eft <style> =) 0x00000004
TickMarks = right <style> =) /| * 0x00000000
TickMarks = both <style>:=)) * 0x00000008
Tooltips = Boolean <style> =) 0x00000100

Class
UPDOWN <class>:= 7 0+&0 13 ,$

Attributes
Alignment = left <style> ::= / 0x00000008
Alignment = right <style> ::= / | * 0x00000004
ArrowKeys = true <style> ::= B 0x00000020
AutoBuddy = true <style> ::=) B 0x00000010
Horizontal = true <style> ::= @ 0x00000040
HotTrack = true <style> ::= * 0x00000100
NoThousands = true <style> ::= * 0x00000080
SetBuddylnt = true <style> ::=) B 0x00000002
Wrap = true <style> ::= 0x00000001

“8 55 USERBUTTON (value 0x0000000) is also possible but this flag is obsolete.

“9 For this type of control, a remark must be mentioned with <text> ::= val(Text). When defining an

static control in the template, the icon must be defined elsewhere in the resource file. As | noted earlier the icon

resource name must be specified as the text for the control. When the icon’s name is a number, | notice that there

ae no more quotes in the template. For example, we can have the line (
o i) / ((and elsewhere in the resource file (@ +

R
% Same remark than for an icon.

42

Class

HEADER <class>:= .0* %
Attributes
Buttons = true <style> ::=*) 0x00000002
DragDrop = true <style>::=* 0x00000040
FilterBar = true <style>::=*
Flat = true <style> ::=*)
FullDrag = true <style> ::=* / 0x00000080
Hidden = true <style> ::=* * 0x00000008
Horizontal = true <style>::=* *
HotTrack = true <style> =+ * 0x00000004
Class
REBAR <class> ::=) % , $
Attributes
AutoSize = true <style>::=) @ 0x00002000
BandBorders = true <style>:=)) 0x00000400
DoubleClickToggle = true <style>:=)) I 0x00008000
FixedOrder = true <style>::=) C 0x00000800
NoDivider = true <style> ::= 0x00000040
RegisterDrop = true <style>:=) / 0x00001000
VarHeight = true <dsyle>:=) ; | * 0x00000200
Vertical Gripper = true <style>::=) / 0x00004000
Vertical = true <style> ::= 0x00000080
Class
TREEVIEW <class>:= .0 - $
Attributes
CheckBoxes = true <style>::= ; *) C 0x00000100
DisableDragDrop = true <style>:= ; / 0x00000010
EditLabels = true <style> ::=) 0x00000008
FullRowSelect = true <style> ::= 0x00001000
HasButtons = true <style>:= ; * 0x00000001
HasLines = true <style>:= ; * 0x00000002
InfoType = true <style>::= ;
LinesAtRoot = true <style>::= 0x00000004
NoHorizontal Scroll = true <style> = ; *
NonevenHeight = true <style> = ; * ok 0x00004000
NoScroll = true <style> ::= 0x00002000
NoTootips = true <style>::= 0x00000080
RightToL eftReading = true <style> = ; 0x00000040
ShowsSelectionAlways = true <style> = ; * 0x00000020
SingleExpand = true <style> = ; C 0x00000400
TrackSelect = true <style> ::= 0x00000200
Class
TOOLBAR <class>:= ,,!18% . $
Attributes
ALTDrag = true <style>:=) B / 0x00000400
CustomErase = true <style>::=) B 0x00002000
Flat = true <style>:=) B 0x00000800
Transparent = true <style>::=) B 0x00008000
List = true <style>::=) B 0x00001000
RegisterDrop = true <style>:=) B / 0x00004000
ToolTips = true <style>:=) B 0x00000100
WrapAble = true <style>:=) B) 0x00000200
NoResize = true <style> ::= @ 0x00000004
NoParentAlign = true <style> ::= / 0x00000008
Bottom = true <style> ::=) 0x00000003
NoDivider = true <style> ;= 0x00000040
Adjustable = true <style> ::=) 0x00000020
Class
TAB <class>:= .09 , &,!
Attributes
Type = tabs <style> ::=) 0x00000000
Type = buttons <style>::=) 0x00000100
Bottom = true <style> ::=) 0x00000002
FixedWidth = true <style> ::= C * 0x00000400
FlatButtons = true <style>::= 0x00000008

43

FocusNever = true <style> ::= 0x00008000
FocusOnButtonDown = true <style> ::= 0x00001000
ForceL eft = icon <style> ::= 0x00000010
Forcel eft = label <style>::= 0x00000020
HotTrack = true <style> ::= * 0x00000040
Multiline = true <style> ::= 0x00000200
Multiline = false <style> ::= / 0x00000000
MultiSelection = true <style> ::= 0x00000004
OwnerDrawFixed = true <style> .= 0x00002000
RaggedRight = true <style> ::= /1l | * 0x00000800
Right = true <style> ::= /* 0x00000002
RightJustify = true <style> ::= /| * K 0x00000000
ScrollOpposite = true <style> ::= 0x00000001
Tool Tips = true <style> ;= 0x00004000
Vertical = true <style> ::= ; 0x00000080

Class
DATETIMEPICKER <class>:= .0 %& 7 49

Attributes
AppCanParse = true <style> ::= 0x00000010
Format = longDate <style> ::= / 0x00000004
Format = shortDate <style> ::= * 0x00000000
Format = shortDateCentury <style> ::= * 0x0000000C
Format = time <style> ::= 0x00000009
RightAlign = true <style> ::= ! * 0x00000020
ShowNone = true <style> ::= * 0x00000002
UpDown = true <style> ::= 0x00000001

Class
LISTVIEW <class>:= .0 0& $

Attributes
View =icon <style> ::= 0x00000000
View = smalllcon <style> ::= 0x00000002
View = list <style> ::= 0x00000003
View = report <style>::= ; 0x00000001
Alignment = |eft <style> = ; / 0x00000800
Alignment = top <style>::= ; / 0x00000000
EditLabels = true <style> = ;) 0x00000200
OwnerData = true <style> = ; 0x00001000
Sharel mageLists = true <style> = ; * / 0x00000040
ShowSelectionAlways = true <style> ;.= * 0x00000008
SingleSelect = true <style> ::= / 0x00000004
SortAscending = true <style> = ; 0x00000010
SortDescending = true <style> = ; 0x00000020
CheckBoxes = true <ex_style> = Cc * 0x00000004
OneClickActivate = true <ex_style> ;= ; C 0x00000040
TrackSelect = true <ex_style> ::= ; C 0x00000008
TwoClickActivate = true <ex_style> ::= ; C 0x00000080
AutoArrange = true <style> ::= / 0x00000100
NoLabelWrap = true <style> ::=) 0x00000080
NoScroll = true <style> = ; 0x00002000
NoColumnHeader = true <style> ::= ; * 0x00004000
NoSortHeader = true <style> = * 0x00008000
OwnerDrawFixed = true <style> ::= 0x00000400
FullRowSelect = true <ex_style> : c 0x00000020
GridLines = true <ex_style> : c/ 0x00000001
HeaderDragDrop = true <ex_style> C * 0x00000010
Subltemlmages = true <ex_style> c 0x00000002

Class
MONTHCALENDAR <class>:= .0, & %

Attributes
DayState = true <style> ::= B 0x00000001
Multiselection = true <style> ::= 0x00000002
NoToday = true <style> ::= 0x00000008
NoTodayCircle = true <style> ::= 0x00000010
WeekNumbers = true <style> ::=) 0x00000004

Class
ANIMATION <class>:= .0 7%

Attributes <style>::= B 0x00000004
AutoPlay = true <style> ::= 0x00000001
Center = true <style> ::= 0x00000002
Transparent = true

Class
PAGER <class>:= .0 % -

Attributes
AutoScroll = true <style>:= / 0x00000002
DragAndDrop = true <style>:= |/ / 0x00000004
Direction = horizontal <style>:= | * @ 0x00000001
Direction = vertical <style>:= /| 0x00000000

Class
STATUTBAR <class>::= 7 0+&0 0&®&L08%

Attributes
SizeGrip = true <style>::=) @/ 0x00000100
Tooltips = true <style>:=) 0x00000800
Top =true <style> ::= 0x00000001

Class
CUSTOMCONTROL

Attribute
ClassName <class> ::= "val(ClassName)" **

Note: the button style flag) /*) IS synonymous with) C.

4.3.2 Shortcut notations in the dialog box template

Shortcut notations can be used to define child window controls in the dialog box template. As
we can see in the first exemple, other identifiers than are used in the dialog box
template. They imply a predefined window class and some style flags that do not have to be
specified. For example, ¢ indicates that the class of the child window control is

and that the style is * A A) A / . Resource Tuner and
Restorator use shortcuts in the resource file they generate, whereas Resource Builder and
Resource Hacker use the full notation.

The following table links the control types which can be specified and their equivalent
notation (window class and style flags):

<control_type> | <class> <style>*
*)) * A) A *) A)
*)) * A) A *) A)
*) C) * A) A *) CA)
=) C) * A) A *) CA)
)) * A) A) A)
)) * A) A) A)
/) C) A) A) C
C £ A) A A
c A) A A
C £ A) A I A
A) A A
C * A) A A) A)
)y C)y C A) A) BA) A
)) C)) C A) A) A)
)) * A) A) * @
Lex: # 28 (13&+9% 10) 18 5 D) /) 5 (

45

Notice that many of the controls that interact with the user include) as a defaullt.
However, radio buttons other than the first of each radio group lack) by default.
The static controlsinclude / by default, which conveniently mark the end of a group

For all these control types, the format to define the control is

<control_type> Ltext> <id> <x> <y> <width> <height> <style>*[<ex_style>* <helplD>]
except for the c, Yy)y ¢, and)) C styles where the text field is
excluded. The RC resource compiler understands the two notations.

So, the line from my first example # 28 (5 (/ is equivalent
to # 28 ()) o D) /) 5 (.
These two syntaxes are encoded identically in the .resfile and the .exe file. The second syntax
is less convenient but more complete: with the identifiers, a push button can always be
accessed with the TAB key for instance. The keyword can occur in the template to
precisely resolve this drawback : # 26 (5 () /

The decompilers that use shortcut notations use naturally aso the generic notation for the
control of another class than those listed above. However, |’ ve remarked that * and

)y areasoimplicit in their generic notation (these flags are never specified).

Some style flags can also be used as shortcut notations.

- C :
combines the C / and C I styles.
- C
combines the C / and C styles.
- ; or
combines the ; , : B : * ,
@) cand C @) cstyles.
-)
combinesthe) B,) and) styles.
combines the) : and B styles.

4.3.3 Resource of type menu

The resource script file can also contain a menu resource, which is a collection of information
that defines the appearance and functions of an application menu. As you can see in the
second example, the syntax is more intuitive:

<id>
<language> <sublanguage>

<menu_body>

46

menu_body may contain any combination of popup menu and menu item (one by line).

A popup menu has the following syntax: <text> <options> { <popup_body> }
options is an optional list of one or more identifiers such .,/ B or *
(separated by commas or spaces). popup_body may contain any combination of menu item,
separator or popup menu (one by line).

A menu item has the following syntax: <text> <id> <options>
A separator has the following syntax:

It's easy to link the attributes from the class diagram with this syntax. Note that the Position
attribute corresponds to the line where the item is defined in <menu_body> or <popup_body>.

4.3.4 Other types of resources

The other resources described in a resource script file are not helpful for the development of
my plug-in. However, the resource editors can habitually extract the icon and bitmap from the
executable and save them anywhere. Then, the user will be able to manually put a missing
imagein its GrafiXML project.

When accelerators are defined for menu items (key combinations), they should be found in
the resource of type Accelerators. If 1 go back to my second example, there is this resource
from Resource Hacker:

4

Only one menu item is matching: 1 -0* 0&-. <& 1& (. And there are
often some curiosities. So, this type of resource will not be exploited. Anyway, this
information should be in the text string of a menu item (if not, this lost of information is not
really important since the user will not know the existence of the key combinations).

47

4.4 About the decompilation tools

I’ ve not here to motivate the choice of a particularly tool by saying which one is the better to
use or the more developed to edit resources for example. It’s the produce .rc resource file
which interests me.

We can see in appendix B fragments of resource files given by the different decompilers and
extracted from the same executable. The tools decompiling a binary file give in genera the
same information. | can see that they cover all the existing style flags since a numeric value is
still specified if a tool doesn't recognize a flag identifier in its implementation. It's the
remaining value from a word of 32 bits stored in the binary file after extracting al the other
recognized flags. The first difference in the generated files is the use of the generic or shortcut
notation to define the controls. From those that use the generic notation, Resource Hacker
seems more reliable than Resource Builder. Between the two other tools, | prefer Restorator
than Resource Tuner. In the tests that I've made, the last gives sometimes oddities in the
specification of the resources (see for example the frame that I’ ve drawn in the specification
of the sixth example).

The difference rests principally in the complete resource script file. In appendix A, we can see
a file given by Resource Hacker. Note that the resources specifying the accelerators and
version information are detailed in this file. Resource Builder includes in addition a text
representation of binary files which are normally only referenced in the resource script file.
There is how are specified an icon or a bitmap image (it’s only a fragment, the icon resource
for example have 511 lines of hexadecimal numbers...):

M ((M
M 5 (M
M (((5 M
NI
Mo (M
M (M
M(M
(

)

I

M 5 M
M ((M
M «) () (M
NI
M M
M M
M M

48

These numbers should have perhaps been exploited to restore an image in my reverse
engineering process. Icon and bitmap image (as cursors) arein reality a collection of bitsin an
array of any number of rows and columns (for a black and white icon for example, each bit
corresponds to one display pixel). A deeper analysis to make the connection of an image and
these numbers has not been undertaken in my thesis.

Restorator show how the resources appended to the executable are really structured. Only the
text resources of type menu and dialog box are stored in the main .res file (the .rc file
compiled). The other resources are defined (associated with an identifier) in this file but are
stored in separated files. There is the resource file extracted from the same executable by
Restorator (without the specifications of the menu and the dialog boxes):

6,7 6! '<-,"-9%F 10$0+&<+ :2 19&7, 6 , (O O ("
CDOIOIIOD- 0, 1-+ 0,6&3) & %3 COCLIDILIID
(Y& (:873

D - 0,1-+ 0,6&3 1 DD
HNI
D - 0,1-+ 0,6&3 1 DD
HNI

OD- 0,1-+ 0,6& 3 ++ | -%& - DD
++ | -0%& -0 K&

oOroaop- 0,1-+ 0,6&3 +, [DOOODOOID
+7 +l

OOOOID- 0,1-+ 0,6&3 ; -0, COOOOOOOOID
(; -0, (:-0

GDOIOIOIOD- 0, 1-+ 0, 6& 3 (533535533)))
((:&&

The resource 24 is aresource in the XML format. This tool adds also some comments. With
Resource Tuner, each text resource is saved in a separated .rc file (one for each menu and
dialog box for example). If we want save all the resources at once, the tool creates arepertory
for each type of resource.

49

5 U XML

The first section of this chapter presents UssXML (User Interface eXtensible Markup
Language) and its levels of abstraction. The second section gives the UML diagram modelling
the Concrete User Interface level. In the previous chapter | have seen the language used in a
Windows resource file. The goal of the next chapter will be to make an abstraction from the
Final User Interface level expressed in this language up to the Concrete User Interface level
expressed in the UsiXML language.

5.1 Structure of UsiXML

UsiXML is then not a new language for Ul implementation, but a User Interface Description
Language (UIDL) based on XML. It specifies the multiple models involved in Ul design
which are structured according the layers of the Cameleon™ reference framework. To talk
about the UsiXML language, this framework has first to be presented. The following
illustrates the development process for two contexts of use. Four layers (development steps)
compose the framework: Task and Concepts (T&C), Abstract User Interface (AUI), Concrete
User Interface (CUI) and Final User Interface (FUI).

The Cameleon framework is intended to express the Ul development life cycle for context-
sensitive interactive applications. The context of use, related to the notion of task, determines
the conception choices. It is defined by tree elements:

°2 Context Aware Modelling for Enabling and Leveraging Effective interactiON. For more information about
this framework, see http://giove.cnuce.cnr.it/cameleon/documents.html.

50

- Theinteractive task will be realized by aparticular user stereotype (or profile).>®

- This task will be performed on a particular platform (a set of devices and software
which enables supporting the interactive task).>*

- The user is immersed in a physical environment when realizing its task on the
platform.®

The FUI is the Ul produced at the last step of the reification process. It consists of the Ul
coded in any language (like Java, HTML or the language used in a resource script file) to be
interpreted or compiled. It is then the operational Ul running on a particular computing
platform (like a PC, a Macintosh Mac OS, web terminal, a pocket PC, a mobile phone...).
There is for instance the rendering of the dialog box from my first example that | have
simplified:

The CUI level abstracts a FUI independently of any platform. The above push button control
labelled “Find next” is for example abstracted into a button at the CUI level. A CUI can also
be considered as a reification of an AUI concretizing the Ul for a given context of use into
Concrete Interaction Objects (CIOs) so as to define widgets layout and interface navigation.
Widgets™ are building blocks of the graphical Ul each performing a specific function (e.g.,
text fields, buttons or check boxes). The interface is then composed of existing Ul widgets
with a set of properties (e.g., background colour, size, font) and a set of values associated with
the properties (e.g., black, Tahoma, 8pt), but these widgets are independent of any particul ar
toolKkit:

The AUI level isassumed to abstract the CUI independently of any modality of interaction. In
the example, it's a graphical interaction. But we could have also video-based interaction,
vocal interaction (with eventualy speech recognition), tactile interaction, haptic interaction
(as vibrations in a joystick) or even soon olfactory interaction. In the other direction, an AUI

>3 For example, supposing a distributed application in a hospital which manages information about patients, a
doctor in an ambulance using a pocket PC when detecting an urgent situation has a complex experience of
analyse. The emergency ward can then be prepared to receive the patient.

> |n the example, say an IPAQ with alarge tactile screen usable with the fingers.

> |n the example, the doctor isin a stressful environment.

% A widget evokes "window gadget".

51

express the rendering of the domain concepts and tasks independently of a modality. An
element used in this level® can be then the abstraction of an existing widget, while
representing a subtask defined at the upper level. There is how my simple example isin turn
abstracted at the AUI level:

The T&C level describes the interactive tasks to be carried out by the end user (here,
searching for aword in a text) and the domain concepts as they are required by these tasks to
be performed. A task is typically hierarchically decomposed into sub-tasks to end up with
actions (the leaves) which can be no longer decomposed and are carried out. The tasks are
also ordered with temporal relationship. The same example is graphically represented below,
where the rrR Operator indicates that sequence is needed and information is passed and the ro
operator expresses the constraint of a choice between two tasks.

The framework exhibits three types of relationships:

- An abstraction transforms any specifications into specifications at a higher level of
abstraction.

- Reification transforms any specifications into specifications at a lower level of
abstraction.

- A trandation is about transformation of the interface from one type of platform to
another, or more generaly, from one context to another. The term adaptation is also
often used: an existing system is adapted to a new context of use. If the adaptation is
performed at a high level of abstraction, the resulting process will be more flexible.

These relationships allow a multi-path Ul development. The development can be started at
any entry point of the framework. Reverse engineering follows abstractions (an existing
system is recuperated). My thesis is concerned with FUI reverse engineering. Forward
engineering follows reifications (a new system is produced). Lateral engineering follows
trandations (for example, when a Ul in HTML is already designed for a desktop, we may
design a corresponding Ul in Javafor a mobile phone).

" An Abstraction I nteraction Objects (AlO).

52

Other terms exist to define specific development paths. Transcoding tools perform lateral
engineering at the FUI level: a FUI for a source platform is directly transformed into another
FUI for a target platform. The re-engineering combines reverse engineering and forward
engineering. The retargeting is the re-engineering for another computing platform, for
example through the CUI level (asillustrated below): a CUI for a source platform (say that
one that | have to generate from a Windows resource file) is transformed

into another CUI for atarget platform™ (as a pocket PC), that | turn leads to

anew FUI for that platform:

UsiXML is based on XML, which is a compliant specification language suitable for any
interface. This language describes a Ul at any above mentioned levels of details and
abstractions, depending of the context of use.

It specifies multiple models, structured according to the four layers of the Cameleon
framework. This approach is a model-driven architecture (MDA): the interactive system to be
build is described by a series of models and transformations between them all expressed in a
unified notation. The models produced can be listed and maintained in a model repository,
which is fed and accessed by a series of tools, to be reused in an efficient way.

The basics models are the task, domain®®, AUI, CUI and context®® models. The language can
also specify the relationship between these models, with the mapping® and transformation®
models. The AUI and CUI models reflect the AUI and CUI levels. The following presents
UsiXLM in terms of a UML class diagram (that is, the meta-model of the language). The
topmost superclass (uiModel) contains common features shared by all component models of a
ul.

8 Graceful degradation techniques may be applied in this case to take into account the constraints imposed by
the target platform.

* The domain model is a description of the classes of object manipulated by a user when interacting with a
system.

% The context model describes the tree aspects of the context of use.

¢ The mapping model expresses the correspondence between elements of the models (following the reification,
abstraction and translation relationships).

% The transformation model formalizes explicitly the transformation between two models with the graph
transformation techniques in conformity with the transformation definition (generated from a mapping
specification).

53

uiModel

B¥creationDate : string 0..n 0..n_| authorName
——on f &3schemaVersion : string 5 —

1.n .
version

E2modifDate : string

0.1 0.1 0.1 .. 0.1 0..n 0.1
transformationModel ‘ ‘ domainModel ‘ ‘ taskModel ‘ ‘ auiModel ‘ ‘ cuiModel ‘ ‘ mappingModel ‘ ‘ contextModel ‘ ‘ ResourceModel
I | i
[I \ \ \ \ \ \ \

A unified language specifying these models allows designers to exchange and share fragment
of specifications and enables tools to operate on these specifications.

UsiXML is currently supported by several tools® (as Ideal XML which specifies the task,
domain, AUI and mapping models, GrafiXML which is a CUI editor or Revers XML which
enables FUI reverse engineering of HTML files). To design a user interface, the techniques
proposed can follow a forward engineering. The designer uses first Ideal XML to build a task
and a domain model (which isa UML class diagram, an entity-relation model or an object-
oriented model) and establish different types of mappings between the two models (as, in my
simple example, mapping the task “enter word” with an attribute or the task “launch search”
with an operation). The abstract Ul can be then obtained using severa rules (for example, the
structure of the AUI can be determined from the task model: if a task is decomposed in sub-
tasks, then the parent task is put in a container). A set of model-to-model® transformation
functions, transforming a UsiXML specification into another UsiXML specification, is
automated in TransformiXML. A first arborescence of widgets is then elaborate for each
container. The CUI is created, with graph transformations, after choosing the modality. A
platform and alanguage are finally chosen to have a FUI by rendering (interpretation) or code
generation. In this manner, the Ul is derived from the task model. We reuse what it is made at
the previous levels. All these tools can be combined and automatism is privileged to keep the
model consistent as modifications occur (when the requirements change). Other path can be
followed as well. We can use the fact that UsiXML supports a mutli-path development of UI.
The development process can be initiated from any level of abstraction and proceed towards
obtaining one or many FUI for various context of use:

%3 See http://www.usixml.org/ for the list of these available tools.
% Model-to-mode! transformations support any change between models while model-to-code transformations are
associate with code production (automated or not).

The task that my GrafiXML plug-in should assume is to open a resource script file describing
the Ul of a Windows-based application (that is, a FUI) and generate the Ul definition in
UsiXML at the CUI level into GrafiXML. The CUI model is presented in the next section.

5.2 Concrete User Interface model

My plug-in is devoted to generate UsiIXML specifications at the Concrete User Interface
(CUI) level from a resource file of Windows-based application. Therefore, the model which
interests me particularly isthe CUI model.

This model describes, in a certain degree of expressiveness, the appearance and behaviour of
a Ul. A Ul represented by this model is dependent of the modality. An instance of the model
addresses then a single modality at atime. In my case, the interaction is graphical.

A CUI is however independent of the platform. The elements populating a CUI redlize an
abstraction of common language used to develop Uls, like Windows.

The CUI model is hierarchically decomposed in Concrete Interaction Objects (ClOs). A CIO
is any entity that the user can perceive and manipulate used for the acquisition or restitution of
information. CIOs are grouped into two types. graphical containers (such as a window, a
dialog box or a group box) and graphical individual components (such as an image, a check
box or a progression bar). In my plug-in implementation, | will have to generate and
manipulate such ClOsinto GrafiXML.

The layout of a CUI is not defined with absolute coordinates as in the resource files presented
in chapter 4, but with a box embedding mechanism. Alignments between CIOs can be defined
with some relationships.

There is the CUI from the first section edited in GrafiXML. It's the ssimplified dialog box of
my first example containing a text field and two push buttons and alowing the user to find a
word in atext. A CUI islike ablueprint from which a FUI is created on a particular platform,
giving the final look.

55

At any time, the user can see the corresponding Usi XML specifications in the XML editor.
Note that UsiXML cannot naturally be executed by its own, but relies on an implementation

in athird-party rendering engine.®® The following is the description of the CUI in UsiXML.

27'? -0, S (: +, "S D !
Ll g 4 D+l % S + Dl R
L %"),2 S %" 8,2 + 73, & w S %" 8,2 07 3!6
eds, & & $ &S " & (R
L8,2 S 8,2 (% S 82 (&3 S ,-> &b - '9R? &S (

2
L8,2 S82((% S82((&3 S ? -&+9% - 19&? &S
L 31& 2& S 31&&2&+73, & 9% S &+ &,!

0;08/S&l 0 9% S&l 0 &B S &l

&28& >S &2&, & +,0,6% %0 -679%R "&S

178 - 6 0S (178 - 6,117 0S "L * L -> &S -
L@, 2R
L8,2 S 8,2 (%W S 8,2 (&3 S ? -&tW - 19&R? &S
L81&& S 81& + 7 3, & %W S @4!&310 81& (

edl&, & & 2& 0, 08! S &1 0 %! S &1

&2& > S &2&, & +,0,8& %0 -6 "1 *,-> &S 7

L 81&& S 81& + 7 3, & % S 310 81&
ed&, & & %9 !! 0, 08!S &1 0 9! S &1

&2& > S &2&, & +,0,68% %0 -6 "1 *,-> &S 7

LG, 2R
LO 9%, "), 2R
Lel , R

- 1982 *
- 1982 *

& @R

- 192 *

I R

IR

" &S (
e

" s (

R

A cio is characterized by various attributes sush as id, name or defaultContent. All the CIOs
in this CUI model are graphical Cio, which inherits from cio and has specific attributes such
as isVisible, isEnabled, textFont or textSze. A graphicalCio can belong to one of the two
possible types: graphicalContainer or graphicallndividualComponent. For example, a
dialogBox and a box are from the first type and an inputText and a button are from the second
type. The properties of each final element in the hierarchy (that is, their specific and inherited
attributes) are limited to describe characteristics of high common interest, independently from

the future rendering.

® FlashiXML (which is currently being implemented) can also opens a CUI UsiXML file and rendersit in Flash,

QtkXML inthe Tcl/Tk environment, and JaviXML for Java.

56

The UML class diagram of the CUI model is given at the next page. The full documentation
of the diagram can be found on http://www.usixml.org. Each CUI model expressed in
UsiXML will be an instance of this meta-model. | can then compare the meta-model with that
one given in the previous chapter, and find correspondences between them. This mapping is
covered in the next chapter.

Once the resource file will be transformed in UsiXML at the CUI level, code in another
language can be generated, even automatically with GrafiXML (in HTML, Java, XHTML or
XUL).

57

temporalOperator
&value : {>> [, | =

().
1]

condition

&isPositive : boolean
boolean
logicalOperator &conditionType : {pre,post}

event

id : string
beentType : string

d

ontext : string
string

uiModel

@ycreationDate : string
&schemaVersion : string

target

0.1
action H
@ value : {AND, OR, XOR, IMPLIES} 0.n @ptargetld : string
:m string 1 1 1 1.n
name : string
° behavior cio
lescription : string
&ydescript 9 ~string 0" bid : string cuiRelationship | 1
1.n S brame : string &id : string
bicon: ui 0..n | &name : string &sourceld : string
uri L.n
. 1
/X 1 |@defaultContent : string or uri
ransiomationSystem o 30
&id : string - st
id : stri &help :
&pname : sting [Methodcal | | transition sy
Y string ;‘ Smng‘ ‘ansniomdﬁei string‘ =
L] L
n ‘
applicationOrder graphicalRelationship
e —!
methodCallParam [| [cubialogcontral |
n ®componentidRef : stiing ‘ ®symbol : stiing
y : string :
transiomationRule | | @yretumvalue : string graphicalCio [s— | [raiGompanent|
&id : sting AP oole - = ponen |
: string boolean olean uri
&pdescription : string Content : uri } } g'apmca“:'g?mem
) oolean
Content : st
oun L o1 &ioColor : string i) vocalTransition rizontal : boolean graphicalEmphasis
ruleMapping |0 Qoo st wocalAdjacency ®transitionType : string i entrallef : string
o.n :source\dzsmng o.n integer vocalContainer & delayTime : integer| & : string isUpDown : string
: targetld : string
attributeCondition DorderType : integer ‘ !
borderTitle : String - P—
&expression : string Title : String omponent | [vocalC: | grahicalCointainment
— &borderTitleAlign : String 01t I |
&borderColor : String graphicalTransition
@toolTipDefaultContent : string » o TVEeTTe
&oolTipContent : ur vocalFom | [vocaiMenu | [vocalConfirmation | o e e graphicalAdjacency
: integer I 1 T 1 | s8] [1
[11 1 1 1
Z% vocalOutput vocallnput
] tvn\ume:mleger @ellapsedTime : integer
. integer| & string
graphicalindividualCompone itch - strin
I &p 9
string
graphicalContainer gl I 2 string
&wiidth - integer + String
separator
P &heigth : integer String
uri + string
OnTop : boolean| 0-n__|8isBold: boolean [vocalFeedback | [vocaimenuttem |
integer 1 isitaic : boolean I | | |
&isDetachable : boolean &isunderline : boolean [J []
ikeThrough : boolean
. boolean vocalPrompt
n boolean
+ boolean
ize : integer
&textColor : String
toolBar table i
dialogBox tabbedDialogBox
&isFloat : boolean &xsize : integer = —
&isFloatable : boolean &ySize : integer] & boolean I shin | e slider
&25ize : integer R videoComponent & - string = P Hirtoer]
| smng‘ boole} | mlegger
uri g
tteger
1 statusBar e [9 @ @step : integer
MenuPopUp Py 0. isLoop : integer hourPicker i string
lenuBar on &builtinControl : boolean toggleButton 1] { {
boolean
jefaultState : boolean
Ny - ortert uri men !
= & popUpMenu : boolean datePicker progressionBar
1 [@xindex button
.:;‘:dz:.:::g:; T &toolBarMenu : boolean | | :‘\ﬂ(leger
box &inder ntcoer vindovL g - neger] T el
&type : strin < boolean gin : integer ‘
byp 9 o e Resizable : boolean outputText imageComponent 1.n X : boolean| |
ight : integer lyperLink Target : uri image ight : integer
boolean &hyperLinkTarget : uri imageWidth : integer menultem
2 (eealeem &isitedLinkColor : string imag * integer &type : string
et 3 bactiveLinkColor : string integer checkBox &keyboardShortcut : string fleRickerj
e inputText integer &hyperLinkTarget : uri @ydefaultkeyboardShortcut : string ype : string
: boolean = s KT a &defaultState : boolean
integer integer text string yperLinkTarget : uri i ‘ ‘
g n &groupName : string
i © integer boolean texth gn © string
ol &isFlow : boolean pped : boolean tyle : string
m e pped : boolean &scrolDirection : string
- string & maxLength : integer igth : integer
idHeight : string OfColumns : integer : integer on
OfLines integer -
&textVerticalAlign : string + integer imageZone listBox
ign : string integer &hyperLinkTarget : uri & maxlineVisible : integer
&iiler : uri &scrolDelay : integer defaultHyperLink Target : uri &isEditable : boolean
 string OfColumns : integer &shape : string & multiple_selection : boolean
boolean OfLines : integer coord

6 Importing resourcefilesin GrafiXML

So far, I've presented the specification languages used as input and output of my reverse
engineering method. This chapter covers the transformation process from a resource script file
(*.rc) up to the generation of Concrete Interaction Objects (widgets provided by a toolkit) in
the editor tool GrafiXML. The first section studies this transformation and proposes
derivation rules, and the second section explains how it has been implemented as a plug-in of
GrafiXML.

6.1 Transformation of resourcesinto CUI

I will explore here how the content of a resource file can be transformed into the CUI model.

6.1.1 Correspondences table

| have to detect the similarities between the two meta-models. on the one hand the class
diagram modeling a resource file, on the other hand the class diagram of the CUI model. The
objective will be to give a value to a maximum of attributes of the second diagram with the
information found in a given resource file (instance of the first diagram). The question that
guides this section is to determine which objects (from the real world, to refer to databases
vocabulary) composing of a graphical user interface and which characteristics defining the
appearance and functionality of an object are covered both by the two languages. This
corresponds to the crosshatched zone in the picture below. For example, a mnemonic of a
menu item can be specified in aresource file as well in the CUI model. From a simple combo
box, we have in part the information that the current selection is editable, but the fact that its
list box isdisplayed at all timeisnot covered in the CUI model.

59

The following list of tables will serve as guidelines for my implementation. The Windows
objects are placed in the left column and their corresponding objects of the CUI model (ClOs)
in the right column. An attribute name appears in italic and a class name in bold to dissociate
them. Note that there are some elements in the table that not really correspond, but that 1've
still decided to associate in my implementation (as such an identifier in a resource file with a

name of aClO).

6.1.1.1 Resources of type dialog box

RC

CUI

DIALOG

dialogBox or window
graphicalCio isVisible = true

box type = vertical

digiD=n

cioname=n

Width = w

graphicalContainer width = w*4/xChar + 2*border width
(where xChar is the average width of the dialog box font
character in pixel)

box width = w* 4/xChar

Height=h

graphicalContainer height = h*8/yChar + title bar height

+ bottom border width (where yChar is the average height of
the dialog box font character in pixel)

box height = h*8/yChar

Text =t and Caption=trueandt null

cio defaultContent = t

FontName = n and SetFont = true

graphicall ndividualConponent textFont = n

ShellFont = true and
FontName = "MS Shell DLG"

graphicall ndividualConponent textFont = "Tahoma'

ShellFont = true and
FontName "MS Shell DLG"

graphicall ndividualConponent textFont = "Tahoma"

FontSze=sand
(SetFont = true or ShellFont = true)

graphicall ndividualConponent textSze=s

SetFont = false and ShellFont = false

graphicall ndividualConponent textSze =8,
textFont = "Tahoma"

Extended = true and (SetFont = true or
ShellFont = true) and Weight 550

graphicall ndividualConponent isBold = true

Extended = true and (SetFon = truet or
ShellFont = true) and Italic = true

graphicall ndividualConponent isltalic = true

Disabled = true

graphicalCio isEnabled = false

ThirckFrame = true

window isResizable = true

TopMost = true

graphicalContainer isAlwaysOnTop = true

| choose Tahoma as default font, which is the default system font of Windows 2000 and upper
(it was MS Sans Serif for older versions). The size of the font is always 8 when not specified.
It's the dimension of the dialog box client area that is specified in a resource file. In the CUI
model®®, a dialog box or a window has always a caption bar and a border which are included
in the dimension (a border will be 5 pixels wide and a caption bar will be 30 pixels high).
Remember that the units of measure are not the same. The dimension of a graphical container
Is expressed in pixels, whereas a resource file expresses the measures in horizontal dialog
units and vertical diadog units®. The dimensions in Windows are then defined in term of

® |n reality in the implementation of GraphiXML (still currently being implemented). It's principally to restore
in the composer the same layout that the original dialog box that | have adapted the dimension of the container.
%7 One horizontal (vertical) unit equals 1/4 (1/8) of an average character width (height) of the font used.

60

characters. Three versions of a dialog box with the same specified dimensions but with
different font used are illustrated in this paragraph. Although it should be possible (the system
do it), I’ve not the necessary time and means in my thesis to calculate the average character
width and height of each existing font (considering also the size of the font) in order to get the
exact dimension of a dialog box in pixels® To

estimate the values of xChar and yChar in the table

above, I've used an empiric method. I’ ve choose a

dialog box using the default 8-point Tahoma font

(or an 8-point MS Sans Serif font which seems to

have the same character width and height because

the resulting dimension is the same), and I've

watched its dimension in pixels. For that one from

my first example, | observe that the client area is

413 pixels wide and 137 pixels high.®® So, we have

for the relations from the table:

a3=—W_ g 137=_0
xChar yChar
Where the width w is 275 and the height h is 84 in dialog units. We have then the estimations:
xChar = 1100 and yChar = 6r2
137

Seeing that another font size s can be employed, these values must still be multiplied by §/8. If
another type of font is used (as Courier New), | decide that the dimensions in the dialog box
will not be adapted and some texts may be clipped. It’s not frequent to see another font used
in a dialog box of a Windows application.”® After

al, when the user changes the font in a GrafiXML

project, this not affects the size vaues firstly

specified. The user has to change manually the size

of the dialog box, as the size of some components if

text with new font fits in the graphical component.

Note finally that the colours are not in my UML diagram. That is, they are not specified in a
resource file but specific to Windows". Such data that could be deduced seeing that Windows

% | don’t know if we can find documentation about this pixel information. | just know that the Windows function
GetClientRect obtains the dimensions in pixels (and the function MapDialogRect converts the character
coordinates in the dialog box to pixel coordinatesin the client area.

% To do this, I’ ve edited the desired font in a decompiler, made a print screen and used MSPaint (in "C:\Program
Files\Accessories') the number of pixels.

©1nfact, I’ ve never seen that in aresource file.

™ Here | some examples in Windows XP. The grey colour "#d8e9ec" is the surface color of adialog box and the
backgroud color of a control to agree with the color of the client area of the dialog box in which it is designed to
be displayed. By default, the colour of an active title bar is blue ("#e45403") and the white ("#ffffff") bold text
has the Trebuchet MS font of size 10. The colour of text displayed in the client area of a dialog box is always
black ("#000000").

61

interfaces are used could not be transformed into the CUlI model. This concerns the FUI
model.

CONTROL

Position=n cio name = "control " +n

X,'Y, Width, Height serve to the creation of boxes with eventually some
graphical Alignment between two components inside a box

Disabled = true graphicalCio isEnabled = false

Visible = false graphicalCio isVisible = false

Text =tand ‘&’ isacharacter of t and the graphicall ndividualComponent defaultMnemonic = the

control isaradio button, a push button, a character following ‘&’ int

customized button or a check box

In my transformation, the identifier of a resource corresponds in general to the name of a
ClO.” The user can then still connect the produced object with the resource in the file after
the reverse engineering process. However, for child window controls, | use the line number of
their definition in the template for the name. They can be then easier localised and most of all
in a unigue way: the controls who not receive user input (as static controls) have all -1 as
identifier.

For a component, the concept of position and dimension inside a window is absent from the
CUI model. To place each component, horizontal and vertical boxes will have to be defined
using the position and dimension values of al controls specified in the resource file.
Alignment properties can aso be defined between two components inside a box. Look at the
measures in the dialog box from my first example, which are not always visualy identifiable
for some controls:

We could divide the client area in different ways. The following illustrates one possibility to
create the first boxes:

"2 And not to the attribute id of a CIO. These two identifiers have not the same utility.

62

GROUPBOX

box (containing each control that participatesin the Group

relationship)

graphicalCio borderWidth = 1, border Type = line,
borderColor = "#000000"

Width = w, Height = h

box width = w*4/xChar, height = h*8/yChar

Text=tandsizeof t>0 "

graphicalCio defaultBorderTitle =t

Horizontal Alignment = left

graphicalCio borderTitleAlign = left

Horizontal Alignment = center

graphicalCio borderTitleAlign = middle

Horizontal Alignment = right

graphicalCio borderTitleAlign = right

RADIOBUTTON PushLike = false

radioButton

Text=t

cio defaultContent = t without any ‘&’ characters

Group = true

radioButton groupName = a given group name for each
radio buttons following this radio button in the template and
having Group = false

RADIOBUTTON PushLike = true

toggleButton

PUSHBUTTON

button

Text =t and Content = text

cio defaultContent = t without the ‘ &’ character

Text =t and Content text

cio defaultContent = t

Default = true graphicalEmphasis

CUSTOMBUTTON button

CHECKBOX PushLike = false checkBox

Text=t cio defaultContent = t without any ‘&’ characters

PushLike = true toggleButton

Group = true checkBox groupName = a given group name for each check
boxes following this check box in the template and having
Group = false

LISTBOX listBox isEditable = false

heigth=h listBox maxLineVisible = h/(11*s/8) (where/ is an integer

division, and sis the size of the font use in the dialog box)

ExtendedSelection = true

listBox multipleSelection = true

EDIT Width=w

inputText isEditable = true, number OfColumns = w/4

Alignment = left

inputText textHorizontal Align = left

Alignment = center

inputText textHorizontal Align = middel

Alignment = right

inputText textHorizontal Align = right

MultiLine =false

inputText numberOfLines =1

MultiLine =falseand
AutoHorizontal Scroll = false

inputText maxLength = w/4

PasswordField = true

isPassword = true

Number = true

defaultFilter = [0-9]

Heigth = h and MultiLine =true

inputText numberOfLines = h/(11*s/8) (where sisthe size
of the font)

MultiLine = true and AutoHorizontalScroll =
false and Horizontal ScrollBar = false

inputText wordWrapped = true, forceWordWrapped = true

Width = w and MultiLine = true and
AutoVerticalcroll = false and
VerticallScrollBar = false

inputText maxLength = w/4 * number OfLines

COMBOBOX Heigth = h and Type = simple

listBox isEditable = true, mulipleSelection = false,
maxLineVisible = h/(11*¢/8) (where sisthe size of the font)

COMBOBOX Heigth=hand Type simple

comboBox maxLineVisible = h/(11*5/8) -1 (where sis the
size of the font)

COMBOBOX Type = dropDown

comboBox isEditable = true

COMBOBOX Type = dropDownList

comboBox isEditable = false

3 In my implementation, the text in the control definition will be never null (contrary to a dialog box which can
have no title specified in the caption bar) asin the syntax of the generic notation (in any case, the variable storing
the text will beinitialised to an empty sting before parsing the text).

™ That is, an icon or bitmap.

™ The fractional part of the result is truncated and discarded.

63

I’ ve chosen to represent a simple combo box (that is, the list box is displayed at all times and
the current selection is editable) in Windows with an editable list box in the CUI model. For
drop-down and drop-down list combo boxes, care must be taken when reading the height
specified in the resource file, as we can see in the same example illustrated above:

The problem is that the drop-down list is counted in the height of the control. The height must
be revised when creating boxes by considering only the field of the current selection (14
horizontal dialog units when the font sizeis 8, then 14*/8 when the font is s).

Note that the dimensions of graphical individual components are not explicitly specified in the
CUI model. This will pose a problem for a button. The dimension of this CIO (as the
dimension of aradioButton, checkbox or toogleButton) is defined by the length of the text put
in it, and then it cannot have a larger size (and be aligned with other as illustrated above). In
addition, if an image is put in the button instead of text, its size is undefined since this
resource (and then the size of the image) is not available. The width of a listBox depends also
of the length of itsitems. The problem is the same: the strings contained in a list box are not

specified in aresourcefile.

PROGRESSBAR

progressionBar

Type = marquee

indeterminate = true

Type marquee

indeterminate = false

Vertical = true (false)

orientation = vertical (horizontal)

STATIC Type = ownerDraw,
Width = w, Height = h

outputText number OfColumns = w/4,
number OfLines = h/8

STATIC Type= text,
Width = w, Height = h

outputText textVertical Align = top,
number OfColumns = w/4, number OfLines = h/8

Text =t, NoPrefix = false

cio defaultContent = t without any ‘&’ characters

Text =t, NoPrefix = false
and ‘&’ isacharacter of t

graphicall ndividual Component defaultMnemonic = the
character following ‘&’ int

Note : here the attribute is set to the cio which is the
abstraction of the first control having Tabstop=true after this
static control in the resource file

Text =t, NoPrefix = true

cio defaultContent = t

TextStyle = left or simple or leftNoWordWrap

textHorizontal Align = left

TextStyle = center

textHorizontal Align = middle

TextStyle = right

textHorizontal Align = right

STATIC Type =image

imageComponent

Text=t

cioname=t

Real Szel mage =true, Width = w, Height = h

imageComponent width = w*4/xChar, height = h*8/yChar

Border = true or Sunken = true

imageComponent imageBorder = 1

STATIC Type = frame, Width = w, Height = h,
Etched horizontal or vertical

box width = w*4/xChar, height = h*8/yChar
(containing each control that participates in the Group

relationship)

graphicalCio borderWidth = 1, border Type = line
Etched = horizontal, Height = 1 box width = w*4/xChar, height = 1

graphicalCio borderWidth = 1, border Type = line
Etched = vertical, Width=1 box width = 1, height = h*8/yChar

graphicalCio borderWidth = 1, border Type = line
STATIC Type = enhancedMetafile imageComponent width = w*4/xChar, height = h*8/yC

For a static control used to display an image, the given text is the name of an icon or a bitmap
(not afilename) defined elsewhere in the resource file. For example, if the text of such control
Is , the file (here from Restorator) has somewhere the line: D+,

But when we extract the resource and save it to the disk with a decompiler (*.ico), the name it
gives to the file is not necessary the same as specified (for example, we have a file names
Icon_1.ico). So, I’ ve not exploited this information (an image file name is normally put in the
defaultContent attribute of an ImageComponent). The user can insert the image in the
GrafiXML project, knowing the name of the image resource (put in the name attribute for an
ImageComponent overriding the name that | have defined for each control). We can’t know
the real size of an image resource from a resource file. The user should also put these values
manually in the GrafiXML composer.

The width and height values specified in the resource file for a static control displaying an
image are aso ignored in Windows (except if RealSizelmage = false): the control auto sizes
itself to accommodate the image. Thiswill complicate the creation of boxes since these values
can be not reliable information.

A static control can also represent frames corresponding to container in the CUI model. The
following illustration summarizes the different types of static controls used to draw frames.

The values for the colour do not necessary mean that the colour are black, gray or white but
are based on a Windows system colour: the colour used to draw window frame, to fill the
screen background or to fill the window background. And the default values can be changed.
So, this colour information in a resource file is in reality not present.” In Windows, the flags

* +» @and L are always used to have an etched looking vertical or
horizontal line in arectangle one unit high or wide (asin my third example).

® In my implementation, |’ve still set these default values ("#636f71" for black, "#99a8ab" for gray and "#ffffff"
for white) to the bgColour and borderColor attributes for the corresponding box to visually identify the
container in the GrafiXML editor.

65

TRACKBAR slider

Orientation = horizontal Orientation = orizontal
Orientation = vertical Orientation = vertical
UPDOWN AutoBuddy = true spin

EDIT (participating to the relationship GlueTo)

TREEVIEW tree
DATETIMEPICKER format time datePicker
DATETIMEPICKER format = time hour Picker

If the buddy window (the previous window in the z-order) of an up-down control is an edit
control, thislast object should be ignored when parsing the file (a spin has already an editable
field in the CUI model).

6.1.1.2 Resourcesof type menu

MENUBAR menuBar position = up

Memuld = n Cio hame=n

POPUPMENU menuPopUp

Text =t cio defaultContent = t without the ‘ &’ character

Sate = enabled graphicalCio isEnabled = true

Sate enabled graphicalCio isEnabled = false

MENUITEM menultem

Itemld=n Cio hame=n

Text=t cio defaultContent = t without the ‘ &’ character

Sate = enabled graphicalCio isEnabled = true

Sate enabled graphicalCio isEnabled = false

Checked = true menultem type = toggle

Text=tand ‘&’ isacharacter of t graphicall ndividual Component defaultMnemonic = the
character following ‘&’ int

Text=tand"“...” isasubstring of t menul tem type = command

Text =tand ‘\t' isacharacter of t menultem defaultKeyboardShortcut = the key combination
specified after ‘\t’ int

SEPARATOR separator

In Windows' menus, the programmer usually indicates that a menu item invokes a dialog box
by adding an ellipsis (...) to the text. If | found such characters in the text of a menu item, |
make the assertion that it correspond to menu item of type command in the CUI model. For a
pop-up menu, the mnemonic cannot be exploited since this attribute is currently not present
for a container in the CUI model.

Note that I’ll have to create a window graphical container before creating a menu bar object
into GrafiXML to represent the overlapped window (the program’s main application window)
which is not specified in aresourcefile.

6.1.2 Derivation rules

66

This section gathers some mapping rules”” specifying the correspondence between the two
models: that one modeling a Windows resource (of type menu or dialog box) and the CUI
model. The list is not exhaustive, but is shown to see the nature of such rules and show that
they can be elaborated with a Windows resource file as source of the mapping. Only rules
concerning a dialog box will be developed. | will first explain a specific notation for reverse
engineering derivation rules, and | will then define precisaly in this notation a subset of the
rules appearing in tables of the previous section.

A standard notation [11] can be used to express formally reverse engineering derivation rules
for a Ul specified in any language (or source model). The rules are applied on trees
representing a Ul: Ts is the source tree (an instance of the diagram modeling a Windows
dialog box resource) and T; is the target tree (an instance of the CUI model). The nodes of a
tree T store hierarchically the elements composing the Ul. Each connection (or arc) represents
a containment relationship between the parent and the child.” Each node of the tree represents
the different elements composing the Ul. Each node can possess zero or more attributes. To
construct T, | will use the following predefined basic update operations:
- AddNode(class, id): add a new node with the identifier id storing an element which is
an instance of class.
- AddAttribute(id, name, value): add to the node id the attribute name initialised to
value.
- ModifyAttribute(id, name, newname, newvalue): suppress the attribute name of the
node id and add the attribute newname with the value newval ue.

- AddArc (idSource,idTarget): connect the parent node idSource with its child node
idTarget.

Rules identifying containers

Thisfirst group of rulesis applied first and the two new nodes are linked once created. The
first rule of each group corresponds to the detection of a node in the source tree that causes
the creation of anode in the target tree.

" x1 Ts:x=DIALOG® AddNode("dialogBox", rootld)

U AddAttribute (rootld,"id", rootld) U AddAttribute (rootld," name", x.DIgld)

U AddAttribute (rootld,"isVisible", " true") U AddAttribute (rootld, " isEnabled”, NOT x.Disabled)
UAddAttribute (rootld," width",3304" x.Weight/275" x.FontSize+10)

U AddAttribute (rootld," height", 274" x.Height/21" x.FontSize+ 35) whererootld= nodel Tt

" x1 Ts:x=DIALOGUx.Caption = true ® AddAttribute (rootld," defaultContent", x.Text)

" x1 Ts:x=DIALOGUx.TopMost = true ® AddAttribute (rootld,"isAlwaysOnTop", " true")

" x1 Ts:x=DIALOG® ConstrBox (boxId," vertical") UAddArc(rootld,boxld) whereboxld = nodel T:

" The mapping is direct because the two models are expressed in the same formalism (UML diagrams).
"® Remark that the maximum height of T is one: the only container in a Windows dialog box is a window which
can contains child windows.

67

The function ConstrBox(id,type) is defined as:

AddNode("box",id) U AddAttribute (id, " type", type) U AddAttribute (id, "isEnabled", " true")
UAddAttribute (id, "isVisible", " true") U AddAttribute (id,"id", id)

The next group identify group boxes (not containersin Windows).

" g(i Ts:x=GROUPBOX ® ConstrBox(boxId, vertical) U AddAttribute(box!d," borderWidth","1")
UAddAttribute(boxId," borderType', "line") U AddAttribute(boxId,"” name", x.Ctrlld)
whereboxld=nodel T:)

" x| Ts:x =GROUPBOX U (ParentNode(x).SetFont = true U ParentNode(x).ShellFont = true) ®
AddAttribute(boxId," width", 3304" x.Weight/275" ParentNode(x).FontSize)
UAddAttribute(boxld," height", 274" x.Height/21" ParentNode(x).FontSize)

" x| Ts:x=GROUPBOX U ParentNode(x).SetFont = false U ParentNode(x).ShellFont = false ®
AddAttribute(boxId,” width", 413" x.Weight/275) U AddAttribute(boxId,” height",137" x.Height/84)
" x| Ts:x =GROUPBOX USize(x.Text)* 0Ux.HorizontalAlignment * center ®

AddAtribute(boxId," defaultBorder Title", x. Text)

UAddAttribute(boxId," borderTitleAlign", x.Horizontal Alignment)

" x| Ts:x=GROUPBOX USize(x.Text)* 0Ux.Horizontal Alignment = center ®

U AddAttribute(boxId,"” borderTitleAlign"," middie")

" x| Ts:x=GROUPBOX Ux.Disabled = true ® ModifyAttribute(boxId,"isEnabled”,"isEnabled","false")
" x| Ts:x =GROUPBOX Ux.Visible=fase® ModifyAttribute(boxld,"isVisible","isVisible","false")

Parentnode(x) returns the parent node of node x. The rule is similar for a static control
drawing aframein adialog box.

Rules identifying components

| give as example two groups of rules relative to a combo box and radio buttons.

" g(i Ts:x =COMBOBOX Ux.Type? simple® AddNode("comboBox", combold)

U AddAttribute(combold, " name”, x.Ctrlld) U AddAttribute(combold, "id", combol d)

wherecombold= nodel Tt

" x| Ts:x=COMBOBOX Ux.Type! simple

U (ParentNode(x).SetFont = true U ParentNode(x).ShellFont = true) ®

AddAttribute(combold, "maxLineVisble", ParentNode(x).Height/(11" ParentNode(x).FontSize) - 1)

" x| Ts:x=COMBOBOX Ux.Type! simpleU ParentNode(x).SetFont = false

U ParentNode(x).ShellFont = false ®

AddAttribute(combold," maxLineVisble", ParentNode(x).Height/11-1)

" x| Ts:x=COMBOBOX Ux.Type=dropDown ® AddAttribute(combold,"isEditable’," true")

" x| Ts:x=COMBOBOX Ux.Type=dropDownList ® AddAttribute(combold,"isEditable’,"false")

" x| Ts:x=COMBOBOX Ux.Disabled = true ® ModifyAttribute(boxId,"isEnabled”,"isEnabled”," false")
" x| Ts:x=COMBOBOX Ux.Visible= fase® MadifyAttribute(boxld,"isVisible","isVisible","fase")

68

" x1 Ts:x =RADIOBUTTON Ux.PushLike = false® AddNode(" radioButton", radiold)

UAddAttribute(radiold, " name", x.Ctrl1d) U AddAttribute(radiol d, "id", radiol d)
UAddAtribute(boxId," defaultContent”, WithoutAmper(x. Text))
whereradiold= nodel Tt

" x1 Ts:x =RADIOBUTTON Ux.PushLike = faseU&® x.Text ®

AddAtribute(boxId," defaultMnemonic", CharAfterAmper(x.Text))

x1 Ts:x =RADIOBUTTON Ux.PushLike = false Ux.Disabled = true ®
ModifyAttribute(radiold," isEnabled","isEnabled"," false")

xT Ts:x =RADIOBUTTON Ux.PushLike = falseUx.Visible= false®
ModifyAttribute(radiold,"isVisible","isVisible"," false")

WhithoutAmp(t) gives returns the text t without any ampersand (&). CharAfterAmp(t)
returns the letter that follows the first ampersand of t.

Rules for the exclusion of radio button

x,z$y1 Ts,$al Ti: x = RADIOBUTTON U x.Group = falseUy.Position < x.Position
Uy = RADIOBUTTON Uy.Group = true Uz.Position > y.Position Uz.Position < x.Position
Uz = RADIOBUTTON Uz.Group = falseUa = itao(x) ® AddAttribute(a.id," groupName", y.id)

itao(X) (“isthe abstraction of”) returns a node of T; which is the result of an abstraction of the
node x (from Ts). A relation isautomatically created for each creation of nodes in the target
tree. This relation can be of the type one to many or one to one.

Rules relative to the font

xT T,$y1 Ts: isRoot(y) = trueUy.SetFont = true U (x = inputText Ux = outputText U x = button
U x = radioButton U x = toggleButton Ux = checkBox Ux = spin Ux = comboBox U x = tree

Ux = listBox U(x = box Uitro(x) = GROUPBOX)) ® AddAttribute(x.id," textFont",y.FontName)
UAddAttribute(x.id," textSize", y.FontSize)

" xT Te,$yl Ts: isRoot(y) = trueUy.SetFont = falseU(x = inputText Ux = outputText U x = button

Ux = radioButton U x = toggleButton Ux = checkBox Ux = spin Ux = comboBox U x = tree
Ux = listBox U(x = box Uitro(x) = GROUPBOX)) ® AddAttribute(x.id," textFont"," Tahoma")
UAddAttribute(x.id," textSize","8")

itro(x) (“isthereification of”) returns anode of Tswhich isthe result of an reification of the
node x (from Ty).

69

6.2 Plug-in development

| see in this section how are implemented the set of derivation rules. The programming
language used to implement the plug-in is Java (seeing that GrafiXML is developed in Java).
The source code, well documented, isin appendix D.

6.2.1 How to run it?

To integrate a plug-in into GrafiXML"®, the ImportPlugin interface has to be implemented.
This interface is in the be.ac.ucl.isys.grafixml.plugins package, which is the first import
declaration of my program.

public interface | nportPlugin extends |nportExportPlugin {
/* load the file chosen by the user and do sonething with it */
public boolean |load(File file);
/* used to have a preview of the given file */
public bool ean | oadFil eContent(File file);

public interface | nportExportPlugin extends Plugins {
/* return the extensions of the files that can be inported */
public String[] getExtensions();
/* return the type nanme */
public String get Extensi onNane();

public interface Plugins {
/* return the plugin nanme */
public String getPl ugi nName();
/* return the author nane of the plug-in */
public String getPl ugi nAut hor ();
/* return the versions of Grafi XML that supports the plug-in */
public String getPl ugi nDepend();
/* return the plugin version */
public String getPlugi nVersion();
/* return the plugin description */
public String getPlugi nDesc();

}

It's Resources.java that implements the ImportPlugin interface. I've
also define seven other auxiliary classes to carry out my task. Once
compiled, all my classes are put in ajar file with the structure shown
to the right, where plugin.desc is a text file which contains the line
“main-class=resources.Resources’ which is the path to the main
class of the plug-in. | put then this jar file in the Windows repertory
\Document And Settings\user_name\.grafixml.plugins.

My plug-in can finally be run and tested by launching for example GrafiXML with Java Web
Start.° A new submenu will appear when selecting the menu item ‘import’ .

™ See the wiki page http://www.usixml.org/index.phpview=wiki& title=GrafiX M L ImportPlugins.
% Goon http://www.usixml.org/index.php?view=page& idpage=10 to download grafixml.jnlp.

70

6.2.2 How to use it?

I’ ve decided to divide my implementation into two phases. When a resource file is imported,
the text isfirst scanned to find the available resources. If the search fails (the file is empty, or
the resources found are not exploitable, that is are not of the type dialog box or menu), a
message is displayed to the user. Else, the set of available resources are shown is the ‘Import
Resources dialog box and the user can select those to import in a project. The location in the
file of the selected resources is then memorized (if there is no selection when the user presses
the '‘OK’ button, or if the ‘Cancel’ button is pressed, nothing happens and the plug-in
execution end). This module is the scan phase. In the second module (the process phase), the
chosen resources are then each in turn analysed and transformed into GrafiXML by
implementing my correspondence rules (see section 6.1). The architecture of my plug-in is
pictured below.

This section will serves also as user manual and show that the interaction with the plug-in is
simple. The graphical interface is composed of two dialog boxes. I’ ve chosen the javax.Swing
package®! to create in Java the graphical interfaces. The user has to choose afile to load, and
the resources to import. The user can then continue its works on the editor of grafiXML. Note
that before importing a file, the user must before create a new project (or open an existing
one).

81 See http://java.sun.com/j 2se/1.4.2/docs/api/j avax/swing/package-summary.html .

71

6.2.3 Specifications

| state here clearly the requirements of the plug-in (the what). Pre-specifications and post-
specifications of my program are established as:

Input : An existing Windows resource script file (*.rc) f .

Output : fis closed and unchanged. The user-selected resources of type dialog box or of type
menu from f are transformed into CUI in GrafiXML, or a message if f doesn’'t contain any
exploitable resource (that is, it doesn't exist in f a dialog box or menu resource described in
the expected syntax).

An error message will also be displayed if the file cannot be found (pre-specification not
satisfied). Notice that only Windows resource can currently be processed in the plug-in,
nothing happens if a file with another format (as an Apple resource file or a screen definition
file) is imported. So, the specification should change if a future expansion of my work is
undertaken. As yet mentioned, the design can be logically decomposed into two modules. The
following is the tasks that each module should perform.

Module 1 : the scan phase

Input : An existing Windows resource script file f of a valid structure, that is, each
different resource must be separated by at least one empty line of text. An empty lineis
aline containing only white space (consists of blanks, tabs and new line characters).

Output : f is closed and unchanged. An array a is returned, containing the line numbers
in f of all the dialog box and menu resources or a subset of them depending of the
selection of the user. a cannot be null and its length is O if there is no such resourcein f
(thisincludes the case of an empty filef). Thefirstinfline starts at 1.

The expected syntax of a resource of type dialog box and menu are defined in sections 4.3.1
to 4.3.3. | suppose here that the user hasn’t to modify the file given by a decompiler, and that
suppressing a separator of resource (an empty line) is as well serious that suppressing the
identifier or the second keyword of aresource. In the two cases, a potential resourceislost.

Module 2 : the process phase
Input : An array a of integers with a.length 1 containing line numbers of an existing
Windows resource script file f (at least one resource has then been found in f and
selected by the user). Thefirst line of f starts at 1.

Output : f is closed and unchanged. The n resources defined at linea[i] (0 i n)inf
are transformed into CUI in GrafiXML.

The program is robust in the sense that it handles unexpected input in the second phase. Some

scenarios are inserted in the source code comments. In the first phase, some resources will be
simply ignored if the structure of the resource script file isnot valid.

72

6.2.4 Description of my implementation

| explain here briefly how my program accomplish its requirements (the how) and consider
some design questions. This regroups some concepts, some choices I've made during the
development, the data structures that 1’ ve used and the principal agorithms.

One programming requirement was to read information from an external source (a .rc file on
disk). A stream is the underlying mechanism for accomplishing any I/O operation in Java.
The javaio package®™ proposes many ways to create streams. We couldn’t make head or tail
of the classes that can be used to create and manage streams in the Java Standard library. To
make a good choice and have a suitable solution to my problem, things can be clarified by
subdividing all these classes in two primary ways. Firstly, a program treats a stream as either
an input stream or an output stream. In my case, I'll use an input stream object from which
we read information. Secondly, some classes deal with character data and other with byte data
of binary information. I’ll naturally use a character stream, that are designed to manage 16-
bit Unicode characters (resources information are stored in afile as character data) and not 8-
bit bytes of row binary data that are not interpreted. These classes are cleanly divided in the
class inheritance hierarchy. The InputStream and OutPutStream classes (and all their
descendants) represent a byte stream, and the Reader and Writer classes (and all their
descendants) represent a character stream:

There is another way to divide the classesin the java.io package. A class can acts as either a
source or destination (called a data stream), or can provide the means to perform some sort of
manipulation on the data in the stream (called a processing stream, or also afiltering stream).
Thisisthe same classes, but categorized in another way. The four mentioned primary classin
the hierarchy can be further subdivided into those that represent data streams and those that
represent processing streams. The Java l/O classes can be combined in many different waysto
provide an input stream that behaves exactly as | wish.

These streams have a sequential access to the file (that is, the file is processed from the start to

the end). Other specific classes exist in the package. The RandomAccessFile class,
supporting both reading and writing to a random access file,
could be convenient. It behaves like a large array of bytes
with akind of index, called the file pointer. Input operations
read any bytes starting at the file pointer and advance the
file pointer past the bytes read. The StreamTokenizer class
isuseful for parsing atext file into a sequence of tokens, and
can recognize words, numbers, comments and quoted stings.
It's not actually an input stream as such. A Reader must be
used between the file and the tokenizer.

82 See http://java.sun.com/j 2se/1.4.2/docs/api/javalio/package-summary.htmi

73

Let’s see some methods from the class that could be interesting for my problem.

The Reader class is an abstract class for reading information stored in text form (Unicode
character streams). The only methods that a subclass must implement are the two first:

- abstract void close() : Closethe stream.

- int read() : Readasinglecharacter inthefile (-1 if eof).

- void mark(int readLimite) : Mark the present position in the stream. Subsequent
calls to reset() will attempt to reposition the stream to this point. readLimite is alimit
on the number of characters that may be read while still preserving the mark.

- void reset() : Resetthestream.

The BufferedReader class does not represent any particular data source, but filter data on a
given stream by buffering it into more accessible units. In particular, it introduces a new
method that enables to read a line at time and returns a String (or null when the end of fileis
encountered).

- BufferedReader (Reader in): create abuffering character-input stream that uses a
default-sized input buffer (2048).

- String readLine(): readalineof text.

The string returned can then be processed if | use the StringTokenizer class in addition. It
allows to break a string into a sequence of tokens (defined by delimiters, e.g. space), but the
tokenization process is much simpler than that used by the StreamT okenizer.

The LineNumber Reader class is also a buffered character-input stream but that keeps track
of line numbers.

- LineNunber Reader (Reader in): create a new line-numbering reader, using the
default input-buffer size.

- int getLineNunber(): getthecurrent line number.

- void setLineNunber(int In): setthecurrentline number to In.

The InputStreamReader class is an InputStreamReader is a bridge from byte streams to
character streams: it reads bytes and decodes them into characters using a specified char set .

- I nput StreanmReader (I nput Stream in): create an InputStreamReader that uses the
default char set.

The FileReader class represents an input file that contains character data. It is convenient for
reading character files. Its constructors set up the relationship between the program and the file,
opening a stream from which data can be read.

- FileReader(File f): createsanew Fil eReader, giventheFil e f to read from.
The RandomAccessFile class has a file pointer that can be read by the get Fi | ePoi nt er
method and set by the seek method. It can also read an entire line and then be combined with
a StringTokeni zer.

By combining these classes, | can have the kind of interaction and character manipulation
needed for my situation. Let’s see some possibilities:

- A RandomAccessFile, allowing reading any byte at any location. The file pointer
position associated with each resource can be recorded in the scan phase so the
selected resources will be localised in the process phase.

- Severa instances of BufferedReader and FileReader on the samefile. A referenceto a
stream object is stored each time a resource location has to be memorized in the scan
phase. We continue to read the file with a specific BufferedReader in the process
phase. But when a resource is found, we have to search the next one from the start of
thefile.

74

- A FileReader and a BufferedReader combined with a StringTokenizer. All resources
found are stored in a string after the first scan. We could also make an easy preview of
each resource to give more information to the user in the dialog box:

But for space usage raison, it is not effective to have an array of many references to
long String objects when a large file is processed (even if the garbage collector will
deallocate the memory for some objects, set to null when not selected by the user).®
It's better to leave the information on disk, and to extract them as and when we need
required. Moreover, a preview is not very needful since the user has not to know this
syntax to use this functionality, and the decompiler used by the user to obtain the
imported file displays aready this information (and an id is already associated with it,
even better with a graphical representation of the resource which helps more the user
in its choice™). I've opted for the simplicity of information given to the user, and not
the surcharge.

- A FileReader and a LineNumberReader. We scan through the entire text a first time to
find resources and sore line numbers, and we go through the text a second time after
the user’s selection to extract and process each resource at a specified line. The fileis
then read sequentially twice.

My choice is to combine a FileReader, a LineNumberReader and a StringTokenizer in the
module 1 (first scan) to read the file f line by line keeping track of line numbers when an
exploitable resource in encountered and to parse the first line of a paragraph. A non-empty
sequence <Li, Li+1, ..., Lj-1, Lj> of text lines from f forms a paragraph if there is no empty line
and Li-1 (if it's not the first line of f) as Lj+1 (if it's not the last line of f) are empty lines.
Paragraphs are separated by at least one empty line, and comments at the beginning are not
part of a paragraph. The second word of each paragraph of f is checked. A non-empty
sequence <Ci, Ci+1, ... , Cji-1, C> of characters from f is a word if there is no white space
character and Ci-1 (if it's not the first character of f) as Cj+1 (if it’s not the last character of f)
are white space characters. If the checked word is or /, then the line number is
stored and the located resource will be proposed to the user (with its id). Only the lines
corresponding to resources selected by the user will be conserved.

8 Thefull .rc file from the sixth example (TablEdit) contains 81 dialog boxes and Restorator gives 2756 lines.

8 |t sfor this same reason that just the id of aresource will be displayed in my dialog box, without the caption as
for example 400 ("Find"). It's not quite meaningful, the user will still have to see in the decompiler to which
resource the caption correspond, or worste in the original application searching for the dialog box having this
caption.

75

Algorithm :

r new FileReader (f);

Inr new LineNumberReader (r);

whileline = Inr.readLine() not null do
st new StringTokenizer (line," \t"); /* tab and space are delimiters */
token read the second token
if token=" /"or" " then

strore the current line number

skip the lines of the same paragraph

| combine a FileReader, a LineNumberReader and a StreamTokenizer in the module 2
(process phase). Note that this tokenizer can also know the number of the current line, but it
should be time consuming to break a useless part of the file f into a sequence of tokens. Each
line of f isread at once and skipped until reaching the next line specified. The associated
resource is then parsed to store al the necessary information into variables. Each object will
be then created with al its characteristics in GrafiXML, by applying my derivation rules.

Algorithm :
r new FileReader (f)
Inr new LineNumberReader (r);
st new StreamTokenizer (Inr);
prepare the tokenizer for recource script style tokenizing rules
[nr.setLineNumber(1) /* the default first [ineisO for Inr and 1 for st */
while thereis till a stored line number do
store the resource starting at the next line number
generate the resourse into GrafiXML

The two modules correspond to a physical partition into two main methods scan (File f) and
process(int[] a) from the RcFile class.

So, for each object, in particular for each dialog box and controls defined inside a dialog box
template, | first read and store the information which concerns it into variables that hold a
primitive value (as a position or a dimension number) or a reference to a String object (as an
id or a class name for a contral). It's only at the end of aloop (of a nested loop for controls)
that a method charged to generate the object into GrafiXML is caled. I’ve not decided to
make a transformation as soon as adatais read in thefile. To store the style flags, each flag is
first trandlated in its numeric representation and is then added to a single variable of type
integer. In fact, as mentioned in the chapter 4, a flag corresponds to a reserved bit (or to a
group of bit for some mutually exclusive flags) in a word of 32 bits. Each set of style flags
and extended style flags of a dialog box or a control from a particular classis represented by a
word in memory. Toillustrate, let’slook at the style of the tool bar from my fifth example:

76

The variable | use to store such number is of the signed Java data
type i nt, meaning that 32 bits are used to represent the value in
two® complement binary form. Note that beyond®™ a certain
threshold the resulting stored number will be not the same that the
original hexadecimal number read in the file: this type of primitive
data can represent only 2% positive integers, and not 2*? as desired.
This is not a problem since it's the position of a bit that is
significant, which is not atered considering the linear logic of the
two’'s complement representation of numbers. if we add 1 to the
highest value that can be represented (overflow), we get the lowest
value (if signed numbers were represented for example with a bit of
sign, we would get the second representation of the number 0, then -
1 and so on).

My basic motivation to group all flags in a numeric value comes from the fact that astylein a
resource file for a particular control is often specified with identifiers, less often with a
hexadecimal number, but sometimes both. And in the last case, it is not naturally duplicated
information. The two formats are additive: the number represents the other flags that are not
textually specified whose numeric values are added to form this number. Concerning the style
illustrated above, Resource Hacker gives 2 () when Resource Tuner gives)
(0x00010000) and 2) , plus implicitly * (0x40000000) and D)
(0x10000000) seeing that it uses of the shortcut notation.

To know if a flag used in my derivation rules is specified for a particular control or dialog
box, al | have to do is to check if an individual bit is positioned to 1 at a specific position.
The following is my method which read bits by using some Java bitwise operators. For
example, readBi t s(x, 0, 3) returns the number formed by tree first bits of x (n >1 is used
when mutual exclusive flags are specified by a group of bits), and readBi t s(x, 5, 1) returns
1if the bit at the fifth positionis 1 or Oif thisbitisO.

/] return the n bits starting at the position pin x (0 p 31 and n 32-p)

/Il << shift bits left, filling in with zeros

[l >>> shift bits right, filling in with zeros
/Il & bi twi se AND

Ny = bi twi se conpl ement (prefix unary operator)

public int readBits(int x, short p, short n){
return (x >>> p+1-n) & ~(~0 << n);
}

The expression (x >>> p+1-n) shifts the selected bits to the right of the word. ~0 isaword
whose bits are set to 1. Once shifted to the left with ~0 << n , itsn right bits are set to 0. The
complement of thisword (~(~0 << n)) gives amask whose n right bits are set to 1.

There are 42 different style flags for a dialog box that can appear after the B keyword.
For adialog box containing 10 controls each having 5 flag identifiers to define its style from a
set of more than possible 200 flag®, there will be in the worst case more than 10x5x200 =
10000 strings comparisons needed to store the style of al the controls in a numeric form.
Evenif | compare the flag string with a smaller set knowing to which class the control belong,
the numerous remaining comparisons in many nested if statements will be executed. Another
algorithm has to be used.

% That is, when the flag WS _POPUP, the style for adialog box, is present (= the highest bit).
% | have listed in chapter four 15 style flags for a dialog box (DS), 27+25 style flags for awindow (WS_ and
WS _EX) and 258 style flags for a control.

77

| use atriefor flag identifiers reading in order to support fast pattern matching. When aflagis
encountered (e.g.), a query is performed on a fixed memorised collection of
possible flag.

A trie is a tree-based data structure that store strings. It is typically used to see if a word
belongs or not to a set of words contained in a text (the name “trie” come from the word
“retrieval”). One primary application for triesisto determine if a given pattern matches one of
the words of a text exactly (that is, word matching), but with a simple extension prefix
matching queries can be performed. My problem can be saw as a string searching (the flag
just read in the file) in atext composed of the set S of al the flag identifiers listed in section
4.3.When the word matching occurs, the numeric value of the flag is returned.

| use a standard tries which is an ordered tree T with the following properties:

-Each node of T (except the root) is labelled with a character of the alphabet { A;Z} U{3,_}.
-The ordering of the children of an internal node of T is determined using the lexicographical
convention.®’

-T has s external nodes (leaf), each uniquely associates with a string of S. the concatenation of
the labels of the nodes on the path from the root to an external node yields a string of S T has
then s external nodes. Note that the trie stores the common prefixes that exist among the set of
the flag string.

This assumes that in S no string is a prefix of another string. This is not the case for the
following flag:
and
+ and * (here not important because these flags are synonyms)
c @) cand cC @
@) cand @
and
and
and
c and C)
c /* and c I+)
) and) C
) 1+ and) 1*)
) and)
sand B
) @) cand) @) © Ix
) @) cad) @)c /
and /
and
1+ and /* K
/+ and /* K B

| can then satisfy this assumption by adding a special character that is not in the original
alphabet, for example #%, at the end of each flag string. An internal node can then have in
theory between 1 and 29 children (the size of the al phabet), and the height of T is equalsto the
length of the longest string in S+1.

¥3<A<Z<_
88#<3

78

| can implement such trie with an ordered tree storing
characters at its nodes. The same fixed tree will be create
once (and only if a resource of type dialog box exists in
the file or has been selected by the user) before
processing the resources and will be used for each
resource of type dialog to process. To the right is a trie
for S={) G) G) G
G) *) CG)) G
) G G).

In this implementation, single characters are compared
instead of the entire read string (the length of the longest,

) @) © | * /I, 18 27). The running time
for searching a string of length | is O(l) : we visit at most
| + 1 nodes of T and the time spent at each node is
proportional to the size of the aphabet, which is a
constant (29). It is independent of the number of possible
flags (the size of S).

Supposing that the tree store a well-known and exhaustive set S of style flags (and not words
contained in any text), the difference with a classic pattern matching problem is that we know
that a flag f will match.?° That we want to know is with which flag s it has matched to return
the corresponding numeric value. When aflag is read from the file, asearch isperformed in T
for aflag f by tracing down from the root the path indicated by the charactersin f. When an
external node is reached, then we know which flag is in question and the corresponding
hexadecimal value is returned. But it is not necessary to put in S al the existing flag. It is
much convenient to put only those that are used in my corresponding rules (see chapter 6).
Then, if we terminate in an internal node, f isnot in Sand the value O is returned. Supposing
later it's turned out that other flags have to be considered (because my rules was not
exhaustive or the UsiXML language evolves), they could be added to the tree. Moreover, al
the flag whose numeric values are equals to zero (2) are needless and can be
suppressed from the tree.

In fact, it is even not necessary to check if the node reached is an internal one or aleaf: one of
its attribute, containing a numeric value, has just to be returned. While a new flag string is
inserted in the tree, each new node object is created and added with this attribute set to zero,
except if it correspond to the last character of the string (that is, it will be a leaf). In the last
case, this attribute takes to the numeric representation of the flag inserted. So, it is no longer
required to add a specia character (‘#) at the end of each flag. Whatever the current node
when the searching stops, its flag value is returned (not only leaves can store a value different
from zero).

To construct the trie for a set Sof strings, we insert the strings one at time in the constructor.
Weinsert aflag s having the numeric value val by calling addFlag(s, val). The path associated
with sisfirst traced. Three situations can then occur:
- sisdready in the trie because it is a prefix of a string already inserted. We stop at an
internal node v and the end of sisreached. val isthen stored in v.

8 Supposing also that the flag read in a generated .rc file has avalid syntax, and has not been modified in the
text by the user.

79

- sisnot in the trie, but a prefix of s corresponds to a flag already inserted in the trie. We
stop at an external node v before reaching the end of s. The chain of nodes is continued
after v to store the remaining characters of s, the last contains val.

- sisnot aready in the trie and we stop at an internal node v before reaching the end of s.
A new chain of nodes descendents of v is created to store the remaining characters of s,
the last contains val.

It still remains potential space inefficiency in this scheme: the tree will often terminate with
long branches of linearly arranged nodes because common prefix of the style flags are usually
short. Indeed, there is no need to continue to access the character stored in the nodes to
compare with those of the input string when we reach a certain level of the tree, the matching
flag can aready be identified. When each node (except a leaf) of a subtree has only one child,
only the top node (the root of this subtree) should be conserved and the existence of other
nodes being connected below is awaste. But care must be taken if a node between the root of
this subtree and the leaf store a flag value different from zero: all its ancestors® must also be
conserved. If not, a flag representation in the trie is lost and an erroneous value will be
returned (the value of the flag having same prefix) when searching the lost flag. To compress
the trie, we could use an iterative algorithm. For each node, starting from a leaf, we suppress
the node if its parent has just one child and store zero as flag value, or else we set its flag
value to the one stored by the initial leaf. But this supposes to use for example a preorder
traversal to access each external node. We must also add a new attribute to each node storing
the reference to its parent. | use preferably the following recursive agorithm, performed on
the trie (after having added all the necessary flag strings) by calling compress(trie.root) :

Algorithm compress(u) :
for each child v of udo
if islnternal(v) then
Y
whileislnternal(w) and w has only one child and w.flagValue = 0 do
w child(w)
if isExternal(w) then
/* wisaleaf, and the chain of nodes after v consists of redundant nodes */
v.flagvalue w.flagvVaue()
supress(child(v))
else
I* w has several children or child(w).flagvalue 0 */
recursively compress the subtree rooted at w by calling compress(w)

When constructing the trie, it is important to aso insert flags which are not in my
correspondence rules but that have as prefix a string in the compressed trie. If we forget them,
some parsed flag in the resource file that should normally not be taken into consideration
could give the value of another flag stored in the trie. Below is the implemented trie for the
same above-mentioned set, without (because its numeric value is 0) and enlarged with

) to not get the value of) when matching this flag. The nodes are
augmented with indications of the stored numeric value. The matching will be made when we
reach the end of the input string f or when a leaf is reached.

% | the terminology, an ancestor of anode is either the node itself or an ancestor of the parent node.

80

Algorithm match(f) :

v trieroot
i 0
repeat

success false
for each child w of vdo
if w.label =f[i] then

vV W
success true
i i+l

break out of the for loop
until i =f.length() or not success
return v.flagvaue

Remark: In the shortcut notation,) (binary value 01) is a default flag for a control of
type)) c. | suppose that this default can be automatically inhibited by the RC compiler
if) (binary value 10) or) (binary value 11) are specified (the
3 flags are mutual exclusive and grouped in two first bits), because |®@e remarked (in the .rc
filesrelative to my first example) that Restorator specify only) (should add the
binary value 10 to the default, that gives the value of)) while Resource
Tuner specify) A) (add 10 to the default and subtract 01, that
gives 10). A corrective operation must substract 1 to the style if) is not
specified in the control definition line. For the others default flags (see section 4.3.2), there is
no problem because they are not mutually exclusive with other flags and the only way to
cancel their effect isto use the keyword (that is, one bit is reserved to them, they are not
part of group of bits). But the simpler solution is to use the OR bitwise operation instead of an
addition (as probably the RC compiler does). If the bit is not already set to 1, it is positioned.

When a control is defined with the shortcut notation, the algorithm that | used to identifying
the control type is much simpler that with the style flags. But if we look at it, is not very
different in the sense that as soon as the current checked character is different to the
characters of the other words of the same set and at the same position, we know which flag is
In question :

token nextToken()

case token[Q]
IS@QO if token[4] = @Qhen type " +) c'elsetype ")
iIs@Q if token[1] = ®Qhen type ") c"

elsaf token[1l] = @©Q@hentype ")) c"elsetype " c”
is®@Ctype " *) !
iIs@&type " c"
iIs@Ctype ") c"
iIs@Q type !
is@Qif token[1] =@Q@hentype " c "€esetype ") c"
iIS®Q if token[1] = @Q@hen type ") "elsetype " c"
is®Qtype ") !
isGOtype ")

81

Such conditional statement becomes feasible seeing that only 15 different class names can
match with the string read from the text. Once the type identified, | know the class of the
control and the flags and the style flags to add to the style variable. Theistreated

Each resource of type dialog box is then parsed and stored in variables, even the style flags
(converted in numeric). Each control expressed in the shortcut notation is treated as if it was
defined with the generic notation (the default flags are added in addition to those specified to
the value storing the styles before the transmormation in GrafiXML is processed). | call then a
method to apply my derivation rules and to generate into GrafiXML the corresponding
objects. This method is in a separated class which uses the package
be.ac.ucl.isys.grafixml.gui.editor”™ containing the methods needed to create and manage
ClOs. The entire interface with the GrafiXML’s methods is confined in one specific class,
which will facilitate future modifications. The resources of type menu are easier to parse and
to generate.

%1 See http://www.usixml.org/javadocs/grafixml/be/ac/ucl/isys/grafixml/gui/editor/package-summary.html .

82

7 Conclusion

My thesis is focused to the reverse engineering of a given Windows resource file. The scope
of the analysis is then limited to Windows user interfaces. | could have iterated the method
used with other types of resource file, as for example with Apple resource files™.

There is a possible loss of information between the original interface perceived by the user
and the interface described only by a resource script file (without looking at source code of
the application). The file used contains only text resources (principally dialog boxes and
menus). The non text resources appended to an application are stored in separated binary files.
Icons are examples of loss at the presentation level since the images themselves are not
available (a binary file is just referenced in the definition of such resources) and their size
often defines the place taken in the dialog box. Text information can also be missing, such as
items contained in a list box for example. Concerning the dynamic aspects of the interaction,
the transition between a menu and a dialog box and the navigation among dialog boxes are
not specified. Moreover, the input of my method relies on the specific implementation of a
decompilation tool used to generate thefile.

The UsiXML specification language has been chosen to express the abstract representation of
a user interface. This language can specify a set of models defining the user interface at
multiple levels of abstraction. This language support also a multi-path user interface
development: the development process can be initiated from any level of abstraction. The goal
of my reverse engineering method was to recuperate an existing user interface and to produce
directly a model specifying the user interface at a level of abstraction dependent of the
modality of interaction but independent of the platform. This model which allows capturing
the appearance and behaviour of a graphical interface (the Concrete User Interface) can be
reused by an ulterior forward engineering step to generate new code in another specific
language.

There is a second loss of information in the reverse engineering process when going from a
resource file to the CUlI model. We cannot come to the conclusion when anaysing
correspondences that the language specific to the resources is covered by UsiXML. Some
properties of elements composing a Windows user interface could still be generalised. The
UsiXML language is still currently in development and may then evolve in the future. In
addition, the layout defined for a dialog box is different (box mechanism instead of relative
coordinates) which complicates its exact restitution.

% But documentation is turned out to be more difficult to find (on the web for example), and the format of such
files cannot be obtained by decompilation using a PC.

83

This work is concretized by the implementation in Java of a reverse engineering tool
intagreted into GrafiXML and capable of extracting the model from a given resource file.
Unfortunately, algorithm for the construction of boxes will be not implemented. This
evolution can be imagined as a future work. A simple solution at the present time is to let the
user draw manually the boxes in the reproduced dialog box (the relative coordinates can be
still used to generate object in the composer of GrafiXML). The layout will be then
automatically specified in Usi XML in the XML editor. The current implementation makes
also the assumption that each resource is separated by an empty line in the resource file (as
it's the case in files generated by the proposed decompilation tools). This choice has been
made for efficacity reasons, but this detail can be easily modified if needed.

My tool has also been implemented in a perpective of reusability. If my transformation rules
are modified or if the implementation of GrafiXML* and the UsiXML language envolve, a
new Windows style flag for instance can be easily considered by creating a new tree data
structure storing flags used in my transformation rules. The interface with the GrafiXML
program is also encapsulated in a separated class enabling to implement a new rule (using for
example the new flag given in the parameters) without having to anderstand my own code.** |
think this work constitute a good basis if it is carried out. This thesis provides also a good
documentation of the source language.

% Thistool isstill in work in progress.
% The plug-in and its source code will be avalable on http://www.usixml.org.

Bibliography

10.

11.

12.

M.M. Moore, S. Rugaber, P. Seaver, Knowledge Based User Interface Migration, in
Proceedings of the 1994 International Conference on Software Maintenance (Victoria,
British Columbia, September 1994).

Merlo E., Gagné P.Y ., Thiboutét A., Inference of Graphical AUIDL Specifications for
the Reverse Engineering of User Interfaces, Proc. International Conference on
Software Maintenance, Victoria, BC, Canada, Septembre 19-23, 1994, pp.80-88Byrne,
E., "A Conceptua Foundation for Software Re-Engineering,” The International
Conference on Software Maintenance 1992, pp. 226-235.

E. Stroulia, M. El-Ramly, P. Iglinski, P. Sorenson: User Interface Reverse Engineering
in Support of Interface Migration to the Web, Automated Software Engineering
Journal, 2003, Kluwer Academic PublishersBoehm B., "Software Engineering
Economics', Prentice Hall, 1981.

A. Memon, |. Banerjee and A. Nagargian. GUI Ripping: Reverse Engineering of
Graphical User Interface for Testing. Proc. of Working Conference on Reverse
Engineering, November 2003.

Byrne. E., "A Conceptual Foundation for Software Re-Engineering.” The International
Conference on Software Maintenance 1992, pp. 226-235.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, Prentice-
Hall, Inc.

Boehm, B. W., E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W.
Brown, S. Chulani and C. Abts (2000). Software Cost Estimation with COCOMO 11.
NJ, Prentice Hall.

Sneed, H. M. (2004). A Cost Model for Software Maintenance and Evolution. 20th
IEEE International Conference on Software Maintenance (ICSM®4), Chicago,
[llinois, September 11 - 14, pp 264-273.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Victor Lépez Jaquero,
Usi XML: aLanguage Supporting Multi-Path Development of User Interfaces, Proc. of
9th IFIP Working Conference on Engineering for Human-Computer Interaction jointly
with 11th Int. Workshop on Design, Specification, and Verification of Interactive
Systems, EHCI-DSVIS2004 (Hamburg, July 11-13, 2004).

Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.,
UsiXML: a User Interface Description Language for Specifying Multimodal User
Interfaces, in Proc. of W3C Workshop on Multimodal Interaction WMI@004 (Sophia
Antipolis, 19-20 July 2004).

L.Bouillon, Q.Limbourg, J.Vanderdonckt, B.Michotte, Reverse Engineering of Web
Pages based on Derivations and Transformations, in Proceedings of LAWEB 2005
(Buenos Aiires, 31 Oct.-2 Nov., 2005), IEEE Computer Society Press, Los Alamitos,
2005, pp. 3-13.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., Trevisan, D.,
UsXML: A User Interface Description Language for Context-Sensitive User
Interfaces, in Proceedings of the ACM AVI@004 Workshop "Developing User
Interfaces with XML: Advances on User Interface Description Languages' (Gallipoali,
May 25, 2004), Luyten, K., M. Abrams, Limbourg, Q., Vanderdonckt, J. (Eds.),
Gallipali, 2004, pp. 55-62.

85

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24,

26.

27.

Limbourg, Q., Vanderdonckt, J., UsiXML: A User Interface Description Language
Supporting Multiple Levels of Independence, in Matera, M., Comai, S. (Eds),
"Engineering Advanced Web Applications’, Rinton Press, Paramus, 2004
Vanderdonckt, J., A MDA-Compliant Environment for Developing User Interfaces of
Information Systems, Proc. of 17th Conf. on Advanced Information Systems
Engineering CAISE®©5 (Porto, 13-17 June 2005), O. Pastor & J. Falcdo e Cunha (eds.),
Lecture Notes in Computer Science, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-
31.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Compuiters. Vol. 15, No. 3, June 2003, pp. 289-308.

Bouillon L., Vanderdonckt J., User Interface Reverse Engineering, Proc. of 2nd Int.
Conf. on Universal Access in Human-Computer Interaction UAHCI@003 (Creete, 22-
27 June 2003), Vol. 4, Stephanidis, C. (Eds), Lawrence Erlbaum Associates,
Mahwah, 2003, pp. 1509-1513.

Goodrich, M.T. et R. Matassia, Data Structures and Algorithm in Java (2nd. Edition),
John Wiley & Sons, 2001.

Petzold, C., Programming Windows (5. Edition), Microsoft Press, 1998.

Georgia Tech’ s reverse engineering group, Georgiatech, 30 apr 2001, available at
http://www.cc.gatech.edu/reverse/

Wiki page of Usi XML, available at http://www.usixml.org/?view=wiki/
Documentation of resources on the MSDN Library, available at
http://msdn.microsoft.com/library/

Apple Human Interface Guidelines, avalaible at

http://devel oper.apple.com/documentati on/

XML Markup Languages for User Interface Definition, available at

http://www.0oasi s-open.org/cover//userinterfaceX ML .html

XML tutoria, available on http://www.w3schools.com/xml/xml_whatis.asp

BCHI-ISY S research on reverse engineering, availale on
http://www.isys.ucl.ac.be/bchi/research/vaguita.htm
State of the art on reverse engineering and transcoding of Uls, available on
http://www.isys.ucl.ac.be/bchi/research/soare.htm

86

Appendix
Example of complete resourcefile

Thereis an example of file (ALL_RESOURCES.rc) containing al the resources from my first
example (SciTE.exe) generated by Resource Hacker. Thisisthe ACSI resource script that can
be saved by a decompiler, not the binary compiled resource file (*.res).

87

88

89

90

Appendix B

Appendix
Comparison of the resource files given by the decompilers

First example

Resource Tuner :

$ & (

(
& #$,! $,- , L (< /
v&r #+%0 (/
“11% # 23- 00, 4 5 ((/
9B %, 1 # « /
% 06 -7 #89#901%0 23- 00, 0 ((5 (/
- 48, ((5 /

%9 I 5 (
% + | (5 (

Restorator :

#0% & (
()) *
& #$.1 $,- , L « < /
Y& #+%0 « < /
"11% # 23- 00, 4 5 (/
U8 %, 1 # < /
% 06 -7 #8949090 23- 00, 0 ((5 (/
vy ((5 /

91

Appendix B

Resource Builder :

$ %& 5
)) €))
& #$,! $,- , L))
Y&+ #+90)) *) C * /))
"11% # 23- 00, 4)) *) C * /)) 5((
98 %, 1 # g
-% 06 -7 #8%90100 23- 00, 0 ()
- +& 5))) C

#o0$ % (

%+ #$ 1 $,- , L)
Y&+ #+90)
"119% # 23- 00, 4)
9B %, 1 #
-% 06 -7 #8%901%9 23- 00, O ()
-+, () !) C *) / (

3) ;

%) ;

2& () *) *) /) 5 (

%9 !l) *) *)) 5 (

% + !) *) *)) (5 (

Second example

All the tools give the same information about the menu (except that Resource Builder use
instead od ...).

92

Appendix B

Third example

Resource Tuner :
((
/%
/R A T B
%0 -6
(444 () @ (
5 (
94 + 11&3! 0&6+ 0 ((5 44
% 4, %98% -% ((((5 (44
. 6-7 -,"-9% # 2& (((5 4 4
 «((4 (/ e
| +8& .3 ,6 %, & 8 ,3 & 138,% (((5
(((
1) %, (((5 /
* #2% +7% ((5 5 5
* # %, ((5 5
 ((5 (4 (v
3+6& ,L- $% > G- 138,% ,30 ((4 (5
((((
& ((5 (
((4 ((*)
3 ((5 70+0 13 ,$ 2) (G G
#* " & ((5 ((
((4 *)
3 (70480 13 , $ 2) (C C
e a4 (/ o
C (<
W % 1&- ,1 $ 3 (45 ((
4
#,1 0%& % %,"),20 (((5 ((5
Restorator :
((
/%
% 0 -6
(444 () @ |/ (
5 ((
#0904 + 11831 0&+0 ((5 44
% o+ %98% -% ((((5 (44
, 6-7 "% # 2& (((5 4 4
(@ (((4 (
| +&& .3 ,6 %-, &8 ,3 & 138,% (((5
(((
#1) %, (((5 /
*OH2% +T7 W ((5 5 5
* # %, ((5 5

93

Appendix B

(e / (C 5 (4 (
3+6 & - $% > G- !38,% ,3 0 ((4 (5
cCc
& ((5 (
(4 ((*)
3 ((5 70+ 13 ,% 2) (C (
#* " & (5 ((
(4 (C (*)
3 (7 0+80 13 , $ 2) [¢
(o (44 (
C CC
W -% 1&- ,1 $ L3 (4(5 ((
CCCC4ac
#.,1 0%8& % " %"),20 (((5 ((5
Resource Builder :
((
I -%
%0 -6
/ I *
(4445 @ |/) *) (
505 * | ((
0 + 11831 0&6+ 0 ()) &) € *)) (5 44
19+ %98% -% ((()) *) C *)) (5 (44
L 67 -, " # 2& (()) *) C *)) (5 4 4
5 2@ * D (4 (
1 +&& .3 ,6 %, &8 ,3 & 1!38,% 5 * / HE| ((5
5 * 5 ((
#1) %, (())) * /) ;) (5
2% +7 9% ())) *)) (5 5 5
& # %, ())) *) 5 (5 5
5 @ * / o) (0 5(4 (
3+6& ,,- $%& > 6- !38,% ,3 05 e /) (4 (5
5 * o) o«
& 5 * / o) (5 (
() * *))) (4 ((
3 ((5 70+0 13 ,% *) 2) C €«
#* " &5 * /) (5 ((
() * *))) (4 (((
3 (70+80 13 ,$ *) 2) C ¢ (
5 @ *) (C (404 (
(5 *) ((
9% -% 1& 1 % , 3. (4)) =) C 9)) (5 («
5 *) 4(
#.,1 0%& % %,"),20 (()) *) C *)) (5 (5
Resource Hacker :
((
I %
/ o=) foo=
%0 -6
(444 () @ *) (
5 (* i) ((
04 + 11&3! 0&+ 0 () *) C * o)) (5 44
1%+ %998% -% ((() i) C *)) (5 (44
L 67 -, " # 2& (() *) C &)) (5 4 4
(@ * o)« (4 (
1 +&& .3 ,6 %, &8 ,3 & 138, % (*) / ((5
(* o) (
#1) %, (()) *) /) (5
*OH2% +T W ()) *)) (5 5 5
o # %, ()) * i)) (5 5
(* * @ * o) / ((5 (4 (
3+6 & - $% > 6- !38,% ,3 0 (LJ) / (4 (5
(* D O
& (*) / (5 (
(*) *))) (4 ((
3 ((5 70+0 13 ,$) B 0 s) B B
& 0) C (
#* " & (* i) / (5 ((
(*) *))) (4 (((
3 (7 0+80 13 , $) B Il) B B
@ L3) (C ¢
(@ * o) (044 (
 (* D N O G
W -% 1&- ,1 $,3. " (4) @) C *)) (5 ((
(* i) C A
#,1 0%& % " 9%"),20 (() @) C L)) (5 ((5

94

Appendix B

Fourth example

Resource Tuner :
(
cC B *) B
7%
/Y D =
T
#)-" << 00 (((
((70+80 &%98%) 2 (((5¢(
10 , << % " ((((
(((70+80 &9%98%) 2 (4 ((5 ¢(
#* " & ((
((7 0+80 &9%98%) 2 ((C (5¢(
#oAN << W&- (4 ((
(4 70+80 &%98%) 2 (((5 ¢(
" & + + (5 4
&+ (((5)
((5)
&.! ((55 4
- @& ((((4 (/
#E1L, % $ ((((5 ()
.S #] - (5 ((
- # L= « ((c /*
HETIT & 4@ (5(((c /=
&&+ ((4 4
&&+ ((
&+ (((
&&+ ((5
&&+ (((¢ (
Restorator :
(
c B *) B

95

#)-" &< 00 (
((7 0+80 &9%98%
#10 , << % " (((
(((70+80 &9%:98%
#x " & ((
((7040 &9%+98%
+B << W&- (4 (
(4 70+80 &9%+98%
" & + + (5 (4
88+ (((5
((5)
&1 (55 4
- && (((
#E1, % $ ((
S # - (5 (
/- # ,L,- («
HET 1T & 4@ (
&8+ ((4 4
&&+ ((
&&+ (((
&&+ ((5
&+ (((¢ (
Resource Builder :
(

c B &

- T
no (

/ 0 =

#)-" DR 00 5
((7 0+80 &%98% *)

#10 , @ < % " 5
(((70+&80 &%98% z)

#* " &5 *

((70+0 &9%98% &)

482 L W&- 5
(4 70+80 &%98% *)

" & + + 5 l*

8B+ (* /
()) *))

&.! 5) /) C &

- @& (()))

#EL, % cC)))
S # - ()) *) C
=& ;L= ()) *)

HET 1T & @1 ()) 7))

&&+ ((4 *

&+ ((&

&&+ ((&

&8+ ((5 @

&+ ((& /

Resource Hacker :
(

c B *)

- T
/ /o y /[*
no (

#)-" & 00 &
((70+80 &9%98% DI o) =

#10 , < % " (

(((70+80 &9%398% DI)) *

#* " & &

((70+80 &9%98% DI)) *

4% < W&- (E
(4 70+80 &9%98% DI) o) @

" & + + (/* *
&&+ (R
() *))

&1 ()y) C &

- @& (())
#E1, % $ (())
VS # - ()) @

- # ,1L,- () *)

I & 4@ () *)
&g+ ((4 z
&&+ ((&

&+ ((&

&&+ ((@

&+ ((@

—_~—— -

Appendix B

96

Appendix B

Fifth example

Resource Tuner :
(
C*) * /
3
/ / i) / / d
o
9 # (4(B c /*
((55 ()) C) * /
(() /
((18% , 9) 2) C /
(¢ 55 (5))) I) -
| # W (4 5 ((B
(((((5 (*
((78,),22) 2 (((5 (
10,6#&3 (45 (B
(C 5 (((5 ()
3 W#- %D . ((((5
3 ((5 ((/
% + | (5 (/
For tool bar control, “) A2)y "isthesameas” 2 () ”,seeingthat
* (0Ox40000000) and ;) (0x210000000) are implicit with the shorthand
notation.
Restorator :
(
Ck) *
3
o
9 # (4(B c /*
((55 ()) Cc) /
(() /
((), 18% ,$) 2) C /
((55 (5)) / A)) *
| # W (4 5 ((B
(((((5 (*
((,78,),22) 2 (((5 (
10,6#&3 ' (4 5 (B
(C 5 (((5 ()
3 wW#- %D . ((((5
3 ((5 ¢ (/
% + | (5 (/
Resource Builder :
C *) * B
3
o
/ / i) / / d
9# (4(B * /) c /*
(()) C) Cc) /) * 3) 5o
(* (2 55 (
((18% $ *) o) 2) 2
(() C)) /)) B *) * 55
I # % (4 B i /) 5 ((2
((* *))) « ¢ (5 (2
((78,),22 *)) 2 (((5 (2
10,6#&3 (4 B * / D) 5 (2
(5)) C) * g) o) (((5 (
3 w@#- %O L ()) *) C) *) o) (((5 2
3 ()) *))8) * /)) (5((
% + !)) *))3) * /)) (5 (2

Resource Hacker :

97

5

Appendix B

c) B
3
I)y ! /
nol
L9 # (4(B) / 2 (
(()) c) /))
55
((
((,18% . $ 2 () 2
(() B) I) *) * 55
| # 9% (4 B & ;) / 5 ((
(())) C C (5 (
((78,),22 2 ((((5 (
10,6#&3 (4 B) / 5 (
((5))) ((5 (
3 W#- %D . ()) C)) (((5
3 ())) /) (5 ((
% + !) D)) !) (5 (

The first static control has also the number 1000 as extended style corresponding to
c 1+ ,whichfor static controls has the same effect asusing SS RIGHT. The
hexadecimal number *“0x50012B4C” for the tool bar control is the same as

) B A) B) A) B A) B A
@ A I A ; A) A A
;) 7, and the number “ 2 " isthesameas* C I ".The
number 50210042 for the combo box control correpond to the styles) :
) * ,) C , 5) ad *
Sixth example
Resource Tuner :
5 4 (
/ cC * /
C / (03 C*
-)1 -
/) /
%0 -6

98

5

Appendix B

~~—~

% &

((5.(

(

4

444

*
w
-
-
- <
-
<
<
B —
o~
* <

% -9

&

Restorator :

*

- <
-
n n
n
=
-——
P
-
<+~ O
—
-
—~ *
-
-~ ~
-~ wn
~ ~un
=~ ~—
— -
-_ —_ A
- - - ————
- - - - 3 - -
nw~ -~ < ~L = o -~ T v
g o Yo——— ——w—uw——-W — -
- =~ - s =
~ < < ~ n <
Z o) n ¥ - ~
e = -] ~ - =~
~ < —
— - w <
F—————— —
0 LSS ST
S~ [[I= T Ti= B = - - - 4 e
@ SS¥ e L < - *
R o O Tto o<
& - o S» B
s 0 o7 &3 T 0w ¥*
B & o L
*ow #® * *

Resource Builder :

99

Appendix B

o=)ALl
-6

% 0

5 ((

-
o 0 —
_<
- 0
<
T o 0 — 1w
—_ —_ ~ 0 —
5 o ==
0 A NN NSNS ~_ <
< <) o o
i) i) A
(((((e <
~ o~ — ~ s —————— —_
- - — e ~ -
<t ~— - - ~ —
wn n ~
— ~ [t}
— ~—~———~—
wn — —
— ~ < —_~—~—— N
~~ ~~ = — —
e} - - —
— — = * o~
—
— ~ . memem e~
LR R I ~
* x = [To)
L * L N = M
* =~ -
. <~ * o~
O 13} o PP
« O T O * 0
(R = ~ e~~~ —~ - ¥
* * [SXG)) [CHCHGRONONE]
* * *
—~ ~—~—————
*
- —~~
- - —~— % x x % % x —~
= —
~~ ~ _ . A~~~ _—
—_ —_
5] 5] e e e e R) ~
— — < L] —~ =
w~_ ~_ ° A~ < 2 ~—
- . — o) ~ o~ ~—~—~—~— —_——c3
- T 5] b
J o
e « e = - 32 go
- 1Qa 10 —— — 0 < -
H* H ST H HHH R H H H* HH K

Resource Hacker :

- (
NN,
0
[ToRTo) =
o<
<
-~ ~ _ _ —~_ <
0
B = N <
L£e) 1)
————un
< < —
- o o - Y2
—— v 0
TS
~ /(((((
~ o~ o~ 4(
- 0 0 <
~ ~
0 oo
wn
= <+ o~~~ =
~— = =
— —_
—_ —_ —
- -0
—
—~ — R P=N
* o % ox %
x M M
* o * ok *
*
*
*
* *
«Q0* 90 1)
L e e e .
* N 0®
* *
*
—~ ~ — —_—
=
8 <
© 0 =} <
— . - - - -
= o ¥ - ° =
- - I~ [T RN
S l(,(m S —ww™
no o —
* 0 #H #* LN T £3

((5.(

(

4

%&

(

1%

H*

5

(

(4 (4

)

5

(

-0

o

100

Appendix C

Appendix
Documentation of UML diagrams modeling a resourcefile

WINDOW

In a graphical Windows-based application, dialog boxes and controls are windows
(rectangular areas of the screen where the application displays output and receives input from
the user).

Text (String)

If the dialog box has a caption bar (also called title bar), it isthe text put in it. Text can also be
displayed with each button or static child window (for al the other control the value is an
empty string). In this case, an ampersand (&) inside the value causes the letter that follows to
be underlined in the interface to indicate the keyboard shortcut for that control (the
mnemonic), and the ampersand is not displayed.*® The input focus can then be moved to any
of these controls by pressing AL T+mnemonic.®

Genera Style ({popup, child, overlapped})
There are three genera styles of window: a popup window is atemporary subsidiary window,

a child window can divide a window in various regions and an overlapped window is a
program® main application window. Only the two first will be relevant here (that is the
inherited General Style will never take the value overlapped).

Border (Boolean)
Specifies the frame around the the window. If true, it has a normal thin-line window border.

Caption (Boolean)

Specifies the frame around the dialog box. If true, it has a caption bar and a normal window
border (implies Border = true). A caption bar allows the user to move the dialog box to
another area of the display (often not provided with modal dialog box for example, because
the user can® do anything in the underlying window anyway). Caption and DialogFrame
cannot both be true (see DialogM odal Frame beyond).

ClipChildren (Boolean)
If true, excludes the area occupied by child windows when drawing occurs within the parent

window (style used when creating the parent window).

% Unless otherwise specified by the NoPrefix attribute from the STATIC class.
% For a static control, the focus move to the first control having Tabstop=true after the static control containing
the specified mnemonic.

101

Appendix C

ClipSimblings(Boolean)
If true, clips child windows relative to each other. That is, when a particular child window

receives a paint message”’, all other overlapping child windows are clipped out of the region
of the child window to be updated. If false and child windows overlap, it is possible, when
drawing within the client area of a child window, to draw within the client area of a
neighbouring child window.

Disabled (Boolean)
Specifies the initial state of the window (dialog box or control). If true, it isinitially disabled.
To receive mouse and keyboard input, a control must be both visible and enabled (by default).

DialogFrame (Boolean)
Specifies the frame around the dialog box. If true, it has a thicker frame (double border)

typically used with dialog boxes. A window with this style cannot have atitle bar.

Group (Boolean)

If true, it sthefirst control of a group of controlsin which the user can move from one control
to the next with the arrow keys. In a resource file, all controls without this style (Group =
false in the class diagram) after such control belong to the same group. The next control with
this style starts the next group (that is, one group ends where the next begins).

TabStop (Boolean)

If true, the user can move by using the TAB key through the controls. The TAB key moves
the user to the next control having this style. The first control in each group usually has this
attribute set to true so that the user can move from group to group. These key interfaces that
Windows adds to a dialog box are important with radio buttons. After using the TAB key to
move to the currently checked radio button within the group, the arrow keys can be used to
change the input focus from that radio button to another within this group. The system
automatically assigns the style to the newly checked control when the user moves between
controls in the group. This ensures that the input focus will always be on the most recently
selected control when the user moves to the group using the TAB key.

Horizontal ScrollBar (Boolean)

If true, a horizontal scroll bar is added at the bottom of the window. Also valid for child
windows. when the multiline edit controls have the automatic scrolling style, it® sometimes
useful to add window scroll bars to the edit control.

MaximizeBox (Boolean)
If true (although unusual), an icon is displayed in the upper left corner that allow the user to
maximize the dialog box (and the maximize option in the system menu is enabled).

Maximized (Boolean)
Specifies the initial state of the dialog box. If true, it isinitially maximized. Without specific
initial state, it appears as specified by its coordinate and dimension.

MinimizeBox (Boolean)
If true, anicon is displayed in the upper left corner that allow the user to minimize the dialog
box (and the minimize option in the system menu is enabl ed).

% The WM_PAI NT message.

102

Appendix C

Minimized (Boolean)
Specifiestheinitia state of the dialog box. If true, it isinitially minimized.

SystemMenu (Boolean)

If true, the window has a system menu box in its caption bar (implies Caption = true). You
can then close or minimize the dialog, move it around the display using the keyboard, etc. A
popup window has often just the Close option.

ThickFrame (Boolean)
If true, athick frame is added so the user can resize the dialog box (and the Size option in the
system menu is enabled).

VerticalScrollBar (Boolean)

If true, avertica scroll bar is added at the right of the window. Also valid for child windows:
ascroll bar can be added to a multiline edit control with the automatic scrolling style and to a
list box.

Visible (Boolean)
Specifies the initial state of the window. If true, this ensures for example that a control is
visible when the dialog box is displayed.

The remaining attributes adds extended styles to the window.

ClientEdge (Boolean)
If true, the client area of the window has a 3D look — that is, a border with a sunken edge.

DialogModalFrame (Boolean)
If true, the window has a double border that may (optionally) be created with a title bar (if
Caption = true).

StaticEdge (Boolean)
If true, the window has a three-dimensional border style intended to be used for items that do
not accept user input.

WindowEdge (Boolean)
If true, the window has a border with araised edge.

AcceptFiles (Boolean)
If true, the window accepts drag-and-drop files.

AppWindow (Boolean)
If true, forces atop-level window onto the taskbar when the window isvisible.

ControlParent (Boolean)
If true, the dialog manager recurses into children of this window when performing navigation
operations such as handling the TAB key, an arrow key, or a keyboard mnemonic.

ExContextHelp (Boolean)
If true, a question mark is included in the title bar of the window. When the user clicksit, the
cursor changes to a question mark with a pointer. If the user then clicks a child window, the

103

Appendix C

child receives a help message®™. The control should pass the message to the dialog box
procedure. The help application displays a pop-up window that typically contains help for the
control. ExContextHelp and MaximizeBox or MinimizeBox cannot be true together.

Layered (Boolean)

If true, it's alayered window. Using alayered window can significantly improve performance
and visual effects for awindow that has a complex shape, animates its shape, or wishes to use
alpha blending effects (that is, to be partially transucent).

LayoutRTL (Boolean)
If true and for Arabic and Hebrew versions of Windows, creates a window whose horizontal

origin ison the right edge (increasing horizontal values advance to the left).

Left (Boolean)
If true, the window has generic left-aligned properties. Thisis the default.

LeftScrollBar (Boolean)

If true and if the shell language is Hebrew, Arabic, or another language that supports reading
order alignment, the vertical scroll bar (if present) is to the left of the client area. For other
languages, the style isignored.

LTRReading (Boolean)
If true, the window text is displayed using left-to-right reading-order properties. This is the
default.

MDIChild (Boolean)

If true, it's a MDI child window. The multiple-document interface (MDI) technique uses a
single primary window, called a parent window, to visually contain a set of related document
or child windows, as shown in the figure below. Each child window is essentialy a primary
window, but it is constrained to appear only within the parent window instead of on the
desktop. These applications allow to display multiple documents at the same time, with each
document displayed in its own window.

NoOActivate (Boolean)

If true, the top-level window does not become the foreground window and activated when the
user clicks it. The system does not bring this window to the foreground when the user
minimizes or closes the foreground window. The window does not appear on the taskbar by
default. To force the window to appear on the taskbar, AppWindow has to be true.

NolnheritL ayout (Boolean)
If true, the window does not pass its window layout to its child windows.

NoParentNotify (Boolean)

If true, a child window does not send a message™ to its parent window when it is created or
destroyed. All child windows, except those that have this attribute to true, send this message
to their parent windows. By default, child windows in a dialog box have this attribute to true.

% The WM_HELP message.
* The WM_PARENTNOTI FY message.

104

Appendix C

Right (Boolean)

If true and if the shell language is Hebrew, Arabic, or another language that supports reading-
order aignment, the window has generic right-aligned properties. Otherwise, the style is
ignored. Using this attribute for static or edit controls has the same effect as using TextStyle =
right or Alignment = right respectively. Using this attribute with button controls has the same
effect as using Horizontal Aligment = right and RightButton = true (for check boxes and radio
buttons).

RightScrollBar (Boolean)
If true, the vertical scroll bar (if present) isto the right of the client area. Thisis the default.

RTLReading (Boolean)

If true and if the shell language is Hebrew, Arabic, or another language that supports reading-
order alignment, the window text is displayed using right-to-left reading-order properties.
Otherwise, the style isignored.

ToolWindow (Boolean)

If true, it's a tool window, i.e. a window intended to be used as a floating toolbar. A tool
window has a title bar that is shorter than a normal title bar, and the window title is drawn
using a smaller font. A tool window does not appear in the task bar or in the window that
appears when the user presses ALT+TAB.

TopMost (Boolean)

If true, the window is placed above all no topmost windows and stay above them even when
the window is deactivated. The dialog is then aways displayed in the application. This style
does not prevent the user from accessing other windows on the desktop. It is often used to
signal there is a problem from the system, like lack of resources, no memory.

Transparent (Boolean)
If true, the window is transparent. That is, any windows that are beneath the window are not

obscured by the window.

DIALOG

This class defines a dialog box, which is used to communicate with the user and to supply
services that are too complicated to be in a menu. 1t® a temporary subsidiary window, and
takes form of a pop-up window containing various child window controls through which the
user interacts.

DlglD (either a unique name or a unique 16-bit unsigned integer value in the range 1
to 65,535)

This unique identifier (often a number) is the reference of the program to identify the dialog

box.

Extended (Boolean)
If true, it®an extended dialog (i.e. with extended window styles).

X (Integer)

105

Appendix C

Specifies the X-coordinate (in horizontal dialog units'®) of the upper left corner of the dialog
box, relative to the client area of its parent when the dialog box isinvoked by the program.

Y (Integer)
Specifies the Y-coordinate (in vertical dialog units'™) of the upper left corner of the dialog
box, relative to the client area of its parent when the dialog box isinvoked by the program.

Width (Integer)
Specifies the width of the dialog box (in dialog box units).

Height (Integer)
Specifies the height of the dialog box (in dialog box units).

HelplD (Integer)
Specifies a numeric expression that indicates the identifier of the dialog box during help
messages processing. Thevalueis-1 if

3DL ook (Boolean)
If true, gives three-dimensional borders to child controls in the dialog box and draws the
entire dialog box using the three-dimensional colour scheme

AbsoluteAlignment (Boolean)
If true, indicates that the coordinates of the dialog box are screen coordinates. If not, the
system assumes they are client coordinates.

Center (Boolean)
If true, centers the dialog box in the working area.

CenterMouse (Boolean)
If true, places the dialog box so that the mouse cursor is centered in the dialog box.

ContextHelp (Boolean)
If true, includes a question mark in the title bar of the dialog box. ContextHelp designates

only a placeholder. When the dialog box is created, the system checks for this styleand, if it is
there, adds the extended style (see ExContextHelp in the WINDOW class) to the dialog box.

DialoglsControl (Boolean)
If true, the dialog appears like a control (not child), with no frame.

FixedSys (Boolean)
By default, the system draws all text in a dialog box using the SYSTEM _FONT% font. If true,

causes the dialog box to use the SYSTEM FI XED FONT'® instead of the default
SYSTEM FONT.

190 One horizontal dialog unit is equal to 1/4 of the average character width.

101 One vertical dialog unit is equal to 1/8 of the character height.

192 This is a proportional font based on the Windows character set, and is used by the operating system to display
window titles, menu names, and text in dialog boxes. The System font is always available. Other fonts are
available only if they have been installed.

193 This is a monospace font compatible with the System font in 16-hit versions of Windows.

106

Appendix C

L ocal Edit (Boolean)
If true, directs edit controls in the dialog box to allocate memory from the application® data
segment. Otherwise, edit controls allocate storage from a global memory object.®*

ModalFrame (Boolean)

Dialog boxes are either modal or modeless. If true, it® a modal dialog box (with a thick
border). It demands the user® attention before anything else can be done: when displayed, the
user cannot switch between the dialog box and the window that created it (the user must
explicitly end the dialog box, for instance by clicking the Cancel button). The user can
however switch to another program while displayed. If false, it® a modeless dialog box,
allowing the user to still work on the parent window. It is similar to normal window, usually
with a caption bar and a system menu, and is preferred when the user would find convenient
to keep the dialog box displayed for awhile.

NoFailCreate (Boolean)
If true, creates the dialog box even if errors occur (for example, if a child window cannot be
created or if the system cannot create a special data segment for an edit control).

NoldleMessage (Boolean)

If true, suppresses messages™> that the system would otherwise send to the owner of a modal
dialog box that is entering an idle state. A modal dialog box enters an idle state when no
messages are waiting in its queue after it has processed one or more previous messages.

SetForeGround (Boolean)

If true, brings the dialog box to the foregroun This style is useful for modal dialog boxes
that require immediate attention from the user regardless of whether the owner window is the
foreground window.

106
d.

Language (String)
A language identifier specifying the language of the dialog box.

Sublanguage (String)
A sublanguage identifier.

SetFont (Boolean)

If true, indicates that FontName (see beyond) contains the font to use for text in the client area
and controls of the dialog box. If possible, the system selects a font according to the specified
font data.

FontName (String)

Specifies the name of the typeface for the font that the system uses to draw text in the dialog
box (this attribute enables then to set something other than the system font for use with dialog
box text).

104 Applies to 16-hit applications only.

105 The WM _ENTER!I DLE messages.

196 Causes the system to use the SetForegroundWindow function. This function puts the thread that created the
window into the foreground and activates the window. Keyboard input is directed to the window, and various
visual cues are changed for the user. The system assigns a dightly higher priority to the thread that created the
foreground window than it does to other threads.

107

Appendix C

FontSize (Integer)

Specifies the size (in points) of the font used for the text in the dialog box and its controls. A
point is .013837 of an inch (roughly 1/72 inch) or 2.54 of a centimetre. The value is generally
determined by measuring the distance from the bottom of a lowercase g to the top of an
adjacent uppercase M, as shown in theillustration.

[talic (-1, false, true)
If true, the font isitalic. The valueis -1 if there is no information about this property (default
value).

Weight (Integer)

Specifies the weight of the font in the range 0 through 1000. For example, 400 is normal and
700 is bold. If the value is zero, a default weight is used. The value -1 is the default value
(nothing specified).

ShellFont (Boolean)

If true, indicates that the dialog box should use the system font. FontName must be set to MS
Shell Dlg. Otherwise, this style has no effect. The system selects a font using the font data
specified in the Fontsize, Weight, and Italic attributes.

CONTROL

This class defines controls. Every control is a child window that an application uses in
conjunction with another window to perform simple input and output (I/O) tasks (type text,
choose options, and direct a dialog box to complete its action). Common controls in a dialog
box are push buttons, check boxes, radio buttons, edit boxes, list boxes, combo boxes, text
stings and scroll bars. Such controls are predefined in Windows. When an overlapped window
(program® main application window) is moved, a popup window stay up. Thisis not true for
child windows, witch follow their parent around the display (and are never displayed outside
the client area of their parent).

CtrlID (either a unique name or a unique 16-bit unsigned integer value in the range 1
to 65,535)

Is the value that the child uses to identify itself when sending messages to its parent (when

you click a button with the mouse for instance, the child window control sends a message™”,

with notification code CLI CKED, to its parent window). The value is set to -1 when the

control does not send messages back to its parent (like text and icon control witch do not

accept mouse or keyboard input).

X (Integer)
Specifies the X-coordinate (in dialog box units) of the upper left corner of the child window
relative to the upper left corner of the parent window’s client area.

Y (Integer)
Specifies the Y-coordinate (in dialog box units) of the upper left corner of the child window
relative to the upper left corner of the parent window’s client area.

197 The VWM COMVAND message.

108

Appendix C

Width (Integer)
Specifies the width of the child window (in dialog box units).

Height (Integer)
Specifies the height of the child window (in dialog box units).

HelplD (Integer)
Specifies a numeric expression that indicating the identifier of the control during help
messages processing.

Position (Integer)

Is a positive number that defines the order the controls are specified in the resource script file.
This value is used in conjunction with the Group and TabStop attributes from the WINDOW
class.

The child classes correspond to predefined window classes in Windows used to create child
window controls. Additional window styles are used to define more precisely the appearance
or functionality of these controls.

BUTTON

This class defines a button child window. A button control typically provides input to an
application by notifying the parent window when the user clicks on the control with a mouse.
It can be used either alone or in groups, and can appear either with or without alabel (the text
Is specified in the window class).

VerticalAlignment ({top, center, bottom, none})
Places text at the top, centers text vertically or places text at the bottom in the button
rectangle.

Horizontal Alignment ({left, center, right, none})
Left aligns the text, centers text horizontally or right aligns the text in the button rectangle (or
in the remainder rectangle after removing the check box or radio button).

Flat (Boolean)
If true, the button is two-dimensional. It does not use the default shading to create a 3-D
Image.

Multiline (Boolean)
If true, wraps the button text to multiple linesif the text string istoo long to fit on asingle line
in the button rectangle.

Notify (Boolean)
If true, enables a button to send notification messages'® to its parent window which tells that
the button has been double clicked, lost the keyboard focus or gained the keyboard focus. A

108 Notification messages are submessage codes that the child use to tell the parent in more detail what the
message means (like the control has been clicked, double clicked etc.). Here, the control can use the
BN_DBLCLK, BN_KI LLFOCUS and BN_SETFOCUS codes.

109

Appendix C

button sends always a notification message™ which tells the parent that the button has been
clicked, regardless of whether it hasthis style.

The next six classes define various types of button.

PUSHBUTTON

A push button is a rectangle with rounded corners enclosing text that the user can click with a
mouse. The rounded rectangle takes up the full height and width of the dimensions given. The
text is centered within the rectangle. This control is used to trigger an immediate action.**°

Default (Boolean)

If true, it is the default push button and has a heavier outline. Pressing the Enter key has the
same effect that clicking on it with the mouse. That enables the user to quickly select the most
likely option (the default option).

Content ({text, bitmap, icon})
The push button can displays text, which for normal window is the text that appears in the
caption bar (thisisthe default). It can be also labelled with an icon or a bitmap instead of text.

PUSHBOX

A push box isidentical to a push button, except that it does not display a button face or frame.
Only the text appears.

GROUPBOX

A group box is an oddity in the button types because it can not be selected
and neither process input nor sends a message to its parent. This button is
just a rectangular outline with its window text at the upper-left corner. It is
used to enclose other controls.

CHECKBOX

A check box is a square box usually aligned with the left edge and centered within the top and
bottom dimensions of the child window’s rectangle, with text that appears to the right.™*
Clicking the box once causes an X appear, clicking again toggle the X off. There are
incorporated in an application to alow a user to select options.

™ Creckibom
Auto (Boolean)
If true, the check state automatically toggles between checked and cleared each
time the user selects the check box.'*

19 A message withe the BN_CLI CKED notification.

19 The button posts a W COMMAND message to the owner window when the user selects the button.

1 Unless LeftText=true.

M2 That is the control itself toggles the check mark on and off, and VWM COMMAND messages are ignored by its
parent. Otherwise, the program must control the checking and un-checking of the box (after receiving
WW_COMVAND, the parent window send BM_SETCHECK message to the child control) .

110

Appendix C

3state (Boolean)

If true, the box can display athird state: it can be dimmed as well as checked. A grey colour
within the check box indicates to the user that the box cannot be checked - i.e., that it is has
been disabled.

RightButton (Boolean)
If true, positions the check box® square on the right side of the button rectangle (the text

appears to the | eft).

PushLike (Boolean)
If true, makes a check box look and act like a push button. The button looks raised when it
isn®pushed or checked, and sunken when it is pushed or checked.

RADIOBUTTON

A radio button looks like a check box except that it uses a circle rather than a box. A dot
within the circle indicates that it has been checked. Text is usualy displayed to its right.*3
Only one check may be made if there are multiple buttons. groups of radio buttons are
conventionally used to indicate mutually exclusive options. Unlike check boxes, they do not
work astoggle (that is, when you click it a second time, its state remains unchanged).

Auto (Boolean)

If true, when the user selects it, the system automatically sets the button® check state to
checked and automatically sets the check state for all other buttons in the same group to
Cleared.

RightButton (Boolean)
If true, positions the radio button® circle on the right side of the button rectangle (the text

appearsto the left).

PushLike (Boolean)
Makes a radio button look and act like a push button. The button looks raised when it isn®
pushed or checked, and sunken when it is pushed or checked.

CUSTOMBUTTON

It's an owner-drawn button, that is, a button that the program is responsible for drawing.***

LISTBOX

This class defines child window controls called list boxes. A list box contains a collection of
items™™ displayed as a scrollable columnar list within a rectangle from which a user can chose
(such filenames in the current directory when the user select Open from the File menu). The
user can view and select an item by highlighting it with a left mouse click.™® If the list box is
not large enough to display all the list box items at once, the list box can also provide a scroll

3 Unless RightButton=true.

14 The owner window receives the WV DRAW TEMmessage.

13 | tems can be represented by text strings, bitmaps, or both.

118 Selecting alist box item changes its visual appearance, usually by changing the text and background colors.

111

Appendix C

bar (if VerticalScrollBar from the WINDOW class is set to true'™’). By default, the list box
displays only the list of items without any border around it. A border can be added with
Border set to true (from the WINDOW class).

Sorted (Boolean)
If true, stringsin the list box are sorted alphabetically.

MultipleSelection (Boolean)
If true, turns string selection on or off each time the user clicks a string in the list box. Any
number of strings can be selected at atime. A list box is by default simple selection.

DisableNoScroll (Boolean)

If true, the list box shows a disabled scroll bar when the list box does not contain enough
items }&scroll. Otherwise, the scroll bar is hidden when the list box does not contain enough
items.

ExtendedSelection (Boolean)
If true, the user can select multiple items using the SHIFT key and the mouse or specia key
combinations.

Multicolumn (Boolean)

If true, it’samulti column list box that is scrolled horizontally. A multi column list box places
items into as many columns as are needed to make vertical scrolling unnecessary (a vertical
scroll bar is never displayed). The user can use the keyboard to navigate to columns that are
not currently visible. To have a horizontal scroll bar displayed that allows the user to scroll to
columns that are not currently shown in the visible region of the list box requires the addition
of Horizonta ScrollBar = true from the WINDOW class.

NoSelection (Boolean)
If true, the list box contains items that can be viewed but not selected.

Notify (Boolean)

If true, the list box notifies its parent whenever the user clicks a string (list boxes detect aso
double-clicks™®). List boxes almost aways notify their parent window about action done by
the user.

OwnerDrawFixed (Boolean)

If true, the owner of the list box is responsible for drawing, sorting, and storing its contents
and the items in the list box are all the same height. The owner window receives a message'®
when avisual aspect of the list box has changed.

OwnerDrawVariable (Boolean)

If true, the owner of the list box is responsible for drawing, sorting, and storing its contents
and the items in the list box are variable in height. The owner window receives a message
when avisual aspect of the list box has changed.

17 Note that a horizontal scrollbar can only be displayed with a multi column list box.

18 And the vertical scrollbar is added when there are more items than will fit in the visible area of the listbox.
19 They can sent LBN_DBLCLK notification code.

120 The VWW_DRAW TEMmessage.

112

Appendix C

HasStrings (Boolean)

If true, the list box contains items consisting of strings. The list box maintains the memory
and pointers for the strings so the application can use a message™ to retrieve the text for a
particular item. By default, all list boxes except owner-drawn list boxes have this style.

NolntegralHeight ~ (Boolean)

If true, the size of the list box is exactly the size specified by the application when it created
the list box. By default, Windows sizes a list box so that the list box does not display partial
items.

UseTabstops (Boolean)
If true, causes the list box to recognize and expand tab characters when drawing its strings.

WantK eyBoardinput (Boolean)

If true, the owner of the list box receives messages'® whenever the user presses a key and the
list box has the input focus. This enables an application to perform special processing on the
keyboard inpuit.

NoData (Boolean)

If true, it's a no-data list box. Useful when the count of items in the list box will exceed one
thousand. A no-data list box resembles an owner-drawn list box except that it contains no
string or bitmap data for an item.

NoRedraw (Boolean)
If true, the list box®appearance is not updated when changes are made.

EDIT

This class defines an edit child window. 1t® a rectangle containing editable text based on
dimension of the child window. An edit box typically allows the user to enter
and edit text by typing on the keyboard.

Alignment ({left,right,center})
Specifies if the text in a single-line or multiline edit control is left-justified, right-justified or
centered in the rectangle.

Multiline (Boolean)
If true, it®a multiline edit control. By default, the control has a single-line entry field.

AutoHorizontal Scroll (Boolean)

If true, the control automatically scrolls text to the right when the user types a character at the
end of the line. When the user presses the ENTER key, the control scrolls all text back to
position zero. Otherwise, only text that fits within the visible area is alowed for single-line
edit controls. For multiline edit controls, if false, the text is wrapped to the beginning of the
next line when necessary.’?® If an edit control has HorizontalScrollBar set to true, this
property is applied automatically.

12! The LB_GETTEXT message.
122 \WM VKEYTO TEMmessages.
123 1f true, the user must press the ENTER key to start anew line.

113

Appendix C

AutoVerticalScroll (Boolean)

If true, the edit control automatically scrolls text up when there is more text than can be
displayed within the control. This style is applicable to multiline edit controls only. With this
style off, the edit control ignores input that cannot be displayed. If an edit control has
Vertical ScrollBar set to true, this property is applied automatically.

PasswordField (Boolean)
If true, displays all characters as an asterisk (*) as they are typed into the edit control (valid
only for single-line edit controls).

LowerCase (Boolean)

If true, converts all characters to lowercase as they are typed into the edit control.***

UpperCase (Boolean)
If true, converts al characters to uppercase as they are typed into the edit control.

NoHideSel ection (Boolean)

Normally, an edit control hides the selection when the control loses the input focus and
inverts the selection when the control receives the input focus. If true, delete this default
action (the selected text isinverted, even if the control does not have the focus).

ReadOnly (Boolean)
If true, prevents the user from entering or editing text in the edit control.

Number (Boolean)
If true, allows only digits to be entered into the edit control.

WantReturn (Boolean)

When the multiline edit control is in a dialog box, pressing the ENTER key has the same
effect as pressing the default push button. If true, a carriage return is inserted when the user
presses the ENTER key while entering text into a multiple-line edit control %

OEMConvert (Boolean)

If true, text entered in the edit control is converted from the Windows character set to the
OEM character set and then back to the Windows character set. This ensures proper character
conversion when the application calls the function to convert a Windows string in the edit
control to OEM characters.'?®

RICHEDIT

This class defines a rich edit control. It's a window in which the user can enter, edit, format,
print, and save text. The text can be assigned character and paragraph formatting, and can
include embedded Component Object Model (COM) objects. Rich edit controls support
almost al of the messages and notification messages used with multiline edit controls. Thus,
applications that already use edit controls can be easily changed to use rich edit controls.

124 For combo box (see further), text in both the selection field and the list is converted.

125 This style has no effect on a single-line edit control.

126 This style is most useful for edit controls that contain filenames that will be used on file systems that do not
support Unicode.

114

Appendix C

Additional messages and notifications enable applications to access the functionality unique
to rich edit controls.

The following attributes are unique to rich edit controls.**’

DisableNoScroll (Boolean)
If true, the scroll bar is disabled instead of hide when it is not needed.

NoCallOlelnitialize (Boolean)
If true, prevents the control from calling the Olelnitialize function when created (this function
initializes global datafor the session and prepares the OLE libraries to accept cals).

NolIME (Boolean)
If true, disables the Input Method Editor (IME) operation (available for Asian language
support only).

SefIME (Boolean)
If true, directs the rich edit control to allow the application to handle all IME operations
(available for Asian language support only).

Sunken (Boolean)
If true, displays the control with a sunken border style so that the rich edit control appears
recessed into its parent window.

Vertica (Boolean)
If true, draws text and objects in a vertical direction (available for Asian-language support

only).
COMBOBOX

A combo box is a combination of an edit box and a list box. It can use the
AutoHorizontalScroll, LowerCase, OEMConvert and UpperCase

attributes from the EDIT class, and the Sort, DisableNoScroll, HasStrings,

NolntegralHeight, OwnerDrawFixed and OwnerDrawVariable attributes from the LISTBOX
class. For example, if HorizontalScroll is true, and if the combo box® edit control is
completely filled with text and the user enters more text at the end of the edit control line, the
existing text is automatically scrolled. Else, if the edit control is completely filled with text, no
more text is allowed to be entered into the edit control.

Type ({simple,dropDown,dropDownList})

There are three types of combo boxes. For a simple combo box, the list box is displayed at all
times. The current selection in the list box is displayed in the edit control. A drop-down
combo box is similar to simple one, except that the list box is not displayed unless the user
selects an icon next to the edit control. A drop-down list box is similar to drop-down one,
except that the edit control is replaced by a static-text item that displays the current selection
inthelist box (edit control is set to read-only).

127 A rich edit control inherits from EDIT class, but can not have the LowerCase, OEM Convert and UpperCase
attributes set to true (it does not support these styles).

115

Appendix C

Extended (Boolean)

Additionally, some combo box controls that display iconswith |- == =
items'?® (extended combo box controls) can use the next = |=him)
atributes. Note that for these controls, the EDIT- and = |=&==i
L1STBOX-specific attributes are not supported. -=

CaseSensitive (Boolean)
If true, searches in the list will be case sensitive. This includes searches as a result of text
being typed in the edit box.

NoEditimage (Boolean)
If true, the edit box and the dropdown list will not display item images.

NoSizeLimit (Boolean)
If true, alows the control to be vertically sized smaller than its contained combo box control.
If it is sized smaller than the combo box, the combo box will be clipped.

PathwordBreakProc (Boolean)

If true, the edit box will use the dash (/), backslash (\), and period (.) characters as word
delimiters. This makes keyboard shortcuts for word-by-word cursor movement effective in
path names and URLSs.

STATIC

This class defines a static child window. They are used to put information in the dialog and
often act as labels for other controls (the text is given in the window class), but can used to
draw frames or lines separating other controls, or to display icons. They do not expect user
input and do not send back messages to their parent.

Type ({text,frame,image,enhencedMetafile,ownerdraw })
The control can display text, a frame, an image or an enhanced metafil
static control can also be responsible for drawing the control.

e'?®. The owner of the

Sunken (Boolean)
If true, a half-sunken border is drawn around a static control.

Notify (Boolean)
If true, allow the parent window to receive notification messages™® when the user clicks the
control.

12870 make item images easily accessible, an other type of combo box controls in Windows provide image list
support (see the ListviEw class for image lists). These controls provide the functionality of a standart combo
box without having to manually draw item graphics (they create a child combo box and perform owner draw
tasks based on the assigned image list). If an image list is not assign to the control, it displays item text only.

12 A metdfile is a collection of structures that store a picture in a device-independent format. Device
independence is the one feature that sets metafiles apart from bitmaps (drawback : they are generally drawn more
slowly than bitmaps, so if an application requires fast drawing and device independence is not an issue, it should
use bitmaps instead of metafiles). The given text of the control is the name of a metafile. An enhanced metafile
static control has a fixed size. The metafileis scaled to fit the static control®client area.

130 Messageswith STN_CLI CKED, STN_DBLCLK, STN_DI SABLE, and STN_ENABLE notifications.

116

Appendix C

Severa attributes exist to define more precisely its layout. The first defines the basic text
styles for static controls.

TextStyle ({left,right,center,simple,leftNoWor dWk ap,undefined})

Asin edit child window, the three first values specify if the text is left-justified, right-justified
or centered in the rectangle. Words that extend past the end of a line are automatically
wrapped to the beginning of the next line. Words that are longer than the width of the control
are truncated. simple designates a simple rectangle and displays a single line of left-justified
text in the rectangle. The line of text cannot be shortened or atered in any way.™
leftNoWordWrap designates a simple rectangle and displays the given text left-justified in the
rectangle. Tabs are expanded, but words are not wrapped. Text that extends past the end of a
lineis clipped.

The next attributes can modify a static control that has any of the previous text styles.

NoPrefix (Boolean)

Normaly, Windows will interpret an ampersand (&) character in the control® text to be a
prefix character for the keyboard access key: the ampersand is removed and the next character
in the string is underlined.™** This feature is not aways wanted. If true, the static control
displays an ampersand as an ordinary character.

EndEllipsis (Boolean)
If true, replaces part of the given string (characters at the end of the string) with ellipses, if

necessary, so that the result fitsin the specified rectangle.

PathEllipsis (Boolean)
If true, replaces part of the given string (characters in the middle of the string) with ellipses, if

necessary, so that the result fits in the specified rectangle. If the string contains backslash (\)
characters, preserves as much of the text after the last backslash as possible.

WordEllipsis (Boolean)
Truncates any word that does not fit in the rectangle and adds ellipses.

Static controls can be used to draw frames.

Frame ({black,gray,white,undefined})

Defines a box that is not filled, and does not display text. The three first values do not
necessary mean that the color are black, gray and white. It is based on a system color.

black : drawn with the color used to draw window frames, the default is black.

gray : drawn with the color used to fill the screen background (desktop), the default is gray.
white : filled with the color used to fill the window background, the default is white.

Rectangle ({black,gray,white,undefined})

Like Frame, except that the rectangular outline is filled (with the color used to draw window
frames, with the color used to fill the desktop or with the color used to fill the window
background).

Etched ({frame,horizontal vertical ,undefined})

131 The control® parent window must not process the WV CTL COL OR message.
132 And the control displays two ampersands (& &) as a single ampersand.

117

Appendix C

The frame, the top and bottom edges or the left and right edges of the static control are drawn
using the EDGE_ETCHED"* edge style.

Static controls can aso be used to display images.

Icon (Boolean)

If true, an icon is displayed in the dialog box. The given text is the name of the icon (not a
filename). The control is automatically sized to fit the icon when it is displayed (the width and
height values specified are ignored).

Bitmap (Boolean)
If true, abitmap is displayed in the dialog box. The given text is the name of the bitmap (not a

filename). The control automatically sizes itself to accommodate the bitmap (the width and
height values specified are ignored).

Centerimage (Boolean)
If true and if the bitmap or icon is smaller than the client area of the static control, the rest of

the client area s filled with the color of the pixel in the top left corner of the bitmap or icon.***

Real Sizel mage(Bool ean)
If true, prevents a static icon or bitmap control from being resized as it is loaded or drawn. If
theicon or bitmap is larger than the destination area, the image is clipped.

RightJustify (Boolean)
If true, the lower right corner of a bitmap or icon static control is to remain fixed when the

control is resized. Only the top and left sides are adjusted to accommodate a new bitmap or
icon.

SCROLLBAR

This class defines a scroll bar child window. A window can display a content (such as a
document or a bitmap) that is larger than the window® client area. When provided with a
scroll bar, the user can scroll a content in the client area to expand the viewing space. Thisis
not a scrollbar added at the right and/or the bottom of a window, but it's a child window
control that can appear anywhere in the parent window.'®

Type ({horizontal, vertical, sizeBox, sizeGrip})

There are two types of scroll bars. horizontal (by default) and vertical. If it is not aligned with
one of its edges, the scroll bar has the height, width, and position specified by the window’s
attributes. The control can also designate a size box. If it is not aligned with one of its corners,
the size box has the height, width, and position given in the window’ s attributes. A sizegrip is
like asize box, but with araised edge.

Alignment ({left, right, top, bottom, bottomRight, topLeft, none})

133 Combination of two outer-border flags : BDR_RAlI SEDOUTER (raised outer edge) and BDR_SUNKENOUTER
(sunken outer edge).

134 |f the static control contains a single line of text rather than image, the text is centered vertically in the client
area of the control.

35 Unlike a button, edit and list box control, it do not send VW COMMAND messages to the parent window, but
VWM HSCROLL and WM VSCROLL messages.

118

Appendix C

left and right are used with a vertical scroll bar. The left (right) edge of the scroll bar is
aligned with the left (right) edge of the rectangle specified when created. The scroll bar has
the default width for system scroll bars. top and bottom are used with a horizontal scroll bar.
The top (bottom) edge of the scroll bar is aligned with the top (bottom) edge of the rectangle
specified when created. The scroll bar has the default height for system scroll bars.
bottomRight and topLeft are used with size box. The lower-right (upper-l€eft) corner of the size
box is aligned with the lower-right (upper-left) corner of the rectangle specified when created.
The size box has the default size for system size boxes.

TAB

A tab control is analogous to the dividersin a notebook. By using a tab control, an application
can define multiple pages for the same area of a dialog box. Each page consists of a certain
type of information or a group of controls that the application displays when the user selects
the corresponding tab. A tab control can have specific

characteristics, like the alignment and general appearance of the

control’ stabs.

Type ({tabs, buttons})

Tabs can appear either as tabs (thisis the default) or as buttons. Tabs in the second type of tab
control should serve the same function as button controls (that is, clicking a tab should carry
out a command instead of displaying a page). Because the display area in a button tab control
istypically not used, no border is drawn around it.

Bottom (Boolean)
If true, tabs appear at the bottom of the control.

FixedWidth (Boolean)
By default, tab control automatically sizes each tab to fit itsicon, if any, and its label. If true,
all tabs are the same width.

FlatButtons (Boolean)
If true, selected tabs appear as being indented into the background while other tabs appear as
being on the same plane as the background. This style is used only with button tab controls.

FocusNever (Boolean)
If true, specifies that the tab control does not receive the input focus when clicked.

FocusOnButtonDown (Boolean)
If true, the tab control receives the input focus when clicked. This attribute is typically used
only with button tab controls.

Forcel eft ({none, icon, label})

none centers the icon and label within each tab of the control, placing the icon to the left of
the label. The icon can be aligned with the left edge of each fixed-width tab, leaving the label
centered, when the attribute takes the value icon. Both the icon and label can be left-aligned
within each fixed-width tab by the value label. The two last values are used only when
FixedWidth = true.

HotTrack (Boolean)

119

Appendix C

If true, causes the control to exhibit hot tracking*® behaviour (that is, an item is automatically
highlighted as the mouse pointer moves over it).

Multiline (Boolean)

By default, a tab control displays only one row of tabs and the user can scroll to see more
tabs, if necessary. If true, multiple rows of tabs are displayed, if necessary, so all tabs are
visible at once. The tabs are | eft-aligned within each row (unless RightJustify = true).

Multiselection (Boolean)
If true, multiple tabs can be selected by holding down when clicking. This style is used only
with button tab controls.

OwnerDrawFixed (Boolean)
If true, the parent window is responsible for drawing tabs in the control.

RaggedRight (Boolean)
If true, rows of tabs will not be stretched to fill the entire width of the control. This styleisthe

default.

Right (Boolean)
If true, tabs appear vertically on the right side of the control. This style is used only when
Vertical = true.

RightJustify (Boolean)
If true, the width of each tab isincreased, if necessary, so that each row of tabs fills the entire

width of the tab control. This style is used only with multiline tab controls.

ScrollOpposite (Boolean)
If true, unneeded tabs scroll to the opposite side of the control when atab is selected.

ToolTips (Boolean)
If true, the tab control has a tool tip control**’ associated with it to provide a brief description
of each tab.

Vertica (Boolean)
If true, tabs appear at the left side of the control, with tab text displayed vertically. This style
Isvalid only when Multiline = true.

UPDOWN

An up-down control is a pair of arrow buttons that the user can click to increment or
decrement an associated value (called its current position), such as a scroll position or a
number displayed with a companion control (called a buddy window). To the user, an up-
down control and its buddy window often look like a single control. It can be specified that an
up-down control automatically position itself next to its buddy window. For example, you can

1% An item becomes hot when the mouse passes over it. If hot tracking is enabled, the appearance of hot items
changes.

137 A tool tip is short, descriptive phrases that appear when the user holds the mouse pointer briefly over a
control or another part of the user interface.

120

Appendix C

use an up-down control with an edit control as its buddy window to prompt the user for
numeric input ;%

An up-down control without a buddy window functions as a sort of simplified scroll bar. For
example, a tab control sometimes displays an up-down control to enable the user to scroll
additional tabsinto view :

Alignment ({left, right,none})

Positions the up-down control next to the left (right) edge of its buddy window, the buddy
window is then moved to the right (left) and its width is decreased to accommodate the width
of the up-down control. The control can also be unattached (none).

ArrowKeys (Boolean)
If true, provides a keyboard interface by causing the up-down control to increment and

decrement the position when the buddy window has the focus and the UP ARROW and
DOWN ARROW keys are pressed.

AutoBuddy (Boolean)
If true, automatically selects the previous window in the z-order as the up-down control®
buddy window.

Horizontal (Boolean)
If true, causes the up-down control® arrows to point left and right (instead of up and down)
for horizontal scrolling.

HotTrack (Boolean)
If true, the arrows on the control are highlighted as the pointer passes over them.

NoThousands (Boolean)
If true, athousands separator is not inserted between every three decimal digits.

SetBuddyint (Boolean)
If true, causes the up-down control to set the text of the buddy window whenever the current
position changes.**°

Wrap (Boolean)

By default, the current position does not change if the user attempts to increment it or
decrement it beyond the maximum or minimum value. If true, causes the position to "wrap" to
the opposite extreme if it is incremented or decremented beyond the ending or beginning of
the range.

TRACKBAR

A track bar is a window that contains a dlider (also called a thumb) and optional small
indicators (called tick marks). Track bars are useful when you want the user to select a
discrete value or a set of consecutive valuesin arange.

138 A combination that is sometimes referred to as a spinner control.
31 the buddy window is a list box, an up-down control sets its current selection instead of its caption.

121

Appendix C

AutoTicks (Boolean)

A track bar displays tick marks at its beginning and end (unless the NoTicks attribute take the
true value). If true, the control displays additional tick marks at regular intervals along the
track bar. By default, it displays a tick mark for each increment in its range of values, but a
different interval can be specified.

DowlsLeft (Boolean)
By default, the track bar control uses down equal to right and up equal to left. If true, reverses
the default, making down equal left and up equal right.

EnableSel ectionRange (Boolean)

If true, alows the user to select a range on the track bar (by holding the SHIFT key when
dragging). This selection restricts the user to a specified portion of the total range. The logical
units do not change, but only a subset of them is available for use. The tick marks at the
starting and ending positions of a selection range are displayed as triangles (instead of vertical
dashes), and the selection range is highlighted.*

FixedLenght (Boolean)
If true, allows the size of the slider to be changed.

NoThumb (Boolean)
If true, the track bar control does not display a slider.

NoTicks (Boolean)
If true, the control does not display any tick marks.

Orientation ({horizontal, vertical})
The track bar control can be oriented horizontally (thisis the default orientation) or vertically.

Reversed (Boolean)

Normally, it is assumed that zero (0) percent is at the top of avertical slider and at the left of a
horizontal slider. This causes a problem when the slider® maximum (100 percent) is at the top
or left side. If true, switches the values for the minimum and maximum slider positions. It has
no effect on the control, but is simply alabel that can be checked to determine whether atrack
bar is normal or reversed.

TickMarks ({bottom, top, left, right, both })

The dider is configured with a set of values from a minimum to a maximum. Therefore, the
user can specify a value included in that range. Equipped with tick marks, the slider can be
used to control exact values that the user can select in the range. bottom and top cause tick
marks to be displayed below or above a horizontal track bar control. left and right cause tick
marks to be displayed to the left or to the right of a vertical track bar control. both causes tick
marks to be displayed on both sides of the control.*** There are examples of track bar controls
using the bottom and the both values respectively :

140 This can be useful for example to select a certain portion of asound or video file to use.
141 With this values, the thumb of the slider appears as a rectangular box (with the others, one of its borders
appears as an arrow).

122

Appendix C

ToolTips (Boolean)
If true, the control has a default tool tip control that displays the slider® current position.

PROGRESSBAR

A progress bar control is a window that an application can use to indicate the progress of a
lengthy operation. It consists of a rectangle that is gradually filled with the system highlight
color as an operation progresses.

Type ({normal, marquee, smooth})

marquee causes the progress bar to move like a marquee (usually used as an indefinite
progress bar). smooth causes the control to display a contiguous progress bar instead of the
default segmented bar (normal). Thisillustrates the result of the values :

Vertica (Boolean)
If true, the progress bar displays progress information vertically, from bottom to top.

TREEVIEW

A tree view control is awindow that displays a hierarchical list of items, such as the headings
in a document, the entries in an index, or the files and directories on a disk. Each item consists
of a label and an optional bitmapped image, and each item can have a list of subitems
associated with it. By double-clicking an item™* (or by clicking its button if available), the
user can expand or collapse the associated list of subitems (that is, the

child items are displayed below the parent item or the child items are not

displayed).'*® The starting item of the tree is called the root and represents

the beginning of the tree (it is not unusual to have atree list that has many

roots). Each item (including the root) that belongs to the tree is referred to

asanode.

CheckBoxes (Boolean)
If true, check boxes appear next to each item in the tree view control.

DisableDragDrop (Boolean)

If true, prevents the tree view control from sending a notification message' to the parent
window when the user starts to drag an item with the left mouse button (so, prevents the
control to support drag-and-drop operations).

EditLabels (Boolean)

142 By single-clicks an item label, the tree-view control selects and sets the focus to the item. Then the user can
press the direction keys to navigate in the hierarchy (left and right to collapse and expand, up and down to move
the focus vertically in the tree), move the mouse before releasing the mouse button to optionally drag-and-drop
the item or even click again the label of the focused item to optionally edit it (atimer can make it possible for the
tree view to avoid entering edit mode immediately if the user double-clicks the label).

143 An item toggles between the expanded and collapsed state when the control sends the TVM EXPAND
message.

144 With the TVN_BEG NDRAG natification.

123

Appendix C

If true, makes it possible for the user to edit the labels of tree view items.

FullRowSel ect (Boolean)
If true, enables full-row selection in the tree view. The entire row of the selected item is
highlighted, and clicking anywhere on an item®row causes it to be selected.

HasButtons (Boolean)

With a tree view control, the user can expand or collapse a parent item®list of child items by
double-clicking the parent item. If true, adds plus (+) and minus (-) buttons to the left side of
parent items showing the user whether the item is expanded or collapsed. The user can click
the button once instead of double-clicking the parent item to expand or collapse a parent
item®list of child items.**

HaslL ines (Boolean)

If true, enhances the graphic representation of atree view control®hierarchy by drawing lines
that link child itemsto their corresponding parent item (that is, displays lines connecting items
within a branch).*

InfoTips (Boolean)
If true, the control sends a notification'’ when it is requesting additional text information to
be displayed in atool tip.

LinesAtRoot (Boolean)
If true, displays lines connecting items at the root level, showing which items play the roles of
roots.**®

NoHorizontalScroll (Boolean)
If true, disables horizontal scrolling in the control. The control will not display any horizontal
scroll bars.

NonevenHeight (Boolean)
If true, sets the height of the tree view items to an odd height. By default, the height of items
must be an even value.

NoScrall (Boolean)
If true, disables both horizontal and vertical scrolling in the control. The control will not
display any scroll bars.

NoToolTips (Boolean)
If true, disables the automatic tool tip feature of tree view controls. This feature automatically

displays atool tip, containing the title of the item under the mouse cursor, if the entire titleis
not currently visible.

RightTolL eftReading (Boolean)

145 Does not add buttons to items at the root of the hierarchy. To do so, HasLines and LinesAtRoot must also be
Set at true.

146 Does not link items at the root of the hierarchy. To do so, LinesAtRoot must also be set at true.

%" The TVN_GETI NFOTI P notification.

18 Thisvalueisignored if HasLines = false.

124

Appendix C

Usually, windows display text left-to-right (LTR). Windows can be mirrored to display
languages such as Hebrew or Arabic that read right-to-left (RTL). A tree view text is
displayed in the same direction as the text in its parent window. If true, causes text to be
displayed in the opposite direction from the text in the parent window.

ShowSelectionAlways (Boolean)

Normally, when the user clicks another control or another application, the node that was
selected loses its selection. If true, causes a selected item to remain selected when the tree
view control loses focus.

SingleExpand (Boolean)
If true, a previously expanded item will collapse automatically when a new item is expanded.

If the user holds the CTRL key down while clicking an item, the item being unselected will
not be collapsed.

TrackSelect (Boolean)
If true, enables hot tracking in a tree view control. Each tree node label takes on the
appearance of a hyperlink (underlined with a blue color) as the mouse pointer passes over it.

LISTVIEW

A list view control is a specialized window that displays a set of items. Each item consists of
an icon and a label. This window alows the user to arrange and display items (such as files)
in four ways : using their large icons, using their small icons, as a list, or as a report. Note
that, a resource file describing a control when the dialog box is first invoked, only one
particular view can be specified, but | suppose that specific properties of other future views
can still be specified.

View ({icon, smalllcon, list, report})

A list view control can display items in four different views. This attribute specifies the
current view. Inicon view, each item appears as a standard icon with alabel below it. In small
icon view, each item appears as a small icon with alabel to the right of it. In list view, each
item appears as a small icon with alabel to the right of it and is displayed in a single-column
list on the screen. In report view, additional information about each item is displayed in
columns to the right of the small icon and label. The user can drag the items to an arbitrary
location in the window only inicon or small icon view.

Additional attributes provide other options, such as whether a user can edit labels or select
more than one item at atime, whatever the view type.

Align ({left, top})
Specifies the way items are arranged in icon and small icon view. Items are either aligned
with the left or with the top (by default) of the control.

EditLabels (Boolean)
If true, the item text*® can be edited in place. Otherwise, the user can read only.

OwnerData (Boolean)

4% Only thefirst field of each row in the report view.

125

Appendix C

If true, the control isavirtua list view control, being able to handle millions of items because
the owner receives the burden of managing item data. This allows using a list view control
with large databases of information, where specific methods of data access are aready in
place. The control does not store any item information itself. Except for the item selection and
focus information, the owner of the control must manage all item information.

SharelmageL ists (Boolean)
If true, an image list™ will not be deleted when the control is destroyed. This style enables
the use of the same image lists with multiplelist view controls.

ShowSelectionAlways (Boolean)
If true, the selection (if any) is aways shown, even if the control does not have the focus.

SingleSel (Boolean)
By default, multiple items may be selected. If true, only oneitem at atime can be selected.

SortAscending (Boolean)
If true, item indexes are sorted based on item text in ascending order.*>*

SortDescending (Boolean)
If true, item indexes are sorted based on item text in descending order.*

Other attributes are sometimes used to provide enhanced options such as check boxes and hot-
tracking.

CheckBoxes (Boolean)
If true, displays a checkbox with each item.*

OneClickActivate (Boolean)

If true, hot tracking is enabled (that is, when the cursor moves over an item, it is highlighted),
and the user must still click the item once to select it (only one click is required to select any
item, so all items may be selected).™

TrackSelect (Boolean)

If true, enables hot-track selection in a list-view control. Hot track selection means that an
item is automatically selected when the cursor remains over the item for a certain period of
time.

10 Animage list is a collection of images of the same size stored in memory, each of which can be referred to by
itsindex. Image lists are used to efficiently manage large sets of icons or bitmaps. By default, alist view control
does not display item images. To display icons, image lists must be created and associated with the control.
Upon creation, each image list is empty. The program repeatedly adds icons to the list, and each icon is assigned
a sequential number starting at 1. Thisis the number to which the program refers to display a particular iconin a
row or column header.
31| other words, rowsin list and report view will be sorted in that way. For each of itsitems, alist view control
typicaly stores the image list index of the item®icons. Because in list and report views items are displayed in
the same order as their indexes, the results of sorting are immediately visible to the user. In icon and small icon
\1/55 2e'ws item indexes are not use to determine the position of icons, and then the results of sorting are not visible.
idem
33 The control then creates and sets a state image list with two images. State image 1 is the unchecked box, and
state image 2 is the checked box.
5% An item may be selected when it isin a state in which asingle click will select it.

126

Appendix C

TwoClickActivate (Boolean)
If true, hot tracking is enabled, and the user must still click the item twice to select it (the item
may be selected only after it has been clicked once).

The next tree attributes apply to list view controlsin icon or small icon view.

AutoArrange (Boolean)
If true, icons are automatically kept arranged in icon and small icon view.

NoL abelWrap (Boolean)
By default, item text may wrap in icon view. If true, item text is displayed on asingle linein

icon view.

NoScroll (Boolean)
If true, scrolling is disabled. All items must be within the client area in icon and small icon
view.

The remaining attributes apply to list view controlsin report view.
NoColumnHeader (Boolean)

By default, each column has a header in report view.™ If true, avoids displaying column
headers.

NoSortHeader (Boolean)
If true, column headers do not work like buttons. This style can be used if clicking a column
header in report view does not carry out an action, such as sorting.

OwnerDrawFixed (Boolean)
If true, the owner window can paint items in report view.®

The following attributes enable enhanced options in report view.

FullRowSel ect (Boolean)
If true, when arow is selected , all itsfields are highlighted (item and subitems™).

GridLines (Boolean)
If true, displays gridlines around rows and columns.

HeaderDragDrop (Boolean)
If true, enables drag-and-drop reordering of columnsin the control.

Subltemlmages (Boolean)
If true, allows images to be displayed for fields beyond the first (subitems).

HEADER

35 |f the user clicks one of them, the list is sorted based on the sort criterion specified for the associated column.
%8 | response to VW DRAW TEMmessages

37 A subitem is a string that, in report view, is displayed in a column separate from the item®icon and label. All
items have the same number of subitems (determined by the number of columns in the control).

127

Appendix C

A header control is awindow that is usually positioned above columns of text or numbers. It
contains a title for each column. The user can drag the dividers that separate the parts to set
the width of each column. As example, this header has labelled columns giving detailed
information about filesin adirectory :

Buttons (Boolean)

Each item in the control looks and behaves like a push button. This style is useful if an
application carries out a task when the user clicks an item in the header control. For example,
an application could sort information in the columns differently depending on which item the
user clicks.

DragDrop (Boolean)
If true, allows drag-and-drop reordering of header items.

FilterBar (Boolean)
If true, include a filter bar as part of the standard header control (this bar alows users to
conveniently apply afilter to the display).

Flat (Boolean)
If true, the header control is drawn flat when Microsoft Windows XP is running in classic
mode.

FullDrag (Boolean)
If true, the header control displays column contents even while the user resizes a column.

Hidden (Boolean)
If true, indicates a header control that is intended to be hidden (it's sometimes useful to use
the control as an information container instead of avisua control).™®

Horizontal (Boolean)
If true, the header control is oriented horizontal.

HotTrack (Boolean)
If true, enables hot tracking.

TOOLBAR

A toolbar control isawindow that contains a group of buttons that bring the key functionality
of an application closer to the user: we can perform common tasks with a simple click rather
than performing various steps to access a menu. Typically, the buttons in a toolbar correspond
to items in the main menu, providing an additional way for the user to activate an
application® commands. Each button can include a bitmapped image, but also a string in
addition to, or instead of, the image.

ALTDrag (Boolean)

138 |n fact, this does not hide the control. Instead, when the message is send to a header control to know its
layout, the control returns zero as height. It is hide by setting its height to zero.

128

Appendix C

If true, allows users to change a toolbar button® position by dragging it while holding down
the ALT key. Otherwise, the user must hold down the SHIFT key while dragging a button.
The Adjustable attribute must be true to enable buttons to be dragged.

CustomErase (Boolean)

If true, the control notifies its parent window about drawing operations when the window
background must be erased (for example, when awindow is resized) to prepare an invalidated
portion of awindow for painting.

Toolbar controls support a transparent look that allows the client area under the toolbar to
show through. There are two kinds of transparent toolbars, ones with flat buttons and ones
with three-dimensional buttons :

Flat (Boolean)
If true, it's aflat toolbar. In aflat toolbar, both the toolbar and the buttons are transparent and
hot tracking is enabled. Button text appears under button bitmaps.

Transparent (Boolean)
If true, it's a non-fat transparent toolbar. In a transparent toolbar, the toolbar is transparent but

the buttons are not. Button text appears under button bitmaps.

List (Boolean)
If true, it's aflat toolbar with button text to the right of the bitmap (if no text is added to the
Image, it isidentical to Flat = true).

ReqgisterDrop (Boolean)
If true, the control requests a drop target object when the pointer passes over one of its

buttons.*®

ToolTips (Boolean)
If true, adds toal tipsto the toolbar control.

WrapAble (Boolean)
If true, it's atoolbar that can have multiple lines of buttons The buttons can wrap to the next

line when the toolbar becomes too narrow to include all buttons on the same line. When the
toolbar is wrapped, the break will occur on either the rightmost separator or the rightmost
button if there are no separators on the bar.*®

The size and position of the toolbar window automatically set itself. The height is based on
the height of the buttons in the toolbar, the width is the same as the width of the parent
window’s client area and the control is positioned along the top (or bottom if specified) of the
parent window’s client area. Also, the toolbar window procedure automatically adjusts the
size of the toolbar whenever the size of the parent window changes. The toolbar default sizing
and positioning behavioursis turned off if the two next attributes are set to true.*®*

NoResize (Boolean)

1% By sending a TBN_ GETOBJECT notification message.

180 The attribute must be true to display a vertical toolbar control when the toolbar is part of a vertical rebar
control (see after).

181 This is the case for toolbar controls that are hosted by rebar controls (see after) because the rebar control sizes
and positions the toolbar.

129

Appendix C

If true, prevents the control from using the default width and height when setting its initia
size or anew size. Instead, the control uses its specified width and height.

NoParentAlign (Boolean)

If true, prevents the control from automatically moving to the top or bottom of the parent
window. Instead, the control keeps its position within the parent window despite changes to
the size of the parent.

Bottom (Boolean)
By default, the toolbar appears at the top of the parent window® client area. The toolbar
control can aso be positioned along the bottom of the parent window’s client area (if true).

NoDivider (Boolean)
If true, prevents atwo-pixel highlight from being drawn at the top of the control.

Adjustable (Boolean)

If true, the toolbar is customizable.. The user can drag a button to a new position or remove a
button by dragging it off the toolbar. In addition, the user can double-click the toolbar to
display the Customize Toolbar dialog box, which enables the user to add, delete, and
rearrange tools to select only the ones they need and organize them in a convenient way.

REBAR

Rebar controls act as containers for other child windows (often toolbar controls). A rebar
control hosts one or more bands, and each band can have any combination of a gripper bar, a
bitmap, atext label, and a child window. However, bands cannot contain more than one child
window. With both toolbar and rebar controls, applications are more flexible. Toolbars can be
moved, repositioned, minimized, and maximized within the rebar control. Thisis for example
a rebar control with two bands one that contains a combo box and another that contains a
toolbar :

AutoSize (Boolean)
If true, the layout of a band will automatically change when the size or position of its control
changes.

BandBorders (Boolean)
If true, the rebar control displays narrow lines to separate adjacent bands.

DoubleClickToggle (Boolean)

If true, the rebar band will toggle its maximized or minimized state when the user double-
clicks the band. Otherwise, the maximized or minimized state is toggled when the user single-
clicks on the band.

FixedOrder (Boolean)
If true, the rebar control always displays bands in the same order. A user can move bands to
different rows, but the band order is static.

130

Appendix C

NoDivider (Boolean)
If true, prevents atwo-pixel highlight from being drawn at the top of the control.

ReqgisterDrop (Boolean)
If true, the control generates notification messages when an object is dragged over a band in

the control .2

VarHeight (Boolean)

If true, the control displays bands at the minimum required height, when possible (the control
can then have variable band height). Otherwise, the rebar control displays all bands at the
same height, using the height of the tallest visible band to determine the height of other bands.

Vertical Gripper (Boolean)
If true, the size grip will be displayed vertically instead of horizontally in a vertical rebar
control.

Vertica (Boolean)
If true, the control is displayed vertically.

STATUTBAR

A status bar is a horizontal window at the bottom of a parent window in which an application
can display various kinds of status information. The status bar can be divided into parts to
display more than one type of information (like help text and the current cursor position). Y ou
can see such control in the main window of Rational Rose shown above.

SizeGrip (Boolean)

If true, the status bar control will include a sizing grip at the right end of the status bar. A
sizing grip issimilar to asizing border. It is arectangular area that the user can click and drag
to resize the parent window.

ToolTips (Boolean)
If true, enables toal tips.

Top (Boolean)
The default position of a status bar is along the bottom of the parent window’s client area. If
true, the control appears at the top of the parent window®client area.

PAGER

A pager control is awindow container that is used with a window that does not have enough
display areato show all of its content. The pager control allows the user to scroll to the area of
the window that is not currently in view. For example, if an application has a toolbar that is
not wide enough to show all of itsitems, the toolbar can be assigned to a pager control and the
user will be able to scroll to the left or right to access all of the items.

AutoScroll (Boolean)

162 The RBN_GETOBJECT notification message.

131

Appendix C

If true, the pager control will scroll when the user hovers the mouse over one of the scroll
buttons.

DragAndDrop (Boolean)

The contained window can be a drag-and-drop target. The pager control will automatically
scroll if anitem is dragged from outside the pager over one of the scroll buttons.

Direction ({horizontal, vertical})
Indicatesif the pager control scrolls horizontally or vertically.

DATETIMEPICKER

A date and time picker (DTP) control provides a simple and intuitive interface through which
to exchange date and time information with a user (the user can select a value instead of
typing it). The control relies on a format string to determine how it will display fields of
information. For example, to display the current time with the format "07:50:23 PM" and the
current date with the format "Monday June 20, 2005", format strings can be "hh@n@stt" and
"dddd MMM dd@yyyy".**® Date and time format elements will be replaced by the actual
date and time. Shown thereafter are two separate DTP controls.

AppCanParse (Boolean)
The user may want to edit the date value of the control. A DTP control is equipped to verify

the types of values that can be entered.’® If true, doesn’t let the control to make this task, but
allows the owner to parse user input and take necessary action. It enables users to edit within
the client area of the control when they pressthe F2 key.

Format ({longDate, shortDate, shortDateCentury, time })

There are three preset formats available for displaying the date and one for displaying time
(they cannot be combined).'®® longDate displays the date in long format (like "Monday, June
20, 2005"). shortDate displays the date in short format (like "6/20/05"). shortDateCentury is
similar except the year is a four-digit field (like "6/20/2005"). time display the time (like
"7:50:23 PM").

RightAlign (Boolean)
By default, the DTP control displays a combo box. If the user clicks the arrow on the control,

a drop-down month calendar displays (see after). If true, the calendar will be right-aligned
with the control instead of left-aligned, which is the default.

ShowNone (Boolean)

It is possible to have no date currently selected in the control. If true, the control displays a
check box that users can check once they have entered or selected a date. Until this check box
is checked, the application will not be able to retrieve the date from the control because, in
essence, the control has no date.

163 v acts for one- or two-digit hour in 12-hour format, "m" for one- or two-digit minute, "s" for one- or two-
digit second, "tt" for two-letter AM/PM abbreviation, "dd" for two-digit day (single-digit day values are
preceded by a zero) and "dddd", "MMMM" and "yyyy" for full weekday, full month name and full year
respectively.

184 For example, the user cannot type the name of a month, only a number and the control would display the
corresponding name of the month.

1651 the preset formats are not sufficient, a custom format can be created.

132

Appendix C

UpDown (Boolean)

If true, displays an up-down control to the right of the control (which is divided in different
sections that can each be changed individually) in place of the drop-down month calendar, as
shown here:

MONTHCALENDAR

A month calendar control implements a calendar-like user interface. This provides the user
with a very intuitive and recognizable method of entering or selecting a date. The title bar of
the control provided by the Win32 API displays two buttons and two labels. The left (right)
button allows the user to select the previous (next) month.'®® The left (right) label displays the
currently selected month (year). To select any month of the

current year, the user can click the name of the month. This

displays the list of months and allows the user to choose one. To

select a year, the user clicks the year number. This changes the

year label into a spin button. To select a date on the control, the

user clicks the desired date, which changes from the previous

selection. The user can still click the bottom label to return to

today® date if at one time the calendar is displaying a date other

than today.

DayState (Boolean)
If true, the control requests information about which days should be highlighted by displaying
them in bold.*®

Multisel ection (Boolean)
If true, the control allows the user to select a range of days. By default, the user can select
seven contiguous days maximum.

NoToday (Boolean)
If true, the control doesn’t display the label at the bottom of the control (the "today" date).

NoTodayCircle (Boolean)
If true, the control no longer circlesthe current day.

WeekNumbers (Boolean)
If true, the control displays week numbers (1-52) to the left side of each row of days.

ANIMATION

168

An animation control is a window that displays an AVI clip™" that does not contain audio.
One common use for an animation control is to indicate system activity during a lengthy
operation. This is possible because the operation thread continues executing while the AVI
clip is displayed. For example, the Find dialog box of Explorer displays a moving magnifying
glass as the system searches for afile. This control is still used when afile copy is underway:

AutoPlay (Boolean)

186 The control can also display more than one month (if its width and height provide space).
167 By sending MCN_GETDAYSTATE notifications to know how individual days should be displayed.
188 An AVI (Audio-Video Interleaved) clip is a series of bitmap frames like amovie.

133

Appendix C

If true, starts playing the animation as soon as the AV clip is opened.

Center (Boolean)
If true, centers the animation in the animation control®@window.

Transparent (Boolean)
If true, allows an animation® background color to match that of the underlying window,

creating a "transparent” background.*®

CUSTOMCONTROL

This class regroups any other controls that may appear in adialog box. So far I’ ve introduced
existing controls (corresponding to predefined classes in Windows programming'™), but
nothing prevents us from using a customized child window.'™ An example is the calendar
used by Windows XP in the Date and Time Properties dialog box*" :

This class may aso include other existing Windows controls not listed here!”® A custom

control inherits the attributes specific to the WINDOW class (because this is a child control,
has Style=child) and the CONTROL class (defining its classes position), and has one more
attribute ClassName.

ClassName (String)
Designates the name of the class defining the control (example: msctls_hotkey32 for a hot key
control).

MENUBAR

The next classes concern the menu of an application. This one defines a window’s menu bar,
also called the main menu or the top-level menu. A menu bar is displayed below the caption
bar and shows a list of menus (which in turn can shows submenus) that lets a user select
commands. Items on the menu bar are almost always popup menus (rarely command items).

1% The control will send a message to its parent. It interprets the upper-left pixel of the first frame as the
animation® default background color, and will remap all pixels with that color to the value supplied in response
of the message.

10 These classes already exist within Windows. The programmer does not first define and register its own
window class to create a control based on one of these classes. The programmer simply use the window class
name (like “button” or “static”), and some style flags, as parameters in the function to create a window.

11 By registering your own window class called ClassName, and using your own function to process messages
for your customized control.

72 The class name is "CalWndMain'".

173 |ike the IP address contol implemented in recent versions of Comctl32.dll (and defined in Commctrl.h), or a
hot key control (a window that enables the user to enter a combination of keystrokes to perform an action
quickly). They have no specific style.

134

Appendix C

MenulD (either a unique name or a unigque 16-bit unsigned integer value in the range 1
to 65,535)
Is the name identifying the menu (used to find menu data in program resources).

Language (String)
Is alanguage identifier that specifies the language of the menu.

Sublanguage (String)
Is a sublanguage identifier.

POPUPM ENU

A popup menu can contain menu items and other popup menus (which are displayed when the
user highlight it). Items on the menu bar almost always invoke a popup menu (also called
drop-down menus).

Text (String)
Thisiswhat appears in the menu. An ampersand (&) inside the value designates the letter that
follows as the mnemonic.

State ({enabled, disabled, grayed})

A popup menu can be enabled (by default), disabled or grayed. When an item is not available
to the user, it is grayed or disabled. A disabled item looks just like an enabled item. When the
user clicks on a disabled item, the item is not selected, and nothing happens. A grayed item is
displayed in gray text. ™

Position (Integer)

Each popup menu is located in a specific position. The leftmost item in the menu bar, or the
top item in a popup menu, has Position = 1. The position value is incremented for subsequent
items.

MENUITEM

This class define a command item, which is checked or cleared to indicate whether an option
is (not) in effect, or which can invoke a dialog box to obtain input from the user that can’'t be
easily managed through the menu

[temID (Integer)
I's the number with which the item isidentified by the program.

Text (String)

This is what appears in the menu. The string can contain this escape characters. \a to right-
align the following text and \t for a tab. An dllipsis (...) is habitually added to the end to
indicate that a menu item invokes a dialog box. An ampersand (&) designates the letter that
follows as the mnemonic.

Checked (Boolean)

7 The corresponding submenu is not displayed when the item is disabled or grayed.

135

Appendix C

If true, a check mark () isto the left of the menu text. This is useful to choose different
program options from the menu.

State ({enabled, disabled, grayed})

Menu items can be enabled (by default), disabled or grayed. Enabled or disabled items look
the same to the user (a disabled item is displayed but it cannot be selected). Disabled and
grayed item are used when options are not currently valid (but a grayed item is displayed in
gray text to let the user know the option is not valid). *”

Position (Integer)

Each menu item is located in a specific position. The leftmost item in the menu bar, or the top
item in a popup menu, has Position = 1. The position value is incremented for subsequent
items.

SEPARATOR

This class defines an inactive item that serves as a dividing bar between two items.

Position (Integer)

Each separator is located in a specific position. The leftmost item in the menu bar, or the top
item in a popup menu, has Position = 1. The position value is incremented for subsequent
items, including separators.

> The WM_COMVAND message is not send to the owner window when the item is disabled or grayed.

136

Appendix D

Appendix
Source code

[] KRR A Kk Kk kK kK Kk K Kk KK K KK kKK KKK R Kk Ak kK kR Kk Kk kA Kk Ak AR h Ak h Ak A A KR Kk A h KA KA h KKK KK KA KKK IR KKK KA KKK IR KKK KA KKK IR KK AR R KK KKK KKk *

/1 This class, containing a main nethod, can be used to test ny inplenentation w thout |aunching G afi XM.
/1 1t has not to be placed in the .jar when integrating the plug-in into G afi XM.
/1 Put before running it a valid resource file in C\\ naned fichier.rc

[KRk KRk ok ok kK k ok Rk kK kK k kK k kK kK Kk KKk Kk kK kK Kk Kk kK Kk Kk Kk Kk ok Kk kK kkk kK h kA kA kK kK Rk Kk kKK Kk KKk Ak Ak Kk Rk kK kA Kk k ok kh kA kK kkkh k Kk k ok

inport inportresources. RcFile;
inport inportresources. SdfFile;
inport inportresources. Xi bFile;

inport java.io.Fil eNot FoundExcepti on;
inport java.io.lOException;
inport java.io.File;

public class plugin {

public static void main(String[] args) {
File resourceFile = displayDialog();

if ((resourceFile.getNanme()).endsWth(".rc")){
// a Wndows .rc file is inported
int[] filePointers;
try{
// scan the file to locate resources and mark thoses sel ected by the user
filePointers = RcFile.scan(resourceFile);
if (filePointers.length !'= 0){
/1 one or nore resource has been selected by the user
try{
RcFi |l e. process(fil ePointers);

}
catch (Fil eNot FoundException e) {
Systemout.printIn("File " + resourceFile.getName() +" not found!");

}

catch (1 OException e) {
Systemout.println(e);

}

}

}
catch (Fil eNot FoundException e) {
Systemout.printIn("File " + resourceFile.getName() +" not found!");

}

catch (1 OException e) {
Systemout. println(e);

}

}

/1 OQher formats of resource files
/1l for future devel openent
el se
/'l Apple resource files
if ((resourceFile.getNanme()).endsWth(".nib")) N bFile.process(resourceFile);
/1 Screan definition files
el se Sdf File. process(resourceFile);

public static File displaybDi alog(){ // fichier pour tests
return new File("C\\fichier.rc");
}

137

Appendix D

J] RR KKKk Kk ok k kK K Kk ok kK KKk kK KKKk kK KKKk KK KKk kK KKKk kKK Kk kKK Kk kKKK Kk A KK Ik A KK I kKKK Kk A KKK IR AR K IR K I I A K KKKk kA KKk kA Kk Kk k ok *

/1 1 nportResources.java Aut hor : Julien Marion
/1 This class inplenents the InportPlugin interface used to add a plugin into G afi XM.

J] RR KKKk Kk ok k kK Kk Kk ok kK K Kk kK KKKk K K KKKk K KKKk kK KKKk kKK Kk kK KKKk KKK KKk KA KKKk A KKk kKK Kk kA KKk IR KKK IR KKK IR K KKK K Kk kA Kk Kk kK kh ok ok *

package i nportresources;

inport be. ac.ucl.isys.grafixm.plugins.|nportPl ugin;
inport be.mchotte.util.Uilities;

inport java.io.Fil eNot FoundExcepti on;

inport java.io.|OException;

inmport java.io.File;

public class |InportResources inplenents |InportPlugin {

/1 Load the given file.
public boolean load(File file) {

if (Uilities.getExtension(file).equals("rc")){

/1 a Wndows .rc file is inported

int[] filePointers;

try{
/1 scan the file to locate resources and nark thoses sel ected by the user
filePointers = RcFile.scan(file);
if (filePointers.length !'= 0){

/1 one or nore resource has been sel ected by the user

try{
RcFil e. process(filePointers);

}
catch (Fil eNot FoundException e) {
Systemout.printin("File " + file.getName() +" not found!");

}

catch (1 OException e) {
Systemout. println(e);

}

}

}
catch (Fil eNot FoundException e) {
Systemout.printin("File " + file.getNanme() +" not found!");

}

catch (I OException e) {
System out. println(e);

}

}

/1l Other formats of resource files
/'l for future devel openent
el se
/'l Apple resource files
if (Uilities.getExtension(file).equals(".xib"))
Xi bFi |l e. process(file);
/1 Screan definition files
el se Sdf File.process(file);

return true;

}

// Used to load a preview of the file
public bool ean | oadFil eContent(File file) {return false;}

// Return the extensions used by this type.
public String[] getExtensions() {return new String[] { "rc", "nib", "sdf" };}

// Return the type nane.
public String getExtensionNane() {return "resources files";}

/1 Return the plugin nane.
public String getPlugi nName() {return "Inport Resources";}

/1 Return the plugin author.
public String getPluginAuthor() {return "Julien Marion";}

/1 Return the plugin version.
public String getPluginVersion() {return "0.1";}

// Return the plugin description.
public String getPluginDesc() {return "This plugin is used to inport resources files";}

/1 Return the versions of G afi XM. which can use the plug-in.
public String getPlugi nDepend() {return "<=1.1.99";}

138

Appendix D

[] RR KKKk Kk Kk kk kK Kk Kk ok kK KKk kK KKKk KK KKKk KK KKK kKK KKk kKK Kk kA KKk kKKK kA KKKk KK I kAR Kk kAR K IR K K I IR K I IR KKK IR K I kA KKk kK h ok ok *

/1l RcFile.java Aut hor : Julien Marion
/1 This class contains nethods to read a Wndows .rc file and to process it in CU into Gafi XV

[] RR KKKk Kk Kk kk kK Kk k ok kK KKk kK KKKk KK KKKk KK KKKk K KKKk kKK Kk kA KKk kK KKKk A KKKk A KK I kA K kI AR K IR KKK KA K I IR KKK I A Kk Ik Ak K Kk kA KKk Kk k ok *

package i nportresources;

inport java.io.File;

inport java.io.Fil eReader;

inport java.io.Li neNunber Reader;
inport java.io.|OException;
inmport java.io. Streanokeni zer;
inmport java.util.StringTokenizer;
inmport java.util.Vector;

public class RcFile {

private static File fil eNane;
private static bool ean dial ogSel ected = fal se;
private static FlagTrie T = null;

/1 Scan a specified file for resources and return an array of line nunbers that |ocate resources the user has chosen
/1 to inport in GafiXM

public static int[] scan(File f) throws | OException{
fileName = f;
I/ Create the LinenunberReader to read fromthe supplied filenane.

// Converts the original input streaminto a character input stream

Fi |l eReader r = new Fil eReader (fileNane);

/1 Transformit into a LineNunberReader, which allows to use the readline method to get an entire |ine of
/'l character input in one operation, and keeps track of |ine nunbers.

Li neNunber Reader | nr = new Li neNunber Reader (r);

/1 This vector contains Resource objects.

/1 1t will dynamcally grow as a new resource (of type menu or dialog)is found in the file.
/1 1t will dynamcally shrink as the user decide to inport |ess resources than those found.
Vector resources = new Vector (25);

// Scan the file for resources (fill vector).
readLi nes(l nr, resources);

r.close();

/*test*/

for (int i =0; i < resources.size(); i++){
System out . println(((Resource)resources.elementAt(i)).toString());
Systemout. println("----------mmmm ")

Systemout.printIn("\n\n");//*/

/1 Call the nethod which create the dialog box for resources selections.
di spl ayDi al og(resources);

/*tests*/

for (int i = 0; i < resources.size(); i++) {
System out . println(((Resource)resources.elementAt(i)).toString());
Systemout.println("----------mmmmm o ")

}

Systemout.println("\n\n");

// Return the line nunbers where are the sel ected resources to process.
int[] pointers;
int n = resources.size();
pointers = newint[n]; // If resources is enpty, pointers.|length() equals zero.
for (int index = 0; index < n; index++){
/1 There is at |east one resource to process.
poi nters[index] = ((Resource)resources. el enent At (index)).getLine();
if (!dialogSelected & ((Resource)resources. el enent At (i ndex)).getType() == 'D)
di al ogSel ected = true;
}

return pointers;

e R
/1 Scan the file for resources.
/| Paragraph are separeted by line without token, coments at begining are not part of paragraph.
e e L LR R T
private static void readLi nes(Li neNunber Reader r, Vector v) throws | CException{
String delims =" \t";
String line; // Contents of a line, not including any |ine-termination characters.
String firstToken, secondToken;
StringTokeni zer st;
while((line = r.readLine()) !'= null){ // Line is not null, the end of the stream has not been reached.
/1if (line.length() == 0);
/1 "In" (part of paragraph separator), not usefull because st.hasMoreToken()==fal se

139

Appendix D

st = new StringTokeni zer (line, delins);
if (st.hasMreTokens()) {
/1 line contains at |east one token (that is, line is not part of a paragraph
/| separator containing '/n' and eventual w the space charachters).
firstToken = st.next Token();
if (firstToken.startsWth("//"));
// Text after // and that extends to the end of the line is discarded.
el se
if (firstToken.startsWth("/*"))
/| Text between successive occurrences of /* and */, and after */ until EQ.,
/1l is discarded.

while (line !'= null && line.indexOF("*/") == -1) line = r.readLine();
el sef
/1 Begining of a paragraph (after evantual skiped conments).
if (st.hasMreTokens()){
secondToken = st.next Token();
/1 1f there is matching, strore the resource with the current |ine.
i f (secondToken. equal s("DI ALOG") | |
secondToken. equal s(" DI ALOGEX") ||
secondToken. equal s("MENU"))
/1 The current line is nornally r.getLineNunber()-1, because
/1 after reading a line, the position in the file is set at
/'l the begining of the following line. But this value has to
/'l be considered for consistency with the streaniTokenizer
/1 (which counts the lines starting from1 and not 0)
/1 used to process resources.
v. add(new Resource(r. getLi neNunber (),
first Token, secondToken. charAt(0)));
/1 Skip lines of the sane paragraph.
do line = r.readLine();
while(line '= null & line.length() !'= 0);
}
}
}
}
L e e e e

/Il Create a dialog box to get user choices. For each object in the vector resources, an itemis created in a |ist.
/1 1f the user pushes on the Ok button, the vector is updated (suppress not selected objects).

/1 1f the user pushes on the Cancel button, the vector becones enpty.

private static void displayDi al og(Vector v){

Resour cesSel ection frame = new ResourcesSel ection(v);

franme. show();
}
R e R T
/'l process the selected resourses
R e R T

public static void process(int[] p) throws | CException{

/| Create the tokenizer to read fromthe supplied filename

/1 (note that a StreanTokeni zer can return the |ine nunber)

Li neNunber Reader | nr = new Li neNunber Reader (new Fil eReader (fil eNange));
St reanifokeni zer st = new Streanifokeni zer (lnr);

/| Prepare the tokenizer for recource script style tokenizing rules (specifies how tokens
/| are recognized). By default, the tokenizer already renpve quotes around strings when reading
// them ('\"' denotes a quotes string by default) and parse nunber.

/1 End of lines are treated as tokens (the nextToken nmethod returns TT_ECL and al so

/Il sets the ttype field to this value when an end of line is read). The default syntax

// table is configured to treat an end of lines character as white space, not as a separate token.
st.eol IsSignificant(true);

/1

/1 Specifies a range of characters to be treated as part of words

/I "A to'Z and 'a to 'z' are already (by default) considered to be al phabetic.

st.wordChars('_',"_"); // to recognize flags (e.g. WS_POPUP)

/1

/| Specifies the range of characters that serve to delinmt tokens

/1 ' ' (space) and '\t' (tab) are by default delinmters

st. whi tespaceChars('|',"'|");

st. whitespaceChars('=",'="); // Restorator use EXSTYLE=<ex_styl e>*

/1

/1 Specifies the range of characters that are never part of tokens and should be returned as-is
st.ordinaryChars(',', ',');

st.ordinaryChars('{", {');

st.ordinaryChars('}', '}');

11

/| Causes comments (//<line> and /*<text>*/) to be ignored
st. sl ashSl ashComment s(true);

st. sl ashSt ar Conment s(true);

I nr.setLineNunber(1); // the first line is 1 (0 by default)

/'l Process the resources

140

Appendix D

if (dialogSelected) T = new FlagTrie();// creer |'arbre des flags

String id;
/1l For each stored |ine nunber.
for (int i =0; i < p.length; i++){
/1 Reach the resource begining at line i.
Systemout. println("Next stored line in the vector: " +p[i]); int In;
while ((In = Inr.getLineNunber()) < p[i]) {Inr.readLine();Systemout.println(“line " +ln);}
Systemout.print("Fromline " +ln+": ");

/'l Read the identifier of the nenu or of the dialog.

st. next Token();

if(st.ttype == StreaniTokeni zer. TT_NUMBER) id = String.valueO ((int)st.nval);
else id = st.sval;

// Read the type of the resource (the token is a word).
st. next Token();
if (st.sval.equals("MENU")){

System out. println("NMENU "+id);

processMenu(id, Inr, st);

el se{
/1 1t's a resource of type dialog box.
System out. println("D ALOG "+i d);
processDi al og(id, st.sval.endsWth("EX"), Inr, st);

I'nr.close();

R e e e e
/'l Process a resourse of type nenu.

private static void processMenu(String id, LineNunberReader |nr, Streanifokenizer st){

R e e e e T
/'l Process a resourse of type dial og box.

private static void processDial og(String id,bool ean extended, Li neNunber Reader r, StreaniTokeni zer st)throws | OException{

short x, y, width, height;

int styles = 0, extendedStyles = 0;

String text = null, language = null, fontName = "Tahom";
byte fontSize = 8;

bool ean bold = false, italic = fal se;

String ctrlCass = null;

/| Parse the position and dinention nunbers.

st. next Token(); x = (short)st.nval; Systemout.println("x-coordinate =
st. next Token(); //skip ',"'

st.next Token(); y = (short)st.nval; Systemout.println("y-coordinate = "+y);
st. next Token(); //skip ',"'

st.next Token(); width = (short)st.nval; Systemout.println("wi dth = "+w dth);
st.next Token(); //skip '’

+X);

st. next Token(); height = (short)st.nval; Systemout.println("height = "+height);
// Go to the begining of the next line (optional [,helpld] is skiped).
whi | e(st. next Token() != StreaniTokenizer.TT_EQ);

bool ean hasControls = true;

/'l Read the first keyword of each line and extract related information until the control definition
// part is reached.
while (st.nextToken() !="{") {
switch (st.ttype) {
case StreaniTokeni zer. TT_WORD:
if (st.sval.equal s("STYLE"))({
/1 Extract the styles of the dialog box.

whi | e(st. next Token() != StreaniTokeni zer. TT_EQL) {
styles | = T.match(st.sval).getFlagValue(); // bitw se OR operation
st. next Token();

}

Systemout. println("styles: "+styl es);

}
else if (st.sval.equals("CAPTION')){
/1 Extract the text that appears on the caption bar.
st . next Token();
text = st.sval;
Systemout.println("caption =" + text);
// Go to the the next line.
st.next Token(); // End-of-line token.

}
else if (st.sval.equal s("EXSTYLE")){
// Extract the extended styles of the dial og box.
whi | e(st. next Token() != StreaniTokenizer.TT_EQL){
extendedStyles | = T.match(st.sval).getFlagValue(); // bitwi se OR operation
st. next Token();

141

else if

else if

else if

else if

el se {

break;

Appendix D

System out. println("extended styles: "+ext endedStyl es);

}

(st.sval . equal s("LANGUAGE")) {

/1 Extract the | anguage used in the dial og box.

st . next Token();

| anguage=(st. sval . substring(st.sval.indexCf("_")+1,st.sval.length())).toLowerCase();

Systemout. println("language = "+ | anguage);
/1 Go to the the next line.
whi | e(st. next Token() != StreaniTokenizer.TT_EQ);

}
(st.sval.equal s("FONT")){
// Extract the font that is used for controls in the dial og.
st. next Token();
fontSize = (byte)st.nval;
st.next Token(); st.nextToken();
font Nane = st.sval;
i f(st.nextToken() ==","){// There is information about weight and italic.
st. next Token();
if (st.ttype == StreaniTokeni zer. TT_WORD)
/1 FW SEM BOLD, FW DEM BOLD, FW BOLD, FW EXTRABCLD,
// FW UTRABOLD, FW HEAVY or FW BLACK
if (st.sval.indexOr('B) !=-1]| st.sval.equals("FWHEAVY")) bold = true;
el se
/1 st.ttype == StreaniTokenizer. TT_NUMBER
if (st.nval >= 550.0) bold = true;
st. next Token(); st.nextToken();
if (st.sval.equal s("TRUE")) italic = true;
/1CGo to the the next line.
whi | e(st. next Token() != StreaniTokenizer. TT_EQ.);
} /1 Else it was an end of |ine token.
Systemout.printin("font = "+ fontSize + ", " + fontName + " " + bold + " " + italic);

(st.sval.equal s("BEG@N')){ // Begin...END is sonmetinmes used by Resource Builder instead of {...}
st.ttype='{";

/1 Causes the next call to the next Token nmethod to reread the token but return the

I/ current value in the ttype field, and not to nodify the value in the nval or sval field.
st. pushBack(); }

(st.sval.equal s("MENU") || st.sval.equal s("CLASS")){

/1 O her unfrequent but possible keywords in the dialog tenplate (not inplenented),

/1 the line is skiped. Exanple of scenario :

...

/1 400 DI ALOG 30, 73, 275, 84

// STYLE DS_SETFONT| DS_MODALFRAVE| DS_3DLOOK| W5 POPUPW NDOW W5 _CAPTI ON

/1 CAPTI ON "Fi nd"

/1 FONT 8, "M Shell D g"

/1 MENU 403 //include a nenu in the dialog box. it has to be defined in the nenu resource
...

.readLi ne();

—-— =

/1 1t is an id. Another resource has been reached because an enpty line resources separator has
/1 not been respected and will not be processed (because not referenced in the pointers array).
/| Exanpl e of scenario :

...

// 400 DI ALOG 30, 73, 275, 84

/| STYLE DS_SETFONT| DS_MODALFRAME| DS_3DLOCOK| W5_POPUPW NDOW WS_CAPTI ON

/1 CAPTION "Find"

// FONT 8, "MS Shell D g"

/1 ABOUT DI ALOG 26, 41, 350, 242

I

hasControls = fal se;

st.ttype="{";

st. pushBack() ;

case Streanffokeni zer. TT_EOF: /1 Dialog box without child controls definitions, end of file has been reached.
hasControls = fal se;
st.ttype="{";
st. pushBack() ;

br eak;

case StreanfTokeni zer. TT_EQOL:
/1 Skip an enpty line that has been reached (not nornally occurs in a valid syntax dial og box tenplate).
/| Exanpl e of scenario:

/1 400 DIALOG 30, 73, 275, 84

/1 STYLE DS_SETFONT| DS_MODALFRAVME| DS_3DLOOK| W5_POPUPW NDOW W5_CAPTI ON

/1 CAPTION "Fi nd"
// FONT 8, "NB Shell D g"

/1
I {
/1.

br eak;

case StreaniTokeni zer. TT_NUMBER // It's an id. Another resource has been reached because an enpty line
hasControl s = fal se; /'l resources separator is not respected in the file. Exanple of scenario:
st.ttype="{"; ...
st. pushBack() ; /1 400 DI ALOG 30, 73, 275, 84

142

Appendix D

br eak; /1 CAPTION "Find"
} /1 401 DI ALCG 36, 44, 285, 110
} /1

/|l Generate into Grafi XM. this dial og box.

Grafi.generateDial og(id, wdth, height, text, styles, extendedStyles);

// a faire (renvoyer aussi référence du container),

/1 a nmettre dans une variabl e passée en paranetre |lors des appels de création des conponents

/1 Specify the font that will be used in the conatiner generated.
Gafi.fontNanme = fontNanme;, Gafi.fontSize = fontSize;Gafi.bold = bold;Gafi.italic = italic;

/1 Process the child wi ndow controls.
i f (hasControl s){
/1 { (or BEGN) has been encountered in the tenplate. There is then a controls definition part.

styles = 0; extendedStyles = 0;
text = ""; // The size of the text field (always specified in the generic notation) is O when no val ue.

/1 TODO A first scan storing x, y, w, hin a tab of vector to construct boxes into the CU nodel.
/1 r.mark(1024); // enought?

/'l Read the next token different from ECL.
whi | e(st. next Token() == StreaniTokeni zer. TT_EQL);

while (st.ttype !'="}") {
/1 1t remains at least one line defining a child wi ndow control. Process the next line.
/1 st.ttype = StreanTokenizer. TT_WORD (the key word CONTROL or a control type)
String word = st.sval;
if (word. equal s("CONTROL")){
System out . println("héhoooo ?? bordel!");
/1 The line format is:
/| CONTROL text,id,ctrldass[,styles],x,y,w dth, hei ght[, extendedStyl es[, hel pld]]
st.next Token(); text = st.sval;
st.next Token(); //skip '’
Systemout.print("text = "+text);
st. next Token();
if(st.ttype == StreaniTokeni zer. TT_NUMBER) id = String.valueO ((int)st.nval);
else id = st.sval; Systemout.print(", id = "+id);
st.nextToken(); //skip ','
st. next Token(); ctrlCass = st.sval.toLowerCase();
Systemout.print(", classe = "+ctrl d ass);
st.next Token(); //skip ','
st. next Token();
if(st.ttype != StreanfTokeni zer. TT_NUMBER) {
while(st.ttype '=","){
if (st.sval.equals("NOT")){
st . next Token();
/'l be sure it is present (else will add the flag)
styles | = T.match(st.sval).getFl agVal ue();
styles ~= T.match(st.sval).getFl agVal ue();

el se styles |= T.match(st.sval). get Fl agVal ue();
st . next Token();
}
Systemout.print(", styles: "+styl es);

st . next Token();

x = (short)st.nval; Systemout.print(", x-coordinate = "+x);
st.nextToken(); //skip ','
st.nextToken(); y = (short)st.nval; Systemout.print(", y-coordinate = "+y);

st.nextToken(); //skip ','
st. next Token(); width = (short)st.nval; Systemout.print(", width = "+wi dth);
st.nextToken(); //skip ',’

st. next Token(); height = (short)st.nval; Systemout.print(", height = "+height);

st. next Token();

if (st.ttype == "',') st.nextToken(); //skip optional ','

while(st.ttype != StreaniTokenizer. TT_EOL && st.ttype !=","){
extendedStyles |= T.match(st.sval).getFlagValue(); // bitwi se OR operation
st. next Token();

}

Systemout.println(", extended styles: "+extendedStyles);

/] Go to the begining of the next line (optional [,helpld] skiped).
while(st.ttype != StreaniTokeni zer. TT_EQL) st. next Token();

el se {

/1 Shortcut notation.
//The line format is:
/'l <control _type> [text,]id, x,y,width, height[,styles[, extendedStyles[, helpld]]]
styl es | = 0x50000000; // W5_CHI LD and WS_VI SI BLE for any type of control.
/1 Text field in the line is excuded for EDI TTEXT, LISTBOX, COVBOBOX and SCROLLBAR
bool ean textField = true;
switch (word. char At (0)){
case 'A':

ctrlClass = "button";

if (word.charAt(4)=="C)

/1 AUTOCHECKBOX, inplies the flags BS_AUTOCHECKBOX and W5 _TABSTOP.

143

Appendix D

styl es | = 0x10003;

el se
/1 AUTORADI OBUTTON, inplies the flag BS_AUTORADI OBUTTON.
styles | = 9;

br eak;

case 'C:

if (word.charAt(1)=="H){
/| CHECKBOX, inplies the flags BS CHECKBOX and WS_TABSTOP.
ctrldass = "button";styles | = 0x10002;

}

else if (word.charAt(1)=="0){
// COMBOBOX, inplies the flags CBS_SI MPLE and W5_TABSTOP.
ctrl Cass = "conbobox";styles | = 0x10001;textField = fal se;

el se {
/| CTEXT, inplies the flags SS_CENTER and W5_GROUP.
ctrlClass = "static";styles |= 0x20001;
}
br eak;
case 'D:
/| DEFPUSHBUTTON, inplies the flags BS_DEFPUSHBUTTON and WS_TABSTOP.
ctrlClass = "button";styles | = 0x10001; br eak;
case 'E':
// EDITTEXT, inplies the flags ES LEFT (value 0), WS BORDER and WS TABSTOP.
ctrlCass = "edit";styles | = 0x810000;textField = fal se; break;
case 'G:
/1 GROUPBOX, inplies the flag BS_GROUPBOX.
ctrlCass = "button";styles |= 7; break;
case '|':
/1 1CON, inplies the flags BS_| CON and W5_GROUP.
ctrlClass = "static";styles | = 0x20003; br eak;
case 'L':
if (word.charAt(1)=="T"){
// LTEXT, inplies the flags SS_LEFT (value 0) and W5_GROUP.
ctrlCass = "static";styles | = 0x20000;
el sef
/1 LISTBOX, inplies the flags LBS_NOTIFY, WS _BORDER and W5_VSCROLL.
ctrlClass = "listhox";styles |= 0xA00001;textField = fal se;
break;
case 'R :
if (word.charAt(1)=="A"){
ctriClass = "button";styles |= 4;
/1 RADI OBUTTON, inplies the flag BS_RADI OBUTTON.
el sef
ctrlCass = "static";styles | = 0x20002;
/1 RTEXT, inplies the flags SS_RI GHT and W5_GROUP.
}
br eak;
case 'P':
/1 PUSHBUTTON, inplies the flags BS_PUSHBUTTON (val ue 0) and WS _TABSTOP.
ctrlClass = "button";styles | = 0x10000; br eak;
default: //word.charAt(0) =="'S
ctrlClass = "scrollbar";textField = fal se;
// SCROLLBAR, inplies the flag SBS HORZ (val ue 0).
}
Systemout.print(“class = "+ ctrl d ass);

/|l Parse the line defining the control.

st. next Token();

if(textField) {
text = st.sval;st.nextToken();//skip ',
st. next Token();
Systemout.print(", text = "+text);

}
if(st.ttype == StreanTokeni zer. TT_NUMBER) id = String.valueO ((int)st.nval);

else id = st.sval; Systemout.print(", id = "+id);
st.next Token(); //skip ','
st.next Token();x = (short)st.nval; Systemout.print(", x-coordinate = "+x);
st.next Token(); //skip ','
st.nextToken(); y = (short)st.nval; Systemout.print(", y-coordinate = "+y);

st. next Token(); //skip ',"'
st. next Token(); width = (short)st.nval; Systemout.print(", width = "+w dth);
st. next Token(); //skip ',"'

st. next Token(); height = (short)st.nval; Systemout.print(", height = "+height);
st . next Token();
if (st.ttype =="',") st.nextToken(); //skip optional ','
int fval ue;
while(st.ttype != StreaniTokenizer. TT_EOL && st.ttype !'=","){
fvalue = T.match(st.sval).getFl agVal ue();
styles | = fvalue; // bitwi se OR operation

/|l corrective operation when CBS_DROPDOMWN is specified
//(wi thout NOT CBS_SIMPLE as in Restorator)
i f(fvalue==2){
if((styles & ~(~0 << 1)) == 1)
/1 if the first bit is set to 1

144

Appendix D

/1 (that is, NOT CBS_SIMPLE has not yet been specified)
/1 the first bit is inversed (that is, set to 0)
styles = styles " 1;

st . next Token();

}

Systemout.print(", styles: "+styl es);

if (st.ttype == ",') st.nextToken(); //skip optional ',

while(st.ttype != StreaniTokenizer. TT_EOL && st.ttype !'=","){
extendedStyl es | = T.match(st.sval).getFlagValue(); //
st . next Token();

bi twi se OR operation

}

Systemout.println(", extended styles: "+extendedStyles);
/1 Go to the begining of the next line (optional [,helpld] skiped).
while(st.ttype != StreanTokeni zer. TT_EQL) st. next Token() ;

if(st.ttype == StreaniTokeni zer. TT_EOL) Systemout.printin("--- end of line ---");

/1 Cenerate into Grafi XML a control contained in this dialog box.
G afi.generateControl (id, ctrlCass, x, y, width, height, text, styles, extendedStyles);

styles = 0; extendedStyles = O;text = "";

// Go to the begining of the next line (eventual enpty lines are skiped).
whil e(st.ttype == StreaniTokeni zer. TT_EQL) st. next Token();
// BEGN. ..END is sonetinmes used by Resource Builder instead of {...}
if (st.ttype == Streanilokeni zer. TT_WORD && st.sval .equal s("END")) st.ttype='}";

}

}
Systemout.printin("current line : "+ r.getLi neNunber());
Systemout. println("nunber of line read : " + st.lineno());

//**
/1 Resource.java Aut hor : Julien Marion
/1 Represent a resource fromthe resource file which is proposed to the user in the "inport resources'dial og box.

/1 An instance stores the id of a resource, a type (dialog box or nenu) and the location (line nunber) in the file.

/1 A resource object will be concerved if selected by the user, else will be destroyed.

[FRFE KRk KRk ok ok k ok k ok Rk kK kK k kK k kK kK Kk KKk Kk kK kK Kk Kk kK Kk ok Kk kK kK h kK k kK kkk kK h kK kA kK kK Rk Kk kKK Kk KKk Ak Ak Kk h kR kA hhk ok k Kk kK khkkkkk k Kk k ok

package i nportresources;

public class Resource {
private int line;
private String id;
private char type; // 'D for D ALOG (or DI ALOGEX), 'M for MENU
private bool ean sel ect ed;

public Resource (int |, String i, char t){
line = 1;
id=1i;
type = t;
sel ected = fal se;

}

public int getLine(){ return line; }

public String getld(){ returnid; }

public char getType(){ return type; }

public bool ean isSelected(){ return selected; }
public void select(){ selected = true; }
public void unselect(){ selected = false; }

I/l aretirer (pour tests)
public String toString(){

String t;

if (type == "D) t="dialog box"; else t="nmenu";
returnt + " at line" +line + ": " +id;

}

145

Appendix D

[Rk KKKk ok kK Kk ok ok kK Kk k kK K K Kk kK K KKk kK KKk kK K KKk kK KKk kKK Kk kK KKK KK KKK KK KKK KKk KKKk kA Kk kA AR K Ik KKK K I A KKK Ik KKk Ik Kk Kk h kK kh ok kK Kk ok

/'l ResourcesSel ection.java Aut hor : Julien Marion
/1 Define the window used to let the user to select the resources that will be processed and generated into G afi XM.

[Rk KKKk kK Kk k ok kK Kk Kk ok kKK Kk kK K KKk K K KKk kK K KKk kK KKk kKK Kk kKKK KK KK KKKk KKK KKk A K Kk kA Kk kAR KK I AR KK I A KKK I KKK h kA KKk ok kK h ok kK Kk ok

package i nportresources;

inport java.awt. Col or;

inport java.awt . Conponent;

inport java.awt.Di nension;

inport java.awt.event.ActionEvent;

inmport java.aw.event.ActionListener;

inmport java.aw .event. W ndowAdapt er;

inmport java.aw.event. W ndowEvent;

inmport java.util.Vector;

import javax.sw ng. Box;

import javax.sw ng. BoxLayout;

import javax.sw ng.JButton;

inport javax.swi ng.JDial og;

inport javax.sw ng. JFrane;

import javax.sw ng.JLabel ;

inport javax.swi ng.JList;

inport javax.sw ng.JPanel;

inport javax.swi ng.JScrol | Pane;

inport javax.sw ng. Li st Sel ecti onModel ;
inport javax.swi ng.event. Li st Sel ecti onEvent;
inport javax.swi ng.event. ListSel ectionListener;

public class ResourcesSel ection extends JDial og i npl ements ActionListener {

private JLabel |abel;

private JList list;

private JButton ok, cancel;

private JPanel panel O, panel 1, panel 2, panel 3, panel 4;
private Vector v;

L e e e e
/1 Set up the GUI

e e e e
publ i ¢ ResourcesSel ection(Vector resources){

super ((JFranme) nul |, "I mport Resources",true);

vV = resources;

set Si ze(410, 295) ;

/| set Font (new Font (" SansSerif",0,8));

set Def aul t LookAndFeel Decor at ed(true);

W ndowLi stener wlistener = new W ndowLi stener();
addW ndowLi st ener (W i stener);

Col or gray = new Col or (236, 233, 216) ;

/] Creates the conponents.

| abel = new JLabel ("Select resources to inport:");
| abel . set Al i gnment X(Conponent . CENTER_ALI GNMENT) ;
/1l abel . set Di spl ayedvhenonic('S');

| abel . set Background (gray);

l'ist = new JLi st (resources);

|'i st.setSel ecti onMbde(Li st Sel ecti onMbdel . MULTI PLE_|I NTERVAL_SELECTI ON) ;
l'i st.setLayoutOrientation(JList.VERTICAL);

/11ist.setVisibl eRowCount (10);

JScrol | Pane listScroller = new JScrol | Pane(list);
//1istScroller.setPreferredSi ze(new D nensi on(215, 375));

ok = new JButton(" Ok ")
/1 ok. set Mnenmonic(' O);
cancel = new JButton(" Cancel ");

// cancel . set Mhempnic(' C);
ok. set Background (gray);
cancel . set Background (gray);
ok. set Enabl ed(f al se);

cancel . set Enabl ed(true);

/1 Organi ze the conponents.

panel 1 = new JPanel ();

panel 1. set Layout (new BoxLayout (panel 1, BoxLayout.Y_AXI S));
panel 1. add(Box. cr eat eRi gi dAr ea(new Di nensi on(0, 12)));

panel 1. add(| abel);

panel 1. add(Box. cr eat eRi gi dAr ea(new Di nensi on(0, 5)));

panel 1. add(listScroller);

panel 1. set Background (gray);

panel 2 = new JPanel ();

panel 2. set Layout (new BoxLayout (panel 2, BoxLayout.X_AXI S));
panel 2. add(Box. cr eat eRi gi dAr ea(new Di mensi on(12,0)));

panel 2. add(panel 1);

panel 2. add(Box. cr eat eRi gi dAr ea(new Di nensi on(12,0)));

panel 2. set Background (gray);

146

Appendix D

panel 3 = new JPanel ();

panel 3. set Layout (new BoxLayout (panel 3, BoxLayout. X _AXI S));
panel 3. add(ok) ;

panel 3. add(Box. cr eat eRi gi dAr ea(new Di mensi on(5,0)));

panel 3. add(cancel);

panel 3. set Background (gray);

panel 4 = new JPanel ();

panel 4. set Layout (new BoxLayout (panel 4, BoxLayout.Y_AXI S));
panel 4. add(panel 2);

panel 4. add(Box. cr eat eRi gi dArea(new Di nension(0,5)));

panel 4. add(panel 3);

panel 4. add(Box. cr eat eRi gi dAr ea(new Di nensi on(0, 12)));

panel 4. set Background (gray);

set Cont ent Pane(panel 4) ;
ok. addAct i onLi st ener (t hi s);

cancel . addAct i onLi stener (this);
|'i st.addLi st Sel ecti onLi stener (new ListListener());

R e R T
// Handl es the 'ok' and 'Cancel' buttons.

public void actionPerforned(ActionEvent e) {
Obj ect b = e.getSource();

if (b==o0k){
Object[] s = list.getSel ectedVal ues();
Vector tenp = new Vector();
for (int i = 0; i<s.length; i++) tenp.add(s[i]);

v.retainAll (temp);
this. di spose();

el se {
v.renoveAl | El enents();
this. di spose();}
}

[R E Ak Kk kR kK Kk Kk kKK KKK KKK A Kk Kk KKk R Kk Ak kA KR Kk Kk A Kk Ak A KKK I A KA A IR KKK KKK KKK K IR KKK KA IR KKK KA KR AR K KRR KK KKK KK XK h A Kk

/1 An inner class to detect list selection events.
//**
private class ListListener inplenents ListSelectionListener {
public void val ueChanged(Li st Sel ecti onEvent e) {
if (e.getValuelsAdjusting() == false) {
if (list.getSelectedl ndex() == -1) {
/I No sel ection, disable the 'ok' button.
ok. set Enabl ed(fal se);
} else {
//Sel ection, enable the 'ok' button.
ok. set Enabl ed(true);
}

}

J] FE KKK Kk Kk kk kK Kk ok ok kK Kk kK K KKKk kK KKk kK Kk ok kK KKk ok kK Kk ok kA Kk ok kA Kk Kk kA Kk h kA khh kKK Kk kAR K kI Ak h kA Kk Kk kk Kk k kA khk kA Kk hh ok x

/1 An inner class to detect if the dialog box is closed.

[R E Ak Kk kR kK ok kK kKKK KKK KKK A Kk Ak KKk KKk Ak ok Ak Rk kA Kk A Kk Ak A K IR K I K KKK KK IR KKK KKK K IR KKK KA IR KKK KA KKK I KKK AR KKK R KKK K h A Kk

private class W ndowlLi stener extends W ndowAdapt er {
public void wi ndowd osi ng(W ndowEvent e) {

v.renoveAl | El enents();
di spose();

147

Appendix D

[] RR KKKk Kk Kk kk kK Kk Kk ok kK KKk kK KKKk KK KKKk KK KKK kKK KKk kKK Kk kA KKk kKKK kA KKKk KK I kAR Kk kAR K IR K K I IR K I IR KKK IR K I kA KKk kK h ok ok *

/1 FlagTrie.java Aut hor : Julien Marion
/1 This class represent a trie used to identifying the styles and extended styles of a dialog box or a control when
/1 processing the .rc resource file.

[] RR KKKk Kk Kk k k kK Kk k ok kK KKk kK KKKk KK KKKk KK KKk kKK KKk kKK Kk kA KKk kKKK kA KKKk KK I kAR Kk A KKK I KKK I IR K I I KKK IR A KK IRk K Kk kR Kk h ok ok *

package i nportresources;
inport java.util.Vector;
public class FlagTrie {

/1 Refer the root of the trie.

private TNode root;

// Store the depth of the last node returned by the natch nethod.

/1 The depth of a node v is the nunber of ancestors of v, excluding v itself.

/1 Note that | could use a sinple recursive algorithmto know the depth of a node v :

/1 if isRoot(v) then return O

/1 else return 1 + depth(parent(v))

/1 But | nust then add a new attribute to each node storing the reference to its parent.
private short depth;

/1 Set up the trie with flags relevant to ny transfornation. It is considered as a constant (cannot be nodified once
/'l created).

public FlagTrie(){
root = new TNode();

/1 Add the flag used in ny correspondence which are default in the shortcut notation:
// Button styles, that correspond to the 8 types of buttons

addFl ag(" BS_DEFPUSHBUTTON', 0x1); addFl ag("BS_CHECKBOX", 0x2);

addFl ag(" BS_AUTOCHECKBOX", 0x3); addFl ag("BS_RADI OBUTTON', 0x4);

addFl ag(" BS_AUTORADI OBUTTON', 0x9); addFl ag("BS_GROUPBOX", 0x7);

// This last button style is still inserted (even if its value is 0)
/| because it has a conmon prefix with BS_PUSHLI KE

addFl ag(" BS_PUSHBUTTON', 0x0);

// Static styles (note that value of SS LEFT is 0xO0)

addFl ag("SS_RI GHT", 0x2); addFl ag("SS_CENTER', 0x1);addFl ag("SS | CON', 0x3);
// Edit style

/1 value of ES _LEFT is 0x0

/1 List box style

addFl ag("LBS_NOTI FY", 0x1);

/| Conbobox style

addFl ag(" CBS_SI MPLE", 0x1);

/1 Scroll bar style

/1 value of SBS HORZ is 0x0

/1 By default in the default notation (for each types)

addFl ag("Ws_VI SI BLE", 0x10000000) ; addFl ag("Ws_CHI LD', 0x40000000);
addFl ag("W5_CH LDW NDOW, 0x40000000);

/1 By default in the default notation (for sone types)

addFl ag(" W5_BORDER', 0x800000) ; addFl ag("Ws_TAPSTCP", 0x10000);

addFl ag("W5_GROUP", 0x20000); addFl ag("Ws_VSCROLL", 0x200000);

// Add the remaining flag used in ny correspondance rules :

addFl ag(" CBS_DROPDOMN', 0x2); addFl ag(" CBS_DROPDOMLI ST", 0x3);
addFl ag(" DS_SETFONT", 0x40); addFl ag(" DS_SHELLFONT", 0x48);

addFl ag("WS_CAPTI ON', 0xC00000) ; addFl ag("W5s_THI RCKFRAME", 0x40000);
addFl ag("W5_SI ZEBOX", 0x40000); addFl ag("Ws_DI SABLED', 0x8000000) ;
addFl ag("W5_EX_TOPMOST", 0x8); addFl ag("DS_SYSMODAL", 0x8);

addFl ag("BS_LEFT", 0x100); addFl ag("BS_CENTER', 0x300);

addFl ag("BS_RI GHT", 0x200); addFl ag("BS_PUSHLI KE", 0x1000);

addFl ag("BS_BI TMAP", 0x80); addFl ag("BS_ | CON', 0x40);

addFl ag(" BS_OAMERDRAW , 0xB); addFl ag(" BS USERBUTTON', O0xB);

addFl ag(" LBS_EXTENDEDSEL", 0x800); addFl ag("ES Rl GHT", 0x2);

addFl ag("ES_CENTER', 0x1);addFl ag("ES MULTI LI NE", 0x4);

addFl ag("ES_AUTCHSCROLL", 0x80); addFl ag("ES_PASSWORD', 0x20) ;
addFl ag(" ES_NUMBER', 0x2000); addFl ag("Ws_HSCROLL", 0x100000);
addFl ag(" ES_AUTOVSCROLL", 0x40); addFl ag(" PBS_MARQUEE", 0x8);
addFl ag(" PBS_VERTI CAL", 0x8); addFl ag("SS_ENHVETAFI LE", OxF);

addFl ag(" SS_OWNERDRAW , 0xD); addFl ag("SS_USERBUTTON', 0xD);

addFl ag(" SS_SI MPLE", 0xB); addFl ag(" SS_LEFTNOAORDWRAP", 0xC);
addFl ag(" SS_NOPREFI X", 0x80) ; addFl ag("SS_BI TMAP", 0xB);

addFl ag(" SS_REALSI ZEI MAGE", 0x800) ; addFl ag(" SS_SUNKEN', 0x1000);
addFl ag(" SS_BLACKFRAME", 0x7);addFl ag("SS_GRAYFRAME", 0x8);

addFl ag(" SS_WHI TEFRAVE", 0x6); addFl ag(" SS_BLACKRECT", 0x4);

addFl ag(" SS_GRAYRECT", 0x5);addFl ag("SS_WH TERECT", 0x9);

addFl ag(" SS_ETCHEDHORZ", 0x10); addFl ag("SS_ETCHEDVERT", 0x11);
addFl ag(" SS_ETCHEDFRAME", 0x12);addFl ag("TBS_VERT", 0x2);

addFl ag(" UDS_AUTOBUDDY", 0x10); addFl ag("DTS_TI MEFORVAT", 0x9);
addFl ag("WS_PALETTEW NDOW, 0x108); addFl ag("LBS_STANDART", 0x800003);
addFl ag(" Ws_POPUPW NDOW , 0x80880000) ;

// Add flags not in nmy correspondance rules but that have a common prefix with one of the flag above.
addFl ag(" CBS_SORT", 0x100); addFl ag(" DS_SETFOREGROUND", 0x200);
addFl ag(" BS_RI GHTBUTTON', 0x20);

/| Conpress the trie.

148

Appendix D

conpress(root);

R e e e LR PR
/1 Return the node storing the value of flag if there is a match with one of the strings of the trie.

public TNode match(String flag){
TNode v = root;
if (flag !'= null){
depth = 0; // Depth of the node we ternminate tracing the path
bool ean success = true;
whi | e(success && depth < flag.length()){
success = fal se;
Vector children = v.getChildren();
for (int i =0; i < children.size() & !success; i++){
TNode w = (TNode) children. el enent At (i);
if (welenment() == flag.charAt(depth)){

vV =W
success = true;
dept h++;
}
}
}
return v;
}
R R L LR T
/1 Add a new style flag identifier to the trie with a specified nuneric val ue
e e e
private void addFlag (String flag, int value){
//depth = 0;
TNode v = match(flag);
if(depth < flag.length()) {
// The search stop at an internal or external node and it remains characters of flag to store in
// the trie. Add a chain of node after v corresponding to the characters fromflag[depth] through
/1 flag[lenght-1]
TNode w = expand(v, flag.substring(depth));
/1 Store the value in the |last node of the chain.
w. set Fl agVal ue(val ue);
}
el se
/1 depth == flag.|ength()
/1 The search stop at an internal node (since flag is not already represented in the trie).
/1 Since the trie is not yet conpressed, only |eaves have a positive flag val ue.
v. set Fl agval ue(value); // Add the value in v.
}
R R L LR T

/1 1f v is an external Node, transformv into an internal node by creating a new chain with the characters of s

Il starting fromv. If v is an internal node, create a new chain with the characters of s at the good place starting
/1 fromv.

/'l Return the last node conposing the new chain. The string s is conposed by at |east one character (s.length > 0).

private TNode expand (TNode v, String s) {
TNode w = nul | ;
if (isExternal (v))
for (int i =0; i <s.length(); i++) {
w = new TNode(s. charAt (i));
v. get Children() . addEl enent (W) ;

vV =W
el se {
/1 v is an internal node and its children are not labelled with the first character of s.
Vector children = v.getChildren();
int i =0;
while (i !=children.size() && ((TNode)children.elementAt(i)).elenent()<s.charAt(0)) i++;
TNode u = new TNode(s.charAt(0));
children.insertEl ementAt(u,i);
if(s.length() > 1) w = expand(u, s.substring(1));
else w = u;
}
return w
}
e e R T
/| Conpress the subtree rooted at v
e e R T

private void conpress(TNode u){
Vector p = u.getChildren();
for (int i =0; i < p.size(); i++){
TNode v = (TNode)p. el enent At (i);
if (islnternal (v)){
Vector q = v.getChildren();
TNode w = v;
while (islnternal (w) && q.size()==1 && w. get Fl agVal ue()==0) {
w = (TNode) q. el enent At (0) ;

149

g = wgetChildren();

}
if (isExternal (w)){
//wis a leaf, and the chain of nodes after v consists of
v. set Fl agVal ue(w. get Fl agVal ue());
v. suppressChil dren();
}

Appendix D

redundant nodes

el se
/1 qg.size()>1 || w getFlagValue()!=0
conpress(w);
}
}

}
e e T
/| Test wether node v is a |leaf.
e e e T T
private bool ean i sExternal (TNode v){ return v.getChildren().isEnpty(); }
R e R R
/'l Test wether node v is an internal node.
R e R R
private bool ean islnternal (TNode v){ return !v.getChildren().isEmty(); }
e e R T
/1 Override the toString nethod to produce a parenthetic string representation of the created trie (for verification)
e e R T

i .

/1 Performa printing of the elements in the subtree rooted at node v of this trie.

private String print(TNode v){
String s = v.toString();
if (islnternal (v)){
Vector children = v.getChildren();
/| Open parenthesis and recursively print the first subtree
char open, close;
if(children.size()>1) {open = "["; close ="]";} else {open =" ("; close
s += open + print((TNode)children.elementAt(0));
for (int i=1; i<children.size(); i++) // size > 0 because v is internal.
/| Recursively print the remaining subtrees
s += ", " + print((TNode)children.elementAt(i));
s += cl ose;

return s;

)y

[xxE KR E kK ok kk kK Kk ok ok kK Kk k kK KKk kK KKk ok kA Kk ok kK Kk ok kK Kk ok ok kK Kk ok kX kK h ok kA KRk kA Kk kA KKk kA Kk ok kA Kk h kR Kk Kk Kk kA Kk Kk kkkhhkkhkh hkkkk ok ok *

Aut hor : Julien Marion

/1 TNode. j ava
/'l Represent a node of the trie |labelled with a character.

[xxE KRk kK ok kk kK Kk ok ok kK Kk k kK KKk kK KKKk ok kA Kk ok kK kk ok kK Kk ok kK Kk ok kK KKk ok kA KRk kA Kk h kA KKk kA Kk kA kh kA Kk Kk kA Kk Kk kkkhhkkhk kA Kk kk ok ok *

package inportresources;
inmport java.util.Vector;

public class TNode {

private int flagValue = 0; // Nuneric value of a flag if the node is associated with a string of the trie,

private char label; // Each node is labelled with a character from {A Z} U3, _}.
private Vector children = new Vector(1);

/| Default constructor (used for the root which store no character).
public TNode (){label = "#";}

/1 Constructor with paraneter.

public TNode (char c){label = c;}

/1 Set a nuneric flag value to the node.

public int getFlagValue (){return flagVal ue;}

/1 Set a nuneric flag value to the node.

public void setFlagValue (int v){flagValue = v;}

/1 Return the label at this position in the tree.

public char element(){return |abel;}

// Return a vector containing the children of the node.

public Vector getChildren(){return children;}

/'l Suppress all the children of the node.

public voi d suppressChildren(){children = new Vector(1);}

/1 For verification.

public String toString(){return ""+l abel +":"+f| agVal ue; }

150

el se 0.

Appendix D

[] RR KKKk Kk Kk kk kK Kk Kk ok kK KKk kK KKKk KK KKKk KK KKK kKK KKk kKK Kk kA KKk kKKK kA KKKk KK I kAR Kk kAR K IR K K I IR K I IR KKK IR K I kA KKk kK h ok ok *

/1 Gafi.java Aut hor : Julien Marion
/1 This class is used to inplenent ny transformation rules and contain the interface with the code of G afi XM.

[] RR KKKk kK Kk kk kK Kk k ok kK KKk kK KKKk KK KKKk KK KKKk KKKk kKK Kk kA KKk kKKK kA KKKk A KK Ik ARk kA KKk I KKK IR I I K K IR K K IRk Kk kA hh ok *

package i nportresources;
/1 Inmport declaration of package be.ac.ucl.isys.grafixnl.gui.editor.conponent be will be defined here.
/1 See http://wmv usixm .org/javadocs/grafixm/.

public class Gafi {

public static String fontNane;
public static byte fontSize;
public static bool ean bold, italic;

e e e e R
/'l Generate a dialog box into Gafi XM.

public static void generateDialog(String id,short wdth,short height,String text,int styles,int extendedStyles){
Systemout.println("D al og box "+id+" generated into Gafi XM.");
Systemout. println();
/1 TO DO
/'l change also the type void (return reference of the container)

R e e e LR PR
/'l CGenerate a graphical conponent (or eventually a graphical container) corresponding to infornmation given in
/] paraneters into G afiXM.

public static void generateControl (String id,String ctrld ass,short x, short y,short wi dth,short height, String text,
int styles,int extendedStyles){

System out . println("Control "+i d+" generated into Gafi XM.");
Systemout. println();
/1 TO DO
}
[e e e e
/1l Generate a nenu into Gafi XM.
[e e e T TR
public static void generateMenu(){
/1 TO DO
}
R e LR e TR PR
/1 Return the n bits starting at the position p in x (0?p? 31 and n? 32-p).
/1 << shift bits left, filling in with zeros
/1 >>> shift bits right, filling in with zeros
/1 & bi twi se AND
/1 ~ bitwi se conpl enent (prefix unary operator)
e e R R LT

private int readBits(int x, short p, short n){
return (x >>> p+l-n) & ~(~0 << n);

e e e
// Read the bit at the position p in x (0<=p<=31). Return true if the bit is 1, else false.

private boolean readBit(int x, short p){
return ((x > p) & ~(~0 << 1)) == 1;
}

[] KKK Kk Kk kK kK Kk KKk KK KKK kKK KKK R Kk Ak kKK R Kk Kk kA Kk kA kA KK Ak kA kA A IR Kk A K KA KA K A K IR KKK A A IR K KA K KKK KKK IR KKK KA KR KKK KRR AR KA I KKk ok

/1 For future work.

[] FRFE KKK Kk Kk kK kK Kk KKk Kk KKK kKK KKK R Kk Ak A Kk Rk kK h kA h kA kAR hAR Kk Ak A A KR K I A K KA KKK A K IR KKK KA KKK IR KKK KA KKK IR KKK KA KR KKK KA KR AR KA F KKk *

package inportresources;
inport java.io.File;

public class SdfFile {
public static void process(File f){

}

[] RR KKKk Kk ok kk kK K Kk ok kK K Kk kK KKKk K K KKKk K KKKk kKK KKk kR KKk kA KKKk K KKKk A KK Ik KK I kAR Kk kA KKk I KKK K I IR K I IR K K IR ARk IRk K Kk h kK hk ok *

/1 For future work.

//**
package i nportresources;

inport java.io.File;

public class NibFile {

public static void process(File f){

}

151

Appendix D

152

