
Jean Vanderdonckt
Placed Image

Table of contents

Retrospective on UI Description Languages, Based on 7 years
Experience with the User Interface Markup Language (UIML)..1

Marc Abrams, Jim Helms

Describing Appliance User Interfaces Abstractly with XML...9
Jeffrey Nichols, Brad A. Myers, Kevin Litwack, Michael Higgins,
Joseph Hughes, Thomas K. Hariss

Practical experiences with device independent authoring concepts...17
Oskari Koskimies, Michael Wamund, Peter Wolkerstorfer, Thomas Ziegert

Dynamically generated multi-modal application interfaces –
position paper..25

Stefan Kost

Extensibility and Reusability of Web User Interface Components
using XICL...31

Jair C. Leite, Lirismei Gomes de Sousa

Abstract User Interface Markup Language...39
Roland A. Merrick, Brian Wood, William Krebs

Into the mangle: Software engineers run creases through a
user interface metaphor...47

Simon Crowle

USIXML: A User Interface Description Language for
Context-Sensitive User Interface...55

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte,
Laurent Bouillon, Murielle Florins,Daniela Trevisan

Incorporating UIDLs into Model-Driven Development..63
Xiaoping Jia, Adam Steele

The AMF Architecture in a Multiple User Interface
Generation Process...71

Kinan Samaan, Franck Tarpin-Bernard

Supporting Workflow in User Interface Description Languages...79
Nicole Stavness, Kevin Schneider

Evaluation of High-Level User Interface Description
Languages for Use on Mobile and Embedded Devices..87
 Jan Van den Bergh, Kris Luyten, Karin Coninx

useML: A Human-Machine Interface Description Language..95
 Detlef Zuehlke, Kizito Mukasa, Alexander Boedcher, Achim Reuther

The TERESA XML Language for the Description of Interactive
Systems at MultipleAbstraction Levels...103
 Silvia Berti, Francesco Correanim, Fabio Paternò, Carmen Santoro

VRIXML: A User Interface Description Language for
Virtual Environments...111
 Erwin Cuppens, Chris Raymaekers, Karin Coninx

Multimodel Dialog Description for Mobile Devices...119
 Steffen Bleul, Wolfgang Mueller, Robbie Schaefer

Extending an XML environment definition language
for spoken dialogue and web-based interfaces...127
 Pablo A. Haya, Germán Montoro, Xavier Alamán, Rubén Cabello,
 Javier Martínez

IM2L: A User Interface Description Language Supporting
Electronic Annotation...135
 Daniela Fogli, Giuseppe Fresta, Andrea Marcante, Piero Mussio

Extending XML UIDLs for Multi-Device Scenarios...143
 Elmar Braun, Max Mühlhäuser

Adaptation for Device Independent Authoring...151
 Guido Menkhaus, Sebastian Fischmeister

Best of both Worlds – linking of XUL to X3USGP...159
 Andreas Müller, Peter Forbrig

Retrospective on UI Description Languages, Based on 7
Years Experience with the

User Interface Markup Language (UIML)

Marc Abrams
Harmonia, Inc.
PO Box 11282

Blacksburg, VA 24062-0106, USA
+1 540 951 5901

mabrams@harmonia.com

Jim Helms
Harmonia, Inc.
PO Box 11282

Blacksburg, VA 24062-0106, USA
+1 540 951 5900

jhelms@harmonia.com

ABSTRACT
In this position paper, we reflect on the experiences of the
project to develop and evolve the User Interface Markup
Language (UIML), starting from its origin in 1997. We
have two objectives in our discussion. First, we suggest
one possible vision of what the community of researchers
and practitioners working on User Interface Description
Language (UIDL) could achieve. Second, we relate
lessons that we learned from UIML in the hope that other
UIDL researchers may avoid reinvention of the wheel.

Keywords
User Interface Description Language, UIML, XML

A Vision for the UIDL Community
Our vision for the UIDL community is to create open
standard XML user interface implementation languages
through the use of the best Human/Computer Interaction
(HCI) research results, and to advance interoperability by
using these languages in HCI tools, including web
application development tools and Integrated Development
Environments for programming languages. Often, good
user interface development methods are defined in HCI
research, but a wide gap separates the conceptualization of
those methods from what HCI practitioners have available
in the tools they use everyday. Practitioners need tools and
technologies that span the gap between concept and
realization, enabling practitioners to immediately put best
practices to work.

In this paper we specifically focus on the need for an open
standard XML language to express implementations of
user interface (UI) designs that are multi-device, multi-
lingual, multi-modal, independent of UI metaphor, and
designed to interoperate with concepts and languages from
OASIS, W3C, and other standards groups. Beside a XML
UI implementation language, other languages are needed,
for example, to represent models (e.g., ConcurTaskTree
Notation [12]) and to express mappings and
transformation rules between XML languages. There
should be a healthy debate in our community as to what
language types are needed to support the HCI software

development life cycle, how the languages represented at
this workshop should fit together, and how to cull the best
ideas from UIDL designs.

HCI best practices can be adopted more easily by viewing
HCI design and implementation as a process of
transforming an initial design model to the open standard
XML UI implementation language, then transforming the
open standard XML UI implementation language to target
languages for deployment. This belief has been borne out
by our implementation experience with the User Interface
Markup Language (UIML) [16]. UIML itself uses
transforms (or mappings), and our UIML implementations
make liberal use of transforms. Note that the target
languages can be XML languages (e.g., XHTML, SVG) or
programming languages (e.g., C# and Java).

Achieving our vision of language standard plus tool
adoption will take years, but will unleash practitioners to
focus on UI usability and quality rather than the mechanics
of building UIs. Achieving the vision will also provide an
easy way for HCI researchers to integrate their prototypes
into development tools. For example, an HCI research
project on a new model could create a prototype that
exports an open standard XML modeling language, which
is then imported by some tool to style UIs. This can
reduce the gap between research and practical tools. Table
1 lists potential benefits from the vision.

If we continue to work in isolation, there is a danger that
we will generate many good languages that are used by
separate, limited user communities. If this happens, we
will have created only a patchwork of interoperable
solutions that fail to achieve the largest impact possible on
the many people who create UIs.

Creating UIDLs that Scale to Handle All Possible UIs
There are many XML-based UIDLs. In addition to
languages from W3C (HTML, XHTML, XForms, and
SVG), early efforts include UIML, the XML User Interface
Language (XUL) [9], the Alternate Abstract Interface
Markup Language [21], and the eXtensible Interface

Markup Language (XIML) [15]. The OASIS Technical
Committee investigating UIML has produced a document
comparing UIML to many of these standards and
describing a number of related ongoing efforts [17].

One challenge in creating UIDLs is handling the entire
range of user interfaces that people build, from simple
personal applications to complex enterprise applications
(e.g., a ship with tens of thousands of UIs); from throw-
away software with a single version (e.g., a class project)
to software that is used for decades in many different
versions (e.g., a banking or hospital system); from UIs
deployed to one device to UIs deployed to thousands of
vastly different devices (e.g., 2D or 3D, virtual or
augmented reality, voice or haptic), for any UI metaphor.

On the complex end, we suggest two examples that can
serve as use cases for the generality of UIDLs.

The first example is from the automotive industry.
Automakers are envisioning automobiles that have XML-
driven display and voice interfaces that are connected by a
wireless link to a Vehicle Service Provider (VSP) [6].
General Motor’s OnStar™ and Mercedes’ Tele-Aid™
services are voice-only interfaces that provide a glimpse of
what VSPs could offer in the future. For example, a VSP
might provide voice or visual UIs to automobile occupants
to reserve a hotel room, find a restaurant, order and view
videos-on-demand, or provide navigation information
integrated with traffic from an off-board server. A VSP
must deliver UIs to a wide range of hardware and software
in many vehicle makes, models, and model years. This
could be done by distributing a UIDL from the VSP to all
automobiles, then rendering the UIDL in the vehicles on
the fly. Or, the UIDL could be rendered at the VSP into
other formats (e.g., Java applets, XHTML, VoiceXML) for
transmission to automobiles. Doing so requires a UIDL
powerful enough to express any UI for any type of device,
and designed for efficient implementation either on a high-
throughput server or a low-end computer in an automobile.

The second example of complex UI environment is the
maritime environment. Shipboard computers run many
UIs to control everything from navigation to
communications. Ships are built over many years, and
even ships in the same class use different hardware and
software. These are “refreshed” periodically during the
ship’s lifetime, resulting in a large installed base of
computer systems to support. As with the automotive case,
UIs for applications that run on ships of various ages could
be simplified by starting with an HCI model, and then
mapping the model to a family of UIs in a UIDL that can
be mapped to the particular hardware and display
characteristics in each ship.

Lessons for UIDL Community from UIML Experience
The experience gained since 1997 in developing UIML
offers lessons for achieving the authors’ vision. UIML

design started in 1997, and produced three successive
language versions (UIML1, 2, and 3), during which UIML
evolved from an XML-compliant language to a canonical
meta-language for representing any UI (these terms are
discussed later). The language design goals are to
subsume the expressive power of any other language used
to represent UI implementations, and to permit efficient
implementations that are competitive to traditional, non-
XML languages used for UI implementation (e.g., C,
C++).

The language was influenced by Nicholas Wirth’s
minimalist philosophy for language design; UIML 3.1 has
just 36 tags. The “working set” of tags a UI developer
uses is smaller than 36; many tags are only used to create
mappings to a target widget set or the API of the business
logic to which the UI is connected. Implementations, or
partial implementations, of UIML have been done to
platforms including Java, C, C++, C#, HTML3.2 and 4.0,
WML, VoiceXML, JavaScript, and with the APIs from
Swing, AWT, Qt, GTK+, PocketPC, and Palm.

The primary goal of UIML’s designers has been to create
an open standard for UI definition. The Organization for
the Advancement of Structured Information Standards
(OASIS) established a UIML Technical Committee (TC)
that has examined UIML and is in the process of
evaluating language issues. This TC is available to help
the community design and standardize an open UIDL.
The TC is open to all to shape the goals of the new
language, and could even restart on a new path, if needed.
While the TC is currently focused on UIML, contributors
who have worked with other UIDLs are welcome.

Key UIDL Elements: Findings from UIML Experience
Through our experiences working with UIML, we have
identified key elements that must be present in a UIDL.

The UIDL must be a meta-language.
Consider XML. After years of battles to standardize new
versions of HTML, people quickly recognized the need for
a meta-language, in which the tags are defined outside the
specification. XML cannot be used by itself, but rather
must be used in conjunction with a vocabulary of element
and attribute names (from a DTD or XML schema). In
this way XML could be standardized once and then
"extended" an infinite number of times through new
vocabularies. Under this situation, tools could be built
once and used for many different XML-based languages.

The XML lesson is applied in UIML. Rather than
defining tags that are specific to a particular metaphor
(e.g, <window>), UIML uses about two dozen generic
tags. The most important are <part> and <pro-
perty>. A UI comprises a set of parts, hence the
<part> tag. Every part in a UI has presentation
properties, hence the <property> tag. As with XML,
UIML cannot be used by itself; one must define a

vocabulary of part classes and property names.
Vocabularies have been developed for AWT, Swing,
WML, HTML, PalmOS, VoiceXML, and QT. In addition,
work is under way to define a generic vocabulary and rule-
based approach to transformation to map the generic
vocabulary to platform-specific vocabularies [3].

Through definition of new vocabularies, UIML is infinitely
extendable to new devices, UI languages, and UI
metaphors that develop over time.

Another benefit of using vocabularies is to support
multiple abstraction levels with a single UIDL. These
abstractions can range from capturing author-intent and
early design model representations to widget set specific
abstractions. Each set of abstractions would reside in their
own vocabulary. Transforms and mappings can then be
established between the various vocabularies to automate
the process of carrying a UI design from a high-level
abstraction down to a target language representation.

The UIDL must support model-based UI
development.
The automotive and maritime UI examples sited earlier
represent complex UIs that are modified over a long life
time and deployed to many types of devices. Model-based
UI development is almost essential to cope with the
complexity. For example, the operational role of a driver
in a car or a sailor on a ship can be described in task
models or activity diagrams, and these are refined through
a process into the physical UIs that people use.

There are two approaches to creating UIDLs. The first is
to create a single language that can represent both model
and interface design, and can be mapped to any platform
or device from a single interface description. The second
is to use multiple languages, such as a task model
language, a user model language, and a UIDL to specify
interface parts and presentation properties that are derived
from the task and user models. Obviously the languages
must fit together. The multiple-language approach is used
in TERESA [13], and is the approach we use with UIML.

At first glance it may not be clear how UIML would fit
other languages. The key is to use UIML vocabularies to
represent different levels of abstraction. Two projects, one
at Virginia Tech [5] and the second at Harmonia, have
explored mapping task models (in ConcurTaskTree
notation) to a logical UI description expressed in UIML
using a vocabulary consisting of domain-specific abstract
parts. The logical UI is then mapped to a physical UI by
mapping domain-specific logical parts to physical parts
(e.g., Java Swing classes or HTML tags) and adding
presentation style. The physical UI definition is also
expressed in UIML, but with a completely different,
concrete vocabulary. Figure 1 summarizes the process.

The UIDL must be a canonical language.
UIML seeks to create a canonical syntax that can represent
the superset of all concepts represented by other languages
for UI implementation. Doing so would simplify many
things. Individuals writing UI code would just learn one
syntax, UIML, rather than mastering the idiosyncrasies of
different target UI languages. UI implementers would be
insulated from the frequent updates to target languages.
Instead, the tools to map UIML to target languages would
be implement language updates, and only tool
implementers would need to be concerned with details of
how to use the new features programmatically.

Task model
(Concur Task Tree)

Logical HCI design
(UIML with

abstract vocabulary)

Physical HCI design
Family 1

(UIML with
concrete vocabulary)

Final interface
Platform 1.1

(Target language)

CTT to UIML
transform

UIML to UIML
transform

UIML to target
transform

Physical HCI
designs for

other families

Final interfaces
for other

platforms

 Figure 1: Transforming task models to UIML
interface descriptions.

Also, multi-platform authoring tools would only need to
write one syntax (UIML), which in a separate step could be
mapped to any target UI language. Moreover, if all UI
development tools used this syntax as an intermediate UI
representation, then a design created with one tool could
be imported into another tool. With converters written to
go from any UI language into UIML, and from UIML to
any UI language, one could create a UI with a Web page
design tool, save it to UIML, then import the UIML into a
Java interface builder. In this environment, the problem of
interoperability is reduced to merely resolving differences
in widget sets, which is a much smaller task than having
to rewrite the UI in a different language.

A UIDL must separate concerns.
In order for a UIDL to effectively define interfaces for any
platform or device it must overcome the MxN problem

described in [8]. Overcoming the MxN problem requires
separating out much of the UI definition into re-usable
chunks. These chunks follow a pattern that looks much
like the Model View Controller (MVC) design pattern.

Defining a UI in UIML answers the following six
questions.

• What parts comprise the UI? (the <structure>)

• What presentation style for each part? (the <style>)

• What content for each part? (the <content>)

• What behavior do parts have? (the <behavior>)

• How to connect to outside world? (the <logic>)

• How to map to target UI toolkit? (the <presentation>)

UIML follows a variant of the MVC design pattern, the
Meta-Interface Model [13], shown in Figure 2.

The UIDL must identify “presentation logic” as
first class entity, and represent it in a portable,
device-independent manner to allow compilation
to target language.
How should user interaction with the UI be represented?
How should the interconnection of the UI to external
entities (e.g., business logic, databases, objects, remote
procedures) be represented? The landscape of UIDLs
contains remarkably varied answer to these questions.
Added to this is the variety of ways imperative languages
answer these questions. For example, the behavior that
results from a button click can be represented in these
ways: in HTML forms, either an attribute (action) in a tag
(form) or via scripting; in Java JFC, a method call
(actionEvent) in an object implementing an interface
(ActionListener); and in WML, nested tags (<go> nested
in <do>).

In UIML, the <behavior> element provides a single syntax
to represent events for any target UI language. Drawing
from rule-based systems, the <behavior> element contains
a set of rules, each with a condition and an action. When
the condition holds, the action is performed. Actions can
set properties or call external methods. Conditions are
based on events; Green showed that the descriptive power
of events is greater than other methods (state transition
networks and context-free grammars) [11]. For example, a
cut-and-paste operation can be described with events but
not the other methods.

As was the case with UI <part>s, events also are treated
as class names, and thus their vocabulary is defined
outside UIML. The <d-class> element specifies the
mapping of event classes to a class or tags in the target UI
language. For example, a "selection" event class might be
defined, mapping to a java.awt.event.ActionEvent in Java,
but to OnClick in HTML. This allows UIML to be used
with various types of UI metaphors and devices.

Suppose one wants to create a UI that calls CORBA
objects and queries LDAP servers to provide the UI
content. Suppose further that the UI will be deployed to
Java, HTML, and WML. Then the description of how to
connect the UI to CORBA and LDAP would be described
once, and the rendering engines for Java, HTML, and
WML would figure out how to achieve this (e.g., by using
HTTP POST along with a proxy to allow HTML to call
CORBA or query LDAP). UIML provides a <call>
element to describe the actual connection to the entity
outside the UI, and another <d-class> element defines
how to resolve the <call> by giving the declaration of an
external object or service interface.

A UIDL is Not a Silver Bullet: It Must Be
Augmented by Architecture, Methodology, and
Tools
People building multi-device UIs who contact us with
questions about UIML are often looking for a “silver
bullet”: a way to describe a UI once, then magically
transformed the description to a highly usable experience
on any target device, from desktop PC to small mobile
phone. We call this the “silver bullet fallacy”: the
organization of UIs varies radically from device to device,
based on decisions ultimately made by human designers,
and those steps that can be automated (e.g., reformatting
based on small variations in screen size) are done by
software transformations that are part of the architecture
used to implement UIML [4].

A UIDL can be sufficiently powerful to express the
collection of implementations needed on a wide range of
devices in a concise fashion, but a methodology is needed
to derive those implementations. For example, UIML
represents a family of UIs in a tree structure. Items close
to the root of the tree are shared by all devices (e.g., the
need to a UI control to perform a search operation). Items
close to the leaves of the tree represent differences among
devices (e.g., use of a specific HTML tag on a phone
display, versus use of a specific C++ widget on a desktop
computer). However, generation of the tree is a job for a
tool that is based on an HCI development methodology.

What is Hard to Get “Right” in a UIDL
In the creation and implementation of the UIML
specification, we discovered several issues that are
challenging to address in a UIDL. These issues represent
areas of UI design that are necessary to represent in a
UIDL so that the UIDL provides a complete and useful
description of the UI. In this section we discuss each issue
and, where available, provide the solution we designed for
UIML. Each of the solutions presented represent one
method of overcoming the challenges provided by these
issues, but do not necessarily represent the only or best
way of accomplishing the goals of the language.

Issue 1: Dynamic UIs
In order for a UIDL to fully describe a UI and its behavior,
the UIDL must be able to represent the dynamic aspect of
the user interaction. This dynamism comes in two forms:
properties of the UI must be able to be dynamically set
from the application’s presentation logic; and constituent
parts of the UI must themselves be interchangeable so that
the interface can change through out the user’s interaction.

UIML addresses the first of these two by specifying a
<call> element. <call> abstracts any invocation of
code (that uses a language other than UIML). This tag is
used to access presentation logic in the application and
return the value generated by the backend code. Values
returned from the presentation logic can then be used to set
property values on the UI. The example below shows how
a <call> can be used to set the value of a <property>.

<property part-name=”text” part-
name=”label”>
 <call name=”back1.getText”/>
</property>

The <d-component> element defining back1 is this:

<logic>
 <d-component id="back1"
 maps-to="org.uiml.example.myClass">
 <d-method id="getText"
 maps-to="myFunction"
 returns-type=”String”/>
 </d-component>
</logic>

Rearranging the structure of the UI is more challenging
than simply calling a segment of code in the presentation
logic. Traditional UIDLs excel at defining the static,
initial structure of the UI. For a UIDL to completely
describe the user’s interaction with the interface, it must be
able to describe changes in the physical structure of the UI.

In UIML, there is the notion of a UI tree that is
represented in the <structure> element. This tree
comprises <part> elements and their containership
relations. UIML specifies a <restructure> tag that
modifies the UI tree, replacing or adding branches.
<template> elements are used to describe the new
branches, and the <restructure> tag indicates where
and how the branch should be added to the tree. Consider
the UI described in the <structure> below.

<structure>
 <part class="JFrame" id="F">
 <part class="JButton" id="B"/>
 <part class="JPanel" id="A">
 <part class="JLabel" id="L1"/>
 <part class="JTextField" id="TF"/>
 <part class="JCheckbox" id="C"/>
 </part>
 </part>
</structure>

To replace the contents of the panel with just a label and a
text field, one would do this:

<restructure at-part="A" how="replace">
 <template id="T5>
 <part>
 <part class="JLabel" id="L2"/>
 <part class="JTextField" id="TF2"/>
 </part>
 </template>
</restructure>

The set of children of A in the virtual UI tree is replaced
with the set of children listed in the restructure tag. So
now the panel has only L2 and TF2 from the template as
children. Figure 3 shows the state of the UI tree during
the processing of a <restructure>.

Issue 2: Reusable UIs
One of the goals of the UIDL community is to improve the
reusability of UI designs. However, facilitating reusability
as a first class notion in a UIDL requires careful
consideration. Should the language have objects? If so,
does it need to be completely object-oriented or object-
based? Do other paradigms provide equivalent re-use?

UIML was designed with re-use in mind. <template>
elements contain chunks of UIML description that can be
sourced by other UIML documents. The <template>
element permits shortcuts when writing UIML. It allows

• one fragment of UIML to be inserted in multiple
places in a UIML document,

• one UIML document to include a UIML fragment
from another document, and

• cascading style and other elements, in a manner
analogous to the CSS specification [10].

<template> elements work as follows. Most UIML
elements can contain the source attribute; let such an
element be E. The source attribute names a
<template> element (either within the same document
or in another document). The <template> element
named must be an element of the same type as the element
E (i.e., have the same tag name). The source attribute
causes the body of the element inside the <template> to
be combined with the body of E.

For example, vocabularies are often written as a
<template> so that they may be re-used between UIML
files. The example below shows how this works.

<peers>
 <presentation
 base="Java_1.3_Harmonia_1.0"
 source="http://uiml.org/toolkits/
 Java_1.3_Harmonia_1.0.uiml#vocab"/>
</peers>
In relation to this, some UIML implementers have
proposed a mechanism to control which elements in a
<template> can be overridden using the
how=”cascade” attribute. This would define certain

<template> elements as immutable so that safety- and
mission-critical UI elements are always present.

A limited form of this functionality is already described in
the UIML 3.x specification. The export attribute can be
set on <part> and <property> elements within a
template to prevent UIML authors from changing
properties on a given <part>. No current mechanism is
in place that would prevent a UIML author from replacing
a <part> within the <template> with one of his or her
own.

Issue 3: Efficiency
UIDLs by their nature add a step to the process of
displaying a UI. The UIDL must be transformed into some
appropriate form for display on a particular device.
Typically this involves converting XML to a high-level
programming language (e.g. Java or C++) or a mark-up
language (e.g HTML, VoiceXML). Such conversions can
be involved and computationally expensive. It is better to
avoid this step when the UI is presented.

Harmonia’s UIML to HTML renderer implements a
facility to avoid the conversion step. Like Java Server
Page (JSP) servers, Harmonia’s renderer compiles the
UIML into a Java executable file. The executable can be
cached, and whenever the UI is needed it can be loaded
from the executable file, avoiding the lengthy parsing
process. The UIML definition then becomes the master
file that describes the interface; it is re-parsed and
rendered only when the definition changes.

Issue 4: Enforcing Separation of the Presentation Layer
from the Application Logic
UIDLs describe the presentation layer of a system.
Typically this includes some combination of UI description
and presentation logic that drives the UI. The challenge
that UIDL designers face is how to separate these two
aspects of the presentation layer description. UIML does
this by separating the mappings to the presentation logic
into the <logic> element, and then referring to them
indirectly from the interface description through <call>
elements. This separation ensures that the presentation
logic is removed from the UI description, allowing system
architects to easily replace or update either the UI or the
presentation logic in isolation.

Issue 5: Representing Different Layers of Abstraction
In order to describe portable UIs that can be deployed to
multiple platforms or devices, a UIDL cannot rely on using
constructs that adhere to a single UI metaphor or toolkit.
For example, it would be difficult to take a UI that is
described in a Java and deploy it to a voice only device.
Instead a higher-level description of the UI must be
available that can be mapped to a more specific widget set.
Thus a UIDL must be able to represent various layers of
abstraction and avoid adhering to a specific UI metaphor.

UIML accomplishes this through the use of vocabularies.
UIML is a meta-language, meaning that UIML by itself
cannot completely describe a UI. Instead, UIML is
combined with a vocabulary of abstractions that provide
class types and properties that can be applied to the parts
in an interface. Vocabularies can be written to any level of
abstraction for any problem domain, allowing designers to
choose an appropriate set of UI abstractions to describe
their current interface. Tools that use UIML with a
particular vocabulary only have to be able to map the
vocabulary abstractions to widgets on a given deployment
platform. Thus two tools could take the same UI
description and render it to different platforms via a
different set of rules and transforms.

Vocabularies have the added benefit of making UIML
extensible for future UI technologies.

Issue 6: Description of Iterative Entities
One difficulty of describing a UI is that the number of
elements needed may not be known at design time. For
example, the number of elements needed in a table that
displays database query results depends on the size of the
result set. A UIDL needs a mechanism for describing
repetitive structures once and letting the rendering
software handle the repetition.

UIML uses a <repeat> element for this. A <repeat>
element encloses one <iterator> element and a set of
one or more <part> elements. The <part> elements
denoted as children of the <repeat> element are
repeated with their children a number of times designated
by the <iterator> element. The <repeat> element’s
parent <part> element is not repeated. The
<iterator> can be used in <property> tags to set
the <property> equal to the current iteration of the
loop.

<uiml>
 ...
 <part class=”JDialog”>
 <repeat>
 <iterator id=”i”>10</iterator>
 <part class = “JCheckBox”>
 <style>
 <propertymname=”text”>
 <iterator id=”i”/>
 </property>
 </style>
 </part>
 </repeat>
 </part>
 ...
</uiml>
The example above shows the uses of the <iterator>
element to create a JDialog containing ten JCheckBoxes,
numbered 1 to 10.

Concluding Remarks
The User Interface Markup Language (UIML) is based on
the concept of using transforms and mappings to extend its
utility to any UI technology or toolkit. The goal of UIML
is to remove the complexity of generating the UI
description and focus on defining the mappings and
transforms that enable UIML to be converted into the
appropriate deployment language. We believe that the
lessons learned in designing and implementing UIML can
extend to any UIDL, and should be considered as the
community seeks to create a shared UIDL.

Feedback from customers indicates that adding layers of
abstraction can be more trouble than it is worth for simple
UIs, but when the systems and interfaces are complex, the
ability to quickly and easily modify and re-generate code
becomes very important. Imagine two systems: one
consists of a single dialog box while the other consists of
hundreds of such windows. Now imagine the relative cost
of modifying one property within each dialog of the
systems. What becomes apparent is that while modifying
one dialog at the source code level is practical, the opposite
is true for trying to maintain a large system at this level.
Here is where a UIDL can be very effective. It provides a
way for non-programmers to take part in the maintenance
of the system at a lower overall cost to the development
effort. It also opens the possibility of structuring the UI
description in such a way that each can use centralized
stylesheets and property definitions, further reducing the
time required to modify the interface.

The set of computing platforms and devices is too diverse
to be covered by a single UIDL that relies on platform-
specific constructs to describe all possible platforms and
devices. A meta-language approach is essential to creating
a viable, platform-independent UIDL.

In addition, we invite the formation of a working group by
anyone interested in evolving a set of open standard XML
languages for HCI.

ACKNOWLEDGMENTS
This material is based upon work supported by the Naval
Surface Warfare Center, Dahlgren Division, under
Contract No. N00421-04-C-0030.

REFERENCES
1. M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.

Williams, J. E. Shuster, "UIML: An Appliance-
independent User Interface Language," Computer
Networks 31, 1999, 1695-1708; also appeared in Proc.
8th International World Wide Web Conference,
Toronto, May 1999.

2. M. Abrams, C. Phanouriou, "UIML: An XML
Language for Building Device-Independent User
Interfaces," Proc. XML 99, Philadelphia," Dec. 1999.

3. M. F. Ali, M. Abrams, "Simplifying Construction of
Cross-Platform User Interfaces using UIML,"
Proceedings of UIML 2001, Paris, France.

4. M. F. Ali, M, Pérez-Quiñones, M. Abrams, E. Shell,
Building Multi-Platform User Interfaces with UIML,
CADUI, Valenciennes, France, May 2002.

5. M. F. Ali, M. A. Pérez-Quiñones, and M. Abrams,
“Building Multi-Platform User Interfaces with UIML”,
in Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces. ed. H.
Javahery and A. Seffah, pp. 95-116. John Wiley &
Sons, Ltd. 2004.

6. Automotive Multimedia Interface Consortium home
page, www.ami-c.org.

7. P. Azevedo, R. Merrick, and D. Roberts."OVID to
AUIML - User-Oriented Interface Modelling." Paper
presented at TUPIS 2000.

8. R. B. Case, S. H. Maes and T. V. Raman, “Position
paper for the W3C/WAP Workshop on the Web Device
Independent Authoring”, W3C Workshop on Web
Device Independent Authoring, Bristol, England.
October 2000.

9. T. Cheng. “XUL: Creating Localizable XML GUI”. In
Proceedings of the Fifteenth Unicode Conference.
1999.

10. B. Bos, H. W. Lie, C. Lilley, and I. Jacobs, Cascading
Style Sheets, level 2, CSS2 Specification. W3C
Recommendation 12-May-1998, http://www.w3.org/-
TR/REC-CSS2/.

11. Green, M. A Survey of Three Dialogue Models. In
ACM Transactions on Graphics, vol 5, no. 4, July
1986, pp. 244-275.

12. F. Paternò, C. Mancini, and S. Meniconi. “Concur-
TaskTrees: A Diagrammatic Notation for Specifying
Task Models” In Proceedings Interact'97, Chapman &
Hall, July 1997. pp.362-369.

13. F. Paternò, F., C. Santoro, A Unified Method for
Designing Interactive Systems Adaptable to Mobile and
Stationary Platforms, Interacting with Computers 15
(2003), Elsevier. pp. 349-366.

14. C. Phanouriou, “UIML: A Device-Independent User
Interface Markup Language”, Ph.D. dissertation, Sep-
tember 2000, Computer Science Dept., Virginia Tech.
http://scholar.lib.vt.edu/theses/default.htm

15. A. Puerta, and J. Eisenstein, “XIML: A Multiple User
Interface Representation Framework for Industry”, in
Multiple User Interfaces: Cross-Platform Applications
and Context-Aware Interfaces. ed. H. Javahery and A.
Seffah, pp. 119-148. John Wiley & Sons, Ltd., 2004.

16. User Interface Markup Language Technical Committee
home page, Organization for the Advancement of

Structured Information Standards, www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uiml.

17. OASIS User Interface Technical Committee, “The
Relationship of the UIML 3.0 Spec. to Other
Standards/Working Groups”. Available at:
http://www.oasis-open.org/committees/documents.-
php?wg_abbrev=uiml, September 8, 2003.

18. World Wide Web Consortium, http://www.w3c.org/

19. ximl.org, http://www.ximl.org/

20. The XML User Interface Language (XUL) Project,
http://www.mozilla.org/projects/xul/

21. G. Zimmermann, G. Vanderheiden, and A. Gilman.
"Universal Remote Console Prototyping of an
Emerging XML Based Alternate User Interface Access
Standard." Proc. of 11th Int. WWW Conf.

Creating UIDLs With These Features… Could Produce These Benefits…
Use one common UIDL for interoperability of
tools (e.g,. Rapid prototyping/GUI design,
software test, transformation)

HCI practitioners can
• Save time
• Choose best tool for job

UIDL-compatible tools can be plugged
together with new tools

Help HCI researchers evaluate prototypes from research by
plugging them into production tools and motivate people to
create better HCI tools & techniques

Single UIDL can be used throughout software
life cycle

Ability to reduce software life cycle cost from rapid prototype to
implementation to years of maintenance

Software developers create the future “legacy”
applications using UIDL

Facilitate integration and UI reengineering for legacy
applications; integrate separate legacy apps with new UIs with
common look/feel

Facilitates adaptation of UIs to current &
future devices, even in long-life systems

Properly designed UIDL and tools allow adaptation and re-
mapping to future devices 20 years from now

Facilitates UI accessibility, personalization UI is put in highly malleable format

Table 1. Benefits of Vision for Open Standard UIDLs

Figure 2. Meta-Interface Model, a Generalization of MVC

JFrame F

JButton B

JPanel A

JLabel L1

JTextField TF

JCheckBox C

JFrame F

JButton B

JPanel A

JLabel L1

JTextField TF

JCheckBox C

JLabel A_T5_L2

JTextField A_T5_TF2

JFrame F

JButton B

JPanel A

JLabel A_T5_L2

JTextField A_T5_TF2

Figure 3: The state of the UI tree before, during, and after the <restructure> is processed.

Describing Appliance User Interfaces Abstractly with XML

Jeffrey Nichols*, Brad A. Myers*, Kevin Litwack*, Michael Higgins†,
Joseph Hughes†, Thomas K. Harris*

*School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{jeffreyn, bam, klitwack, tkharris}@cs.cmu.edu

http://www.pebbles.hcii.cmu.edu/puc/

†MAYA Design, Inc.
Suite 702

2100 Wharton Street
Pittsburgh, PA 15203

{higgins, hughes}@maya.com

ABSTRACT
This paper describes an XML-based language for describ-
ing the functions of appliances, such as televisions, VCRs,
copiers, microwave ovens, and even manufacturing equip-
ment. Our description language is designed to be concise,
easy to use, and contain no presentation information. It has
been used to describe more than twenty diverse appliances.
The functional descriptions written in our language are
used to automatically generate remote control interfaces for
appliances. We have used these descriptions to generate
both graphical and speech interfaces on handheld com-
puters, mobile phones, and desktop computers.

Keywords
User interface description language (UIDL), automatic
interface generation, remote control, appliances, personal
digital assistants (PDAs), handheld computers, Pebbles,
personal universal controller (PUC)

INTRODUCTION
It has long been a goal of researchers to develop a user
interface description language (UIDL) that can describe a
user interface without resorting to low-level code. A UIDL
can reduce the amount of time and effort needed to make
user interfaces by providing useful abstractions and sup-
porting automation of the design process. For example, this
might allow the same interface description to be rendered
on multiple platforms. In this case, a UIDL is particularly
beneficial because most of the code and implementation
time is spent on the user interfaces in today’s desktop ap-
plications. Without a multi-platform UIDL solution, even
more will be required as applications become more distrib-
uted and user interfaces to those applications are needed on
multiple platforms.
We are developing a UIDL for describing appliance user
interfaces as part of our work on the personal universal
controller (PUC) project [7]. The goal of the project is to
provide users with user interface devices that can remotely

control all of the appliances in the users’ environments. We
imagine that these user interface devices would use a vari-
ety of platforms, including handheld devices with graphical
interfaces and hidden PCs with speech recognition soft-
ware. To remotely control an appliance, the user interface
device engages in two-way communication with the appli-
ance, first downloading a description of the appliance’s
functions written in our UIDL, and then automatically cre-
ating a high-quality interface. The device sends control
signals to the appliance as the user interacts with the inter-
face, and also receives feedback on the changing state of
the appliance.
The UIDL that we have designed, which we often refer to
as our appliance specification language or just specification
language, is a very important part of the PUC system. Not
only must it describe the appliance in sufficient detail for
the interface generators to create a high-quality interface,
but it must be concise and short enough to be efficiently
transmitted across wireless networks and parsed by embed-
ded computing devices. Our specification language must
also be descriptive enough to cover the complete function-
ality of any appliance, so that a PUC device can generate a
complete user interface. Finally, the language needs to be
abstract enough so that interfaces can be generated on mul-
tiple platforms from the same appliance specification.
This paper starts by discussing related work, both to our
UIDL and the PUC system as a whole. Then we elaborate
on the design principles for our UIDL, followed by a de-
scription of a study we conducted to inform our design.
Then the language is described in detail, followed by some
brief analysis of the strengths and weaknesses we have
found in the current design.‡

RELATED WORK
A number of research groups are working on controlling
appliances from handheld devices. Hodes, et. al. propose a
similar idea to our PUC, which they call a “universal inter-
actor” that can adapt itself to control many devices [4].
However, their research focuses on the system and infra-

Submitted for Publication

‡ Portions of this paper are adapted from previously published

material in [7] and [9].

structure issues rather than how to create the user inter-
faces. An IBM project [3] describes a “Universal
Information Appliance” (UIA) that might be implemented
on a PDA. The UIA uses an XML-based language called
MoDAL from which it creates a user interface panel for
accessing information. However, the MoDAL processor
apparently only handles simple layouts and its only type of
input control is text strings. The Stanford ICrafter [12] is a
framework for distributing appliance interfaces to many
different controlling devices. While their framework sup-
ports the automatic generation of interfaces, their paper
focuses on hand-generated interfaces and shows only one
simple automatically generated interface. They also men-
tion the difficulty of generating speech interfaces.
The Xweb system [10] is an infrastructure that supports
automatic generation of user interfaces from abstract de-
scriptions, and supports multiple generation platforms,
including speech. The PUC extends these ideas by adding
more detail in the specification language and supporting
more features in the automatic interface generation process.
The INCITS/V2 [20] standardization effort is developing
the Alternative Interface Access Protocol (AIAP) to help
disabled people use everyday appliances with an approach
similar to the PUC. AIAP contains a description language
for appliances that different interface generators use to cre-
ate interfaces for both common devices, like the PocketPC,
and specialized devices, such as an interactive braille pad.
We are collaborating with the V2 group and they have in-
corporated many of our language ideas into their standard.
A number of research systems have looked at automatic
design of user interfaces for conventional applications.
These sometimes went under the name of “model-based”
techniques [16]. Here, the programmer provides a specifi-
cation (“model”) of the properties of the application, along
with specifications of the user and the display. Of particu-
lar note are the layout algorithms in the DON [5] and
TRIDENT [18] systems that achieved pleasing, compact,
and logical placements of controls. We extend these results
to create panels of controls on significantly different hand-
helds, without requiring designer intervention after the
interfaces are generated.
UIML [1] is an XML language that is designed to provide a
highly-device independent method for user interface de-
sign. UIML differs from the PUC in its tight coupling with
the interface. Designers using UIML can define the types
of components to use in an interface and the code to exe-
cute when events occur. The PUC specification language
leaves these decisions up to each platform’s interface gen-
erator.
Recently a new general purpose language has been intro-
duced for storing and manipulating interaction data. The
eXtensible Interface Markup Language (XIML) [13] is an
XML-based language that is capable of storing most kinds
of interaction data, including the types of data stored in the
application, task, and presentation models of other model-

based systems. XIML was developed by RedWhale Soft-
ware and is being used to support that company’s user
interface consulting work. They have shown that the lan-
guage is useful for porting applications across different
platforms and storing information from all aspects of a user
interface design project.
It is common to find task information included in abstract
UIDLs, though the PUC language does not yet include
such information. Paterno’s ConcurTaskTrees [11] is one
such language, which has a graphical notation and allows
the specification of concurrent tasks (not possible in earlier
languages). ConcurTaskTrees also allows the specification
of who/what is performing the task, whether it be the user,
the system, or an interaction between the two.

DESIGN PRINCIPLES
Before and during the design of the specification language,
we developed a set of requirements and principles on
which to base our design [8]. Some of the principles are:
Descriptive enough for any appliance, but not necessarily
able to describe a full application. We found that we were
able to specify the functions of an appliance without in-
cluding some types of modeling information that earlier
systems included, such as task models and presentation
models. This is possible because appliance interfaces al-
most always have fewer functions than a typical
application, and rarely need direct manipulation techniques
in their interfaces.
Sufficient detail to generate a high-quality interface. We
conducted a user study to determine how much detail
would be needed in our specification language. Note that
this principle is different than the first. It would have been
possible to completely describe the appliance without read-
able labels or adequate grouping information that is needed
for generating a good user interface. For example, the Uni-
versal Plug and Play (UPnP) standard [17] includes an
appliance description language that does not include suffi-
cient detail for generating a good user interface.
No specific layout information should be included in the
specification language. We wanted to ensure that our lan-
guage would be general enough to work for interface
generators running on a wide-variety of platforms. Another
solution for addressing the multi-platform problem is to
include multiple concrete interface descriptions in the ap-
pliance specification (the INCITS/V2 standard [20] and
ICrafter [12] support this approach). We chose not to take
this approach, because it does not support future platforms
that cannot be anticipated at design time. This approach
also makes it difficult to support many of the expected
benefits of automatically generating interfaces, such as
adaptation and personalization.
Short and concise are very important principles for the
design of our language. Appliance specifications must be
sent over wireless networks and processed by computing
devices that lack the power of today’s desktop machines.

To ensure performance is adequate, the specification lan-
guage must be concise. Why then choose a verbose format
like XML as the basis for our language? We chose XML
because it was easy to parse and there were several avail-
able parsers. XML is also a very compressible format,
which can reduce the cost of sending specifications over
the network, though our system does not use any compres-
sion.
Only one way to specify any feature of the appliance is
allowed in our specification language. This principle makes
our language easy to author and easy to process by the in-
terface generator. It also makes it impossible for an author
to influence the look and feel of user interfaces by writing
their specification in a particular way. Some examples of
design choices influenced by this principle are shown later.

PRELIMINARY USER STUDIES
These principles guide the design our language, but do not
suggest what information should be included or what level
of detail is needed to automatically generate a high-quality
interface. In order to determine what content should be
included in a specification, we hand-designed several re-
mote control interfaces for existing appliances. Then user
studies were conducted to compare the hand-designed in-
terfaces to the manufacturers’ interfaces (described in more
detail in [6]). This approach allowed us to concentrate on
the functional information that should be included as con-
tent in the specification language. It also showed that a
PUC device could be easier to use than interfaces on actual
appliances.
We chose to focus on two common appliances for our
hand-designed interfaces: the Aiwa CX-NMT70 shelf ste-
reo with its remote control, and the AT&T 1825
telephone/digital answering machine. We chose these two
appliances because both are common, readily available,
and combine several functions into a single unit. The first
author owns the Aiwa shelf stereo that we used, and the
AT&T telephone is the standard unit installed in many of-

fices at Carnegie Mellon. Aiwa-brand stereos seem to be
particularly common (at least among our subject popula-
tion) because ten of our twenty-five subjects owned Aiwa
systems.
We created our hand-designed interfaces in two phases,
initially on paper for the Palm platform and later as Visual
Basic implementations on a Microsoft PocketPC (see
Figure 1). Each interface supported the complete set of
appliance functions. At each phase, we iteratively im-
proved the interfaces with heuristic analyses and performed
a user study. The user study in each phase was dual-
purpose: to compare our hand-designed interfaces with the
interfaces on the actual appliances and to find problems in
the hand-designed interfaces.
The comparison study in both phases showed that our
hand-designed interfaces were much better than the manu-
facturer’s interfaces on the actual appliances [6]. In both
studies users were asked to perform a variety of simple and
complex tasks. Some simple tasks were dialing the phone
or changing the volume on the stereo, whereas some com-
plex tasks were programming a list of tracks into the
stereo’s CD player or copying a message between two of
the four mailboxes on the telephone’s built-in answering
machine. We found that for both hand-designed interfaces,
Palm paper prototypes and PocketPC implementations,
users completed tasks in one-half the time and with one-
half the errors as compared to the actual appliances [6].
The large differences in this study can be attributed to
problems with the appliance interfaces. Most of the prob-
lems users had with the built-in appliance interfaces could
be traced to poor button labels and inadequate interface
feedback. Both appliances had buttons with two functions,
one when the button was pressed and released and one
when the button was pressed and held. Our subjects rarely
discovered the press and hold function. The stereo also had
buttons that changed function with the appliance’s mode.

(a)

(b)

(c)

(d)

Figure 1. Hand-designed interfaces for the phone (a-b) and stereo (c-d) on the Palm and PocketPC. The Palm interfaces are paper prototypes,
whereas the PocketPC interfaces were actually implemented in Microsoft’s embedded Visual Basic.

Interface Analysis
Once we were confident that our interfaces were usable, we
analyzed them to understand what functional information
about the appliance was needed for designing the inter-
faces. This included questions such as “why are these
elements grouped together?” or “why are these widgets
never shown at the same time?” These are questions that
might suggest what information should be contained in the
specification language.
As we intuitively expected, grouping information was very
important for our hand-designed interfaces. We noted that
grouping information could generally be specified as a tree,
and that the same tree could be used for interfaces of many
different physical sizes. User interfaces designed for small
screens would need every branch in the tree, whereas large
screen interfaces might ignore some deeper branches.
We also found that grouping is influenced by modes. For
example, the Aiwa shelf stereo has a mode that determines
which of its components is playing audio. Only one com-
ponent can play at a time. In the stereo interfaces shown in
Figure 1c-d you will note that a tabbed interface is used to
overlap the controls for the CD player, tape player, etc.
Other controls that are independent of mode, such as vol-
ume, are available in the sidebar. Unlike regular grouping
information, information about modes gives explicit ideas
about how the user interface should be structured. If two
sets of controls cannot be available at the same time be-
cause of a mode, they should probably be placed on
overlapping panels. We designed dependency equations to
describe appliance mode information in our language.
We also noticed that most of the functions of an appliance
were manipulating some data in a definable way, but some
were not. For example, the tuning function of a radio is
manipulating the current value of the radio station by a pre-
defined increment. The seek function also manipulates the
radio station value, by changing it to the value of the next
radio station with clear reception. This manipulation is not
something that can be defined based on the value of a vari-
able, and thus it would need to be represented differently in
our language.
Each of our interfaces used different labels for some func-
tions. For example, the Palm stereo interface (see Figure
1c) used the label “Vol” to refer to volume, whereas the
PocketPC stereo interface (see Figure 1d) used “Volume.”
We expected that this problem would be even worse for
much smaller devices, such as mobile phones or wrist-
watches. Thus we felt it would be important for our
specification language to include multiple labels that an
interface generator could choose between when designing
its layouts.
Finally, we found that all of our interfaces used some “con-
ventional” designs that would be difficult to specify in any
language. At least one example of a conventional design
can be found in each of the panes in Figure 1: (a) shows a
telephone keypad layout, (b) uses standard icons for previ-

ous track and next track, (c) shows the standard layouts and
icons for play buttons on a CD player, and (d) uses the
standard red circle icon for record. We recently developed
a solution for addressing this problem called Smart Tem-
plates [9], which will be discussed in the next section.

SPECIFICATION LANGUAGE
The PUC specification language is XML-based and in-
cludes all of the information that we found in our analysis
of the hand-designed interfaces. This section describes the
features of our language and shows examples of how each
feature is used. A language reference can be downloaded
from our project web site:
http://www.cs.cmu.edu/~pebbles/puc/specification.html

State Variables, Commands, and Explanations
Our specification language supports three primitive ele-
ments for describing the functions of an appliance. We
discovered from our PocketPC implementations that most
appliance functions could be represented as state variables.
Each state variable has a given type that tells the interface
generator how it can be manipulated. For example, the ra-
dio station state variable has a numeric type, and the
interface generator can infer the tuning function because it
knows how to manipulate a numeric type. Other state vari-
ables include the current track of the CD player and the
status of the tape player (stop, play, fast-fwd, etc.).
As mentioned above, we discovered that state variables are
not sufficient for describing all of the functions of an appli-
ance, such as the seek button on a radio. The seek function
must be represented as a command, a function whose result
cannot be described easily in the specification. Figure 2
shows examples of both state variables and commands.
Commands are also useful when an appliance is unable to
provide state information to the controller, either by manu-
facturer choice or a hardware limitation of the appliance.
For example, up and down commands might be used for
volume if the appliance cannot support an integer-typed
state variable. In fact, the remote control technology of
today can be simulated on the PUC by writing a specifica-
tion that includes only commands. Any state information
must then be shown on the appliance’s front panel.
Our specification language also has a feature called an ex-
planation. Explanations are static labels that are important
enough to be explicitly mentioned in the user interface, but
are not related to any existing state variable or command.
For example, an explanation is used in one specification of
a shelf stereo to explain the Auxiliary audio mode to the
user. The mode has no user controls, and the explanation is
used to explain this. Explanations are used very rarely in
the specifications that we have written.

Type Information
Each state variable must be specified with a type so that the
interface generator can understand how it may be manipu-
lated. For example, the Controls.Mode state in Figure 2 has

<?xml version=”1.0” encoding=”utf-8”?>
<spec name=”MediaPlayer” version=”PUC/2.0”>
 <labels>
 <label>Media Player</label>
 </labels>

 <groupings>
 <group name=”Controls” is-a=”media-controls”>
 <labels>
 <label>Play Controls</label>
 <label>Play Mode</label>
 <text-to-speech text=”Play Mode”
 recording=”playmode.au”/>
 </labels>

 <state name=”Mode”>
 <type>
 <enumerated>
 <item-count>3</item-count>
 </enumerated>
 <valueLabels>
 <map index=”1”>
 <label>Stop</label>
 </map>
 <map index=”2”>
 <label>Play</label>
 </map>
 <map index=”3”>
 <label>Pause</label>
 </map>
 </valueLabels>
 </type>

 <labels><label>Mode</label></labels>
 </state>

 <group name=”TrackControls”>
 <command name=”PrevTrack”>
 <labels><label>Prev</label></labels>

 <active-if>
 <greater-than state=”PList.Selection”>
 0
 </greater-than>
 </active-if>
 </command>

 <command name=”NextTrack”>
 <labels><label>Next</label></labels>

 <active-if>
 <less-than state=”PList.Selection”>
 <ref-value state=”PList.Length”/>
 </less-than>
 </active-if>
 </command>
 </group>
 </group>

 <list-group name=”PList”>
 <state name=”Title”>
 <type><string/></type>
 <labels><label>Title</label></labels>
 </state>

 <state name=”Duration” is-a=”time-duration”>
 <type><integer/></type>
 <labels><label>Duration</label></labels>
 </state>
 </list-group>
 </groupings>
</spec>

Figure 2. A sample specification for a media player with a few
basic functions and a play list.

an enumerated type. We define seven primitive types that
may be associated with a state variable:

• binary
• boolean
• enumerated
• fixed point

• floating point
• integer
• string

Many of these types have parameters that can be used to
restrict the values of the state variable further. For example,
the integer type can be specified with minimum, maximum,
and increment parameters.
It is important to note that complex types often seen in pro-
gramming languages, such as records, lists, and unions, are
not allowed to be specified as the type of a state variable.
Complex type structures are created using the group tree, as
discussed below.

Label Information
The interface generator must also have information about
how to label the interface components that represent state
variables and commands. Providing this information is
difficult because different form factors and interface mo-
dalities require different kinds of label information. An
interface for a mobile web-enabled phone will probably
require smaller labels than an interface for a PocketPC with
a larger screen. A speech interface may also need phonetic
mappings and audio recordings of each label for text-to-
speech output. We have chosen to provide this information
with a generic structure that we call the label dictionary.
Each dictionary contains a set of labels, most of which are
plain text. The dictionary may also contain phonetic repre-
sentations using the ARPAbet (the phoneme set used by
CMUDICT [2]) and text-to-speech labels that may contain
text using SABLE mark-up tags [15] and a URL to an au-
dio recording of the text. The assumption underlying the
label dictionary is that every label contained within,
whether it is phonetic information or plain text, will have
approximately the same meaning. Thus the interface gen-
erator can use any label within a label dictionary
interchangeably. For example, this allows a graphical inter-
face generator to use a longer, more precise label if there is
lots of available screen space, but still have a reasonable
label to use if space is tight. Figure 2 shows the label dic-
tionary, represented by the <labels> element, for a number
of states. The dictionary for the Controls group has two text
labels and a text-to-speech label.

Group Tree
Interfaces are always more intuitive when similar elements
are grouped close together and different elements are kept
far apart. Without grouping information, the play button for
the CD player might be placed next to the stop button for
the Tape player, creating an unusable interface. We avoid
this by explicitly specifying grouping information using a
group tree.
We specify the group tree as an n-ary tree that has a state
variable or command at every leaf node (see Figure 3).

State variables and commands may be present at any level
in the tree. Each branching node is a “group,” and each
group may contain any number of state variables, com-
mands, and other groups. We encourage designers to make
the group tree as deep as possible, in order to help space-
constrained interface generators. These generators can use
the extra detail in the group tree to decide how to split a
small number of controls across two screens. Interface gen-
erators for larger screens can ignore the deeper branches in
the group tree and put all of the controls on one panel.

Figure 3. A sample group tree for a shelf stereo with both a CD
player and radio tuner. The black boxes represents groups and the
white boxes with text represent state variables. The mode variable
indicates which source is being played through the speakers.

Complex Types
Our specification language uses the group tree to specify
complex type structures often seen in programming lan-
guages, such as records, lists, and unions. We chose this
approach because we felt it simplified our language, and
followed the principle of “one way to specify anything.” If
we had chosen to specify complex types within state vari-
ables, then authors could have specified related data either
as a single variable with a record data type or as multiple
variables within a group.
To support complex types, we have added several special
group tags. Figure 2 shows an example of the list-group
tag that we added for specifying lists. List groups have two
implicit variables to track the length of the list and the cur-
rent selection(s). State variables that are specified within
the list group will have multiple values associated with
them, one for each item in the list. Multi-dimensional lists
can be created by nesting list groups. We have also devel-
oped a special dependency operator for lists that can be
true if all items, any items, or no items in the list match a
dependency equation. The union-group is similar to the
list-group, but acts like a union from the C program-
ming language.

Dependency Information
The two-way communication feature of the PUC allows it
to know when a particular state variable or command is
unavailable. This can make interfaces easier to use, because
the components representing those elements can be dis-
abled. The specification contains formulas (see the
<active-if> element in Figure 2) that specify when a state
or command will be disabled depending on the values of
other state variables, currently specified with several types
of dependencies: equal-to, greater-than, less-than, defined,
and others. Each state or command may have multiple de-
pendencies associated with it, combined with the logical
operations AND and OR. These formulas can be processed
by the PUC to determine whether a component should be
enabled when the appliance state changes.
We have discovered that dependency information can also
be useful for structuring graphical interfaces and for inter-
preting ambiguous or abbreviated phrases uttered to a
speech interface. For example, dependency information can
help the speech interfaces interpret phrases by eliminating
all possibilities that are not currently available. The proc-
essing of these formulas is described elsewhere [7].

Smart Templates
A common problem for automatic interface generators has
been that their interface designs do not conform to domain-
specific design conventions that users are accustomed to.
For example, an automated tool is unlikely to produce a
standard telephone keypad layout. This problem is chal-
lenging for two reasons: the user interface conventions
used by designers must be described, and the interface gen-
erators must be able to recognize where to apply the
conventions through analysis of the interface specification.
Some systems [19] have dealt with this problem by defin-
ing specific rules for each application that apply the
appropriate design conventions. Other systems [5] rely on
human designers to add design conventions to the inter-
faces after they are automatically generated. Neither of
these solutions is acceptable for the PUC system. Defining
specific rules for each appliance will not scale, and a PUC
device cannot rely on user modifications because its user is
not likely to be a trained interface designer. Even if the
user was trained, he or she is unlikely to have the time or
desire to modify each interface after it is generated, espe-
cially if the interface was generated in order to perform a
specific task.
We have developed one solution to this problem called
Smart Templates [9], where the PUC specification lan-
guage’s primitive type information is augmented with high-
level semantic information. For example, the media-
controls template defines that a state variable with par-
ticular attributes controls the playback of some media.
Figure 2 shows how the media-controls Smart Tem-
plate is indicated using the is-a attribute in our
specification language. PUC interface generators can use
the information added by a Smart Template to apply design
conventions and make interfaces more usable. If an inter-
face generator does not recognize a template however, a

Figure 4. Media controls rendered for a Windows Media Player
interface on each of our three platforms. At the top is the desktop,
the middle is PocketPC, and the bottom shows Smartphone. The
Smartphone control maintains consistency for the user by copying
the layout for the Smartphone version of Windows Media Player,
the only media player application we could find on that platform.
This interface overloads pause and stop onto the play button.

Figure 5. Different arrangements of media playback controls
automatically generated for several different appliances from a
single Smart Template (media-controls).

user interface can still be created because Smart Templates
are constructed from the primitive elements of our specifi-
cation language. Figure 4 shows the same instance of a
Smart Template rendered on different platforms.
An important innovation is that Smart Templates are pa-
rameterized, which allows them to cover both the common
and unique functions of an appliance. For example, the
media playback template supports play and stop, but also
optional related functions such as next track for CDs, fast-
forward and reverse-play for tape players, and “play new”
for phone answering machines (see Figure 5). Smart Tem-
plates also give appliances the flexibility to choose a
functional representation that matches their internal imple-
mentation. For example, our time-duration Smart
Template allows single state variables with integer or string
types, or multiple state variables (e.g. a state for hours and
another for minutes).
We have built a preliminary implementation of Smart Tem-
plates into the existing PUC system. So far the PUC
supports a few Smart Templates: media-controls,
time-duration, image, and image-list. We plan to
implement many more, including date, mute, power, and
volume. We expect that some Smart Templates will natu-
rally combine with others to create new templates. For
example, date and time are often used together, as are vol-
ume and mute. We hope to implement Smart Templates in
such a way that templates can be flexibly combined with
less work than creating a new template from scratch.

EVALUATION
We have not yet conducted any formal evaluation of our
specification language, but we have used it to specify more
than twenty appliances ranging from stereos and telephones
to elevators and car navigation systems. We have used
those specifications as the basis for generating graphical
user interfaces on PocketPCs, Microsoft Smartphones, and

desktop computers, and speech user interfaces using the
Universal Speech Interfaces framework [14]. This section
informally discusses some strengths and weaknesses that
we have found with the language.
The main strengths of the language come from the design
principles that we started with. Appliance descriptions are
often a reasonable size, even for our largest and most com-
plicated appliances. Our specification for an Audiophase
5CD shelf stereo system, which has more than 50 states, is
25KB. The specification for the GM Yukon Denali naviga-
tion system, which has more than 80 states, is 41KB. These
sizes are perfectly reasonable for transmission and process-
ing on the devices we are targeting.
Our language also seems to be reasonably easy to learn.
Four undergraduate students have learned the language
over the course of the project. Each student picked up the
basics of the language in a day and was proficient within
about two weeks. The most difficult aspects of writing an
appliance specification are determining the appliance’s
variables and commands, and designing the group tree
structure. We believe these aspects are difficult in general,
and do not represent weaknesses in our design.
The main weakness of the language is the lack of any task
information. For many appliances this is not a problem
because all of the tasks have only one step. For example,
“play the tape” or “increase the volume.” With complex
appliances, such as a car navigation system, this is not al-
ways the case, and the lack of task information may lead to
lower quality generated interfaces for these appliances.

FUTURE WORK
We are planning to conduct a formal evaluation of the
specification language and interface generators as part of
the first author’s thesis work. This will involve specifying
more complex appliances and further testing the descrip-
tiveness of the language.

We are planning a new feature of the PUC system that will
generate a single user interface for multiple appliances that
have been connected together. One example of a use for
this feature is a typical home theater, which includes sepa-
rate VCR, DVD player, television, and stereo appliances,
but might be more easily thought of as a single integrated
system. A PUC interface for a home theater would ideally
have features like a “Play DVD” button that would turn on
the appropriate appliances, set the TV and stereo to the
appropriate inputs, and then tell the DVD player to “Play.”
This feature will require some additions to our language to
describe how appliances are connected together. Task in-
formation will also be required to support features like the
“Play DVD” button, but the task information will be dis-
tributed among each of the different appliances. This is
different from previous task languages [11] which have
assumed that all task information is available in one loca-
tion. Designing and building this distributed task language
is a major area of future work for the PUC project.

CONCLUSION
We have discussed a language for describing appliances.
The language is the basis for a system that automatically
generates remote control user interfaces. We have used our
specification language to describe more than twenty appli-
ances from telephones to elevators to vehicle navigation
systems. We have also written software that uses our lan-
guage to automatically generate graphical user interfaces
for handheld computers, mobile phone, and desktop com-
puters, and speech interfaces using the Universal Speech
Interfaces framework. We believe that the PUC specifica-
tion language is at the appropriate level, and contains the
right features to be successfully used for virtually all appli-
ances and for many other tasks as well. We would welcome
widespread adoption of the PUC specification language
and collaboration with others.

ACKNOWLEDGMENTS
This work was conducted as a part of the Pebbles project, and the speech
interface generator was implemented as a part of the Universal Speech
Interfaces project. This work was funded in part by grants from NSF,
Microsoft, General Motors, and the Pittsburgh Digital Greenhouse, and
equipment grants from Mitsubishi Electric Research Laboratories, Vivid-
Logic, Lutron, and Lantronix. The National Science Foundation funded
this work through a Graduate Research Fellowship for the first author and
under Grant No. IIS-0117658. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams,

S.M., and Shuster, J.E. “UIML: An Appliance-Independent
XML User Interface Language,” in The Eighth International
World Wide Web Conference. 1999. Toronto, Canada

2. CMU, “Carnegie Mellon Pronuncing Dictionary,” 1998.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

3. Eustice, K.F., Lehman, T.J., Morales, A., Munson, M.C., Ed-
lund, S., and Guillen, M., “A Universal Information
Appliance.” IBM Systems Journal, 1999. 38(4): pp. 575-601.

4. Hodes, T.D., Katz, R.H., Servan-Schreiber, E., and Rowe, L.
“Composable ad-hoc mobile services for universal interac-
tion,” in Proceedings of the Third annual ACM/IEEE
international Conference on Mobile computing and network-
ing (ACM Mobicom'97). 1997. Budapest Hungary: pp. 1-12.

5. Kim, W.C. and Foley, J.D. “Providing High-level Control and
Expert Assistance in the User Interface Presentation Design,”
in Proceedings INTERCHI'93: Human Factors in Computing
Systems. 1993. Amsterdam, The Netherlands: pp. 430-437.

6. Nichols, J., Myers, B.A. “Studying The Use Of Handhelds to
Control Smart Appliances,” in 23rd International Conference
on Distributed Computing Systems Workshops (ICDCS '03).
2003. Providence, RI: pp. 274-279.

7. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M. “Generating Remote Control
Interfaces for Complex Appliances,” in UIST 2002. 2002.
Paris, France: pp. 161-170.

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Shriver, S. “Requirements for Automati-
cally Generating Multi-Modal Interfaces for Complex
Appliances,” in ICMI. 2002. Pittsburgh, PA:

9. Nichols, J., Myers, B.A., Litwack, K. “Improving Automatic
Interface Generation with Smart Templates,” in Intelligent
User Interfaces. 2004. Funchal, Portugal: pp. 286-288.

10. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. “Cross-modal Interaction using Xweb,” in
Proceedings UIST'00: Symposium on User Interface Software
and Technology. San Diego, CA: pp. 191-200.

11. Paterno, F., Mancini, C., Meniconi, S. “ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models,” in IN-
TERACT. 1997. Sydney, Australia: pp. 362-269.

12. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and
T.Winograd. “ICrafter: A service framework for ubiquitous
computing environments,” in UBICOMP 2001. 2001. At-
lanta, Georgia: pp. 56-75.

13. Puerta, A., Eisenstein, J. “XIML: A Common Representation
for Interaction Data,” in 7th International Conference on In-
telligent User Interfaces. 2002. San Francisco: pp. 214-215.

14. Rosenfeld, R., Olsen, D., Rudnicky, A., “Universal Speech
Interfaces.” interactions: New Visions of Human-Computer
Interaction, 2001. VIII(6): pp. 34-44.

15. Sproat, R., Hunt, A., Ostendorf, P., Taylor, P., Black, A.,
Lenzo, K., Edgington, M. “SABLE: A Standard for TTS
Markup,” in International Conference on Spoken Language
Processing. 1998. Sydney, Australia:

16. Szekely, P. “Retrospective and Challenges for Model-Based
Interface Development,” in 2nd International Workshop on
Computer-Aided Design of User Interfaces. 1996. Namur:
Namur University Press. pp. 1-27.

17. UPnP, “Universal Plug and Play Forum,” 2003.
http://www.upnp.org.

18. Vanderdonckt, J. “Knowledge-Based Systems for Automated
User Interface Generation: the TRIDENT Experience,” in
Technical Report RP-95-010. 1995. Namur: Facultes Univer-
sitaires Notre-Dame de la Paix, Institut d' Informatique:

19. Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S.,
“ITS: A Tool for Rapidly Developing Interactive Applica-
tions.” ACM Transactions on Information Systems, 1990. 8(3):
pp. 204-236.

20. Zimmermann, G., Vanderheiden, G., Gilman, A. “Prototype
Implementations for a Universal Remote Console Specifica-
tion,” in CHI'2002. 2002. Minneapolis, MN: pp. 510-511.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.upnp.org/

Practical experiences with device independent authoring
concepts

Oskari Koskimies
NRC, NOKIA GROUP

FIN-00045, Finland
oskari.koskimies@nokia.com

Peter Wolkerstorfer

Center for Usability Research & Engineering
A-1110 Vienna, Austria
wolkerstorfer@cure.at

Michael Wasmund
IBM Deutschland Entwicklung GmbH

D-71003 Boeblingen, Germany
mwasmund@de.ibm.com

Thomas Ziegert

SAP AG, Corporate Research
D-76131 Karlsruhe, Germany

thomas.ziegert@sap.com

ABSTRACT
The development of web applications for mobile and other
non-desktop devices using established methods often
requires a tremendous development effort. A major
challenge therefore is to find sound approaches enabling the
cost efficient application development for multiple devices
of varying technical characteristics. Newer approaches are
based on a device independent mark up language, which is
then adapted to meet the special characteristics of the
accessing device. This paper describes our approach to
single authoring, which was developed in a large European
research project1. The CONSENSUS project has developed
a device-independent language profile based on XHTML
2.0 and XFORMS 1.0 and implemented a compliant
rendering engine. In this paper we will describe our
approach to enable single authoring and summarise the
lessons we have learnt.

Keywords
Single authoring, Device Independence, Pagination,
Adaptation

INTRODUCTION
The WWW has established itself as one of the most
important sources for information and as a perfect
infrastructure for applications, which need to be accessible
from anywhere. Web-enabled devices potentially offer
access to the globally adopted infrastructure. But currently,
most web content is optimised for the usage on a PC. This
is still true despite the efforts of the Web Accessibility
Initiative [1] which covers the universal accessibility of web
content. As more and more non-desktop devices enter the
market, a convenient way to access web content and web
applications using such devices is required. The industry

1 IST-Programme / KA4 / AL: IST-2001-4.3.2. The project

CONSENSUS is supported by the European Community.
This document does not represent the opinion of the
European Community. It is also the sole responsibility of
the author and not the responsibility of the European
Community using any data that might appear therein.

addressed that requirement for a limited set of applications
particularly in the B2E (Business-to-Employee) domain by
developing device specific versions of those applications.
Such an application-specific approach tends to be too costly
and not manageable if scaled to a large number of diverse
devices and applications. Therefore, more generic ways to
prepare web content in a device-independent way are
necessary.

Various approaches have been proposed to address this
challenge. Some of them (e.g. [2, 3]) automatically compile
web content to fit on a target device. These approaches are
based on HTML and deploy heuristics in addition to tag
information to extract structure information, caused by the
fact that HTML does not provide the necessary semantics
needed to perform the conversion to other mark up
languages. Therefore, other approaches replace HTML by
another, semantically richer mark up language to serve as a
basis for adaptation [4, 5, 6]. However, none of these
proposals is standards-based and they were therefore not
widely adopted in the market. To open the path for a widely
adopted device-independent mark up language for
authoring web content, two considerable efforts have been
launched: a) The W3C chartered the Device Independence
Group to establish specifications supporting single
authoring, b) a consortium of six European companies,
named CONSENSUS [7], has built a prototype which
implements authoring and conversion tools for a Renderer-
Independent Markup Language (RIML), specified by this
consortium as well. Both efforts cooperate intensively. The
ultimate vision of device independence as stated in the
charter of the W3C Device Independence working group
[8] is to provide “Access to a Unified Web from Any
Device in Any Context by Anyone” .

REQUIREMENTS FOR DEVICE INDEPENCE
The requirement to feed a multitude of web browsers with
content from the web in a uniform way is not new. The
W3C recognised this requirement and evolved HTML not
only to meet XML compliance (resulting into XHTML 1.0
and XHTML 1.1), but also catered for a better separation of
content from presentational aspects.

Currently, there are three more prominent examples of how
the newest XHTML specification, coined XHTML 2.0
Working Draft [9], addresses the above requirement.

First of all, the W3C HTML Working Group did the bold
step to remove all input-related mark up, such as the well-
known HTML input element, completely. Instead, all user
interaction is now delegated to a separate specification
called XFORMS 1.0 [10]. Taking a closer look on
XFORMS, one recognises it attains a new level of
abstraction. An author now expresses the intent, for
example, that a user is expected to select one out of many
items, but not the exact presentation of the list of items any-
more. The select element may be presented as radio buttons
or a drop down box or in any other way at the discretion of
the browser which interprets the mark up. Other relevant
features of XFORMS are described elsewhere [10].

A second feature of XHTML 2.0 which underlines the
separation of presentation from content is the new way to
express content structure. The content is expected to be
structured by the author as a consecutive nested list of
sections. Each section may bear a heading, however,
headings do not have an explicit weight anymore, but there
is only a general h element left. The weight of a heading
results from the nesting level of the section it is associated
to. XHTML 2.0 leaves it to the interpreting browser to
present the heading in a proper format.

Finally, XHTML 2.0 deprecates the use of formatting
directives such as displaying text in bold or italic in favour
of using Cascading Stylesheets (CSS) [14]. The use of CSS
is a further development which supports development of
device-independent content as we will see.

Despite the advances of the XHTML specification outlined
above, the Consensus project identified shortcomings which
prevent the use of XHTML 2.0 as the only means to express
content in a device-independent way. Several other projects
[18, 19, 20] also tried to fill these gaps by adding
proprietary mark up, whereas the Consensus project strives
for a standardised way to close the gap.

The shortcomings which we identified can be attributed to
the following areas:

Pagination, which is also called decomposition, is a quite
familiar concept in the printing domain. Pagination occurs,
when the document’s content does not fit on a single
page/screen. If that case happens, the content is split into
two or more chunks, each of them fitting on a single
page/screen. For non-interactive content i.e. printed pages,
the content will be split when the page is full and page
numbers are inserted to provide a basic means of
navigation. Specifications such as XML Print [17], CSS3
Paged Media [13], and XSL-FO [12] address that.

For interactive content, decomposition techniques known
from printing are not sufficient for several reasons: a)
generated navigation in form of page numbers does not
provide good usability when exploring highly structured

content such as output from a portal page. b) The
pagination of forms carries additional usability issues as
everyone who filled multiple consecutive forms in a web
application can imagine. c) Tables need particular attention,
since the distribution of content organised in tables across a
sequence of screens may not reflect the intent of the author
anymore or can be just inappropriate for display capabilities
of certain devices.

Navigation. As indicated above, Pagination requires means
to navigate between the pieces the original content was split
into. Navigation links should be generated automatically
during pagination, but authors may want to influence
placement and appearance of the additional navigation. The
application may already generate a similarly structured
output, such as a partial list of search results. Application-
generated navigation can interfere with the additional
navigation generated by pagination.

Layout. For PC-based browsers, a sophisticated layout,
based on deeply nested HTML-tables, may be suitable for
proper presentation of content. However, for most of the
mobile devices, a much simpler layout needs to be applied
due to the limited screen space. To support a meaningful
pagination of content it is furthermore desirable to be able
to specify layout areas, to which content is associated
dynamically. Some of these areas i.e. their content might be
repeated on each page or screen, similar to running headers
or footers, to allow for navigation bars, screen titles, or
copyright notices.

Voice. Finally, although XHTML 2.0 remarkably provides
already guidance on how a table could be presented aurally,
there is not much more support to present XHTML as
voice. To compensate for that, the XHTML + Voice
specification [16] was proposed, which basically allows for
the insertion of VoiceXML into XHTML. However this is
rather integration on a technical level and does not solve the
problem of device-independence with respect to voice as
such.

Currently, XHTML 2.0, despite its recent advances, does
not really address the above list of problems. The language
profile RIML, defined by the Consensus project [7], claims
to provide a solution for these problem domains. The claim
is supported by an implementation of a compliant rendering
engine and associated field trial carried out with the help of
usability experts.

Renderer Independent Markup Language
The RIML specification addresses the problem areas
outlined above as follows:

Layout
To support a dynamic arrangement of content into varying
layouts, RIML explicitly defines a layout element in the
head of a document rather than mixing content and layout in
the body. The layout consists of a hierarchy of containers,
where content can be placed. Content is bound to layout via
named sections. This is a similar concept as in XFORMS,

where the “content” of a form (called “model”) is placed in
the head, and bound via reference to the presentational part
of a form in the body.

RIML specifies a very simple set of layout containers,
which are a) row, b) column, and c) frame as the innermost
container. Beyond row and column, RIML provides a third
type of container which is named “grid” . The grid delegates
the actual layout to the interpreting browser or adaptation
process by just expressing a preferred layout (for example,
columns), but allowing the interpreter to arrange the content
differently if suitable on the target device.

Layout containers in RIML can be paginating or
nonpaginating. Paginating containers allow their content to
be distributed on consecutive screens, whereas the non-
paginating containers repeat their content on every screen
(i.e., header, footer).

With help of these simple layout concepts, we were able to
arrange content for a wide variety of devices in meaningful
way.

Figure 1 and Figure 2 in the sequel of this documents show
example layout definitions in RIML mark up and the
resulting output of the respective browsers, when the mark
up has been processed by the adaptation engine. The
Communicator was emulated by a common PC-browser
here. Furthermore both examples show the use of
pagination directives.

Pagination
Similarly to a written document, where an author can
enforce a page break or leave the determination of best
page break to the interpreter, the project discussed
intensively whether such directives should be provided by
the author. The outcome of the discussion, accompanied by
several experiments, was that RIML does not provide
explicit pagination directives for the author similarly to a
“begin-new-page-here” directive, because such directives
do not support device-independent authoring.

Instead of this, we defined a predictable behaviour of RIML
mark up interpreters when tables or sections are
encountered, which do not fit on a single screen. Examples
of such rules are: a) keep those parts of a table together
which are enclosed by a tbody element, b) avoid splitting
sections. If these example rules cannot be applied because
the resulting amount of content is still too large, further
decomposition rules apply. The important point here is to
delegate the “best” method to paginate to the interpreting
system rather than allowing the author to “hardcode” such
directives. The content of the menu and navigation frames
(menu-frame, nav-frame) appears on every paginated
screen, whereas the content of the content frame gets split.

Navigation
Opposite to pagination, our studies and practical
experiments revealed that authors need means to control the
type and appearance of so-called generated navigation. That
is navigation which is optionally inserted into the presented

output when pagination occurs. Authors want to be able to
determine: a) where on the screen the navigation is
displayed (top, bottom, sidebar), b) how it is displayed (text
or image), c) how much of it is displayed (just “next” and
previous” or all related links). The latter directive is
particular important in case of deeply structured content
such as a portal page, where a user may navigate from
portlet to portlet (assuming these are distributed across
several screens), but also within a portlet, which content
was paginated. RIML therefore introduced a navigation
directive called “scope” .

An example of how to use navigation directives can be
found at the bottom of Figure 2.

Voice
One of the most challenging topics of the project was voice
support. Other than XHTML+Voice [24], we aimed for a
more abstract way of voice integration by interpreting
existing XHTML mark up in a suitable way to produce
voice output. However, voice is extremely different from
visual presentation and input, so that we had to add some
extra support for voice interaction. Experiments revealed
that using RIML’s layout, pagination, and generated
navigation concepts for voice interaction was not really
feasible. Theoretically, it may be possible to generate a
menu, providing a voice dialogue stating the available
choices from the hierarchy of nested sections. However,
practical experiments revealed, that the usability of such an
approach would be unsatisfactory. Instead, the nl
(navigation list) element of XHTML2 is used to specify
such menus, so that the voice system can tell the user the
available choices. For graphical browsers these menus are
rendered as a table or a list of menu options. This matches
the original XHTML2 semantics [10], even though default
behaviour is slightly different (no folding).

Additionally, a voice-specific dialog element (global menu)
in the document header can be used to define voice
navigation options that are always available, e.g. so that the
user can start a new search by saying “search” at any time.
Therefore, for voice interaction, RIML’s layout and
pagination directives are ignored, and the author must
provide a navigation list and possibly a dialog element
instead.

Content Selection
Ideally, an author would produce documents, which fit all
available user devices thanks to the power of RIML and
intelligent adaptation mechanisms. However, there is
always the issue of how to handle the control over the final
presentation. Usually authors want to influence the final
result on the device and therefore need a way to maintain
control of the appearance if they wish.

Beyond that, authors may want to provide different
resources for different classes of devices. Such resources
can be for example a long text versus a short text, or
different versions of a corporate logo. To support such

requirements, a number of languages already provide so-
called content selection [11, 15]. For RIML we adopted and
extended the content selection as defined by SMIL.

The application of content selection allows the author to
conditionally include certain content. The conditions can be
specified as a function of device properties such as the
width of the screen.

Field trial results
The distinguishing factor of the Consensus project
compared to many other attempts in the problem domain
was the inclusion of usability experts from the very
beginning and practical experiments up to real field trials
with existing applications ported to RIML. That allowed us
to assess whether our specification (and also the matching
implementation) is practical. One of the main goals of
Consensus was the development of usable applications.
Therefore it is crucial that the user interfaces of applications
coming from the adaptation engine produce a sufficient user
experience. In order to evaluate whether RIML reached this
goal we have done a field trial. The field trial tests were
performed at the connection speeds provided by GSM,
GSM HCSD, and GPRS. This approach was chosen in
order to create a test situation that is as realistic as possible,
e.g. to take response times into account. Audio and video
signals from all tests were recorded. User actions on the
devices were filmed. The problems that occurred can be
summarised in the following four categories:

Fold problems: users did not scroll beyond empty lines on
devices with small screens so they missed content; in
addition to that a kind of “vertical fold problem” occurred:
when a navigation bar is not considered for the usage on
narrow screens by the developer the users have to scroll
vertically to get all navigational functions which has not
been recognized by the users – so they missed important
navigation.

Mandatory input fields: text fields used to enter dates or
time where rather cumbersome for users who used a mobile
phone due to the input modality. This problem resulted
mainly from the fact, that the implementation was limiting
the use of optimal input controls for certain data types (see
also the lessons learnt section).

Layout problems: the automatic adaption of the layout has
not always resulted in an optimal use of the screen real
estate, which was mainly caused by the limited pagination
algorithm of the implementation.

Overall Results
During the tests following two main questions have been
answered:

Is the development of mobile applications with RIML
supported by the Consensus tools faster than the
development with native (already avail-able) tools?

Is it possible to develop usable applications that meet high
quality standards with RIML and the Consensus tools?

The answer to both questions is YES, if an iterative design
process is applied (prototyping, test, implementation, test,
final implementation) and if the developers consider all the
restrictions of the targeted devices already at the beginning
of a development project. In particular this result is
promising because RIML and the Consensus tools are only
prototypes, because the developers had rather little time to
become familiar with RIML and with the tools and because
the applications had to be developed under tight time
constrains.

The overall goal of the project was to find ways to lower
the costs for providing web content to a multitude of
primarily mobile devices while maintaining a high degree
of usability. The field trial basically confirmed that our
approach fulfils the promise. The field trial also provided us
with a wealth of “ lessons learned” , which are shared below.

Lessons learnt
Content control
The SMIL-based content control attributes provided with
RIML proved to be especially useful for controlling layout.
A typical application of content control is that an author
specifies a layout for mini-screen devices, portrait-screen
devices, PDAs, and PCs. A perfect browser or adaptation
system may not need such author provided layout
alternatives. However, today’s adaptation mechanisms,
including those provided by the Consensus project, cannot
derive a highly usable presentation from one layout only.
The W3C Device Independent Group is working on a
specification for Content Selection which is similar to
RIML, but includes XPATH-based notation expressing the
conditions. This underlines our finding that Content
Selection is a necessary ingredient for device-independent
authoring.

Pagination
It is probably not surprising that pagination was found to be
a useful feature, both for forms and for general content.
Pagination of tables is worth to be mentioned especially,
however. Static content can be paginated relatively easily,
but application-generated data is harder – the pagination
algorithm would then have to be built in to the application.
Such application-generated data frequently takes the form
of a table, so being able to automatically paginate tables
(and retain column headers on subsequent pages) is
essential.

Layout
The separation of content and layout in RIML proved to be
effective. For voice interaction, the layout is ignored and
only the content is “ read to the user” . Since layout is more
related to styling than to content, there is currently a
discussion in the Device Independence group of the W3C
whether layout should be rather expressed by a set of new
CSS directives instead of adding XML mark up to
XHTML.

In order to effectively separate content and layout, both
should be loosely coupled. This also aids the cooperation of
content author and layout designer. While the method of
referring content to layout regions was sufficient for our
example applications, in hindsight this type of coupling is
too tight and a more flexible one should be employed. An
intriguing possibility would be to use separate bind
elements that refer to content using XPath expressions,
similar to those in XForms.

We were not able to test the promising concept of “grid”
within the course of the project anymore - a layout
container which expresses a preference for arrangement of
content, but leaves the eventual arrangement to the
interpreter (adaptation engine or browser). For example,
content could be arranged vertically for portrait type
screens and horizontally for landscape screens. In many
cases a grid layout would make it unnecessary to provide
different layouts for different screen types.

XForms Event Support
In order to support as many different devices as possible,
one cannot require too much from the client devices
regarding the supported mark up. In particular it cannot be
assumed that scripting is always available, since scripting
support considerably increases the browser’s footprint. This
limits the possibilities for XForms support when using a
server-side XForms processor. While the server-side
approach is still feasible, some XForms features cannot be
fully supported, especially events. Even for those features
that can be implemented on server side, the long latency in
mobile networks would severely reduce usability. Consider
the classic credit card example, where input fields for credit
card information are dynamic and appear only once credit
card has been chosen as the method of payment. When
using a server-side XForms processor and a GPRS data
connection, there would be a very noticeable delay between
selecting the credit card option and the appearance of the
fields for credit card information.

Nevertheless, in field trials authors lamented the lack of
event support. They would have liked to be able to e.g.
instantly react when the user selects a particular choice
from a drop-down list, which is the common case when
using HTML forms. In general, any advanced user interface
functionality requires some sort of event support.

Strong typing
The usability of XForms in an environment with a multitude
of client device types depends to a large extent on how well
implementations support different data types, especially for
voice interfaces. For example, consider the date data type.
As long as validation is done correctly, a fully conformant
XForms client can still use the standard string input field
for entering a date, requiring the user even to enter the
separator characters himself. If only this minimal support
for date input is provided, using a phone keypad to enter the
date will result in a poor user experience. A better
implementation will let the user enter the day, month and

year into separate fields, and really good one will provide a
specialized calendar tool for selecting a date.

Good input optimization based on data types is crucial for
mobile devices. Not only the input facilities are more
limited (such as a phone keypad), but they are frequently
used in situations (e.g. while walking) where the user
cannot spare his full attention for the application. These
usage scenarios are particularly unforgiving of suboptimal
user interfaces.

Voice interfaces are a special case. Current state-of-the-art
speaker-independent speech recognition systems aimed for
the use over telephone lines cannot interpret arbitrary
speech; instead, the system has to know the possible input
alternatives in advance. The set of possible input
alternatives and their semantics is called a grammar
(loosely defined). A grammar must be provided for each
and every input control in a form, if a voice interface is to
be used. However, if the data type for the input control is
known, a grammar can be provided by the system
automatically. For example, if the data type is date, a
grammar might include words such as “January” ,
“ tomorrow” , “ first” , etc.

Processing chain
Modelling the RIML adaptation engine as a chain of
processors (a common way of modelling XML processing)
allowed us to separate concerns like content selection,
pagination and mark up mapping. This separation kept the
complexity at a manageable level. However, in order to
paginate XForms, pagination and XForms processing had to
be integrated to some degree, and this resulted in one of the
most complex modules of the prototype implementation.

Advanced pagination algorithms
As mentioned earlier, pagination is very useful. However,
while conceptually simple, there are severe difficulties in
implementing a good pagination algorithm when a range of
different mark ups can be produced. Essentially, the
pagination algorithm needs to know how much screen real
estate a certain string of RIML content will take, once it has
been converted to target mark up. This is obviously a highly
non-trivial calculation, and the exact answer depends
actually on the browser implementation of the client. The
Consensus prototype implementation provided a very
simple algorithm that essentially counted characters. Even
this simplified pagination provided useful results, but
sometimes fine-tuning of content was necessary to make the
pagination work right. A more advanced algorithm that
would have taken the properties of different mark up
languages and tags better into account would have removed
the need for fine-tuning. As such an algorithm would
essentially be an expert system for the rendering behaviour
of different mark up languages, it was not possible to
develop it in the scope of the Consensus project.

Input data issues
A server-side XForms processor converts XForms to forms
in the target mark up, such as HTML or WML (outbound
data). It also converts name-value pairs in the submitted
form data (inbound data) to XML, which is then sent to the
application. Mark up mapping is the process that does the
aforementioned conversions. A mark up mapper should be
able to process both outbound and inbound data. In
Consensus only the former was possible, and a standard
form data submission protocol had to be followed by all
mappers. This meant, among other things, that each
instance data item had to map to exactly one form control in
the target mark up (as the submission protocol implicitly
assumed this). This limitation, however, made it impossible
to do a good date input. The instance data had one item of
type date (as it should). By default it is mapped to a single,
free-form text input field, which is not exactly good
usability. Optimally, this would have been mapped to three
input controls, one for day, month and year each, possibly
using selection lists. However, this would only have been
possible with a mapper that would also have been able to
convert the inbound data, mapping the three form data
items to one instance data item. Another possibility would
be a calendar tool, but it would have to be implemented
wholly on server side (without scripting).

Voice
Our experiences in the trial were that voice browsers were
not standardized enough yet to make it possible to provide a
single VoiceXML mapping. Rather, separate mappings
were provided for different voice browsers. Furthermore,
mapping generic XForms forms to voice is not possible as
the technology does not yet support free-form input (i.e. the
basic input field without any typing) with speaker-
independent voice recognition. The current design requires
the inclusion of grammars for each form. However, when a
data type is known, a grammar could often be automatically
provided for it, as we noted earlier. In some cases though,
the application must always provide the grammar. For
example, in a phonebook application the grammar for the
name input field is the set of names in the phonebook,
which obviously must be provided by the application.

Conclusions
The Consensus project addressed the problem of content
authoring for a large range of devices in a comprehensive
way. We defined not only a language profile based on
newest standards, but also usability guidelines which were
partially implemented in a matching adaptation engine. The
project concluded with a field trial in which we tested the
language profile and its implementation with a real
corporate application and real employees, proving the
feasibility of the approach. The field trials showed that
applications developed with RIML can be very usable with
a range of devices. However, achieving good usability
required an iterative design process (prototype, test,
redesign, test, final design) just as it would for any

application. RIML is not a silver bullet for developing
applications with a good usability in one shot; rather it
reduces the burden for achieving good usability over a
range of devices by solving many well-known usability
problems on the language/platform level.

In summary, the single-source authoring approach is
feasible at least for data-driven applications such as
enterprise web applications, and it clearly shows promise
for reducing the cost of producing device-independent
applications.

REFERENCES
1. Web Accessibility Initiative, http://www.w3.org/WAI/
2. Bickmore, T.W.: Digestor: Device-independent Access to

the World Wide Web, Proceedings of 6th International
WWW Conference (1997)

3. Schilit, B.N., Trevor, J., Hilbert, D., Koh, T.K.: m-Links:
An Infrastructure for Very Small Internet Devices.
Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking. Rome, Italy, (2001)
122-131

4. Puerta, A., Eisenstein, J.: XIML: A Common
Representation for Interaction Data,
www.ximl.org/documents/XIMLBasicPaperES.pdf

5. User Interface Markup Language, http://www.uiml.org
6. Eisenstein, J. et al.: Applying Model-Based Techniques to

the Development of UIs for Mobile Computers, Proc. of the
Conf. on Intelligent User Interfaces, Santa Fe, NM, USA,
(2001)

7. Consensus Project Website, http://www.consensus-
online.org

8. W3C’s Device Independence Working Group,
http://www.w3.org/2001/di/Group/

9. McCarron, S., et al (eds): XHTML2, W3C Working Draft 5
August 2002, work in progress,
http://www.w3.org/TR/xhtml2/

10. Dubinko, M., Klotz, L. L., Merrick, R., Raman, T. V.:
XForms 1.0, W3C Recommendation 14. October 2003,
http://www.w3.org/MarkUp/Forms/

11. Hoschka, P. (eds): Synchronized Multimedia Integration
Language (SMIL) 1.0 Specification,
http://www.w3.org/TR/1998/REC-smil-19980615 (1998)

12. Adler, S. et al: Extensible Stylesheet Language (XSL),
Version 1.0, http://www.w3.org/TR/xsl/

13. Lie, H. W., Bigelow, J. (eds): CSS3 Paged Media
Module, work in progress,http://www.w3.org/TR/css3-page/

14. W3C Cascading Style Sheets, www.w3.org/Style/CSS/
15. CSS Media Queries, http://www.w3.org/TR/2002/CR-css3-

mediaqueries-20020708/
16. XHTML + Voice Profile 1.0,

http://www.w3.org/TR/xhtml+voice/
17. Bigelow, J., XHTML-Print, http://www.w3.org/TR/xhtml-

print
18. Hirose, S., Kondo, G., "Application of Dharma, a

Framework for Web Applications for Pervasive Terminals,
to HTML Transforming Proxy Servers", IPSJ 59th Annual
Convention (1999).

19. Lawrence Bergman, PIMA: A Model for Developing
Pervasive Applications, IBM TJ Watson Research Center

20. Banavar, G. et al: An Application Model for Pervasive
Computing, Proceedings of the Mobicom 2000

Figures

Figure 1: Layout and Pagination Example - Device Class 4 - Communicator-like Device

<riml:layout eccda:minScreenSize="490x165" eccdc:deviceClassOneOf="DeviceClass4">

 <riml:row riml:id="main-row">

 <riml:frame riml:id="menu-frame" riml:paginate="false" />

 <riml:column riml:id="main-col">

 <riml:frame riml:id="content-frame" riml:paginate="true" />

 <riml:frame riml:id="nav-frame" riml:paginate="false" />

 </riml:column>

 </riml:row>

</riml:layout>

content-frame

nav-frame

column - main-col

row - main-row

menu-frame

content-frame

nav-frame

column - main-col

row - main-row

menu-frame

Figure 2: Layout and Pagination Example - Device Class 2 - Series 60-like Device

<riml:layout eccdc:deviceClassOneOf="DeviceClass2">

 <riml:column riml:id="main-col" >

 <riml:frame riml:id="menu-frame" riml:paginate="false" />

 <riml:frame riml:id="content-frame" riml:paginate="true" />

 <riml:frame riml:id="nav-frame" riml:paginate="false" />

 </riml:column>

</riml:layout>

column – main-col

menu-frame

content-frame

nav-frame

column – main-col

menu-frame

content-frame

nav-frame

<section id="navi" riml:frameId="nav-frame">

 <riml:navigation>

 <p class="Navigation">

 <riml:navigation-links riml:scope="content-frame" riml:links="previous"
 riml:linksValue="relative-order"/>

 <riml:navigation-links riml:scope="content-frame" riml:links="next"
 riml:linksValue="relative-order"/>

 </p>

 </riml:navigation>

</section>

Dynamically generated multi-modal application interfaces
- position paper -

Stefan Kost
TU Dresden, HTWK Leipzig

st kost@gmx.de

ABSTRACT
This work approaches dynamic multi-modal application in-
terfaces from a new point of view. The ongoing diversifica-
tion of the user base and technology lays the foundation for
the need of an holistic adaption infrastructure. Only design-
ing individual adaption methods is not sufficient anymore.
Providing such an infrastructure along with an open refer-
ence implementation is the objective of the Generalized In-
terface ToolKit (GITK) project. The software can generate,
adapt and exchange interfaces at runtime. It works on var-
ious platforms and comes with several interface renderers.
The solution is based on XML technology and defines an
own markup language called Generalized Interface Markup
Language (GIML).

Author Keywords
adaptive systems, adaptable systems, dynamic multi-modal
application interfaces, UIMS

INTRODUCTION
In the last years a new development took place in our world.
This work refers to it asdiversification. It shows as two
separate effects:

• ”technification” of all areas in life
Humans are outnumbered by technical devices already or
real soon! Already these days it is nearly unavoidable to
get in touch with technology. Therefore technology must
be made accessible to everyone, everywhere and at every
time not just physically.

• ”computerization” of devices
Many technical devices are more often multi-purpose ap-
pliance like computers. They have facilities for interaction
and share basic common tasks.

So the challenge is to enable all the technology to all the
people. This leads to a multi-dimensional adaption prob-
lem. The presumption that can be made here is, that software
needs to adapt much more than it already does. Adaptation
needs to work in a media-neutral fashion. It should be un-

derstood as a continuous process and not as something that
happens once.

Interaction
This work deals with interfaces (see section Interfaces later
in this article). Interfaces exist for the purpose of allowing
interaction.

DEFINITION 0.1 (INTERACTION). Interaction is the pro-
cess of two or more systems exchanging data to perform a
task.

Participants of an interaction are calledinteraction partners
or interactors. An interactor is a system with a variety of
input and output channels. Each of these channels can sub-
mit data or stimuli of a certain type (like e.g. sound , visu-
als or touch). These submissions are subject to interpreta-
tion by the receiving system. The sum of the bandwidth

Interaction
Partner

Interaction
Partner

Interaction Channel Input Port

Output Port

Figure 1: undisturbed interaction scenario

of the interaction channels defines thepotential interaction
capabilitiesof the system. These potential capabilities can
only be used in the optimal case, where no obstacles hinder
the interaction. The environment has such a blocking effect.
Therefore theeffective interaction capabilitiesare what re-
mains after the varying blocking effect of the environment
has been taken into account. [Stary, 1996, Dix et al., 1997]
It is obvious that the chances for successfully establishing

enough links for an efficient interaction are not very good in
the case shown in figure2.
This work focuses on human-computer interaction and computer-
computer interaction. To assure effective interaction, adap-
tion is needed. For human-computer interaction it is desir-
able that the computer adapts to the needs of the human in-
teraction partner. Using adaptive interfaces in the fields of

Interaction
Partner

User

Interaction
Partner

Application

Interaction Channel Input Port

Output Port

Environ-
ment

Blocked Channel

Available Channel

Figure 2: interaction scenario with environmental influence

computer-computer interaction allows to easily reuse an ap-
plication in a different environment.

Adaption
Adaption is a key concept in this work, but also in the real
world. Therefore a definition for the context of this work is
required.

DEFINITION 0.2 (ADAPTION). Adaption is the process
of changing an object so that it complies to given require-
ments.

One conclusion from this definition is that the object needs
to be adaptable at all. It needs to offer different modes of
operation that can be matched with the requirements. There
are two kinds of adaption:

• passive adaptionor adaptable system= system will be
manually adapted by an external entity

• active adaption or adaptive system= system adapts it-
self automatically

[Fink et al., 1996]
Adapting an object needs knowledge about what changes are
necessary for a desired effect. The overall knowledge re-
garding to adaption can be broken down on the base of single
aspects.

DEFINITION 0.3 (ADAPTION METHOD). An adaption re-
garding to one single aspect of the adaption object is the
application of an adaption method. The method describes
which changes are needed for specific requirements.

The design of a good adaption method for human users re-
quires knowledge from fields like cognitive science and psy-
chology.
As presumed earlier in this article software needs to adapt.
More precisely the interfaces are theobjectsto be adapted.
The adaption process is controlled by parameters, theadap-
tion requirements. In the case of this work these require-
ments areadaption profilesand consist ofenvironment pro-
filesanduser profiles.

DEFINITION 0.4 (USER PROFILE). The user profile de-
scribes the adaption requirements of the user and consists of

the following parts:

• the interaction capabilitiesof the user as a communica-
tion partner. Interaction capabilities are a compound of
the sensorical and motorical capabilities.

• the interests and preferencesof the user relating to the
style of the interaction.

• the knowledge and competenceof the user regarding to
the task.

Defining an individual user profile is calleduser modeling.
[Fink et al., 1997]

DEFINITION 0.5 (ENVIRONMENT PROFILE). The envi-
ronment profile describes a filter that applies to the capabil-
ities part of the user profile. It temporarily restricts or even
blocks certain interaction capabilities of the user.

While the user profile can be seen as an object with nearly
static properties, the environmental profile needs to be con-
sidered as highly dynamic.
To adapt an interface usually multiple adaption methods need
to be applied. It sounds sensible to define anadaption in-
frastructurethat handles the application of adaption meth-
ods. Designing such an infrastructure requires engineering
skills from the area of computer science. Therefore the sepa-
ration into adaption methods and adaption infrastructure re-
flects the relation to different areas in science.
Figure3 graphically shows the relation of the previously de-
fined terms for the scenario of human-computer interaction.
Finally a short summary can be given:

Interaction Partner
Application
Adaption Object

Interaction Partner
User

Environment

Aspect to adaptenvironmental Loadpotential Capabillity

Adaption
Method

Adaption
Method

Adaption
Infrastructure

perform Adaption

control Adaption

stpada

setucexe

Adaption
Profile

observes

Figure 3: schematics of adaption and involved components

• the users’ potential capabilities plus the current environ-
ment form the adaption profile

• the adaption profile controls the adaption process

• the adaption infrastructure provides means to read the pro-
file and to choose and execute the respective adaption method

• the adaption method performs the adaption of one aspect
of the application interface according to the requirements
given by the adaption profile

[Stary, 1996, Dix et al., 1997]

Interfaces
DEFINITION 0.6 (INTERFACE). An interface provides

well defined access to functionality of an object from out-
side. It appears as a layer between two parties and aids
their interaction.

In [Phanouriou, 2000b] an interface is separated into four
aspects:

• structure: the organization of interface objects

• content: resources used in the interfaces such as label
texts and shortcut metaphors

• style: the presentation of interface objects

• behavior: defines the action to be performed on interac-
tion with the interface objects

The application needs to provide structure, behavior and con-
tent. The presentation and choice of the content (e.g. for
i18n) is dependent on the modality of the interface and the
user profile. Therefore these aspects will be chosen by the
adaption infrastructure. Finally style is an aspect that should
be provided and handled by the adaption infrastructure.

Interface models
In the past various models for decoupled interface architec-
tures have been suggested. A general criticism on models
such as Seeheim, Arch, MVC and PAC is, that they aim to
model adaptive systems, but do not represent the adaption
process as such. These models only decouple components,
but lack a definition of how adaption is driven (how to cou-
ple the right component-instances at run-time). Seeheim and
Arch span a series of components between user and applica-
tion, neglecting that there is an environmental influence af-
fecting the interaction and that a user might carry out several
tasks synchronously. In the past, when the models such as
Seeheim and Arch have been defined, these two effects were
hard to take into account for technical reasons or were less
important. This has changed in the present. [Pfaff, 1985,
various contributors, 1992]

Existing approaches
The goals of this work are similar to those of other projects.
A big share of them either became dormant (AUIML) or
seemingly have been discontinued (XIML). Another group
of projects focuses on adaptive hypermedia applications. These
projects usually develop adaption methods for their purpose
and then an infrastructure to drive them. Furthermore there
are solutions such a UIML and XUL which are active. XUL
focuses on graphical interfaces only. It mainly serves as a
operation system portability layer. Interfaces generated by
UIML and XUL can not change their modality at runtime.
With UIML the developer needs to specify all target inter-
face variants that should be available later. Both languages
use XML as a ”input file-format”. [Phanouriou, 2000a, Hy-
att, 2000]. Finally some projects are quite similar like W3C
XForms, but started in parallel or later as this work. XForms
maintains separate XML documents for content and inter-
face [Dubinko et al., 2003]. All approaches mentioned above
have in common that they do not aim to provide a system,

where interfaces can be adapted or even exchanged at run-
time.

Aim of this the GITK project
The previous sections motivated that it is useful to distin-
guish between theadaption infrastructureandadaption meth-
ods. They further showed that an adaption has a multi-dimen-
sional nature. Therefore a holistic approach to adaption is
needed. Applications using this technology would then be
adaptable, as they will use a pure functional interface de-
scription as an input and leave the generation of a concrete
interface to the system.
In parallel more research is required in user modeling to de-
fine rich user profiles that can control the adaption process.
This would turn the adaptable systems into adaptive systems.
This work focuses on providing a fundamental adaption in-
frastructure, with a strong decoupling of application logic
and interface presentation. On top of that a limited num-
ber of adaption methods will be implemented as a proof-of-
concept. However it is not the objective of this project to
develop new adaption methods, nor evaluating them.

THESIS
This work will show, that:

THESIS 0.1. By limiting the presentational complexity a
much greater universality can be achieved.

THESIS 0.2. There is no reason for adaptive solutions to
mainly concentrate on graphical presentation.

THESIS 0.3. It is possible and even desirable to separate
style related description from functional interface descrip-
tion.

THESIS 0.4. An interface can be generated, without the
application needing to provide adaption profiles for differ-
ent targets. In other words: even adaption methods can be
generalized.

THESIS 0.5. It is possible and preferable to always have
a default behavior, that can be overridden by adaption, in-
stead of only relying on the adaption.

THESIS 0.6. A solution can be based on many standard-
ized and well established technologies. In fact it can glue
many specific solutions together, which already exist.

THESIS 0.7. Beside humans an application can be an end-
user as well and therewith benefit from an adaptive solution.

THESIS 0.8. Adaptive technology is necessary for every-
one and not just for minorities (like elderly or disabled peo-
ple).

SOLUTION
The solution presented in this work is called Generalized In-
terface ToolKit (GITK) and consists of three parts:

• an architecture related to the arch model that fits with the
formerly defined adaption structure

• a domain independent markup-language that is called Gen-
eralized Interface Markup Language (GIML)

• a domain independent interface object hierarchy that is
based on a canonical interface object naming scheme

Libgitk

API

Core

Wrapper

Transform.
Plugins

Application

Rendering
Plugins

PerlJavaC++

PerlJavaC++C

Defs PrefsI18n

Gtk+
Graphics

Mouse/Keyb.

Text
Text

Keyboard

Web
Graphics

Mouse/Keyb.

Domain

Figure 4: GITK architecture

The architecture part as shown in figure4 has been imple-
mented as a multi-layered software system. As a major dif-
ference to approaches like UIML, GITK not requires domain
specific adaption of interfaces. The required domain spe-
cific knowledge is captured in the design of the rendering
component. This sounds like a more practical approach as
the application developer usually not has the knowledge and
resources to cover all possible target domains. When design-
ing a rendering component specialists can be included in the
development team. The architecture presented here, can be
extended, to allow applications to provide hints to the do-
main specific adaption on demand. This would be necessary
when a generic solution is not enough.
A second key difference is that the XML interface descrip-
tion is used as an active dialog model. That means that the
adaption processing heavily relies on XML technology such
as XSLT, XPath and XML Namespaces. The advantage of
this is, that there is no discontinuity in the use of technology
that is processing the model in the transformation pipeline
(see figure5). The pipeline itself is maintained by the core
library. This includes construction of a pipeline for a spe-
cific renderer, executing it and synchronizing both ends. At
run-time the application feeds a dialog description into the
pipeline. This serves as a structure onto which all variable
aspects of an interface are overlaid. Then the core library ini-
tially applies all transformations to build the dialog descrip-
tion that the renderer understands. Each step of the pipeline
adds or reconfigures aspects of the interface towards the re-

Profile

XSL

Rendering Plugin

Libgitk

Domain independent

Domain dependent

Application

Profile

XSL

Dialog
description

GIML (XML)

Profile

XSL

Profile

XSL

Common
Transformation

Presentational
Transformation

Dialog
Interpreter

Profile

XSL

Profile

XSL

Figure 5: GITK processing pipeline

quirements of the user. When the user works with the in-
terface, all state changes such as navigation and data-entry
are written back to the XML dialog model by the renderer
(at the renderers end of the pipeline) and are synchronized
with the applications end of the pipeline by the core library.
This mechanism decouples the application and the interface
instance even at runtime.
GIML is defined by a document type definition (DTD). This
is currently being exchanged with W3C Schema. The markup
language uses namespaces to separate the various aspects of
dialogs (see section Interfaces) and namespaces do not work
well with DTDs.
All interface objects are identified by a type. The type hier-
archy uses only functional names. Thereby a ”push button”
becomes an ”action”, as when used e.g. in the voice domain
a ”push button” is not a meaningful concept. This abstrac-
tion layer allows each renderer to associate a domain depen-
dent representation with the domain independent name.
Figure6 shows an example dialog definition. One can see
that the GIML is relative terse. It is important to note that
the example only shows the input document. The application
adds dynamic aspects like behavior at run-time by using the
ore library API. The GITK software package comes with an
introspection mechanism to look inside the XML pipeline at
run-time.
This work comes with a free reference implementation. It is

available as an active open-source project athttp://gitk.source-
forge.net. The system is light-weight and portable. It is de-
veloped mostly in C and requires only a few libraries like
glib and libxml2. It has been successfully tested on several
Unix/Linux and Windows systems. The project consists of
a core package, various renderers (text, gtk, opengl, phone,
...) and a set of examples. The core package comes with a

http://gitk.sourceforge.net
http://gitk.sourceforge.net

<?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>
<!DOCTYPE giml SYSTEM ” h t t p : / / g i t k . s o u r c e f o r g e . n e t / g iml . d td ”>
<!−− $ I d : g i t k H e l l o U s e r m a i n . xml . in , v 1 . 7 2 0 0 4 / 0 4 / 0 1 1 2: 17 :27 e n s o n i c Exp$
∗ @f i l e g i t k H e l l o U s e r m a i n . xml
∗ @author S t e f a n Kost<enson ic@users. s f . net>
∗ @date Thu Jan1 7 1 1: 22 :38 2002
∗
∗ @brie f main d i a l o g f o r g i t k H e l l o U s e r. c
∗ @ingroup g i t k e x a m p l e s
∗
−−>
<giml xmlns=” h t t p : / / g i t k . s o u r c e f o r g e . n e t / ”

xmlns :dc =” h t t p : / / p u r l . o rg / dc / e l e men ts / 1 . 1 / ”
xm lns : i 18n =” h t t p : / / apache . org / cocoon / i18n / 2 . 0 ”>

<d ia l og>
<meta>

<d c : t i t l e><i 1 8 n : t e x t>query u s e r i d e n t i t y</ i 1 8 n : t e x t></ d c : t i t l e>
</meta>
<d i a l o g w i d g e t s>

<d i a l o g w i d g e t i d =”Okay”/>
<d i a l o g w i d g e t i d =” Cance l ”/>

</d i a l o g w i d g e t s>
<widgetgroup>

<l a b e l><i 1 8 n : t e x t>i d e n t i t y</ i 1 8 n : t e x t></ l a b e l>
<widge t i d =”UserName” t ype =” c h a r a c t e r i n p u ta l p h a b e t i c ”>

<l a b e l><i 1 8 n : t e x t>u s e r name</ i 1 8 n : t e x t></ l a b e l>
<d i s a b l e d>t r u e</d i s a b l e d>

</w idget>
<widge t i d =” Sex ” t ype =” o p t i o n c h o i c es i n g l e c o m p a c t ”>

<l a b e l><i 1 8 n : t e x t>sex</ i 1 8 n : t e x t></ l a b e l>
<o p t i o n s>

<op t ion><i 1 8 n : t e x t>male</ i 1 8 n : t e x t></op t i on>
<op t ion><i 1 8 n : t e x t>f ema le</ i 1 8 n : t e x t></op t i on>

</o p t i o n s>
</w idget>

</w idgetgroup>
</d i a l og>

</giml>

Figure 6: GIML dialog example

browser based management console, that allows to inspect
the internals of the system and to simulate changes in the
adaption requirements. [Kost, 2003]

CONCLUSION
The article started with a theoretical foundation. The terms
related to interaction and adaption have been precisely de-
fined. The problem analysis showed that the adaption prob-
lem has a multi-dimensional nature. This finding even more
justified the separate exploration ofadaption infrastructure
andadaption methods. Then the objective of adaption - the
interface - has been covered.
In the previous section a new adaption infrastructure that is
able to integrate all kinds of adaption methods has been in-
troduced. It is important to note that not only the XML lan-
guage as such solves the problem of an abstract interface
architecture. The interplay of language and architecture is
what provides a flexible system. GITK reaches this goal
by its pipeline concept and the intensive use of XML tech-
nology. The presented solution meets the requirements to
design a holistic approach towards adaption. The included
examples show the adaptability and the partial adaptiveness.
The choice of examples outlines the kind of applications the
GITK approach is useful for - administration tools, infor-
mation management (CMS,PIM) software - all applications
where a highly available clean interface matters more than a
polished interfaces presentation. A second target group are
rapid prototyping systems, as for these GITK can act as a
interface prototype run-time environment. It would be in-
teresting to research if a GITK interface description can be
generated from an UMLi (Unified Modeling Language for
Interactive Applications) model or even from a XML schema
definition [Norman W. Paton and Paulo Pinheiro da Silva,
2002, Sperberg-McQueen and Thompson, 2004].
The current state of the project mainly affects software de-
velopment and not yet the user, as it focuses on the adaption
infrastructure and not the adaption methods.

FUTURE
To turn adaptable applications into adaptive systemsuser
profilesare needed. User modeling and the ongoing tech-
nological development contribute towards that. Furthermore
future devices will have moresensorsto read from the envi-
ronment.
Integrating such dynamic profiles and related adaption meth-
ods into the GITK infrastructure will extend the solution to-
wards more kinds of applications.

REFERENCES
Dix, A. J., Finlay, K. E., Abowd, G. D., and Beale, R.
(1997).Human-Computer Interaction. Prentice Hall,
Pearson Education Limmited.

Dubinko, M., Klotz, L. L., Merrick, R., and Raman, T. V.
(14 October 2003). Xforms 1.0.
http://www.w3.org/TR/xforms/ ,
http://www.w3.org/MarkUp/Forms/.

Fink, J., Kobsa, A., and Nill, A. (1996). Useroriented
adaptivity and adaptability in the avanti project.
http://citeseer.ist.psu.edu/fink96useroriented.html.

Fink, J., Kobsa, A., and Nill, A. (1997). Adaptable and
adaptive information access for all users, including the
disabled and the elderly. InProceedings of the Sixth
International Conference UM97. Springer Verlag, Wien,
New York.

Hyatt, D. (30 March 2000). The xptoolkit architecture.
http://www.mozilla.org/xpfe/xptoolkit/index.html.

Kost, S. (2000-2003). Gitk - generalized interface toolkit.
http://gitk.sf.net.

Norman W. Paton and Paulo Pinheiro da Silva (February
27, 2002). Umli - unified modeling language for
interactive applications.
http://www.cs.man.ac.uk/img/umli/index.html.

Pfaff, G. E. (1985). User interface management systems.
In EurographicSeminars. Springer Verlag, Berlin
Heidelberg New York Tokyo.

Phanouriou, C. (1999,2000a). Uiml - user interface
markup language. http://uiml.org/.

Phanouriou, C. (2000b).UIML: A Device-Independent
User Interface Markup Language. PhD thesis, Virginia
Polytechnic Institute and State University.

Sperberg-McQueen, C. M. and Thompson, H. (17 Mar
2004). Xml schema. http://www.w3c.org/XML/Schema.

Stary, C. (1996).Interaktive Systeme. Friedr. Vieweg &
Sohn Verlagsgesellschaft mbH.

various contributors (1992). A metamodel for the runtime
architecture of an interactive system.UIMS Tool
Developers Workshop 1992: In SIGCHI Bulletin. 24(1).
pp 32-37.

Extensibility and Reusability of Web User Interface
Components using XICL

Jair C Leite, Lirisnei Gomes de Sousa
DIMAp - Department of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte
 Natal, RN, 59078-970, Brazil

+55 84 215 3814
jair@dimap.ufrn.br, lirisnei@lcc.ufrn.br

ABSTRACT
Markup languages have proven successful and relatively
easy at describing application user interfaces (UI).
However, the most of markup user interface languages
does not provide extensibility and reusability facilities to
the creation of new and more powerful Web (browser-
based) User Interface components. Developing new UI
components using DHTML is a very hard work because of
the lack of standardized models and application
programming interfaces. Our work proposes XICL, an
extensible XML-based markup language to user interface
developments. XICL is a UI description language that
provides extensibility and reusability of UI components.
Using the XICL, it is possible to describe user interfaces
and to develop new UI components to browser-based
software applications. This language also defines a
description format and a semantic model that standardizes
UI components development to promote reusability and
extensibility. The output of the XICL translation is a
DHTML code – the W3C recommended technologies –
that can run in every browser that follows that
recommendation.

Keywords
User Interface Description Languages, User Interface
Component, XML-based User interface.

INTRODUCTION
Web systems are characterized to have a browser-based
user interface (UI). The WWW Consortium recommended
technologies to user interface development – HTML,
Cascading Style Sheets (CSS), Document Object Model
(DOM) and ECMAScript-based languages – provides a
very limited set of browser-based UI components [16,9].
To improve the interactivity of these systems it is necessary
to develop new UI components that provide more advanced
interaction techniques such as pop-up menus, dialog boxes,
toolbars, toolboxes and others. There are some approaches

to the development of UI components, but they require
specifics plug-ins and/or operating platforms. In order to
achieve more portability, the UI could be developed using
the W3C recommended technologies. However, it is a very
hard work to develop new UI components using DHTML
because of the lack of an underlying component model and
standardized APIs (Application Programming Interfaces).
There are also no reusability and extensibility mechanisms
to component composition.
There are a lot of XML-based languages to describe user
interfaces with many different purposes. Most of them,
such as UIML [11], XIML [12] and AUIML [4], were
designed to generate a concrete user interface that runs in
multiples target platforms – desktop PC, notebooks,
mobiles phones, PDA, pocket PC, etc. They are concerned
in how a UI component can be generated to run in many
target platforms, but not in allowing programmers to
develop new UI components.
XICL (eXtensible user Interface Component Language) is
an extensible XML-based markup language to describe
Web UIs and components. UI components are developed in
XICL from HTML elements and others XICL elements. It
was designed to provide a standardized way to UI
component-based development and to promote reusability
and extensibility. The extension mechanism allows the
definition of new XICL components by modifying the
structure, properties, methods or events of previous
components to generate more powerful ones. The new
component, the XICL component, can be reused in
different situations, improving development productivity.
In the next section, we discuss approaches to Web UI
Component development. Section 3 presents the XICL
using a simple example. Section 4 discusses the XICL in
the context of others XML-based User Interface
Description Languages (UIDLs) and we illustrate it
comparing with a UIML version of the example of section
3. The last section presents our conclusions.

APPROACHES TO DEVELOP WEB UI COMPONENTS
In the component-based software development (CBSD)
paradigm, applications are composed from diverse software
components (building blocks) [15]. This kind of binary
component could be integrated at both design and run time

to compose a software application independently of the
programming language and computing platform.
Our concept of Web UI component is not that of a binary
software component used by the CBSD community. By
Web UI component we mean a software object that
interacts with the user via a browser. It is rendered by the
browser and responds to user events dispatched by the
browser. Using the DHTML technologies, a Web UI
interface component could be created by a HTML tag or as
a DOM object using a script language. We are concerned
only with components at this level of development,
regardless of their binary implementation details.
There are several approaches to the development of Web
UI components. The main software industry solutions to
the development of UI components are the Microsoft IE
WebControls, the Macromedia Flash MX 2004 and the Sun
Java Applets. The Internet Explorer WebControls are a
collection of ASP.NET server controls that generate
HTML content that renders in all commonly used
browsers [10]. A TreeView, ToolBar, MultiPage, and
TabControl user interface are included in the Internet
Explorer WebControls. There are others solution from
Microsoft but they are also based on the .NET technologies
that are specific for Windows platform.
The Macromedia Flash MX 2004 is a proprietary and
closed technology to the development of Web UI
Components [2]. It provides a Component Architecture that
uses the ActionScript 2 language to define Classes and
Interfaces for Web components. However, the development
of the components and their execution in the resulting user
interface requires a proprietary plug-in that is not available
to all operating platforms.
In the Java-based technologies, UI components could be
developed in the Java language using some specific
development framework and API (e.g. Java Swing). The
running time UI components are Java Applets and they
require the Java Virtual Machine to be executed in a
browser. Applets are a powerful and flexible solution but
they are limited to the Java development and operating
platforms.

XML-based UI Component Languages
There are several markup languages to binary component
composition. The Component Markup Language (CoML)
is an XML application for binary composing software
components [5]. The Bean Markup Language (BML) is an
XML-based component configuration or wiring language
customized for the JavaBean component model [1].
Our approach is different from traditional composition
languages (script or markup) that act as only a glue to
binary software components. XICL is a language to define
non-binary UI components and also to describe the UI by
structuring XICL and HTML elements.
There are also others XML-based languages used in Web
development. WSUI attempts to standardize components as

web services by defining a web component model that
couples network services with interaction and presentation
information [3]. The components can be dynamically
embedded into container applications at run-time by non-
developers. WSUI is programming language independent
and uses standards-based technologies. It also supports
multiple target display languages but the components are
implemented entirely via server-side technologies.
WSUI and XICL have different purposes but can be
integrated in a complementary way. WSUI defines web
services in the server-side that should implement some
computation. The user interaction input and output is done
using standard http protocol. The output of a WSUI
component could be in several target languages such as
WML or HTML. In this way, it could be also a XICL
output.
MXML, the Macromedia Flex Markup Language, is an
XML-based markup language that is based on two popular
development paradigms: markup languages and object-
oriented programming languages [7]. MXML includes a
richer set of UI components such as DataGrid, Tree,
TabNavigator, Accordion, and Menu. MXML could be
used to declaratively lay out these components. But the
most significant difference is that MXML-defined user
interfaces are rendered by Flash Player. To describe the
behavior of the UI it is necessary to code event handlers
using the ActionScript programming language.
ActionScript is an object-oriented programming language
that handles the user interactions with the application. It is
also possible to extend the MXML tags and create new
components. So, the main limitation of MXML as a
markup component language is that the UI components
only run in the specific Macromedia Flash technology.

THE XICL LANGUAGE
XICL is a language do describe a user interface and also to
describe new UI components by reusing and extending
previous ones. XICL is based on HTML elements but it
could be adapted to be based on any component technology
that maintains the same underlying conceptual model. Its
syntax is based on XML, HTML and ECMAScript and also
follows the Document Object Model. Our intention is to
provide a familiar syntax to Web system developer.
The development process using XICL is described as
follows and the figure 1 illustrates it. The developer
specifies the UI in XICL using the text editor. He/she could
reuse a XICL component from the library. The interpreter
analyzes the XICL code and generates the resulting UI in
DHTML code. The resulting DHTML code could run in all
browsers that follow W3C recommendations.
New UI components are described in XICL using HTML
elements and XICL components by reuse and extension
mechanisms. A XICL component could be composed of
reusable components stored in a library (XICL Lib) or it
can extend an existing component modifying specific
properties.

The XICL Studio is a basic environment composed of an
editor, a library of components (XICL Lib) and the XICL
interpreter. Using the editor it is possible to edit the
description of the user interfaces or the components. When
editing components the developer should store its source
code in the XICL lib to be reused in future user interfaces.

Figure 1: Developing UI using XICL

The layout of the user interface is defined as in normal
DHTML user interface using CSS to associate style to
XICL elements.
The reuse of XICL components can be done by importing a
component from XICL Lib. The developer specifies the
component by using the import statement. The interpreter
joins the source code of the component to that of user
interface and translates them into a DHTML code.

The XICL Interpreter
The XICL Interpreter is a free and open source tool that
was developed to translate the XICL source code into
XHTML source code.
The XICL Interpreter has three modules, namely the
XICLTranslator, the ComponentManager and the
JSSourceManager. The XICLTranslator is responsible to
control the others modules and to require its services. It
receives the original XICL document to be translated and
return a HTML source. The components are processed by
the ComponentManager module. It verifies if there are
errors in the components description. The
JSSourceManager works concurrently to the translation
process generating the final JavaScript source code. The
Javascript code controls the UI dynamics.
The translation process has three steps: document
validation, components importation and document

translation. The XICL Interpreter receives the file path and
then it takes the document file and verifies if it is a valid
XML document. If the document is not valid, the process
stops. If the document is valid, the ComponentManager
module imports the remote components. If the main
document imports the lib1 and lib1 imports the lib2, the
ComponentManager will import every lib1 components
and the every lib2 components. If the lib2 has a component
with the same name of any component in the lib1, the
component from the lib2 will not be imported. For
instance, if the lib1 has a component called WINDOW and
the lib2 also have a component with the same name, only
the former WINDOW component will be imported from
the lib1.
After the document validation the XICL Interpreter can
start the translation. This step consists in translating
recursively all elements that are on the interface description
document.

A Simple Example
To illustrate the characteristics of XICL we show a simple
example of a UI description that reuses XICL components.
The example is very simple and could be created only with
DHTML. However, the example shows how the reuse and
extension mechanisms simplify the development process.
They provide a simple description. We choose this example
also to compare it with other XML-based UIDL.

Figure 2: The UI view

The figure 2 shows the UI rendered in a browser. The
interface has two text boxes that allows the user to enter
information (First Name and Last Name) and two buttons
(Submit and Clear). When the user click on the Submit
button a dialog box (Confirm) is displayed asking if the
user wants to open a new window.

The XICL description
A XICL description can contain zero or more component
descriptions and one or zero interface descriptions. It also
can make reference to components that were defined in
another XICL documents. In our example, the XICL code
is described in two files, one for the UI description and
other for the component description. However, it is
possible to describe both the user interface and its
components in a single file.

DHTML
interface

developer

editor

interpreter

XICL
Lib

XICL Studio

userDHTML
interface

developer

editor

interpreter

XICL
Lib

XICL Studio

editor

interpreter

XICL
Lib

XICL Studio

user

Figure 3: The XICL description of the UI

The UI description is shown in figure 3. The UI is
developed making use of a XICL component defined in the
lib1.xml file and imported with the IMPORT element (line
2, figure 3). The INTERFACE element is used to describe
the user interface structure and behavior. The HTML
components and its associated events are specified using
the XHTML syntax (a XICL document is a XML
document). Our example has four static components that
are instances of TEXT, SUBMIT and RESET. It has also a
dynamic component, the ConfirmBox. The ConfirmBox
is invisible in the beginning of the execution and is just
displayed when triggered by the onConfirm event that call
the window.open() function. The onConfirm event occurs
when the user clicks on the SUBMIT component. The
ConfirmBox is shown in figure 4. If the user clicks on the
Cancel button the component will be closed.
The definition of the components TEXT, SUBMIT,
RESET and ConfirmBox. is shown in figure 5. A
component description has four parts: properties, structure,
events and methods. The description begins with the
<COMPONENT name=…> tag informing the component
name and ends with the </COMPONENT> tag. The name
attribute is used to reserve a namespace to the component
so the component can be used on the interface description
only putting its name between tag marks (e.g., <TEXT>).

Figure 4: The ConfirmBox

The TEXT component is defined as a composition of a
simple text (the label) with a HTML input element. The
STRUCTURE element (line 4, figure 5) structures them
with a span (line 5, figure 5) element that joins the variable
label ($label) with the input element. The value of label is
assigned when the instance of the component is used in the
interface definition (lines 8 and 11, figure 3). In our
example we do not use the property element just to keep it
simple.
The EVENT element of the SUBMIT component (line 13,
figure 5) defines the onclick event that is triggered by the
submit button element and calls a function that should be
defined when the component is used. The figure 3, line 13,
shows an instance of the SUBMIT component that calls the
mess1.show() when the user clicks on it.
Components can be defined extending others components.
In order to do it we use the extends attribute. The
ConfirmBox component is a window that shows a
confirmation message to the user. This component is
similar to the JavaScript Confirm and was developed just
to demonstrate the language characteristics. The
ConfirmBox extends the Window component, which must
be described in the library.
The structure element can contain any HTML or XICL
components. In the ConfirmBox component, there are
TABLE, FORM and INPUT elements. It is also possible to
describe a generic component that can be replaced by any
other one (<COMPONENT ref="ANY"/>, figure 5, line 26),
which should be defined when it is instantiated. The
instance of the ConfirmBox component in figure 3 defines
the string “This link…” to replace the generic component
(figure 3, line 17). This is a powerful characteristic of
XICL allowing the structure of the component to be
defined just when used.

1. <XICL>
2. <IMPORT href=”lib1.xml”>
3.
4. <INTERFACE>
5. <p/>
6. Enter your name
7. <p/>
8. <TEXT id=”t1” length="8" label="First Name: " />
9. <p/>
10. <p/>
11. <TEXT id=”t2”length="8" label="Last Name: " />
12. <p/>
13. <SUBMIT VALUE="Submit"

onclick="mess1.show()"/>
14. <RESET VALUE="Clear"/>
15.
16. <ConfirmBox id="mess1" title="New Window"

top="200" left="200"
onConfirm="window.open('http://uiml.org',
'newWin');" >

17. This link opens another window. Would you like
to proceed?

18. </ConfirmBox>
19.
20. </INTERFACE>
21. </XICL>

Figure 5: The description of XICL Components

COMPARING XICL WITH OTHER XML-BASED UIDLS
XICL has different purposes than those of others XML-
based UIDLs, such as UIML [11], XIML [12], AUIML [4],
XUL [6] and Xforms [8]. XICL is an implementation level
language. Unlike XIML and AUIML, XICL does not
concern with providing an abstract description of the user
interface. Like XICL, XUL is an implementation level
language but it requires some technologies introduced by
Mozilla. Xforms is also an implementation level language,
but its goal is different from that of XICL. It provides
advanced capabilities to HTML form elements. For a more
detailed discussion see [14]. In the next question we
compare XICL and UIML for an illustrative purpose.
None of these languages provides the extensibility and
reusability of browser-based UI components. By browser-
based we mean DHTML-based. Because of this
characteristic, it is possible to develop all kind of user
interfaces that could be done with DHTML. However,
XICL provides the benefits of component-based software
such as better productivity and maintainability.
We now review XICL using the criteria proposed by
Souchon and Vanderdockt [13]. In that work, the authors
propose two groups of criteria to compare the
characteristics of XML-compliant UIDLs. We now discuss
XICL properties according to those criteria as a way to
compare it with the others languages.
In the first group, the language is compared by the
following criteria:
• Component models: The aspects of the UI that can be

specified in the description - task model, domain model,
presentation model and dialog model. XICL provides
constructs to describe the static aspects of the
presentation using the structure and properties elements
and the dialog aspects using a combination of event,
method and script elements.

• Methodology: Different approaches to specify and
model user interface. XICL is an implementation level
language. It helps developer to implement the UI faster
and easier than with only DHTML.

• Tools support: The languages and tools that support
specification, translation and rendering. A XICL
description can be produced using a plain text editor or
an XML editor. An interpreter implemented in Java
translates from XICL to the final DHTML code.

• Supported languages: The programming language to
which the language can be translated. The current version
of the XICL only can be translated to DHTML.

• Platforms: The computing platform on which the
language can be interpreted and rendered. The XICL
interpreter is implemented in Java and it generates a
DHTML code. The UI generated from a XICL
description can be rendered in any standard browser.

1. <XICL>
2. <IMPORT href=”lib2.xml”>
3. <COMPONENT name="TEXT">
4. <STRUCTURE >
5. $label<input type="submit"

maxlength="$length" >
6. </STRUCTURE>
7. </COMPONENT>
8. <COMPONENT name="SUBMIT">
9. <STRUCTURE >
10. $label<input type="submit"

maxlength="$length" name=”subBnt”>
11. </STRUCTURE>
12. <EVENTS>
13. <EVENT name=”onclick”

trigger=”subBtn.onclick” function=”$onclick” >
14. <EVENTS>
15. </COMPONENT>
16. <COMPONENT name="RESET">
17. <STRUCTURE >
18. $label<input type="submit"

maxlength="$length">
19. </STRUCTURE>
20. </COMPONENT>
21. <COMPONENT name="ConfirmBox"

extends="Window">
22. <STRUCTURE>
23. <table width="100%" border="0" >
24. <form>
25. <tr>
26. <COMPONENT ref="ANY"/>
27. </tr>
28. <tr>
29. <td align="right">
30. <input type="button" name="bOk"

value=" Yes " />
31. </td>
32. <td align="left" >
33. <input type="button" name="bCanc"

value=" No " onclick=" $id.close();" />
34. </td>
35. </tr>
36. </form>
37. </table>
38. </STRUCTURE>
39.
40. <EVENTS>
41. <EVENT name="onConfirm"

trigger="bOk.onclick;” function="$onConfirm;
$id.close();"/>

42. <EVENT name="onCancel"
trigger="bCanc.onclick;"
function="$onCancel;$id.close();"/>

43. </EVENTS>
44. </COMPONENT>
45. <XICL>

• Target: The context of use - the user model, the
environment model and the platform model. XICL is
multi-platform. The current version of XICL was
originally designed to the context of browser-based UI.

The second group of criteria’s is the following:
• Abstraction level: The different levels to describe the

UI. XICL describes the user interface on the instance
level.

• Amount of tags: XICL has just 13 core tags to
describe the interface and components. New tags
corresponding to new UI elements could be developed
since that one of the main goals of the language is the
extensibility of components.

• Expressivity of the language: Capability to express
concepts and the usability to manipulate them. We have
no formal evaluation of those aspects in XICL. However,
since XICL has extensibility mechanisms, it has a high
expressivity. It also follows the HTML syntax so we
believe it is easy to learn and use.

• Openness of the language: The possibility to extend
concepts or tags. As we said before, extensibility
mechanism is one of the important aspects of XICL.

• Coverage of concepts: The concepts a language
introduces. XICL work with two main concrete-level
concepts: interface and component. A component is
defined using the concepts of structure, property, event
and methods. No abstract-level concept is covered by
XICL.

A UIML DESCRIPTION OF THE EXAMPLE
The example presented in the last section was extracted
from the UIML1 (User Interface Markup Language) web
site. Our intention was to compare how a simple example
written in an XML-based UIDL could be written in XICL
in order to analyze some basic differences. We choose
UIML because it is one of the first XML-based UIDL and
there are many available tools and examples.
UIML has a different purpose than XICL. It was designed
to allow platform independent UI development – hardware
devices, operating systems and programming languages
[11]. From a unique specification in UIML it is possible to
generate User Interfaces to several platforms in different
programming languages. The main purpose of XICL is to
provide extensibility and reusability mechanisms.
However, in our example we can see the UIML and XICL
descriptions generating the same final user interface. So we
consider that they were used with a similar purpose.
Figure 6 shows the UIML description of the UI in figure 2
to be rendered by a browser. The UIML code is divided

1 The example is available at the UIML Web site

http://www.harmonia.com/products/html/examples/script
s.htm.

into three parts, which are represented by three elements.
The structure element describes the UI visual structure. It
is composed by HTML and UIML elements such as SPAN,
TEXT, SUBMIT and RESET. The UIML elements are pre-
defined and cannot be created by the developer. This is one
of the main differences of XICL to UIML and other
UIDLs.

Figure 6: UIML code

1. <structure>
2. <Html>
3. <Body>
4. <Form>
5. <P/>
6.
7. <P/>
8.
9. <Text maxlength="8" />
10. <P/>
11. <P/>
12.
13. <Text maxlength="8"/>
14. <P/>
15. <Submit id="SubmitButton"

value="Submit"/>
16. <Reset value="Clear"/>
17. </Form>
18. </Body>
19. </Html>
20. </structure>
21.
22. <behavior>
23. <rule>
24. <condition>
25. <event class="OnClick" part-

name="SubmitButton"/>
 </condition>

26.
 <action>

27. <call name="form.submit"/>
28. </action>
29. </rule>
30. </behavior>
31. <peers>
32. <presentation ... />
33. <logic>
34. <d-component id=”form”... >
35. <d-method id="submit" ... >
36. <script type="text/Javascript">
37. function checkBeforeProceeding () {

if
(confirm("This link opens another
window. Would you like to proceed?"))
window.open('http://uiml.org', 'newWin'); }

38. </script>
 </d-method>

39. </d-component>
40. </logic>
41. </peers>

The UI dynamics is described by the behavior element. It
consists of rules that associate condition to actions. The
rule describes an action that is called when the event
occurs. The peers element has the logic element that is
used to describe the script function and to associate it with
a submit method (d-method) of the form element (d-
component).
Considering that in this example the languages were used
to generate the same user interface, we analyzed the main
differences between them.
• UIML is a good device independent language. It is

possible to generate a concrete user interface to several
targets using the same description. XICL does not have
these characteristics.

• UIML has a limited set of pre-defined components to
describe a user interface. So, the developer should reuse
just these pre-defined components. In XICL, the
components are described and stored in a library so it can
be reused later. Applying the reuse mechanism, the UI
description source code in XICL (figure 3) is shorter than
in UIML (figure 6).

• XICL also allows the definition of new components
that can contain (is composed of) a generic component
that is defined just when reused to describe a user
interface. UIML has no such mechanism.

• The description of the UI behavior is described in a
similar way. They are based in the definition of events
and methods. The methods are script functions that are
triggered by events. The main difference is that in XICL
is possible to define new events when defining new UI
components.

• The UI presentation details in UIML are described by
the presentation element whereas in XICL it is described
using CSS.

CONCLUSION
Developers need always to construct new UI components
to achieve more system usability. The W3C recommends
the use of DHTML technologies in the client-side user
interface to increase application portability. However,
DHTML only provides a few basic UI components such as
button, drop-down menu, text fields, check-box, radio-
button, etc. and developing them in DHTML is a very hard
work. Also, there are no models and standards to the
development of DHTML UI components.
XICL is a language to User Interface development by
specifying its structure and behavior in an abstract level
than using only DHTML. The main objective of XICL is to
provide mechanisms to the creation of new Web UI
components by extending and reusing others components.
XICL is based on the XML syntax and it follows a basic
component model to provide a well-structure code. The
XICL code smoothly integrates with DHTML technologies
promoting interoperability.

UI development in XICL can be done using the XICL
Studio environment. This basic environment provides a
simple editor, a library of components and an interpreter
that translate XICL code into DHTML code. The final user
interface is implemented using DHTML technologies and
can run in common Web browsers.
XICL does not address the purpose of device independence
as many others UIDLs. However, it is possible to translate
XICL to others implementation languages providing it with
multi-target capability. It is necessary to develop an
interpreter to translate XICL to a specific target language.
For instance, we could develop a WML interpreter to allow
XICL to be used in the description of mobile user
interfaces or a Java Swing interpreter to generate a GUI.
It is also possible to integrate XICL with others UIDLs
since they are specified using XML. We could define the
elements of an UIDL in XICL. We could also provide the
XICL mechanism to define new components in others
UIDLs.
XICL is based on HTML elements but it could be adapted
to be based on any component technology maintaining the
same underlying conceptual model.

ACKNOWLEDGMENTS
We thank PRH22-ANP/MCT for the partial financial
support to this work.

REFERENCES
1.AlphaWorks, Bean Markup Language, Update:

November 24, 1999, http://www.alphaworks.ibm.com
/formula/bml

2.Anbar, Waleed Exploring Version 2 of the Macromedia
Flash MX 2004 Component Architecture,
http://www.macromedia.com/devnet/mx/flash/articles/,
accessed in September 20, 2003.

3.Anuff, E., Chaston, M., Moses, D & Kropp, A. Web
Service User Interface (WSUI) 1.0 Working Draft – 31
October 2001. http://www.wsui.org/doc/20011031/WD-
wsui-20011031.html

4.Azevedo, Pedro; Merrick, Roland & Roberts Dave,
OVID to AUIML - User-Oriented Interface Modelling
TUPIS'2000, Towards a UML Profile for Interactive
Systems Development. York, UK, 2000.

5.Birngruber: A Software Composition Language and Its
Implementation in: Bjorner Dines, Broy Manfred,
Zamulin Alexandre V. (Eds.): Perspectives of System
Informatics (PSI 2001), July 2001, LNCS 2244, Springer,
2001, pp. 519-529.

6.Boswell, David; King, Brian; Oeschger, Ian; Collins,
Pete and Murphy Eric. Introduction to XUL. In Creating
Applications with Mozilla. O'Reilly, September 2002.

7.Coenraets, C. An Overview of MXML, the Macromedia
Flex Markup Language. Available at
http://www.macromedia.com/devnet/flex/articles/paradig
m.html, accessed in February 21 2004.

8.Dubinko, Micah; Klotz Jr., Leigh, Merrick, Roland; and
Raman, T. V. XForms 1.0 W3C Working Draft 21-
August-2002. in http://www.w3.org/TR/xforms/ accessed
in March 22, 2003.

9.Goodman, D. Dynamic HTML – The Definitive
Reference. O’Reilly, 1998.

10.Microsoft Corporation. “Internet Explorer WebControls
Reference”. The MSDN Library, in
http://msdn.microsoft.com/library/, accessed in March
22, 2003.

11.Phanouriou, Constantinos "UIML: A Device-
Independent User Interface Markup Language." Phd
Thesis, Virginia Polytechnic Institute, Blackburg,
Virginia, 2002.

12.Puerta, Angel and Eisenstein, Jacob “XIML: A
Universal Language for User Interfaces”, Reale Software,
2001. in http://www.ximl.org/, accessed in March 22,
2003.

13.Souchon, N., Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages.
Preliminary Proc. of 10th Int. Conf. on Design,
Specification, and Verification of Interactive Systems
DSV-IS2003 (Madeira, 4-6 June 2003), Jorge, J., Nunes,
N.J., Falcão e Cunha, J. (Eds.), Lecture Notes in
Computer Science, Vol. 2844, Springer-Verlag, Berlin,
2003.

14.Sousa, L.G, Leite, J.C XICL - An Extensible Markup
Language for Developing User Interface and
Components. Proceedings of the fourth International
Conference of Computer-Aided Design of User Interface
CADUI’04. Island of Madeira, Portugal, 2004.

15.Szyperski Clemens: Component Software - Beyond
Object-Oriented Programming. Addison-Wesley. 1997.

16.W3C, in http://www.w3c.org, accessed in February 11,
2004.

Abstract User Interface Markup Language

Roland A. Merrick
IBM Ease of Use

P.O. Box 31, Birmingham Road
Warwick, CV34 5JL, UK

roland@uk.ibm.com

Brian Wood
IBM Server Group

Rochester MN, USA
bowood@us.ibm.com

William Krebs
IBM Software Group

RTP, NC, USA
krebsw@us.ibm.com

ABSTRACT
The ever increasing variety of devices available to users
means that it is not economically viable to develop tailored
user interfaces for each device. This paper describes an
XML Vocabulary, Abstract User Interface Markup
Language (AUIML), which has been developed to allow
some classes of interactive application to be developed
once and adapted to run on a wide variety of device types.
The language does not take the lowest common
denominator approach while using abstraction to describe
the user interface. This allows device dependent adaptation
to take place when rendering.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features – abstract data types, constraints, control
structures .

H.5.2 [Information Systems]: User Interfaces – Graphical
User Interfaces, Interaction styles (e.g., commands, menus,
forms, direct manipulation).

Keywords
User interface, device independent, design, languages

INTRODUCTION

This paper describes an XML vocabulary, Abstract User
Interface Markup Language (AUIML), which has been
designed to allow the intent of interaction with a user to be
defined. This is in contrast to the conventional approach
that has focused on the appearance of the interaction in
terms of Graphical User Interface (GUI) widgets. This
"intent based" approach allows task designers to
concentrate on the semantics of the interactions without
having to concern themselves with which particular device
types that need to be supported.

AUIML allows for device independent encoding of
information needing to be exchanged between users and

systems. This information, and its structure including
validation rules, relationships, etc., can be encoded once,
independent of the target devices, and subsequently
rendered on different form factors using device dependent
rendering. The latter is accomplished with an AUIML
renderer on each device.

AUIML is a Model-View-Controller (MVC) language. An
AUIML renderer provides a view and controller model,
paired with the data model defined in the application’s
XML, to protect the application from any differences
between devices.

AUIML was also designed to satisfy related requirements
for internationalization and accessibility. The support for
these features are not described in detail in this paper but
were simple to accommodate within the intent based
approach taken.

This work originated from an IBM® internal project called
Druid [1] and was designed to simplify the development of
applications to perform system and user administration, and
hence supports quite sophisticated tasks. All of the
relatively simple “form type” applications are encompassed
by this work, such as those defined using HTML forms.

PROBLEM
The advent of Pervasive Computing has introduced a broad
spectrum of devices and form factors on which applications
can potentially run. While there has been some
convergence in recent years in technologies that can be
used to develop user interfaces for these devices, there are
still some significant differences. The platform specific
toolkits vary considerably. Web browsing technologies
have, to an extent, started to converge on an
HTML/XHTML variant, but they still have significant
differences and authors still tend to write separately for
each class of device.

Many users today use several different devices, such as
mobile phones, laptops, and hand held devices, each with
their own user interface and applications. It is the user who
must shoulder the burden of learning each, and maintaining
data that exists in different forms and formats on each
device. Obviously this is not ideal from the user standpoint,
since learning requirements increase from inconsistencies

and maintenance increases from data redundancies. These,
in turn, slow the rate of adoption of new technologies that
could benefit the user, and narrow the potential market for
new devices to early adopters and technologists.

From the development perspective, different challenges
exist. In the 1990's cross platform applications were quite
narrowly defined as running on at least two different
operating systems. This simple definition has applied to
both client and server based software.

Even with similar operating systems and similar hardware
platforms, it has proved difficult to develop software that
runs on more than one platform. One particular area of
difficulty is the support for the multitude of GUIs and the
APIs used to create them.

For certain classes of application this process has been
greatly simplified in recent years, first by the World Wide
Web and HTML, and subsequently by Java™ and its Write
Once Run Anywhere (WORA) promise. Unfortunately,
Write Once Run Anywhere did lot live up to its promise for
user interfaces. Each form factor has different input and
output technologies and devices. If screens exist, they
come in many different sizes. This has led to different user
interface requirements, and the necessity to develop unique
code for at least the user interface on each specific form
factor. This is not ideal from the developer standpoint, leads
to inconsistencies and increased development costs and
maintenance, and slows the delivery of new technologies to
the user.

From the viewpoint of technology companies, slower
adoption and increased costs increase the risk of new
developments and lower profit expectations. Because of
this, some promising technologies may never move from
research departments to development and manufacturing.
User companies do not gain the benefits of the new
technologies, postponing benefits which might otherwise
be realized sooner.

How does AUIML help?

AUIML is an XML vocabulary that has been designed to
allow the intent of user interaction to be defined. This is in
contrast to the conventional approach to user interface
design which has focused on appearance in terms of GUI
widgets. This intent based approach allows user interface
designers to concentrate on the semantics of the
interactions without having to concern themselves with
which particular device types need to be supported.

The intent based approach provides a great deal of
flexibility by allowing decisions on the most appropriate
presentation to be taken by the device dependent renderer.
For example, should a choice need to be made by a user, the
intent model will merely state the list of alternatives, a
default, and how many choices are allowed. This will allow

a device dependent renderer to exploit the resources
available on the device in the most effective manner.

Using AUIML, the same application can now be rendered
on Java Swing, web servlet, web portal, PDA, and WAP
devices. An example of a WAP-based cell phone rendering
is shown below.

History
A foundational requirement for AUIML was to support the
functionality already available in IBM’s system
management user interfaces. These interfaces were
originally written using the C++ language and its class
libraries on Microsoft Windows®.

While the widgets and functionality were rich, the
application code was not portable to other platforms. The
user interface leveraged features only available with the
platform widgets, so its user interface was not portable.

XML was also starting to come to fruition at this time, and
the IBM Rochester lab developed a new XML vocabulary,
named Panel Definition Markup Language (PDML), to help
build portable Java Swing applications quickly. Java
allowed an application’s code to easily move between
platforms while XML provided a language independent way
to persist the user interface definition.

XML provided a further benefit since it was easily tooled.
A user interface builder was created to automatically
generate the XML for a constructed user interface. PDML
developers could visually develop rich user interfaces
without knowledge of Java Swing or the other underlying
technologies being used. While this greatly increased
programmer productivity and code portability, PDML’s
design made it difficult to migrate to the web or pervasive
devices.

PDML used Java Swing controls and properties, which were
rich with features not available on other platforms. The
controls were placed at exact pixel locations on the panel,
which was inflexible for providing a meaningful panel to a
smaller screen on a pervasive device.

The data model and controller in PDML also had multiple
flaws preventing it from working on different devices. The
data model operated on Java Swing objects, which were not
available in pervasive or web environments. PDML
required model updates be displayed on the user interface
immediately, which is not always possible in pervasive and
web environments. Furthermore, it required user interface
events to be known to the application as soon as they
happened, which is difficult in a client-server application.
These requirements greatly restricted PDML’s flexibility in
moving to other devices.

Nevertheless, there existed hundreds of PDML panels that
needed to be used on web and pervasive devices with as
little impact to application code as possible. The panels
needed to lose little functionality when displaying on their
original device, while still remaining flexible enough to
display on various devices.

AUIML
AUIML is also an MVC XML language, but its view and
controller is delegated to different device dependent
renderers. Each renderer handles the presentation and user
interaction appropriate for its targeted device. The model is
common between all device dependent renderers and
protects the application code from the differences in the
devices. Because application code is written in Java and
AUIML, it is both platform and device independent.

Data Model
AUIML is focused more on the application’s intent rather
than its exact appearance. The XML vocabulary consists of
many simple data types and data structures to gather and
output data for the panel. AUIML does not require
presentation information to be specified since the device
specific renderers gather and output the data appropriately
for the device. These data types are basic types that can be
supported across all devices: string, number, date, time,
image, audio, and boolean. The presentation for each may
vary for the device, but the application using the data model
does need to be aware of this.

For instance, a restricted number input field in Java Swing
may display as a slider control where the user moves a
marker between the various possible values. The same
input field on the web or on a pervasive device may request
the input using a text entry field with a description of the
valid number range. In both cases, the renderer ensures the
input validates correctly before persisting it to the data
model. This prevents the application code from caring
about how the data is collected and also frees it from
ensuring the data is valid.

Data state and validation is controlled by properties on the
data type specifying whether the data is visible, read-only,
disabled, requires a value, or is constrained to a minimum or
maximum value or length.

AUIML also has data structures for trees, tables, choices,
and panel aggregations. Each of these is a collection of the
basic data types. A tree is a hierarchical collection of the
basic data types. A table is a tabular display of the basic
data types, and choices allow a selection of one or more
data type values. While a panel is a collection of basic
types, a panel aggregation is simply a collection of panels.

This focus on the data allows the intent of the application
to be provided without presentation information. Since the
intent lacks presentation details, it is portable between the
different form factors and devices.

All data objects bind to a Java Bean, which allows the
application to exchange data with the common data model.
The bound bean is notified at the appropriate time to load
and save its data and acts as both a data source and a data
store to the common data model.

The bean has the final say on whether the data is valid or
not. It is possible for user entered data to comply with all
validation guidelines known to the renderer, but the input
will not be valid when considered in the context of other
data. When this happens, the bound bean can reject the
data and the renderer will request the user to modify the
entry so it conforms.

Interaction
User interaction with the device is also abstracted. Events
may be raised when an input field is completed, a panel is
initially displayed, or the user requests an action through a
button or menu selection. In each of these cases, the
application code is notified of the event and can take
appropriate action.

Different device renderers may defer the activation of the
event until it is convenient. A web device may not be able
to immediately notify the application that data entry was
completed for a field. Instead, it must defer the notification
until another server request is made by the client.

Actions are events with a special meaning in AUIML. They
may signify that data entry is complete for the panel and
data should be persisted back to the data store. They may
also request help text, or signify that special action handling
code should be invoked. Regardless of their task, actions
are always invoked immediately within the application and
never deferred.

AUIML also supports automating events based on the
state of the data model. These events automatically take an
action upon data elements in the model when the user
changes data. The most common case is to disable or hide
data elements when another data element is selected or
unselected. The device can usually handle these special
events without ever executing application or server side
code. This allows the user interface to demonstrate
automatic behaviors based on the data model.

Presentation
Developers desire to create the richest user experience
possible for their targeted platforms. Each rendering device
has display capabilities and guidelines that cannot or
should not be matched by other rendering devices.
AUIML’s abstraction of the device rendering prevents the
developer from controlling the device’s presentation in a
way that may increase the usability of the application on
that platform.

For this reason, AUIML provides the application developer
some presentation flexibility by surfacing predefined
presentation attributes. Implementation of any particular
presentation attribute by a renderer is not guaranteed, but it
does allow the developer to signify their preferences for
data element presentation.

The properties are only preferences, as not all devices may
be capable of accommodating them. For instance, the
developer may request that a date data element be
presented as a calendar widget. This particular widget may
not be available on a pervasive device, so a simple entry
field would be displayed instead. Since data input
validation and event generation behave the same in both
cases, the application code does not need to know if the
presentation preference was followed.

The presentation attributes are specified in a format similar
to that already used for Cascading Style Sheets (CSS) and
are provided independently of the AUIML XML definition.
This independence allows different collections of attributes
to be used for the same XML definition and keeps
presentation specific attributes out of the data model.
When the application is translated to other languages, the
presentation attributes may be customized for each
language without negatively impacting the application or its
model.

Tools
AUIML can be easily generated with a visual XML builder,
much like PDML. The tooling will automatically create
beans bound to data objects and generate template code for
manipulating the data model. The user interface is built
using an embedded version of the Swing device renderer,
although other renderer types could be plugged in as well.

Properties in the tool are divided into two categories, data
and presentation. Presentation properties are discouraged
although they are made available if the developer has a
strong display preference.

The ability to tool the user interface XML rapidly decreases
the cost, time to develop, and maintenance of the user
interface. The AUIML tooling allows the user to preview
their work in each device renderer as they define the
interface. This provides affirmation that the intent of the
application is adequately migrating to the targeted device.

EXAMPLE
The following is a simple example of a panel and its
rendering in HTML

The above figure is generated from the following AUIML
XML definition. The XML defines a DATA-GROUP that
defines the container. Each control is represented by a base
data type, which has basic properties and a CAPTION. The
CAPTION element provides descriptive text for data
elements .

<AUIML VERSION="AUIML:1.2">
 <DATA-GROUP NAME="Name">
 <CAPTION>
 <META-TEXT>Person's complete name</META-
TEXT>
 </CAPTION>
 <STRING NAME="Title" ENUMERATION="OPEN">
 <CAPTION>
 <META-TEXT>Title</META-TEXT>
 </CAPTION>
 <VALID-VALUE NAME="Mr">
 <VALUE>Mr.</VALUE>
 </VALID-VALUE>
 <VALID-VALUE NAME="Mrs">
 <VALUE>Mrs.</VALUE>
 </VALID-VALUE>
 <VALID-VALUE NAME="Ms">
 <VALUE>Ms.</VALUE>
 </VALID-VALUE>
 <VALUE>Mr.</VALUE>
 </STRING>
 <STRING NAME="FirstName">
 <CAPTION>
 <META-TEXT>First Name</META-TEXT>
 </CAPTION>
 <VALUE>Roland</VALUE>
 </STRING>
 <STRING NAME="Initial" MAX-LENGTH="1">
 <CAPTION>
 <META-TEXT>Initial</META-TEXT>
 </CAPTION>
 <VALUE>A</VALUE>
 </STRING>
 <STRING NAME="LastName">

 <CAPTION>
 <META-TEXT>Last Name</META-TEXT>
 </CAPTION>
 <VALUE>Merrick</VALUE>
 </STRING>
 <ACTION NAME="OK" TYPE="COMPLETE">
 <CAPTION>
 <META-TEXT>OK</META-TEXT>
 </CAPTION>
 </ACTION>
 <ACTION NAME="Cancel" TYPE="CANCEL">
 <CAPTION>
 <META-TEXT>Cancel</META-TEXT>
 </CAPTION>
 </ACTION>
 </DATA-GROUP>
</AUIML>

AUIML Toolkit
AUIML has recently been released for trial usage on IBM’s
alphaWorks site [2]. The AUIML Toolkit includes the
previously mentioned AUIML Swing renderer and AUIML
HTML renderers. The AUIML HTML renderer can be used
in IBM Websphere® Application Server version 5 and
above.

The toolkit also contains a version of the AUIML HTML
renderer that will render AUIML in IBM Websphere® Portal
Server version 5. This version of the AUIML HTML
renderer has implemented portal interfaces to allow the
AUIML application to be hosted as a portlet. In every other
respect, it is the AUIML HTML renderer.

An Eclipse-based XML builder is also included in the
AUIML Toolkit. It provides What You See Is What You
Get (WYSIWYG) editing of the AUIML panels using the
AUIML Swing renderer. The AUIML panel must be
previewed to see its presentation in the AUIML HTML
renderer.

EXPERIENCES
Lessons were learned in many areas during the
development of AUIML and its renderers. While the user
interface definition is protected from differences between
the devices, the user interface implementation by the device
dependent renderers is not. Also, there are continual
tradeoffs between leveraging the capabilities of a single
device and keeping the programming model common
between all devices.

Common Denominators
Creating an XML vocabulary that applies equally well to all
devices usually requires a common denominator approach.
While this approach allows the vocabulary to move laterally
across the devices, it does not allow the application to
leverage the deep presentation capabilities of the device. In
order to maintain the presentation capabilities that PDML
provided, we required a property mechanism, similar to CSS,

which could be ignored by devices that did not support any
single presentation property.

Conversely, using the common denominator approach
without presentation customization can be a benefit. Less
customization of control appearance leads to more
consistent controls and behaviors across the interface and
across the platforms. For this reason, the AUIML tooling
and language does not require, or even encourage, the use
of presentation properties. The correct level of
customization is left to the user interface designer.

Renderer Consistency
The data model may be common between all devices, but
the device dependent renderers must fill and interact with
the data model in exactly the same way or the application
will fail. Even with behavior specifications and cross-
renderer communication, the various AUIML device
renderers sometimes behaved differently for data validation,
user messages, and program flow. While these were
program defects in the renderers, the problem deserves
special care and consideration for all interpreted user
interface XML languages.

Interaction levels on different devices differ greatly. A web
or pervasive device may not always be connected to the
application and may only communicate during request-
response cycles. This was the case for the AUIML HTML
device renderer and caused it to diverge from Swing in some
interaction behaviors.

User events in Swing could be applied to the model
immediately and the changes in the model would be
surfaced back to the user interface immediately. HTML
requires a queuing or delaying of interactions until the next
request-response cycle. If a model change was made on the
server, the client would not become aware of this change
until the next server request. Since the clients are
disconnected from the server, there is no guarantee there
will even be another request.

The AUIML HTML renderer queued events that did not
need to be issued immediately and queued all updates to
the user interface. The user could force these events to
happen immediately by pressing a button on the HTML
user interface. AUIML takes into account the interactivity
of different devices and will provide additional widgets
such as this button when necessary. This may add artifacts
to the user interface, but it allows a single application to run
across environments with less regard for interaction
differences.

Pervasive Devices and Small Form Factors
Tables and trees were the most difficult controls to render in
a constrained space for PDA and WAP devices. The
device dependent renderer chose to break down the
presentation of these data elements into index, row, and
record views. For example, the user can navigate through
grouped table rows using the numeric keys on a cell phone.

The rows are grouped into a set of row indices for
navigation as shown below.

When selecting a group of rows, the row index lists the key
text for that row. After choosing the desired row, the details
for that row are shown. Buttons are added by the device
dependent renderer to allow the user to move forward and
backwards in the navigation hierarchy.

Trees show nodes that contain child node elements. When
a node is selected, the child nodes are displayed. A
restriction for this renderer is that true model selection of
nodes is not allowed since the selection operation actually
maps to an expansion function.

XForms
The experience gained during the design of the language
and the development and deployment of the various
AUIML runtime environments provided valuable experience
for IBM to draw on in its participation in the World Wide
Web Consortium XForms [3] and Device Independence [4]
Working Groups.

A full comparison between AUIML and XForms [5] is not
appropriate in this paper but some similarities are apparent.
The use of abstract user interface widgets and offering the
user the opportunity to choose from a set of alternatives,
<CHOICE> in AUIML and <xforms:select> in XForms , is
one similarity. Abstract event handlers , <WHEN-
SELECTED> in AUIML and <xforms:action
ev:event=”xforms-select”> in XForms, is also similar
between the two technologies.

Significant differences exist, however. In AUIML there is an
implicit binding to the instance data as well as an explicit
binding using the BINDING attribute, but there is no

definition of how that binding works since that is
determined by the runtime. XForms has an explicit definition
of the instance data to which the user interface is bound.
XForms also builds on XML Schema [6] for its data typing
and augments it with XForms dynamic constraints. At the
time AUIML was defined, there was no XML Schema and
only DTDs were available. AUIML defined a small number
of primitive data types that could be used. Although
AUIML preceded XML Schema, its base types are very
close to the corresponding built-in primitive types. AUIML
also allowed dynamic constraints, properties such as the
minimum and maximum value of a number that can be
updated at run time. While there is no sophisticated
dynamic constraint language defined (XForms uses XPath
for this purpose), the application can access and update the
constraints. In the AUIML toolkit the application and data
model are written in Java, so a great deal of power is
available to the AUIML application developer.

SUMMARY
By encoding the user and system interactions independent
of the target platform, and standardizing these across
devices, AUIML provides the following benefits.

Users benefit from a single, consistent user experience.
Removing inconsistencies reduces learning time, not only
between applications but across multiple devices as well.
This, in turn, can enable accelerated deployment of new
applications on existing and new devices.

Developers only need to write the user interaction once,
instead of for each different device and form factor. This
reduces development time, cost, and maintenance. Since
applications work with a common data model, the
application remains unaware of its current device.

Application developers can provide presentation
preferences to leverage platform features that extend
beyond the basic data model. This flexibility allows a
developer to specify presentation features when they will
improve the application’s ease of use.

Since an application using the common data model is
abstracted from its device, it remains flexible to move to new
devices as they arrive in the future. Changes in user
interface technology can be immediately leveraged by all
AUIML applications as soon as a new renderer is created.
Instead of n-number of applications that need to be
migrated to new devices, only one renderer must be
migrated for all applications to leverage a new device.

In addition, AUIML can also facilitate future GUI standards
compliance. AUIML currently enforces user interface
standards for all applications on a device. Future standards
added to AUIML will automatically update all applications
on a device to the new standard.

The interpretation of the AUIML XML by various device
renderers provides AUIML applications with both platform
and device independence.

ACKNOWLEDGMENTS
We thank the AUIML development team and customers for
their work in evolving the platform as well as the team that
worked on the Druid and PDML projects that influenced the
design of AUIML.

IBM is a registered trademark of International Business
Machines Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft Windows is a registered trademark of Microsoft
Corporation in the United States, other countries, or both.

Websphere is a registered trademark of International
Business Machines Corporation in the United States, other
countries, or both.

REFERENCES
1. Defining User Interfaces in XML

http://www.posc.org/notes/sep99/sep99_rm.pdf

2. AUIML IBM alphaWorks web site. Available at
http://www.alphaworks.ibm.com/tech/auiml

3. W3C XForms WG http://www.w3.org/MarkUp/Forms/

4. W3C Device Independence WG
http://www.w3.org/2001/di/

5. Dubinko, M., Klotz, L. L., Merrick, R., Raman, T. V.:
XForms 1.0, W3C Recommendation 14. October 2003,
http://www.w3.org/MarkUp/Forms/

6. XML Schema Part 2: Datatypes
http://www.w3.org/TR/xmlschema-2/

USIXML: A User Interface Description Language for
Context-Sensitive User Interfaces

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon,
Murielle Florins, and Daniela Trevisan

Université catholique de Louvain (UCL) – School of Management (IAG)
Information Systems Research Unit (ISYS) – Belgian Lab. of Computer-Human Interaction (BCHI)

B-1348 Louvain-la-Neuve, Belgium
Phone: +32-10/478525 – Fax : +32-10/478324

{limbourg, vanderdonckt, michotte, bouillon, florins, trevisan}@isys.ucl.ac.be

ABSTRACT
This paper presents USIXML (USer Interface eXtensible Markup
Language), a User Interface Description Language aimed at de-
scribing user interfaces with various levels of details and abstrac-
tions, depending on the context of use. USIXML supports a fam-
ily of user interfaces such as, but not limited to: device-
independent, platform-independent, modality independent, and ul-
timately context-independent. This paper consequently details
how context-sensitive user interfaces may be specified and pro-
duced from the USIXML specifications. USIXML allows specify-
ing multiple models involved in user interface design such as:
task, domain, presentation, dialog, and context of use, which is in
turn decomposed into user, platform, and environment. These
models are structured according to the four layers of the Came-
leon framework: task & concepts, abstract user interface, concrete
user interface, and final user interface. To support relationships
between these models, a model for inter-model mapping is also
introduced that cover forward and reverse engineering as well as
translation from one context of use to another.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods (e.g., rapid prototyping, interviews, JAD).
D.2.2 [Software Engineering]: Design Tools and Techniques –
user interfaces. H.2.4 [Database Management]: Systems –
transaction processing. I.3.6 [Computer Graphics] Methodology
and Techniques – interaction techniques.

General Terms: Design, Languages, Human Factors.

Keywords: Computing platform, context-aware adaptation,
device independent, model-based approach, multi-platform, user
interface description language, user interface engineering.

1. INTRODUCTION
Since the dawn of the discipline of Human-Computer Interaction
(HCI), people have attempted to define many languages address-
ing different aspects of user interfaces (UIs). In particular, a lot of
effort has been devoted to introduce various UI Description Lan-
guages (UIDLs) with various objectives in mind:

- To introduce a UIDL as a specification language.
- To introduce a UIDL as a communication format.
- To introduce a UIDL to express portability in virtual toolkits.
- To support adaptation.
- To support computing-platform independence.
- To support context-sensitivity.
- To support different families of UIs such as multimodal UIs,

multimedia, hypermedia, etc.

The main goal of this paper is to define a UIDL that cumulates the

previous requirements into one single language. Such UIDLs may
pursue various goals:

- Ensuring portability of UIs from one computing platform to
another while preserving some consistency between [4] or
with the target computing platform [1,18].

- Capturing UI requirements for an abstract definition that re-
mains stable over time [1,5,19].

- Improving the reusability of UI design [11,25].
- Making one UI design for multiple devices, platforms, or ap-

pliances. This goal is often referred to as the device-, plat-
form- , or appliance-independence rendering [1,3,8,9,15,16].

- Supporting extensibility and adaptability of UI [10].
- Using a UI description to enable automated generation of UI

code [1,3,5,8,9,10,11,15,16,18,19,25].

On top of these goals are added to more goals that are considered
uncovered by ongoing initiatives:

- Making one UI design independently of any modality of in-
teraction (e.g., graphical UI, vocal UI, virtual UI, multimo-
dal,…) so that a design a this level may initiate more concrete
designs once a particular modality has been selected.

- Supporting the integration of any model used in the UI devel-
opment process, such as, but not limited to: the context of use,
the user, the platform, the environment, the devices used,…

- Expressing explicitly mappings between models and elements
when appropriate to address the mapping problem [8].

- Supporting the continuous and seamless manipulation of
models from the abstract level to the concrete levels, such as
in the Model-Driven Architecture (MDA) of the OMG Group.

- Expressing UIs at a given instant of usage so as to capture
relevant information to ensure runtime migration.

Reaching a UIDL that fully addresses all these requirements and
encompasses all the properties of interest of all these types of UIs
is certainly neither possible nor desirable. Therefore, this UIDL
pursues the goal of capturing the essential properties of interest
that turn out to be vital for specifying, describing, designing, and
developing such UIs. Consequently, this paper will present and
motivate the choices that have been made to drive the definition
of USIXML, a UIDL addressing the above requirements by defin-
ing models involved in this process. The remainder of this paper
is structured as follows: section 2 provides a state of the art in the
domain of UIDLs addressing partially or totally the above re-
quirements. Section 3 presents the structure of the USIXML lan-
guage by showing its scope that is wider than some existing
UIDLs. Section 4 defines the different models and mappings that
constitute USIXML. The original part of USIXML is emphasized
when appropriate. Section 5 concludes the paper by bringing up
the main benefits of USIXML with respect to other UIDLs.

2. RELATED WORK
It is worth to notice that many initiatives addressing the design of
UIs for multiple platforms almost resuscitated the problem of
UIDL that was for a time left forgotten after the question of port-
able UI has been achieved. Consequently, many initiatives for
solving the design of UIs for multiple computing platforms or
multiple contexts of use simultaneously consider a UIDL and
software based on this UIDL to produce various types of UIs.

The PIMA Project [11] aims at producing applications that are
device independent. A Platform Independent Application can be
created either by a design tool or by abstracting a concrete UI
thanks to the generalization process. Generalization is done by re-
verse engineering [6] the code of the UI. This process starts with
the detection of interaction elements. Secondly, the properties and
semantic information of these elements can be inferred. A special-
ized engine with a device profile then creates another application
specialized for a particular device.

TERESA [18] produces different UIs for multiple computing plat-
form from a general task model which is progressively refined for
the different platforms. Then, various presentation and dialogues
techniques are used to map the general specifications expressed
into XHTML code for each platform such as web, PocketPC, and
mobile phones. The TERESA (Transformation Environment for in-
teRactivE Systems representAtions) exploits a UIDL called
TERESAXML that supports several types of transformations such
as: task model into presentation task sets, task model into abstract
UI, abstract UI to concrete UI, generation of the final UI. In [25],
a very interesting algorithm is provided that maps a hierarchical
task model to a presentation model that explicitly takes into ac-
count platform characteristics such as screen resolution.

UIML [1] is also a UIDL intended to support the development of
UIs for multiple computing platforms by introducing a description
that is platform-independent that will be further expanded with
peers once a target platform has been chosen. Recently, the TIDE
tool introduced transformations from a basic task model.

XIML [8,19] is a UIDL containing mechanisms for specifying
any type of model, of model element, and relationships between.
Although some predefined models and relationships exist, one can
expand the existing set to fit a particular context of use. XIML has
been used in MANNA for platform adaptation [8], in VAQUITA to
support reverse engineering [3], and in Envir3D to transform a
graphical UI into a virtual Ui thanks to mapping tables [3].

WSXL [9] covers UI and Web services that are attached to these
UIs. eNode (http://www.enode.com) is also an interesting UIDL
in the sense that the dialog part is precisely described, especially
at the widget level where abstract events allow a precise defini-
tion of any widget behavior. SeescoaXML [21] is the base UIDL
exploited in the Seescoa project to support the production of UIs
for multiple platforms and the run-time migration of the full UI at
run-time. From the same specifications, multiple UIs can be gen-
erated for multiple computing platforms.

Many UIDLs exist today that cover similar and different require-
ments, some of them having been reviewed in [20]. USIXML, the
UIDL that is presented in this paper, is similar to the above
UIDLs in the sense that is also cover multiples aspects supported
by these languages, but it is especially intended for context-
sensitive UIs.

3. STRUCTURE OF USIXML
USIXML is structured according to the four basic levels of ab-
stractions defined in the Cameleon reference framework [4] that is
intended to express the UI development life cycle for context-
sensitive interactive applications (Fig. 1).

Final User Interface

Context of use #1 Context of use #2

Concrete User Interface

Abstract User Interface

Task & Concepts

Final User Interface

Concrete User Interface

Abstract User Interface

Task & Concepts

Final User Interface

Context of use #1 Context of use #2

Concrete User Interface

Abstract User Interface

Task & Concepts

Final User Interface

Concrete User Interface

Abstract User Interface

Task & Concepts

Figure 1. The four basic levels of the Cameleon reference framework [8].

At the bottom is the Final User Interface (FUI) related to any UI
running on a particular computing platform either by interpreta-
tion (e.g., through a Web browser) or by execution (e.g., after
compilation of code in an interactive development environment).

A Concrete User Interface (CUI) abstracts a FUI into a UI defini-
tion that is independent of any computing platform. Although a
CUI makes explicit the final look and feel of a FUI, it is still a
mockup that runs only within a particular environment. A CUI
can also be considered as a reification of a AUI at the upper level
and an abstraction of the FUI with respect to the platform.

An Abstract User Interface (AUI) abstract a CUI into a UI defini-
tion that is independent of any modality of interaction (e.g.,
graphical interaction, vocal interaction, speech synthesis and rec-
ognition, video-based interaction, virtual, augmented or mixed re-
ality). An AUI can also be considered as a canonical expression
of the rendering of the domain concepts and tasks in a way that is
independent from any modality of interaction. For example, in
SEGUIA [24], an AUI is a collection of related presentation units.
The relations between the presentation units are inferred from the
task relationships expressed at the upper level (task and concepts).
An AUI is considered as an abstraction of a CUI with respect to
modality.

At the top of the framework is the Task & Concepts level where
the interactive task to be carried out by the end user is defined ac-
cording to her viewpoint, along with the various objects that are
manipulated by these tasks. These objects are considered as in-
stances of classes representing the concepts manipulated.

A transient model [4] is an intermediate model that is required
only momentarily during the development life cycle of a FUI.
Task-oriented descriptions, AUI and CUI are typical examples of
transient models.

On the other hand, ontological models [4] are meta-models that
are independent of any domain of human activity (e.g., medical
domain, surgery, and accounting) and any interactive system.
Roughly speaking, they identify key dimensions for addressing a
given UI design problem. When instantiated, they give rise to ar-
chetypal models [4] that are models dependent of an interactive
system for a given domain of human activity.

There are three ontological models for context-sensitivity [4]:

- Domain models that support the description of the concepts
and user tasks relative to a domain;

- Context models that characterize the context of use in terms
of user, platform, and environment. The context model is con-
sequently further decomposed into a user model, a platform
model, and an environment model. At least one of these sub-
models should be present to build a context model.

- Adaptation models that specify how a UI can be adapted after
a change of the context of use that is significant enough to
trigger

4. CONTENTS OF USIXML
4.1 Task
A task model describes the various tasks to be carried out by a
user in interaction with an interactive system. After a comparison
of several task modeling technique, an extended version of Con-
curTaskTree (CTT) [17] has been chosen to represent user’s tasks
and their logical and temporal ordering. A task model is therefore
composed of tasks and task relationships.

Tasks are, notably, described with a name, a type (user’s, interac-
tive, system and abstract [17]), a task frequency (relative fre-
quency of execution of a task. Task frequency is evaluated on a
scale from 1 to 5. A value of 1 meaning that a task has a low fre-
quency, 5 meaning that a task is very frequent), a task importance
(relative importance of a task with respect to main user’s goals.
As task frequency, task importance is evaluated on a scale from 1
to 5. A value of 1 means that a task has a low frequency, 5 means
that a task is very frequent). Frequency and importance are inter-
esting attributes when it comes to adapt a UI to a constraining
context imposing a UI system to be pruned. Finally, an action
type is based on a taxonomy introduced to better qualify tasks the
leave of a task tree. This taxonomy, strongly inspired by [12]
(Table 1), is twofold: a verb describes the type of activity at hand;
an expression designates the type of object on which the action is
operated. By combining these two dimensions a fine derivation of
interaction objects supposed to support a task becomes possible.

Task relationships are of two main types: decomposition enables
to represent the hierarchical structure a task tree hierarchical
structure, temporal allows specifying a temporal relationship be-
tween sibling tasks of a task tree. LOTOS operators are used here.

Action Item
Start/go, stop/exit, select, choose,
create, delete, modify, move, du-
plicate, toggle, view, monitor

Operation, container, col-
lection, element

Table 1. Taxonomy of action types for tasks.

4.2 Domain
A domain model describes the real-world concepts and their inter-
actions as understood by users. Many formalisms have been in-
troduced to represent systems of concepts: frames, semantic net-
works, entity relationship schemas, class diagrams,… USIXML
domain model has the form of a UML class diagram. Concepts
contained in USIXML domain model are at a certain point ma-
nipulated by users. By manipulated, it is meant that either attrib-
ute values are rendered through the UI or that methods attached to
classes of objects are used by a user (i.e., triggered by a user
event).

Domain model concepts are classes, attributes, methods and do-
main relationships. A class describes the characteristics of a set of
objects sharing a set of common properties. A class may contain
several attributes and methods. Attributes are described with their
type, cardinality. Extensive specification of enumerated domains
is possible. An original typology allows to characterize the type
of domain of an attribute. Indeed, attribute_domain_char
acterization takes the value of: interval, continuous interval,
discrete interval, linear interval, circular interval, set[n] (where n
is the number of possible values in an attribute domain). Used in
combination with a task model, this typology helps to map do-
main attributes to a type of interaction object by which it will be
rendered. For instance, a choose element task on an attribute with
a circular interval enable the derivation of a (multi-state) toggle
button. Methods are described with their signature i.e., with their
name, type, and parameters. A set of predefined method name in-
spired from OO patterns are used to facilitate the definition of ge-
neric design heuristics. For instance, the CRUD pattern is used
any method realizing a Create, Read, Update or Delete operation
[12]. Finally, domain relationships describe various types of rela-
tionships between classes. They can be classified in three types:
generalization, aggregation, and ad hoc. Class relationships are
described with several attributes enabling the specification of role
names and cardinalities.

4.3 Context model
A context model describes all the entities that may influence car-
rying out the interactive task of user with the intended UI. It is as-
sumed to capture any relevant attribute of the context of use, in
which the user is. A context model consists of:

• A user model that recursively decomposes the user population
into stereotypes (or profiles) and sub-stereotypes, each stereo-
type sharing a same series of attributes and associated values.

• A platform model captures relevant attributes for each couple
software-hardware platform that may significantly influence the
context-sensitivity. For instance, screen resolution of the plat-
form is a major property taken into account in adaptation [8]
and graceful degradation of UIs [10] when the UI designed for a
normal screen is reduced for a more constrained screen. An in-
teresting initiative related to platform modelling is the W3C
CC/PP profiles (Composite Capabilities/Preferences Profile). A
CC/PP profile is a description of device capabilities and user
preferences that can be used to guide the adaptation of content
presented to that device. Although CC/PP is not a vocabulary
that would permit us to describe a platform, it is a generic
XML-based language that allows to write vocabularies peculiar
to various platforms. For the purpose of USIXML, we inte-
grated a subset of CC/PP into platform families that are recur-
sively decomposed.

• An environment model describes any property of interest of the
physical environment where the user is using the UI on the
computing platform to accomplish her interactive tasks. Such
attributes may be physical (e.g., lighting conditions), psycho-
logical (e.g., level of stress), and organization (e.g., location and
role definition in the organization chart).

4.4 Abstract User Interface (AUI)
A AUI model is a UI model that represents a canonical expression
of the renderings and manipulation of the domain concepts and
functions in a way that is independent from any modality and
computing platform. An AUI is populated by abstract interaction

objects and abstract user interface relationship.

4.4.1 Abstract Interaction Object (AIO)
An AIO consists of any element populating an AUI model consist-
ing in an abstraction of widgets found in most toolkits like win-
dows, buttons but, also, vocal output widget in auditory interface.
An AIO is supposed to be independent of any modality of interac-
tion and any platform. AUI types are presented in hierarchy. The
more a specification is precise the more the mapping to a concrete
object will be precise. AIO are composed of multiple facets. We
call them multi-faceted. Each facet describes a particular function
an AIO may assume. Four main facets are identified:

1. An input facet describes the input type accepted by an AIO.
2. An output facet describes what data may be presented to the

user by an AIO.
3. A navigation facet describes the possible container transition

a particular AIO may enable.
4. A control facet describes possible methods of the functional

core that may be triggered from a particular widget.

An AIO may assume several facets in the same time. For instance,
an AIO may display an output while accepting an input from a
user, ensure a transition between windows and trigger a method
from the functional core.

In order to group AIOs together, the Interaction Space is a type of
AIO that support the execution of a set of logically/semantically
connected tasks. An interaction space contains other interaction or
other AIO’s (see grouping relationship). It may be reified into
one or more graphical containers like windows, dialog boxes or
time slot in the case of auditory user interfaces. It is very impor-
tant to note that an interaction space in not necessarily reified into
a visible object. For instance, an outputer (a textbox) and inputer
(a label) may be grouped together, their possible materialisations
i.e., respectively a textbox and an inputer will only be bound to-
gether by an internal constraint (not perceivable by the user as is).

4.4.2 Abstract User Interface Relationship (AUI relationship)
An AUI relationship is an abstract relationship among AUI ob-
jects that indicate the existence of some spatio-temporal setting
among them (e.g., a navigation between two interaction spaces).
Relationships may have multiple source and multiple targets. Two
main types of AUI relationships are therefore distinguished: dia-
log transitions and spatio-temporal relationships.

Dialog Transition is a type of AUI relationship that enables to
specify a navigation transition between one interaction space and
on another or several others with the following possibilities:

• Suspend: is a type of AUI relationship that enables to specify
that the source interaction space is suspended to enable the
target interaction space. A (reverse) resume relationship be-
tween these interaction spaces must exist for the coherence of
the model.

• Resume: is a type of AUI relationship that enables to specify
that the target window is re-enabled after having been sus-
pended by a prior suspend relationship.

• Disables: is a type of AUI relationship that enables to specify
that the source interaction space disables the target interaction
spaces.

• Enables: is a type of AUI relationship that enables to specify
that the source interaction space enables the target interaction
spaces.

Grouping is a type of AUI relationship that enables to specify a
collection of grouped AIOs. The source of a grouping relationship
is always an interaction space. Additional information can be
specified to precise the nature of the grouping relationship. For
instance some ordering may be specified between grouped ele-
ments. This ordering can be based on an alphabetical order or a
numerical order. Furthermore, it may be specified that grouped
element must be specifically differentiated with each other (e.g.,
by using different colours or dissimilar tone of voices).

At the AUI level, the designer is interested in expressing only
high-level relationships between AIOs, if any, without expressing
low-level details of the relationships, such as specific distance or
time. Spatio-temporal relationships characterise the physical
constraints between AIOs as they are presented in time and space.
Since an AUI does not preclude the usage of any particular mo-
dality, we do not know whether a particular AUI will be further
reified into a CUI that is graphical, vocal, multimodal, or virtual.
Therefore, spatio-temporal relationships should be expressed in a
way that is independent of any modality.

For this purpose, the thirteen possible temporal relationships from
Allen are considered. Basically, there are two types of temporal
relationships (Table 2): sequential (before relationship) and simul-
taneous (that can be equal, meets, overlaps, during, starts, or fin-
ishes relationships). Each basic relationship has an inverse rela-
tionship, except the equal relationship which is symmetric. Al-
though Allen relationships have been introduced to characterise
temporal intervals, they are suitable for expressing constraints for
space and time thanks to a space-time value. All simultaneous re-
lationships (such as overlaps, during, starts, and finishes) can be
generalised a the equal relationship by inserting some delay time
when needed. For example, in the x before y relationship, there is
a space-time value greater than zero between x and y while in the
x meets y relationship the space-time value is equal zero between
x and y. As relationships are abstract at the AUI level, the space-
time value is left unspecified until needed at the CUI level. The
spatial relationship between A and B is defined as follows:

Spatial_Composition (A,B) = (Ri , Rj), where i, j ∈ { 1,…,13} , Ri
is the identifier of the spatial relationship between A and B ac-
cording to the X axis and Rj is the identifier of the spatial relation-
ship between A and B according to the Y axis in the matrix repro-
duced in Fig. 3. When a spatial arrangement is expressed only ac-
cording to one dimension, Ri = ∅ ou Rj = ∅.

The temporal relationship between the A and B is defined as fol-
lows: Temporal_Composition (A,B) = (Ri , Rj), where i, j ∈
{ 1,…,13} as defined in Fig. 3.

4.5 Concrete User Interface
A CUI is a UI model allowing a specification of an appearance
and behavior of a UI with elements that can be perceived by us-
ers. A CUI consists of:

� Modality dependent i.e., an instance of a CUI addresses a single
modality at a time. Two modalities lie in the intended scope of
USIXML: graphical and auditory.

� Platform independent i.e., elements populating a CUI realize an
abstraction of common languages used to program UIs.
o Concrete Interaction Objects realize an abstraction of widget

sets found in popular graphical toolkits (Java AWT/Swing,
HTML 4.O, Flash DRK6). A CIO is defined as an entity that
users can perceive and/or manipulate (e.g., a push button, a

list box, a check box). Orthogonally to AIOs, CIOs are
devided into two types graphicalContainers (e.g., window,
panel, table, cell, dialog box,…) and graphicalIndividual-
Components (e.g., a button, a text component, an video com-
ponent, a menu, a spin button,…). In SEGUIA [38], a CUI con-
sists of a hierarchy of CIOs resulting from a transformation
of AIOs [37].

o The layout of the CUI is defined without any absolute coordi-
nates. A box embedding mechanisms is used to specify a lay-
out. Alignments between CIOs are defined with a special rela-
tionship called alignment.

Fig. 6 shows a simple declaration of a window containing a top-
centered label and an OK button.

Figure 6. USIXML specification of a window containing widgets.

A CUI is equipped with a mechanism, called dialog, allowing the
specification of the dynamic behavior of a concrete user interface.
This mechanism covers a navigation definition language and a
powerful event/action language. For clarity purpose, we isolated
explanations on this aspect. To better understand the differences
that exist between AIOs and CIOs in the context of USIXML,
Fig. 2 shows that the FUI level is populated by the true final wid-
get in the target platform, e.g., a Download pushbutton written in
HTML and rendered on a MacOS X platform (bottom left of Fig.
2). At the FUI level, the HTML source code of this button may
remain the same, but can be rendered differently depending on the
browser, the platform and other parameters. At the CIO level, the
different physical widgets are abstracted from their platform and
classified into CIO types. At the AIO level, these objects are suc-
cessively abstracted from their modality of interaction.

Fig. 2 shows that thanks to these different levels, it is possible to
find out alternate CIO or AIO in case of change of the context of
use, especially in graceful degradation [16]. Fig. 7 shows alternate
CIOs for a menu AIO in the same graphical modality, while Fig.
8 shows alternate AIOs with different modalities.

4.6 Inter-model Mapping
Model integration is a well-known issue in model-based approach
of UI development. Rather than proposing a collection of unre-
lated models and model elements, USIXML provides the designer
with a set of pre-defined relationships allowing to map elements
from heterogeneous models. This may be useful, for instance, for
architecture derivation (mappings between domain and CUI/AUI
models), for traceability in the development cycle (reification, ab-
straction and translation), for addressing context sensitive issues,
for improving the preciseness of model derivation heuristics. The
mappings between the different models are of several types:

• Manipulates maps a task onto a domain concept i.e., a class,
an attribute, an operation or any combination of these types.
This relationship has an attribute ‘centrality’ which specifies
the relative importance of a domain element to the execution
of its corresponding task. This item is evaluated on a scale of

1 to 5. 1 meaning that domain concepts is not central, 5 that is
completely necessary (i.e., essential to the execution of the
task).

• Is Rendered By maps a domain concept onto a presentation
element either that a domain concept is subject to user input
or that it is only presented to a user. An attribute of this rela-
tionship specifies if the values of the mapped attribute may be
updated from the UI or not. If not, values are only visualized.

• Is Executed In maps a task onto an AUI or CUI element. It in-
dicates that a task is performed through this (set of) AUI(s) or
CUI(s) element(s).

• Is Abstracted Into and Is Reified Into map AUI and CUI ele-
ments. This relationship indicates that an element has been
derived, through reification or abstraction (see framework of
Fig. 1), from another.

• Has Context maps any model element to one or several con-
texts of use.

• Corresponds To maps a task temporal relationship with a
navigation relationship as defined in a AUI or a CUI.

4.7 Dynamic aspects in USIXML
Dynamics of USIXML cover several aspects:

• Requirements derivation (dubbed reification) along our de-
velopment cycle structure (Fig. XX). By requirement derivation
it is meant the changing or translation of a high-level require-
ment into a form that is appropriate for low-level analysis or de-
sign.

• Reverse engineering (dubbed abstraction) along our develop-
ment cycle (see Fig. 1). By reverse engineering it is meant the
extraction of high-level requirement from a set of low-level re-
quirements artifacts or from code.

• Context (of use) adaptation (dubbed translation). The con-
text of use is defined as a triple of the form (e, p, u) where e is
an possible or actual environments considered for a software
system, p is a possible or actual target platform, u is a user cate-
gory. Context adaptation is a process of modifying a user inter-
face in consequence of a change of one or several element of
the triple described above.

• Dialog specification of the user interface. Dialog can be de-
fined as a description of user interface state change along with
the event/action specification resulting in a state changes.

The three first items are referred with the generic term of trans-
formation. Both transformation and dialog are specified using
transformation systems. Transformation systems rely on the the-
ory of graph grammars [20]. We first explain what a transforma-
tion system is. Transformations and dialog specification are, then,
further explained.

4.7.1 Transformation systems
The proposed formalism to represent model transformation and
dialog in USIXML is graph transformation. This formalism has
been discussed in [19]). USIXML has been designed with an un-
derlying graph structure. Consequently any graph transformation
rule can be applied to a USIXML specification. This formalism
conveniently applies to model transformation and dialog specifi-
cation.

A transformation system is composed of several transformation
rules. Technically, a rule is graph rewriting rule equipped with
negative application conditions and attribute conditions [20].

<window id=”W1” name=”Main Window”>
<box … type = “main” splittable=true detachable=false… >
<box … type = “horizontal” >
<textComponent id=”TX1” name=”Text1” offsetVertical=”top” offsetHorizon-
tal=”center” defaultContent=”Hello World!”/>
</box>
<box type=”horizontal”>
<button id=”B1” name=”OkButton” defaultContent=”OK” />
</box>
</box>

</window>

Fig. 9 illustrates how a transformation system applies to a
USIXML specification: let G be a USIXML specification, when
1) a Left Hand Side (LHS) matches into G and 2) a Negative
Appplication Condition (NAC) does not matches into G (note that
several NAC may be associated with a rule) 3) the LHS is re-
placed by a Right Hand Side (RHS). G is resultantly transformed
into G’ , a resultant USIXML specification. All elements of G not
covered by the match are considered as unchanged. To add to the
expressive power of transformation rules, variables may be asso-
ciated to attributes within a LHS. An expression may compare
this variable with a constant or with another variable. This
mechanism is called ‘attribute condition’ .

Figure 9. Characterisation of a transformation in USIXML.

4.7.2 Dialog specification
USIXML is equipped with a concrete dialog model. This dialog
model is integrated into the concrete user interface model. For il-
lustration purpose we have isolated the dialog parts from the CUI
model. The basis of our dialog is an event/action language. Every
concrete interaction object may be associated with one or several
behavior specification. A behavior is a couple event/action.

� Events may be composite (composed by other events) allow-
ing the expression of complex expressions.
o Events may be chosen within a predefined event language

(Table 3).
o Events may be composed with temporal operators. Each

operator is represented with its symbol: >> is a sequence,
||| is order independence, OR is a disjunction, (n) is an
iteration where n is the iteration factor.

� Actions are performed by transformation systems. Transfor-
mation systems are sets of transformation rules operating on a
specification. Actions have the expressive power of graph
grammars. Graph grammars have been proved very powerful
(as powerful as Petri nets) represent the behavior of dynamic
systems. Concretely, the result of an action may be any
change in the CIO model including the triggering of methods
from the domain model. An example is given in Fig. 10.

CIO Events
All graphical CIOs movePointer(X,device), pointerOver(X,device),

moveOutPointer(X,device), click(X,device), dou-
bleClick(X,device), depress(X,device), release
(X,device), dragOver(X,Y,device), dragDrop(X,
Y,device), hasFocus(X), lostFocus(X)

graphicalContainer resize(xFactor,yFactor)

textComponent change

slider move(cursor,x)

spin spinUp, spinDown

Table 3. Events of CIOs.

Figure 10. Event Language in USIXML at the CIO level: Clicking on but-
ton 1 erases all editable textComponents of registerWindow

Navigation is part of a dialog specification; consequently it is eas-
ily described with dialog elements exposed above. Nonetheless,
from previous works [36], we consider navigation definition as a
pattern-based activity. USIXML provides an ad hoc relationship
to define navigation in a straightforward way: graphicalCon-
tainerTransition. This relationship type enables to specify
an open/close, suspend/resume, minimize/maximize relationship
among containers populating an application.

4.7.3 Transformation model
A transformation model has been introduced to represent the pos-
sible transformations as defined in the framework of Fig. 1 (i.e.,
abstraction, reification, translation). Like actions in the behavior
specification, transformations are performed via graph transfor-
mation rules as introduced in [20]. A model transformation is per-
formed by one or several transformation system. Each transforma-
tion system realizes an identifiable design goal (i.e., widget selec-
tion, layout, navigation definition,…) in the transformation proc-
ess. Fig. 12 shows a simple transformation (a translation) consist-
ing in one single rule aligning vertically all widgets of a con-
tainer. This rule has been design with the graph grammar editor
AGG (http://tfs.cs.tu-berlin.de/agg/). Its textual equivalent in
USIXML is shown in Fig. 11.

 …
<translation id= ”TL1” name = “squeezeDisplay” description= “this translation
vertically aligns all widgets of a container” >
<sourceModel> cui<sourceModel>
<targetModel>cui<targetModel>
<transformationSystem id = “TR1” name = “Transfo1” … >
<transformationRule id = “rule1” name “squeeze1” >

<lhs>
<box mapId =”M1”>
<graphicalIndividualComponent ruleSpecificId”gi1” mapId =M2>
</graphicalIndividualComponent>
</box>

</lhs>
<rhs>

<box mapId =”M1”>
<graphicalIndividualComponent ruleSpecificId”gi1” mapId =M2
glueHoriz=“left” >
</graphicalIndividualComponent>
</box>

</rhs>
<nac>

<box mapId =”M1”>
<graphicalIndividualComponent ruleSpecificId”gi1” mapId =M2
glueHoriz=“left” >
</graphicalIndividualComponent>
</box>

</nac>
</transformationRule>
</transformationSystem>
</translation>
…

Figure 11. Translation expressed in USIXML.

<button …name=”ClearButton1”…>
 <behavior>
<event>doubleClick(self,Mouse1)</event>
<action>
<transformationSystem …>
<lhs>
<window … mapId = “M1” name=”registerWindow”…>
<textComponent … mapId =”M2” isEditable=true/></window>
</lhs>
<rhs>
<window … mapId = “M1” name=”registerWindow”…>
<textComponent…mapId=”M2” isEditable=true content=“”/></window>
</rhs>
</transformationSystem> </action> </behavior>
…
</button>

 ������ ���

��	

������ ���

��	

Figure 12. Aligning rule expressed in AGG in terms of a transformation.

5. CONCLUSION
In this paper, we have presented USIXML, a UIDL that addresses
various requirements in UI design such as coverage of multiple
models, relationships, and levels of abstraction. Graph transfor-
mations are explicitly used to define an executable mapping
mechanism between these fragments so as to support continuous
and seamless development of UIs from multiple entry points.
USIXML is original and different with respect to existing UIDL
regarding the following aspects:

- USIXML is precisely structured into four levels of abstraction
that do not need all to be specified to obtain a UI.

- USIXML can be used to specify a platform-independent, a
context-independent, and a modality-independent UI. For in-
stance, a UI that is defined at the AUI level is assumed to be
independent of any modality and platform. Therefore, it can
be reified into different situations. Conversely, a UI that is de-
fined at the CUI level can be abstracted into the AUI level so
as to be transformed for another context of use.

- USIXML allows the simultaneous specification of multiple
facets for each AIO, independently of any modality.

- USIXML encompasses a detailed model for specifying the
dynamic aspects of UI based on productions (right-hand side,
left-hand side, and negative conditions) and graph transforma-
tions. These aspects are considered as the basic blocks of a
dialog model that is directly attached to the CIOs of interest,
thus facilitating the local specification.

- Thanks to these dynamic aspects, virtually any type of adapta-
tion can be explicitly specified. In particular, a transformation
model consisting of a series of adaptation rules can be speci-
fied equally in an integrated way with the rest of the UI.

- USIXML contains a simplified abstraction for navigation
based on windows transitions, that is compatible with dynam-
ics.

- USIXML is based on Allen relationships for specifying con-
straints in time and space at the AUI level, that can be in turn
mapped onto more precise relationships at the CUI level.
These relationships are applicable to graphical UIs, vocal UIs,
multimodal UIs, and virtual reality UIs.

- Similarly, a progressively more precise specification of the
CIO layout can be introduced locally to concretize the Allen
constraints imposed at the AUI level.

- USIXML defines a wide range of CIOs in different modalities
of use so as not to be limited only to graphical CIOs.

- USIXML already introduced a catalogue of predefined, ca-
nonical inter-model mapping that can be expanded and a tax-
onomy of task types that facilitate the identification and selec-
tion of concepts at both the AUI and CUI levels.

From these advances, we can conclude that USIXML is probably
one of the mostly integrated UIDL that addresses platform-, mo-
dality-, and context-independence and sensitivity. Depending on
the kind of UI that is envisioned, USIXML can be used to specify
only those parts that are required for a specific case.

ACKNOWLEDGEMENTS
The authors would like to thank Cameleon partners who contrib-
uted USIXML V1.2: Lionel Balme, Gaëlle Calvary, Cristina
Chesta, Alexandre Demeure, Joëlle Coutaz, Jean-Thierry Lechein,
Fabio Paternò, Stéphane Raymond, Carmen Santoro, and Youri
Vanden Berghe. This paper presents USIXML V1.4, an extension
of USIXML V1.2 with dialog model, more inter-model mappings,
a context model made up of user, platform, and environment, and
the concrete user interface level. Laurent Bouillon is supported by
the “Cameleon” research project (http://giove.cnuce.cnr.it/ came-
leon.html) under the umbrella of the European Fifth Framework
Programme (FP5-IST2). Murielle Florins is supported by “Sala-
mandre” research project (http://www.isys.ucl.ac.be/research/
salamandre.html) under convention n°001/4511 of “ Initiatives II”
research program, Walloon Region (Belgium). Benjamin Mi-
chotte is supported by the SIMILAR network of excellence
(http://www.similar.cc), the European research task force creating
human-machine interfaces similar to human-human communica-
tion of the European Sixth Framework Programme (FP6-2002-
IST1-507609). Daniela Trevisan is supported by the Mercator
project.

REFERENCES
1. Ali, M.F., Pérez-Quiñones M.A., Abrams M., Building Multi-

Platform User Interfaces With UIML, in A. Seffah & H. Java-
hery (eds.) Multiple User Interfaces: Engineering and Appli-
cation Framework, John Wiley and Sons, 2003.

2. Allen, J.F., Maintaining Knowledge about Temporal Inter-
vals, Communications of the ACM, Vol. 26, No. 11, Novem-
ber 1983, pp. 832-843.

3. Bouillon, L., Vanderdonckt, J., Chow, K.C., Flexible Re-
engineering of Web Sites, Proc. of 8th ACM Int. Conf. on In-
telligent User Interfaces IUI’2004 (Funchal, 13-16 January
2004), ACM Press, New York, 2004, pp. 132-139.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., Vanderdonckt, J., A Unifying Reference Framework
for Multi-Target User Interfaces, Interacting with Computers,
Vol. 15, No. 3, June 2003, pp. 289-308.

5. Chamberlain, D., Angel Diaz, Dan Gisolfi, Ravi Konuru, John
Lucassen, Julie Macnaught, Stephane Maes, Roland Merrick,
David Mundel, TV Raman, Shankar Ramaswamy, Thomas
Schaeck, Rich Thompson, and Charles Wiecha, WSXL: a web
services language for integrating end-user experience, in
Proc. of 3rd Conf. on Computer-Aided Design of User Inter-
faces CADUI’2002, Kluwer Ac., Dordrecht, 2002, pp. 35-50.

6. Chikofsky, E.J. and Cross, J.H., Reverse Engineering and De-
sign Recovery: A Taxonomy, IEEE Software, Vol. 1, No. 7,
January 1990, pp. 13-17.

7. Constantine, L., Canonical Abstract Prototypes for Abstract
Visual and Interaction Design, in Proc. of 10th Int. Workshop
on Design, Specification, and Verification of Interactive Sys-
tems DSVIS’2003, LNCS, Springer-Verlag, 2003.

8. Eisenstein, J., Vanderdonckt, J., Puerta, A., Model-Based
User-Interface Development Techniques for Mobile Comput-
ing, Proc. of 5th ACM Int. Conf. on Intelligent User Inter-
faces IUI’2001 (Santa Fe, 14-17 January 2001), Lester, J.
(Ed.), ACM Press, New York, 2001, pp. 69-76.

9. Elting, Ch., Zwickel, J.and Malaka, R., Device-Dependent
Modality Selection for User Interfaces – An Empirical Study,
in Proceedings of 6th Int. Conf. on Intelligent User Interfaces
IUI’2002 (January 13-16, 2002, San Francisco), ACM Press,

New York.
10. Florins, M., Vanderdonckt, J., Graceful Degradation of User

Interfaces as a Design Method for Multiplatform Systems, in
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces
IUI’2004 (Funchal, 13-16 January 2004), ACM Press, New
York, 2004, pp. 140-147.

11. Gaeremynck, Y., Bergman, L.D., Lau, T., MORE for Less:
Model Recovery from Visual Interfaces for Multi-Device Ap-
plication Design, in Proc. of ACM Int. Conf. on Intelligent
User Interfaces IUI’2003 (Miami, January 12-15, 2003),
ACM Press, New York, pp. 69-76.

12. Larman, C., Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Proc-
ess, Prentice Hall, July 2001.

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, B.,
TOMATOXML, a General Purpose XML Compliant User In-
terface Description Language, TomatoXML V1.2.0, Working
Paper n°105, IAG, Louvain-la-Neuve, 19 February 2004.

14. Limbourg, Q., Vanderdonckt, J., Transformational Develop-
ment of User Interfaces with Graph Transformations, Proc. of
5th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2004 (Madeira, 14-16 January 2004), Kluwer Aca-
demics Pub., Dordrecht, 2004.

15. Luyten, K., Van Laerhoven, T., Coninx, K., Van Reeth, F.,
Runtime Transformations for Modal Independent User Inter-
face Migration, Interacting with Computers, Vol. 15, No. 3,
2003, pp. 329-347.

16. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M., Generating Remote Control
Interfaces for Complex Appliances, Proc. of the 15th Annual
ACM Symposium on User Interface Software and Technol-
ogy UIST’2002, ACM Press, New York, 2002.

17. Paternò, F., Model-Based Design and Evaluation of Interac-
tive Applications, Springer-Verlag, Berlin, 2000.

18. Paternò, F., Santoro, C., One Model, Many Interfaces, in Proc.

of 3rd Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2002, Kluwer Acad., Dordrecht, 2002, pp. 143-154.

19. Puerta, A. and Eisenstein, J., Developing a Multiple User In-
terface Representation Framework for Industry, in: A. Seffah
& H. Javahery (eds.) Multiple User Interfaces: Engineering
and Application Framework, John Wiley and Sons, 2003.

20. Souchon, N., Vanderdonckt, J., A Review of XML-Compliant
User Interface Description Languages, Proc. of 10th Int. Conf.
on Design, Specification, and Verification of Interactive Sys-
tems DSV-IS’2003, Lecture Notes in Computer Science, Vol.
2844, Springer-Verlag, Berlin, 2003, pp. 377-391.

21. Trevisan, D., Vanderdonckt, J., Macq, B., Analyzing Interac-
tion in Augmented Reality Systems, Proc. of ACM Multimedia
2002 International Workshop on Immersive Telepresence
ITP’2002 (Juan Les Pins, 6 December 2002), Pingali, G., Jain,
R. (Eds.), ACM Press, New York, 2002, pp. 56-59.

22. Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving the
Navigational Structure of a User Interface, Proc. of 9th IFIP
Conf. on Human-Computer Interaction INTERACT’2003
(Zurich, 1-5 September 2003), M. Rauterberg, M. Menozzi, J.
Wesson (Eds.), IOS Press, Amsterdam, 2003, pp. 455-462.

23. Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for
Intelligent Automatic Interaction Objects Selection, in Proc.
of the ACM Conf. on Human Factors in Computing Systems
INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press,
New York, 1993, pp. 424-429.

24. Vanderdonckt, J., Berquin, P., Towards a very large model-
based approach for user interface Development, in Proc. of
1st IEEE Int. Workshop on User Interfaces to Data Intensive
Systems UIDIS’99, IEEE Computer Society Press, Los
Alamitos, 1999, pp. 76-85.

25. Wong C., Chu H.H. and Katagiri M.A., Single-Authoring
Technique for Building Device-Independent Presentations, in
Proceedings of W3C Workshop on Device Independent Au-
thoring Techniques (St. Leon-Rot, 15-26 September 2002).

Incorporating UIDLs into Model-Driven Development
���������	��
	����������������������������

 �!#"%$'&�(*),+.-0/1!#2435-7698�:�;=<'>�?1?�(.?�@	ACBED
F�G�H ;�IKJL$NM�$O3P>�QR/1!#+*&S!K:
AT>�-U<V$�W.?X:�DZY\[�]�[�] G

^�_a` -U$K:b$O3Z6c!V!�(U!�dfeg<O3#I0h�!'i=$'&�(jI7!�h*&

ABSTRACTkclnmporq�sat7ubvxwZy7zNs�l{v|s4zNs4t}o�~S��s�lO��� m�v�vS���7��sC�#o��4�'��y�lgo#l
q�s���y0lVy0la�R�rl����N�5��wP�r�'�O�Eorq�sat�oU���7��s1~�wPo4�OwP�#��wc�V�7��s5w��7�r�rl��7��s
~�wPo4�Kwc�#�p� ���4orq�sa� m�v�v��r�N���0��s�~So��}s5lV�by7��t��7o�q�satby7zNs�w
�OwZs5�V�}s�w��aoN�5�K�Z��zNy0la�V���7o|�foU���0���rwPs�qVs5zNsat7o�~=s5w��E�P���r���7or�E���by0la�
�E�r�a�Co����0��s��Eo'�����}y0��s4u��ao#l#�Z�r�Ty�lN�R�#l�q�s5w�wcorwcu ~�wPo#l�sx�'�7~=s4�'� �
oU���ZoU���0���rwPs�q�s4zasat}o�~���s5lV��y�l��at}�rqVy0la���ao#qVs5ub� s5l�s5wc�V�by0orl¡�#lrq
�}sZ�5�by�lN� ��¢£or�Ss4zas5w9¤S�7��s5wPsx�#wZsxor�N�5�7�r�Nt}sf�£�7o�wZs5��tUy ¥ay0la���0��s��#��tbt
��s5l�s���yb� ��o��¦m�v�v|��§���s¨�EoN���O�5wfy}�by7�a��tOo��£�7��sf�fsEy©�¨�0�����V�a�#wcwPs5lV�
�Eo#qVs4tUy0la��l�o��7�V�}y7orl'�ª�rwPs�y0l��ao#��~Xt}sN�}s«y0l\�7�r�V���7��sj��q�o¡l�o��
�Z��~r~=o#wZ��y0��~SorwZ�7�#lO�K�'�7~=s4�'� �%oU���0��s�~Swco4�Kwc�r���f�r�a�C�N�E�0��sE�'�fs5w
y0lV�}s5w �#�r�Ns��9¬�k7���#l�qsc®V�0wc�¦�#�#l��N�by7o#l���t�wPs4¯r�Vy�wZs���s5lV�©��� °X±.²S�b�4�
³Es¦~�wco�~So'�fs��fsN��oU�	�#orw��E��tXl�o��7�V�}y7orl'���7o,qVsZ�f�5wfy7��s���t}o�oN�fsat �
�aor��~Xtbs�q´�Eo#q�satLo��µ�7�rwPsas¶�N�7~Xs5�'�©�·o����rl¸��~r~XtUy0�a���by7o#l
�©�5��wP�r�'�7�#wc��t©¤{��s5���rz'y7o#wc��t©¤{�rlrqµ¬�k7�¹�rlrqº�#l»s4zas5lV�7uj�r�N��s�q
�'wc�r��s��So#w�¼��7oR�}y}s|�7��sT�Eo#qVs4t��7o4�*sa�7��s5wP�	³Es��Xy}t}t���t��Zo�q�s4zasat}o�~
¼al�o#�=tbs�qN� s4u����N�fs5q,�7oro�t©�T�7o������7o#�E�V�}s��7��s|�ao#��~	y7t}�V�}y7orl�o��R�7��s
�Eo#qVs4tb�|§���sª¼'sj�\�7o�or�#w��~�~�wco��r�a�ny©�½�4��~X�7�#wfy0la�¾�«�r�r�E�#l
sc®�~Xs�wf��¿ �¼al�or�Stbs�qN� s�oU�«�ZoU���0���rwPsÀ�rwc�a��yb�}s5�'�7�#wPs��#l�q¾q�sf��y �Ol
~�wfy0l��'y ~XtbsZ��¤ª�fo��7�r�����SsÁ�a�#lÂ�ao#qOy ���Ã�rlrqÄwZsU~SwPsf�fs5lV�Å�7��y©�
¼al�o#�=tbs�qN� sEy0l|�r���7or�E���}s�q£�Eorq�satO�4or��~Xy}t}���by7o#l��7oro�t©���
KeywordsÆ�Ç'ÈrÉfÊ�Ë�Ì%Í�Î7Ï�ÉPÐ\Ì�ÉZÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓjÔ�Õ�Ö×ÌEØ�ÔxÆpÇ'È�ÉfÊ�Ù	Ç4ÒCÑVÎbÊUÚfÓ�ÎUÇ4Ð�Ô
Û%Ð Ç4Ü%ÊUÉ�ÈrÝ�É5ËbÞ�ÚNß�É�È�à�Ç'á}ÓbÜEÚfÍcÉ¦â.ÐKÝ�Î0Ð É�ÉZÍ�Î0ÐKÝ
INTRODUCTION

ã�ä É�ÈrÉ5áUÎ7ÐOÎ7ÐKÝÀåPä ÚfÍcÚaåPÓ×ÉPÍ�Î�ßjÓ�ÎUå�Ç'áEÒæÇ'ÈrÉfÊ�Ë�ÈNÍ�Î7Ï�ÉPÐ�È�ÉPÏ�ÉfÊUÇ5Ñ�ÒæÉPÐVÓ
ç ÆÌ�ÌEè¨Î�ß¨Óbä ÉEÞ#é�ÎbÊUÈ#Î7ÐKÝ,Ç'áSÒ�Ç'È�ÉfÊ�ß¨ÍcÚ�ÓbäKÉZÍ¦Óbä ÚfÐ½Ç'á�Ñ�ÍcÇNÝ'ÍcÚ�Òæß
ê�ëfì Ô ëfí Ô íVî#ï�ð Æ�Ì�ÌñßjäKÎUá}Ó�ß½Ó}ä É«ÈrÉPÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓ�á�Ç'åZéOßÀá}ÍcÇ4Ò
Ñ�ÍcÇNÝ#ÍcÚfÒ�Ò�Î7ÐOÝªÊUÚfÐKÝ#éVÚ4Ý�ÉRå�Ç'È�ÉæÓ×ÇÒ�Ç'È�ÉfÊ�ßcÔXß9éVåPä«ÚNß£Óbä Ç#ß�ÉæÎ7Ð
Õ%Æ�Ø1Ë í�ê}í�ë�ï�ð Æ�Ì�Ìnä Úaß�Óbä É�ÑOÇ4Ó×ÉPÐVÓ�ÎUÚ5Ê Ó×ÇxÈ�ÉfÊbÎ7Ï�ÉPÍ	Ý'ÍcÉ�Ú�Ó×ÉPÍ�å�Ç#ßjÓ
ß�Ú�ÏrÎ7ÐKÝ�ß�Ó×Ç�ß�Ç'á}ÓbÜ�Ú�ÍcÉ£ÈrÉPÏ�É�ÊbÇ5ÑKÉPÍPß	Þ#ò�Ú�érÓ×Ç4Ò�Ú�Ó�Î0ÐKÝ�ÒCéOåPä,Ç'á1ÓbäKÉ
Ò�Ç#ß9Ó	Ó�Î0ÒæÉ5Ë×å5Ç4Ð ß9érÒ�Î7ÐKÝpÚfÐ È,ÉPÍ�ÍcÇ4ÍPË}Ñ�ÍcÇ4Ð É�ÚNß�ÑKÉ�åPÓ�ßxÇ'á¨ß�Ç'á}ÓbÜ�Ú�ÍcÉ
ÈrÉZÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓ=Î0Ð åfÊ7éOÈ#Î7ÐKÝ�å�Ç'È�É5Ë×Ý�ÉPÐ ÉPÍcÚ�Ó�ÎbÇ4ÐpÚfÐ È�Ó×É5ß9ÓUÎ7ÐKÝ ð ã.ä É5ß�É
ß�Ú�ÏrÎ7ÐKÝ�ß%Ú�ÍcÉCå�Ç4Ò|ÑKÇ4érÐ ÈrÉ�È�Ü¨ä ÉPÐ�ÜEÉCå�Ç4Ð*ß�ÎbÈ�ÉPÍ¨Ó}ä Ú�Ó1ÜEÉxÒ�ÎbÝ'äVÓ
ä ÚfÏ�É�Ú�ß�Î7ÐKÝrÊUÉRÚfÑrÑOÊ}ÎUå�Ú�Ó�ÎUÇ4Ð�ÓbäKÚ�Ó	ÜEÉ|Ü�Î�ßjä�Ó×Ç�Þ�É�ÉZó�É�åZérÓ×É�È�Ç4Ð
Ò�Ú�ÐVò�ÈrÎ7Ï�ÉPÍPß�É�ÑVÊUÚ�Ó×á�Ç4Í�ÒæßcÔ�É�ÚaåPä�Ü�Î7Óbä�Óbä ÉfÎ7Í�Ç4Ü¦Ð«å5Ç4Ð ß9ÓbÍcÚ5Î7ÐVÓ�ß
Ú�ÐKÈ{È#Î�ß�ÑOÊbÚ�ò{åPä Ú5ÊbÊUÉPÐKÝ�É4ß ð à�Î7Ò�ÎbÊUÚ�Í�Ê0ò�Ô|ÆÌ�Ìôß9é#ÑrÑKÇ4Í�Ó�ß½Ç4Óbä ÉPÍ
Ò�Ú9õ�Ç4Í	Ý�Ç'Ú4Ê�ß�Ç'á�ß�Ç'á}ÓbÜ�Ú�ÍcÉ�È�ÉPÏ�ÉfÊUÇ5ÑOÉZÍPß	ßjéOåPä,Úaß	á�Úaß9Ó.ÓbérÍ�Ð ÚfÍcÇ4é�Ð È
Ó�Î7Ò�É5ß�Ú�Ð ÈgäKÎbÝ'ä ÉPÍ¡öNéVÚ4ÊbÎ7Ó}ò ðø÷ ò�ÉPÐ å�ÚfÑKßjéVÊUÚfÓ�Î7ÐKÝ�Óbä É¾å�Ç'ÈrÉ
Ý�ÉZÐKÉZÍcÚfÓ�ÎUÇ4Ð¸Ñ�ÍcÇ'å5É5ß�ßùÜ�Î0ÓbäKÎ7ÐúÚ�ÐúÉ�ÚNßjòrËbÓ×Ç#Ë�åPä ÚfÐKÝ�É»Ò�Ç'È�ÉfÊ×Ô
ÈrÉZÏ�ÉfÊUÇ5ÑOÉPÍPß¦å�Ú�Ð,öNé�ÎUåPûVÊ7òxÒæÇ'È#ÎUá}ò�ÚZÑ�ÑVÊbÎUå�Ú�ÓUÎUÇ4Ð*ßXÓ�Ç�Î7Ð åfÊ7éVÈrÉ�Ð ÉPÜ

á}érÐ åPÓ�ÎUÇ4Ð Ú5ÊbÎ7Óbò ðÁ÷ É�å�Ú�éOß�É´Ç'á¹Æ�Ì�Ì�ü}ß·ÑOÇ4Ó×ÉPÐVÓ�ÎUÚ5Ê�Þ�ÉPÐ É�á�Î0Ó�ßPÔ
å�Ç4Ò|ÑOÚ�ÐKÎUÉ5ß�Ú�ÍcÉýÚ5Ê7ÍcÉ�ÚaÈNò¹Ü�Ç4Í�ûVÎ7ÐOÝ¹Ó×ÇþÈ�ÉfÊbÎ0Ï�ÉZÍÁßjé#Ñ�ÑOÇ4Í�Ó�Î7ÐKÝ
Ó�É5åPäVÐKÇNÊUÇNÝ�ÎbÉ4ß ê}í�ÿrï�ð
�ÀÉ£ÈrÉ5áUÎ7ÐKÉTÚ£�Eo#qVs4t*Ó×Ç|Þ�É���Ú�å�Ç4Ð*ß�Î�ßjÓ×ÉPÐVÓ�Ú�ÐKÈRå5Ç4Ò|ÑVÊUÉPÓ×ÉTß�ÉPÓ=Ç'á
á�Ç4Í�Ò�Ú4ÊEÉfÊUÉPÒ�ÉPÐVÓ�ß�È�É5ß�åZÍ�Î�Þ�Î7ÐKÝ�ÚpßjòrßjÓ×ÉPÒÃÓ}ä Ú�Ó�Î�ß�Ú�Ò�ÉPÐ ÚfÞ�ÊbÉRÓ×Ç
ÚfÐ Ú4Ê0òrß�Î�ß��%Ü¨äOÎUåPäRÎ�ßXå�Ç4Ð*ß�Î�ß9Ó�ÉZÐ�Ó�Ü�Î0Óbä�È�É�áUÎ7ÐKÎ7ÓUÎUÇ4Ð*ß=Ý�Î0Ï�ÉZÐæÎ7Ð ê�ë��#ï
ÚfÐ È ê}írí�ï�ð ã�ä É�åPé�Í�ÍcÉPÐVÓRÒ�Ç'ÈrÉfÊbÎ7ÐKÝ�ÊUÚfÐKÝ'éOÚ5Ý�É�Ç'á�åPä ÇNÎUå�ÉnÎ�ß
Õ¨ÆpØ1Ë í Ô�Ü¨äKÎbåZä�Ú4ÊbÊbÇ4Ü�ßýß�Ç'á}ÓbÜEÚfÍcÉþÈ�ÉPÏ�ÉfÊUÇ5ÑOÉZÍPß�Ó×Ç·ÈrÉ4ß�ÎbÝ'Ð
ß�Ç'á}ÓbÜEÚfÍcÉ½ß9ò#ß9Ó×ÉPÒæß�ábÍcÇ4Ò ÚÐVérÒ|Þ�ÉZÍ,Ç'áCÈ#ÎUá�á�ÉZÍcÉPÐVÓxò#ÉPÓTÍcÉfÊUÚfÓ×É�È
ÏrÎbÉZÜEß���Óbä É�éOß�ÉPÍ�ÏrÎUÉPÜ ç á}é�Ð åPÓ�ÎbÇ4Ð Ú4Ê=ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ß�è�ÔXß9Ó}Í�éOåPÓbérÍcÚ4Ê
ÏrÎbÉZÜ ç ßjÓ×ÚfÓ�ÎUåRå�Ç4Ð*ßjÓbÍ�éOåPÓ�ßCßjéOåPäÅÚNß|åfÊUÚNß�ß�É5ßxÚfÐ ÈÍcÉfÊUÚ�Ó�ÎbÇ4Ð*ß9äOÎ0Ñ ß�è�Ô
Þ�ÉPä ÚfÏrÎUÇ4ÍcÚ4ÊÄÏrÎUÉPÜ ç Î7Ð�Ó×ÉPÍcÚaåPÓ�ÎUÇ4Ð*ß Þ�ÉPÓbÜ�É5ÉPÐ Óbä ÉñßjÓbÍ�éVåPÓbé�ÍcÚ5Ê
ÉfÊUÉPÒ�ÉPÐVÓ�ß�è�ÔVå�Ç4Ð áUÎbÝ'é�ÍcÚfÓ�ÎUÇ4ÐCÏrÎUÉPÜ ç å�Ç4ÒCÑOÇ4Ð ÉPÐVÓ�ß�Ç4Í¦ß9é#ÞVßjòrßjÓ×ÉPÒRß�è�Ô
ÚfÐ È�ÉPÐVÏrÎ0ÍcÇ4ÐVÒ�ÉZÐ�Ó�ÏrÎUÉPÜ ç ÈrÉPÑVÊUÇ4ò4ÒæÉPÐVÓ.Ú�Ð È�Î7Ð*ßjÓ×Ú4Ê}ÊUÚ�Ó�ÎbÇ4ÐKè ð â�ÚaåPä
ÏrÎbÉZÜ ÍcÉcÑ�ÍcÉ4ß�ÉPÐVÓ�ß{ÚLß�ÉPÓ�Ç'á«å�Ç4Ð å�ÉPÍ�Ð*ß�Ü�Î7ÓbäOÎ7ÐþÓbä ÉýÇ4Ï�ÉPÍcÚ5ÊbÊ
ß�Ç'á}ÓbÜEÚfÍcÉ�ß9ò#ß9Ó�ÉZÒ ð �äKÉZÐÅå�Ç4ÒCÞ�Î0Ð É�ÈVÔ1Óbä É5ß�É�ÏrÎUÉPÜ�ßxÚfÓbÓ×ÉPÒ|Ñ�Ó¦Ó×Ç
Ñ�ÍcÇ4ÏrÎUÈrÉ¨Ú

360 	
ÏrÎbÉZÜ«Ç'áOÓbä É¨ß�Ç'á}ÓbÜ�Ú�ÍcÉ%ßjòrßjÓ×ÉPÒ ð

�½äKÎbÊUÉpÕ%ÆpØ1Ë í ü}ß�ÏrÎUÉPÜ�ß�Ú�ÍcÉÚÝ�Ç'Ç'È�áUÎ7ÍPßjÓRßjÓ×ÉcÑ Ô¨Ü�ÉªÈrÇÐ Ç4Ó
Þ�ÉfÊbÎbÉZÏ�ÉEÓbä ÉPÒ Ó�ÇxÞ�É£ß9éVá�á�Îbå�ÎbÉZÐ�Ó�á×Ç4Í	ÓbÍ�éVÉ�Æ�Ì�Ì ð �ÅÉ�Ú�Í�Ý'éOÉ%Óbä ÚfÓ
Ó}ä É�ÓbÍ�éVÉ%Þ�ÉPÐ É�áUÎ7Ó�ß%Ç'á.Æ�Ì�Ì{ÍcÉ5öNé�Î7ÍcÉ�Ò�Ç'ÈrÉfÊ�ß�Óbä ÚfÓ�Ú�ÍcÉ£ÚZÞVß9ÓbÍcÚ4åPÓjÔ
érÐ ÈrÉPÍPß9Ó×ÚfÐ ÈrÚfÞ�ÊUÉ4Ô�á�Ç4Í�Ò�Ú4Ê×ÔrÚ�Ð Ú5Ê7ò�
aÚfÞ�ÊUÉ¦Ú�Ð È£å�Ç4Ò|ÑVÊUÉPÓ×É ð
���������������� ÞVßjÓbÍcÚ4åZÓUÎUÇ4Ð�Î�ß¦ÚEûOÉPò£Ó×ÇxÒ�Ú�ÐKÚ4ÝrÎ7ÐKÝ�Ó}ä ÉTå�Ç4Ò|ÑVÊUÉZó�Î7Ó}ò
Î0ÐVä ÉPÍcÉPÐVÓ�Î7Ð�ÉPÏ�ÉPÐªÓ}ä É�ß�Î0ÒCÑVÊUÉ5ßjÓEÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð*ß ð�� Ð ÉRÈrÉ5ß�Î0ÍcÚfÞ�ÊUÉ
Ñ�ÍcÇ5ÑOÉZÍ�Ó}òÀÇ'á£ß�Ç'á}ÓbÜ�Ú�ÍcÉæÒæÇ'ÈrÉfÊ�ß�Î�ß�Ó×Ç�Þ�É,ÚZÞ�ÊUÉ�Ó×ÇÉZó#Ñ�ÍcÉ5ßcß£Óbä É
Ò�Ç'ÈrÉfÊ�ßnÚ�Ó�Ú¾äKÎbÝ'ä�ÊUÉPÏ�ÉfÊpÇ'áªÚZÞVß9ÓbÍcÚ4åPÓ�ÎUÇ4ÐÂÚfÐ È�Ó�ÇgÞ�É¾ÚfÞ�ÊbÉ
ÐKÚ�ÏrÎbÝ�Ú�Ó×É=Þ�ÉPÓbÜEÉ�ÉPÐ�ÈrÎUá�á�ÉPÍcÉPÐVÓ*ÊUÉPÏ�É�ÊUßSÇ'á�ÚZÞVß9ÓbÍcÚ4åPÓ�ÎUÇ4Ð�Ô�Ç4ÍSz'y7s5�.� ð
������ �!�"��� ��� ���# ,ã�ä ÉCÒ�Ç'ÈrÉfÊ�ßTéKß�É�È�Ó×Ç,ß9é#Ñ�ÑOÇ4Í�Ó%ÆÌ�Ì ÒCéOß9Ó
á�Ú4å�Î}ÊbÎ7Ó×ÚfÓ×ÉnÓbä Éné�ÐKÈ�ÉPÍPßjÓ×Ú�Ð È#Î7ÐKÝ Ú�ÐKÈ å�Ç4ÒCÒCé�ÐKÎbå5ÚfÓ�ÎUÇ4ÐÂÇ'áÓbäKÉ
ÚZÑ�ÑVÊbÎUå�ÚfÓ�ÎUÇ4Ð ÈrÇ4Ò�Ú4Î7Ð Ü�Î7Ó}ä Ç4é�Ó Î7ÐVÓ}ÍcÇ'È'éVåfÎ7ÐKÝ é�ÐVÐKÉ5å�É5ß�ß�ÚfÍ�ò
å�Ç4Ò|ÑVÊUÉZó�Î7Ó}ò ð
$&% �!'(��#*) Ç4Í£Ò�Ç'È�ÉfÊ�ßTÓ×Ç�Þ�É�Ú�ÐKÚ4Ê7ò+
NÉ�È�Ú�Ð È�ÉPÏ�Ú4Ê7éVÚ�Ó�É5ÈÚ�Ð ÈÓ×Ç
Ý�ÉPÐ ÉPÍcÚ�Ó×É�å�Ç4Ò|ÑVÊUÉPÓ×É\ÚZÑ�ÑVÊbÎUå�Ú�ÓUÎUÇ4Ð*ß¡á}ÍcÇ4ÒúÓbä É Ò�Ç'ÈrÉfÊ�ßPÔ�Î7ÓÎ�ß
ÐKÉ5å�É5ß�ß�ÚfÍ�òÅÓbä Ú�ÓCÚ4ÊbÊ|Ç'áxÓbäKÉ�ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ß�Ú�ÍcÉ�Ñ�ÍcÉ�åfÎ�ß�ÉfÊ7ò�ÚfÐ È
á�Ç4Í�Ò�Ú4Ê}Ê7òTÚ�Í�Ó�ÎbåZé�ÊUÚfÓ×É�ÈVÔ�á�Ç4Í�ÒCé�ÊUÚ�Ó×É�È£ÚfÐ È�Ï�ÉPÍ�ÎUáUÎUÉ�È ð
� � ��#-,/.0���#) Ç4Í�Ò�Ú4Ê¨Ò�Ç'ÈrÉfÊ�ß�ÚfÍcÉ,ÚfÒæÉPÐ ÚZÞ�ÊUÉæÓ×Ç�Ú�Ï�Ú�Í�ÎUÉPÓbò�Ç'á
Ò�ÚfÓbä ÉPÒ�Ú�Ó�ÎUå�Ú5Ê¸Ú�Ð Ú5Ê7òrß�Î�ß ÚfÐ È Ò�Ú�ÐKÎ0Ñ�é�ÊUÚ�Ó�ÎbÇ4Ð�Ô�Î0Ð åfÊ7éOÈ#Î7ÐKÝ
ÚfÐKÎ7Ò�Ú�ÓUÎUÇ4Ð�Ú�Ð È£á�Ç4Í�Ò�Ú4ÊVÏ�ÉPÍ�ÎUáUÎUå�Ú�ÓUÎUÇ4Ð ð
1 % '32�# � ôã1Ç Ý�ÉPÐ ÉPÍcÚ�Ó�ÎbÇ4Ð´å5Ç4Ò|ÑVÊUÉPÓ×É ÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4Ð*ß á}ÍcÇ4Ò
Ò�Ç'ÈrÉfÊ�ßPÔ1ÓbäKÉCÒ�Ç'È�ÉfÊ�ß�Ò�éOßjÓ	Þ�É�å�Ç4ÒCÑVÊUÉPÓ×É ð&) Ç4Í|Ú�Ò�Ç'ÈrÉ�Ê=Ó×Ç�Þ�É
�4or��~=tbsa�}s'Ô�Î0Ó½ÒCéOß9Ó�È�É5ß�åZÍ�Î�Þ�É¾ÓbäVÍcÉ�É{ß�ÉZÓ×ßnÇ'áÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ß��
á}érÐ åPÓ�ÎUÇ4Ð Ú5ÊýÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ßPÔ ÉZó#ÓbÍcÚNË×á}é�Ð åPÓ�ÎbÇ4Ð Ú4Ê ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ß
ç54)�6 ß�è"7Ú�Ð È éKß�ÉPÍ Î7ÐVÓ×ÉPÍcá�Úaå�É ç Õ%Öjè¾ÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ß ð ã.äOÎ�ß
Ñ�ÍcÇ5ÑOÇ#ß�Ú5ÊSÈrÉ5ß�åPÍ�Î0Þ�É5ßXÓ}ä É98 �:� Æ ÚfÑrÑ�ÍcÇ'ÚaåPä�ÔKÜ¨äOÎUåPä,å5Ç4Ð ß�Î�ßjÓ�ß%Ç'á
Ú�ß�ÉPÓ�Ç'áCÐKÇ4Ó×Ú�Ó�ÎbÇ4Ð*ß�ÚfÐ È«ß9é#Ñ�ÑOÇ4Í�Ó�Î7ÐOÝ«Ó×Ç'ÇNÊ�ß�Óbä ÚfÓ�Ú�ÓbÓ�ÉZÒ|Ñ�Ó�ß�Ó×Ç
7 ã�ä É5ß�É¦Ú�ÍcÉ¨Ú5Ê�ß�ÇTå�Ú4Ê}ÊUÉ�ÈTl�o#l�u �#�#l��N�by7o#l���tVwZs5¯���y0wPs5��s�lO�©�

Ñ�ÍcÇ4ÏrÎUÈ�É»ÚfÐ Î7Ð á}ÍcÚNßjÓbÍ�éVåPÓbé�ÍcÉùÓbä Ú�ÓÄÈ�ÉfÊbÎ7Ï�ÉPÍPßùÚ4ÊbÊ Ç'áÁÓbä É5ß�É
å�ÚfÑOÚfÞ�ÎbÊ}Î7Ó�ÎUÉ5ß ð
Model Transformation and CompilationÆ�Ç'ÈrÉfÊ�ßSÚ�Ó.Ú¦äKÎbÝ'ä�ÊUÉPÏ�É�Ê Ç'á*ÚfÞVßjÓbÍcÚaåPÓ�ÎUÇ4ÐRá�Ç'åZéOß�Ò�Ç4ÍcÉ	äKÉ5ÚfÏrÎbÊ7òTÇ4Ð
ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4ÐpÈrÇ4Ò�Ú4Î7Ð½å�Ç4Ð å�ÉcÑ�Ó�ß%Ú�Ð ÈRÚfÍcÉxÓbäVéOß¨ÊUÉ5ßcß�ß�ÉPÐ*ß�Î0Ó�Î7Ï�ÉxÓ×Ç
åPä Ú�ÐOÝ�É5ß|Ü%Î7ÓbäKÎ0ÐÅÓbä ÉæÓ×É�åZä�ÐKÎUå�Ú4Ê¨È�Ç4Ò�Ú4Î0Ð�Ô=Ü¦äKÎUåPä�Î�ß�Ç'á}Ó×ÉPÐÅÓbäKÉ
Ò�Ç'È�ÉfÊ�ÍcÉcÑ�ÍcÉ5ß�ÉZÐ�Ó×Ú�Ó�ÎbÇ4ÐÅéKß�É�ÈªÚ�ÓxÊUÇ4Ü�ÉZÍæÊUÉPÏ�ÉfÊ�ß�Ç'á£ÚZÞVß9Ó}ÍcÚaåPÓ�ÎUÇ4Ð ð
ã�äVéKßæ�Eo#qVs4t|�0wc�rl'� �'orw��E�V�}y7orlOÔ�ÓbäKÉÑ�ÍcÇ'å�É5ßcß�Ç'áCå5Ç4Ð�Ï�ÉZÍ�ÓUÎ7ÐKÝ«Ú
Ò�Ç'È�ÉfÊpá}ÍcÇ4ÒúÇ4Ð É¡ÊUÉPÏ�ÉfÊpÇ'á�ÚfÞVßjÓbÍcÚaåPÓ�ÎbÇ4ÐýÓ×Ç�Ú�ÐKÇ4Óbä ÉPÍZÔRÎUß�Ç'á
åPÍ�Î7Ó�ÎUå�Ú5Ê�Î7Ò|ÑOÇ4Í�Ó×Ú�Ð å�É4Ô�ÑOÚ�Í�ÓUÎUåPéVÊUÚfÍ�Ê7ò�Ü¨ä ÉPÐRÜEÉ�å�Ç4Ð*ß�ÎUÈrÉPÍ�Ó}ä Ú�Ó*Ð Ç4Ó
Ç4ÐKÊ7òßjä Ç4é�ÊUÈ�Ú|ÒæÇ'ÈrÉfÊSÞ�É�ÚfÞ�ÊbÉCÓ×Ç�å�ÚfÑ�Óbé�ÍcÉCÚfÐ È�ÚfÑrÑ�ÍcÇ5Ñ�Í�ÎUÚfÓ×ÉfÊ7ò
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê½ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ßcÔ�Þ#érÓªÚ4Ê�ß�Ç ÓbäKÉ�Éfó#ÓbÍcÚaË
á}é�ÐKåZÓUÎUÇ4Ð Ú4Ê�Ú�Ð ÈýÉPÐVÏrÎ0ÍcÇ4ÐVÒ�ÉZÐ�Ó×Ú4Ê,ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ßªÓbä ÚfÓªÚaåPÓ½ÚNß
ßjòrßjÓ×ÉPÒ�Îbå�å�Ç4Ð*ßjÓbÍcÚ4Î7Ð�Ó�ß ð Ö×Ð�Óbä É�å5Úaß�É�Ç'á�Æ�Ì�ÌxÔ�Óbä ÉCÍcÉ�Ú5ÊbÎ5
NÚfÓ�ÎUÇ4Ð
Ç'á�Ú�ÐÃÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4ÐÃábÍcÇ4Ò Ú ß�ÉPÓ«Ç'áÀÒæÇ'ÈrÉfÊ�ß¡ÍcÉ�öNéVÎ0ÍcÉ4ß�Óbä É
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4ÐÂÇ'á�Ú{ÑOÊbÚ�Ó×á�Ç4Í�ÒæË×Î7ÐKÈ�ÉcÑOÉZÐKÈ�ÉPÐVÓ�Ò�Ç'ÈrÉfÊ ç�� Ö�Æ�è
Î7ÐVÓ�Ç�ÚÀÑVÊUÚfÓ×á�Ç4Í�ÒRË�ßjÑOÉ�åfÎUáUÎUåÒ�Ç'È�ÉfÊ ç�� à�Æ�è�éOß9éVÚ4Ê}Ê7ò«ÏrÎbÚnß�Ç4Ò�É
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4ÐÊUÚ�ÐKÝ'éVÚ4Ý�É ð � å5å�Ç4ÍcÈ#Î7ÐKÝ�Ó×Ç �ÅÉfÎ�ßcÔ�sN�7�S��t}� êUî��rï Ô
ßjéOåPä ÊUÚ�ÐKÝ'éVÚ4Ý�É4ß ÚfÍcÉ·ÉfÎ7Óbä ÉPÍ Î7Ò|ÑKÉPÍcÚ�ÓUÎ7Ï�É»Ç4Í¹Í�é�ÊUÉ5ËbÞ�ÚNß�É�È ð
Ö×Ò|ÑOÉPÍcÚ�Ó�Î7Ï�É¦Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð*ß�ÍcÉ�öNéVÎ7ÍcÉEß�Ç4Ò�É¦ûVÎ0Ð ÈCÇ'á�ÊUÚ�ÐKÝ'éVÚ4Ý�ÉaÔ
Ü¨äKÉZÍcÉ�Úaß�Í�éVÊbÉ4Ë}Þ�ÚNß�É�ÈnÊUÚ�ÐOÝ#éVÚ4Ý�É5ß�å�ÚfÐ¾Þ�ÉÉZó#Ñ�ÍcÉ5ßcß�É�È�éKß�Î7ÐKÝ�Ú
ÏrÎ�ßjéOÚ5ÊEÐKÇ4Ó×Ú�Ó�ÎbÇ4Ð�Ô¨Ó}ä ÉPÍcÉPÞ#òªá�ÚaåfÎbÊ}Î7Ó×Ú�ÓUÎ7ÐKÝªÓbä ÉérÐ ÈrÉZÍPßjÓ×ÚfÐ È�ÚZÞ�ÎbÊbÎ7Ó}ò
Ç'á*Óbä É¦Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð�Ñ�ÍcÇ'å�É5ßcß ð à�ÉZÐKÈ�Ú5ÊbÊ×ÔVsN�}�O��tb� ê}í��Vï Ô�ÎUÈ�ÉPÐVÓUÎUá}ò
ÓbäVÍcÉ�É�ÚfÑrÑ�ÍcÇ'Ú4åZäKÉ4ßTá×Ç4ÍTÈrÉ�áUÎ7ÐKÎ7ÐKÝÎ7Ò|ÑKÉPÍcÚ�ÓUÎ7Ï�ÉCÓbÍcÚfÐ*ß�á×Ç4Í�Ò�ÚfÓ�ÎUÇ4Ð*ß �
È#Î7ÍcÉ�åZÓÒæÇ'ÈrÉfÊ�ÒæÚfÐKÎ0Ñ�éVÊbÚ�Ó�ÎUÇ4Ð*ÔRÎ7Ð�Ó×ÉPÍ�ÒæÉ�È#ÎUÚ�Ó�É¾ÍcÉcÑ�ÍcÉ5ß�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð�Ô
Ú�ÐKÈ�ÓbÍcÚ�Ð ß�á�Ç4Í�Ò�Ú�Ó�ÎbÇ4Ð�ÊUÚ�ÐOÝ#éVÚ4Ý�ÉæßjérÑrÑOÇ4Í�Ó ð�� Ò�Ç4ÍcÉCå5Ç4Ò|ÑOÉfÊbÊbÎ7ÐKÝ
ÚfÑrÑ�ÍcÇ'ÚaåPä�Î�ß�Óbä É%éKß�É�Ç'á��Eorq�sat��4or��~Xy}t}���by7o#l�Ü¦ä ÉPÍcÉ¦Óbä É%ÒæÇ'ÈrÉfÊ
Î�ß£ÓbÍcÚ�Ð*ß�á�Ç4Í�Ò�É5ÈpÎ7Ð�Ó×Ç�Ú�å�Ç4ÒCÑVÊUÉPÓ×É�È�ÚfÑrÑOÊ}ÎUå�Ú�Ó�ÎUÇ4Ð*Ô=Ð Ç4Ó�Óbä�ÍcÇ4éVÝ'ä
Óbä É éOß�É Ç'áÓbÍcÚfÐ*ß�á×Ç4Í�Ò�ÚfÓ�ÎUÇ4Ð ÊUÚfÐKÝ#éVÚ4Ý�É5ßPÔ�Þ#érÓÅÓbäVÍcÇ4é�Ý#ä�Óbä É
ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð,Ç'á.Í�é�ÊUÉ5ß¦å�Ç'È#ÎUáUÎUÉ�ÈCÜ�Î0ÓbäKÎ7ÐRÚ|ß�Ç'á}ÓbÜ�Ú�ÍcÉ�ÉPÐKÝ�Î0Ð É�ÉZÍ�Î0ÐKÝ
ûrÐ Ç4Ü�ÊUÉ�È#Ý�É5Ë}Þ�ÚNß�ÉaÔ Î ð É ð Ô Ú Í�éVÊbÉ4Ë}Þ�ÚNß�É�È ÚfÑrÑ�ÍcÇ'Ú4åPä Ó×Ç
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4Ð ð à#éOåPä ÚfÐ ÚfÑrÑ�ÍcÇ'Ú4åZä ÍcÉPÒ�Ç4Ï�É4ß Ó}ä É
�cÑ�ÍcÇNÝ'ÍcÚ�ÒCÒ�Î7ÐKÝ/��ÚNß�ÑOÉ5åPÓ½á}ÍcÇ4Ò Óbä ÉnÓbÍcÚ�Ð ß�á�Ç4Í�Ò�Ú�Ó�ÎbÇ4Ð���ÒæÇ'ÈrÉfÊ
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4Ð*ß�å5ÚfÐÁÞ�É�åPä ÚfÐKÝ�É�È\Þ#ò\é#ÑKÈrÚ�ÓUÎ7ÐKÝ\Óbä ÉnÍ�é�ÊUÉ5ß
Ü�Î0ÓbäKÎ7ÐCÓbä ÉXû�ÐKÇ4Ü�ÊUÉ�È#Ý�É5ËbÞ�Úaß�É ð
OBSTACLESã�ä ÉPÍcÉªÚ�ÍcÉÒ�Ú�Ð�ò«Ç5ÞVß9Ó×Ú4åfÊUÉ5ßæÓ×ÇÀÍcÉ�Ú4ÊbÎ
NÉ�Ó}ä É�ábé�ÊbÊxÞ�ÉPÐ É�áUÎ7Ó�ß�Ç'á
Ò�Ç'È�ÉfÊ�Ë×È'Í�Î0Ï�ÉZÐ,ÈrÉPÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓ ð ã�ä É%Ò�Ç#ß9Ó�åPÍ�Î7Ó�Îbå5Ú5ÊSÇ5ÞVßjÓ×Ú4å�ÊbÉ4ß�Ú�ÍcÉ
Î7Ð Ú4È�É�öNéOÚfÓ×É	Ò�Ç'ÈrÉfÊbÎ7ÐKÝTÐKÇ4Ó×Ú�Ó�ÎbÇ4Ð*ßSÚ�ÐKÈ�Ó×Ç'ÇNÊ*ß9é#ÑrÑKÇ4Í�Ó ð
Inadequate Modeling NotationsÕ%Æ�Ø1Ë í Î�ß�Óbä É£qVs��'���N�7o�ßjÓ×Ú�Ð ÈrÚ�ÍcÈÇ5ÞZõ�É�åPÓ	ÒæÇ'ÈrÉfÊbÎ7ÐKÝRÐ Ç4Ó×ÚfÓ�ÎUÇ4Ð
á�Ç4Í�ß�Ç'ábÓ}ÜEÚ�ÍcÉRÉPÐKÝrÎ7Ð É�ÉPÍ�Î7ÐKÝ ð Ö×Ó�Ú4ÊbÊUÇ4ÜEßTÒæÇ'ÈrÉfÊUÉPÍPßTÓ×Ç�å�ÚfÑ�ÓbérÍcÉRÚ
ÜEÉ�Ú5Ê7ÓbäªÇ'áXÎ7Ð á�Ç4Í�Ò�Ú�Ó�ÎUÇ4ÐªÚZÞ�Ç4é�Ó¦ß�Ç'á}ÓbÜEÚfÍcÉæßjòrßjÓ×ÉPÒ¹å5Ç4Ò|ÑOÇ4Ð ÉPÐVÓ�ßcÔ
Óbä ÉfÎ7Í�Þ�ÉZäKÚ�ÏrÎUÇ4ÍPßcÔVÚ�Ð ÈxÓbä ÉfÎ7ÍXÎ7ÐVÓ×ÉPÍcÚaåPÓ�ÎbÇ4Ð*ß ð�	 Ç4ÜEÉPÏ�ÉPÍZÔ�Õ¨ÆpØ1Ë í Î�ß
Î7Ð*ßjéVá×áUÎUåfÎUÉPÐVÓ.á�Ç4Í�ÍcÉ�Ú4Ê}Î5
aÎ7ÐOÝTÓbä É�á}é�ÊbÊ�Þ�ÉZÐKÉ5áUÎ7Ó×ß	Ç'áKÆ�Ì�ÌnÇ4Ü�Î7ÐKÝ£Ó×Ç
ß�ÉZÏ�ÉPÍcÚ5Ê*åPÍ�Î7ÓUÎUå�Ú4Ê È�É�áUÎUåfÎUÉPÐ åfÎUÉ5ß �

 � � % ' 2�# � ÁÕ%ÆpØ1Ë í Î�ßgÚ�Ð Î7Ð å�Ç4Ò|ÑVÊUÉPÓ×É Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð ð ÆpÚ�ÐVò
Õ%Æ�Ø1Ë í Ó�Ç'ÇNÊ Ï�ÉPÐ ÈrÇ4ÍPßSäKÚ�Ï�É%Ó×ÇEÑ�ÍcÇ4ÏrÎUÈ�É�Ú%ÒæÉ�ÚfÐ*ß¦á�Ç4Í=Ò�Ç'ÈrÉ�ÊbÉZÍPß
Ó×Ç3�fÎ7Ð4õ�É�åZÓ �£ÚaåPÓbéVÚ4Ê.Î7Ò|ÑVÊUÉPÒ�ÉZÐ�Ó×Ú�Ó�ÎbÇ4ÐRÊUÚfÐKÝ#éVÚ4Ý�É�È�ÉPÓ×Ú5ÎbÊ�ß�Î0ÐVÓ×ÇxÓbä É
Ò�Ç'È�ÉfÊ�ß�Î7Ð�Ç4ÍcÈ�ÉPÍ�Ó×Ç�È�É5ß�åPÍ�Î0Þ�É�ß�ÎbÝ'ÐKÎUáUÎUå�ÚfÐVÓXÈrÉPÓ×Ú4Î}Ê ð Ö�ÐpÚ4È�È#Î7Ó�ÎbÇ4Ð�Ô
Õ%Æ�Ø1Ë í ÈrÇ'É4ß�ÐKÇ4Ó|Ú4È�ÈNÍcÉ5ßcß 4)�6 ßæÚ4Ê7Ó}ä Ç4éVÝ'ä�ÜEÇ4Í�ûÅä ÚaßCÞ�É5ÉPÐ
ÈrÇ4Ð ÉCÓ×Ç�Î7Ð åfÊ7éVÈrÉæß�Ç4ÒæÉ 4)�6 ÉfÊUÉPÒ�ÉPÐVÓ�ßTÎ0ÐVÓ×ÇæÓbä ÉCÐKÇ4Ó×Ú�Ó�ÎbÇ4Ð ê�� Ô
Nï�ð à�Î7Ò�ÎbÊUÚ�Í�Ê0ò�ÔVÓ}ä É � Æ���ä Úaß1Ñ�é#Þ�ÊbÎ�ßjä É�ÈCÚ|ß9Ó�Ú�Ð ÈrÚ�ÍcÈ êUî Ô �Vï á�Ç4Í
Õ%Æ�Ø1Ë í Ñ�ÍcÇ'á�Î}ÊUÉ5ßæÓbäKÚ�Ó|ßjÑOÉ�å�ÎbábòÀß�åPä É�È'é�ÊUÚfÞ�Î}ÊbÎ7ÓbòrÔ¦ÑOÉPÍcá×Ç4Í�Ò�ÚfÐ å�ÉaÔ
Ú�ÐKÈ¾Ó�Î7Ò�Î7ÐOÝ{ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ß½Î0Ð�ÍcÉ5Ú5Ê�ËUÓUÎ7Ò�É¡ß9ò#ß9Ó�ÉZÒæß ð:� Ð Ç4Óbä ÉPÍ
� Æ�� 6) � Ú�Ð È«Î7Ó�ßRÑ�ÍcÇ5ÑKÇ#ß�Ú4ÊUß ê}í Ô ëfÿ�ï ÚaÈrÈ'ÍcÉ5ß�ßöNéOÚ5ÊbÎ7Óbò«Ç'á
ß�ÉZÍ�ÏrÎbå5Éå5Ç4Ð ß9ÓbÍcÚ5Î7ÐVÓ�ßRÎ7ÐnÝ�ÉPÐ ÉPÍcÚ5Ê ð � ß�Î}Ý#ÐKÎbá�Îbå5ÚfÐVÓ£Ç4Ò�ÎUßcß�ÎUÇ4ÐnÎ7Ð
Õ%Æ�Ø1Ë í Î�ß=Óbä Ú�ÓSÎ7Ó=È�Ç'É5ß=Ð Ç4Ó	ß�ÑOÉ5åfÎUá}ò�Ú�Ð�òaÓbäKÎ0ÐKÝ�Ü�Î7Ó}äRÍcÉ4ß�ÑOÉ5åPÓ1Ó×Ç

Ó}ä É�Õ�ß�ÉPÍRÖ�ÐVÓ×ÉPÍcá�Úaå�É ð �ÅÇ4Í�ûÅä ÚaßCÞ�É5ÉPÐ�È�Ç4ÐKÉæÞ#ò�Óbä É � î Ù Ó×Ç
ÈrÉ5ß�Î}Ý#Ð�Ú�È'ÍcÚ4á}ÓæÆé�Ê7Ó�Î7Ò�Ç'ÈrÚ4ÊRÖ�ÐVÓ×ÉPÍcÚaåPÓ�ÎUÇ4Ð) ÍcÚ�Ò�ÉPÜEÇ4Í�û êbîrÿrï Ô
ÚfÐ Èpß�ÑKÉ�åfÎUá}ò,ÚæÒ�é�Ê7Ó�Î0ÒæÇ'ÈrÚ4Ê=Ò�Ú�Í�ûré#Ñ½ÊUÚ�ÐOÝ#éVÚ4Ý�É4Ô1â1ÆÆ � ê7í�Nï
Þ#érÓ�Ó}ä É«É�á�á�Ç4Í�Ó�ßpÚ�ÍcÉ½Ñ�ÍcÉfÊbÎ7Ò�Î7Ð ÚfÍ�ò¡ÚfÐ ÈnÐ Ç4Óß9é#ÑrÑKÇ4Í�Ó×É�È«Þ#ò�Ú
ß�ÎbÝ'ÐKÎUáUÎUå�Ú�Ð�Ó�ÉZó�É�åZérÓ�ÎUÇ4ÐKÚ4Ê á}ÍcÚ�Ò�ÉPÜEÇ4Í�û ð
� '���� $&% ��'(��# Õ%ÆpØ1Ë í Î�ß%ÐKÇ4ÓXå�Ç4Ò|ÑOÊbÉZÓ�É�Ê0ò�á�Ç4Í�Ò�Ú4Ê ð Õ¨ÆpØ1Ë í Î�ß
Þ�Úaß�É�È�Ç4ÐÓbä É�ÆpÉZÓ�ÚNË � ÞZõ�É�åPÓ) ÚaåfÎbÊbÎ7Ó}ò ç Æ �) è ê�ë5î#ï ÈrÉ5áUÎ7ÐKÉ5ÈRÞ#ò
Ó}ä É � Æ�� ð Æ �) È�É�áUÎ7Ð É5ß�Óbä É¨ß9Ó}Í�éOåPÓbérÍcÚ4Ê å�Ç4Ð*ßjÓbÍcÚ4Î7Ð�Ó�ßXá×Ç4Í�Ò�Ú5ÊbÊ7ò�Ô
Þ#érÓ¾Î7Ó¾È�Ç'É5ß\Ð Ç4Ó\È�É�áUÎ7Ð ÉLÎ7Ó�ß ß�ÉZÒ�ÚfÐVÓ�ÎUå5ß�á×Ç4Í�Ò�Ú5ÊbÊ7ò ð Æ�Ç4ÍcÉ
Î0ÒCÑOÇ4Í�Ó×ÚfÐVÓ�Ê7òrÔ�Ú5Ê7Óbä Ç4é�Ý#ä Æ �) È�Ç'É5ß ÈrÉ�á�Î0Ð É»Ú�Ð � ÞZõ�É�åZÓ×Ë
Ù	Ç4Ð*ßjÓbÍcÚ5Î7ÐVÓ�Ø�Ú�ÐOÝ#éVÚ4Ý�É ç � ÙXØ.è ê�ë���ï Ô|Î7Ó�ß,éKß�É�Î7Ð�Õ%ÆpØ1Ë í Î�ß
Ç5Ñ�Ó�ÎUÇ4ÐKÚ4ÊæÚfÐ È�Ó×ÉPÐ È�ß,Ó×ÇªÞ�ÉÓbÍcÉ�Ú�Ó×É�È¾ÚNßÈrÇ'åPé�Ò�ÉPÐVÓ×ÚfÍ�ò«ÍcÚfÓbä ÉPÍ
Ó}ä Ú�Ð�ÚNß�ÚEß�ÉPÓ�Ç'á*Î7Ò|ÑOÉPÍcÚ�Ó�Î7Ï�É5ß

 � � %�� ��� �"� �� � Õ%ÆpØ1Ë í Ç4ÐKÊ0òCÑ�ÍcÇ4ÏrÎUÈrÉ5ß¨ÊbÎ7Ò�Î7Ó×É�È�Ò�É�åZäKÚ�ÐKÎ�ßjÒæßXÓ×Ç
ÉPÐ*ßjérÍcÉ�Ó}ä Ú�Ó�Ó}ä ÉnÏ�Ú�Í�ÎUÇ4éOß�ÏrÎUÉPÜ�ß�Ú�ÍcÉ¾å�Ç4Ð*ß�Î�ßjÓ×ÉPÐVÓ�Ü�Î0ÓbäÂÇ4Ð É
ÚfÐ Ç4Óbä ÉPÍ£Ç4ÍCÎ7Ð ÈrÉ�É�È�Óbä ÚfÓ¨Óbä É�ÉfÊUÉPÒæÉPÐVÓ×ßCÚfÍcÉ�å�Ç4Ð*ß�Î�ßjÓ×ÉPÐVÓ	Ü�Î7ÓbäOÎ7Ð
Ç4ÐKÉ¾ÏrÎUÉPÜ ð à�ÉPÏ�ÉPÍcÚ4Ê�Õ%ÆpØ1Ë í ÈrÎUÚ5Ý#ÍcÚfÒæßnå�Ú�Ð ßjä Ç4Ü´Ú5Ê7Ò�Ç#ß9Ó
ÎbÈ�ÉPÐVÓ�Îbå5Ú5Ê	ÑOÉPÍPßjÑOÉ�åZÓUÎ7Ï�É5ßCÇ'á%Óbä É�ß�Ú�Ò�É�ß�ÉPÒæÚfÐVÓ�ÎUå5ßcÔXß9éVåPä«ÚNßTÓbä É
å�ÇNÊbÊbÚfÞ�Ç4ÍcÚ�ÓUÎUÇ4ÐLÚfÐ Ègß�É�ö'éVÉPÐ å�É�È#ÎUÚ4Ý'ÍcÚ�Òæß ð àréVåPä ÍcÉ�ÈNé�ÐKÈ�ÚfÐ åPò
å�ÚfÐ�ÍcÉ5ß9é�Ê7Ó	Î7Ð�ÈrÎUá�á�ÉPÍcÉPÐVÓ=ÏrÎUÉPÜ�ßEÇ'áSÓbä É�ß�Ú�Ò�ÉxÒæÇ'ÈrÉfÊ1Þ�É�å�Ç4Ò�Î0ÐKÝ
Î0Ð å�Ç4Ð*ß�ÎUß9Ó×ÉPÐVÓ ð Ö�Ó	Î�ßEåZérÍ�ÍcÉPÐVÓ�Ê7òRé#Ñ,Ó×Ç�Óbä ÉxÏ�Ú�Í�ÎbÇ4éKß¨Ó×Ç'ÇNÊ=Ï�ÉPÐ È�Ç4ÍPß
Ó�ÇTÉPÐ*ßjé�ÍcÉXÓbä ÚfÓ.ßjéVåZä�Î7ÐKå5Ç4Ð ß�Î�ßjÓ×ÉPÐ åfÎUÉ5ßSÚfÍcÉ	Ð Ç4Ó*Î7ÐVÓ}ÍcÇ'È'éVå�É5È ð
Inadequate Tool Supportã�ä É � Æ��nÎ�ß�á�Ç'åZéOß�É5È�Ç4Ð�éOß�Î0ÐKÝRßjÓ×Ú�ÐKÈ�ÚfÍcÈ�ß¦ß9éVåPä�ÚNß 4 ÆpÖ ê7í�� Ô
í �#ï Ú�ÐKÈ 4 à�Ø�ã êbî�î#ï Ó×ÇøÑ�ÍcÇ4ÏrÎUÈ�ÉøßjérÑrÑOÇ4Í�Ó¶á�Ç4Í�ÓbäKÉ
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð¹á}ÍcÇ4ÒúÓbäKÉ�Î0ÍnÑOÊbÚ�Ó×á�Ç4Í�ÒæË×Î7ÐKÈ�ÉcÑOÉZÐKÈ�ÉPÐVÓ�Ò�Ç'È�ÉfÊ�ß
ç�� Ö�Æpè=Ó×Ç�ÓbäKÉxÑVÊUÚfÓ×á�Ç4Í�ÒRË�ßjÑOÉ�åfÎUáUÎUå�Ò�Ç'È�ÉfÊ�ß ç�� àrÆpè ð ã.ä É|ÎUÈrÉ�ÚCÇ'á
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð*ßÄÎ�ß Ð Ç4Ó�Ð ÉPÜ ÚfÐ È»å�ÊbÇ#ß�ÉfÊ7ò·Ò�Î7Í�ÍcÇ4ÍPßýÓbä É
ÚZÑ�Ñ�ÍcÇ'ÚaåPä éKß�É�ÈLÞ#òÂå�Ç'ÈrÉÁÝ�ÉZÐKÉZÍcÚfÓ×Ç4ÍPß{Î0ÐÃÓbäKÉ�ÑKÚaß9Ó ð à#éOåPä
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð�Ó�É5åPäVÐOÎUö'éVÉ5ßæäKÚ�Ï�É�Ó}ä É,Þ�ÉZÐKÉ5áUÎ7ÓCÇ'á�ÈrÉfÊbÎ7Ï�ÉPÍ�Î7ÐKÝ
ß�ÎbÝ'ÐKÎUáUÎUå�Ú�Ð�ÓæÚfÒ�Ç4é�ÐVÓ×ß�Ç'á�å�Ç'È�ÉÅöNéVÎbåZû�Ê7òrÔ�Ü¨äKÎ}ÊUÉÅÚ�ÓCÓbä Éªß�ÚfÒ�É
ÓUÎ7Ò�É�ÍcÉ�öNéVÎ0Í�Î7ÐKÝÅÏ�ÉZÍ�ò�Ê}Î7ÓbÓ�ÊUÉ�ÈrÉPÓ×Ú4ÎbÊbÉ5È�Î7Ð á�Ç4Í�Ò�Ú�ÓUÎUÇ4Ð{ÚfÞ�Ç4érÓ£ÓbäKÉ
Ó�Ú�Í�Ý�ÉZÓ£Ú�ÍcåPäKÎ0Ó×É�åZÓ}é�ÍcÉ�Ç4Ð«Ó}ä É�ÑOÚ�Í�ÓTÇ'á�ÓbäKÉ�Ò�Ç'È�ÉfÊUÉPÍ ð�	 Ç4Ü�ÉPÏ�ÉZÍZÔ
Ó}ä ÉTÉZó�Î�ßjÓ�Î7ÐKÝ � Æ��¾ÓbÍcÚfÐ*ß�á×Ç4Í�Ò�ÚfÓ�ÎUÇ4Ð,ÚfÑrÑ�ÍcÇ'ÚaåPä É5ß%Ç4ÐKÊ7ò�Ú4È�ÈNÍcÉ5ßcß
ß�Ç4Ò�É£ÚNß�ÑOÉ5åPÓ�ß%Ç'á�Óbä É£áUÎ7ÐKÎUß9ä É�È�ÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4Ð ð) Ç4Í�Éfó�Ú�Ò|ÑVÊUÉ4ÔKÓbä É
ÉZó#ÓbÍcÚNË×á}é�Ð åPÓ�ÎbÇ4Ð Ú4Ê�ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ßÁÚfÍcÉ¹ÚNß�ò#ÉPÓ¾é�Ð Ú4È�ÈNÍcÉ5ßcß�É�È ð
Ù	Ç4Ð*ß�ÎUÈrÉPÍ�Î7ÐKÝ«ÓbäKÉ�Î0Í�Î7Ò|ÑOÇ4Í�Ó×Ú�ÐKå5ÉpÓ×ÇÀÓbä ÉªÇ4Ï�ÉPÍcÚ5ÊbÊ�ÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4Ð�Ô
Ó}äKÎ�ß�Î�ß�ÚEß�ÎbÝ'ÐKÎUáUÎUå�ÚfÐVÓOÑ�ÍcÇ5Þ�ÊUÉPÒ ð
Ö�Ð�Ú4È�È#Î7Ó�ÎUÇ4Ð*ÔTÓ}ä ÉÅÉZó�Î�ßjÓ�Î7ÐOÝ¡Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð{Ñ�ÍcÇ'å�É5ßcßpá�Ç'åPéKß�É5ß
äKÉ5ÚfÏrÎbÊ7ò Ç4Ð 4 à�Ø�ãSË}Þ�ÚNß�É5È Ó×É�åPäVÐ ÇNÊbÇNÝ�ÎUÉ5ß ð Ì�É4ß�ÎbÝ'ÐKÎ7ÐKÝ
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð*ßªéOß�Î7ÐOÝ 4 à�Ø�ãùÎ�ßnÚ\ÈrÉPÓ×Ú4Î}ÊUÉ�È ÚfÐ È�Ó�É5È#ÎUÇ4éOß
Ñ�ÍcÇ'å�É5ßcß ð Ö×Ð�Ú4È�È#Î7Ó�ÎbÇ4Ð�Ô�Î7ÓæÎ�ßpÈrÎUá�áUÎUåPé�Ê7Ó�Ó×Çnå5Ç4Ò|Þ�Î7ÐKÉÅÈrÎUá�á�ÉPÍcÉPÐVÓ
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4ÐÅÍ�é�ÊUÉ5ß|Ç4Í�Ó�ÇßjòaÐ�Óbä É5ß�Î
NÉ�Ð ÉPÜýÍ�é�ÊUÉ5ß£Þ�Úaß�É�È�Ç4Ð
Ó}ä É,ÉZó�Î�ßjÓ�Î7ÐKÝ�Ç4Ð É5ß ð � ÊbÊ�ßjéOåPä«å�ÚfÑOÚfÞ�ÎbÊ}Î7Ó�ÎUÉ5ß�ÒCéKßjÓ%Þ�É�ÉPÐ å�Ç'ÈrÉ5È
Î0ÐVÓ×Ç�ÓbäKÉ¦ÓbÍcÚ�Ð*ß�á�Ç4Í�Ò�Ú�Ó�ÎUÇ4ÐæÎ7Ð�Ç4ÍcÈ�ÉPÍ�á�Ç4Í=Ó}ä ÉPÒ�Ó×ÇEÞ�É	éOß�É5ÈCÈNé�Í�Î0ÐKÝ
Ó}ä É�Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4ÐæÑ�ÍcÇ'å�É4ß�ß ð ã�äKÎ�ß¦å�ÚfÐ�ÍcÉ5ß9é�Ê7Ó1Î7Ð,Ú£ß�ÎbÝ'ÐKÎUáUÎUå�ÚfÐVÓ
ÚfÒ�Ç4é�ÐVÓ�Ç'á�ÊUÇNÝrÎUå¨Þ�É�Î0ÐKÝ�ÉZÒ|Þ�É�ÈrÈ�É�ÈCÜ%Î7ÓbäKÎ0ÐRÓbä É%ÓbÍcÚ�Ð*ß�á�Ç4Í�Ò Ó}ä Ú�Ó
Ò�ÎbÝ'äVÓ=É�ÚNß�ÎbÊ7ò�Í�Î0Ï�Ú4Ê.Óbä É£ÚfÒæÇ4érÐVÓ�Ç'á�ÊUÇNÝ�Îbå�Ð É�É�È�É�ÈæÓ×Ç|Þ#é�ÎbÊUÈ�ÓbäKÉ
ÚZÑ�ÑVÊbÎUå�ÚfÓ�ÎUÇ4Ð�Î7Ó�ß�ÉfÊUá ð
â.Ï�ÉPÐÅÓbä Ç4é�Ý#äÅÓ}ä ÉPÍcÉ,ÚfÍcÉ�ÒæÚfÐVò�Î7ÐKÈ'éOß9Ó}Í�òrËjßjÓ×ÚfÐ È�ÚfÍcÈ�Ó×Ç'ÇNÊUß|Óbä ÚfÓ
ßjé#Ñ�ÑOÇ4Í�ÓTÕ¨ÆpØ1Ë í Ô	Ó×ÇÇ4é�Í�û�Ð Ç4Ü%ÊUÉ�ÈrÝ�É4Ô¨á�ÉZÜ�Ô¦ÎUá�Ú�ÐVòrÔ¨Ç'á�Óbä É5ß�É
Ó�Ç'ÇNÊ�ß¨ßjérÑrÑOÇ4Í�Ó�á�Ç4Í�Ò�Ú4ÊbÎ�ßjÒ ð � á}Ó×ÉPÐ�Ô � Ù	ØÎ�ß¦ÉfÎ7ÓbäKÉZÍ	Ð Ç4Ó*ÍcÉ�ö'é�Î7ÍcÉ�È
ÚfÓ�Ú4ÊbÊ×ÔVÇ4ÍSÎ�ßXÇ4ÐKÊ7ò�éOß�É�È�Ó�ÇEÑ�ÍcÇ4ÏrÎbÈ�É¨ß9é#Ñ�ÑOÇ4Í�Ó�Î7ÐOÝ�ÈrÇ'åPé�Ò�ÉPÐVÓ×ÚfÓ�ÎUÇ4Ð ð
Ö�Ó.Î�ß�ÍcÚfÍcÉ�Ê0ò£ÎUá.ÉPÏ�ÉPÍ=éOß�É�ÈCÈNé�Í�Î7ÐOÝ|Ó}ä É�å�Ç'È�É%Ý�ÉPÐ ÉPÍcÚ�Ó�ÎUÇ4Ð�Ñ�ÍcÇ'å�É5ß�ß ð
à#é#Ñ�ÑOÇ4Í�Ó�á�Ç4Í=Ò�Ç'ÈrÉfÊ�å�Ç4Ò|ÑOÎbÊbÚ�Ó�ÎUÇ4ÐæÎ�ß=�rq��ro��TÚ�ÐKÈ£ÍcÉfÊbÎbÉ4ß�ä É�ÚfÏrÎbÊ7ò
Ç4ÐÅÕ¨ÆpØ1Ë í Ñ�ÍcÇ'áUÎbÊUÉ5ß�Ç4ÍCÓ×ÉPÒ|ÑOÊbÚ�Ó×É5ß ð ã�ä É5ß�É,ÚfÍcÉ,Ç'á}Ó×ÉPÐ�Ç4érÓ�ß�ÎUÈrÉ
Ó}ä ÉCÒ�Ç'ÈrÉ�ÊbÉZÍ4ü}ßxÈ#Î7ÍcÉ�åZÓ¨å�Ç4ÐVÓbÍcÇNÊ=Ò�Ú�û�Î7ÐKÝÎ7Ó¨ÈrÎUá�áUÎUåPé�Ê7Ó	Ó×Ç,åPä ÚfÐKÝ�É
Ó}ä É�Ò�Ç'È�ÉfÊ�ÓbÍcÚfÐ*ß�á×Ç4Í�Ò�ÚfÓ�ÎUÇ4Ð�Ñ�ÍcÇ'å�É5ßcß ð � Ð Ç4ÓbäKÉZÍ�Ú�ÍcÉ�Ú�Ü�É£á�É5ÉfÊ.Ó×Ç

Þ�ÉÁÜEÉ�Ú�û Î7ÐôÉZó�Î�ßjÓ�Î7ÐKÝþÓ×Ç'ÇNÊ�ß�Î�ß\Óbä ÉÂß9é#ÑrÑKÇ4Í�Ó{á�Ç4Í Ú4åZÓUÎUÇ4Ð
ß�ÉZÒ�ÚfÐVÓ�ÎUå5ß ð Ö×Ð�Ò�Ç#ßjÓ å�ÚNß�É4ßcÔ�Ò�Ç'ÈrÉfÊUÉPÍ Ú4åPÓ�ÎUÇ4Ð*ßýÒ�éOßjÓ Þ�É
ß�ÑKÉ�åfÎUáUÎUÉ�È¡Î7Ðgß�Ç4Ò�É½Ñ�ÍcÇ'å5É�ÈNé�ÍcÚ5ÊCÊUÚ�ÐKÝ'éVÚ4Ý�É ð ã�äKÎ�ß�ÊUÉ�ÚaÈ�ß�Ó×ÇnÚ
�PÒ�Î}óOË×Ú�Ð È�ËUÒ�ÚfÓ×åPä��RÚfÑrÑ�ÍcÇ'Ú4åPä½Ü¦äKÎUåPä�Ò�Ú�ûVÉ4ß�Óbä ÉCÒ�Ç'ÈrÉfÊXÒ�Ç4ÍcÉ
È#ÎUá�á�ÎbåZé�Ê7Ó=Ó�ÇRérÐ ÈrÉZÍPßjÓ×ÚfÐ È,ÚfÐ ÈæÒæÚ5Î7ÐVÓ×Ú5Î7ÐªÚNß¨ÜEÉfÊbÊ�ÚNß¦Þ�ÉfÎ7ÐKÝ�ÊUÉ5ßcß
ÍcÉ5ß�Î}ÊbÎUÉPÐVÓKÓ×Ç�åZäKÚ�ÐKÝ�É ð
PROPOSED APPROACH� érÍ�ÏrÎ�ß�ÎbÇ4Ðôá�Ç4Í�Æ�Ì�Ì å�ÉPÐVÓ×ÉPÍPß�Ç4ÐôÚ4è\ÚfÑrÑ�ÍcÇ'Ú4åPä É5ß ÚfÐ È
Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð*ß%á�Ç4Í�å5ÚZÑ�Ó}é�Í�Î7ÐOÝ�á×Ç4Í�Ò�Ú5ÊXÚ�Ð ÈRå�Ç4Ò|ÑVÊUÉPÓ×É�Ò�Ç'È�ÉfÊ�ß%Ç'áSÚ4ÊbÊ
ÚNß�ÑOÉ5åPÓ�ß Ç'á ÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4Ð*ßcÔúÚ�ÐKÈ Þ�è ûrÐ Ç4Ü�ÊUÉ�È#Ý�É5Ë}Þ�ÚNß�É5È
ÚfÑrÑ�ÍcÇ'ÚaåPä É5ß�ÚfÐ ÈÀÓ×Ç'ÇNÊ�ß�Óbä Ú�Ó�å�Ç4ÐVÏ�ÉPÍ�Ó£Ò�Ç'ÈrÉ�ÊUß�Î7Ð�Ó×ÇÅå�Ç4ÒCÑVÊUÉPÓ×É
ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð*ßøÓbäVÍcÇ4é�Ý#ä Ú Ñ�ÍcÇ'å�É5ß�ßøû�Ð Ç4Ü¦Ð ÚNß �Eo#q�sat
�ao#��~Xy}t}���by7o#l ð
Formal and Complete Modelsã1ÇxßjérÑrÑOÇ4Í�Ó�á}é�ÊbÊ7ò£Ú�érÓ×Ç4Ò�Ú�Ó×É�È�Ò�Ç'ÈrÉfÊ*å�Ç4Ò|ÑVÎbÊUÚ�ÓUÎUÇ4Ð�Ô'Ï�ÉPÍ�ÎUáUÎUå�Ú�ÓUÎUÇ4Ð
Ú�ÐKÈRÏ�Ú5ÊbÎUÈrÚ�Ó�ÎUÇ4Ð*Ô*Î7Ó	Î�ßEÉ5ßcß�ÉPÐVÓ�ÎUÚ5Ê�Óbä ÚfÓ�É�ÚaåPä,Ò�Ç'ÈrÉfÊ1Þ�ÉCá×Ç4Í�Ò�Ú5ÊbÊ7ò
ß�ÑKÉ�åfÎUáUÎUÉ�È ðT÷ ò�ÉZÐ ß9érÍ�Î7ÐKÝ�Óbä ÚfÓ,Ú4ÊbÊCÒ�Ç'È�ÉfÊ�ßÞ�ÉÅÈ�É�áUÎ7Ð É�È Î0Ð�Ú
á�Ç4Í�Ò�Ú4Ê�Ü�Ú�ò�Ô�Î7Ó	ÎUß¨ÑOÇ#ßcß�Î0Þ�ÊUÉxÓ×Ç�ßjÓ×ÚfÓ�ÎUå�Ú4ÊbÊ0ò�åPä É�åPû,ÓbäKÇ#ß�ÉxÒ�Ç'È�ÉfÊ�ß
Þ�É�á�Ç4ÍcÉ�ÚfÐVò�å�Ç'È�É|Î�ß�Ü¦Í�Î7ÓbÓ×ÉPÐ½Ç4Í%Ý�ÉPÐ ÉPÍcÚ�Ó�É5È ð ã.äKÎUß%Ú�Ð Ú5Ê7òrß�Î�ßEå5ÚfÐ
Ó×ÉfÊbÊ*ß�Ç'ábÓ}ÜEÚ�ÍcÉ�ÈrÉPÏ�ÉfÊUÇ5ÑKÉPÍPß�Ü¦ä ÉPÓbä ÉPÍ�Ç4Í1Ð Ç4Ó�Ó}ä É	Ò�Ç'ÈrÉ�ÊVÒ�É�ÉPÓ�ßXÚ4ÊbÊ
Ç'áxÓbä É�ÈrÇ'åZérÒ�ÉPÐVÓ×É�È�ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ß ð â.Í�ÍcÇ4ÍPßPÔ�Ç4Ò�Î�ß�ß�ÎUÇ4Ð ßPÔ�Ú�Ð È
å�Ç4ÐVÓbÍcÚ4ÈrÎUåPÓ�ÎbÇ4Ð*ß¨Î7ÐRÓbä ÉEÒæÇ'ÈrÉfÊSå�ÚfÐ,Ú4Ê�ß�Ç|Þ�ÉxÊbÇ'å5ÚfÓ×É�È�Þ�É�á×Ç4ÍcÉ�Ú�Ð�ò
ß�ÎbÝ#ÐOÎUáUÎUå�Ú�ÐVÓKÓ�Î7Ò�É¦ä Úaß.Þ�É�ÉPÐ�ß�ÑKÉPÐVÓ*Î7Ð�å�Ç4Ð*ßjÓbÍ�éOåPÓ�Î0ÐKÝ£Óbä É%ß�ÇNÊ7érÓ�ÎUÇ4Ð
ÍcÉ5ß9é�Ê7Ó�Î0ÐKÝýÎ7ÐÂÚ�ß�Ú�ÏrÎ0ÐKÝVß�Ç'á�ÓUÎ7Ò�ÉaÔ�Ò�Ç4Ð ÉPò�Ô,ÚfÐ ÈýÈrÉPÏ�É�ÊbÇ5ÑKÉPÍ
ÍcÉ5ß�Ç4érÍcå�É5ß ð�� Ðý�#lOy��E�V�7o#wÅå�ÚfÐ�äVò4ÑOÇ4Óbä É5ß�Î5
NÉ�Ç4ÍpÑ�ÍcÉ�ÈrÎUåPÓRÓbäKÉ
Þ�ÉPä Ú�ÏrÎbÇ4ÍæÇ'á¦Ò�ÉPÓbä Ç'È,Þ�Ç'È#ÎUÉ5ß£Þ�Úaß�É�È�Ç4ÐÅÓbä ÉRá�Ç4Í�Ò�Ú4Ê¦Ñ�ÍcÉ5Ë�ÚfÐ È
ÑOÇ#ß9Ó�Ë×å�Ç4Ð ÈrÎ0Ó�ÎUÇ4Ð*ßøÈ�É�áUÎ7Ð É�È á�Ç4Í Óbä É Ò�Ç'ÈrÉ�Ê ð � ÏrÎ0Í�ÓbéOÚ5Ê
��ÉZóVÉ�åPé�ÓUÎUÇ4Ð��ªÇ'áEÓbä ÉÒ�Ç'È�ÉfÊ£Î�ß�Óbä ÉPÐnÑOÉPÍcá�Ç4Í�ÒæÉ�ÈÓ×ÇäKÉ�Ê�ÑnÓbäKÉ
ÈrÉ4ß�ÎbÝ'Ð ÉPÍPß�ÎbÈ�ÉPÐVÓ�ÎbábòÅÚ�Ð ÈÅå�Ç4Í�ÍcÉ�åPÓ�Ú�Ð�ò�ÈrÉ5áUÎUåfÎUÉPÐ åfÎUÉ5ß ð ã�äVÍcÇ4é�Ý#ä
Ú�ÐOÎ7Ò�Ú�Ó�ÎUÇ4Ð*Ô£Ò�Ç'È�ÉfÊUÉPÍPßÀå�Ú�Ð Ý�Ú4Î0Ð åZÍ�Î0Ó�ÎUå�Ú4Ê�Î7Ð*ß�ÎbÝ'äVÓ�ß½Î0ÐVÓ×ÇnÓbä É
Þ�ÉPä Ú�ÏrÎbÇ4Í�Ç'á	ÓbäKÉRÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4ÐpÞ�É�á�Ç4ÍcÉæÎ7Ó¨ä Úaß�Þ�É�ÉPÐ�å�Ç4Ò|ÑOÊUÉPÓ×É�È ð
à#éOåPä Î0Ð*ß�Î}Ý#äVÓ×ß Ò�ÎbÝ'äVÓÂá�Ç'åPéKßùÇ4ÐøÇ4ÓbäKÉZÍ�Ü%Î�ß�É �fÎ7Ð�ÏrÎ�ß�Î�Þ�ÊUÉ��
Ñ�ÍcÇ5ÑKÉPÍ�Ó�ÎUÉ5ßgÇ'ánÓbä ÉÁÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4Ðºß9éVåPäôÚNßgå�Ç4Ð åPérÍ�ÍcÉPÐ åPò Ç4Í
ÍcÉ�å�Ç4Ï�ÉZÍcÚZÞ�ÎbÊbÎ7Ó}ò ð½÷ ò�ÎUÈ�ÉPÐVÓUÎUá}ò'Î7ÐKÝ Ñ�ÍcÇ5Þ�ÊUÉPÒRß�É�Ú�Í�ÊbÎbÉZÍ Î0Ð·Óbä É
ÈrÉZÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓXåPò'å�ÊbÉaÔ�Ú4È�È#Î7Ó�ÎbÇ4Ð Ú4Ê�á}é�Ð åPÓ�ÎbÇ4Ð Ú4Ê×Ô.ÉZórÓ}ÍcÚNË�á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê×Ô
Ç4Í¨ÉPÐVÏrÎ7ÍcÇ4ÐVÒ�ÉPÐVÓ×Ú5Ê�ÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ß¦å�Ú�Ð�Þ�Éxß�ÑKÉ�åfÎUáUÎUÉ�È�ÚfÐ È�Ú4È�ÈrÉ�È
Ó×Ç%Óbä ÉXÒæÇ'ÈrÉfÊVÓ×ÇTå�Ç4Í�ÍcÉ�åPÓKÓbä ÉPÒ ð
Knowledge-Based Supporting ToolsÆ�Ç'ÈrÉfÊSå�Ç4Ò|ÑOÎ}ÊUÚ�Ó�ÎbÇ4Ð�ÔKÓbä ÉEÑ�ÍcÇ'å�É5ßcßEÇ'áSÝ�ÉZÐKÉZÍcÚfÓ�Î7ÐKÝ�ÚCå�Ç4Ò|ÑOÊbÉZÓ�É5È
ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð�Óbä ÚfÓæÉZó'ÑKÇ#ß�É5ßæÓ}ä É�ábérÐ åPÓ�ÎUÇ4ÐKÚ4Ê×ÔTÉZó#ÓbÍcÚNË×á}é�Ð åPÓ�ÎbÇ4Ð Ú4Ê×Ô
Ú�ÐKÈ�ÉPÐVÏrÎ7ÍcÇ4ÐVÒ�ÉPÐVÓ×Ú5Ê�ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉZÐ�Ó�ß¦ÈrÉ5ß�åPÍ�Î0Þ�É�È|Þ#òxÎ7Ó�ß=Ò�Ç'È�ÉfÊ×ÔOÎ�ß
Ú¾åPÍ�Î7Ó�ÎUå�Ú4Ê�ÉfÊUÉPÒ�ÉPÐVÓ�Ç'á,Æ�Ì�Ì ð 	 Ç4Ü�ÉPÏ�ÉZÍZÔxÓbäKÎ�ßÀå�Ç4Ò|ÑVÎbÊUÚ�ÓUÎUÇ4Ð
Ñ�ÍcÇ'å5É5ß�ß¨Î�ßXÒ�Ç4ÍcÉ£å�Ç4Ò|ÑVÊUÉZó�Óbä ÚfÐ,Ò�ÉPÍcÉEÊUÚ�ÐKÝ'éVÚ4Ý�É£å�Ç4ÒCÑVÎbÊUÚfÓ�ÎUÇ4Ð ð
�£Ç4Ó�Ç4ÐKÊ7ò�ÒCéOß9ÓKÓbä É�Ý�ÉPÐ ÉPÍcÚfÓ×É�È£å�Ç'È�ÉXÒæÉ�ÉPÓ�Ú4ÊbÊ Ç'áOÓbä É¨á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê
ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ß£ÎUÈrÉZÐ�Ó�ÎUáUÎUÉ�È,Þ#ò�Î7Ó�ßTÒ�Ç'È�ÉfÊ×Ô�Þ#érÓ¨Óbä ÉRå�Ç4Ò|ÑVÎbÊUÚ�ÓUÎUÇ4Ð
Ñ�ÍcÇ'å5É5ß�ß,Ò�éOßjÓ�Ú4ÊUß�Ç�Ú4È�ÈNÍcÉ5ßcß�Î�ßcßjéVÉ4ß�ßjéOåPä�ÚNß,Óbä ÉÅåPä ÇNÎUå�ÉÇ'á
Ú�ÍcåPäKÎ0Ó×É�åZÓ}é�ÍcÉ4Ô¨ÈrÚ�Ó×Úªß9ÓbÍ�éVåPÓbérÍcÉ4ßcÔ¨Ú�ÐKÈÅÚ4ÊbÝ�Ç4Í�Î7ÓbäVÒæß ð ã1ÇÀßjé#Ñ�ÑOÇ4Í�Ó
ßjéOåPäýÈ�É�åfÎ�ß�ÎUÇ4Ð*ßcÔ�Ü�É�Þ�ÉfÊbÎUÉPÏ�É�Óbä ÚfÓ�Óbä É�ÒæÇ'ÈrÉfÊå�Ç4Ò|ÑVÎbÊUÚ�ÓUÎUÇ4Ð
Ñ�ÍcÇ'å5É5ß�ßXÒCéOß9Ó Þ�É�ûrÐ Ç4Ü�ÊbÉ5È#Ý�ÉPÞ�Úaß�É�È ð ã�ä É¦ûVÉZòxÓ×ÇCÇ4é�Í�ÚZÑ�Ñ�ÍcÇ'ÚaåPä
Î�ß�Ú�ÓbÓ�ÉZÒ|Ñ�Ó�Î7ÐKÝ Ó×Ç�å�ÚfÑ�Óbé�ÍcÉ¡Óbä É{ß�Ç'ábÓ}ÜEÚ�ÍcÉ¾ÚfÍcåZäOÎ7Ó×É�åPÓbé�ÍcÉ Ú�Ð È
ÈrÉ4ß�ÎbÝ'Ð´ûrÐ Ç4Ü%ÊUÉ�ÈrÝ�É»Ç'á äVérÒæÚfÐ¸ÉZó'ÑKÉPÍ�Ó�ßcÔ�å5Ç'È#ÎUá}ò'Î0ÐKÝñÚ�Ð È
ÍcÉcÑ�ÍcÉ5ß�ÉPÐVÓ�Î7ÐKÝ Óbä É5ß�É û�ÐKÇ4Ü�ÊUÉ�È#Ý�É4ÔôÚfÐ È ÚZÑ�ÑVÊ7òNÎ7ÐKÝ Ó}ä É5ß�É
ûrÐ Ç4Ü�ÊUÉ�È#Ý�É{Î7ÐýûrÐ Ç4Ü�ÊbÉ5È#Ý�ÉPÞ�Úaß�É�È Ó�Ç'ÇNÊ�ßÀÓ�Ç å�Ú�Í�Í�ò Ç4érÓ½á}é�ÊbÊ7ò
Ú�érÓ×Ç4Ò�Ú�Ó�É5È¶Ò�Ç'È�ÉfÊ å�Ç4ÒCÑVÎbÊUÚfÓ�ÎUÇ4Ð ð �ÅÉþÞ�É�Ê}ÎUÉPÏ�É·Ó}ä Ú�Ó ÓbäKÎ�ß
ÚfÑrÑ�ÍcÇ'ÚaåPäªÇ'á×á�ÉPÍPßEÓbäKÉCÝ'ÍcÉ�Ú�Ó×É5ßjÓ¨ÚaÈNÏ�Ú�ÐVÓ×Ú5Ý�É5ßTÎ0Ð½Ó�ÉZÍ�ÒæßxÇ'á�Þ�ÉfÎ7ÐKÝ
ÚfÞ�ÊbÉ�Ó�Ç Ú5è�Þ#é�ÎbÊUÈgérÑ�ÚfÐ ÈgÒæÚ5Î7ÐVÓ×Ú5Î7ÐÄÓbä ÉnûrÐ Ç4Ü�ÊUÉ�È#Ý�É5Ë}Þ�ÚNß�É
Ý'ÍcÚaÈNéOÚ5ÊbÊ7ò�ÚfÐ È�Î7Ð åPÍcÉPÒæÉPÐVÓ�Ú4ÊbÊ7òrÔ%Þ�è�ÍcÉ5ß�ÇNÊ7Ï�É�Ç'á}Ó×ÉPÐ{å�Ç4ÒCÑOÉPÓ�Î7ÐKÝ
Ý�Ç'Ú4Ê�ßcÔTÉ5ßjÑOÉ�åfÎUÚ4ÊbÊ0ò�Î7Ð�Óbä ÉÚ�ÍcÉ�ÚNß,Ç'á 4)�6 ß�Ú�Ð È�Õ%Ö�ßcÔTÚ�ÐKÈ�åfè
ÍcÉ�ÚaåPä Ú¶ß�ÇNÊ7é�ÓUÎUÇ4Ð Óbä ÚfÓ Ü%ÎbÊbÊÄß�Ú�ÓUÎ�ß�á}ò Ú4Ê}ÊLÇ'á Óbä É»áUÎ7Ð Ú5Ê

ÚZÑ�ÑVÊbÎUå�ÚfÓ�ÎUÇ4Ð1ü}ß ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ß¸Ú4åZÍcÇ#ß�ß¸Ú4ÊbÊ»ÓbäVÍcÉ�É ÚNß�ÑOÉ5åPÓ�ß
ç ß9Ó}Í�éOåPÓbérÍcÚ4Ê×ÔaÞ�ÉZäKÚ�ÏrÎUÇ4ÍcÚ5Ê×Ô�Ú�ÐKÈ�Õ�Ö�è ð
MODELING WITH ZOOM NOTATION
Overviewã1Ç¾Ç4Ï�ÉPÍcå5Ç4Ò�ÉÓbäKÉÅÇ5ÞVß9Ó×Ú4åfÊUÉ5ßÚNß�ß�Ç'å�ÎbÚ�Ó×É�ÈnÜ�Î7Ó}ä�Óbä ÉÅÉZó�ÎUß9Ó�Î0ÐKÝ
Ò�Ç'ÈrÉfÊbÎ7ÐKÝRÐ Ç4Ó×ÚfÓ�ÎUÇ4Ð*ßEÚ�Ð È�Ó�Ç�ÍcÉ5Ú5ÊbÎ5
aÉ�Ç4érÍ¨ÏrÎUß�ÎUÇ4Ð�Ç'áXÆÌ�ÌxÔ�Ü�É
äKÚ�Ï�É�ÈrÉPÏ�ÉfÊUÇ5ÑKÉ�È�Ú|Ð ÉPÜ á�Ç4Í�ÒæÚ5Ê=ÒæÇ'ÈrÉfÊbÎ7ÐKÝ�Ð Ç4Ó×Ú�ÓUÎUÇ4Ð�Î�ßxå�Ú5ÊbÊUÉ�È
8�Ë}Þ�ÚNß�É�È � ÞZõ�É�åPÓ�Ë � Í�ÎUÉPÐVÓ×É�È Æ�Ç'ÈrÉfÊbÎ7ÐKÝýÐ Ç4Ó×ÚfÓ�ÎUÇ4Ð¹Ç4Í�������mÔ
Ü¦äKÎUåPäÎ�ß	Þ�ÚNß�É�ÈRÇ4Ð,ÓbäKÉ£á�Ç4Í�ÒæÚ5Ê=ß�ÑOÉ5åfÎUáUÎUå�ÚfÓ�ÎUÇ4ÐRÐ Ç4Ó×ÚfÓ�ÎUÇ4Ð 8 ê7í � Ô
î�� Ô î/�#ï Ô�ÚfÐ È�ß�ÉPÏ�ÉPÍcÚ4Ê.ûVÉZòCå5Ç4Ò|ÑOÇ4Ð ÉPÐVÓ�ßEÇ'á.Õ¨ÆpØ1Ë íKð � Ê7ÓbäKÇ4éVÝ'ä
Ü%ÎUÈrÉ�Ê0ò¹éOß�É�È�Ó×Çùß�ÑKÉ�åfÎUá}ò ß�Ç'á}ÓbÜ�Ú�ÍcÉÂßjòrßjÓ×ÉPÒRßcÔªÇ4Ð ÉÄÇ'á�ÓbäKÉ
ÈrÉ�áUÎUåfÎUÉPÐ åfÎUÉ5ß Ç'á 8ñÎ�ß\Óbä ÚfÓ¾Î7Ó{ÈrÇ'É5ßgÐ Ç4Ó«Ñ�ÍcÇ4ÏrÎUÈrÉÁéKß�É�á}éVÊ
Ò�É�åPä Ú�ÐOÎ�ß9Òæß�Ó×Ç½ßjérÑrÑOÇ4Í�Ó|Ç5ÞZõ�É�åZÓ×Ë�Ç4Í�ÎUÉPÐVÓ×É�ÈÒ�Ç'ÈrÉ�Ê}Î7ÐKÝ�ßjéOåPä«ÚNß
åfÊUÚaßcß�É5ßSÇ4Í	Î7Ð�ä ÉPÍ�Î7Ó×Ú�ÐKå5É ð 8 �:� ÆÄÞ#Í�Î7ÐKÝ�ßSá�Ç4Í�Ò�Ú4Ê�á�Ç4érÐ ÈrÚ�Ó�ÎUÇ4Ð ß�Ó×Ç
Ç5ÞZõ�É�åPÓ�Ë�Ç4Í�ÎUÉPÐVÓ�É5È Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð*ß Þ#ò Ñ�ÍcÇ4ÏrÎbÈrÎ7ÐOÝ Ó�Éfó#ÓbéVÚ4ÊñÚfÐ È
Ý'ÍcÚfÑ�äKÎUå�Ú5Ê,ÍcÉcÑ�ÍcÉ5ß�ÉZÐ�Ó×Ú�Ó�ÎbÇ4Ð*ßÀÇ'áÒæÇ'ÈrÉfÊ�ß½Óbä ÚfÓ½Ú�ÍcÉnå5Ç4Ð ß�Î�ßjÓ×ÉPÐVÓ
Ü%Î7Óbä»Õ%Æ�Ø1Ë í ÚfÐ È Óbä ÚfÓ\å5ÚfÐºÞ�É¹åPä É�åPûOÉ�È·á�Ç4Í�Ò�Ú4ÊbÊ0òÃá×Ç4Í
å�Ç4Ð*ß�Î�ßjÓ×ÉPÐ åPò ð Ö�Ó�Ú4ÊbÊUÇ4ÜEßpå5Ç4Ð ß9ÓbÍcÚ5Î7ÐVÓ�ßß9éVåPägÚaßRÑ�ÍcÉ5å�Ç4Ð È#Î7Ó�ÎbÇ4Ð*ßPÔ
ÑOÇ#ßjÓ×å�Ç4Ð ÈrÎ0Ó�ÎUÇ4Ð*ßEÚ�Ð È�Î7ÐVÏ�ÚfÍ�ÎUÚ�Ð�Ó�ß%Ó�ÇæÞ�É�ß�ÑKÉ�åfÎUáUÎUÉ�È,á�Ç4Í�Ò�Ú4Ê}Ê7ò ð ã�Ç
Ò�ÚfûOÉ�Î7Ó�É5Úaß9òTá�Ç4Í�Ñ�ÍcÚ4åPÓ�Î7Ó�ÎUÇ4ÐKÉZÍPß.Ó×Ç�éOß�ÉaÔ

) ÎbÝ'é�ÍcÉ ë � � ÐæÇ4Ï�ÉPÍ�ÏrÎUÉPÜ«Ç'áOÓbä É 8 �:� Æ�ÚZÑ�Ñ�ÍcÇ'ÚaåPä
8 �:� Æ Ú4È�Ç5Ñ�Ó�ßxÚ�ßjòaÐVÓ�Ú5óÓbäKÚ�Ó¦Î�ß£ß�Î7Ò�ÎbÊUÚfÍTÓ×Ç�å�Ç4ÒCÒæÇ4ÐOÊ7òRéKß�É�È
Ñ�ÍcÇNÝ'ÍcÚ�ÒCÒ�Î7ÐKÝ�ÊUÚfÐKÝ'éOÚ5Ý�É5ß�ß9éVåPä\ÚNß��PÚfÏ�ÚÅÚ�Ð ÈnÙ
	�	 ð Õ¨ÐOÊbÎ7ûVÉ
Õ¨ÆpØ1Ë í Ô¦Ü¨äKÎUåPä ß�ÉcÑKÚfÍcÚ�Ó×É5ß�Óbä É½ßjòrßjÓ×ÉPÒ Î0ÐVÓ×Ç�ß�ÉZÏ�ÉPÍcÚ5Ê£ÊUÇ'Ç#ß�É�Ê0ò
ÍcÉfÊUÚfÓ×É�ÈÏrÎUÉPÜ�ßcÔ 8 �:� ÆôÑ�ÍcÇ4ÏrÎUÈrÉ5ß�ÚæÒæÉ�åPä ÚfÐKÎ�ßjÒÃÓ×Ç,Î7ÐVÓ×ÉfÝ'ÍcÚ�Ó×É
Ó}ä Ç#ß�ÉÏrÎUÉPÜEß�Ó×ÇNÝ�ÉZÓ}ä ÉPÍ,Ú4ÊUÇ4ÐKÝÅÜ�Î0Óbä¾Óbä ÉfÎ7Í,á�Ç4Í�Ò�Ú4Ê�ß�ÉPÒ�Ú�Ð�Ó�ÎUå5ß ð
ã�äKÎ�ßXÚZÑ�Ñ�ÍcÇ'ÚaåPä�Ç4Ï�ÉPÍcå�Ç4Ò�É5ß�ß�Ç4Ò�É�Ç'á*Óbä É�Ñ�ÍcÇ5Þ�ÊUÉPÒæßSÜ%Î7ÓbäæÎ7ÐVÓbÍcÚaË
ÚfÐ È¡Î7ÐVÓ×ÉPÍPËbÒæÇ'ÈrÉfÊ�å�Ç4Ð*ß�ÎUß9Ó×ÉPÐ åPò�Ü�Î7Ó}äKÎ7Ð\Õ¨ÆpØ1Ë í ê�ërëfï�ð 8 �:� Æ
ß�ÉcÑKÚfÍcÚ�Ó×É5ßùÚ�ÐúÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð Î7ÐVÓ×Ç Ó}äVÍcÉ�ÉºÑOÚ�Í�Ó�ß ��ßjÓbÍ�éOåPÓbérÍcÉ4Ô
Þ�ÉPä ÚfÏrÎUÇ4Í=Ú�Ð È�éOß�ÉZÍSÎ7ÐVÓ�ÉZÍcá�Ú4å5É ð 8 �:� ÆýÑ�ÍcÇ4ÏrÎUÈrÉ4ß.ÓbäVÍcÉ�É%ß�ÉcÑKÚfÍcÚ�Ó×É
Þ#érÓ�ÍcÉ�ÊbÚ�Ó×É�È�ÐKÇ4Ó×Ú�Ó�ÎbÇ4Ð*ß�Ó×ÇªÈrÉ5ß�åPÍ�Î0Þ�É�É�ÚaåPä�Ç'á�Óbä É5ß�É�ÓbäVÍcÉ�ÉæûOÉPò
ÚaßjÑOÉ�åPÓ�ß�� 8 �:� Æ½Ë�Æ»á�Ç4ÍEß9ÓbÍ�éVåPÓbérÍcÚ4Ê�Ò�Ç'ÈrÉ�ÊUßPÔ 8 �:� Æ½Ë) àrÆ á×Ç4Í
Þ�ÉPä ÚfÏrÎUÇ4ÍcÚ4Ê�Ò�Ç'ÈrÉ�ÊUßPÔ�Ú�ÐKÈ·ÚþÕEß�ÉPÍÁÖ×ÐVÓ�ÉZÍcá�Ú4å5É¹Ì�É5ß�åPÍ�Î0Ñ�ÓUÎUÇ4Ð
Ø�ÚfÐKÝ'éOÚ5Ý�É ç 8 �:� Æ½ËbÕ�Ö�ÌEØ.è�á�Ç4ÍRéOß�ÉPÍÎ7ÐVÓ×ÉPÍcá�Úaå�ÉpÒæÇ'ÈrÉfÊ�ß ð � Ð
ÉPÏ�ÉPÐVÓ�Ë}Þ�ÚNß�É�È�ábÍcÚfÒ�ÉZÜ�Ç4Í�û�Î7Ð�Ó×ÉfÝ#ÍcÚfÓ×É5ß½Óbä É�È#ÎUá�á�ÉZÍcÉPÐVÓ�ÑOÚ�Í�Ó�ß½Ç'á
É�Ú4åZä 8 �:� ÆºÒ�Ç'È�ÉfÊ ð ã.ä É|Ò�Ú4Î7Ð�ÍcÉ�ÚNß�Ç4Ð*ßxá�Ç4Í£ÚaÈrÇ5Ñ�Ó�Î0ÐKÝ,ÓbäVÍcÉ�É
È#ÎUá�á�ÉPÍcÉZÐ�Ó=Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð*ßEÚ�ÍcÉCÚ4è¨Ó}ä É5ß�ÉxÓbäVÍcÉ�ÉCÚNß�ÑOÉ5åPÓ�ß¨ä ÚfÏ�É�È#Î�ßjÓ�Î7Ð åPÓ
åPä ÚfÍcÚaåPÓ×ÉPÍ�Î�ßjÓ�ÎUå5ß �»Ú�ÐKÈ Þ�èµÓbä ÉPò ÚfÍcÉ Ç'á}Ó×ÉPÐ åPä Ú�ÐOÝ�É�ÚfÞ�ÊbÉ
Î0Ð È�ÉcÑOÉPÐ È�ÉPÐVÓ�á}ÍcÇ4Ò¹Óbä ÉRÇ4Ó}ä ÉPÍPß ð ã�ä ÉPÍcÉ�á�Ç4ÍcÉæÎ7Ó�Î�ß%Þ�ÉZÐKÉ5áUÎUåfÎUÚ5Ê�Ó×Ç
ß�ÉcÑKÚfÍcÚ�Ó×ÉæÓbä É5ß�ÉRÓ}äVÍcÉ�É,ÚaßjÑOÉ�åZÓ×ßPÔ1Ò�Ú�ûVÉRÓ}ä ÉPÒ·ÊUÇ'Ç#ß�ÉfÊ7ò½å�Ç4é#ÑOÊUÉ�È�Ô
ÚfÐ ÈgÒæÇ'ÈrÉfÊ½É5Ú4åPä ÚaßjÑOÉ�åPÓ�éKß�Î7ÐKÝýÚ¾Ð Ç4Ó×ÚfÓ�ÎUÇ4ÐÄÓbä ÚfÓÎ�ßÀÒ�Ç#ßjÓ
ßjé�Î7Ó×ÚfÞ�ÊbÉ�á�Ç4Í�Óbä ÚfÓ%ÚaßjÑOÉ�åPÓ ð) ÎbÝ'érÍcÉ ë ß9ä Ç4ÜEßEÓbä É�ß9Ó}Í�éOåPÓbérÍcÉCÇ'á¨Ú
8 �:� Æ ÒæÇ'ÈrÉfÊ ð ã.ä É¾á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê,ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉZÐ�Ó�ß�ÈrÉPÍ�Î7Ï�ÉnÓbä É
ßjÓbÍ�éVåPÓbé�ÍcÚ5Ê Ú�Ð ÈEÞ�ÉPä ÚfÏrÎUÇ4ÍcÚ4ÊVÒ�Ç'ÈrÉ�ÊUß ð ã�ä ÉXéKß�ÉPÍ=Î7Ð�Ó×ÉPÍcá×Ú4å�É¨ÈrÉ4ß�ÎbÝ'Ð
ÎUß È�ÉPÍ�Î7Ï�É�È ábÍcÇ4Ò Óbä É á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê¸Ú�Ð È Õ%Ö ßjÑOÉ�å�Îbá�Îbå

ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ß ð Õ�Ö1ÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ß¦Ç'á}Ó×ÉPÐ�Î7Ð åfÊ7éVÈ�É¦Ó}ä É9�fÊUÇ'Ç4ûRÚ�Ð È
á�É�É�Ê5�'ÔVéOß�ÉZÍXÑ�ÍcÇ'áUÎbÊUÉ�Ú�Ð ÈCÈ#Î�ßjÑVÊUÚfò�È�ÉPÏrÎUå�ÉEÊbÎ7Ò�Î7Ó×ÚfÓ�ÎUÇ4Ð*ß ð ã�ä É5ß�É�Õ%Ö
ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ßXÚ�ÍcÉ�ÉZó'Ñ�ÍcÉ5ß�ß�É�ÈCÚNß=�N��s�wK~�wPs��rs�wZs�l��asf�%Ú�Ð È£q�s4zNy7�Ns
~�wPoU��y}tbsNÔ£Ü¦äKÎUåPä Ú�ÍcÉÀéKß�É�È«Þ#ò�Óbä ÉÀû�ÐKÇ4Ü�ÊUÉ�È#Ý�É5ËbÞ�Úaß�É�È¡ÒæÇ'ÈrÉfÊ
å�Ç4Ò|ÑOÎbÊbÚ�Ó�ÎUÇ4ÐÁÓ×Ç'ÇNÊ�ß ç ß�É�É«Þ�ÉfÊUÇ4Ü�è�Ó×Ç Ý�ÉPÐ ÉPÍcÚ�Ó×É¾È#ÎUá�á�ÉZÍcÉPÐVÓ�Õ%Ö
Î7Ò|ÑVÊUÉPÒæÉPÐVÓ�Ú�Ó�ÎUÇ4Ð ß ð ã�ä É�ß�ÉcÑOÚ�ÍcÚfÓ�ÎUÇ4Ð�Ç'á¦ÚßjòrßjÓ×ÉPÒ Î7ÐVÓ�ÇÊUÇ'Ç#ß�É�Ê0ò
å�Ç4érÑVÊUÉ�È«ß9ÓbÍ�éVåPÓbérÍcÚ4Ê×Ô%Þ�ÉPä ÚfÏrÎUÇ4ÍcÚ4Ê£Ú�Ð È�Õ%Ö�Ò�Ç'ÈrÉ�ÊUß�Î�ß,Ú�ÜEÉfÊbÊUË
ûrÐ Ç4Ü¨ÐÄÒ�Ú5ó�Î7Ò Î0Ð�ß�Ç'á}ÓbÜ�Ú�ÍcÉ ÉZÐOÝ�Î7ÐKÉ5ÉPÍ�Î7ÐOÝOÔ �5ß�ÉcÑKÚfÍcÚ�Ó�ÎUÇ4Ð¹Ç'á
å�Ç4Ð å�ÉPÍ�Ð*ß��NÔ�Ü¨äOÎUåPä�ß�ÉcÑKÚfÍcÚ�Ó×É5ß�Óbä Éªß9ò#ß9Ó×ÉPÒôÞ�ÚNß�É5ÈnÇ4Ð�ß�ÑOÉ5åfÎUÚ5Ê
Ñ�é�Í9ÑOÇ#ß�É å�Ç4Ð å�ÉPÍ�Ð*ß ê �#ï�ð ã�ä É ÓbäVÍcÉ�ÉúÚaßjÑOÉ�åPÓ�ß¸Ú�ÍcÉ Ç'á}Ó×ÉPÐ
åPä Ú�ÐOÝ�É�ÚfÞ�ÊbÉ�Î7ÐKÈ�ÉcÑOÉZÐKÈ�ÉPÐVÓTá}ÍcÇ4Ò Óbä ÉRÇ4Óbä ÉPÍPß ð ã�äKÎ�ß�ß�ÉcÑOÚ�ÍcÚ�ÓUÎUÇ4Ð
Ú4Ê}ÊUÇ4Ü�ßXÉ�ÚaåPä,ÚNß�ÑOÉ5åPÓ.Ç'á.ÓbäKÉEß9ò#ß9Ó×ÉPÒ Ó×ÇEÞ�ÉTßjÑOÉ�åfÎUáUÎUÉ�È�ß�ÉcÑKÚfÍcÚ�Ó×ÉfÊ7òrÔ
Ò�Ú�û�Î7ÐKÝ É�ÚaåPäÂÚNß�ÑOÉ5åPÓ�É�ÚNß�ÎUÉPÍÅÓ×Ç�ßjÑOÉ�åfÎUá}ò�ÔCérÐ È�ÉPÍPßjÓ×Ú�ÐKÈVÔRÚ�Ð È
åPä Ú�ÐOÝ�É¦Ü¦äKÎbÊUÉ¦ÍcÉ�ÈNéOåfÎ7ÐKÝ�Óbä É�å�Ç4érÑVÊbÎ7ÐOÝ|Ü%Î7Óbä�Óbä É�Ç4Óbä ÉPÍ�ÚaßjÑOÉ�åPÓ�ß ð
Õ¨ÐKÈ�ÉPÍ	ÓbäKÎ�ß	ß�ÉcÑKÚfÍcÚ�Ó�ÎUÇ4Ð*Ô�Ò�Ç'ÈrÉfÊUÉPÍPß¦å�Ú�ÐRÉ5Úaß�Î}Ê7ò£Ò�Ç'ÈrÎbábò�Óbä É%éOß�ÉPÍ
Î7ÐVÓ�ÉZÍcá�Ú4å5É¨Þ�ÚNß�É�ÈCÇ4ÐRÓbä É¨Ñ�ÍcÇ'áUÎbÊUÉ�ÚfÐ ÈCéOß�ÉZÍXÑ�ÍcÉ�á×ÉPÍcÉPÐ å�É5ß�Ü�Î7ÓbäKÇ4é�Ó
åPä Ú�ÐOÝ�Î7ÐOÝ�ÓbäKÉ ßjÓbÍ�éVåPÓbé�ÍcÚ5ÊÇ4ÍÀÞ�ÉPä ÚfÏrÎUÇ4ÍcÚ4Ê�ÒæÇ'ÈrÉfÊ�ß ð � Ð Ç4Óbä ÉPÍ
ÚaÈNÏ�Ú�Ð�Ó×Ú4Ý�É�Ç'á*ÓbäKÎ�ß	ß�ÉcÑKÚfÍcÚ�Ó�ÎUÇ4ÐæÎ�ß�Óbä ÚfÓ�ÜEÉ¦éOß�É�ÈrÎUá�á�ÉPÍcÉPÐVÓ�á�Ç4Í�Ò�Ú4Ê
Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð*ß�Ó�Ç½ÈrÉ5ß�åPÍ�Î0Þ�ÉæÓbä ÉÈrÎUá�á�ÉPÍcÉPÐVÓ|ÚaßjÑOÉ�åPÓ�ß�Ç'á�Ó}ä ÉßjòrßjÓ×ÉPÒ ð
÷ É�å�Ú�éOß�É¦Ó}ä ÉxßjÓbÍ�éVåPÓbé�ÍcÚ5Ê×Ô#Þ�ÉPä Ú�ÏrÎUÇ4ÍcÚ5Ê×Ô ÚfÐ ÈxÕ�Ö�Ò�Ç'ÈrÉfÊ�ßXÈ�É5ß�åZÍ�Î�Þ�É
È#ÎUá�á×ÉPÍcÉPÐVÓ�ÑKÚfÍ�Ó�ßÇ'á�ß9ò#ß9Ó×ÉPÒRÔCÓbä ÉPò¾ä ÚfÏ�ÉÅÓbäKÉ�Î0Í�Ç4Ü¨ÐýÈ#Î�ß9ÓUÎ7Ð åPÓ
åPä Ú�ÍcÚ4åPÓ×ÉPÍ�Î�ß9ÓUÎUå5ß ð Ö×Ó%Î�ß�Þ�ÉPÐ É�á�Îbå�ÎbÚ4Ê=Ó×Ç�éOß�ÉRÚæÐ Ç4Ó×ÚfÓ�ÎUÇ4ÐÅÈ�É5ß�ÎbÝ#ÐKÉ5È
ß�ÑKÉ�åfÎUáUÎUå�Ú4ÊbÊ0ò�á�Ç4Í�Óbä É�ÐKÉ5É�È�ß�Ç'á	É�ÚaåPä�Ò�Ç'ÈrÉfÊ ð à�ÎbÝ#ÐOÎUáUÎUå�Ú�ÐVÓ=Ü�Ç4Í�û
ä Úaß�Ú4Ê0ÍcÉ5Ú4È'ò�Þ�É�ÉPÐ«å5Ç4Ò|ÑVÊUÉPÓ×É�Ç4ÐªÓbä É 8 �:� Æ¶Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð*ß ð ã.äKÉ
á�Ç4Í�Ò�Ú4ÊRßjòaÐ�Ó×Ú5ó Ú�ÐKÈ ß�ÉPÒ�Ú�ÐVÓ�Îbå4ßpÚ5ÊUÇ4ÐKÝ�Ü�Î7Ó}ä�Ú«ß�ÉPÓ�Ç'á�Þ�Úaß�Îbå
ßjérÑrÑKÇ4Í�ÓKÓ×Ç'ÇNÊUßSÚ�ÍcÉ¦Ú�Ï�Ú4Î}ÊUÚfÞ�ÊUÉ ð
Structural Modelà#ÓbÍ�éVåZÓ}é�ÍcÚ5Ê�Ò�Ç'È�ÉfÊ�ß�Î7Ð 8 �:� Æ Ú�ÍcÉÅÇ5ÞZõ�É�åZÓ×Ë�Ç4Í�ÎUÉPÐVÓ×É�ÈnÒ�Ç'È�ÉfÊ�ß
Ü�Î0Óbä�åfÊUÚaßcß�É5ßPÔ�ÍcÉfÊUÚ�ÓUÎUÇ4Ð*ßcÔ|ÚfÐ È¾á�Ç4Í�ÒæÚ5ÊRß�ÑKÉ�åfÎUáUÎUå�Ú�ÓUÎUÇ4Ð*ßpÇ'á�Óbä É
á}é�ÐKåZÓUÎUÇ4Ð Ú4Ê}Î7Óbò�Ç'á*ÓbäKÉTÉPÐVÓ�Î0Ó�ÎUÉ5ß ð ã.äKÉ¦Ð Ç4Ó×Ú�ÓUÎUÇ4Ð,á�Ç4Í�Ó}ä ÉEß9Ó}Í�éOåPÓbérÍcÚ4Ê
Ò�Ç'È�ÉfÊ×Ô 8 �:� Æ½Ë�Ø�Ô1Î�ßEÚ 8nÚ�Ð È � ÙXØÅÞ�Úaß�É�È�ÊUÚ�ÐKÝ'éVÚ4Ý�É£Ü%Î7ÓbäªÚ
�cÚ�Ï�Ú���Ù
	�	nÊ}Î7ûOÉ,ßjòaÐVÓ×Ú�ópÓ×Ç�Ò�Ú�ûVÉæÎ7ÓTÉ�ÚNßjòpá�Ç4ÍxÑ�ÍcÚaåPÓ�Î0Ó�ÎUÇ4Ð ÉPÍPßTÓ×Ç
ÚaÈrÇ5Ñ�Ó ð 8 �:� Æ½Ë�Æ·Î�ß%á�Ç4Í�ÒæÚ5Ê×Ô�Ç5ÞZõ�É5åPÓ�Ë×Ç4Í�ÎUÉPÐVÓ×É�È�Ú�Ð È�ß�ÎUÈrÉ4Ë×É�á×á�É�åPÓ
á}ÍcÉ�É ð 8 �:� Æ½ËUÆ ÎUßTßjÓbÍcÇ4ÐKÝrÊ7òRÓbò5ÑKÉ�ÈæÜ�Î7Óbä�Ú�ß�ÉPÒ�Ú�ÐVÓUÎUå�Ú4ÊbÊ7ò�Í�ÎUåPä
Óbò5ÑKÉªß9ò#ß9Ó×ÉPÒ Óbä Ú�ÓæßjérÑrÑOÇ4Í�Ó�ß,Î7ÐVäKÉZÍ�Î0Ó×Ú�Ð å�ÉÚ�Ð ÈnÝ�ÉPÐ ÉPÍ�ÎUå�Ó}ò4ÑOÉ4ß
ê�ë �#ï�ð 8 �:� Æ�Ë�Æ Î0Ð åfÊ7éOÈrÉ5ßXÚxÊbÎ0Þ#ÍcÚfÍ�ò|Ç'á�Ñ�ÍcÉ5Ë×È�É�áUÎ7Ð É�È�ß9Ó}Í�éOåPÓbérÍcÚ4Ê
Ò�Ç'È�ÉfÊ�ß�Î7ÐKå�Ê0éOÈ#Î7ÐKÝ���à�ÉZÓ�Ô£Ø.ÎUß9ÓjÔ � ÍcÈrÉPÍcÉ5ÈVà�ÉPÓjÔ ÷ Ú4ÝVÔ 6 ÉfÊUÚ�Ó�ÎbÇ4Ð�Ô
Æ�ÚZÑ*Ô � Ú4Î0ÍEÚ�ÐKÈRã.é#ÑOÊbÉ ð 8 �:� Æ�Ë�ÆÃÎ�ß%ÚNß�Éfó'Ñ�ÍcÉ4ß�ß�Î7Ï�É£ÚNß 8ÀÚ�Ð È
� ÙXØ\Ü�Î7Ó}ä{ÚÅá}Í�ÎUÉPÐ ÈrÊ}ÎUÉPÍß9ò4ÐVÓ×Ú5ónÚ�ÐKÈ«ÚpÒ�éVåPä�Í�ÎUåPä ÉPÍß�ÉZÓ�Ç'á
ÊbÎ0Þ#ÍcÚfÍ�ÎUÉ5ß¦å�Ç4Ò|ÑKÚfÍcÉ�È£Ó�Ç 8ÚfÐ È � Ù	Ø ð âSÚ4åPä 8 �:� Æ�Ò�Ç'È�ÉfÊ�ä Úaß
ÈNéOÚ5ÊXÓ�Éfó#ÓbéVÚ4Ê¨Ú�Ð ÈÝ'ÍcÚfÑ�äKÎUå�Ú5Ê�ÍcÉcÑ�ÍcÉ5ß�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð*ß ð ã.äKÉ�Ý'ÍcÚfÑ�äKÎUå�Ú4Ê
ÏrÎUÉPÜ�ß�Ç'á 8 �:� Æ ßjÓbÍ�éVåPÓbé�ÍcÚ5Ê,Ò�Ç'È�ÉfÊ�ß�Ú�ÍcÉnå5Ç4Ð ß�Î�ßjÓ×ÉPÐVÓ�Ü%Î7Óbä
Õ%Æ�Ø1Ë í ÑOÚaåPûVÚ4Ý�ÉTÚfÐ È�åfÊUÚaßcß�ÈrÎbÚ4Ý'ÍcÚ�Òæß%Ú4ÊUÇ4ÐOÝ�Ü�Î0ÓbäRÓbä É�á�Ç4Í�ÒæÚ5Ê
ß�ÑKÉ�åfÎUáUÎUå�Ú�Ó�ÎbÇ4Ð*ßñÎ0Ð åfÊ7éOÈ#Î7ÐKÝ Ç5ÑOÉZÍcÚfÓ�ÎUÇ4Ð Ñ�ÍcÉ�å�Ç4Ð ÈrÎ0Ó�ÎUÇ4Ð*ßñÚ�Ð È
ÑOÇ#ß9Ó×å�Ç4Ð È#Î7Ó�ÎbÇ4Ð*ß�Úaß�ÜEÉfÊbÊXÚaß%åfÊUÚNß�ßEÎ0ÐVÏ�Ú�Í�ÎUÚfÐVÓ�ß ê�ë Ô ë � Ô î ��ï�ð�� ß
Ú�ÐÅÉZóVÚfÒCÑVÊUÉ4Ô�å�Ç4Ð*ß�ÎUÈrÉZÍ£Ú�ÐÀÎ7Ð*ßjÓ×Ú�Ð�Ó�ËUÒ�É5ßcß�ÉPÐKÝ�ÉZÍ|ßjòrßjÓ×ÉPÒ ð àVÇ4Ò�É
Ç'áxÓbä É�ÉPÐVÓ�Î7ÓUÎUÉ5ß�Ò�Î}Ý#äVÓ|Î7Ð åfÊ7éVÈ�É��¦ÕEß�ÉPÍZÔ) Í�ÎUÉPÐ È#Ø.Î�ß9Ó�ÔEÙ	Ç4ÐVÓ×Ú4åPÓjÔ
Ø�ÇNÝVÔ � ÉPÍPß�Ç4Ð Ú4Ê}Ö×Ð á�Ç4Í�Ò�Ú�Ó�ÎbÇ4Ð¡ÚfÐ ÈªÆ�É5ßcß�ÉPÐKÝ�ÉZÍ ð � ß�Ü%Î7Óbä�Ç4Óbä ÉPÍ
Ç5ÞZõ�É5åPÓ�Ë×Ç4Í�ÎUÉPÐVÓ×É�ÈÅÈrÉ4ß�ÎbÝ'Ð�Ó×É�åPäVÐ ÇNÊUÇNÝrÎUÉ5ßcÔ	Óbä É5ß�ÉÉZÐ�Ó�Î7Ó�ÎUÉ5ß�ß9äKÇ4éVÊUÈ
Þ�É¡ß�ÑKÉ�åfÎUáUÎUÉ�È\ÚaßÀÚ�érÓ×Ç4Ð Ç4Ò�Ç4éOßPÔ|Ñ�ÍcÉ�å�ÎUß�ÉfÊ7ògß�ÑKÉ�åfÎUáUÎUÉ�È¡���0wc���N�©�4Ô
Ü¨äOÎUåPä½Ú�ÍcÉCåfÊUÚNß�ß�Ë×ÊbÎ7ûVÉ£ÉPÐVÓ�Î0Ó�ÎUÉ5ß�ÚfÐ ÈæÓbä ÉTÞ�ÚNß�ÎUåEÞ#é�ÎbÊUÈ#Î7ÐKÝæÞ�ÊUÇ'åPûKß
Î7Ð 8 �:� Æ½Ë�ÆÔSÜ�Î7Ó}äÑ�ÍcÇ5ÑKÉPÍ�Ú�ÓbÓ}Í�Î0Þ#é�Ó�É4ß|ÚfÐ ÈªÇ5ÑOÉPÍcÚ�Ó�ÎUÇ4Ð ß ð � Ú�Í�Ó
ç Ú5èTÎ0Ð) ÎbÝ'é�ÍcÉ í ß9ä Ç4ÜEßTÓbä ÉæÝ'ÍcÚfÑ�äKÎUå�Ú4Ê¨ÏrÎUÉPÜýÇ'á�Úpß�Î7Ò|ÑOÊbÎbá�ÎbÉ5È
ßjÓbÍ�éOåPÓbérÍcÚ4Ê ÒæÇ'ÈrÉfÊLá�Ç4Í¹ÓbäKÉôÚZÞ�Ç4Ï�Éôß�å�ÉPÐ Ú�Í�ÎbÇ ð � ß�ÉPÓÂÇ'á
ßjérÑrÑKÇ4Í�ÓUÎ7ÐKÝ�Ó×Ç'ÇNÊ�ß½ä ÚaßªÞ�É�ÉPÐÁÞ#é�ÎbÊ7Ó½á�Ç4Í 8 �:� ÆÔ�Î7ÐKå�Ê0éOÈ#Î7ÐKÝVÔ
ÑOÚ�ÍPß�ÉZÍZÔgÓbò4ÑOÉ�åPä É�åZûVÉPÍZÔ Î7ÐVÓ�ÉZÍ9Ñ�ÍcÉPÓ×ÉPÍZÔýÚ�ÐKÎ7Ò�ÚfÓ×Ç4ÍZÔ Ú�ÐKÈøÚfÐ
Ú�érÓ×Ç4Ò�Ú�Ó�É5È Óbä É�Ç4ÍcÉPÒ Ñ�ÍcÇ4Ï�ÉZÍ ç � ã � è ð ã.äKÉ Î7ÐVÓ×ÉPÍ9Ñ�ÍcÉPÓ×ÉPÍ
ÉPÏ�Ú4Ê7éVÚ�Ó�É4ß«Ú�Ð ÈÄÉZóVÉ�åPérÓ×É5ß�Óbä É 8 �:� Æ½ËUÆ Éfó'Ñ�ÍcÉ4ß�ß�ÎUÇ4Ð*ß¡Ú�Ð È
ß�åZÍ�Î�Ñ�Ó�ß ð ã�ä ÉªÚfÐKÎ7Ò�Ú�Ó�Ç4Í�ÏrÎ7Í�ÓbéVÚ4ÊbÊ0ò �5ÉZó�É�åZérÓ×É5ß"�Óbä ÉÀßjÓbÍ�éVåPÓbé�ÍcÚ5Ê

Ò�Ç'ÈrÉfÊ�ß�Þ#ò¾Î7ÐVÓ}ÍcÇ'È'éVåfÎ7ÐKÝgÚ¾ÈrÉ�á×ÚféVÊ0ÓRÒæÇ'ÈrÉfÊ,Î0ÒCÑVÊUÉPÒ�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð
Ó}ä Ú�Ó*Î�ßXå�Ç4Ð*ß�Î�ß9Ó�ÉZÐ�Ó Ü%Î7Óbä�Óbä É¨á�Ç4Í�Ò�Ú4Ê�ßjÑOÉ�åfÎUáUÎUå�Ú�Ó�ÎUÇ4Ð ð ã.äKÉ � ã � Î�ß
Ç5Ñ�Ó�Î7Ò�Î5
aÉ�È á�Ç4Í 8 �:� Æ½ËUÆ ÚfÐ È å�Ç4Ð ÈNéVåZÓ×ß¸Óbä É Ñ�ÍcÇ'Ç'á
Ç5Þ�Ê}ÎbÝ�ÚfÓ�ÎUÇ4Ð*ßXÈrÉ�á�Î0Ð É�ÈCÎ0Ð 8 �:� Æ½Ë�ÆþßjÑOÉ�å�Îbá�Îbå5ÚfÓ�ÎUÇ4Ð*ß ð Ö×Ó Ñ�ÍcÇ4ÏrÎUÈrÉ5ß
Ú ÑOÇ4ÜEÉPÍcá}éVÊÄÍcÉ5Úaß�Ç4ÐOÎ7ÐKÝ Ò�É5åPä ÚfÐKÎ�ßjÒ á�Ç4Íôá}é�Í�ÓbäKÉZÍôß9Ó×ÚfÓ�ÎUå
ÚfÐ Ú4Ê0òrß�Î�ß ð
Behavioral Modelsã�ä É¹Þ�ÉPä Ú�ÏrÎUÇ4ÍcÚ5Ê{Ò�Ç'ÈrÉ�Ê�ÎUßLÓbä Éþå�ÉPÐVÓbÍcÚ5Ê�å�Ç4Ò�ÒCérÐKÎUå�Ú�ÓUÎUÇ4Ð
Ò�É�åPä Ú�ÐOÎ�ß9Ò Óbä ÚfÓ.ÊbÎ0ÐVûKß=Óbä ÉTß9Ó}Í�éOåPÓbérÍcÚ4Ê�Ú�Ð È|Õ�Ö�Ò�Ç'ÈrÉ�ÊUß ð Ö×Ó.éOß�É4ß
Ú�á�Ç4Í�ÒæÚ5ÊbÎ5
aÉ5È�ßjÓ×ÚfÓ×ÉCÈrÎUÚ5Ý#ÍcÚfÒÄÓ×Ç�ßjÑOÉ�åfÎUá}ò�Ó}ä ÉCÈ'ò4Ð Ú�Ò�ÎUåCÚNß�ÑOÉ5åPÓ�ß
Ç'áCÚ�ßjòrßjÓ×ÉPÒ ð ã�ä É�Ó�Éfó#ÓbéVÚ4ÊCß�ÑOÉ5åfÎUáUÎUå�ÚfÓ�ÎUÇ4Ð*ß�Ú�ÍcÉÈ�É5ß�åZÍ�Î�Þ�É5ÈªÞ#ò
8 �:� Æ�Ë) àrÆ ð �¦ÍcÚZÑ�äOÎUå�Ú4ÊbÊ7òrÔ¹Ó}ä É´Þ�ÉZäKÚ�ÏrÎUÇ4ÍcÚ5ÊÃÒ�Ç'È�ÉfÊ·Î�ß
å�Ç4Ð*ß�Î�ßjÓ×ÉPÐVÓ�Ü�Î7ÓbäÄÚ�Õ¨ÆpØ1Ë í ßjÓ×ÚfÓ×É¾åZäKÚ�Í�Ó ê�ëfï�ð 8 �:� Æ½Ë) àrÆ

) ÎbÝ'érÍcÉ í � � Ð�ÉZó�Ú�Ò|ÑOÊbÉ¨Ç'á�8 �:� ÆÄÆ�Ç'ÈrÉfÊ�ß

á�É�Ú�Ó}é�ÍcÉ5ß|Ú�Í�ÎUåPä�ßjòaÐVÓ�Ú5óOÔXÚ�Ò�É�åPä Ú�ÐOÎ�ß9ÒþÓ�ÇRéOß�É�Ó}ä É�ß9Ó}Í�éOåPÓbérÍcÚ4Ê
Ò�Ç'ÈrÉfÊ�ßTß�ÑOÉ5åfÎUáUÎUÉ�È�Î7Ð 8 �:� Æ½ËUÆÔ.Ú�Ð È�ÚæßjÓbÍcÇ4ÐKÝ,å�Ç4ÒCÑOÚ�ÓUÎ0Þ�ÎbÊbÎ7Ó}ò
Ü%Î7Óbä�Õ¨ÆpØ1Ë í ßjÓ×Ú�Ó×É�åPä Ú�Í�Ó�Î0Ð åfÊ7éOÈ#Î7ÐKÝ{å�Ç4Ò|ÑKÇ#ß�Î7Ó×É��×å�Ç4Ð åPérÍ�ÍcÉPÐVÓ
ßjÓ×ÚfÓ×É5ßPÔ�ß9Ó�Ú�Ó×É�äOÎ�ß9Ó�Ç4Í�ò�Ú�ÐKÈ�ß9Ó×ÚfÓ×É{ß9ò4Ð åPäVÍcÇ4ÐKÎ5
aÚ�Ó�ÎbÇ4Ð ð 8 �:� Æ½Ë
) àrÆ ßjä ÚfÍcÉ4ßÅÓbä É�ß�Ú�Ò�É Óbò4ÑOÉ\ÚfÐ ÈÄÉZó#Ñ�ÍcÉ5ßcß�ÎUÇ4Ð ß9ò#ß9Ó�ÉZÒ Úaß
8 �:� Æ�Ë�Æ ð Ö×Ð Óbä É�Î7Ð*ßjÓ×Ú�ÐVÓ×ËUÒ�É5ßcß�ÉPÐKÝ�ÉPÍ Éfó�Ú�Ò|ÑVÊUÉ4Ô»Óbä É
Þ�ÉPä ÚfÏrÎUÇ4ÍcÚ4Ê\Ò�Ç'ÈrÉfÊ ß9ä Ç4é�ÊUÈ¶Î7ÐKå�Ê0éOÈrÉ ß�ÉPÏ�ÉPÍcÚ4Ê�áUÎ7ÐKÎ7Ó�Éºß9Ó�Ú�Ó×É
Ò�Ú4åZäOÎ7Ð É5ß%á�Ç4Í%È#ÎUá�á�ÉPÍcÉZÐ�Ó�éOß�ÉPÍ�Þ�ÉZäKÚ�ÏrÎUÇ4ÍPß ð � Ú�Í�Ó ç Þ�è	Î7Ð) ÎbÝ'é�ÍcÉ í
ßjä Ç4ÜEß·ÑOÚ�Í�ÓÃÇ'á Ú¸ß�Î0ÒCÑVÊbÎUáUÎUÉ�È´Þ�ÉPä Ú�ÏrÎbÇ4ÍcÚ4Ê¹Ò�Ç'È�ÉfÊ ð � Ð
ÉZó'ÑKÉPÍ�Î7Ò�ÉPÐVÓ×Ú5Ê 8 �:� Æ½Ë) àrÆ ÓbÍcÚ�Ð*ß�ÊUÚfÓ�ÎUÇ4ÐÃÉPÐKÝrÎ7Ð É á×Ç4Í�å�Ç'È�É
Ý�ÉPÐ ÉPÍcÚ�Ó�ÎbÇ4ÐgÚfÐ È¾Ú�ÐKÎ0ÒæÚfÓ�ÎUÇ4Ð\Ç'á�Óbä É�Þ�ÉPä Ú�ÏrÎUÇ4ÍcÚ5Ê£ÒæÇ'ÈrÉfÊ�ß,ä ÚNß
Þ�É�ÉPÐ È�ÉPÏ�ÉfÊUÇ5ÑOÉ�È ð ã�ä É ÓbÍcÚfÐ*ß�ÊbÚ�Ó�ÎUÇ4Ð ÉPÐKÝrÎ7Ð É¸Ó×Ú�ûVÉ5ßñÓbä É
Þ�ÉPä ÚfÏrÎUÇ4ÍcÚ4Ê£Ò�Ç'ÈrÉ�ÊUßÚ�Ð È�Óbä É�ÍcÉfÊUÚfÓ×É�È¡ßjÓbÍ�éOåPÓbérÍcÚ4Ê£Ò�Ç'ÈrÉ�Ê�ÚfÐ È
Ý�ÉPÐ ÉPÍcÚ�Ó×É5ßÀÉZó�É5åPérÓ×ÚfÞ�ÊbÉ �cÚ�Ï�Ú¾å�Ç'È�É ð ã�ä ÉÀÓbÍcÚ�Ð*ß�ÊUÚfÓ�ÎUÇ4ÐýÉZÐOÝ�Î7ÐKÉ
Ú5Ê�ß�Ç%Ñ�ÍcÇ4ÏrÎUÈrÉ4ßXÚfÐ�érÐ ÈrÉPÍ�Ê7ò'Î7ÐOÝ�ÚfÍcåPäKÎ7Ó×É�åPÓbérÍcÉ¨á�Ç4Í�Ó}äKÎ�ßXÉZóVÉ�åPé�Ó�ÚfÞ�ÊUÉ
å�Ç'ÈrÉÅÜ%Î7Óbä�Þ#éVÎ}Ê7Ó�Î7ÐÁßjérÑrÑKÇ4Í�Ó,á�Ç4Í½ÑKÉPÍPß�Î�ß9Ó�ÉZÐKå5É4Ô�ß�ÎbÝ'Ð Ú5Ê�ßÚfÐ È
ÉPÏ�ÉPÐVÓ¦Ý�ÉZÐKÉZÍcÚfÓ�ÎUÇ4Ð�Ô*ÓbÍcÚfÐ*ß�Î0Ó�ÎUÇ4ÐªÚ�Ð È,ßjÓ×Ú�Ó×É£Ñ�Í�ÎbÇ4Í�Î7Ó�ÎUÉ5ßcÔ.ÓbäVÍcÉ�ÚaÈ#Î7ÐKÝ
ÚfÐ È£å�Ç4Ð åPérÍ�ÍcÉZÐKåZò ð
User Interface ModelÕ¦ÐKÊbÎ7ûVÉÕ%ÆpØ1Ë í Ô:8 �:� Æøß�ÉcÑOÚ�ÍcÚfÓ×É5ß�Õ�ÖCÒæÇ'ÈrÉfÊ�ß�ábÍcÇ4Ò�Ç4Óbä ÉPÍ
ÚaßjÑOÉ�åPÓ�ßXÇ'á*Óbä É�Ñ�ÍcÇNÝ#ÍcÚfÒ ð Ö�ÐRÎ7Ó�ß1Ñ�ÍcÉ5ß�ÉPÐVÓ.á×Ç4Í�ÒRÔrÕ%Æ�Ø1Ë í á�Ú4ÎbÊ�ß�Ó×Ç
ÉPÐ á�Ç4Ícå�É	Ó}äKÎ�ß	ß�ÉcÑOÚ�ÍcÚfÓ�ÎUÇ4Ð�Ç'á.å�Ç4Ð å�ÉZÍ�Ð ß��VßjéOåPä�ÉPÐ á�Ç4Ícå�ÉPÒ�ÉZÐ�Ó�ÎUß�érÑ
Ó�ÇÄÓbä É�ÒæÇ'ÈrÉfÊUÉPÍ ð �äKÎ}ÊUÉ4Ô�Óbä ÉgÕ�Ö{Ó}ò4ÑVÎUå�Ú4ÊbÊ7òÁä ÚNßgÚÁÓ�ÎbÝ'äVÓ
Úaßcß�Ç'åfÎUÚ�ÓUÎUÇ4ÐÃÓ�ÇþÚ�ß�ÑOÉ5åfÎUáUÎUå�ÑOÊUÚfÓ×á�Ç4Í�ÒRÔªÓbäKÉLß9Ó}Í�éOåPÓbérÍcÚ4Ê«Ú�Ð È
Þ�ÉPä ÚfÏrÎUÇ4ÍcÚ4Ê�ÚaßjÑOÉ�åZÓ×ßxÚ�ÍcÉ|Óbò4ÑVÎUå�Ú4ÊbÊ0òæÑOÊUÚfÓ×á�Ç4Í�ÒþÎ7ÐKÈ�ÉcÑOÉZÐKÈ�ÉPÐVÓ êbìrï�ð

ã�äKÎ�ßXÒ�É�Ú�Ð ß�Î7Ó1Î�ß	Î7Ò|ÑKÇ4Í�Ó�Ú�ÐVÓ1Ó×ÇCÈ�É�å�Ç4é#ÑOÊUÉ%Óbä É%Õ�Ö=È�É5ß�ÎbÝ#Ð,á}ÍcÇ4Ò
Óbä ÉxÇ4Óbä ÉPÍEÚaßjÑOÉ�åZÓ×ß%Ç'á1Óbä É£ÚZÑ�ÑVÊbÎUå�ÚfÓ�ÎUÇ4Ð ð 8 �:� Æ»åPé�Í�ÍcÉPÐVÓ�Ê0ò£éKß�É5ß
Úæß�ÑOÉ5åfÎUáUÎUåEÕ�Ö�Ò�Ç'ÈrÉfÊbÎ7ÐKÝ�Ð Ç4Ó�Ú�Ó�ÎUÇ4ÐÓ×Ç�Ú4åZäOÎUÉPÏ�É£Ó}äKÎ�ß¨Ý�Ç'Ú4Ê ð ã.äOÎ�ß
ÈrÉ5å�Ç4é#ÑOÊ}Î7ÐKÝ½Ç'á	ÓbäKÉ�ßjÑOÉ�å�Îbá�Îbå5ÚfÓ�ÎUÇ4ÐªÇ'á¦Óbä É�Õ%ÖZü}ßxåPä Ú�ÍcÚ4åZÓ�ÉZÍ�ÎUß9Ó�Îbå4ß
á}ÍcÇ4Ò Î0Ó�ß{Î7Ò|ÑVÊUÉPÒ�ÉZÐ�Ó×Ú�Ó�ÎbÇ4ÐÃÚ4ÊbÊUÇ4ÜEß«éKß�Ó×ÇÁÓ×Ú�Í�Ý�ÉPÓ«ÈrÎUá�á�ÉPÍcÉPÐVÓ
ÑVÊUÚ�Ó×á�Ç4Í�Òæß ç É ð Ý ð ÈrÉ5ß9ûrÓ×Ç5Ñ ÔCä Ú�ÐKÈ'ä ÉfÊUÈ�Ôæß�ÑKÉ�É�åPäKè½ö'é�ÎUåPûVÊ0ògÚfÐ È
É�ÚNß�ÎbÊ7ò ð Ö�Ð\ûVÉ�ÉPÑVÎ7ÐKÝ�Ü%Î7Óbä\Ó}ä É 8 �:� ÆøÑ�äKÎbÊUÇ#ß�Ç5Ñ�äVò�Ô�ÜEÉéOß�É
Í�é�ÊUÉ5ß|Ó×Ç�å�ÚfÑ�ÓbérÍcÉRÓbäKÉRÉfó'ÑOÉZÍ�Ó�ûrÐ Ç4Ü%ÊUÉ�ÈrÝ�É,Ç'á%Óbä É�ÈrÉ4ß�ÎbÝ'Ð ÉPÍ�Î7Ð
Ç4ÍcÈrÉZÍSÓ×Ç£Ç5Ñ�Ó�Î7Ò�Ú4ÊbÊ0òxÑ�ÍcÉ5ß�ÉPÐVÓ�ÓbäKÉ¦Õ�Ö�Ç4Ð,Ú%ÑOÚ�Í�Ó�ÎbåZé�ÊUÚfÍ�È�ÉPÏrÎUå�É ð Ö�Ð
Ç4ÍcÈrÉZÍSÓ×Ç|ß�ÑKÉ�åfÎUá}ò£Óbä É�ÈrÉ5ß�Î}Ý#ÐRÇ'á.Ú�Õ�Ö1Î7Ð�Ú�á�Ç4Í�Ò�Ú4Ê�ÜEÚfò�ÔrÜEÉ¦éOß�É
ÚgÕ�ß�ÉZÍ¡Ö×ÐVÓ×ÉPÍcá�Úaå�É�Ì�É5ß�åPÍ�Î0Ñ�Ó�ÎUÇ4Ð Ø�Ú�ÐKÝ'éOÚ5Ý�É4Ô 8 �:� Æ½ËbÕ�Ö�ÌEØ ð
8 �:� Æ½ËbÕ�Ö�ÌEØÁÎ�ßÚ�Ð 4 ÆpØ ê}í�ì Ô �#ï Þ�ÚNß�É�È¡ÊUÚ�ÐKÝ'éVÚ4Ý�É�Ü¨äKÇ#ß�É
ßjÓbÍ�éOåPÓbérÍcÉEÎ�ß%È�É�áUÎ7Ð É�È£Þ#ò�Ú|ß�ÉZÓ=Ç'á�ß�åPä ÉPÒ�ÚNß�Úaå�å�Ç4ÍcÈrÎ7ÐOÝ�Ó×Ç¦°Xm��
� �a��s5�E� êUî*ë Ô î#í�ï�ð 8 �:� Æ½ËbÕ�Ö�ÌEØùÚ5ÊbÊUÇ4ÜEßÀÕ%ÖÀÈrÉ4ß�ÎbÝ'Ð ÉPÍÅÓ×Ç
ß�ÑKÉ�åfÎUá}ò�ábérÐ ÈrÚ�Ò�ÉPÐVÓ×Ú5Ê=Î7ÐVÓ×ÉPÍcÚ4åZÓUÎUÇ4Ð*ß	Þ�ÉPÓbÜEÉ�ÉPÐ�Óbä ÉxéKß�ÉPÍEÚfÐ È�Óbä É
Î7ÐVÓ�ÉZÍcá�Ú4å5É�Ú�Ð È�Óbä ÉRÚ�Ó}ÓbÍ�Î0Þ#érÓ×É5ßxÚ�Ð ÈÉZÏ�ÉPÐVÓ×ßEÍcÉfÊUÚ�Ó×É�È�Ó�Ç�É�ÚaåPä�Õ�Ö
å�Ç4Ò|ÑKÇ4Ð ÉPÐVÓSÓbä Ú�Ó	Ü%ÎbÊbÊXÚ4åZäOÎUÉPÏ�ÉCÓbäKÎUßEÎ7Ð�Ó×ÉPÍcÚaåPÓ�ÎUÇ4Ð ð�� ÐªÉZóVÚfÒCÑVÊUÉ
Ç'á�ÓbäKÎUßpÓbò5ÑKÉÅÇ'áRÚZÑ�Ñ�ÍcÇ'ÚaåPä�ÎUßªßjä Ç4Ü¨ÐgÎ7Ð) ÎbÝ'é�ÍcÉ ëað Ö�Ð\ÓbäKÉ
åPé�Í�ÍcÉPÐVÓ�Î7Ò|ÑOÊbÉZÒ�ÉPÐVÓ×ÚfÓ�ÎUÇ4Ð�Ç'á 8 �:� ÆÔrÓbä É�Î7ÐVÓ×ÉPÍcÚ4åZÓUÎUÇ4Ð�Ò�Ç'ÈrÉ�ÊKÎ�ß
ÈrÉ5áUÎ7ÐKÉ5È�Þ#ò(8 �:� Æ�ËUÕ�Ö×ÌEØ �1É�ÚaåPä�Õ�Ö¨å5Ç4Ò|ÑOÇ4Ð ÉPÐVÓ	Î�ß�ß�ÑKÉ�åfÎUáUÎUÉ�È
Úaå�å�Ç4ÍcÈ#Î7ÐKÝÅÓ×ÇÅÚ�ß�åPä ÉPÒ�Ú�Ó}ä Ú�Ó�ÈrÉ�áUÎ7Ð É5ß 8 �:� Æ�ËUÕ�Ö×ÌEØ ð â�ÚaåPä
ß�åZäKÉZÒ�Ú�Ú5Ê�ß�Ç�Þ�Î7Ð È�ß|Ó×Ç�Ú,ß9Ó}Í�éOåPÓTÈrÉ5áUÎ7ÐOÎ7Ó�ÎUÇ4Ð�Î7ÐÓbä É,ß9Ó}Í�éOåPÓbérÍcÚ4Ê
Ò�Ç'È�ÉfÊ ð ã�ä ÉXÞ�Î0Ð ÈrÎ0ÐKÝ�Ç'áKÓbä É�ÉPÐVÓUÎ7ÍcÉEß�ÉPÓ�Ç'á�ß�åZäKÉZÒ�Úaß	Ç'á�8 �:� Æ½Ë
Õ�Ö×ÌEØ�ÍcÉ4ßjé�Ê7Ó�ß�Î7Ð�Úpß�ÉZÓ£Ç'áTß9ÓbÍ�éVåPÓ|ÈrÉ�áUÎ7ÐKÎ7Ó�ÎbÇ4Ð*ß|ûrÐ Ç4Ü¨Ð�ÚNß£Óbä É
¬��fs5w�kclV�}s5w �#�r�Ns � ��wP�r�'�7�#wc��t1mporq�sat���¬�k � m£� ð&) Ç4Í�ÉZóVÚfÒ|ÑOÊUÉ4Ô=Ú
Þ#érÓbÓ×Ç4Ð�å�Ç4Ò|ÑOÇ4Ð ÉPÐVÓ*Î7Ð�Ú%éKß�ÉPÍ=Î0ÐVÓ×ÉPÍcá�Úaå�É%Î�ß=ß�ÑKÉ�åfÎUáUÎUÉ�ÈCÚaå�å�Ç4ÍcÈrÎ0ÐKÝ
Ó×ÇÓbä É

Button
ß�åPä ÉPÒ�Ú�Î0Ð 8 �:� Æ½ËUÕ%Ö�ÌEØ ð ã�ä É

Buttonß�åZäKÉZÒ�Ú�Þ�Î0Ð È�ß«Ó×Ç
UIButton

ßjÓbÍ�éOåPÓ�Î7ÐþÓ}ä É�ß9Ó}Í�éOåPÓbérÍcÚ4Ê
Ò�Ç'È�ÉfÊ�ß ð � ßÀÚ�ÐýÉZóVÚfÒ|ÑOÊUÉnÇ'á�Ó}äKÎ�ß½ÜEÉ�ä Ú�Ï�É¡ß�ÑOÉ5åfÎUáUÎUÉ�È ÓbäKÉ
Î7ÐVÓ�ÉZÍcá�Ú4å5É�Þ�ÉZäKÚ�ÏrÎUÇ4ÍTÇ'á	Ú�ÐÎ7Ð*ßjÓ×ÚfÐVÓ=Ò�É5ßcß�Ú4ÝrÎ7ÐKÝ�ßjòrßjÓ×ÉPÒ ð Ö�Ð,ÓbäOÎ�ß
ÉZóVÚfÒ|ÑOÊUÉæÓbä É�éOß�ÉZÍ�Î7Ð�Ó×ÉPÍcá×Ú4å�É�Î7ÐKå�Ê0éOÈrÉ5ß�� %�� � �*Ô � ��� 1 %�� �"�0��� Ô
1������ � � �	��Ô 1���� �	�� �
& ��� %�� ��#
 �	� % ��' ��� � %���È#ÎUÚ5ÊUÇNÝVß ð ã�ä É	Ò�Ç#ßjÓ
åPÍ�Î7Ó�ÎUå�Ú5ÊXÇ4Ð ÉxÎ�ß¨Óbä É 1�� �+� � � �	��Î0ÐVÓ×ÉPÍcá�Úaå�É ð � ÚfÍ�Ó ç åfè	Î7Ð) ÎbÝ'érÍcÉ í
ßjä Ç4Ü�ß	ÑOÚ�Í�Ó=Ç'á�Ú�ß�Î7Ò|ÑOÊ}ÎUáUÎUÉ�È�Õ�Ö�Ò�Ç'ÈrÉ�Ê1Î7ÐÎ7Ó�ß	Ý#ÍcÚZÑ�äKÎbå5Ú5Ê�ÏrÎbÉZÜ�Ô
Î7Ð åfÊ7éVÈ#Î7ÐKÝøÓ}ä É� %�� � � Ú�ÐKÈ � ��� 1 %�� ������� È#ÎUÚ5ÊUÇNÝVß ð ã1Ç
ÈrÉZÒ�Ç4Ð*ßjÓbÍcÚfÓ×ÉÁÓbä ÉÄá�É5Úaß�Î�Þ�ÎbÊbÎ7ÓbòÃÚfÐ È ÚaÈNÏ�Ú�ÐVÓ×Ú5Ý�ÉÄÇ'á¾Ç4érÍ�Õ�Ö
Ò�Ç'È�ÉfÊbÎ0ÐKÝÚZÑ�Ñ�ÍcÇ'ÚaåPä�Ô.ÚxÍ�éVÊbÉ4Ë}Þ�ÚNß�É�ÈRÓ×Ç'ÇNÊ1ä ÚNß¦Þ�É�ÉZÐ�ÈrÉZÏ�ÉfÊUÇ5ÑOÉ�ÈVÔ
Ü¨äOÎUåPänß9éVå�å5É5ß�ß�á}é�ÊbÊ7òÎ7Ò|ÑOÊbÉZÒ�ÉPÐVÓ�ß£ÓbÜEÇ½ß�ÉcÑKÚfÍcÚ�Ó×É�ß�ÉPÓ�ß�Ç'á%Í�éVÊbÉ4ß
á�Ç4Í �PÚfÏ�Ú�àrÜ%Î7ÐKÝ,Ú�Ð È,à��Àã«á}ÍcÚ�Ò�ÉPÜEÇ4Í�ûOß ð � ÚfÍ�Ó�Ç'á=Ç4érÍTåPé�Í�ÍcÉPÐVÓ
ÍcÉ5ß�É�ÚfÍcåZä¾É5á�á�Ç4Í�Ó�Î�ß�Ó×Ç�Ý�ÉPÐ ÉPÍcÚ4ÊbÎ
NÉÓbä ÉpÎ7ÐVÓ�ÉZÍcÚ4åPÓ�ÎUÇ4Ð¾Ò�Ç'È�ÉfÊTÓ×Ç
ÉPÐ å�Ç4Ò|ÑKÚaßcßTÒCéVÊ0Ó�Î0ÑVÊUÉRÒ�Ç'ÈrÚ4ÊbÎ0Ó�ÎUÉ5ß ç å�Ç4Ð*ß�Î�ß9Ó�ÉZÐ�Ó¨Ü�Î0ÓbäªÓbäKÉ � î Ù
Æé�Ê7Ó�Î7Ò�Ç'ÈrÚ4Ê�Ö×ÐVÓ×ÉPÍcÚ4åZÓUÎUÇ4Ð) ÍcÚ�Ò�ÉPÜEÇ4Í�û�èÚfÐ ÈnÓ×Ç�ÈrÉZÏ�ÉfÊUÇ5Ñ\Óbä É
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4ÐÃÍ�é�ÊUÉ5ß�Î7ÐºÇ4ÍcÈrÉPÍ\Ó×Ç�Ó�Ú�Í�Ý�ÉZÓ�È#Î�ßjÑVÊUÚfòrß{Ü�Î0Óbä
È#ÎUá�á×ÉPÍcÉPÐVÓ=á�Ç4Í�Ò á�Ú4åZÓ�Ç4ÍPß ç É ð Ý ð ÈrÉ4ßjûrÓ×Ç5Ñ ßcÔ*ä Ú�Ð ÈNä ÉfÊUÈ�ßPÔ�ÉPÓ×å ð è�Ô�ÚfÐ È
Î7ÐLÑOÚ�Í�Ó�ÎUåPé�ÊUÚ�Í{à'ÑKÉ�É�åPäýÕ�ß�ÉPÍ�Ö�ÐVÓ×ÉPÍcá�Úaå�É5ß ç à#Õ%Öjè�ÈrÉ5áUÎ7ÐKÉ5È�Þ#ò
�TÇNÎUå�É 4 ÆpØ ð
�ÅÉ,Ñ�ÍcÇ4ÏrÎUÈrÉªÚ�Ð¾Éfó�Ú�Ò|ÑVÊUÉpÞ�ÉfÊUÇ4Ü Î7Ð) ÎbÝ'é�ÍcÉ5ß î Ú�ÐKÈ � Ó}ä Ú�Ó
ßjä Ç4Ü�ßEÇ4é�Í�É�Ú�Í�Ê7òRÚfÑrÑ�ÍcÇ'Ú4åZä�Ó×Ç�Ò�Ç'ÈrÉ�Ê}Î7ÐKÝ�Ú�ÐpÎ7ÐVÓ×ÉPÍcá�Úaå�É�ÓbäKÚ�Ó	Î�ß
Î7Ò|ÑVÊUÉPÒæÉPÐVÓ�É5ÈTÎ7Ð|Þ�Ç4ÓbäCÓbä ÉEà#Ü%Î7ÐKÝ|ÚfÐ È�à��Åã�á}ÍcÚfÒæÉPÜ�Ç4Í�ûKß ð

��������������� ��� �� "!�#%$�& '"#(�� �)*��+�� �,�!�#.-0/21�3 4�# ��5
� 607 8"� 7 �8"�9� !�# 6;:"� � 7 <=8� �� # 5

� >?� �+���@ 7 � 7 � � !�# 6;:"� � 7 <=8� �� # �8��A� !�# 6B:"� � 7 <(8� �� #
��� ��� C"� � !�# 7 � D�� # ��EF��@ !�# 7 � D�� # 5

� 6;:�� � 7 <=8" �� � � ,GEF7 !�# � � ,GEF7 # � ��H 7 !�# � ��H 7 # 5
� <=8� ���� �8"�9� !�# � �FH 7 # 5

� I(���FJF8�K*��D�7 8F�*� � !�# $ # L 5
� J�� �F7 5

� J�� �F7 M 7 ��� ��� ���9�" �7 !�# 8�:�:"� � # L 5

� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# ��� 8" �,"� # L 5
� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# :�� ��"8�:�:"� � # L 5
� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# ,�� 8":�� # L 5
� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# :��"8")�E���� # L 5
� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# @N8�7 �"� �A��� �G # L 5
� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# :��"8�� # L 5
� J�� ��7 M 7 �"� �"� �"�9�� F7 !�# :�� D�� # L 5

��L J�� ��7 5
� O;����C��GI(��� ������ F7 !�# PQ)F7 � �� # 5

� M 7 �"� �"� �"�9�� F7 !�# 8":":"� � # L 5
� M 7 �"� �"� �"�9�� F7 !�# ��� 8" �,"� # L 5
� M 7 �"� �"� �"�9�� F7 !�# :�� ��"8�:�:"� � # L 5
� M 7 �"� �"� �"�9�� F7 !�# ,�� 8":�� # L 5
� M 7 �"� �"� �"�9�� F7 !�# :��"8")�E���� # L 5
� M 7 �"� �"� �"�9�� F7 !�# @N8�7 �"� �A��� �G # L 5
� M 7 �"� �"� �"�9�� F7 !�# :��"8�� # L 5
� M 7 �"� �"� �"�9�� F7 !�# :�� D�� # L 5

��L OQ����C��GI(��� 5
��L <(8� ��"� 5
� <=8� ���� �8"�9� !�# � � ,GEF7 # 5

� 1�� ��@RJ�8FK*�GDF7 L 5
� M �98�,�� � �98�,����"�) !�# ��8"��:"� �2& S :�, # L 5

��L <(8� ��"� 5
��L 6;:"� � 7 <=8� �� 5

��L >T� �+���@ 5
��L 607 8�� 7 5

) ÎbÝ#érÍcÉ î ��8 �:� Æ½ËUÕ%Ö�ÌEØ�Ì�É�á�Î0ÐKÎ7Ó�ÎUÇ4Ð

� �=y0la� � ~=tUyb��U=�#lVs

� ³T§ � ~XtUy}�RU=�#l�s

) ÎbÝ'érÍcÉ � �rÖ�ÐVÓ×ÉPÍcá�Úaå�É5ß�Ý�ÉZÐKÉZÍcÚfÓ×É�È£á}ÍcÇ4Ò 8 �:� Æ½ËbÕ�Ö×ÌEØ
Î7Ð) Î}Ý#érÍcÉ îVð

An Event-Based Framework for Model Integration �ÅÉ�Ñ�ÍcÇ5ÑOÇ#ß�ÉÁÚ�Ð·ÉZÏ�ÉPÐVÓ×ËbÞ�ÚNß�É�È Î7ÐVÓ×ÉfÝ'ÍcÚ�Ó�ÎbÇ4Ðºá}ÍcÚ�Ò�ÉPÜEÇ4Í�ûþÓ�Ç
Î7ÐVÓ�É�Ý'ÍcÚ�Ó�ÉøÚfÐ È å�Ç'Ç4ÍcÈ#Î7Ð Ú�Ó�É Ó}ä É ÚaåPÓ�Î7ÏrÎ7ÓUÎUÉ5ß Ú�Ò�Ç4ÐKÝ Óbä É
ßjÓbÍ�éOåPÓbérÍcÚ4Ê�Ô�Þ�ÉPä Ú�ÏrÎUÇ4ÍcÚ5Ê�Ú�Ð È�Õ%Ö¨Ò�Ç'È�ÉfÊ�ß ð) ÎbÝ'é�ÍcÉ � ß9äKÇ4Ü�ßEÓbäKÉ
ßjÓbÍ�éOåPÓbérÍcÉÄÇ'á�ÉPÏ�ÉPÐVÓ�ËbÞ�Úaß�É�È á}ÍcÚ�Ò�ÉPÜEÇ4Í�û ð ã.ä ÉÂßjä ÚaÈrÉ�ÈÂÑKÚfÍ�Ó
Î7Ð È#ÎUå�Ú�Ó�É4ßTÓbäKÉ�Í�é�Ð*ËbÓ�Î7Ò�ÉRå�Ç4Ò|ÑKÇ4Ð ÉPÐVÓ×ßCÇ'á¦Ó}ä ÉRá}ÍcÚ�Ò�ÉPÜEÇ4Í�ûªÚ�Ð È
Óbä É é�Ð ß9ä Ú4È�É�È ÉfÊUÉPÒ�ÉPÐVÓ�ß Î7Ð È#ÎUå�Ú�Ó×É Óbä É È�É5ß�ÎbÝ#Ð ËUÓ�Î7Ò�É
å�Ç4Ò|ÑKÇ4Ð ÉPÐVÓ×ß ð � Ó�Í�érÐ*ËUÓ�Î0ÒæÉ4Ô·É�ÚaåPä Õ%Ö å�Ç4Ò|ÑOÇ4Ð ÉPÐVÓµÎ�ß
Ú�érÓ×Ç4Ò�Ú�ÓUÎUå�Ú4ÊbÊ7òEÞ�Ç4érÐ È�Ó×Ç£ÚfÐ�Î7Ð*ßjÓ×Ú�Ð å�É%Î7Ð�Óbä É¨ß9ÓbÍ�éVåPÓbérÍcÚ4Ê Ò�Ç'ÈrÉfÊ ð
�äKÉZÐ�Ú£éOß�ÉZÍ�Ó}Í�ÎbÝ�Ý�ÉPÍPß%ÚCÕ%Ö¦ÉPÏ�ÉPÐVÓjÔ*ÓbäKÎUß%ÉZÏ�ÉPÐVÓXÎ�ß�ÓbÍcÚ�Ð ß9Ò�Î7ÓbÓ�É5È
Ó×Ç�Ó}ä ÉRÚfÑrÑ�ÍcÇ5Ñ�Í�ÎUÚfÓ×É�Þ�ÉPä Ú�ÏrÎUÇ4ÍcÚ5Ê=ÒæÇ'ÈrÉfÊ¨Î7Ð ß9Ó×ÚfÐ å�É4Ô�Ü¦äKÎUåPäªÒ�Úfò
ÓbÍ�ÎbÝrÝ�ÉZÍLß�Ç4ÒæÉ¹ß9Ó�Ú�Ó×ÉLÓbÍcÚ�Ð*ß�Î7Ó�ÎbÇ4Ð*ß ð ã.ä ÉýÞ�ÉPä Ú�ÏrÎUÇ4ÍcÚ5Ê�ÒæÇ'ÈrÉfÊ
Î7Ð*ßjÓ×ÚfÐ å�É4ß å�ÚfÐ Óbä ÉPÐµÒæÚfÐKÎ0Ñ�éVÊbÚ�Ó×É Ó}ä Éôß9ÓbÍ�éVåPÓbérÍcÚ4Ê�ÒæÇ'ÈrÉfÊ
Î7Ð*ßjÓ×ÚfÐ å�É4ßñÚ�ÐKÈ åPä ÚfÐKÝ�É5ßñÓ�Ç Î7Ð*ßjÓ×Ú�Ð å�É5ß Þ�Ç4é�Ð È Ó×Ç Õ%Ö
å�Ç4Ò|ÑKÇ4Ð ÉPÐVÓ×ß¡Ü�Î}ÊbÊnå�ÚféKß�É�Õ%Ö¡å�Ç4Ò|ÑKÇ4Ð ÉPÐVÓ×ß�Þ�ÉfÎ7ÐKÝ¹é#ÑKÈrÚ�Ó�É5È
Ú�érÓ×Ç4Ò�Ú�ÓUÎUå�Ú4ÊbÊ7ò ð âSÚ4åZäRå�Ç4ÒCÑOÇ4Ð ÉPÐVÓ�Ç4ÐKÊ7ò£È#Î7ÍcÉ�åZÓUÊ7ò£Î0ÐVÓ×ÉPÍcÚaåPÓ�ß�Ü�Î0Óbä
Ç4Ð É�Ç4ÓbäKÉZÍ	å5Ç4Ò|ÑOÇ4Ð ÉPÐVÓjÔKÚNß=Î7Ð È#ÎUå�Ú�Ó×É�È|Î7Ð) Î}Ý#érÍcÉ �Vð ã.äOÎ�ßXÉZÏ�ÉPÐVÓ×Ë
Þ�ÚNß�É�È´á}ÍcÚfÒæÉPÜ�Ç4Í�ûµÎ7ÐVÓ×ÉfÝ'ÍcÚ�Ó×É5ß¹Óbä É ÓbäVÍcÉ�É Ò�Ç'È�ÉfÊ�ß¹Ü¨äKÎ}ÊUÉ
Ò�Ú4Î7Ð�Ó×Ú4Î7ÐOÎ7ÐKÝ ß�Î7Ò|ÑOÊbÎbå�Î0Óbò{Ú�ÐKÈgÊUÇ'Ç#ß�Énå5Ç4é#ÑVÊbÎ7ÐKÝ\Ú�Ð È Ü%Î7Óbä Ç4érÓ
ÊbÎ7Ò�Î7ÓUÎ7ÐKÝTÓbäKÉ¨å�ÚfÑOÚfÞ�ÎbÊ}Î7Ó�ÎUÉ5ßSÇ'áOÓbä É¨ÚZÑ�ÑVÊbÎUå�ÚfÓ�ÎUÇ4Ð*ß ð
KNOWLEDGE-BASED MODEL COMPILATION�ÅÉ�ÍcÉ5Ú5ÊbÎ5
aÉ�Óbä ÚfÓTÚ�ûVÉPò�Ó×Ç½ß9éVå�å5É5ß�ß�á}é�Êxå�Ç'ÈrÉÝ�ÉZÐKÉZÍcÚfÓ�ÎUÇ4Ð«ÚfÐ È
Ò�Ç'È�ÉfÊ�å5Ç4Ò|ÑVÎbÊUÚfÓ�ÎUÇ4Ð�Î�ß�Óbä ÚfÓ1Î7Ó�ÍcÉ�öNéVÎ0ÍcÉ4ß�Ú�Ó}ÍcÉZÒ�ÉPÐ ÈrÇ4éKß�Ú�Ò�Ç4érÐVÓ
Ç'áÀû�Ð Ç4Ü%ÊUÉ�ÈrÝ�É�Î7Ð ß�Ç'á}ÓbÜ�Ú�ÍcÉ Ú�ÍcåPäKÎ7Ó�É5åPÓbérÍcÉ�Ú�ÐKÈ¹ÈrÉ4ß�ÎbÝ'Ð ð �
åPÍ�Î7Ó�ÎUå�Ú5ÊEå5Ç4Ò|ÑOÇ4Ð ÉPÐVÓ£Ç'á£Ç4é�Í�ÚZÑ�Ñ�ÍcÇ'ÚaåPä�Î�ß�Ó×Ç½Î7ÐVÏ�É5ßjÓ�ÎbÝ�Ú�Ó×É�Ú�Ð È
ÈrÉZÏ�ÉfÊUÇ5Ñ�Ó×Ç'ÇNÊUßSá�Ç4Í=û�ÐKÇ4Ü�ÊUÉ�È#Ý�É5ËbÞ�Úaß�É�ÈxÒ�Ç'È�ÉfÊ å�Ç4Ò|ÑOÎbÊbÚ�Ó�ÎUÇ4Ð ð ã�ä É
Ú�Ò�Ç4érÐVÓEÇ'á%ûrÐ Ç4Ü�ÊUÉ�È#Ý�É�Ó}ä Ú�Ó%Ý�Ç'É5ß£Î7ÐVÓ×ÇÉZÏ�ÉPÐÅÓbäKÉ�ÒæÇ#ßjÓ¦Þ�Úaß�Îbå
Ú�ÍcåPäKÎ0Ó×É�åZÓ}é�ÍcÚ5Ê*ÈrÉ�åfÎ�ß�ÎbÇ4Ð�ÎUß=ß9Ó�Ú4ÝrÝ�ÉPÍ�Î7ÐKÝ£Ú�Ð È£ÉPÐ å�Ç4Ò|ÑOÚNß�ß�É5ß�Ò�Ú�Ð�ò

) ÎbÝ'é�ÍcÉ � � � Ð�ÉPÏ�ÉZÐ�Ó�ËbÞ�Úaß�É�È£á}ÍcÚ�Ò�ÉPÜEÇ4Í�ûCá×Ç4Í1Ò�Ç'È�ÉfÊKÎ7ÐVÓ�É�Ý'ÍcÚ�ÓUÎUÇ4Ð

È#ÎUá�á×ÉPÍcÉPÐVÓ�ÚfÍcÉ�ÚNßRÎ7Ð åfÊ7éVÈrÎ7ÐOÝ ��ÚfÏ�Ú4ÎbÊbÚfÞ�ÊUÉÓ×Ç'ÇNÊ�ß�Ç4Í,á}ÍcÚ�Ò�ÉPÜEÇ4Í�ûOßPÔ
Ó�Î7Ò�É�Ú�Ð È·Ç4Ó}ä ÉPÍýÍcÉ5ß�Ç4érÍcå�É¹å�Ç4Ð*ßjÓbÍcÚ4Î7Ð�Ó�ßPÔÀÓ×Ú�Í�Ý�ÉPÓ¾ÑVÊUÚfÓ×á�Ç4Í�Ò�Ô
ÑOÉZÍcå�ÉfÎ7Ï�É�ÈÀÍ�Î�ß9ûOßRßjéOåPä{Úaß�á}érÓbé�ÍcÉ�ÉPÐVä ÚfÐ å�ÉPÒæÉPÐVÓ×ßPÔ�á�Ú�Ò�ÎbÊbÎUÚfÍ�Î7Óbò
Ü�Î0ÓbäÃÓ}ÍcÚaÈrÉ4Ë×Ç'á�á�ß�ßjéVåZä·ÚNß\Ó�Î7Ò�É5Ëjß�ÑOÚaå�ÉýÚ�ÐKÈþÚ�ÜEÚfÍcÉPÐ É5ßcßgÇ'á
Ó×É�åPäVÐKÎUå�Ú5Ê�ÑOÎ0Ó×á�Ú4ÊbÊ�ß ð ã�ä É5ß�ÉpÎ�ß�ß9éVÉ5ß�å�ÚfÐ{Úaá�á�É�åZÓ£ÉPÏ�ÉPÍ�ò�ÈrÉ5åfÎ�ß�ÎUÇ4Ð
ÈNé�Í�Î7ÐOÝ�Ú�ß�Ç'á}ÓbÜEÚfÍcÉ£ÈrÉZÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓXÉ�á�á�Ç4Í�ÓXá}ÍcÇ4ÒÄÎ0Ó�ß¨Î7Ð å�ÉcÑ�ÓUÎUÇ4ÐRÓ×Ç
Î7Ó�ßÀÈrÉfÊbÎ7Ï�ÉPÍ�ò ð ã.äKÉ�Úaå�öNéVÎ�ß�Î7Ó�ÎbÇ4ÐLÚfÐ È ÍcÉcÑ�ÍcÉ5ß�ÉZÐ�Ó×Ú�Ó�ÎbÇ4Ð Ç'á�ÓbäKÎ�ß
ûrÐ Ç4Ü�ÊUÉ�È#Ý�É%ÎUß¦Ú�å5Ç4Ò|ÑVÊUÉZó£Ñ�ÍcÇ'å�É5ßcßcÔ#ÑKÚfÍ�Ó�ÎUåPé�ÊUÚ�Í�Ê7ò|ß�Î7Ð å�É�Ó}ä ÉPÍcÉ%Î�ß
Ð Ç�Ú5Ý#ÍcÉ�É�È�é#ÑKÇ4Ð�ß�ÇNÊ0é�Ó�ÎbÇ4Ð�Ç4Í£ÉZÏ�ÉPÐÅåZÍ�Î0Ó×ÉPÍ�ÎUÚRá�Ç4Í�Ú�ÐVò�Ç'á	Ó}ä É5ß�É
ÈrÉ5åfÎ�ß�ÎUÇ4Ð*ß ð âSÚ4åPä ß�Ç'ábÓ}ÜEÚ�ÍcÉ�Ú�ÍcåPäKÎ0Ó×É�åZÓ�Ü�ÎbÊ}ÊCÞ#Í�Î7ÐKÝ¾Óbä ÉfÎ7Í½Ç4Ü¦Ð
�cÞ�Ú4ÝrÝ�Ú5Ý�É��ÀÓ×Ç�ÚfÐVò¾ß�Ç'á}ÓbÜEÚfÍcÉÅÈ�ÉPÏ�ÉfÊUÇ5Ñ�Ò�ÉZÐ�Ó�É�á�á×Ç4Í�Ó�Óbä ÚfÓ�Ü�Î}ÊbÊ

Ç'á}Ó×ÉPÐ�Þ�ÎUÚNß�Ó}ä ÉfÎ7ÍEÈrÉ�å�ÎUß�ÎUÇ4Ð ß%Ç4ÍTÚ�ÓSÊUÉ�ÚNßjÓ�ÓbäKÉ�Î0Í¨Óbä Ç4é�Ý'äVÓ1Ñ�ÍcÇ'å�É5ßcß ð
Ö�Ð«Ç4ÍcÈ�ÉPÍ£Ó�Ç�Ò�ÚfûOÉ�Ç4é�ÍCÚfÑrÑ�ÍcÇ'Ú4åZä«Ú�ÍcÉ5Ú5ÊbÎ7ÓbòrÔ=Ú�Ð ÈpÓ×ÇÒæÚfûOÉæÎ0Ó
Ò�Ç4ÍcÉpÓbä Ú�Ð½õ9éOß9Ó�ÚfÐ¾Î7Ò|Ñ�ÍcÇ4Ï�É�È�å�Ç'ÈrÉpÝ�ÉPÐ ÉPÍcÚ�ÓUÎUÇ4Ð¾é�Ó�Î}ÊbÎ7ÓbòrÔ�ÜEÉ
ÒCéOß9Ó Ú4È�ÈNÍcÉ5ßcß ÓbäVÍcÉ�É åZÍ�Î0Ó�ÎUå�Ú4Ê Ñ�ÍcÇ5Þ�ÊUÉPÒæß�� ûrÐ Ç4Ü�ÊbÉ5È#Ý�É
Ú4å�ö'é�Î�ß�Î7Ó�ÎUÇ4Ð�Ô�ûrÐ Ç4Ü�ÊbÉ5È#Ý�É�ÍcÉPÑ�ÍcÉ5ß�ÉPÐVÓ�Ú�Ó�ÎUÇ4Ð*Ô¡ÚfÐ È û�ÐKÇ4Ü�ÊUÉ�È#Ý�É
érÓ�ÎbÊ}Î5
NÚfÓ�ÎUÇ4Ð ð à�Ç'á}ÓbÜEÚfÍcÉCÚ�ÍcåPäKÎ7Ó×É�åPÓbérÍcÉ£Ú�ÐKÈRÈ�É5ß�ÎbÝ#Ðû�Ð Ç4Ü%ÊUÉ�ÈrÝ�ÉxÎ�ß
Ú4å�ö'é�Î7ÍcÉ�È¾ábÍcÇ4Ò�ä�é�Ò�Ú�Ð�ÉZó#ÑOÉPÍ�Ó�ß ð ã�ä ÉÅÚaå�öNéVÎ0ÍcÉ5ÈnûrÐ Ç4Ü�ÊbÉ5È#Ý�É
Ü%ÎbÊbÊ�Þ�É¾å�Ç'È#ÎUáUÎUÉ�È ÚfÐ ÈÁßjÓ×Ç4ÍcÉ�È�Î7ÐÂÚ¾ûrÐ Ç4Ü%ÊUÉ�ÈrÝ�É5ËbÞ�ÚNß�É��,ã�ä É
Ñ�érÍ9ÑKÇ#ß�ÉCÇ'á	ÓbäKÎUßEû�ÐKÇ4Ü�ÊUÉ�È#Ý�É5ËbÞ�Úaß�É|Î�ß�Ó×Ç�Ý'é�ÎUÈ�ÉxÓbäKÉ�Ú�érÓ×Ç4Ò�Ú�Ó�É5È
ÈrÉ�åfÎ�ß�ÎbÇ4Ð«Ò�Ú�û�Î7ÐKÝÑ�ÍcÇ'å�É5ßcß�Ó×ÇÅÈrÉPÍ�Î7Ï�É�ÚfÐ È ��Ç4Í�ß�É�ÊbÉ5åPÓ£Ú½ß�ÉPÓ£Ç'á
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð»Í�é�ÊUÉ5ßÄÚfÐ È Ó×ÉPÒ|ÑVÊUÚ�Ó×É5ß Óbä ÚfÓ\Ú�ÍcÉÄéOß�É5È Ó×Ç
Ó}ÍcÚ�Ð*ß�á�Ç4Í�Ò Óbä É Ò�Ç'È�ÉfÊ�ß Î7ÐVÓ�Ç å�Ç4Ò|ÑOÊbÉZÓ�É ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð*ß ð
Ù	Ç4Ð å�ÉcÑ�ÓbéOÚ5ÊbÊ7òrÔ�Ç4é�Í¦ÏrÎ�ß�ÎbÇ4Ðpá�Ç4Í*8 �:� Æ·Î�ß�ß9äKÇ4Ü¨ÐÎ7Ð) ÎbÝ'érÍcÉ �Oð
ÆpÇ'È�ÉfÊ�ßcÔ¦ÑOÚ�ÍcÚfÒ�ÉZÓ�ÉZÍPß�Ú�ÐKÈ«ÉPÐVÏrÎ7ÍcÇ4Ð�ÒæÉPÐVÓ�Ú4ÊTÍcÉ�öNéVÎ7ÍcÉPÒ�ÉPÐVÓ�ß�Ú�ÍcÉ
Ñ�ÍcÇ4ÏrÎUÈrÉ�È Ó×Ç Óbä É Ò�Ç'ÈrÉfÊÁå�Ç4Ò|ÑOÎ}ÊUÚ�Ó�ÎbÇ4Ð ß9é#ÞVßjòrßjÓ×ÉPÒ ð ã�äKÎ�ß
ßjé#ÞVß9ò#ß9Ó×ÉPÒ Ñ�ÍcÇ'È'éVå�É4ß{Ï�ÚfÍ�ÎUÇ4éOßgÒ�Ç'ÈrÉ�ÊÅÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4Ð*ß Þ#ò
Ó�ÚfÑrÑOÎ7ÐOÝ£Î7ÐVÓ×Ç�ÚEß�Ç'ábÓ}ÜEÚ�ÍcÉ¦Ú�ÍcåPäKÎ7Ó�É5åPÓbérÍcÉ¨ÚfÐ È£ÈrÉ5ß�ÎbÝ'ÐCû�ÐKÇ4Ü�ÊUÉ�È#Ý�É5Ë
Þ�Úaß�É ð ã�ä É å5Ç4Ò|ÑVÊUÉPÓ×É�È�Ò�Ç'ÈrÉfÊpÓ}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð*ßÅÒæÚfò�ò'ÎUÉfÊUÈ
ß�ÉPÏ�ÉPÍcÚ4Ê å�Ú�Ð È#ÎUÈrÚ�Ó×É%Î7Ò|ÑVÊUÉPÒ�ÉZÐ�Ó×Ú�Ó�ÎbÇ4Ð*ß ð ã.ä É5ß�É%Î7Ò|ÑOÊbÉZÒ�ÉPÐVÓ×ÚfÓ�ÎUÇ4Ð*ß
ÚfÍcÉCÓbäKÉZÐªÉPÏ�Ú4Ê0éOÚfÓ×É�ÈVÔ�ÉfÎ7Ó}ä ÉPÍTÓbä�ÍcÇ4éVÝ'äªÚ�äVé�Ò�ÚfÐÀÇ4Í£Ú�érÓ×Ç4Ò�Ú�Ó�É5È
Ú5Ý�ÉPÐVÓ�Ô�Ú�Ð ÈÚRá�Î0Ð Ú4Ê�ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4ÐªÎ0ÒCÑVÊUÉPÒ�ÉPÐVÓ×Ú�ÓUÎUÇ4ÐÎ�ß£ß�É�ÊbÉ5åPÓ×É�È ð
ã�äKÎ�ßRÎ7Ò|ÑVÊUÉPÒæÉPÐVÓ�Ú�Ó�ÎUÇ4ÐnÜ�ÎbÊbÊ|ß�ÚfÓ�Î�ß�ábò«Ú5ÊbÊ|Ç'áxÓbä É�ÚZÑ�ÑVÊbÎUå�Ú�ÓUÎUÇ4Ð1übß
á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê�Ú�Ð È»ÉPÐVÏrÎ7ÍcÇ4Ð�ÒæÉPÐVÓ�Ú4Ê\ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ßcÔ{Ú�ÐKÈ·Ü%ÎbÊbÊ
ß�Ú�ÓUÎ�ß�á}òþÓbäKÉ¹ÉZórÓ}ÍcÚNË�á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê�ÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ß�Ü�Î7Ó}äKÎ7Ð¶ß�Ç4Ò�É
ß�ÑOÉ5åfÎUáUÎUÉ�È�Ó�ÇNÊUÉPÍcÚ�Ð å�É ð ã�ä É�áUÎ7ÍPßjÓ	ûOÉPòæÑ�ÍcÇ5Þ�ÊUÉPÒþÎ7Ðªå�Ç4Ð*ßjÓbÍ�éOåPÓ�Î0ÐKÝ
Ó}ä É�ûrÐ Ç4Ü�ÊUÉ�È#Ý�É5Ë}Þ�ÚNß�ÉxÎ�ß�Óbä ÉxÚaå�ö'é�Î�ß�Î7Ó�ÎUÇ4Ð�Ç'á1Óbä É�ûrÐ Ç4Ü%ÊUÉ�ÈrÝ�ÉxÎ7Ð
Ó}ä ÉÅáUÎ7ÍPß9ÓæÑVÊUÚ4å5É ð �£Ç4Ó�Ç4ÐOÊ7ò«ÒCéOß9Ó�Î0Ð á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð{Þ�ÉÅå5ÇNÊ}ÊUÉ�åZÓ�É5È
ÚZÞ�Ç4é�ÓCÚfÑrÑ�ÍcÇ5Ñ�Í�ÎUÚ�Ó�É�Ò�É�åZäKÚ�ÐKÎ�ßjÒæß�Ó×ÇÓbÍcÚfÐ*ß�á×Ç4Í�Ò Ò�Ç'È�ÉfÊ�ß,Î0ÐVÓ×Ç
å�Ç4Ò|ÑVÊUÉPÓ×É�È¾Î0ÒCÑVÊUÉPÒ�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð*ßcÔ�Þ#érÓ�Ú5Ê�ß�Ç�Î7Ð Óbä ÉÅöNéOÚ5ÊbÎ7Ó�ÎbÉ4ßpÇ'á
Ó}ä Ç#ß�É Î0ÒCÑVÊUÉPÒ�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð*ß á}ÍcÇ4Ò Ú�Ð Ú�ÍcåPäKÎ7Ó�É5åPÓbérÍcÚ4ÊúÚ�Ð È
ÉPÐVÏrÎ0ÍcÇ4ÐVÒ�ÉZÐ�Ó×Ú4Ê�ÑKÉPÍPß�ÑKÉ�åPÓ�Î7Ï�É ð �ÅÉ£ÉZó'ÑKÉ�åPÓ�Ó}ä Ú�Ó1ÓbäKÎ�ß=û�ÐKÇ4Ü�ÊUÉ�È#Ý�É
Ü%ÎbÊbÊ ßjÓ×ÉPÒ á}ÍcÇ4Ò ÒCé�Ê7Ó�Î0ÑVÊUÉ ß�Ç4érÍcå5É5ß Î0Ð åfÊ7éOÈ#Î7ÐKÝ·Ú�Ð Ú5Ê7òaÓ�Îbå5Ú5Ê
Ò�ÉPÓbä Ç'È�ßxÚaßEÜEÉfÊbÊXÚaß�Þ�É5ß9ÓXÑ�ÍcÚaåPÓ�ÎUå�É5ßTÎ7Ð½ß�Ç'á}ÓbÜ�Ú�ÍcÉ�ÚfÍcåPäKÎ7Ó×É�åPÓbérÍcÉ
ÚfÐ ÈCÕ%ÖXÈrÉ4ß�ÎbÝ'Ð ð ã�ä ÉTß�É�å�Ç4Ð ÈCåPÍ�Î7Ó�ÎUå�Ú5Ê*Ñ�ÍcÇ5Þ�ÊUÉPÒÁÎ�ß¦ÈrÉPÓ×ÉPÍ�Ò�Î7ÐKÎ7ÐKÝ
äKÇ4Ü\Óbä ÉxûrÐ Ç4Ü�ÊbÉ5È#Ý�ÉCÝ�Ú�Ó}ä ÉPÍcÉ5È�ÈNé�Í�Î7ÐOÝ�ÓbäKÉ�Ú4å�ö'é�Î�ß�Î7Ó�ÎUÇ4ÐÑ�ä Úaß�É
ÎUßæÓ×ÇªÞ�ÉÍcÉcÑ�ÍcÉ5ß�ÉZÐ�Ó×É�È�Ü�Î7Ó}äKÎ7Ð�ÓbäKÉ�ûrÐ Ç4Ü%ÊUÉ�ÈrÝ�É5ËbÞ�ÚNß�É ð ã�äKÎ�ßRÎ�ß
Î0ÒCÑOÇ4Í�Ó×ÚfÐVÓ�ß�Î7Ð å�ÉªÇ4érÍ,ÚfÑrÑ�ÍcÇ'Ú4åPä{Ü%ÎbÊbÊ|ÈNÍcÚ�Ü�ä É�Ú�ÏrÎbÊ0ò«Ç4Ð�ÓbäKÎ�ß
ûrÐ Ç4Ü%ÊUÉ�ÈrÝ�É£Ú�ÐKÈ�ÓbäVéOß�ÍcÉ5öNé�Î7ÍcÉ5ß¨Î7Ó=Ó×Ç£Þ�É£á�Ç4Í�Ò�é�ÊUÚfÓ×É�ÈæÎ7Ð�ßjéVåZä�Ú
Ü�Ú�ò«Úaß�Ó×Ç�Þ�ÉÉ5Úaß�Î}Ê7ò«Úaå�å�É5ßcß�Î0Þ�ÊUÉÚNß,ÜEÉfÊbÊ�ÚNßRÓ×Ç«Ú4È�É�öNéOÚfÓ×ÉfÊ7ò
á�Ú4å�Î}ÊbÎ7Ó×ÚfÓ×É�ÍcÉ�Úaß�Ç4ÐKÎ0ÐKÝæÚfÐ È�ÈrÉ�å�ÎUß�ÎUÇ4ÐRÒ�ÚfûVÎ7ÐOÝæÈNé�Í�Î7ÐOÝ�Óbä ÉEÒæÇ'ÈrÉfÊ
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4ÐæÑ�ä ÚNß�É ð �½ä ÉPÐ,Ú�Ò�Ç'È�ÉfÊ�ÎUßXÓbÍcÚfÐ*ß�á�Ç4Í�Ò�É�È�Î7Ð�Ó×ÇCÚ
Ü�Ç4Í�ûVÎ0ÐKÝ Î0ÒCÑVÊUÉPÒ�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð�Ô�Óbä Énû�ÐKÇ4Ü�ÊUÉ�È#Ý�ÉnÓbä ÚfÓ�ä ÚaßªÞ�É�ÉPÐ
Ý�Ú�Ó}ä ÉPÍcÉ5È�Î7ÐVÓ×ÇEÓbä É¦ûrÐ Ç4Ü�ÊUÉ�È#Ý�É5Ë}Þ�ÚNß�É�ÒCéOß9Ó Þ�É�érÓ�ÎbÊbÎ
NÉ�ÈxÓbäVÍcÇ4é�Ý#ä
Ú�á�Ç4Í�Ò�Ú4ÊVÍcÉ�ÚNß�Ç4ÐKÎ7ÐKÝ�Ú�ÐKÈ�ÈrÉ�åfÎ�ß�ÎbÇ4Ð�Ò�ÚfûVÎ7ÐOÝ£Ñ�ÍcÇ'å�É5ßcß�Ó}ä Ú�Ó*ÍcÉ4ßjé�Ê7Ó
Î0ÐùÚ ß�ÉPÓ«Ç5Ñ�Ó�Î7Ò�Ú4Ê�ÓbÍcÚ�Ð*ß�á�Ç4Í�Ò�Ú�Ó�ÎUÇ4Ð ß¾ÚfÐ ÈÄÓ�ÉZÒ|ÑVÊUÚ�Ó�É4ß�Þ�ÉfÎ7ÐKÝ
ßjòaÐ�Óbä É5ß�Î
NÉ�È Ç4Í ß�ÉfÊUÉ�åPÓ×É�È ð ã�ä É5ß�É ÓbÍcÚfÐ*ß�á×Ç4Í�Ò�ÚfÓ�ÎUÇ4Ð*ßñÚ�Ð È
Ó�ÉZÒ|ÑVÊUÚ�Ó�É4ß£Ü�ÎbÊ}Ê¦Þ�É,ÚZÑ�ÑVÊbÎUÉ�È�Ó�Ç�Óbä ÉæÒ�Ç'È�ÉfÊ¨Ó×ÇpÝ�ÉZÐKÉZÍcÚfÓ×ÉæÓbä É�Ú
å�Ç4Ò|ÑVÊUÉPÓ×ÉµÎ0ÒCÑVÊUÉPÒ�ÉPÐVÓ×Ú�ÓUÎUÇ4Ð Ó}ä Ú�Ó ß�Ú�Ó�ÎUß�áUÎUÉ5ßºÐKÇ4ÓÁõ9éOß9Ó Î7Ó�ß
á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê=ÍcÉ5öNé�Î7ÍcÉPÒæÉPÐVÓ×ßPÔ Þ#é�Ó¨Ú5Ê�ß�Ç�Ó}ä É�ÉZó#ÓbÍcÚNË×ábérÐ åPÓ�ÎUÇ4ÐKÚ4Ê�Ú�Ð È
ÉPÐVÏrÎ0ÍcÇ4ÐVÒ�ÉZÐ�Ó×Ú4ÊVÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ßSÚaß�ÜEÉfÊbÊ ð

) ÎbÝ'é�ÍcÉ � �rã�ä É¨ÚfÍcåPäKÎ7Ó×É�åPÓbérÍcÉ¨Ç'áKûrÐ Ç4Ü%ÊUÉ�ÈrÝ�É5ËbÞ�ÚNß�É�È
Ò�Ç'ÈrÉ�Ê å�Ç4Ò|ÑOÎ}ÊUÚ�Ó�ÎbÇ4Ð

RESEARCH PROBLEMS� ßjérÞVßjÓ×ÚfÐVÓ�ÎUÚ5Ê�Ú�Ò�Ç4érÐVÓ�Ç'á.ÉZó�Î�ßjÓ�Î7ÐKÝ£ÜEÇ4Í�ûCä Úaß�ÍcÉ4ßjé�Ê7Ó×É�È|Î7Ð�ÚTß�ÉPÓ
Ç'á|Þ�Úaß�ÎbåÀßjérÑrÑKÇ4Í�ÓUÎ7ÐKÝ«Ó×Ç'ÇNÊUßá�Ç4ÍpÇ4érÍpÚZÑ�Ñ�ÍcÇ'ÚaåPä��xÚfÐ È�ÜEÉÚ�ÍcÉ
åPé�Í�ÍcÉPÐVÓUÊ7ò�á�Ç'åPéKß�É�È Ç4Ð Î7Ð�Ï�É4ßjÓ�ÎbÝ�Ú�ÓUÎ7ÐKÝ Ú�Ð È ÍcÉ5ß�É�Ú�ÍcåPäKÎ7ÐKÝ
ß�ÇNÊ7é�ÓUÎUÇ4Ð*ß�Ó×Ç%Óbä É¦á�ÇNÊbÊUÇ4Ü�Î0ÐKÝ�Ñ�ÍcÇ5Þ�ÊUÉPÒRß ð

•
�£Ç4Ó×ÚfÓ�ÎUÇ4Ð*ßcÔ¨ÚfÑrÑ�ÍcÇ'Ú4åPä É5ßPÔ¨ÚfÐ È½Ñ�ÍcÇ'å�É5ß�ß�É5ßæá�Ç4Í,á�Ç4Í�ÒæÚ5Ê
Ú�ÐKÈ£å�Ç4ÒCÑVÊUÉPÓ×ÉXÒæÇ'ÈrÉfÊ�ßXÇ'á�ß�Ç'á}ÓbÜEÚfÍcÉ¨ÚfÑrÑVÊbÎUå�Ú�Ó�ÎbÇ4Ð*ß ð�6 É5Ë
áUÎ7Ð É�Ú�Ð È�ÉZó#Ó×ÉPÐ È�ÓbäKÉ 8 �:� Æ¶ÚfÑrÑ�ÍcÇ'Ú4åZäÅÓ�Ç½Ú4È�ÈNÍcÉ5ßcß
åPä Ú4Ê}ÊUÉPÐKÝ�É5ß�Î7Ð�Ò�Ç'È�ÉfÊbÎ7ÐOÝ{Óbä ÉÀéOß�ÉPÍ�Î7Ð�Ó×ÉPÍcá×Ú4å�ÉaÔCÚ�Ð È
ÉZórÓ}ÍcÚaá}é�ÐKåZÓUÎUÇ4Ð Ú4Ê ÍcÉ�ö'é�Î7ÍcÉPÒ�ÉPÐVÓ�ß ð Ö×ÐVÏ�É5ßjÓ�ÎbÝ�Ú�Ó×É
ÚfÑrÑ�ÍcÇ'ÚaåPä É5ß«Ó×Ç Ò�Ç'È�ÉfÊ�éOß�ÉPÍ¾Î7Ð�Ó×ÉPÍcá×Ú4å�É�Ú�Ð ÈÄÉZórÓ}ÍcÚ
á}é�ÐKåZÓUÎUÇ4Ð Ú4Ê�ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ß%ÚfÓ�Ú�Ð,ÚZÑ�Ñ�ÍcÇ5Ñ�Í�ÎbÚ�Ó×ÉxÊbÉZÏ�ÉfÊ�Ç'á
ÚfÞVßjÓbÍcÚ4åZÓUÎUÇ4Ð�Ú�Ð ÈxÎ0ÐæÚfÐ�Î7Ò|ÑOÊUÉPÒ�ÉPÐVÓ×ÚfÓ�ÎUÇ4Ð�Î7Ð ÈrÉcÑKÉPÐ ÈrÉPÐVÓ
á�ÚNßjäKÎUÇ4Ð ð

•
� û�ÐKÇ4Ü�ÊUÉ�È#Ý�É5ËbÞ�Úaß�É�Ç'á,ß�Ç'á}ÓbÜ�Ú�ÍcÉÅÚ�ÍcåPäKÎ0Ó×É�åZÓ}é�ÍcÉ�Ú�Ð È
ÈrÉ4ß�ÎbÝ'Ð�ûrÐ Ç4Ü�ÊUÉ�È#Ý�ÉÓ×ÇÅá�Ú4å�Î}ÊbÎ7Ó×ÚfÓ×É�Ú�érÓ×Ç4Ò�Ú�Ó×É�ÈÀÒæÇ'ÈrÉfÊ
å�Ç4Ò|ÑOÎbÊbÚ�Ó�ÎUÇ4Ð ð � å�öNéVÎ7ÍcÉ¾ÚfÐ È å�Ç'È#ÎUá}ò\ÓbäKÉ�ÐKÉ5å�É5ß�ß�ÚfÍ�ò
ûrÐ Ç4Ü�ÊUÉ�È#Ý�ÉÀÎ0Ð ß�Ç'ábÓ}ÜEÚ�ÍcÉÅÚfÍcåPäKÎ7Ó×É�åPÓbérÍcÉªÚ�ÐKÈ{ÈrÉ5ß�Î}Ý#Ð ð
Ö×Ð�Ï�É4ßjÓ�ÎbÝ�Ú�Ó�É�Óbä É�ÚZÑ�Ñ�ÍcÇ5Ñ�Í�ÎUÚ�Ó×É�ÍcÉPÑ�ÍcÉ5ß�ÉPÐVÓ�Ú�Ó�ÎUÇ4Ð�Ç'áxÓbä É
ûrÐ Ç4Ü�ÊUÉ�È#Ý�ÉEÓbä Ú�Ó	ÚaÈrÉ5öNéVÚ�Ó×ÉfÊ7ò�á�ÚaåfÎbÊbÎ0Ó×Ú�Ó×É5ß%É�ÚNßjò�Ú4å�å5É5ß�ßPÔ
ÍcÉ�ÚNß�Ç4ÐKÎ7ÐKÝVÔÂÚfÐ È È�É�åfÎ�ß�ÎUÇ4ÐúÒ�ÚfûVÎ7ÐOÝ ð Ö×ÐVÏ�É5ßjÓ�ÎbÝ�Ú�Ó×É
ÚfÑrÑ�ÍcÇ5Ñ�Í�ÎUÚfÓ×É ÒæÉ�åPä ÚfÐKÎ�ßjÒRß á�Ç4Í ÍcÉ�ÚNß�Ç4ÐKÎ7ÐKÝ Ú�Ð È
ÈrÉ5åfÎ�ß�ÎUÇ4Ð�Ò�Ú�û�Î7ÐKÝ�Î7Ð�Óbä É�ß�Ç'ábÓ}ÜEÚ�ÍcÉ�Ú�ÍcåPäKÎ7Ó�É5åPÓbérÍcÉ�ÚfÐ È
ÈrÉ4ß�ÎbÝ'ÐCû�Ð Ç4Ü%ÊUÉ�ÈrÝ�É5ËbÞ�Úaß�É ð

•
� û�Ð Ç4Ü%ÊUÉ�ÈrÝ�É5ËbÞ�Úaß�É�È£ÚZÑ�Ñ�ÍcÇ'ÚaåPä�Ú�Ð ÈEÒæÉ�åPä ÚfÐKÎ�ßjÒ\Óbä ÚfÓ
érÓ�ÎbÊbÎ5
aÉ5ßÁÓ}ä É ß�Ç'á}ÓbÜEÚfÍcÉþÚ�ÍcåPäKÎ7Ó�É5åPÓbérÍcÉ Ú�Ð È»ÈrÉ4ß�ÎbÝ'Ð
ûrÐ Ç4Ü�ÊUÉ�È#Ý�É5Ë}Þ�ÚNß�É¾Ó×Ç å�Ú�Í�Í�òýÇ4é�ÓªÚ�érÓ×Ç4Ò�Ú�Ó�É5È�ÒæÇ'ÈrÉfÊ
å�Ç4Ò|ÑOÎbÊbÚ�Ó�ÎUÇ4Ð ð

•
� Ý�ÉPÐ ÉPÍcÚ4Ê}Î5
NÉ�È|Î7ÐVÓ×ÉPÍcÚ4åZÓUÎUÇ4ÐCÒæÇ'ÈrÉfÊ ÓbäKÚ�Ó�ÉPÐ å�Ç4ÒCÑOÚNß�ß�É4ß
ÒCéVÊ0Ó�Î0ÑVÊUÉ�Ò�Ç'ÈrÚ4ÊbÎ0Ó�ÎUÉ5ß ç å�Ç4Ð*ß�Î�ß9Ó�ÉZÐ�ÓªÜ�Î0ÓbäþÓbä É � î Ù
Æé�Ê7Ó�Î7Ò�Ç'ÈrÚ4Ê Ö×Ð�Ó×ÉPÍcÚaåPÓ�ÎUÇ4Ð) ÍcÚ�Ò�ÉPÜEÇ4Í�û�è Ú�Ð È
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4ÐÃÍ�é�ÊUÉ5ß{Óbä ÚfÓ«Ó�Ú�Í�Ý�ÉZÓ�È#Î�ßjÑVÊUÚfòrß{Ü�Î0Óbä
È#ÎUá�á×ÉPÍcÉPÐVÓ£á�Ç4Í�Ò¶á�Ú4åZÓ�Ç4ÍPß ç É ð Ý ð ÈrÉ4ßjûrÓ×Ç5Ñ ßcÔ¦ä Ú�Ð ÈNä ÉfÊUÈ�ßPÔ
ÉPÓ×å ð è�Ô�Ú�Ð ÈgÎ0Ð ÑOÚ�Í�Ó�ÎbåZé�ÊUÚfÍnà'ÑKÉ�É�åPä ÕEß�ÉPÍÖ×Ð�Ó×ÉPÍcá×Ú4å�É4ß
ç à#Õ%Öjè�ÈrÉ5áUÎ7ÐKÉ5È�Þ#ò��TÇNÎUå�É 4 Æ�Ø ð

CONCLUSION�ÅÉ%ä ÚfÏ�É%Ñ�ÍcÇ5ÑKÇ#ß�É�È�ÚfÐ�ÉZórÓ�ÉZÐ ß�ÎUÇ4ÐRÓ�Ç£Ó}ä ÉTÉZó�Î�ßjÓ�Î7ÐKÝ�ÚfÑrÑ�ÍcÇ'Ú4åZäKÉ4ß
Ó×ÇRÆ�Ç'ÈrÉ�ÊUË�Ì%Í�Î7Ï�ÉPÐÀÌ�ÉPÏ�ÉfÊUÇ5Ñ�Ò�ÉZÐ�Ó�Ó}ä Ú�Ó%Î7Ð å�Ç4Í9ÑKÇ4ÍcÚfÓ×É5ßxÚ�Ð 4 ÆpØ
Þ�ÚNß�É�ÈVÔ|Î7Ð ÈrÉcÑKÉPÐ ÈrÉPÐVÓ�ÍcÉcÑ�ÍcÉ4ß�ÉPÐVÓ×ÚfÓ�ÎUÇ4Ð Ç'áæÓbä ÉÕ�ß�ÉPÍÖ×ÐVÓ×ÉPÍcá�Úaå�É

ÚfÐ Ènâ�órÓ}ÍcÚNË) érÐ åPÓ�ÎUÇ4Ð Ú5Ê 6 É�ö'é�Î7ÍcÉPÒ�ÉZÐ�Ó�ß ð ã.ä É5ß�ÉªÈrÉ5ß�åPÍ�Î0Ñ�Ó�ÎUÇ4Ð*ß
Ñ�ÍcÇ4ÏrÎUÈrÉ�Ú�Ò�Ç4ÍcÉ�å5Ç4Ò|ÑVÊUÉPÓ×ÉpÑVÎUåPÓbérÍcÉ�Ç'á£Ó}ä É�ÚfÑrÑOÊbÎbå5ÚfÓ�ÎUÇ4Ð�Ó}ä Ú�Ó
é�Ê7Ó�Î0ÒæÚfÓ×ÉfÊ7ò�å�Ú�Ð�Þ�É�ÓbÍcÚ�Ð ß�á�Ç4Í�Ò�É�ÈæÎ7Ð,Ó�Ç�ÚfÐpÉZó�É�åZérÓ×ÚZÞ�ÊUÉ£á�Ç4Í�ÒÁÞ#ò
Ó}ä É	éOß�É¦Ç'áKûrÐ Ç4Ü�ÊbÉ5È#Ý�É4Ë}Þ�ÚNß�É�È�Ó×Ç'ÇNÊ�ß ð

ACKNOWLEDGMENTS�ÀÉ	ÓbäKÚ�ÐVû£Ó}ä É%ßjÓbéVÈ�ÉPÐVÓ�ß.Ü¨ä Ç%ä Ú�Ï�É=ÑKÚfÍ�Ó�ÎUåfÎ0ÑOÚ�Ó×É�ÈxÎ0Ð�Ó}ä ÉEà�âpÚfÐ È
	 ÙXÖ�ß�ÉPÒ�Î0Ð Ú�ÍPßÚfÓæÌ�É � Ú�é�Ê£Õ¨ÐKÎ7Ï�ÉPÍPß�Î7Óbò�á�Ç4Í�Óbä ÉfÎ7ÍÎ7Ð�Ñ�é�ÓRÚ�Ð È
Î0Ð*ßjÑVÎ7ÍcÚfÓ�ÎUÇ4Ð ð
REFERENCESëað Õ%ÆpØ TM í ð ÿ à#érÑOÉPÍPß9ÓbÍ�éVåPÓbérÍcÉ à'ÑKÉ�åfÎUáUÎUå�Ú�Ó�ÎbÇ4Ð ð � Æ��
Ì�Ç'åPérÒ�ÉZÐ�ÓKÑ�Ó×å�� ÿ�î Ë ÿ Ë ÿ#í ç � éVÝ'éKßjÓjÔ í�ÿrÿ�î è ð
íKð Õ%ÆpØ TM � ÍcÇ'áUÎbÊUÉ¾á�Ç4Í�Æ�Ç'ÈrÉ�Ê}Î7ÐKÝ��¦éOÚ5ÊbÎ7Óbò�Ç'áÀà�ÉPÍ�ÏrÎUå�É¾Ú�Ð È
) ÚféVÊ7Ó¨ã1ÇNÊUÉPÍcÚ�Ð å�É�Ù=äKÚ�ÍcÚaåPÓ×ÉPÍ�Î�ßjÓ�ÎUå5ß|Ú�ÐKÈ,Æ�É�åPä Ú�ÐKÎUß9Òæß ð&� Æ��
Ì�Ç'åPérÒ�ÉZÐ�Ó�Ú4È � ÿrí Ë ÿ�ë Ë ÿ � ç �cÚ�ÐVéVÚ�Í�òrÔ í�ÿrÿ#í è ð
îVð Õ%ÆpØ TM � ÍcÇ'áUÎbÊbÉ á�Ç4ÍÁà�åPä É�ÈNéVÊUÚZÞ�ÎbÊbÎ7Ó}ò�Ô � ÉPÍcá�Ç4Í�Ò�Ú�Ð å�É4ÔªÚ�Ð È
ã�Î7Ò�É 6) � ð0� Æ �¨Ì�Ç'åZérÒ�ÉPÐVÓ�ÚaÈ � ì�ì Ë ÿ�î Ë ë�î ç Æ�ÚfÍcåPä�Ô í�ÿ�ÿ�î è ð

� ð Õ%ÆpØ TM � ÍcÇ'áUÎbÊbÉ á�Ç4ÍÁà�åPä É�ÈNéVÊUÚZÞ�ÎbÊbÎ7Ó}ò�Ô � ÉPÍcá�Ç4Í�Ò�Ú�Ð å�É4ÔªÚ�Ð È
ã�Î7Ò�É�à'ÑOÉ�å�Îbá�Îbå5ÚfÓ�ÎUÇ4Ð ð � Æ�� Ì�Ç'åPé�Ò�ÉPÐVÓºÑ�Ó�å � ÿrí Ë ërë Ë ÿ�ë
ç �£Ç4Ï�ÉPÒCÞ�ÉPÍZÔ í�ÿrÿrí è ð

�Vð �£É�Î}Ê ÷ ÍcÚ4ÈrÊUÉPò ð §���s °=m�� ��o#��~=�#lVy7orlN¤��#w�q �	q��
� ÈrÈ#Î�ß�Ç4Ð �ÅÉ5ß�ÊbÉZòrÔ í�ÿ�ÿ�ëNð

�Vð � ð 	 ÍPß9ä\Ù ð Ø�Ç5ÑOÉ5ß ð àVÉcÑOÚ�ÍcÚfÓ�ÎUÇ4Ð\Ç'á�å�Ç4Ð å�ÉPÍ�Ð*ß ð ã�É�åPäVÐKÎbå5Ú5Ê
ÍcÉcÑOÇ4Í�ÓjÔ �£Ç4Í�ÓbäKÉ5Úaß9Ó�ÉZÍ�ÐCÕ¦ÐKÎ7Ï�ÉPÍPß�Î0Óbò�Ô ëfìrì��VðN÷ Ç#ßjÓ×Ç4Ð�Ô#Æ �Cð

�Oð Ø�éVÎ5
«Æ�Ú�ÍcåfÎUÇ Ù=ò#ß9ÐKÉ�Î0ÍcÇ#ßÀÚ�Ð È ��é�ÊbÎUÇ Ù��×É5ß�Ú�Í�à�Ú�Ò|ÑKÚ5ÎUÇ\ÈrÇ
� ÍcÚ4È�ÇºØ�ÉfÎ7Ó×É ð ÕEß�Î0ÐKÝôÕ¨ÆpØ Ó×Ç ÍcÉ5áUÊUÉ�åPÓ�Ð Ç4Ð*Ë×á}é�Ð åPÓ�ÎbÇ4Ð Ú4Ê
ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ß ð Ö×Ð USwPor�Ns4s5qVy0lN���ToU���7��s	��
�
���4orl��rs5wPs5l��Ns|oU�
�0��s��Ss5lV�0wPs¡�'orw���q�za�#l��as5q � �0�rqVy}sf�Äorl���o�tbt}�r��o#wc�V�by0zNs
²�sf�fs4�#wc�a�VÔNÑKÚ5Ý�É í ð Ö ÷ Æ � ÍcÉ5ßcßcÔ í�ÿ�ÿ�ëNð

�ð Ø�éVÎ5
«Æ�Ú�ÍcåfÎUÇ Ù=ò#ß9ÐKÉ�Î0ÍcÇ#ßÀÚ�Ð È ��é�ÊbÎUÇ Ù��×É5ß�Ú�Í�à�Ú�Ò|ÑKÚ5ÎUÇ\ÈrÇ
� ÍcÚ4È�Ç Ø�ÉfÎ7Ó×É ð �£Ç4Ð*Ë�á}érÐ åPÓ�ÎUÇ4Ð Ú5Ê ÍcÉ�öNéVÎ0ÍcÉZÒ�ÉPÐVÓ�ß � á}ÍcÇ4Ò
ÉfÊbÎbå�Î0Ó×Ú�Ó�ÎbÇ4Ð�Ó×Ç�Ò�Ç'ÈrÉfÊbÊbÎ7ÐKÝCÊUÚfÐKÝ'éOÚ5Ý�É5ß ð Ö�Ð USwco��asas�qOy0la���%oU���0��s
�����7�y0lO�7s5w�l����by7o#l���t¦�4orl��rs�wZs�l��as�o#l � oU���0���rwPs�s5la��y0l�sas�wfy�lN��Ô
ÑOÚ4Ý�É5ß �#ì�ì����rÿrÿKð�� Ù=Æ � ÍcÉ5ßcßcÔ í�ÿ�ÿ#í ð
ìOð � ÚféVÊbÇ � Î7ÐVäKÉ�Î0ÍcÇ«ÈrÚ«à�ÎbÊ7Ï�ÚÅÚ�ÐKÈ �£Ç4Í�Ò�Ú�Ð � ð � ÚfÓ×Ç4Ð ð ÕEß�ÉPÍ
Î0ÐVÓ×ÉPÍcá�Úaå�É�Ò�Ç'ÈrÉ�Ê}Î7ÐKÝ�Î7Ð¾é�Ò�ÊbÎ ð k������ � �S±¦§�³��S²��¨Ô í�ÿ ç � è �
�'í����#ì Ô í�ÿrÿ�îVð
ëfÿOð ÆpÎ}Ý#éVÉfÊ �Cð ÈrÉTÆpÎbÝ'éVÉ�Ê ð ��Ç#ßXÒ�Ç'È�ÉfÊbÎ0ÐKÝRÊUÚ�ÐOÝ#éVÚ4Ý�É£á�Ç4Í¨äKÎ}Ý#ä
öNéVÚ4ÊbÎ7Ó}ò ß9ò#ß9Ó�ÉZÒæß ð Ö×Ð USwco��asas�qOy0la����oU��§���s��¨y � ���7�nk������
k�lO�7s5w�l����by7o#l���t�³%orw�¼5�Z��o�~Áorl �¦���#s4�'�0u ��wZy}s5lV�}s5qª²�s4��t}u�§Vy0��s
v|sU~Xs�l�q��r��tbs � �V���}s5�¨�n��³ �S²1v � ��
�
 ���NÔ|ÑKÚ5Ý�É5ß í�ë�ÿ��Ví.ë��Oð
Ö�â�â1â=Ô í�ÿrÿ�îOð
ërëað �ªÎbÊbÊbÎUÚfÒ â ð Æ�åPÕ¨Ò|Þ�ÉPÍ�ÚfÐ È ÷ ÉPÓbÓbò 	xð Ù ð ÙSä ÉPÐKÝ ð�� Ý�ÉZÐKÉZÍcÚ5Ê
á}ÍcÚfÒæÉPÜ�Ç4Í�û,á×Ç4Í�á�Ç4Í�ÒæÚ5ÊbÎ5
4Î7ÐKÝ�Õ%Æ�Ø½Ü�Î0Óbäpá�Ç4Í�Ò�Ú4Ê.ÊbÚ�ÐKÝ'éOÚ5Ý�É5ß ð
Ö�Ð�USwcor�Nsas�qOy�lN���To��R�7��s!�"�'wcqCk�lO�7s5w�l����by7o#l���t��So#l��rs5wPs5l��Nsxo#l
� oU���0���rwPsCs5la��y0l�sas�wfy�lN��ÔOÑKÚ5Ý�É5ß �Vî�î#��� ��í Ô�ã1Ç4ÍcÇ4ÐVÓ×ÇrÔ � Ð�Ó×Ú�Í�ÎUÇrÔ
Ù	ÚfÐ ÚaÈrÚ'Ô �£Ç4Ï�ÉPÒ|Þ�ÉPÍ í�ÿrÿ�ÿOð
ëZíKð Ì�ÚfÏrÎUÈ à ð) ÍcÚfÐVûOÉfÊ ð mporq�sat}u}vxwfy0zNs5l ��wP�4�Vyb�7s4�'�0�rwPs%$
�K~r~Xt �*y0la�m�v&�Á�7o'�XlV�}s5w�~SwZy©�fs(��or��~S���by0la� ð �cÇ4äVÐ �ÀÎ}ÊUÉPò()
à�Ç4Ð*ßcÔ �£ÉPÜ+*TÇ4Í�ûKÔ �,*£Ô í�ÿ�ÿ�îOð
ë�îVð � ÞZõ�É�åZÓ£Æ�Ú�Ð Ú5Ý�ÉPÒ�ÉPÐVÓ �¦ÍcÇ4é#Ñ ð Æ�ÉPÓ×ÚaË � ÞZõ�É5åPÓ) Ú4å�Î}ÊbÎ7Óbò ëNð �*ð
ä�ÓbÓ}Ñ � � �bÜ¦Ü¨Ü ð Ç4Ò�Ý ð Ç4Í�Ý �bÓ×É�åPäVÐ ÇNÊUÇNÝ'ò �×ÈrÇ'åPé�Ò�ÉPÐVÓ�ß �×á�Ç4Í�Ò�Ú4Ê �}ÒæÇ'á ð ä
Ó}Ò ð

ë �*ð � ÞZõ�É�åPÓ�Æ�ÚfÐ Ú4Ý�ÉPÒæÉPÐVÓ �¦ÍcÇ4érÑ ð Õ¨ÆpØ í ð ÿ � ÙXØ�Ô í�ÿ�ÿ�îOð
äVÓbÓ7Ñ � � �bÜ¨Ü¦Ü ð Ç4Ò�Ý ð Ç4Í�Ý �×ÈrÇ'å5ß ��ÚaÈ � ÿ�î Ë ÿ�ë Ë ÿ��Kð ÑKÈrá ð
ë �Oð 4 ð ��ÎUÚ ð ã�ä É
NÇ'Ç4Ò Ð Ç4Ó×ÚfÓ�ÎUÇ4Ð Ë¡Ú ÍcÉ�á�ÉZÍcÉPÐ å�ÉgÒ�Ú�ÐVéVÚ4Ê ð
ã1É5åPäVÐOÎUå�Ú4ÊVÍcÉcÑKÇ4Í�ÓjÔ'Ì�É � ÚféVÊVÕ¨ÐOÎ7Ï�ÉPÍPß�Î7Ó}ò�Ô í�ÿ�ÿ � ð ÙSäKÎUå�Ú4Ý�ÇrÔ©Ö�Ø ð
ë��Oð à#Ó×ÉcÑ�ä ÉPÐ � ð Æ�ÉfÊbÊUÇ4ÍZÔ � ÐVÓbä Ç4ÐVò � ð ÙXÊUÚ�Í�ûKÔªÚ�ÐKÈ¹ã1Ú�ûVÚaÇ
) é�Ó�Ú4Ý�Ú�Ò�Î ð ÆpÇ'È�ÉfÊ�Ë×È'Í�Î7Ï�ÉPÐ ÈrÉPÏ�É�ÊbÇ5Ñ�Ò�ÉPÐVÓ ð k������ � oU���0���rwPs'Ô
í�ÿ ç � è � ë��%�1ë Ô í�ÿ�ÿ�îOð
ë �Kð ÷ ÉPÍ�ÓbÍcÚ�ÐKÈ|ÆpÉZò'ÉPÍ ð0� ÑrÑVÊ7ò'Î7ÐOÝ��}ÈrÉ5ß�Î}Ý#Ð�Þ#ò|å�Ç4ÐVÓbÍcÚ4åPÓ�ü ðrí�� ç ë�ÿ è �
��ÿ�����ë Ô�Ç'åPÓ ë�ìrì#í ð
ë �ð ÷ ÉPÍ�ÓbÍcÚ�ÐKÈ Æ�ÉPò#ÉPÍ ð �¦���#s4�'�0u ��wZy}s5lV�}s5q � oU���0���rwPs
��orl'���0wP�r�'�}y7orlN¤���lrq �Xq�� � ÍcÉPÐVÓUÎUå�É 	 Ú4ÊbÊ � ã 6 Ô*Õ¦ÑrÑKÉPÍTàVÚ4È�È#ÊUÉ
6 Î7Ï�ÉPÍZÔ � �ZÔ ëfì�ì��Oð
ëfìKð � ð ÆérûOÉPÍ}õ�ÎxÚfÐ È�� ð ÆpÎbÊbÊbÉZÍ ð Æ�Ç'ÈrÉfÊ�Ë�Ì%Í�Î7Ï�ÉPÐ � ÍcåPäKÎ7Ó×É�åPÓbérÍcÉ ð
äVÓbÓ7Ñ � � �bÜ¨Ü¦Ü ð Ç4Ò�Ý ð Ç4Í�Ý �×åfÝrÎ�ËbÞ�Î0Ð �×ÈrÇ'å��fÇ4Í�Òæß�å � í�ÿrÿ�ë Ë ÿ�� Ë ÿ�ëNðUë
í�ÿKð � ð � Ç'ÇNÊbÉ ð Æ�Ç'ÈrÉfÊ�Ë�ÈNÍ�Î7Ï�ÉPÐªÚ�ÍcåPäKÎ7Ó×É�åPÓbérÍcÉ�� ��ÎUß�ÎUÇ4Ð*ÔSß9Ó�Ú�Ð ÈrÚ�ÍcÈ�ßPÔ
Ú�ÐKÈ ÉPÒæÉPÍ�ÝrÎ7ÐKÝ´Ó�É5åPäVÐKÇNÊUÇNÝ�ÎbÉ4ß ð Ö×Ð � �
��� U��
�����¦� �rs5�'�7u
��wZy}s5lV�}s5q�USwPo4�Kwc�#���Ty0lN��Ô í�ÿ�ÿ�ëað
í�ëNð �PÚfÒ�É4ß 6 érÒCÞ�ÚféVÝ'ä�ÔxÖ×Ï�ÚfÍ �PÚ4å5Ç5ÞVß�Ç4Ð�ÔCÚ�Ð È �¦ÍcÚaÈNò ÷ Ç'Ç'åPä ð
§���s»¬�lVy ��y7s5q�mporq�satUy�lN� ���#lN�K�r�a� sÂwPs��rs�wZs�l��as¹�E�rl��r��t�Ô
ëfì�ì �ð

írí ð âSÈ�àVÉfÎUÈrÉPÜ�Î7Ó
 ð �ä ÚfÓ¨Ò�Ç'ÈrÉ�ÊUßEÒ�É5ÚfÐ ð k������ � o��r�0�S�#wPs'Ô í�ÿ
ç � è � í �#� î'í Ô í�ÿrÿ�îOð
í�îOð ÷ ÍcÚ�Ð à�É�Ê}ÎUå ð ã�ä É Ñ�ÍcÚ5Ý#Ò�Ú�ÓUÎUå5ß Ç'á Ò�Ç'ÈrÉfÊ�Ë�ÈNÍ�Î7Ï�ÉPÐ
ÈrÉZÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓ ð k������ � o������S�#wZsNÔ í�ÿ ç � è � ë�ì��Ví � Ô í�ÿ�ÿ�îOð
í��*ð à#ä Ú�Ð Éúà�ÉPÐ ÈrÚ4ÊbÊÃÚ�Ð È �ÅÇ�õjÓ×ÉPû Û�Ç+
NÚaå
�òaÐ*ßjûVÎ ð Æ�Ç'ÈrÉfÊ
ÓbÍcÚfÐ*ß�á�Ç4Í�Ò�Ú�ÓUÎUÇ4Ð&��ã�ä É ä É�Ú�Í�Ó«ÚfÐ È ß�Ç4éVÊªÇ'áÅÒ�Ç'ÈrÉfÊ�Ë�ÈNÍ�Î7Ï�ÉPÐ
ß�Ç'ábÓ}ÜEÚ�ÍcÉ ÈrÉZÏ�ÉfÊUÇ5Ñ�Ò�ÉPÐVÓ ð k������ � oU���0���rwPs'Ô í�ÿ ç � è � ��í�� � � Ô
í�ÿ�ÿ�îOð
í��Oð � ð Æ ð à'ÑOÎ7Ï�ÉPò ð §���s ����o��7�V�}y7orl�$ � ²�s��#s5wPs5l��Ns,mp�#l�����t©¤
�rl�q �Xq��bÔ ëfìrìríKð

í �Vð ��ÚfÍ�ò Ù ð Ì�Ç4Ð ÉPò ã1Î7Ò�Ç4Óbä�ò � ð �¦ÍcÇ#ß�É\ÚfÐ ÈÂà#Ó×ÉcÑ�ä ÉPÐ �Cð
÷ ÍcÇ'È�ßjû�ò ð mp�'���}s�wfy0la��°=mRk $	���rza� USwcoa�Owc�r���Ty0la��=yb�7�T°=mRk�¤
°=m��*¤*�#l�q�¬�m�� ð �cÇ4äVÐ �ÀÎ}ÊUÉPò)gà�Ç4Ð*ßcÔ í�ÿ�ÿ#íKð
í �Oð Ì£à�ã1Ù � ÍcÚ4å�ÊbÉ«Ù	Ç ð � ÊUÚfÓ�Î7ÐVérÒ´ã1É5åPäVÐKÇNÊUÇNÝ#ò¡Ö×Ð å ð) éfõ�Î0Ó�ß9é
à�Ç'á}Ó×É�Ú�Ò 6 É�å�ÉPÍcå�ÚÖ×ÐKá×Ç4Í�Ò�ÚfÓ�ÎUå�Ú½Ì�Ú5Î7Ò�ÊUÉPÍPË ÷ ÉPÐ�
�Õ¨ÐKÎ�ßjòrß�Ù	Ç ð Ô
Ö ÷ ÆµÙ	Ç ð 4 Ò�Ê¨Ò�ÉPÓ×ÚaÈrÚ�Ó×Ú�Î7ÐVÓ�ÉZÍcåPä ÚfÐKÝ�É ç órÒ�ÎbèTÏ�ÉPÍPß�ÎUÇ4Ð ëað�ëað
ä�ÓbÓ}Ñ � � �bÜ¦Ü¨Ü ð Ç4Ò�Ý ð Ç4Í�Ý �×È�Ç'å5ß �×ÚaÈ � ìrì Ë ë�ÿ Ë ÿ#íKð ÑOÈ�á ð
í �ð ã�ä É �ÅÇ4Í�ÊUÈ��ÀÎbÈ�É �ÅÉcÞ Ù	Ç4Ð*ß�Ç4Í�Ó�Î7érÒ ç � î Ù	è ð â.ÒCÒæÚ��
â�ó#Ó×ÉPÐ*ß�Î�Þ�ÊUÉÄÒCé�Ê7Ó�Î7Ò�Ç'ÈrÚ4Ê{Ú�ÐVÐKÇ4Ó×Ú�Ó�ÎbÇ4Ð Ò�Ú�Í�ûrérÑ»ÊUÚ�ÐKÝ'éVÚ4Ý�É ð
ä�ÓbÓ}Ñ � � �bÜ¦Ü¨Ü ð Ü î å ð Ç4Í�Ý �×ã 6 �×ÉPÒCÒ�Ú�� ð
í�ìOð ã�ä É �ÅÇ4Í�ÊbÈ �ÀÎbÈ�É �ÀÉPÞÀÙ	Ç4Ð*ß�Ç4Í�Ó�Î7érÒ ç � î ÙXè ð â1ó#Ó×ÉPÐ*ß�Î0Þ�ÊUÉ
Ò�ÚfÍ�û�é#Ñ ÊUÚfÐKÝ#éVÚ4Ý�É ç ó#Ò�Êbè ëNð ÿ ç ÓbäKÎ0ÍcÈ É�ÈrÎ7ÓUÎUÇ4ÐKè ð
ä�ÓbÓ}Ñ � � �bÜ¦Ü¨Ü ð Ü îVð Ç4Í�Ý �×ã 6 � í�ÿrÿ�� � 6 â�Ù�Ë�ó#Ò�ÊUË í�ÿ�ÿ �Vÿ#í�ÿ�� � ð
î#ÿOð ã�ä É �ÅÇ4Í�ÊbÈ �ªÎUÈrÉ �ÀÉPÞôÙ�Ç4Ð ß�Ç4Í�Ó�Î0é�Ò ç � î Ù	è ð � î Ù
ÒCé�Ê7Ó�Î7Ò�Ç'ÈrÚ4Ê Î0ÐVÓ×ÉPÍcÚaåPÓ�ÎUÇ4Ð ábÍcÚfÒ�ÉZÜ�Ç4Í�û ð
ä�ÓbÓ}Ñ � � �bÜ¦Ü¨Ü ð Ü îVð Ç4Í�Ý �×ã 6 �bÒCÒ�Î�Ë×ábÍcÚfÒ�ÉZÜ�Ç4Í�û � ð
î*ëað ã�ä É �ÅÇ4Í�ÊbÈ9�ÀÎUÈrÉ �ÅÉcÞ|Ù	Ç4Ð*ß�Ç4Í�ÓUÎ7é�Ò ç � î ÙXè ð 4 Ò�Ê�ß�åPä ÉPÒ�Ú
ÑOÚ�Í�Ó ë �VàrÓ}Í�éOåPÓbérÍcÉ5ß ð äVÓbÓ}Ñ � � �}Ü¨Ü¨Ü ð Ü îOð Ç4Í�Ý �×ã 6 �UórÒ�Ê�ß�åPä ÉPÒ�ÚNË ë � ð
î'íKð ã�ä É �ÅÇ4Í�ÊbÈ9�ÀÎUÈrÉ �ÅÉcÞ|Ù	Ç4Ð*ß�Ç4Í�ÓUÎ7é�Ò ç � î ÙXè ð 4 Ò�Ê�ß�åPä ÉPÒ�Ú
ÑOÚ�Í�Ó í �'Ì�Ú�Ó×ÚfÓbò4ÑOÉ5ß ð ä�ÓbÓ}Ñ � � �bÜ¦Ü¨Ü ð Ü îVð Ç4Í�Ý �×ã 6 �Uó#Ò�Ê�ß�åZäKÉZÒ�ÚaË í � ð
îrîVð ã�ä É �ÅÇ4Í�ÊbÈ �ªÎUÈrÉ �ÀÉPÞøÙ�Ç4Ð ß�Ç4Í�Ó�Î0é�Ò ç � î Ù	è ð 4 ß�Ê
Ó}ÍcÚ�Ð*ß�á�Ç4Í�ÒæÚfÓ�ÎUÇ4Ð*ß ç óOß�Ê7Ó�è Ï�ÉPÍPß�ÎUÇ4Ð
ëað ÿKð äVÓbÓ}Ñ � � �}Ü¨Ü¨Ü ð Ü î å ð Ç4Í�Ý ��ã 6 �bóOß�Ê7Ó ð

î � ð �cÇ#ß �ÅÚ�Í�Ò�ÉPÍøÚfÐ È � ÐVÐKÉZûVÉúÛEÊUÉcÑrÑKÉ ð §���s �¦���#s4�'�
��o#l#���0wc�Vy�lO� ���rla�K���4�*s ð � ÈrÈrÎ�ß�Ç4Ð �ÀÉ5ß�ÊUÉPòrÔ ÷ Ç#ßjÓ×Ç4Ð�Ô�Æ � Ô
ëfìrì�ìOð

î��Vð ã1Ç4Í9Þ�ÉPÐ �ÀÉfÎ�ßPÔ � Ð ÈNÍcÉ�ÚNßEÕ%Ê0Þ�ÎUåPä�Ô.Ú�Ð È,Û%érÍ�Ó ��ÉfÎ7ä*ß ð Æ�Ç'ÈrÉfÊ
Ò�ÉPÓ×ÚfÒæÇ4Í9Ñ�ä Ç#ß�Î�ß ð k������ � oU���0���rwPs'Ô í�ÿ ç � è � � �#� �*ë Ô í�ÿ�ÿ�îOð
î��Vð � ð �ÅÇ'Ç'Èrå�Ç'åZû ÚfÐ È � ð Ì�Ú�ÏrÎUÉ5ß ð ¬��5y0la� � � ~=s4�Ny ��y7�4�V�}y7orlN¤
²�s��ry0lVs���s5lV� ¤*�#l�q�USwPoro�� ð � ÍcÉZÐ�Ó�ÎUå�É 	 Ú4ÊbÊKâ.é�ÍcÇ5ÑOÉ4Ô ë�ìrì/�Oð
î��Oð � ðÀ÷%ð �ÀÇ4ÍcÈ�ßjÜEÇ4Í�Ó}ä ð � o������S�#wZsÂv|s4zasat}o�~���s5lV���=yb�7� � ð
� ÈrÈ#Î�ß�Ç4Ð �ÀÉ4ß�ÊUÉPò�Ô ÷ Ç#ß9Ó�Ç4Ð�Ô#Æ � Ô ëfìrìríKð

The AMF Architecture in a
Multiple User Interface Generation Process

Kinan Samaan, Franck Tarpin-Bernard
Laboratoire ICTT, Lyon

21, Av. Jean Capelle, 69621 Villeurbanne cedex - FRANCE
kinan@ictt.insa-lyon.fr, franck.tarpin-bernard@insa-lyon.fr

ABSTRACT
In the context of Multiple User Interface (MUI)
generation, this paper presents the AMF architecture on
which a method relies for the adaptation of interactive
applications to the specific characteristics of a targeted
context. In our model-based approach, we use a library of
task patterns and interaction patterns to adapt the
interaction model of the application.
For the description of AMF architecture, we use an XML
file that ensures the link between the tasks model and the
functional core of the application. An engine parses and
processes the file to run the application.

Keywords
Multiple User Interface, design patterns, model-based,
AMF, XML based language.

INTRODUCTION
Everyday, new platforms are emerging with new
characteristics and new interaction capabilities. The
traditional classification (PC, mobile phone, PDA,
interactive TV…) is not sufficient to generate MUI for
interactive applications. We must not propose the same
interface for a PDA with a small coloured screen and a
keyboard and another one with a larger screen and a stick.
These last years, many researches have been led on
Multiple User Interface (MUI) generation processes. The
model-based approaches seem to be the most promising.
In classical software engineering, models like MVC [4]
have been exploited for a long time. Recently, user
models or task models have been introduced to help for
the generation of MUI. Whereas these models can be
easily described with XML, it is not the case with MVC.
According to us, it is very important to be able to also
model with a portable file the interaction model.
Indeed, the interaction model is one of the most important
models to consider because, on the one hand, it manages
the interaction between the user and the application, and
on the other hand, it ensures the link with the functional
core of the application. This model was often neglected in

the steps of MUI generation.
In this paper, we present the basis of a new approach that
integrates the interaction model and the platform model
into the design and generation processes.
The adaptation process forces the designer to
clarify/explain the links between the task model, the
interface model and interaction model. For the description
and the adaptation of the interaction model, our approach
relies on the AMF architecture (Agent with Multiple
Facets), which has been created in 1997 for modelling
common interactive applications [12]. Indeed, AMF
presents the following advantages that will be deeply
discussed:
• The multi-facets concept is very interesting

especially for multiple presentation definitions.
• The XML description of AMF models allows the

definition of an abstract interaction model and
patterns of interaction.

• A run-time engine is able to execute an AMF model
and allows switching dynamically from a specific
model or sub-model to another.

RELATED WORKS
To design and implement MUI [9] interactive software,
the first approaches were based on description languages
like UIML [1] and XIML (RedWhale) [15]. These
languages organize adaptation processes in two levels or
steps: an abstract level and a concrete level corresponding
to the implementation in HTML, Java or WM. If this
approach certainly represents a progress, we think that the
proposed abstractions are still insufficiently generic.
Mainly it imposes a particular style of interaction, i.e. this
abstract level specifies, for example, a button that will be
concretised under different forms (aspect, position, etc.),
but mandatory imposes the use of button while neglecting
the other forms of interaction more adapted for a given
platform as the vocal recognition or use of physical
button. In this way, abstract level is portability oriented
and not plasticity [9] oriented.
Newer approaches try to define a component-based
framework that will allow runtime migratable user
interfaces, which are independent of the target software
platform, the target device and the interaction modalities
[5]. In these frameworks, the user interfaces are merely
considered as a presentation of a single service or of more

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

functionally grouped services. These kinds of solutions
are more powerful than the language-based ones but, as
they do not use task models, they are not able to filter the
functions that cannot be used in a specific context.
Other approaches mainly focus on the task model [7][11].
They filter a generic task model in order to define an
abstract user interface and later build a concrete user
interface. The Abstract user interface is described in terms
of Abstract Interaction Objects (AIOs) [14] that are latter
transformed into Concrete Interaction Objects (CIOs)
once a specific target has been selected. Calvary et al.
defined a unifying reference framework for multi-target
user interfaces [2]. This framework tries to give a global
view of the multiples approaches on MUI.
The improvement is important. However, these methods
do not explicitly define an interaction model. As a
consequence, they are very efficient for modelling basic
interactions but are limited for modelling more
sophisticated ones like “drag and drop”. Currently they
are dedicated to graphical interaction and need to be
extended to manage multimodal and multi-style
interactions.
THE GENERAL APPROACH OF MUI GENERATION
To allow a more important variation at the interaction
style level as well as at the implementation level, it is
necessary to introduce a richer and generic description
and to replace the language-based approach by an
architecture-based approach [10]. In the AMF approach,
we propose to start with a task model and to map it to an
architecture-based abstract interaction model expressed in
AMF, then to concretise this one in relation to the
characteristics of the working platform. Once the concrete
interaction have been chosen, the degrees of freedom
available allow an ultimate adaptation to the user and the
environment.
Our approach consists in organizing the MUI generation
process in 4 phases (Fig 1):
• Abstract application definition phase,
• Interaction styles selection phase,
• Concrete interface generation phase,
• Final adaptation phase.

The first phase consists in modelling the generic task
model and the abstract interface model, and defines the
links between these two models and the abstract
interaction model of the application. The designer builds
these models once for all.
The second phase aims at dynamically generating the
components of the interface that are adapted to the target.
This phase is activated when a target (that is a triple
< user, environment, platform > [13]) is running the
software. The process consists in transforming the
previous models with an adaptation engine. For the
adaptation, this engine considers two extra components:
the platform model and a library of task and interaction
patterns.
We can summarize the work of the adaptation engine in
three points:
• It removes non-realizable tasks from the generic

task model (e.g. removes a “print” task if the system
does not detect a printer connected to the target). At
this stage the engine also removes the elements of
the abstract interface that are closely related to the
removed tasks.

• According to the input devices of the target, the
mechanism replaces each abstract task by a concrete
task using a “task patterns” library (e.g. moving
element with a pointing device).

• In parallel, the engine enriches the XML description
of abstract interaction model by inserting the
patterns that are associated to the task patterns using
an “interaction patterns” library.

The third phase aims at generating a concrete interface
where all the resources that will be used are selected but
where the final parameters (layout, colour, volume…) are
not set.
According to the characteristics of the devices (size,
resolution, capacity…) and the user preferences, a second
engine selects among potential resources for each element
of the semi-concrete interface, the ones that are more
appropriate to the circumstances of use. The dependencies
that have been defined between the domain objects are
considered so that the choices are coherent.

Presentatio n
Resources

Presentation
Classes

Interaction
Styles

Selection
Engine

Functional Core
Classes

Abstract
Interface

Model

Generic
Tasks
Model

Abstract
Interaction

Model

Context
Model

Semi-
concrete
Interface
Model

Specific
Tasks
Model

Semi-
concrete

Interaction
Model

Concrete
Interface
Model

Tasks
Model

Concrete
Interaction

Model

Guideline
Table Patterns

Presentation
Resources

Presentatio n
Classes

Final
Interface

Tasks
Model

Interaction
Model

Data

U
P

E

Context
Model U

P

E

Context
Model U

P

E

Concretization
Engine

Finalization
Engine

Guideline
Table

Functional Core
Classes

Data

Presentation
Resources

Presentation
Classes

Functional Core
Classes

Data

Functional Core
Classes

Data

Presentation
Resources

Presentation
Classes

Figure 1.
Our vision of
the complete
process of MUI
generation

BASIC DESCRIPTION OF AMF
A large number of architectures for Interactive Software
have been described, e.g., MVC (Model-View-Controller)
[4], PAC (Presentation-Abstraction-Controller) [3], ADC
(Abstraction-Display-Controller) [6]. Most of these
architectures are based on the traditional view of
interactive software, namely the view that an interactive
software system can be separated into the application and
the user interface. The application part contains the
functionality of the software and the user interface part
contains the representation of this functionality proposed
to the application user(s).
AMF is a multi-agents and multi-facets architecture
model that specifies the software architecture of an
interactive application. It enables the design of reusable
elements. It can be extended and adapted to the need of
specific applications. The AMF model can be seen as an
upgrade of the PAC and MVC models. It combines the
conceptual powerfulness of multi-agents architectures
such as PAC while providing an operational
implementation schema, which is a key factor of the
success of MVC.
Fundamentally, AMF provides four key features:
• It generalizes the concept of facet, extending their

number from 3 in both MVC and PAC to n, i.e. an
open-ended set of useful facets (e.g. Cooperation in
CSCW);

• It formalizes the control components;
• It fits well with task modelling approaches and

design patterns;
• It defines an API and relies on a powerful runnable

engine.

AMF provides a graphical formalism that represents the
structure and specifies the temporal sequence of
processes. Finally, a Java implementation of an AMF
engine enables the execution of an AMF model coupled
to applicative classes.
The class ‘agent’ is the basic component of AMF models.
Each agent is made of facets and control administrators. It
can imply other agents. Each class agent can generate
several instances. Each facet incorporates logical
communication ports and is associated to an applicative
class where some functions, called «daemons», are
mapped to the ports.
AMF proposes a unified formalism to model control
components because such formalisms are rare and usually
difficult to use in real contexts (see Petri nets for
instance). Yet, these components are the major pieces of
architectural models and it is of great importance to
provide an efficient modelling tool. The control
component of each agent is its main part because it
manages all the communications between the facets of the
agent and other agents. AMF defines 2 kinds of elements:

• At the Facet level, communication ports present the
services that are offered by the facet and the ones
that are needed (respectively input and output
ports).

• At the Agent level, control administrators are
connecting communication ports. These
administrators can easily be standardized (OR,
AND, Sequence, etc.) and extended to handle
complex controls such as multi-user synchronization
or interaction tracking.

Interactive Agent

Presentation Facet

Start_Action

Echo_Action

Abstraction Facet

Do_Action

A1

A2

Facets

Input Ports
Control Administrators

Output Ports

Figure 2. Basic elements of AMF architecture

We briefly introduce 2 special features of the control
administrators:
• After being activated, a target port is always

returning a message to the source port. This
“acknowledgement” message is generally ignored
but it can be used to return data to the source port.
When it is the case, the control administrator is
represented with a black triangle (see figure 3a).

• The possible existence of multiple instances of a
unique class drove us to provide a default
mechanism that broadcasts messages from a control
administrator to the target ports of all the instances
of an agent. To be able to activate a specific
instance of an agent, we add an optional parameter
to the activate function in order to explicitly define a
target agent. The identity of the agent is usually
known only during runtime. So we do not need a
new type of administrator but only a new activation
technique. Yet, for a better understanding of the
visual model, our advice is to add a little vertical bar
at the end of the administrator to explain that a
filtering is done on the target agents (see figure 3b).
 Filter Message Return Message

(a) (b)

Figure 3. Return and Filter features of control administrators.

Finally, a Java implementation of an AMF engine enables
the execution of an AMF model coupled to applicative
classes.

The AMF Model can be published using an XML
notation. Here is the Document Type Definition we use:
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Agent (Agent*, Administrator+, Facet+)>
<!ATTLIST Agent
 Name CDATA #REQUIRED
 Sub-agent CDATA #REQUIRED
 Type CDATA #REQUIRED
>
<!ELEMENT Administrator (Sources+, Targets+)>
<!ATTLIST Administrator
 Name CDATA #REQUIRED
 Type (Simple | Return | Filter | ReturnFilter | Sequence)
#REQUIRED
 TypeAC (Abstract | Concrete) #REQUIRED
>
<!ELEMENT Targets EMPTY>
<!ATTLIST Targets
 Name CDATA #REQUIRED
>
<!ELEMENT Sources EMPTY>
<!ATTLIST Sources
 Name CDATA #REQUIRED
>
<!ELEMENT Facet (Port+)>
<!ATTLIST Facet
 Name CDATA #REQUIRED
 Type CDATA #REQUIRED
>
<!ELEMENT Port EMPTY>
<!ATTLIST Port
 Name CDATA #IMPLIED
 Type CDATA #REQUIRED
 TypeIO (2 | i | o) #REQUIRED
 TypeAC (Abstract | Concrete) #REQUIRED
 DaemonName CDATA #REQUIRED
 FacetName CDATA #REQUIRED
>

The AMF Engine
The goals of the AMF are to help design, implementation,
use and maintenance. Our approach consists in combining
both multiagent view (like PAC) and layered view (like
Arch). The multiagent view is used during the design and
a layered technology is used for implementation.
Actually, agents are dual entities: one part located into the
AMF engine manages the control of the interactions while
another one, on the application side, manages both
widgets for interactivity and real domain-dependent
abstractions.
The 5 levels of Arch model are present:

Application
Abstraction

Application
Presentation AMF Engine

Control

AbstractionPresentation

Figure 4. The Layers of the AMF implementation

To implement AMF architecture, we built an engine that
manages all the AMF objects (agents, facets, ports and
administrators) and their communications. The external

elements, which are both objects that define the functional
kernel of the application and objects that use a graphical
toolkit, are linked to the AMF objects. For instance, each
communication port is associated to a function called
daemon in the Application side. This daemon is
automatically triggered when the port is activated.
At runtime, for each user’s action (button pressed, menu
selection…), the corresponding event received by an
application object (i.e. the one that manages the window)
activates an output port of the associated AMF agent in
the engine (symbol in the graphical models). At the
end of the control processing, input ports are activated
and their daemons are run.
AMF concepts can be compared to ones of Java Beans.
Indeed, facets are components (Beans) that are able to
present themselves (with their ports) and that
communicate by sending and receiving messages. Ports
and administrators are very similar to listeners and
adapters (in fact, the Java implementation of AMF uses
them). However, AMF relies on a sophisticated engine so
that programmers can use predefined components, such as
standard administrators, which are real objects and not
only java interfaces.

ElementElementElementAgent B

Presentat
i

Presentation Abstra
i

Abstraction

Presentat
i

Other

ElementElementElementAgent A

Presentat
i

Presentation Abstra
i

Abstraction

Profile

A
abstraction

A
Presentation

Engine Architecture Application Architecture

A
profile

B
abstraction

B
Presentation

B
Other

Figure 5. Links between AMF objects inside the engine
and application classes outside.

THE AMF DESCRIPTION OF AN ABSTRACT
INTERACTION MODEL
To illustrate our approach, we are considering a classical
game called «The Towers of Hanoi » (figure 6), which
consists in moving rings of different sizes to reach a goal.
The rings are stacked up on three stems; they have an
initial position and should be moved to reach a target-
position. The shifting must respect the following rules:
only one ring can be moved at a time and a ring with a
given size cannot be placed upon a ring of a smaller size.
There are three types of object in this application: the
game which contains the rule and the other objects, the
stem (with three instances) upon which the rings are
slipped and the ring (with 3 to 5 instances according to
the complexity of the game). The interaction consists in a
succession of operations: the selection of the ring (on the
top of a stem) followed by the shifting, then the validation

of the move (respect rule) and finally, the detection of the
end of the game.

1 2 3

Figure 6. “The Towers of Hanoi”application

The first step for the designer consists in defining a
generic task model. The Task Model is a tasks tree that is
hierarchically organized. Various formalisms have been
proposed to model the task model. We use the CTT
notation and CTTE editor [9] for its description and
modeling. In our approach, the Generic task model
contains regular nodes corresponding to common tasks
and abstract nodes that will be "specialized" later in
relation with the context of use (e.g. a “Selection&Move”
node that will be specialized by a “Drag & Drop” sub-
tree). Figure 7 presents the Generic task model of “The
Towers of Hanoi” using a CTT notation.

Figure 7. Generic Task Model of “The Towers of Hanoi”

From the generic task model we can establish the abstract
interaction model of the application. This model is an
AMF description that contains abstract ports. These ports
represent functionalities that can be executed differently
according to the specifications of the target.
Figure 8 represents the abstract interaction model of “The
Towers of Hanoi” game. After a move, if it is a valid one
(Validate_move ports), the scene must be re-painted
(Refresh ports). The task of selecting and moving a ring
in this model is abstract (elements are represented with
dotted lines). Indeed, this action can be carried out
differently according to the means of interaction that are
available on the given target: a mouse, then the user may
drag & drop, or a keyboard, then he/she will type the
number of the source stem and after the target stem’s one.
To skip from an abstract interaction model to a concrete

model, we need to replace abstract ports using the
patterns.

GameGame

PresentationPresentation

ExitExit

Abstraction Abstraction

Get_PosGet_Pos

Validate_moveValidate_move

RefreshRefresh

StemStemStemStem

PresentationPresentation RingRingRingRing

PresentationPresentation Abstraction Abstraction

Get_PosGet_Pos

Refresh_PresRefresh_Pres

Validate_moveValidate_move

Abstraction Abstraction

Get_PosGet_Pos

Test_SelectTest_Select

Test_MoveTest_Move

RefreshRefresh

Refresh_AllRefresh_All

Validate_moveValidate_move

Refresh_AllRefresh_All

RefreshRefresh

Selection

& Move

Selection

& Move
Selection

& Move

Selection

& Move

Selection

& Move

Get_PosGet_Pos

ExitExit

Selection

& Move

Selection

& Move

Selection

& Move

Figure 8. Abstract Interaction Model of “The Towers of
Hanoi”

Here is an extract of the XML description of the AMF
abstract model for the “Towers of Hanoi” application. We
only detail the Ring agent. Note that the
“selection_move” port is an abstract port. In addition, the
names of the elements are rich (“#” symbols are used by
the engine) so that we can use dynamic links.
<?xml version="1.0" encoding="UTF_8"?>
<!DOCTYPE Agent SYSTEM "amf.dtd">
<Agent Name="GAME" Sub-agent="1" Type="game">
 <Agent Name="STEM" Sub-agent="1" Type="stem">
 <Agent Name="RING" Sub-agent="0" Type="ring">
 …
 <Administrator
 Name="Test_Select#RING#STEM#GAME"
 Type="Return" TypeAC="Abstract">
 <Sources
 Name="Selection_Move#PRESENT#RING#STEM#GAME"/>
 <Targets
 Name="Test_Select#ABSTR#RING#STEM#GAME"/>
 </Administrator>
 <Facet Name="ABSTR#RING#STEM#GAME"
 Type="abstr#ring#stem#game">
 <Port
 Name="REFRESH#ABSTR#RING#STEM#GAME"
 Type="refresh#abstr#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="ABSTR#RING#STEM#GAME"
 DaemonName="refresh"/>
 <Port
 Name="TEST_MOVE#ABSTR#RING#STEM#GAME"
 Type="test_move#abstr#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="ABSTR#RING#STEM#GAME"
 DaemonName="test_move"/>
 …
 <Port
 Name="Refresh_all#PRESENT#RING#STEM#GAME"
 Type="refresh_all#present#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="refresh_all"/>
 <Port
 Name="Selection_Move#PRESENT#RING#STEM#GAME"
 Type="selection_move#present#ring#stem#game"
 TypeIO="i" TypeAC="Abstract"

 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="null"/>
 </Facet>
 </Agent>
 …
</Agent>

THE INTERACTION PATTERNS
The AMF model is a part of the «design patterns»
approach because some combinations of agents – facets –
ports constitute potential patterns that can be isolated and
described.
Thus, we have defined several patterns related to
interaction means (mouse, keyboard…) that are used to
interact with the application in different contexts. For
sure, other patterns may be defined.
As an example we present hereafter an interaction pattern
used for a task of selection and removal of an element
among a set of elements located into a container (Fig 9).
This pattern is applied if the interaction is done with a
mouse.

ContainerContainerContainerContainer

PresentationPresentation ElementElementElementElement

PresentationPresentation Abstraction Abstraction

Get_PosGet_Pos

Refresh_PresRefresh_Pres

Validate_moveValidate_move

Abstraction Abstraction

Get_PosGet_Pos

RefreshRefresh

Refresh_AllRefresh_All

MoveMove

Test_MoveTest_MoveDropDropDrop

SelectionSelectionSelection
Test_SelectTest_Select

MoveMove

UpUp

Mouse
Up

Mouse
Move

Mouse
Down

DownDown

RefreshRefresh

Validate_moveValidate_move

Figure 9. The graphical “Select and Move” Pattern for
a mouse.

For this pattern we have the following XML description:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Agent SYSTEM "amf.dtd">
<Agent Name="CONTAINER" Sub-agent="1" Type="container">
 <Agent Name="ELEMENT" Sub-agent="0" Type="element">
 <Administrator Name="Refresh#ELEMENT#CONTAINER"
 Type="Simple" TypeAC="Concrete">
 <Sources
 Name="REFRESH#ABSTR#ELEMENT#CONTAINER"/>
 <Targets
 Name="REFRESH#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 …
 <Facet Name="PRESENT#ELEMENT#CONTAINER"
 Type="present#element#container">
 …
 <Port
 Name="MOVE#PRESENT#ELEMENT#CONTAINER"
 Type="move#present#element#container" TypeIO="i"
 TypeAC="Concrete"

 FacetName="PRESENT#ELEMENT#CONTAINER"
 DaemonName="Move"/>
 <Port
 Name="SELECTION#PRESENT#ELEMENT#CONTAINER"
 Type="selection#present#element#container" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#ELEMENT#CONTAINER"
 DaemonName="Selection"/>
 </Facet>
 </Agent>
 <Administrator Name="Refresh#CONTAINER" Type="Simple"
 TypeAC="Concrete">
 …
 <Administrator Name="Move#CONTAINER" Type="Filter"
 TypeAC="Concrete">
 <Sources Name="MOVE#PRESENT#CONTAINER"/>
 <Targets
 Name="MOVE#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 <Administrator Name="Drop#CONTAINER" Type="Filter"
 TypeAC="Concrete">
 <Sources Name="UP#PRESENT#CONTAINER"/>
 <Targets
 Name="DROP#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 <Administrator Name="Selection#CONTAINER"
 Type="ReturnFilter" TypeAC="Concrete">
 <Sources Name="DOWN#PRESENT#CONTAINER"/>
 <Targets
 Name="SELECTION#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 …
 <Facet Name="ABSTR#CONTAINER" Type="abstr#container">
 <Port Name="GET_POS#ABSTR#CONTAINER"
 Type="get_pos#abstr#container" TypeIO="i"
 TypeAC="Concrete" FacetName="ABSTR#CONTAINER"
 DaemonName="Get_pos"/>
 <Port Name="VALIDATE#ABSTR#CONTAINER"
 Type="validate#abstr#container" TypeIO="2"
 TypeAC="Concrete" FacetName="ABSTR#CONTAINER"
 DaemonName="Validate"/>
 </Facet>
 …
</Agent>

INTERACTION MODELS ADAPTATION
The adaptation engine replaces the abstract tasks with a
concrete task and the interaction pattern that is related to
the task is inserted into the abstract interaction model of
the application. This replacement is done according to the
characteristics of the target. Hence, concrete ports and
concrete administrators will replace the abstract ports that
are inside the abstract interaction model.
A name-based approach is used to replace the generic
names (CONTAINER & ELEMENT) by the concrete
ones (STEM & RING).
If we consider the Towers of Hanoi example running on a
platform with a mouse, the pattern presented in the figure
9 will be instanced. A name-based rule enables to
maintain the link between the ports and the interface
element that receives the action. Then, the pattern
replaces the abstract ports in the interaction model of the
application. This process produces a final interaction
model of the application (figure 10).

GameGame

PresentationPresentation

Get_PosGet_Pos

Abstraction Abstraction

Get_PosGet_Pos

Validate_moveValidate_move

RefreshRefresh

StemStemStemStem

PresentationPresentation RingRingRingRing

PresentationPresentation Abstraction Abstraction

Get_PosGet_Pos

Refresh_PresRefresh_Pres

Validate_moveValidate_move

Abstraction Abstraction

Get_PosGet_Pos

RefreshRefresh

Refresh_AllRefresh_All

Validate_moveValidate_move

Refresh_AllRefresh_All

RefreshRefresh

MoveMove

UpUp

Mouse
Up

Mouse
Move

MoveMove

Test_MoveTest_MoveDropDropDropMouse
Down

DownDown

DownDown

SelectionSelectionSelection
Test_SelectTest_Select

MoveMove

UpUp

ExitExit

Mouse
Down

ExitExit

Figure 10. Concrete interaction model of the Towers of
Hanoi with a mouse

Here is an extract of the XML description of the AMF
concrete model for the application. The DaemonName
fields of the concrete ports are method names of the Java
classes defined by the developer.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Agent SYSTEM "amf.dtd">
<Agent Name="GAME" Sub-agent="1" Type="game">
 <Agent Name="STEM" Sub-agent="1" Type="stem">
 <Agent Name="RING" Sub-agent="0" Type="ring">
 <Administrator Name="Refresh#RING#STEM#GAME"
 Type="Simple" TypeAC="Concrete">
 <Sources
 Name="Refresh#ABSTR#RING#STEM#GAME"/>
 <Targets
 Name="Refresh#PRESENT#RING#STEM#GAME"/>
 </Administrator>
 <Administrator
 Name="Refresh_all#RING#STEM#GAME"
 Type="Simple" TypeAC="Concrete">
 <Sources
 Name="Test_Move#ABSTR#RING#STEM#GAME"/>
 <Targets
 Name="Refresh_all#PRESENT#RING#STEM#GAME"/>
 </Administrator>
 …

 <Port
 Name="DROP#PRESENT#RING#STEM#GAME"
 Type="drop#present#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="Drop"/>
 <Port
 Name="MOVE#PRESENT#RING#STEM#GAME"
 Type="move#present#ring#stem#game" TypeIO="i"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="Move"/>
 <Port
 Name="SELECTION#PRESENT#RING#STEM#GAME"
 Type="selection#present#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="Selection"/>
 </Facet>

 </Agent>
…
 </Agent>
…
</Agent>

The DaemonName fields of the concrete ports are method
names of the Java classes defined by the developer. Here
is the interface of the RingPres class.
// File : iRingPres.java
public interface iRingPres
{
 void Refresh();
 void Refresh_All();
 private Down(MouseEvent arg);
 private Move(MouseEvent arg);
 private Drop(MouseEvent arg);
}
// iRingPres

CONCLUSION
In this paper we have shortly presented an architecture-
based approach for the generation of Multiple User
Interfaces. It incorporates the use of task patterns and
interaction patterns. To describe the interaction model and
the interaction patterns we used the AMF architecture
which is composed of an XML description of an AMF
model and a run-time engine.
We use AMF to define the interaction model, which
enables us to obtain an abstract description of the
interaction model of the application. Processing (filtering
and enriching) this description with the XML parsing
mechanisms helps us to concretise the abstract model in a
progressive way. At the end of the process, we obtain a
concrete description of the AMF interaction model. A
Java implementation of an AMF engine enables the
execution of an AMF model coupled to applicative
classes. We can now imagine building other AMF players
(non-java) that will allow the application to the AMF-
XML files.
This approach is original in the sense that it tries to unify
the task model, the interaction model and the resources of
the application, i.e. the functional resources (Java classes
of the application domain) and interaction resources
(images, menus…).
The designer has to specify the task model, the interaction
model, the java classes (which ensure the various
interaction styles) and the presentation resources. The
system analyses these elements and, using interaction
guidelines and patterns, it maps filtered elements on the
resources.

We are aware of the difficulties and limits in considering
the definition of a process that is wholly automatic. The
complexity of the problem requires simplifications that
inevitably lead to stereotyped and non-adapted interfaces
to the specificity of materials. The introduction of the
adapted task patterns and the interaction ones may
decrease the complexity of the issue. However, it is
obvious that the contribution of the designer should take
place in this type of process. In this context, we will
consider the introduction of a constraint definition file.
The designer defines this file, which is used to restrict the
modifications upon some elements during the process of
the dynamic generation of the concrete interface.

REFERENCES

1. Abrams M., Phanouriou C., Baeongbacal A. L., Williams
S. M., Shuster J.E., "UIML: An Appliance-Independent XML
User Interface Language," In Computer Networks, Vol. 31,
1999, pp. 1695-1708.

2. Calvary G., Coutaz J., Thevenin D., Limbourg Q., Bouillon
L., Vanderdonckt J. A unifying reference framework for
multi-target user interfaces, Journal of Interacting With
Computer, Elsevier Science B.V, June, 2003, Vol 15/3, pp
289-308.

3. Coutaz J.: PAC, an Object Oriented Model for Dialog
Design, in Proceedings Interact'87, North Holland, 1987,
pp.431-436.

4. Krasner G.E., Pope S.T. A Cookbook For Using the
Model-View-Controller User Interface Paradigm in The
Smalltalk-80 System. Journal of Object Oriented
Programming, 1988, 1, 3, pp. 26-49.

5. Luyten K., Van Laerhoven T., Coninx K., Van Reeth F.,
«Runtime transformations for modal independent user
interface migration». Interacting with Computers. Vol. 15,
No. 3, June 2003. pp. 329–347.

6. Markopoulos P, Johnson P. Rowson J. Formal architectural
abstractions for interactive software. International Journal of
Human Computer Studies, Academic Press, (1998), 49, pp.
679-715.

7. Mori G., Paternò F., Santoro C. « Tool Support for
Designing Nomadic Applications» Proceedings of IUI 2003,
Miami, Florida, January 12-15, 2003.

8. Paternò F., Model-based Design and Evaluation of
Interactive Applications. Springer-Verlag, November 1999.

9. Seffah, A., Radhakrishan T., Canals G. Workshop on
Multiples User Interfaces over the Internet: Engineering and
Applications Trends. IHM-HCI: French/British Conference
on Human Computer Interaction, September 10-14, 2001,
Lille, France.

10. Samaan K., Tarpin-Bernard F. « L’Utilisation de Patterns
d’Interaction pour l’Adaptation d’IHM Multicibles ».
IHM'03, CAEN-FRANCE, novembre 2003.

11. Souchon N., Limbourg Q., Vanderdonckt J. Task Modeling
in Multiple Contexts of Use. In Proceedings of DSVIS’2002
Workshop. 2002.

12. Tarpin-Bernard F., David B.T., AMF : un modèle
d’architecture multi-agents multi-facettes. Techniques et
Sciences Informatiques. Hermès. Paris. Vol. 18. No. 5. p.
555-586. Mai 1999.

13. Thevenin, D., Coutaz, J. Plasticity of User Interfaces:
Framework and Research Agenda. In Proceedings of
INTERACT'99, 1999, pp. 110-117.

14. Vanderdonckt, J., Bodart, F., 1993. Encapsulating
knowledge for intelligent automatic interaction objects
selection. In: Ashlund, S., Mullet, K., Henderson, A.,
Hollnagel, E., White, T. (Eds.), Proceedings of the ACM
Conference on Human Factors in Computing Systems
InterCHI’93 Amsterdam, 24–29 April 1993), ACM Press,
New York, pp. 424–429.

15. XIML Forum Site Web. http://www.ximl.org.

Supporting Workflow in User Interface Description
Languages

Nicole Stavness
Department of Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan, Canada

+1 306 966 8654
nicole.stavness@usask.ca

Kevin Schneider
Department of Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan, Canada

+1 306 966 4891
kas@cs.usask.ca

ABSTRACT
XML-based user interface description languages (UIDLs)
have been developed to support user interface portability
across multiple platforms. UIDLs express various aspects of
the user interface, including the abstract and concrete
elements of the user interface, the tasks to be performed by
the user, and the user interface dialogue.

We have developed the progression model for expressing
workflow aspects of an interactive system using an XML-
based language. The progression model considers workflow
to be a sequence of scenes progressing towards an
organizational goal. The model allows us to express
workflow explicitly using a markup language.

In this paper we present a prototype system, the
progression analyzer that accepts a progression, renders
the user interface described by a scene and provides the
user with a mechanism to monitor, save, recall, reorder and
coordinate the workflow.

Keywords
Workflow, Task Model, User Interface Description
Language, XML

INTRODUCTION
Business organizations use interactive information systems
to support their business processes. Users require flexibility
when interacting with the system to contend with changes
in the business processes, to support differing work
approaches, and to coordinate the activities of various
workers. This flexibility can be supported by workflow
systems.

UIDLs specify important aspects of the user interface.
Unfortunately, UIDLs do not express aspects of the user
interface related to workflow. We have developed the
progression model [18] to explicitly express workflow as a

sequence of scenes called a progression. Our language to
express progressions is XML-based.

Our approach is specifically aimed at the development of
transaction-based interactive systems. A progression in
this context may be renting a car, filling out a mortgage
application, or booking a flight.

In this paper we present a prototype system, the
progression analyzer, for rendering and interacting with
progressions. After a discussion of the related work and
introducing the progression model we describe the
progression analyzer prototype. We then evaluate our
approach by showing how it maps to the components
commonly found in a workflow system, using examples from
our prototype. We conclude the paper with a discussion of
future research directions.

RELATED WORK
In this section we describe workflow models, task models
and how task and workflow models differ with respect to
user interface development. As well we briefly describe
some current XML-compliant UIDLs.

Workflow Model
The workflow model is used to represent the flow of work
within a department, across a company or to external agents
[14]. The Workflow Management Coalition (WFMC) defines
workflow as the automation of a business process, in whole
or part, during which documents, information, or tasks are
passed from one participant to another for action, according
to a set of procedural rules [20]. The details of a specific
business process are defined in a process definition. This
includes the sequences of activities and associated
relationships; start and finish criteria; and information such
as executers of manual or automated activities, procedural
rules, and control data. The process definition may also
include sub-process descriptions.

Workflow research focuses on approaches to making
changes during the business process. Procedure-like,
routine processes that are statically supported are on one
end of a continuum, and highly unspecified, dynamic
processes are on the other end [5]. In adaptive workflow

management systems [13] the procedural rules can be
changed or created during the process. Some research
proposes a cooperative hypermedia system, with process
support through a meta-model, to integrate the efforts
towards communication, coordination, and cooperation in
workflow systems [7]. A two -part classification defines
types of possible flexibilities that may be desired in
workflow management applications [9]. ‘Flexibility by
selection’ provides the user some leniency in executing a
process by offering multiple execution paths. Alternatively,
‘flexibility by adaption’ provides the ability to add extra
execution paths through additional functionality and tools
that allow the workflow type to change and integrate during
runtime.

Some workflow concepts that are common in many systems
have been identified in [12]. This research has focused on
applying workflow to object oriented systems; the following
concepts are identified as important to workflow.

• Monitoring for contributing information about the
circumstances of workflows during execution;

• History of workflow actions for evaluation or recovery;

• Persistence to save the historic information and
provide access to it;

• Manual Intervention for changing the order that
activities are performed in as they are performed;

• Worklist to coordinate the activities among the
workers;

• Federated Workflow addresses the issue of how
workflow systems interoperate.

Task Model
Task Models are logical descriptions of activities that are
designed to be carried out in reaching user’s goals in an
interactive system. There are many different approaches to
task modeling such as Hierarchical Task Analysis [2],
GOMS [6], UAN [8], and ConcurTaskTrees [14].

Hierarchical Task Analysis (HTA) is based on describing
the set of goals, tasks and operations in logical structures
of different levels . GOMS (goals, operators, methods,
selection) depicts procedural knowledge or ‘how-to-do-it”
knowledge through fine-grained operators that are
performed to reach a goal. UAN (User Action Notation) also
follows a hierarchical structure . It provides a notation for
designers to describe the dynamic behaviour of graphical
user interfaces, where the tasks are represented
asynchronously with operators that denote the temporal
relationships. The ConcurTaskTrees notation was created
to support engineering approaches to task modeling.
Temporal relationships are also incorporated for enabling,
concurrency, disabling, interruption, and optionality.
Additionally, synchronized tasks where the output
information of one task is the input information of another
are supported.

In relation to business processes, task models describe the
paths of activities available to reach the user’s goals.
Unfortunately, task models often result in large
specifications with more detail than is necessary for a
designer. Recent research has investigated annotating task
models with data artifacts to better support information
systems and extracting dialog models from the task model to
better support automated generation of user interfaces [10].

Workflow models and a task models both describe how to
accomplish work or tasks. As identified in [19], they both
have similar concepts, such as actions/tasks and
workers/users. Alternatively, [19] points out that workflow
models are useful for group or organization interaction,
while task models focus on individual users. This coincides
with our research that associates workflow models with
focusing on the management of task accomplishment
processes. In groups or organizations more direction is
required to ensure that orderliness and goal
accomplishment are maintained. Workflow research as
discussed in [12] goes beyond the actual task and provides
a meta-level that focuses on how to coordinate the activities
towards completion and how to examine them thereafter.

User Interface Description Languages
Souchon and Vanderdonckt [17] have analyzed a number of
XML-compliant languages for defining user interfaces
including UIML [1], AUIML [4], XIML [16], Seescoa XML
[11], Teresa XML [15], and WSXL [3].

User Interface Markup Language (UIML) allows the user to
specify the user interface in general terms then render it
according to a style description. Abstract User Interface
Markup Language (AUIML) focuses on describing the
desired user interaction in terms of its purpose rather than
appearance. The eXtensible Interface Markup Language
(XIML) affords the ability to describe a user interface
without concern for the implementation. Software
Engineering for Embedded Systems using a Component
Oriented Approach (Seescoa XML) defines an XML
description to express an abstraction of the user interface
using Java User Interface components. Teresa XML
provides a facility to support the design and generate a
concrete user interface for a specific type of platform. Web
Services Experience Language (WSXL) focuses on a web
services model to interact with web applications. The User
Interface Description Languages referenced above do not
address workflow issues.

PROGRESSION MODEL
The progression model [18] incorporates workflow features
into a markup language specification. This research is not
concerned with the actual rendering of the user interface as
is addressed in many other UIDLs. The progression model
makes explicit the steps and transactions a user makes when
using a transaction–based information system. As the user
progresses towards accomplishing a task or goal, the

progression model infrastructure records each step and the
state of the transaction.

Making the steps and transactions explicit allows the user
to group transactions into batches for later processing, to
store partial transactions for later editing, and allows the
user to browse historical progressions. Linking the steps in
the workflow directly to the transaction provides a means to
integrate the process model and the data model in one
coherent model. This enables the support of the flow of
work for an individual user by supporting new interactions.
A series of definitions outline the basic aspects of a
progression. Consequently, new interactions are enabled to
provide flexible business process support.

Definitions
The following definitions describe the key elements of the
progression model and how they relate to each other. These
items are graphically depicted in Figure 1.

Progression. A progression, p, is a sequence of scenes (or
steps), s, in a process to create a transaction, that is
p = < s1, … , s n >.

Progression Interval. A progression interval , pi, is a
subsequence of a progression or a couple steps.

Scene. A scene, s, corresponds to a step in a progression.
Each scene of a progression is associated with the user
interface, u, current state of the transaction, t, and current
state of the workflow, w, therefore, s = < u, t, w, >. A scene
captures the process and associated data as a user performs
actions throughout a progression.
User Interface. The user interface, u, is a rendering of the
user interface for the current scene. The user can perform
user actions, a, according to the components , such as a text
field or select box, available in the user interface.

User Actions. The user actions, a, for a scene are the
interactions that the user performs within the user interface.

Transaction. The transaction, t, models the accumulation of
information at each point in the progression. Each
transaction is made up of a series of elements, e, that are
accumulated throughout the progression by user actions,
that is t = < e i, …, en >. As the scenes change, the element
additions, deletions, and changes are reflected in the
transaction. For instance, if the user is filling out a wizard
form, at every submission the new information is added to
the transaction. A series of zero or more user actions, a, can
be performed directly on the transaction. For example, the
user may want to directly edit a field in the transaction
rather than going back and editing through the user
interface.
Workflow. The workflow , w, is a sequence of scenes
progressing towards an organizational goal. It identifies the
scenes that are completed, currently in progress, and not
yet started. It also defines who is assigned to complete a

scene. Additionally, it outlines the available workflow
actions, wa, for the current scene.

Workflow Action. A workflow action , wa, is an action that
affects the workflow of the progression. One type of
workflow action is “transform”, which may send information
to the transaction and change the user interface to a new
scene. For example, when the user clicks on a submit
button, a new scene is generated. The information that was
entered in the previous scene, such as the text entered in a
form is reflected in the transaction. The feedback is then
displayed to the user through the user interface. The other
type of workflow action deals with interacting with the
progression. For example, the user can recall a past
progression, replay a progression, save a progression, and
so on.

Figure 1. A progression is a sequence of scenes. The
rectangles represent scenes that encompass a user
interface, a transaction, and workflow.

Benefits of Recording Progressions
An information system is developed to support an
organization’s business processes. This requires a high
degree of flexibility, which has been traditionally difficult to
support. The process and data information that is captured
through the progression model can be used to support
flexible business processes. It is facilitated by displaying
the transaction to the user, in addition to the original
interface, accompanied by new functionality. Through
opening the model to the user in this way, a number of new
interactions become available to the user. The interactions
that are enabled include: information orientation, immediate
updates, historical review, concurrent process comparison,
progression batching, and progression manipulation.

Progression Orientation
By visually observing the transaction, the user is able to
see the information being built up while the progression is
enacted. This provides a reference for the user to ensure the
information is correct. Additionally, foresight into the
information that is required later in the progression is
available from the beginning. This allows users to organize
and anticipate the work required to complete the
progression. Users that are new to the system now have the
ability to reduce the unknown aspects of the system.

Progression Updates
Direct editing of the accumulated data is available while
enacting a progression. A user can change information at

…

Scene 1

Transaction

Workflow

User Interface

Scene n

Transaction

Workflow

User Interface

Scene 2

Transaction

Workflow

User Interface

any time without having to go backward in the progression
and forfeit the later information, such as in web browsing.
This also allows the user to keep track of their placement
within the progression. Updates may not be allowed for
some information items as the constraints of the system
must be upheld. Nonetheless, flexibility to make direct
changes to the information already accumulated is afforded.

Progression History
A user has access to the progression history. History
includes the progression scenes, as well as the transaction
snapshots. The user can benefit from the ability to change,
replay, or reuse historical information. Changing the history
allows the user to move backward in the progression to
undo actions. Replaying a progression may be useful for
learning how progressions were previously completed by
others; remembering what the user did last time they went
through the progression; or for the supervisor to look at the
work that an employee has performed. New or infrequent
users would find the most benefit from this interaction. It is
also useful for lengthy progressions, to view work that is
not easily remembered. By saving the history of the
progression, partial progressions can be closed and
returned to at a later time or parts of saved progressions can
be reused in future progressions. This is useful when the
user is interrupted during a session before they can
complete the progression. Alternatively, when the work
requirements are more ambiguous and combinations of
different progressions are useful.

Multiple Progressions
Multiple progressions can be used to process transactions
concurrently. The ability to duplicate and/or view more than
one progression at the same time allows for easy
comparisons without having to lose work that is already
completed, such as when trying out different scenarios or
outcomes. The user can go through one possibility, then
without losing that information try out another scenario.
The outcomes can be considered in a side by side manner.

Progression Batches
Progressions can be applied to multiple items to enable the
user to perform a progression and have it affect more than
one selected item in the system. For example, a user can
perform a progression to change an employee’s salary, but
have it apply to ten employees. This is beneficial for saving
time and consistency while managing large amounts of
information.

PROGRESSION ANALYZER
The progression analyzer is a prototype system for
displaying information about a progression. A progression
is modeled using a mark-up language. Figure 2 shows the
outline of the progression model in the markup format. Each
scene consists of an abstract user interface (aui) with the
corresponding user actions; a set of transactions with

possible transaction actions; and finally the workflow with
available workflow actions.

The parsed code is interpreted and explicit sections are
depicted in the progression analyzer interface. Figure 3
shows a screenshot of the prototype without content.

Figure 3. An outline of the progression analyzer panels .

The user interface is rendered in the user interface panel.
From the user interface information, the specific user
actions are extracted and displayed in the user actions
panel. The transaction is shown in a table indicating the
transaction number, transaction structure, and the status of
the transaction. Any transaction actions that are
permissible, such as directly edit field, are presented in the
transaction actions panel. The workflow is presented as a
table with the scene number, scene name, worker assigned
to complete the scene, and status of the workflow scene.
Then the possible workflow actions, such as reorder and
history, are displayed in the workflow actions panel.
Additionally, the mark-up language document is displayed
in the corresponding panel.

When the user selects the “transform” workflow action to
create and display the next scene, the markup language for
that scene is derived from the previous scene and the user
actions. The new scene is added to the markup language
document and displayed in the progression analyzer panels.

 <progression>
 <scene>
 <aui>…</aui>
 <transactions>
 <transaction>…</transaction>
 </transactions>
 <workflow> … </workflow>
 </scene>
 …
 </progression>

Figure 2. Skeleton of mark-up language for the progression
model.

User Interface

Workflow
Actions

Transaction

User Actions

User Actions

Workflow Transaction

Markup Language Document

User Interface
The user interface panel shows the rendering of the user
interface as it appears to the user. It is non-editable and
intended to show the user the snapshot of the user
interface at the beginning of the current scene.

User Actions
The user actions panel shows the user all the possible
actions that are available to perform within the user
interface. The user can interact with the elements on this
form and perform user actions toward the progression. For
example, the user can enter some text in a text field or select
from a select box and so on.

Transaction
The transaction panel depicts the transaction in a table. The
transaction consists of all the required information that is
accumulated throughout the progression to successfully
submit and complete the progression. Each transaction is
numbered for unique identification. There is also a status
field to indicate the current transaction state, such as
partial, complete, valid, or invalid. The remaining fields
depend on the information requirements of the transaction.

Transaction Actions
The transaction actions panel displays the available actions
that the user can perform on the transaction structure itself.
For example, the user may want to edit a field in the
transaction directly rather than going through the user
interface. System constraints may restrict the user from
performing some transaction actions.

Workflow
The workflow panel shows the scenes that are completed
during a progression. The workflow panel lays out to the
user the scenes that are completed, the scene to be
completed next, and the scenes that still need to be
completed. Each scene is numbered for unique
identification. The status column provides the information
on whether the scene is completed, currently being worked
on, or yet to be completed. The worker column indicates
which human user is assigned to complete the scene
actions. This could also be extended to include jobs that the
system must complete to show the interaction with the
application.

Workflow Actions
The workflow actions panel shows all the possible workflow
actions that the user can perform during the interaction with
the user interface. Some workflow actions that we have
identified as interesting are: move to the previous scene;
move to the next scene; reorder the scenes within the limits
of system constraints; transform the scene as the user
actions are complete; add the transaction to a batch; save
the partially completed progression; and view the
progression history.

THE PROGRESSION ANALYZER AND WORKFLOW
Manolescu's research [12] maps workflow concepts to an
object oriented framework. In his research he identified six
components that are common to workflow systems, namely:
monitoring, history, persistence, manual intervention,
worklist and federated workflow. In this section a
comparison is made between each of these workflow
components and the progression model using examples
from our prototype.

Monitoring refers to gathering information on the state of
the workflow regarding the progress of the activities within
the workflow. In the progression model, this relates to
presenting the user with information on what work has been
done, what is currently being done, and what work remains
to be done.

In the example depicted in Figure 4 and Figure 5, the first
four scenes are completed in the progression and four
remain uncompleted. The worker named Jen is responsible
for completing the last two scenes of the progression. She
wants to see how far along the other workers are in
completing the scenes. By viewing the workflow panel, as
shown in Figure 4, she can see that the first four scenes are
completed and the fifth is in progress.

Figure 4. The workflow panel depicting the status of the
workflow.

Additionally, when she is completing her scenes, she can
view the buildup of information in the transaction. In Figure
5 she has just entered the address information and then
selected the transform workflow action. When she looks at
the transaction in third scene, she can see the information
that resulted from her actions in the previous scene through
the transaction panel. Her address information is added to
the correct fields in the transaction.

History refers to recording the actions that were taken
during the execution of the workflow. This can be used for
evaluation and analysis, as well as information recovery. In
the progression model, this history is captured in the
evolution of the markup language document. The
progression analyzer is intended to allow access to the
information through the history workflow action.

Figure 5. A transaction near the end of a progression.

For example, the worker named Dave may want to go back
to the previous scene to make a change to his user actions.
He can select the previous scene workflow action, which
processes the markup language for the previous scene.
Figure 6 shows the selection of the previous scene
workflow action.

Figure 6 . The workflow actions panel, which is displaying
the available workflow actions.

Persistence refers to the storing and accessing of the
captured history information. This research identifies that
persistence and history are often combined in traditional
workflow systems. [12] however, provides a separate
persistence component, which gives access to the
database. In the progression model, the information is
saved in the mark-up document. There are also workflow
actions that allow partially completed progressions and
their transactions to be saved, and then recalled at a later
time.

For example, the worker named Mark might want to review
what he did in a previous progression. He would have
previously selected the “save” workflow action to save the
partially completed progression. Then when he wants to re-
open the progression he selects the “recall” workflow
action and the progression is displayed at the point where
he saved it. He can traverse through the progression to
replay his actions using the next scene and previous scene

workflow actions. Figure 7 shows the file chooser for the
recall workflow action.

Figure 7. File chooser prompt for the recall button.

Manual intervention refers to allowing users or developers
to change the organization of activities during the execution
of the workflow. In the progression model, a “reorder”
workflow action is provided. It allows the user to perform
the workflow scenes in varying orders. This reordering
action is limited to the constraints of the system.

For example, the worker named Tara may decide that she
does not have the required information to complete scene
two – enter credit card information, but she does have her
personal information, which is required for scene three.
Therefore, she would like to rearrange the scenes so she
can complete as much information as possible. She would
select the “reorder” workflow action to perform the third
scene before the second. Figure 8 shows the new workflow
panel resulting from Tara selecting the “reorder” workflow
action and switching the scenes.

Figure 8. The rearranged workflow scenes.

Worklist refers to the table provided to help manage the
flow of work amongst human workers concerning assigning
responsibilities. In the progression model, the workflow
section indicates the tasks to be completed as grouped into
scenes with the corresponding worker assigned to the task.
Also, some circumstances require the system to be a worker
and complete part of the workflow. Therefore the interaction
with the application is partially captured as well.

For example, the worker named Jim may want to determine if
another worker has completed their part of the progression.
He can look at the workflow panel and see which worker is

responsible for a particular scene. He can also see what he
is responsible for, such as in this scenario, where he is
required to provide the account information for this
transaction in the fourth scene. Figure 9 shows the worklist
of workers assigned to scenes in the workflow panel.

Federated Workflow addresses the issue of how
workflow systems interoperate. We have not investigated
the implications of the progression model and
Federated Workflow. Expressing workflow with a markup
language may be conducive to integrating workflow
systems since the workflow is stated explicitly.

 Figure 9. The worklist in the workflow panel

 .

Figure 10. A screenshot of a more complex user interface and progression model in the Progression Analyzer.

CONCLUSION
User interface description languages have been designed to
specify various aspects of a user interface, such as the
tasks to be accomplished by the user, the abstract and

concrete elements in the user interface and the user
interface dialog. Workflow aspects, such as coordinating
and managing tasks, are not modeled by current UIDLs. The
progression model is an attempt to identify workflow issues

and to integrate workflow into a user interface description
language.

We have developed a prototype system, the progression
analyzer, to help refine the progression mo del and to
investigate workflow in a UIDL. Explicitly recording and
manipulating progressions allows us to dynamically change
the workflow of an interactive system. Benefits include,
improving the plasticity of an interactive system (workflow
plasticity), providing a coarser integration with an
application (transaction-based integration), and additional
workflow functionality.

The progression analyzer has provided us a mechanism for
studying progressions in detail. From this experience, we
plan to formalize our XML-compliant language to show how
workflow concepts can be integrated into a user interface
markup language.

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L.,

Williams, S., and Shuster, J. UIML: An Appliance-
Independent XML User Interface Language. In A.
Mendelson, editor, Proceedings of 8th International
World-Wide Web Conference WWW’s (Toronto, May 11-
14, 1999), Amsterdam, 1999. Elsevier Science
Publishers.

2. Annett, J., Duncan, K.D., Stammers, R.B., & Gray, M.J.
(1971). Task analysis. London: Her Majesty's Stationery
Office.

3. Arsanjani, A., Chamberlain, D., and et al. (WSXL) web
services experience language version, 2002.

4. Azevedo, P., Merrick, R., and Roberts, D. OVID to
AUIML – user-oriented interface modeling. In N. Nunes,
editor, Proceedings of 1st International Workshop
“Towards a UML Profile for Interactive Systems
Development” TUPIS’00 (York, October 2-3, 2000).,
York, 2000.

5. Bernstein, A. How Can Cooperative Work Tools
Support Dynamic Group Processes? Bridging the
Specificity Frontier. (CSCW’00), 2000, pp. 279-288.

6. Card, S. K., Moran, T. P., and Newell, A., The
Psychology of Human-Computer Interaction , Lawrence
Erlbaum, 1983.

7. Haake, J., Wang, W. Flexible Support for Business
Processes: Extending Cooperative Hypermedia with
Process Support. (GROUP’97), 1997, pp. 341-350.

8. Hartson, H. R, Siochi, A. C., Hix, D. The UAN: a user-
oriented representation for direct manipulation interface
designs. ACM Transactions on Information

9. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K.,
Teschke, M. A Comprehensive Approach to Flexibility
in Workflow Management Systems. (WACC’99), 1999,
pp. 79-88.

10. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.
Derivation of a Dialog Model from a Task Model by
Activity Chain Extraction. (DSV-IS’2003), Funchal,
Madeira Island (Portugal), 2003, ©Springer-Verlag 2003.

11. Luyten, K., Vandervelpen, C., and Coninx, K. Adaptable
user interfaces in component based development for
embedded systems. In Proceedings of the 9 th Int.
Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2002, (Rostock, June 12-14,
2002). Springer Verlag, 2002.

12. Manolescu, D. An Extensible Workflow Architecture
with Objects and Patterns. Chapter 4 in Technology of
Object-Oriented Languages, Systems, and Architectures
Theo D'Hondt, editor. Kluwer Academic Publishers,
2003.

13. Narendra, N. C., Adaptive Workflow Management – An
Integrated Approach and System Architecture.
(SAC’00), 2000, pp. 858-865.

14. Paternò, F., Mancini, C., Meniconi, S. ConcurTaskTrees:
A Diagrammatic Notation for Specifying Task Models.
(Proceedings Interact’97), Chapman&Hall, 1997, pp.362-
369.

15. Paternò , F. and Santoro, C. One model, many interfaces.
In Ch Kolski and J. Vanderdonckt (Eds.), editors,
Proceedings of the 4th International Conference on
Computer-Aided Design of User Interfaces CADUI’2002
(Valenciennes, 15-17 May 2002), pages 143-154,
Dordrecht, 2002. Kluwer Academic Publishers.

16. Puerta, A. and Eisenstein. XIML: A common
representation for interaction data. In Proc. Of the 7th
International Conference on Intelligent User Interfaces
(Santa Fe, United States, January 2002), pages 69-76.,
New York, 2002. ACM Press.

17. Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. (DSV-
IS’2003), Funchal, Madeira Island (Portugal), 2003,
©Springer-Verlag 2003.

18. Stavness, N. and Schneider, K. A. Supporting Flexible
Business Processes with a Progression Model, (IUI-
CADUI 2004) Workshop: Making Model-based UI
Design Practical: Usable and Open Methods and Tools ,
Island of Madeira, Portugal, January 2004

19. Traetteberg, H.: Modeling work: Workflow and Task
modeling. In: Vanderdonckt, J., Puerta, A.R. (eds.): Proc.
of 3 rd Int. Conf. on Computer-Aided Design of User
Interfaces CADUI’99 (Louvain-la-Neuve, 21-23 October
1999). Kluwer Academics, Do rdrecht (1999) 275–280.

20. WfMC. Workflow Management Coalition Terminology
& Glossary, WFMC-TC-1011, Document Status- Issue
2.0, June 1996. Specifying Task Models. (Proceedings
Interact’97), Chapman&Hall, 1997, pp.362-369

Evaluation of High-Level User Interface Description
Languages for Use on Mobile and Embedded Devices

Jan Van den Bergh Kris Luyten Karin Coninx

Expertise Centre for Digital Media
Limburgs Universitair Centrum

Wetenschapspark 2
B-3590 Diepenbeek-Belgium

{Jan.VandenBergh, Kris.Luyten, Karin.Coninx}@luc.ac.be

ABSTRACT
Model-based design and the use of high-level user in-
terface descriptions languages (HLUID) have been pro-
posed for the design of multi-platform user interfaces.
In this paper we present an analysis of required proper-
ties for HLUID so that they can be effectively used for
the design of multi-platform user interfaces that can be
used on mobile and embedded devices. Two HLUID,
SEESCOA1 XML and XForms basic profile, are eval-
uated. The former is used in a model-based design
method, Dygimes, and the latter is a candidate recom-
mendation of the World Wide Web Consortium. Based
on this analysis, adaptations to SEESCOA XML and an
adapted structure for the use in a new version of Dy-
gimes, supporting the design of context sensitive user
interfaces, are presented.

INTRODUCTION
The increase in diversity of computing platforms used
in the every day life has caused a search for a methodol-
ogy and models that can ease development for multiple
platforms. One proposed method is the use of model-
based design, which allows the design of user interfaces
for multiple platforms and/or multiple contexts of use
through the use of high-level models. These models all
address one particular aspect of the design of the user
interface and the application for which it is designed.

In parallel to this effort, the need for standards is rec-
ognized in industry. In the specification of user inter-
faces, this can be noticed in the growing compliance of
current web browsers with the recommendations of the

1SEESCOA stands for “Software Engineering for
Embedded Systems using a Component-Oriented
Approach”.http://www.cs.kuleven.ac.be/cwis/
research/distrinet/projects/SEESCOA/

World Wide Web Consortium (W3C). This organiza-
tion is actively encouraging web-authors to also sepa-
rate the different aspects of the user interface through
the design of new standards and new versions of exist-
ing standards. These standards also promote the sepa-
ration of the different aspects of web pages: content and
structure (XHTML, XForms, VoiceXML), and presen-
tation (CSS, XSLT).

In this paper we elaborate on our work to merge cer-
tain aspects of the two approaches (model-based and
standards-based declarative design) and on how well
they are fit for mobile devices using a Java-based im-
plementation. We will address into more detail the use
of XForms as a high-level user interface description lan-
guage and look at the effects of its use in the Dygimes
design-process and tools[4]. In the discussion we will
concentrate on the features offered in the basic profile
of XForms since it is a version especially targeted to-
wards mobile devices.

After the presentation of some related work we will start
this paper by giving an overview of the Dygimes ap-
proach and discussing requirements for a HLUID to be
used on mobile devices, followed by a detailed discussion
of SEESCOA XML, the high-level user interface spec-
ification language used in the approach. After that we
will shortly present the relevant aspects of XForms. The
next sections give an evaluation of both approaches and
the impact of a changed SEESCOA XML in an adapted
Dygimes approach that supports the design of context-
sensitive user interfaces The final section presents the
conclusion and future work.

RELATED WORK
Several approaches have been taken to describe func-
tionality for display on mobile devices. Nichols et al.
[11] designed an XML-based description specifically tar-
geting the use of mobile devices as a remote control for
complex appliances, such as a hi-fi installation. Their
description consists of the description of three different
components: states, commands and descriptions. Rela-
tions between components can be expressed by groups
and conditional statements. How the specification is
translated in user interface objects (such as buttons and

text fields) is left to the rendering engine. This nota-
tion is however too specific for our purposes; we want a
more general approach.

A different approach is taken by Marucci et al.[9], they
propose the use of model-based approach for the de-
sign of user interfaces for multiple platforms, among
which a PDA or a mobile phone. In this approach,
one starts by defining a global task model, which is re-
fined for the different platforms. The refined task mod-
els can be translated to abstract user interface descrip-
tions that include information about the composition
of a dialog, in which the abstract interaction objects
are split in several meaningful categories, as well as the
dialog transitions. This abstract user interface descrip-
tion is semi-automatically translated to a concrete user
interface description that is rendered at runtime. They
mention support for adaptivity by the derivation of a
user model, which can be updated at runtime, from the
task model. The user model, then could have influence
on the user interface. No detailed explanation of this
adaptive process at runtime is provided. This approach
differs from ours in that they use transformations be-
tween task model, high-level user interface specification
and concrete user interface specification at design time.
In the process of the transformations, however, some
information that is useful (such as the actions of the
user, the application objects manipulated through the
user interface) and other platform-specific information
is added.

UIML[1] is an XML-based meta-language for the spec-
ification of user interfaces that separates the different
parts of the user interface description in different parts
of the XML. A technical committee of OASIS2 is is
working to make it an open standard. Despite the fact
that the specification forces separate specification of
user interface structure, style, interaction and toolkit
bindings (vocabulary), most specifications of the user
interface structure still have toolkit-specific informa-
tion in all parts of the user interface description. Ali
and Abrams[2], however, proposed a generic vocabulary,
which makes it possible to design a single user interface
structure for a diversity of platforms. Although this vo-
cabulary makes it possible to design user interfaces for
more systems, it doesn’t have some properties we would
like it to have: it does not preserve semantic informa-
tion that connects certain parts of the user interfaces.
The connection between a text field and the label that
describes the content of the text field are not inher-
ently connected, while this is the case in XForms and
SEESCOA XML. UIML is less suitable for small mo-
bile devices since the display of a small user interface
requires a complete vocabulary containing potentially
lots of unused control specifications to be read.

XIML[8] is a meta-language that perhaps could express
all information we want it to express; it allows specifi-

2Organization for the Advancement of Structured Informa-
tion Standards

cation of tasks, high-level and concrete user interfaces
as well as a domain-specific information. Its greatest
weakness and a reason we cannot be sure it meets all
our needs is that it is a closed specification from one
company that has a very restrictive license, which is
something that is far from desirable for a specification
that should be used on a multitude of devices.

Mitrović and Mena[10] proposed to use another declar-
ative language with an open specification, XUL[6] for
the description of user interfaces for mobile systems.
They use XUL as the basic specification but it is trans-
formed to HTML and WML using XSL transformations
for display on mobile devices. XUL does not meet our
criterion that is has to be a high-level user interface
description language.

DYGIMES
Dygimes[4] is a framework that uses a model-based ap-
proach to design user interfaces for mobile devices and
embedded systems. In the approach task models and
high-level user interface descriptions are combined into
a single specification that can be rendered by a runtime
environment. Limited styling support and interaction
with web services is provided. Figure 1 shows the dif-
ferent specifications that are used to define the user in-
terfaces and their corresponding conceptual models as
specified by Calvary et al.[3] in the reference framework
for plasticity.

The central specification is a task model in Concur-
TaskTrees notation[12] (CTT). It is a hierarchical task
model that has four types of tasks: user tasks (tasks
performed by the user without interaction with the de-
vice), interaction tasks (tasks involving an interaction
of the user with the application), application tasks (per-
formed by the application) and abstract tasks (split into
two or more subtasks of different types). Tasks are in-
terconnected with temporal operators that can be used
to determine which tasks are active during the comple-
tion of a task.

The leaf-nodes of the CTT are annotated with high-
level user interface descriptions, using SEESCOA XML,
discussed in more detail in the following section. This
enables us to generate user interfaces from the anno-
tated task model. Custom mappings between the high-
level interactors in SEESCOA XML and the concrete
interactors used to show the user interface[7] can be
defined. Limited styling support is also available.

We are extending the Dygimes approach to support
context-sensitive user interfaces on mobile devices. For
this approach we are developing a new XML-based no-
tation that integrates information about context, tasks,
and high-level user interface controls. The requirements
we determined for the HLUID are:

high-level specification The user interface specifica-
tion should describe the parts of the user interface at

Figure 1. Dygimes specifications

a high level as SEESCOA XML does.

expressive The user interface description should not
limit the possibilities of a mobile device to render the
user interface. Special controls for special needs (e.g.
password and date entry) may not be excluded from
use due to limitations in the expressiveness of the
HLUID. This also implies that (limited) extensions
should be possible without the introduction of new
controls in the HLUID.

customizable Styling and custom mappings should be
possible and dynamically determined; designers do
not want to be limited in their creativity by defaults
and organizations want to be recognized.

embeddable The specification will be used embedded
in an XML notation of the Contextual ConcurTask-
Trees, an extension of the CTT introducing context
interaction in the task model.

compact The specification should have a compact form
for efficient use on mobile devices and embedded sys-
tems.

local and remote interaction It should be possible
to handle both local and remote interaction involving
both sending and receiving data.

SEESCOA XML
SEESCOA XML is a XML-based language for the spec-
ification of high-level user interface descriptions. It was
a stand-alone specification that is now used in conjunc-
tion with the ConcurTaskTrees notation [12] in the Dy-
gimes process[4].

Characteristics
The most important characteristics of SEESCOA XML
are:

Multiple platform support The use of high-level de-
scriptions of the controls as well as the ability to

make logical groups and the specification of possible
splitting of groups should make rendering on multiple
platforms possible.

Local and remote interaction The specification al-
lows the definition of different communication chan-
nels between the user interface and the program logic.
Currently XML-RPC, SOAP and local java event han-
dling are supported.

Human readable The specification should be read-
able by both man and machine.

Separation of concerns The user interface specifica-
tion should be as independent as possible of the pre-
sentation and the programming logic.

Scalable for embedded systems The specification is
especially targeted towards embedded systems, e.g.
suitable to be stored in limited memory space like on
a Radio Frequency Identifier Tag,. . .

Specification
A typical user interface description using SEESCOA
XML is organized as shown in figure 2. The group tag
identifies elements of the user interface that have some
kind of logical relation: e.g. all the controls to specify
a date. Groups can contain other groups, controls and
constraints. The constraints included in a group specify
the spatial relation between the different children of the
group.

There is a limited set of controls that can be presented.
Each control is specified within a interactor -tag that
contains a control-specific tag. All controls have an info
tag that can be used to describe the purpose of the con-
trol. The information in the info tag can be displayed
as a separate control or as a part of the main control as
can be seen in figure 2, showing a partial user interface
description for making an appointment.

SEESCOA XML provides no information about the pre-
sentation of the user interface, except for layout pur-
poses. One can specify constraints for controls and
groups within a common group. Four linear spatial con-
straints are supported (left, right, above and under) and
are honoured as much as possible. When it is impos-
sible to place all controls on the screen as desired, the
user interface can be split into several layers. The de-
signer preferences are taken into account here: groups
can also be marked “non-splittable”.

There is limited styling support for SEESCOA XML.
Styling is specified using an XML format and supports
mapping of the controls specified in SEESCOA XML to
the controls that are rendered as well as styling of the
mapped controls. Customized mappings can be created
for all controls of a specific type, for a subset thereof
or for a single control. The selection of the appropri-
ate mapping-rule is determined by the type of control
and by (part of) the name of the controls[7]. The ap-
pearance of the controls can be customized per (set of)

<?xml version="1.0"?>
<ui>
<title>Make Appointment</title>
<group>

<group name="exampleGroup">
<interactor>

<range name="hour">
<info>hour</info>
<min>0</min>
<max>23</max>
<start>9</start>
<tick>1</tick>
</range>

</interactor>...
<interactor>

<textfield name="description">
<info>Description</info>
<size>40</size>
</textfield>

</interactor>...
<interactor>
<button name="ok">

<info>OK</info>
<action type="Java">

<!-- action description-->
</action>

</button>
<constraints>

<!-- spatial contraints-->
</constraints>

</group>
</group>
</ui>

Figure 2. Example SEESCOA XML

mapping rule(s). The implementation of styling, how-
ever, is currently only specified for platforms supporting
Java AWT.

The binding with the functional core is provided through
action tags, which have a type-attribute that specifies
the invocation protocol. Action elements are generic
elements that can be used as sub elements for all avail-
able controls. Each manipulation of the control will
execute the invocations specified within the action el-
ements. The XML within the action element is not
restricted within the XML Schema; this allows develop-
ers to attach their own invocation protocols to controls.
At the time of writing we have successfully used di-
rect method invocation (dmi), XML-RPC and SOAP
for this purpose. Within the SEESCOA system it was
possible to invoke the specific SEESCOA components.

XFORMS
XForms[5] is a W3C recommendation for the design of
forms for web-based applications using an XML-based
specification. It is designed to be the replace the cur-
rent form-specification in HTML in the modularized
XHTML 2.0 specification. Its possibilities, however, are

much richer than those offered by HTML form’s.

Characteristics
The characteristics of XForms can be specified as:

XML for instance data This makes direct validation
and processing by the application backend possible
(no need for marshaling of data). It also ensures that
data is internationalization ready.

Multiple platform support High-level description of
user interface controls makes multiple device support
possible.

XML event handlers The use of declarative event han-
dlers for the most common events reduces the need
for imperative scripts for this purpose.

Strong typing All instance data is strongly typed en-
abling client-side checking of supplied data and saving
a round-trip for invalid data.

Extensibility All parts of XForms are extensible through
the use of namespaced attributes and/or tags.

Reuse Existing schemas are reused (e.g. XML Schema
for typing and XML Events for event handler speci-
fication)

Enhanced accessibility XForms separates content and
presentation. User interface controls encapsulate all
relevant metadata such as labels, thereby enhancing
accessibility of the application when using different
modalities.

There are different conformance levels for the XForms
standard; full and basic profile. The basic profile is
meant for enabling XForms parsers in mobile devices.
Since this is what we are interested in, we will only
discuss the XForms basic profile from now on.

One of the special properties of XForms is that it is not
meant to be used on its own, but rather that is would
be embedded in other specifications, such as XHTML.
It therefore has no root-tag, as other XML-based lan-
guages have and can be used in different places in a
XML document. Differentiation between XForms and
the data in the host language is done by the use of
namespaces.

Specification
A XForms specification consists of two major parts,
which are embedded in a host-language as depicted in
figure 3:

model this part of the description describes the types
of information that will be manipulated or used by
the form controls and the submission method that is
used to communicate with the application logic

form controls a high-level description of the form con-
trols that are used to input, manipulate and/or out-
put data or submit data to a server

Figure 3. XForms specifications

<xforms:model>
<xforms:instance>

<appointment ...>...
<hour>9</hour>
<description/>

</appointment>
</xforms:instance>
<xforms:bind constraint=".<24"
nodeset="/appointment/hour"
type="xsi:nonNegativeInteger"/>

<xforms:submission
action="examples.Appointment"
method="dygimes:dmi" id="submit"/>

</xforms:model>

Figure 4: XForms model example, correspond-
ing controls in figure 5

We will discuss the most relevant parts the specification
into more detail.

Model
The model part consists of two parts; the first describes
the structure of the instance data that will be submit-
ted by a submission specified in the second part. The
second part is also used for the specification of the type
of the elements in the instance data.

Datatyping of the instance data specified in the model
can be done by binding the instance data to simple XML
Schema datatypes3 and XForms data types using the
bind tag and XPath. Further restriction on the possible
values of instance data can be posed by specifying a
constraint, an XPath expression evaluating to true() or
false(). The xforms:bind tags in figure 4 show examples
of such expressions. The value of hour is a non-negative
number and constrained to be smaller than 24.

3in the Full Profile almost all XML-schema datatypes can
be used

<xforms:group>
<xforms:input ref="/appointment/hour">

<xforms:label>Start time</xforms:label>
</xforms:input> ...
<xforms:textarea

ref="/appointment/description">
<xforms:label>Description</xforms:label>

</xforms:textarea>
<xforms:submit submission="submit">

<xforms:label>OK</xforms:label>
</xforms:submit>

</xforms:group>

Figure 5. XForms controls example

The xforms:submission tag specifies how the informa-
tion in the xforms:instance should be handled. The
method describes the type of submission, which can be
arbitrary, although a limited set of guaranteed meth-
ods are described in the recommendation, such as the
different HTTP-methods and (local) storage.

User Interface
XForms supports similar controls as SEESCOA XML as
can be seen in figure 8. In most cases controls in both
languages can easily be matched. There are a couple
of exceptions: SEESCOA XML has no special control
for password entry, nor for multi-line text input and
file upload. A special remark should be made about
the controls for information display and for giving com-
mands.

The output control has no specific meaning other than
that it is used to display data described in the model.
How the data is presented to the user is only specified
in the mapping/styling. This contrasts to the approach
in SEESCOA XML where different controls are used for
the display of text or visual data (images).

The command functionality is represented in SEESCOA
XML by a single control, the button. XForms, how-
ever, has two separate controls for this purpose; trigger,
which can be used to perform some manipulation of the
user interface, and submit, which is used to submit data
to the functional core.

XForms also supports dynamic user interface specifica-
tions through the use of switch, repeat elements which
allow dynamic insertion and removal of controls of the
user interface without the need for a (separate) script.
This makes it possible to specify dynamic lists in XForms,
which can be difficult or impossible in other user inter-
face description languages (such as SEESCOA XML).

Figure 5 shows the controls that can be used in con-
junction with the model in figure 4 to generate an in-
terface equivalent to the one specified in figure 2. One
difference that can be noted is that instead of an input
is used instead of a range which is used in the example
with SEESCOA XML. This is caused by the restrictions

control modifier SEESCOA XML XForms
information about . . . info label

extra information not supported hint
help not supported help

error notification not supported alert
action action action

selection items item item
selection item group not supported choices

size hints not supported appearance

Figure 6: Tags providing actions or information
about control

on type binding for the range in XForms, which cannot
be bound to an integer-based type. Both the specifi-
cation in SEESCOA XML and the one using XForms
support the same restriction on the input for the hours
and minutes.

Styling can be done by using CSS, although to reach all
the desired styling support (including mapping to con-
crete controls) future standards are needed. Further-
more, XForms leaves the specification of the attributes
needed for style up to the containing document struc-
ture.

EVALUATION HLUID
We will now revisit our requirements for a HLUID that
appropriately supports mobile and embedded systems.
The first requirement we posed, high-level specification,
is met by both SEESCOA XML and XForms. Both
have a similar level of abstraction as can be seen in
figures 8 and 6. The level of abstraction is also similar
to that used in other approaches[2, 9].

To evaluate expressiveness regarding mobile devices, we
looked at the MIDP 2.0[13] (Mobile Information Device
Profile). This specification for java virtual machines on
small mobile devices should give a good idea on what
functionality will be reliably present on mobile devices
and, thus, should be supported. Figure 8 shows that the
expressiveness of XForms meets, and even exceeds our
needs (there is no standardized way for giving hints and
help about certain controls in MIDP 2.0). The typing
and constraint support of XForms allow a MIDP 2.0
rendering engine to use a DateField a a Textfield with
constraints (see figure 7), and more generally enable
native support of type-specific controls. XForms also
supports alerts, notifications given on wrong data-entry
(figure 6). Alerts are also present in MIDP 2.0 (class
Alert. These things are not possible with the current
SEESCOA XML and thus SEESCOA XML, as is, does
not meet the criterion of expressiveness. The XForms
specification on the other hand does not provide layout-
hints, nor provisions for a canvas that can be used for
image display, etc.

Both HLUID allow customization and thus both satisfy
the third requirement. Both specifications are also com-
pact by design and thus satisfy the fourth requirement.

Type MIDP 2.0 Controls XForms
text TextF.(ANY) string

numeric TextF.(NUMERIC) integer
URL TextF.(URL) anyURI
email TextF.(EMAILADDR) xpath

phone number TextF.(PHONENUMBER) xpath
decimal TextF.(DECIMAL) decimal

date DateF.(DATE) date
date/time DateF.(DATE TIME) dateTime

time DateF.(TIME) time

Figure 7: Typing contraints for Textfield
and Datefield in MIDP 2.0 and corresponding
XForms typing

The presentation of the controls can be based on the
type of data in XForms and can also be customized us-
ing style sheets. The support in current software for
advanced styling is limited but recommendations in de-
velopment promise standardized support through style
sheets. Support for data-specific controls is not pos-
sible using the original SEESCOA XML, however the
controls specified in XML can have designer-specified
instantiations.

The last requirement is that of the possibility of both
local and remote interaction. This is a drawback of
the XForms 1.0 specification; it is mainly targeted at
web applications and thus there is no specification for
local interaction, furthermore the interaction with the
application logic is limited to submission of data.

In order to meet all our requirements and minimize the
implementation required for rendering on e.g. a MIDP
2.0 device, we will make the controls of SEESCOA XML
type-aware. A set of minimal supported data-types will
be provided, data types as well as the “concepts” are de-
scribed in a separate section, the earlier given example
in the new SEESCOA XML is shown in figure 9. The
full specification of the actions will also reference to the
data in this section rather than the controls showing
the data (not shown in the figure).

INTEGRATION IN TASK-BASED NOTATION
The previous sections discussed the use of XForms and
SEESCOA XML as a high-level user interface descrip-
tion language, without considering the specification in
which it will be incorporated. This section will discuss
the use of HLUID in the task model.

In the discussion of Dygimes, we mentioned that tasks
are annotated wit HLUID. This annotation ensures that
navigation and composition can be derived from the En-
abled Task Sets (ETS), which are defined as “a set of
tasks that are logically enabled to start their perfor-
mance during the same period of time” in [12]. Fig. 10
shows a preliminary version of the annotation tool.

Integration of the adapted SEESCOA XML into the

control SEESCOA XML XForms MIDP 2.0
text input textfield input TextField/TextBox

multiline textfield textfield textarea TextField/TextBox
single selection choice (choicetype=”single”) select1 ChoiceGroup/List

multiple selection choice (choicetype=”multiple”) select ChoiceGroup/List
password field not supported secret TextField (PASSWORD)

information display label, canvas output StringItem, Canvas
range range range Gauge (int)

upload file not supported upload not supported
command button trigger, submit Command

group group group Form

Figure 8. Supported controls by SEESCOA XML, XForms and MIDP

<ui>
<title>Make Appointment</title>
<group>

<group name="exampleGroup">
<interactor>

<range name="hour"
ref="/application/hour"

model="app">
<info>hour</info>
<min>0</min>
<max>23</max>
<tick>1</tick>
</range>

</interactor>...
<interactor>

<textfield name="description"
ref="/application/description"
model="app" type="multiline">

<info>Description</info>
</textfield>

</interactor>...
<interactor>
<button name="ok">

<info>OK</info>
<action type="dmi">

<!-- action description -->
</action>

</button>
<constraints>

<!-- spatial contraints>
</constraints>

</group>
</group>
</ui>

Figure 9. Example new SEESCOA XML

Figure 10. The CTT annotation tool

CTT will create a partial duplication of information
since both specification provide their own method of
specifying data relevant to respectively a HLUID and a
task. This, together with the need for specification of
context within the model to enable creation of context-
sensitive user interface, led to the creation a separate
specification, Dygimes XML. The specification will con-
sist of three parts: specification of concepts, specifica-
tion of context and specification of tasks as can be seen
in figure 11. Tasks in Dygimes XML can have HLUID
attached to them. The HLUID descriptions are speci-
fied using the adapted SEESCOA XML with references
to the concepts for data-binding and type information.
Both the concepts and the context will be specified us-
ing the XForms model.

CONCLUSION
We have discussed high-level user interface descriptions
on mobile devices using two examples, SEESCOA XML
and XForms, and their application to mobile devices.
We did this by identifying requirements and evaluat-
ing to which extend these specifications satisfied those
requirements. We found that the existing SEESCOA
XML was reasonably suited for the specification of user
interfaces for mobile systems. However, the lack of
knowledge about the type of the manipulated data and

Figure 11. CCTT specifications

the direct link with widgets to extract data were noted
as required features for the generation of flexible inter-
faces from a HLUID.

We specified adaptations to SEESCOA XML, neces-
sary to fulfill all requirements. The new specification
of SEESCOA XML will be made available as part of
the Dygimes XML specification, which will integrate
the XForms data model, at the time of the workshop.
We have started implementation of a MIDP 2.0 ren-
derer for the (new) SEESCOA XML and support for
the full Dygimes XML is planned.

ACKNOWLEDGEMENTS
Our research is partly funded by the Flemish govern-
ment and European Fund for Regional Development.
The SEESCOA project IWT 980374 (1999-2003) is di-
rectly funded by the IWT (Flemish subsidy organiza-
tion).

REFERENCES
1. Marc Abrams, Constantinos Phanouriou, Alan L.

Batongbacal, Stephen M. Williams, and
Jonathan E. Shuster. UIML: An
appliance-independent XML user interface
language. WWW8 / Computer Networks,
31(11-16):1695–1708, 1999.

2. Mir Farooq Ali and Marc Abrams. Simplifying
construction of multi-platform user interfaces
using uiml. In Proceedings of UIML 2001, March
8–9 2001.

3. Gaëlle Calvary, Joëlle Coutaz, David Thevenin,
Quentin Limbourg, Nathalie Souchon, Laurent
Bouillon, and Jean Vanderdonckt. Plasticity of
user interfaces: A revised reference framework. In
Task Models and Diagrams for User Interface
Design, pages 127–134, Bucharest, Romania, July
18-19 2002. TAMODIA 2002.

4. Karin Coninx, Kris Luyten, Chris Vandervelpen,
Jan Van den Bergh, and Bert Creemers. Dygimes:
Dynamically Generating Interfaces for Mobile
Computing Devices and Embedded Systems. In
Human-Computer Interaction with Mobile Devices
and Services, 5th International Symposium, Mobile
HCI 2003, pages 256–270, Udine, Italy, 8–11
2003. Springer.

5. World Wide Web Consortium. XForms 1.0, W3C
Recommendation 14 October 2003. World Wide
Web, http://www.w3.org/TR/2003/REC-xforms-
20031014/.

6. danm@netscape.com. Introduction to a XUL
Document. World Wide Web,
http://www.mozilla.org/xpfe/index.html,
october 1999.

7. Jan Van den Bergh, Kris Luyten, and Karin
Coninx. A Run-time System for Context-Aware
Multi-Device User Interfaces. In HCI International
2003, Volume 2, Crete, Greece, pages 308–312,
June 2003.

8. Jacob Eisenstein, Jean Vanderdonckt, and Angel
Puerta. Applying Model-Based Techniques to the
Development of UIs for Mobile Computers. In IUI
2001 International Conference on Intelligent User
Interfaces, pages 69–76, 2001.

9. Luisa Marucci, Fabio Paternò, and Carmen
Santoro. Supporting Interactions with Multiple
Platforms Through User and Task Models, pages
217–238. Wiley.

10. Nikola Mitrović and Eduardo Mena. Adaptive user
interface for mobile devices. In Interactive
Systems. Design, Specification, and Verification.
9th International Workshop DSV-IS 2002, Rostock
(Germany), pages 47–61. Springer Verlag, June.

11. Jeffrey Nichols, Brad Myers, Thomas K. Harris,
Roni Rosenfeld, Stefanie Shriver, Michael Higgins,
and Joseph Hughes. Requirements for
automatically generating multi-modal interfaces
for complex appliances. In IEEE Fourth
International Conference on Multimodal
Interfaces, pages 377–382, 2002.

12. Fabio Paternò. Model-Based Design and
Evaluation of Interactive Applications. Springer,
2000.

13. James E. Van Peursem. JSR 118: Mobile
Information Device Profile 2.0. World Wide Web,
http://jcp.org/en/jsr/detail?id=118.

useML: A Human-Machine Interface Description Language

Detlef Zuehlke, Kizito Mukasa, Alexander Boedcher, Achim Reuther
Center for Human-Machine Interaction

Institute for Production Automation
Kaiserslautern University of Technology

67663 Kaiserslautern, Germany
Phone: +49 631 205 3570
Fax: +49 631 205 3705

[zuehlke|mukasa|boedcher]@mv.uni-kl.de|reuther@useml.de

ABSTRACT
This paper describes a XML based user interface
description language called useML, which was developed
at the Center for Human-Machine-Interaction at the
Kaiserslautern University of Technology. The language
allows a model based, task oriented and platform
independent description of user interfaces in production
environments. The main concept is the abstraction of user
tasks and interactions into use objects and elementary use
objects. The description forms one central document called
use model, from which platform specific prototypes can be
generated. useML supports the analysis, the structuring and
parts of the design phase of the Useware development
process, which is also introduced in this paper. The
structure of useML is described and its usage is
demonstrated with an example. An outline of some related
languages has also been given.

Keywords
XML, MB-UID, UIDL, Useware, UIML, XIML, use
model, use object, task modeling, interaction modeling

INTRODUCTION
The development of user interfaces for machines differs
from the classic software development in a number of
ways. First, the development is done offline (in most cases
on a PC), but the application will run on the machine. The
development PC is always equipped with input devices like
mouse and keyboard and has a large display. On the other
hand, there are no such input devices on the machine and
the display is normally small (in most cases less than 12”).
Second, most developers have less experience with
operating the machine. Therefore the knowledge gap
between developers and machine users is in most cases
very large. Moreover, developers and machine users have
different thinking philosophy. While developers think in
terms of software, machine users think in terms of
hardware and tasks. Third, the operation on a machine is
different from that on a PC. While the office user “pushes”

or “drives” his process, the machine user is being “pulled”
or “driven” by the machine. Any wrong input can result
into irrevocable and expensive damages to the machine, the
product and in worst case to the user. Thus careful design
of Useware1 to support user tasks is required. This can be
achieved by following a systematic development approach
that allows considering users, their tasks and their
experiences. Additionally, a user interface description
language (UIDL) should support developers towards the
accomplishment of these goals. For example, it can provide
ways of defining task flow and relationships between tasks
as well as defining constraints related to the task execution,
e.g., execution place, access rights, etc. A combination of
development process and UIDL is therefore required. In the
first part of this paper, a process for developing machine
Useware will be introduced. The second part describes
details of a new UIDL named useML. An example of
applying useML is also available. The third part presents a
briefing of related work and finally is a conclusion and
future work.

THE USEWARE DEVELOPMENT PROCESS
Systematic development supports user and task
consideration as well as helping the developer manage the
complexity of today’s UIs. Following this approach, the
development process includes four main phases namely
analysis, structuring, design and realization. These phases
are not strictly isolated but overlapping. Also a continuous
and iterative evaluation connects them as shows. Figure 1

Figure 1: The Useware development process

Analysis

Evaluation

Structuring Design Realization

Starting with the analysis, information about the users,
their tasks, their working environment, their knowledge

1 Useware is a collection of hardware and software that is

required for human-machine interaction.

and their mental models is collected. Also information
about available devices as well as machines and their
functions is documented. An analysis of this information
results into user groups and tasks. The main goal of the
structuring phase is then to properly organize user tasks
and to link them with machine functions and data that is
required for the execution. This also includes attaching
restrictions to tasks like for example, allowed user groups
and possible execution machines and locations (local,
regional or global). For instance some tasks or task options
may be available on a machine with a big display but not
on PDAs, or remote access to some tasks may be forbidden
due to security reasons. The result of this phase is a
hardware independent task structure enriched with the extra
information mentioned above. By tailoring this structure to
a specific hardware, a task-oriented navigation structure is
obtained. This is where the design phase starts. The main
task here is to make the user interface visible and
accessible to the user on a specific visualization device.
This is to say that hardware constraints like display size
must now be taken into consideration. By applying special
ergonomic design rules for machine user interfaces, the
operation panel is divided into different areas, which will
contain logically identical widgets. For example, there may
be an area for navigation buttons, for function keys and for
data display [12]. The data display area differs from the
other two while it contains dynamic content. It is a main
area where the user can view, enter or change data. The
Display area can further be partitioned into message and
status areas and an area for data input and output (see

). Figure 2

Figure 2: An example of layout for a machine user interface

Navigation area

Function keys

Data Input and Out area

Message area Status area

D
isplay area

Diagrammatic prototypes like wire-frame mockups or
abstract layout diagrams can be used in this phase [2].
After the design phase, the user interface can now be
realized by programming.
TADEUS suggests almost similar steps for the
development of a user interface that reflects the world of
the tasks as perceived by users and that takes into account
individual skills and preferences, as far as they are required
and relevant for task accomplishment and for interaction.
The steps included are the Work analysis that results into
the business intelligent model, the Task-based design that

results into an application model and the Workflow-based
prototyping that results into a running user interface [8].
The Useware development process presented here includes
a continuous evaluation that must be done with users,
hence ensuring their full participation in the development
process. This evaluation should therefore be done
throughout the Useware development and not once at the
end of the development process, since errors can occur at
any stage. If these are detected in early stages, correcting
them is easier and not as expensive as in advanced stages.
It is obvious that proper implementation of such a
development process and the integration of ergonomic
design rules requires tool support accompanied with a
description language. In order to demonstrate the
possibility of integrating ergonomic rules in the
development process, a tool called autoCAID was
developed [14, 15]. autoCAID does not only integrate the
rules, it also guides the developer throughout the whole
development process, giving detailed and context
dependent help. The lack of a proper description language
hinders data exchange between autoCAID and other
applications. A UIDL called useML has recently been
defined at the center for human-machine interaction as a
solution to this problem.

THE USEWARE MARKUP LANGUAGE (useML)
Elements of useML
useML is a XML derivative for modeling Useware [6].
The useML notation follows a usage oriented approach.
The main components are the <use objects> (UOs) and
<elementary use objects> (eUOs), which are contained in
the root element called <use model>. While the UOs define
tasks, the eUOs define actions that are parts of the tasks.
Since a task can also be part of another task, a UO can also
contain other UOs, hence forming an aggregation (see

). In this paper, actions will be abstracted to
interactions to emphasize the bidirectional nature of the
interaction between the user and the machine.

Figure 3

Figure 3: A class diagram of main classes (elements) of useML

UseModel

e leme ntaryUseObjec t

UseObject

Execute Select DataInput Change Inform

The Root Element <use model>
As specified in XML, there must be one root element in file
that will contain the whole content. This role is played by
the element <use model> in useML as shown on . Figure 4

Besides containing other elements, a date, authors, an id or
even filters for the prototypes can be defined.

• data input
This involves input of one absolute data value into the
machine system. Although the machine can suggest a
default value, it will be overwritten by user input. The
machine does not know the data value (other than the
default one, if available) before user input. It means that
the input comes from outside the system. An example of
this interaction type is “enter the user name”.

<!ELEMENT usemodel (filter*, name,
 date?, author*, short_description?,
 useobject*, comments*)>
<!ATTLIST usemodel
 author CDATA #IMPLIED
 id CDATA #IMPLIED
 status CDATA #IMPLIED
> • change

This interaction is basically like the data input. The
difference is that the system provides a way of
manipulating input relative to an existing value. This
means that the data already exists in the system. For
example the user can increment the speed from 15m/s to
17m/s by using a Toggle-Wheel-Switch with 2 as an
incrimination factor.

Figure 4: DTD for the <use model>

The <filter> is an optional element, which can be used by
style sheets for rendering prototypes on different hardware
platforms. If available, this is the only place where the
name of the target platform and the size of its display are
mentioned. Otherwise, the <use model> remains free of
any platform specifications. • inform

Interactions that involve output of information from the
machine system are of this type. The user queries the
machine for some information, for example its status.

The Element <use object> (UO)
Figure 5

Figure 5: The DTD of the <use object>

 shows a DTD for the UO as defined in the first
version of useML. The eUOs have been highlighted for
better identification. As mentioned above, a UO represents
a task, for example “View operating statistics”. This must
be associated with a name and can have conditions, a short
description and comments. The element <mapping> maps
the task to the user groups, interaction devices, machine
functions and access location and will be described later. If
the attribute “sequence” is specified, it determines a
sequence of steps in performing the task.

Any interaction of the user with the machine can be
reduced to one of these elementary interaction types.
Figure 6

Figure 6: DTD for the eUO <select>

 shows a DTD for the eUO <select>. The DTD
indicates that many values can be associated with a eUO as
options. The attribute “confirmation_required” determines
whether the user expects confirmation from the system or
not. Another attribute “user_focus” indicates the main goal
of the user interaction. The goal can be “information” or
“manipulation”. Depending on this goal, special measures
can be taken in the design phase to support the user
appropriately. If the attribute “list_only” is set to “yes”,
then only values selected from the list are valid. Otherwise
the user can enter new values that will be added for the
next selection. In order to limit the number of values per
selection, an attribute “multiple_selection” is used.
Sometimes it is required that a machine function be
executed automatically after selection. The name of this
function is stored in the attribute “trigger_function”.

<!ELEMENT useobject (name, mapping*, condition*, short_description?,
 (useobject | execute | select | datainput|

change | inform |)*, comments*)>
<!ATTLIST useobject
 type CDATA #IMPLIED
 id ID #IMPLIED
 sequence CDATA #IMPLIED
>

The <elementary use objects> (eUOs)
useML uses eUOs to model the interactions of the user
with the machine. Five elementary interaction types can be
identified; execute, select, data input, change and inform.

>
<!ELEMENT select (name, mapping*,
 condition*, short_description?,
 option*, comments*)>
<!ATTLIST select
 confirmation_required (yes|no) “no” #IMPLIED
 user_focus (information | manipulation) #IMPLIED
 list_only (yes|no) #IMPLIED
 multiple_selection CDATA #IMPLIED
 trigger_function CDATA #IMPLIED
>

• execute
These are interactions where the user directly triggers a
machine function. This results into direct execution of
machine functions. For example, “press the start button”.

• select
By this interaction, the user can select one or many
values from a set of values that already exist in the
machine system. This selection can lead to changing a
parameter in the machine control, for example, changing
the unit of speed from km/hr to m/s, or to triggering a
machine function, e.g., changing the machine operation
modus from “automatic” to “manual” by selecting the
required modus.

Other eUOs have a similar DTD with some few exceptions.

The Element <condition>
This element is used to define a condition, which can be
associated with a UO or eUO. The DTD in
indicates that this can be a pre-condition or a post-

Figure 7

condition. The logical connection of conditions is yet to be
defined.
<!ELEMENT condition (#PCDATA)>
<!ATTLIST condition
 type (pre | post) #IMPLIED
>

Figure 7: DTD for the element <condition>

The Element <mapping>
In order to specify which user group should perform which
task, at which machine or interaction device and from
which location, the element <mapping> is defined. This
element can also associate a task or an interaction with
machine functions to be executed (see Figure 8).

<!ELEMENT mapping (user_group* | location* |
 function* | machine*)*>

Figure 8: DTD for the element <mapping>

• The <user_group> element specifies groups that are
allowed to perform the task or interaction. Mapping a
user group to a task or an interaction means that only
members of the specified user group are allowed to
perform the task or interaction. This restriction is applied
top down in the task hierarchy, i.e. from the task at the
upper level to tasks and interactions at the lower level.
Thus if a user group has been excluded from performing
an upper level task, it will also not be allowed to perform
underlying tasks and interactions. The restrictions are
hardware independent. In most cases, they depend on the
company organization and security reasons. Normally
machine users are organized in hierarchical groups that
reflect their tasks and knowledge. In the production
automation area for example, the lowest group is that of
operators. These are only responsible for keeping the
machine running. For example, they will load or unload
the machine with work pieces and then start the
production process. They may also control the
performance of the machine and the quality of products.
Following the operators is the group of supervisors. They
prepare production plans, allocate operators to machines
and shifts, perform diagnostic and apply solutions, should
any breakdown or malfunction occur. Of course they can
also access all tasks performed by operators. The third
and highest user group consists of experts. These have
high technical knowledge and are mostly available during
the installation and when severe malfunctions occur.
They have access to all machine functions and are
allowed to perform all tasks.
In this way tasks may be made available for some user
groups but hidden or deactivated for others.

• The <location> element specifies possible access areas
for a task or an interaction. Possible values are “local”
meaning that the operation is only allowed direct at the
machine, “regional” that allows operation from another

machine within the organizational intranet, and “global”
the corresponds to operation from the internet.

• The optional <function> element can be used to link
the task or interaction to specific machine functions
necessary for its execution.

• Should need be, a task or interaction can be explicitly
allowed on some machines or devices. This is specified in
the <machine> element. Options for these tasks will then
be made available on the specified machines only.

By using the <mapping> element, tasks and interactions
can be made available or hidden for some users, at different
locations and on different machines or devices.

UI Prototyping with useML
useML supports the prototyping of user interfaces
especially for testing the functionality of the UI in XML
based applications like web browsers and wireless devices.

 shows that by using special style sheets and script
languages like Java Script, the <use model> can be
transformed into dynamic web based GUI-Prototypes for
different target platforms. This is very important for the
communication with end users, since they can use the
prototypes to evaluate the structure. For example, the users
can test the accessibility of some interface functionalities
before the implementation starts. It is important to note that
the goal of prototyping here is to test the “functionality”
and not the “visualization” of the UI.

Figure 9

Figure 9: Rendering useML to different hardware platforms

useML
usemodel

XSLT
XML => HTML

HTML-Prototyp

content, links, ...

HTML
Static

JavaScript
Dynamic

+

+

+
Instance Transformation

HTML
Static

HTML
Static

HTML
ViewsHTML

Static
HTML
Static

HTML
Views

Layout for Prototypes

Functionality

An example of using useML
The following example should help to demonstrate UI
description with useML. It is a simplified description of
user tasks in a machine network, i.e. the machines are
connected. This will be called “system” for simplicity.
The identified tasks are grouped into the following system
contexts:
• Operation

In this context, the machine operates normally. There are
no malfunctions or any production interruptions. The user
can select any machine and view its production statistics,
its status, its production parameters or its configuration.

• Diagnostic
In this context, the user can view and quit warnings, read
about possible problem solutions or document his
individual solutions. He can also view maintenance
parameters.

• Configuration
This is a context where users can make major setups.

• Information
A context for getting information about the system,
process and other production related information.

Organizing user tasks in contexts supports the user to have
a better mental model of the machine and tasks [9].
Since considering details of all contexts might exceed the
limits of this paper, only the context “Operation” will now
be considered in details. shows user tasks and
interactions as well as the machine, the location of
operation and the machine function that are provoked
during the interaction. Tasks consist of other tasks,
interaction or both.

Figure 10

Figure 10: User tasks and interactions in the context "Operation"

U
se

r
G

ro
up

M
ac

hi
ne

L
oc

at
io

n

Fu
nc

tio
n

select time interval Supervisor all all T
get operating hours Supervisor all all hOp
get non production time Supervisor all all stopTime
get total output Supervisor all all Out
get output per day Supervisor all all dOut

get average output per hour Supervisor all all avgOut
get number of production
interruptions Expert all all iCount
reset statistics Expert all local sReset

select time interval Supervisor all all T
get plant operation time Supervisor all all plantOp
get plant non opertation
time Supervisor all all stopOp
get expected production Supervisor all all Pex
get plant eficiency Supervisor all all Peff

all all all M
Supervisor all local R
Operator all local Pr

all all all eTemp
all all all eP
all all all mTemp
all all local sP

get engine temperature
get engine power
get medium temperature
start sample production

Task/Interaction

select machine
change revolution speed
change production rate

View operating statistics

View plant statistics

Taking the task “View operating statistics” as an example,
we see that it has the following interactions;
1. select time interval,
2. get operating hours,
3. get non production time,
4. get total output,
5. get output per day,
6. get average output per hour,
7. get number of production interruptions and
8. reset statistic.
While the first six interactions can be performed by a
supervisor, at all machines and from any location, the last
two are performed by an expert. The last interaction must
be performed direct at the machine.
Considering the organization of tasks and interactions as a
hierarchical tree, the interactions “select machine”, “change
revolution speed”, “change production rate”, “get engine

temperature”, “get engine power”, “get medium
temperature” and “start sample production” can be
considered to be at the same level as the tasks “view
operating statistics” and “view plant statistics”.
During the interaction “select time interval” the user can
select only one time interval for the statistics he needs to
view. Possible values are; “today”, “last day”, “last week”
and “last month”. As expected, this selection is modeled by
the eUO <select> (see Figure 11). The name of the eUO is
derived from the interaction without the word “select”.
Hence the eUO has the name “Time interval”. The attribute
“multiple_selection” that is associated with this eUO has
the value “false” indicating that only one selection is
allowed. The default value of this selection is “today” as
indicated by its attribute “selected” which have the value
“true”.

Figure 11: A <use model> showing part of the task “View
operating statistics”

Figure 11As indicated in different filters can be associated
with the model. These filters can then be used for
generating prototypes for different devices.
shows an example of two generated prototypes.

Figure 12

Figure 12: Useware prototypes for Web client and PDA

useML and the MB-UID
As proposed by [10] the Model-Based User Interface
Description (MB-UID) approach enables the description of
the user interface by using different declarative models at
different levels of abstraction. At the highest level are the
task model and domain model for the application. The task
model represents the tasks that users need to perform, and
the domain model represents the domain data to be
manipulated, visualized or both, and the operations that the
application supports. Task models typically represent tasks
by hierarchically decomposing each task into sub-tasks
(steps), until the leaf tasks represent operations supplied by
the application.
The second level is the abstract user interface specification
that represents the structure and content of the interface in
terms abstract interaction objects (AIO), information
elements and presentation units. AIOs are low-level
interface tasks such as selecting one element from a set, or
showing a presentation unit. Information elements
represent data to be visualized. This can either be a
constant value such as a label, or a set of objects and
attributes drawn from the domain model. Presentation units
are an abstraction of windows. They specify a collection of
AIOs and information elements that should be presented to
users as a unit.
The third level of the model, called the concrete user
interface specification, specifies the style for rendering the
presentation units, and the AIOs and information elements
they contain. The concrete specification represents the
interface in terms of toolkit primitives such as windows,
buttons, menus, check-boxes, radio-buttons, and graphical
primitives such as lines, images, text, etc. In addition, the
concrete specification specifies the layout of all the
elements of a window. While the abstract interface
specification remains toolkit independent, its corresponding
concrete model is toolkit specific.
Other models are the platform and user model.
useML implements some aspects of this approach by
defining tasks and interactions. Though the <use model>
basically defines tasks and interactions, it also defines an

abstract presentation model in a platform independent way.
In fact, the eUOs of the <use model> define abstract
interaction objects. For example the eUO <select> can be
mapped to a list, a combo box, a group of check boxes, a
group of radio buttons or even a group of command buttons
in a concrete presentation model. The decision of the
presentation form to be taken will mainly depend on
constraints of the hardware platform but also on the size of
the selection values set and the semantic of their usage.
While check boxes are normally used for multiple
selections, radio buttons are for single selection. The two
need more space on the display for realizing the selection.
On the other hand, lists can be selected directly and offer
an option for single or multiple selections. Thus one will
tend to use buttons or check boxes if there is enough space
on the display and list if space is limited.

RELATED WORK
A number of XML-based UIDL exist to date, some being
for general purpose while others for UI in specific
application domains. This section is a short discussion of
some UDIL that are related to useML.

The XML-based User Interface Language (XUL)
XUL is a language for describing the contents and the
layout of windows. To a certain degree cross-platform
applications like web browsers and mail clients can be built
from pre-defined libraries. A XUL user interface
description is made up of three sets of files, each stored in a
separate subdirectory of the chrome directory. These three
sets are the content, the skin and the locale. A particular
component might provide one or more default skins and
locales, but a user can replace them with his own ones [13].
XUL elements are based on widgets like window, button,
textbox hence it enables a detailed and concrete description
of user interface for platforms supporting these widgets.
XUL differs from useML in that it provides less or no
abstraction and fits in the design and realization phases of
the development process described above.

The User Interface Markup Language (UIML)
This is perhaps the most known XML-based UIDL. It
provides platform independent elements for defining the
user interface. The main elements are the <interface> that
contains interface specific elements like <structure>,
<content>, <style>, <behaviour> and the <peers> [11]. The
<peers> element enables rendering the interface to a
specific platform with platform specific toolkit. Though
UMIL elements are platform independent, one needs
platform knowledge in order to be able to define an
interface for a specific platform. For example the developer
must know if the structure he defines fits to the target
platform. Therefore a UIML document is platform
dependent. Taking useML und UIML together, it can be
said that useML can provide UIML with a task-oriented
and platform independent UI structure [4]. In this way
UIML can fit in the design phase of the development

process shown in . The relationship between
useML and UIM is shown in below.

Figure 1 The eXtensible Interface Markup Language (XIML)
XIML defines necessary requirements for a universal user
interface description language as well as its structure [5]. It
proposes a solution for standardizing the representation and
manipulation of interaction data – the data that defines and
relates all the relevant elements of a user interface. In so
doing, XIML is rather a framework than a description
language. The basic interface components suggested by
XIML have some resemblances with the models of the
MB-UID [10]; the task component corresponds to the task
model, the domain component corresponds to the domain
model, the user component to the user model, the
presentation component to the presentation model and the
dialog component to the dialog model. The XIML
Framework extends this by explicitly modeling relations
between elements and their attributes by using the relations
and attributes representational units. Though it is a good
idea to standardize the representation and manipulation of
interaction data, a concrete XIML-based implantation of
the framework could not be found (at least it was not
included in [5]). It is therefore not clear whether XIML as a
language really exists.

Figure 13

Figure 13: Combining useML and UIML

The Cooperative User Interfaces Markup Language
(CUIML)
CUIML is a language for the generation of multimodal
human-computer interfaces [7]. It is a XML dialect that is
based on UIML. Its basic idea is to avoid code redundancy
by putting parts that are common to all devices together,
hence minimizing the effort for change. It also implements
the MVC architecture that enables faster event handling. A
CUIML document has <cuiml> as a root node with three
mandatory children: <controller>, <genericHCI> and
<rendering>. The <controller> node has one attribute, in
which the URL of the WFDL document that configures the
ControllerWFE is stored. The ControllerAFE embodies the
central instance to synchronize the views and keep truck of
the current state of the HCI at runtime. The <genericHCI>
part describes the structure and behavior of the whole HCI.
In the <rendering> section, parts are selected from this
section and presented in different views.

A comparison of useML and the related work discussed
here can be seen in Figure 14. Phases of the Useware
development process that the UIDLs support have been
used as comparison criteria to emphasize the relationship
between the development process and the description
language.

Analysis

Evaluation

Structuring Design Realization
useML UIML, CUIML

XIMLIML

XUL

Since CUIML is a UIML derivative, it is related to useML
in the same way that UIML does.

The Interaction Markup Language (IML) Figure 14: Mapping UIDL to the Useware development process
Instead of describing the user interface, IML first describes
the interactions of the user with the interface without
making any assumptions of its implementation. It separates
the semantic information from the widgets and uses
independent rules to describe the semantics. IML is
intended to be ‘appliance independent’ i.e., it is not limited
to certain devices or platforms. This appliance-independent
XML description is transformed to specific user interfaces
using a rendering engine, which generates the actual
implementation [3].

CONCLUSION AND FUTURE WORK
This paper has presented useML as a language for
describing user interface for machines on XML basis. Its
abstraction of user tasks and interactions by using <use
objects> (UOs) and <elementary use objects> (eUOs)
enables the description of a UI in a platform independent
way. The eUOs types “execute”, “select”, “data input”,
“change” and “inform” abstract all interactions of a
machine user. The instance of useML schema is the <use
model> and can be treated with special style sheets to
generate prototypes for different platforms, leaving the
<use model> itself platform independent. The <use model>
also represents an abstract presentation model of the MB-
UID.

IML resembles useML by abstracting user interaction
instead of the user interface elements. This can guarantee
platform independence, since user interactions are platform
independent. One challenge of interaction abstraction is
domain dependence. Generally interactions tend to be
domain specific, meaning that general domain independent
abstraction of interactions will be difficult to reach. useML
was developed for machine Useware.

useML differs from other XML-based UIDL by being task
oriented and “purely” platform independent. Due to its
platform independency, useML can be applied to describe
UIs even for devices that support new technologies like

ambient intelligence [1]. Considering the applicability of
UIDL in the phases of the Useware development process,
useML mainly supports the structuring stage, while most
UIDL are developed for the design phase.
Tools for the transformation of the <use model> into
design specific UIDLs like UIML are being developed at
the institute. Moreover, approaches for integrating
ergonomic design rules in the UIDL are also in progress.
This will guarantee a consistent data flow in the Useware
development process and simply the development process
considerably.

REFERENCES
1. Boedcher, A. et. al. Organisatorisches Use model (Use

model for distributes systems). Technical Report pak,
University of Kaiserslautern, Kaiserslautern, 2004.

2. Constantine, L. et al.: From Abstraction to Realization:
Canonical Abstract Prototypes for User Interface
Design. Working Paper Version 2.0,
http://www.foruse.com/articles/canonical.pdf,
July 2003.

3. Göschka, K. M. and Smeikal, R.: Interaction Markup
Language - An Open Interface for Device Independent
Interaction with E-Commere Applications, in
Proceedings of the 34th Hawaii International
Conference on Systems Sciences 2001. IEEE Computer
Society, Austria, 2001.

4. Mukasa, K., and Maidhof, K. User Interface
Description Languages. Technical Report pak.
Kaiserslautern University of Technology,
Kaiserslautern, 2004.

5. Puerta, A., and Eisenstein, J.: XMIL: A Universal
Language for User Interfaces,
http://www.ximl.org/documents/XimlWhitePaper.pdf,
April 2004.

6. Reuther, A. useML- Systematic Useware-engineering
with XML. Science-News pak, Vol. 8. Kaiserslautern
University of Technology, Kaiserslautern, 2003.

7. Sandor, C., and Reicher, T. CUIML: A Language for
the Generation of Multimodal Human-Computer
Interfaces, in Proceedings of the European UIML,
2001.

8. Stary, C.: Meeting Activity Theory through Task-Based
and User-Oriented Development of User Interfaces, in
Proceedings of the Fourth International Conference on
Computer-Aided Design of User Interfaces,
Valenciennes, May 2002, 193-204.

9. Style Guide for Machine Tools. A Handbook for
Design of User Interfaces for Machine Tools,
Fraunhofer IRB Verlag, Stuttgart, 2000.

10. Szekely, P. Retrospective and Challenges for Model-
Based Interface Development, in Computer-Aided
Design of User Interfaces, Belgium, 1996, xxi-xliv.

11. User Interface Markup Language (UIML) Specification.
Language Version 3.0 (Draft),
http://www.uiml.org/specs/uiml3/DraftSpec.htm,
February 2002.

12. VDI/VDE3850 Norm: Nutzergerechte Gestaltung von
Bediensystemen für Maschinen (user oriented design of
machine control systems).

13. XUL Tutorial: http://xulplanet.com/tutorials/xultu/,
February 2004.

14. Zühlke, D.; Mukasa, K.: Modelbasierte GUI-
Entwicklung mit autoCAID. (Model-based GUI
Development with autoCAID) in, Qualität von Arbeit
und Produkt in Unternehmen der Zukunft, Stuttgart:
Ergonomia Verlag, 2003, 91-94.

15. Zuehlke, D.; Wahl, M.: autoCAID: a model-based GUI
tool for machine tools. IUI 2002, San Francisco, 2002,
242-242.

The TERESA XML Language for the Description of
Interactive Systems at Multiple Abstraction Levels

Silvia Berti, Francesco Correani, Fabio Paternò, Carmen Santoro

{silvia.berti, francesco.correani, fabio.paterno, carmen.santoro}@isti.cnr.it
ISTI-CNR

Via G.Moruzzi 1
Pisa, Italy

ABSTRACT
The purpose of this paper is to report on the use of XML
languages to support the TERESA tool. This is a tool for
model-based design of multi-device interfaces. It considers
three levels of abstractions (task model, abstract user
interface and concrete user interface). For each of them a
specific language has been defined and used. In addition,
since the lowest abstract level (the concrete interface) is
platform-dependent, there are different variants for each
platform considered.

Keywords
Model-based design, XML user interface languages, tools.

INTRODUCTION
With the advent of the wireless Internet and the rapidly
expanding market of smart devices, designing interactive
applications supporting multiple platforms has become a
difficult issue. The main problem is that many assumptions
that have been held up to now about classical stationary
desktop systems are being challenged when moving
towards nomadic applications, which are applications that
can be accessed through multiple devices from different
locations. Consequently, one fundamental issue is how to
support software designers and developers in building such
applications: in particular, there is a need for novel
methods and tools able to support development of
interactive software systems that adapt to different targets
while preserving usability.
Model-based approaches [4] could represent a feasible
solution for addressing such issues: the basic idea is to
identify useful abstractions highlighting the main aspects
that should be considered when designing effective
interactive applications. Our approach extends previous
work in the model-based design area in order to support
development of nomadic applications. In particular, we
have designed and developed the TERESA
(Transformation Environment for inteRactivE Systems
representAtions) tool providing general solutions that can
be tailored to specific cases. This tool supports
transformations in a top-down manner, providing the
possibility of obtaining interfaces for different types of

devices from logical descriptions. It differs from other
approaches such as UIML [1], which mainly consider low-
level models. XIML [6] has similar goals but there is no
publicly available tool supporting it.

THE METHOD
Our method for model-based design is composed of a
number of steps that allow designers to start with an overall
envisioned task model of a nomadic application and then
derive concrete and effective user interfaces for multiple
devices:
• High-level task modelling of a multi-context

application. In this phase designers develop a single
model that addresses the possible contexts of use and
the various roles involved and also a domain model
aiming to identify all the objects that have to be
manipulated to perform tasks and the relationships
among such objects. Such models are specified using
the ConcurTaskTrees (CTT) notation [4], which also
allows designers to indicate the platforms suitable to
support each task.

• Developing the system task model for the different
platforms considered. Here designers have to filter the
task model according to the target platform and, if
necessary, further refine the task model, depending on
the specific device considered, thus, obtaining the
system task model for the platform considered.

• From system task model to abstract user interface.
Here the goal is to obtain an abstract description of the
user interface composed of a set of presentations that
are identified through an analysis of the task
relationships. Each presentation is structured by means
of interactors composed of various operators.

• User interface generation. In this phase we have the
generation of the user interface. This phase is
completely platform-dependent and has to consider the
specific properties of the target device.

THE TOOL
TERESA is intended to provide a complete semi-automatic
environment supporting a number of transformations useful
for designers to build and analyse their design at different
abstraction levels and consequently generate the user
interface for various types of platforms.
A number of main requirements have driven the design and
development of TERESA:
• Mixed initiative; we want a tool able to support different

levels of automation ranging from completely automatic
solutions to highly interactive solutions where designers
can tailor or even radically change the solutions proposed
by the tool.

• Model-based, the variety of platforms increasingly
available can be better handled through some abstractions
that allow designers to have a logical view of the
activities to support.

• XML-based, each abstraction level considered can be
described through an XML-based language.

• Top-down, this approach is an example of forward
engineering. So, designers first have to create more
logical descriptions, and then move on to more concrete
representations until the final interface is obtained.

• Different entry-points, our approach aims to be
comprehensive and to support various possibilities,
including also when different set of tasks can be
performed on different platforms. However, there can be
cases where only a part of it needs to be supported and,
for example, designers want to start with a logical
interface description and not with a task model.

• Web-oriented, we decided that Web applications should
be our first target. However, the approach can be easily
extended to other environments (such as Java
applications, Microsoft environments, …) by just
modifying only the last transformation (from concrete
interface to final interface).

The TERESA tool offers a number of transformations and
provide designers with an integrated environment for
generating XHTML interfaces for desktop, mobile phones
and VoiceXML user interfaces. With the TERESA tool, at
each abstraction level the designer is in the position of
modifying the representations while the tool keeps
maintaining forward and backward the relationships with
the other levels. For example, it maintains links between
abstract interaction objects and the corresponding tasks in
the task model so that designers can immediately identify
their relations. This results in a great advantage for
designers in maintaining a unique overall picture of the
system, with an increased consistence among the user
interfaces generated for the different devices and
consequent improved usability for end-users.

Figure 1: The TERESA tool.

Once the elements of the abstract user interface have been
identified, every interactor has to be mapped into
interaction techniques supported by the particular device
configuration considered (characterised by the modalities
supported, the screen size, …), and also the abstract
operators have to be appropriately implemented by
highlighting their logical meaning: a typical example is the
set of techniques for conveying grouping relationships in
visual interfaces by using presentation patterns like
proximity, similarity and continuity. However, different
techniques for grouping elements are used in case of vocal
interfaces, such as using a specific sound to delimit a set of
elements.

How XML-based Languages are Used in the Tool
TERESA is a transformation-based tool that supports the
design of an interactive application at different abstraction
levels and generates the concrete user interface for various
types of platforms. By platform we mean a class of systems
that share the same characteristics in terms of interaction
resources. Such transformations exploit a number of XML
languages. The main transformations supported in
TERESA are:
• Presentation task sets and transitions generation.

From the XML specification of a CTT task model
concerning a specific platform, it is possible to obtain
the Presentation Task Sets (PTSs), sets of tasks which
are enabled over the same period of time according to
the constraints indicated in the model and transitions
specifying the conditions allowing moving across PTSs.
Such sets, depending on the designer’s application of a
number of heuristics (general criteria used to merge
together two or more PTSs) supported by the tool, can
be grouped together so identifying the groups of tasks
that should be supported by each user interface
presentation.

• From task model -related information to abstract user
interface. The goal of this phase is mapping the task-
based specification of the system onto an interactor-
based description of the related abstract user interface.
Both the XML task model and Presentation Task Sets
specifications are the input for the transformation
generating the associated abstract user interface.
Currently, each basic task that manipulates a user
interface element is associated with an interactor in the
abstract interface. The specification of the abstract user
interface, in terms of both its static structure (the
“presentation” part) and dynamic behaviour (the
“dialogue” part), is saved for further analyses and
transformations. It is worth pointing out that using
TERESA it is also possible to access the inverse
mapping, since for each interactor the tool is able to
automatically identify and highlight the related task, so
that designers can immediately spot such a relation.
This is particularly useful especially when it comes to
specifying the properties of each interactor, as the
knowledge of the task it supports is an important
indication of its meaning and goal, so it helps designers
to position the interactor within the overall application
and decide on the most appropriate settings.

• From abstract user interface to concrete interface for
the specific platform. This transformation starts with the
loading of a XML abstract user interface specification
previously saved and yields the related concrete user
interface for the specific media and interaction platform
selected, which is saved in the associated XML
language. Currently, there is a one-to-one mapping
between abstract and concrete interactors. A number of
parameters related to the customisation of the concrete
user interface are made available to the designer.

• Automatic UI Generation. The tool automatically
generates the final UI for the target platform. The
starting point can be the single-platform task model,
using a number of default configuration settings related
to the user interface generation, or the abstract or the
concrete user interface.

THE TASK MODEL
The task model is represented by the ConcurTaskTrees
(CTT) notation [4], which supports a hierarchical
description of task models with the possibility of specifying
a number of temporal relations among them (such as
enabling, disabling, concurrency, order independence,
suspend-resume). In addition, for each task it is possible to
specify what objects need to be manipulated for its
accomplishment (it is possible to consider both user
interface and domain objects), as well as a number of
additional attributes (such as frequency) (see Figure 3).

Figure 2: How XML Languages are used in TERESA.

The notation is tool supported. Initially the idea was to
facilitate the development of task models and support
saving them in XML format. It was the first notation for
task models described in XML format (this feature has
been available since 1998). It is currently used also in other
environments (such as [2]) for user interface design and
development.

RootTask
TaskModel

NameTaskModelID : CDATA
1 11 1

SubTask

0..*

1

0..*

1

Category Type
0..*

1

0..*

TemporalOperator
name : SequentialEnabling | Disabling |
 Interleaving | Synchronization | SuspendResume |
 Choice | OrderIndependency | SequentialEnablingInfo

Platform

SiblingLeft
name : CDATA

SiblingRight
name : CDATA

Parent
name : CDATA

Object
name : CDATA
class : Text | Numerical | Graphic | Image | Position | null
type : Perceivable | Application | null
access_mode : Access | Modification | null
cardinality : Low | Medium | High | null

0..*

1

0..*

Task
name : PCDATA
identifier : CDATA
description : PCDATA
iterative : Boolean
optional : Boolean
frequency : CDATA
part of coop : Boolean

1..*

1

1..*

1

0..* 10..* 1

1

1

1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..*1 0..*1

0..1
1

0..1
1 0..1

1

0..1

1

0..1

1

0..1

1

0..*

1

0..*

1
1

1

Figure 3: Class diagram representing the concepts of the
ConcurTaskTrees notation.

In order to support this approach we needed to extend the
notation in such a way to be able to capture the specific
aspects of task models for nomadic applications. The
platform attribute has been added in each task
specification; its purpose is to indicate the types of
platforms that are suitable to support it. It is worth noting
that at this level –the task level- sets of devices sharing
certain similarities are considered, rather than specific
devices. So, in our framework we provide for typical
sample device clusters as mobile phones and PDAs are,

XHTMLXHTML

XML spec.
of

operators
&

abstract
interactors

XML spec. XML spec.
of of

operatorsoperators
& &

abstractabstract
interactorsinteractors

WML

HTML
Mobile

WML

HTML
Mobile

VoiceXMLVoiceXML

XML spec
of CTT
task

model

XML spec
of CTT
task

model

XML
specof
Enabled
Task
Sets

XML
spec of
Enabled
Task
Sets

……
AbstractAbstract UserUser

InterfaceInterface

XML spec.
of

Concrete
User

Interface

XML spec. XML spec.
of of

Concrete Concrete
UserUser

InterfaceInterface

XHTMLXHTML

XML spec.
of

operators
&

abstract
interactors

XML spec. XML spec.
of of

operatorsoperators
& &

abstractabstract
interactorsinteractors

WML

HTML
Mobile

WML

HTML
Mobile

VoiceXMLVoiceXML

XML spec
of CTT
task

model

XML spec
of CTT
task

model

XML
specof
Enabled
Task
Sets

XML
spec of
Enabled
Task
Sets

……
AbstractAbstract UserUser

InterfaceInterface

XML spec.
of

Concrete
User

Interface

XML spec. XML spec.
of of

Concrete Concrete
UserUser

InterfaceInterface

together with the possibility for designers to define their
own platforms. This has proved to be both feasible and
flexible to tackle the problem of dealing with the disparate
devices that our approach has to consider. Nevertheless,
additional levels of refinement within the same cluster are
considered in the last phase of the method, when knowing
the specific characteristics of the devices considered
becomes useful for producing effective final user
interfaces.
The platform attribute has also been associated with the
objects manipulated during task accomplishment. Indeed,
CTT allows designers to specify for each task what objects
should be manipulated during its performance.

THE ABSTRACT USER INTERFACE
An abstract user interface is composed of a number of
presentations and connections among them. Each
presentation defines a set of presentation and interaction
techniques perceivable by the user at a given time. The
connections define the dynamic behaviour of the user
interface. More precisely, they indicate what interactions
trigger a change of presentation and what the next
presentation is. They can be associated with conditions in
case a specific combination of interactions should trigger
the change of presentation.

Figure 4: The Structure of the Abstract User Interface
Language.

The structure of the presentation is defined in terms of
interactors (abstract descriptions of interaction objects
classified depending on their semantics) [5] and their
composition operators (see Figure 4). It is possible to
distinguish between interactors supporting user interaction

(interaction elements) and those that present results of
application processing (only_output elements). The
interaction elements imply an interaction between the user
and the application. There are different types of interaction
elements depending on the type of task supported. We have
selection elements (to select between a set of elements),
edit (to edit an object), control (to trigger an event within
the user interface, which can be useful to activate either a
functionality or the transition to a new presentation).
Differently, an only_output element defines an interactor
which implies an action only from the application. There
are different types of only_output elements (text, object,
description, feedback) depending on the type of output the
application provides to the user: a textual one, an object, a
description, or a feedback about a particular state of the
user interface.
The composition operators can involve one or two
expressions, each of them can be composed of one, several
interactors or, in turn, compositions of interactors. In
particular, the composition operators have been defined
taking into account the type of communication effects that
designers aim to achieve when they create a presentation
[3]. They are:

• Grouping (G): indicates a set of interface elements
logically connected to each other;

• Relation (R): highlights a one-to-many relation
among some elements, one element has some
effects on a set of elements;

• Ordering (O): some kind of ordering among a set
of elements can be highlighted;

• Hierarchy (H): different levels of importance can
be defined among a set of elements.

CONCRETE GRAPHICAL INTERFACE
In this section we describe the XML language for two
graphical platforms: the desktop and the mobile phone. In
both cases the structure is designed to be similar to the
structure of the abstract user interface language. In this
way, passing through these levels in the UI generation
process, we are always able to easily recognize the
interactor hierarchy.
Implementation details are mostly provided by a deeper
tree representation, with leaf nodes defining concrete
information. Differences among concrete user interface
specifications belonging to different devices, thus, can be
mainly found in the lowest levels of the hierarchical
structure.
A concrete desktop user interface is defined by a number of
presentations and default settings to be used in the
generation phase.

<!ELEMENT concrete_desktop_interface
(default_settings, presentation+) >

controlcontrol

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

controlcontrol

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

controlcontrol

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

singlechoice
high_card

singlechoice
high_card

singlechoice
medium_card
singlechoice
medium_card

singlechoice
low_card

singlechoice
low_card

multiple choice
medium_card

multiple choice
medium_card

multiple choice
low_card

multiple choice
low_card

multiple choice
high_card

multiple choice
high_card

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

editeditselectionselection

multiple_choicemultiple_choiceSingle_choiceSingle_choice

bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback bool_operatorbool_operator conn_type+conn_type+

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

Interaction
interactor

Interaction
interactor

Only output
interactor

Only output
interactor

Interactor
composition
Interactor

composition
InteractorInteractor elementary

conn
elementary

conn

conn_typeconn_type

complex
conn

complex
conn

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

interfaceinterface

InteractorInteractor connection*connection*

presentation+presentation+

interactor
composition
interactor

composition

second_
expression?
second_

expression?

first_
expression+

first_
expression+

operatoroperator

descriptiondescriptionobjectobjecttexttext feedbackfeedback

numerical
edit

numerical
edit

Object
edit

Object
edit

Text
edit
Text
edit

Position
edit

Position
edit

<!ELEMENT default_settings (background, font_settings,
operators_settings, interactors_settings)>

Mobile devices also require specifying further data
regarding expressive capabilities of the target phone.

<!ELEMENT concrete_mobile_interface (device_type,
default_settings, presentation+)>
<!ELEMENT device_type (big | medium | small)>
<!ELEMENT big EMPTY>
<!ATTLIST big graphic_support (%option;)
#REQUIRED>
<!ELEMENT medium EMPTY>
<!ATTLIST medium graphic_support (%option;)
#REQUIRED>
<!ELEMENT small EMPTY>
<!ATTLIST small graphic_support CDATA #FIXED
"no">

As usual, each presentation contains information about
interactor organization and connections to other
presentations, but specific properties, like title, header etc.,
are also described.

<!ELEMENT presentation (presentation_properties,
connection*, (interactor | interactor_composition))>
<!ELEMENT presentation_properties (title, background,
font_settings, top)>

Connection and interactor composition are defined as in the
AUI language for each type of target platform.

<!ELEMENT connection (conn_type)>
<!ATTLIST connection presentation_name IDREF
#REQUIRED>
<!ELEMENT conn_type (elementary_conn |
complex_conn)>
[…]
<!ELEMENT interactor (interaction | only_output)>
<!ELEMENT interactor_composition (operator,
first_expression+, second_expression?)>
<!ELEMENT operator (grouping | ordering | hierarchy |
relation)>

In the Interactor specification the deeper we proceed, the
more concrete details we get. For instance, let us consider
how we can describe single selection interactors with our
desktop CUI notation.

<!ELEMENT interaction (selection | editing | control)>
<!ELEMENT selection (single | multiple)>
<!ELEMENT single (radio_button | list_box |
drop_down_list)>
<!ATTLIST single cardinality (%cardinality_value;)
#REQUIRED>
<!ELEMENT radio_button (choice_element+)>
<!ATTLIST radio_button label CDATA #REQUIRED>
<!ELEMENT choice_element EMPTY>
<!ATTLIST choice_element
 label CDATA #REQUIRED
 value CDATA #REQUIRED>
[…]

Differences among other CUIs consist of different concrete
elements associated to a given type of interactor; e.g. let us
consider the previous example for mobile devices, list
boxes are not usable in this context so they are not allowed.
<!ELEMENT single (radio_button | drop_down_list)>
[…]

Each CUI formalizes the expressive power of a given
device type in terms of concrete interactors and operators
available in that platform. While in desktop environments
grouping operators can be implemented by combining
several techniques, in mobile phones, because of the
limited screen dimensions, we can choose only one
implementation technique from a limited set.

It can happen that some abstract interactor is related to the
same concrete elements even in different CUI. In this case,
differentiation is granted by allowing different attributes
values for the same concrete object.
For instance we can refer to the text edit objects: they can
be implemented with a text field in both desktop and
mobile cases.

<!ELEMENT text_edit (textfield)>
<!ELEMENT textfield EMPTY>
<!ATTLIST textfield
 label CDATA #REQUIRED
 length (%length_value;) #REQUIRED
 password (%option;) #REQUIRED>

However, the reduced screen capabilities of mobile devices
are considered, thus allowing lower length values.
Desktop CUI

<!ENTITY % length_value "8 | 9 | 10 | 11 | 12 |13 | 14 | 15 |
16 | 17 | 18 |19 | 20">
Mobile CUI
<!ENTITY % length_value "4 | 5 | 6 | 7 | 8 | 9 | 10">

CONCRETE VOCAL INTERFACE
Like graphical interfaces, in vocal interfaces a concrete
user interface is composed of some default settings and a
set of presentations corresponding to the presentations of
the abstract user interface language. The difference is that
in this language, interactors and their compositions are
obtained through techniques specific for the vocal
interface, so they have different attributes.
The default settings are applied to the entire vocal
application and are important for supporting the user
interactions.
<!ELEMENT default_settings (name_application,
welcome_msg, def_commands?, synthesis_properties,
recognition_properties, bargein, operator_settings+)>
<!ELEMENT name_application EMPTY>
<!ATTLIST name_application value CDATA
#REQUIRED>

The welcome message allows users to understand the
current context and that they are talking to a computer that
accepts a well defined language. In this case is possible to
use some default message (short, medium or long) or to
define a new message (new). Another useful parameter of
this element is onlyOnce that allows skipping a welcome
message when the user visits the main presentation for the
second time.
<!ELEMENT welcome_msg EMPTY>
<!ATTLIST welcome_msg

type (short | normal | long | new) #REQUIRED
msg CDATA #REQUIRED
onlyOnce (%boolean;) #REQUIRED>

Other general settings regard: the property of synthesis or
recognition engine, the barge-in option that allows the user
to interrupt a prompt in order to speed up the dialog
sequence and some default commands that allow users to
disable the device input and/or to exit from voice
application.
<!ELEMENT synthesis_properties EMPTY>
<!ATTLIST synthesis_properties

pitch (%pitch_value;) #REQUIRED
 rate (%rate_value;) #REQUIRED
 volume(%volume_value;) #REQUIRED>
<!ELEMENT recognition_properties EMPTY>

<!ATTLIST recognition_properties
confidence CDATA #REQUIRED
sensitivity CDATA #REQUIRED

 completetimeout CDATA #REQUIRED
 incompletetimeout CDATA #REQUIRED>

<!ELEMENT def_commands (exit?, disable?)>
<!ELEMENT disable EMPTY>
<!ATTLIST disable

cmd_dis CDATA #REQUIRED
cmd_activ CDATA #REQUIRED>

<!ELEMENT exit EMPTY>
<!ATTLIST exit msg_to_exit CDATA #REQUIRED>
<!ELEMENT bargein EMPTY>
<!ATTLIST bargein active (%boolean;) #REQUIRED>

The structure of each presentation is defined in terms of
some general properties similar to those considered in the
default settings but in this case they concern one specific
presentation, the dynamic behaviour of the user interface,
the vocal properties of interactors, and the vocal techniques
exploited to represent the composition operators.
<!ELEMENT presentation (presentation_properties,
connections*, (interactor | interactor_composition))>
<!ATTLIST presentation name ID #REQUIRED>
For example, the vocal properties of selection interactor
concerns three types of menu:
<!ELEMENT selection (single | multiple)>
<!ELEMENT single (dtmf_menu | enumerate_menu |
message_menu)>
<!ELEMENT multiple (dtmf_menu | enumerate_menu |
message_menu)>
The meaning of the possible values is:

• <dtmf_menu>: in this case in the vocal interface
the user can perform the selection only through
the keypad and so the message of synthesizer will
be “If you want a coffee, press 1; if…”

• <enumerate_menu>: in this case in the vocal
interface the synthesizer produce a list of option as
“Do you want: coffee, tea, milk…”.

• <message_menu>: in this case in the vocal
interface the synthesizer generate an elaborated
message like “if you prefer coffee, say coffee;
if…”

In any case, the selection interactors can define a feedback
message to confirm if a command is correctly understood
or how to manage some events such as no input or no
match or help or define a reply message in order to listen
again the choices.

In the concrete user interface composition operators can be
represented through different vocal techniques according to
their logical meaning and communication goals. Grouping
can be represented through four techniques:
<!ELEMENT grouping (Insert_sound | Insert_pause |
Change_volume | Keywords)>
<!ELEMENT Insert_sound EMPTY>
<!ATTLIST Insert_sound
 src_audio_file CDATA #REQUIRED>
The technique inserts a sound at the beginning and at the
end of the grouped elements and, in this case, the audio file
is specified.
<!ELEMENT Insert_pause EMPTY>
<!ATTLIST Insert_pause
 lenght_pause CDATA #REQUIRED>
This technique inserts a pause at the end of the grouped
elements and in this case is specified the duration of pause.
<!ELEMENT Change_volume EMPTY>
A specific volume can be used during the speech synthesis
of the grouped elements.
<!ELEMENT Keywords EMPTY>
The keywords technique inserts some words to highlight
the grouping operator (for examples: “In this Application
you can choose one of this option: If you would like some

general information, say information… if you would like to
book a ticket, say ticket. Alternatively if you would…”).
Ordering can be represented by two techniques: arranging
objects in alphabetical order, and keywords techniques that
insert some words to highlight the operator order (for
example: “In this presentation at the beginning you should
say a name, after the sound say password and lastly say go
in order to proceed”).
<!ELEMENT ordering
(Arrange_objects_in_alphabetical_order | Keywords)>
<!ELEMENT Arrange_objects_in_alphabetical_order
EMPTY>
<!ELEMENT Keywords EMPTY>

The Relation operator supports a vocal input that enables a
change in context by moving to another presentation. This
type of operation can be useful to navigate within the
presentation.
<!ELEMENT relation (Change_context)>
<!ELEMENT Change_context EMPTY>

The Hierarchy operator is represented through two
techniques: increasing or decreasing the volume of the
synthesized voice.

Figure 5: The Task Model for the Desktop version of the example.

AN EXAMPLE
In this section we show an example of this approach in
order to better understand how the various abstraction
levels are exploited. We consider a museum application.
Figure 5 shows the task model for the desktop version.
After the automatic transformation of the task model first
into an abstract user interface and then into a concrete user
interface, some attributes have been edited in order to

obtain the concrete version for a desktop system and we
obtain the result shown in Figure 6.
It is possible to see that the user interface is structured into
nine presentations automatically identified. The structure of
the first presentation is currently presented by the tool.
There are two grouping compositions of interactors: one
aims to group three navigator interactors allowing the
access to the various parts of the application, the second

one groups the first grouping with a description interactor.
The element currently selected in the control panel is the
second grouping interactor. The associated attributes and
the corresponding values are displayed in the bottom part.

Figure 6: The Structure of the User Interface of the
example.

Figure 7 shows the corresponding user interface. In the
bottom part we can see the navigator interactors which are
lined up in a horizontal manner with consistent appearance,
thus implementing the grouping operator. In the top part
there is the implementation of the description element
aiming to introduce the Marble Museum and its artworks.
The resulting interface implements the indications
contained in the task model. Indeed, in the model the first
is a system task aiming to introduce the museum showing
the home page. Such task can be disabled by three
interactive tasks whose purpose is to enable different types
of high-level tasks (access to general information,
artworks, and ticket reservation). These four basic tasks
are those associated with the first presentation in the
abstract and concrete user interface.

CONCLUSIONS
The TERESA environment supports design and
development of multi-platform user interfaces through a
number of transformations that can be performed either
automatically or through interactions with the designer.
To this end, a number of XML languages that capture the
relevant information at different abstraction levels are used.
Such languages are introduced in this paper along with a
discussion of how they are used in the environment.

Figure 7: The interface of the first page of the example.

The tool can be freely downloaded at
http://giove.cnuce.cnr.it/teresa.html.
Future work will be dedicated to supporting generation in
further multimodal user interface languages. We also plan
to support importing of CAMELEON XML representations
in order to ease exchange of information with other tools
and facilitate integration of forward and reverse
engineering environments

ACKNOWLEDGMENTS
We gratefully acknowledge support from the EU IST
CAMELEON project (http://giove.cnuce.cnr.it/
cameleon.html) and the EU SIMILAR NoE
(www.similar.cc).

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.,

Williams, S., Shuster, J. UIML: An Appliance-
Independent XML User Interface Language,
Proceedings of the 8th WWW conference, 1999.

2. K.Luyten, K.Conix, An XML-based runtime user
interface description language for mobile computing
devices. Proceedings DSV-IS 2001, pp.20-29, Springer
Verlag.

3. Mullet, K., Sano, D., Designing Visual Interfaces.
Prentice Hall, 1995.

4. Paternò, F., Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-
85233-155-0, 1999.

5. Paternò, F., Leonardi, A. A Semantics-based Approach
to the Design and Implementation of Interaction
Objects, Computer Graphics Forum, Blackwell
Publisher, Vol.13, N.3, pp.195-204, 1994.

6. Puerta, A., Eisenstein, XIML: A Common
Representation for Interaction Data, Proceedings ACM
IUI’01, pp.214-215.

VRIXML : A User Interface Description Language for Virtual
Environments

Erwin Cuppens Chris Raymaekers Karin Coninx

Limburgs Universitair Centrum
Expertise centre for Digital Media

Universitaire Campus, B-3590 Diepenbeek, Belgium
{erwin.cuppens, chris.raymaekers, karin.coninx}@luc.ac.be

ABSTRACT
When modeling virtual environments, the designer has
to consider the interaction of the user within the gener-
ated world, next to the appearance of the environment.
Part of this interaction is supported by a user interface,
which can be used to manipulate the objects that are
contained in the environment.
This paper investigates the possibility of using a XML-
based user interface description language in order to
design a user interface and specify its behavior within
the virtual environment. Some existing languages are
examined and compared, and afterwards the syntax
and features of our own description language, called
VRIXML, are presented.

Author Keywords
Virtual Environment, User Interface Description Lan-
guage

INTRODUCTION AND MOTIVATION
Virtual Environments (VEs) are computer generated,
three-dimensional environments that create the effect
of an interactive world in which the user is immersed.
Nowadays, VEs can be used in a lot of different applica-
tion areas such as Computer Aided Design (CAD) and
3D modeling [17], (medical or flight) simulation envi-
ronments [18], and information visualization [3].
Virtual environments are very promising for future com-
puter science applications but, like every maturing tech-
nique, there still are some problems to be solved be-
fore VEs become more widespread. The most impor-
tant challenge when using computer generated environ-
ments, is to keep the feeling of presence at all times.
One way to realize this for the user is the use of ad-
vanced display techniques such as stereoscopic viewing,
head mounted displays and cave structures. A second
aspect that contributes to this feeling are the interac-

tion paradigms. The user is offered a range of tech-
niques that allow intuitive interaction with the gen-
erated environment. Some examples of these interac-
tion techniques are speech input, haptic feedback or 3D
(head)tracking. Advanced use of these techniques leads
to two-handed and/or multimodal interaction as we use
it in real life [4].
The expansion of the existing interaction possibilities
provides particularly methods for direct manipulation
of the objects in the environment. When considering for
instance an object that is positioned at a large distance
of the user, it is easy to see that direct manipulation
is not always obvious. To tackle this problem, indirect
manipulation is required. A straightforward approach
to solve the need for indirect manipulation techniques
is to integrate a (two-dimensional) GUI in the three-
dimensional environment for object manipulation. A
hybrid 2D/3D user interface is a possible approach in
order to provide this interface integration. [5]
In our lab we are developing a code framework that gen-
eralizes interaction in VEs. The framework contains an
elaborated widget set for creating user interfaces in a
computer generated environment. The design of the
widget set is based on previous research and it will be
presented more in detail in the section concerning the
user interface and its environment.
Nowadays, XML-based user interface description lan-
guages (UIDLs) are frequently used to design an ap-
plication interface, particularly for desktop, web-based
and multi-device user interfaces. The last few years,
a lot of research has been done towards these UIDLs
and several languages are presented for all kinds of pur-
poses.
In the scope of our current research project, which is
called VR-DeMo (Virtual Reality: Conceptual Descrip-
tions and Models for the Realization of Virtual Environ-
ments), we are examining how we can use a XML-based
UIDL in order to design our user interface and connect
it to the functionalities of the VE. For this reason we
created VRIXML (Virtual Reality Interaction XML).
The ultimate goal of the VR-DeMo project is to fa-
cilitate and shorten the development process of VEs by
means of conceptual specifications and descriptions. We
believe that the use of a UIDL is a good first step in
our research because of its descriptive nature.
In the remainder of this paper, some related work will be

presented after which an overview of the created frame-
work and the hybrid widget set will follow. Next, the
widget set will be connected to the developed descrip-
tion language of which the main properties will be illus-
trated with an example. Finally we will conclude the
paper by presenting some ideas for the future.

RELATED WORK
User interface development in VEs has known several
different approaches. Some limit the interface to menu
interaction such as the spherical menu [11] or pie menu
[7]. The first is also called a ”Daisy menu” and is part of
the JDCAD system which is used to manipulate 3D ob-
jects. The primitives are selected by rotating the sphere
shaped menu until the desired object is in a cone that
always faces the user. The pie menu is part of the Holos-
ketch VR sketching system. The menu items are slices
of the pie and are selected by means of a wand. If the
selected menu item contains a sub-menu, the current
pie fades out and the sub-menu pie fades in.
In other approaches (e.g. the FLIGHT project), com-
plete toolkits were developed to create user interfaces
for VEs [2].
Because of the more extended possibilities we prefer
to develop a complete widget set over a solution with
menus alone. Next to the widget set, there is also need
for a way to describe the user interfaces that are devel-
oped.
eNode UI [8], libGlade, and WML [10] are languages
that can be used to describe static interfaces. Each of
these languages however, is designed to support a differ-
ent type of interface and/or platform. eNode UI aims
especially at the creation of user interfaces for (java-
based) web applications. libGlade is a library allowing
to load GLADE (a free user interface builder for GTK+
and GNOME) interfaces at runtime in such a way, that
changing the look of a user interface is possible with-
out recompiling the application. WML(wireless markup
language) is an alternative for (X)HTML which is used
to design webpages for mobile devices.
VoiceXML [9] is a language which has been designed in
order to create audio dialogs that feature synthesized
speech, digitized audio, . . .
The SEESCOA XML [13] is a description language cre-
ated, in our research lab, in the scope of the SEESCOA
project. Its main goal is to describe user interfaces for
embedded systems and mobile devices. An abstract de-
scription of the interface widgets was used, which offers
possibilities for automatic user interface generation in
such a way that the interface is adjusted to the con-
straints of the system (e.g. the size of the screen or the
available widget set).
Another widely used description language is UIML (User
Interface Markup Language). This is a more abstract
XML-based meta-language that permits a declarative
description of a user interface in a highly device inde-
pendent manner [1]. Next to the description of the in-
terface, UIML also offers the possibilities to map the
defined interface to the application logic of the target

device. Because of it’s generality, it is possible to use
UIML to as a replacement for other existing description
languages such as VoiceXML, or WML. But, as always,
abstraction has it’s price and in the case of UIML, the
drawback is complexity.
As far as we know, there are no UIDLs that focus on
interaction in VEs. Compared with two-dimensional
interfaces there are however some pitfalls, which make
most of the existing languages less usable. An example
of such a difficulty is the use of a more advanced widget
set which is not supported in most UIDLs.
Next to the interface description languages, there are
some languages that can be used to describe objects
in virtual environments. Currently the dominant de-
scription language to describe virtual worlds, is VRML
[12] (or X3D, which is VRML translated into an XML-
based syntax). This language is widely used to define
three-dimensional objects and their environments. Sev-
eral viewers are created that use VRML files to generate
three-dimensional worlds. Within these viewers, inter-
acting with the environment is possible by means of a
scripting language (e.g. javascript) but the interaction
is limited to a mouse or a keyboard. Currently, no ap-
plications exist that support interaction in VRML while
using VR input devices.

Because description languages have proven to be a very
good method for the development and abstraction of
2D interfaces, we propose a similar approach for the
description of user interfaces in virtual environments.

THE USER INTERFACE AND ITS ENVIRONMENT
Our lab has conducted several research projects towards
interaction in VEs [4, 16, 17]. Based on these research
results, we have developed a code framework that sup-
ports all investigated interaction techniques. In the re-
mainder of this section an overview of the framework
will be given. Special attention is payed to the user
interface widget set that is supported.

The VE framework
A full description of the technical details and the goals
of the framework is beyond the scope of this paper. For
this reason we will cut down our overview to the prop-
erties of the framework necessary for the further under-
standing of this paper. Interested readers can find an
extended description of the framework in [6]
The framework, in its current state, can be considered
as a black box (indicated by the dashed box in figure
1) that can be used to create VEs that require all sorts
of (multimodal) interaction possibilities. Currently it
supports the use of several 3D input devices (e.g. a
spacemouse, a microscribe or 3D trackers), speech in-
put and haptic feedback by means of a PHANToM de-
vice (figure 2)[15]. However, due to the nature of this
paper, interaction techniques, other than the user inter-
face, will not be considered more in detail.
In order to reuse the interaction techniques, implemen-
ted within the framework, we tried to abstract these
techniques as much as possible. To realize this, an in-

Figure 1: The VE Framework

terface is developed for each of these interaction tech-
niques. These interfaces should be considered in the
sense of an API of which the designer of the environ-
ment can use the supported functionalities.
The data passed into the framework is similar for all
created interfaces and is represented by an interaction
event. Such an event contains, besides the event identi-
fier, all parameters necessary for the correct execution
of the task. All events that are generated by the inter-
action techniques are send to a central dispatching unit,
called a task conductor, located in the core of the frame-
work. From there, the interaction events are redirected
to the appropriate (application specific) event handling
code as shown in figure 1.
In the remainder of this section an overview will be
given of the provided user interface widget set. Like
other interaction techniques, the user interface will also
generate and send interaction events to the task con-
ductor in order to perform the necessary tasks.

The user interface widget set
A hybrid approach was chosen when developing our
widget set. The resulting user interface contains prop-
erties based on 2D as well as 3D environments and ap-
plications. As it was the main goal to be integrated in
a VE, the interface can be controlled by several of the
aforementioned 3D interaction devices. On the other
hand, the widget set has a similar look and functional-
ity as familiar 2D GUIs and the interaction was designed
to be consistent with the skills of the users to work with
2D interfaces.
A special feature of the designed interface elements is
their possibility to support haptic feedback by means of
the PHANToM haptic interface [15]. This device pro-
vides the user with a sense of touch in the VE. The ad-
dition of this modality into a computer generated world
can greatly increase the feeling of presence and improve
the intuitiveness [19]. By combining haptic feedback
with our widget set, user interface elements can be ac-
cessed in a more convenient way. Indeed, by resting the
PHANToM pointer against the elements surface, the

users movement is limited to 2 dimensions, similar to a
2D GUI.

Figure 2: The PHANToM haptic interface

In this paper we elaborate on a subset of the classic 2D
widget set. This subset supports most interaction pos-
sibilities and is sufficient to prove the usefulness of our
approach.
A user interface, based on our widget set, can be con-
structed using 3 types of container elements, namely
a menu, a toolbar or a dialog. The menu, shown in
figure 4a, and the toolbar provide nearly the same pos-
sibilities. Both can be used to trigger certain events or
to open a sub-menu/sub-dialog. The menu consists of
string items, where the toolbar usually contains buttons
(with graphical icons). The dialog is a more extended
container which can contain all other elements of the
widget set, as shown in figure 3. By using the result
values of these subwidgets, a dialog can provide more
complex input into the system.
We have to draw the attention to the fact that it is gen-
erally not trivial to acquire character data in VEs, due
to the lack of good text input techniques. If the user is
using a head mounted display to view the environment,
the keyboard cannot be used and even when the user

is not completely immersed in the environment, inter-
action often will require two-handed input techniques.
Other input techniques such as speech input or a vir-
tual keyboard are still not mature and accurate enough.
For these reasons we choose not to implement widgets
to support text input.

USER INTERFACE DESCRIPTION
After presenting part of the developed framework and
the user interface in the previous section, this section
will focus on the syntax and features of XML-based de-
scription languages. Special attention will be payed to
VRIXML, the language we developed to describe our
widget set.
During the last few years, several user interface descrip-
tion languages have been presented such as eNode UI,
libGlade, RIML, SEESCOA XML, UIML, XIML . . .
In this section we will briefly describe some of these
languages and we will discuss why we chose to develop
our own description language. Afterwards the syntax
and the features of our language will be illustrated with
some examples. Finally we will discuss briefly some of
the differences in specifying 2D and 3D user interfaces.

A UIDL overview
Several of the existing languages are designed to de-
scribe a static user interface for specific application types
(e.g. eNodeUI for web-applications) or platforms (e.g.
libGlade for GLADE interfaces). Others, such as Voice-
XML, are designed to serve very specific goals and are
hard to use in other kinds of applications.
The language we are aiming for has to be more than
only a description of the user interface. Our goal is
to create a syntax that provides possibilities for the
designer to specify certain application functionalities
through the interface description.
Although several of the enumerated description lan-
guages such as SEESCOA XML and UIML, already
have tackled this problem, we still choose to design our
own language for several reasons.
SEESCOA XML is a description language designed in
the scope of the SEESCOA project. The language is
mostly used to describe user interfaces for embedded
systems and mobile devices. The idea behind its syn-
tax is comparable to what we are aiming for, that is: a
strict syntax with a limited complexity. However, it is
quite hard to match the syntax of the SEESCOA XML
with the elements of our widget set and therefore, the
effort of creating a new UIDL is similar, maybe even
smaller, than extending the current SEESCOA XML.
UIML on the other hand is a very general language
which covers a very wide range of application possibil-
ities. It is very likely that our syntax, which will be
illustrated in the next section, can be translated into
an UIML syntax quite easy. However, because of its
generality, UIML is less strict as we would like it to
be. An XML file with an explicitly defined content can
easily be parsed and validated against a document type
definition (DTD) or SCHEMA.

The validation of a UIML file is slightly more complex
because next to its syntax, the content has to be defined
in a separate document, called a vocabulary, and at this
time, there are no tools that support the validation of
an UIML file against its vocabulary.

Basic description language syntax
Listing 1 shows an extract of the XML file in which the
object properties dialog (figure 3) is described. We will
use this short code fragment to point out some of the
properties of the designed language.

<UIDialog >
<Texture >

<Name>tex_Properties.png</Name>
<Color R="1.0" G="1.0" B="1.0"/>

</Texture >
<Title>Object Properties </Title >
<DialogItem >

<UIGroup >
<GroupItem >

<UIStatic >
<Text>Diffuse Color</Text>

</UIStatic >
<Position >

<X>1.0</X><Y>0.0</Y>
</Position >

</GroupItem >
<GroupItem >

<UIStatic >
<Text>R</Text>

</UIStatic >
<Position >

<X>0.0</X><Y>1.85</Y>
</Position >

</GroupItem >
<GroupItem >

<UISlider paramID="10">
<Value min="0" max="255"/>
<Tickstyle

orientation="horizontal"
position="both"
frequency="16"/>

</UISlider >
<Position >

<X>1.0</X><Y>1.5</Y>
</Position >

</GroupItem >
...
<Event>14</Event>

</UIGroup >
<Position >

<X>0.0</X><Y>0.0</Y>
</Position >

</DialogItem >
...
<DialogItem >

<UIGroup >
<GroupItem >

<UIButton >
<Text>CANCEL </Text>

</UIButton >
<Position >

<X>0.0</X><Y>0.0</Y>
</Position >

</GroupItem >
<Event>0</Event>

</UIGroup >
<Position >

<X>10.0</X><Y>15.0</Y>

</Position >
</DialogItem >
<Position >

<X>0.0</X><Y>0.0</Y><Z> -20.0</Z>
</Position >
<Metrics

Horizontal="middle"
Vertical="middle"/>

</UIDialog >

Listing 1: Extract of the ObjectPropertiesDialog.xml

As appears from the code, each widget of the user in-
terface has its own specific tag, containing attributes
and/or subtags in order to specify all properties of the
element.
A dialog for example has some subtags to define its title,
a texture for the titlebar, and its position in the virtual
world. Next to those specific properties, the dialog also
consists of one or more dialog items. Each dialog item
contains a group of items and has a relative position
within the dialog.
All widgets, contained in the same dialog, that have
complementary functionalities (e.g. the checkbox to in-
dicate whether a texture should be used and the com-
bobox to specify the texture), should be described as
items of the same group in order to facilitate the auto-
matic event generation process (which will be explained
more detailed in the following section).
If an element value should be passed as a parameter
of the event, generated by its group, the user should
add the optional parameter ID to the XML-tag which
describes the element.

Figure 3: An Object Properties Dialog

Features
We will now present two of the main features of VRIXML
and illustrate these with an example. At first we show
how the created description language supports the au-
tomatic event generation process. Secondly, the (par-
tially) automatic inter-dialog navigation of the frame-
work will be presented and related to the user interface

description.

Description of event generation
As stated in the presentation of the framework, each
interaction of the user with the VE generates an inter-
action event, in order to handle all similar events in a
single task, independent of the event provider. Because
a user interface is an alternative method to manipulate
the virtual world, it is also necessary for the interface
to generate these events.
Our description language facilitates the generation of
these events by allowing the user to specify the events,
with their parameters, within the user interface descrip-
tion. As a result of this, the user does not have to worry
about how the events are generated. It is sufficient to
group all complementary widgets, specify their param-
eter IDs, and specify the event which they belong to.
Consider the example of figure 3: when the OK button
of the object properties dialog is triggered, all groups in
the dialog are iterated and if a group specifies an event
ID (e.g. <Event>14</Event> which is specified as the
SetObjectDiffuseColor event), a new interaction event is
generated. Next, a second iteration starts, in which the
values, of all group items that specify a parameter ID
(e.g. <UISlider paramID="10"> which is specified as
the RColor parameter), will be added to the newly gen-
erated interaction event. Once this second iteration has
ended and all parameters are added, the event will be
sent to the task conductor for further treatment, while
the first iteration continues until no further events have
to be generated.
The identifiers used for the events and their parameters
are defined in an XML file that is accessible through
the entire application.

Description of inter-dialog navigation
Next to automatic event generation, our framework also
supports (partially) automatic inter-dialog navigation.
In listing 2 is shown part of the XML description of the
explore menu (Figure 4(a)). Next to event IDs, a menu
item can also specify the ID of an other interface ele-
ment (e.g. <ChildUI>52000</ChildUI> which specifies
the Add Object dialog). When such a menu is triggered,
instead of generating an event, the framework will au-
tomatically open the interface element, specified by the
ID. The new interface element appears at the position of
the menu while the latter is animated to the background
(as shown in figure 4(b)). Once the menu moves to the
background, the last chosen item will stay selected and
for now, the menu cannot be used for interaction pur-
poses. Its only importance is to allow the user to keep
track of his interface navigation at all times. This ap-
proach is ideal to prevent the user of losing his/her sense
of orientation [20]. When the dialog is closed, the menu
animates back to its old position.

<UIMenu >
...
<MenuItem ID="5">

<Text>5. Delete selected Object </Text>
<Event>17</Event>

(a) The Explore Menu (b) The Add Object Dialog

Figure 4: Inter-dialog navigation

</MenuItem >
<MenuItem ID="6">

<Text>6. Add Object </Text>
<ChildUI >52000</ChildUI >

</MenuItem >
...
<Position >

<X>0</X><Y>0</Y><Z> -20</Z>
</Position >
<Metrics

Horizontal="middle"
Vertical="middle"/>

</UIMenu >

Listing 2: Extract from the Exploremenu.xml file

Note that, at this time, the inter-dialog navigation is
partially automatic because dialog navigation, depend-
ing on application specific parameters, still has to be
explicitly coded by the designer of the VE.

As shown in the examples, next to the description of
the interface elements, both event generation and inter-
dialog navigation are supported within the description
language. As a result of this, the look and behavior
of the user interface can be altered without editing or
recompiling the application code.

Specifying 2D and 3D user interfaces
The 3D user interfaces, specified by means of VRIXML,
and the classic 2D GUIs have several similarities. The
most obvious correspondence is the look-and-feel of both
interfaces, which is quite self-evident, since the user in-
terface widgets are designed, based on their two- dimen-
sional counterparts.
However, 3D interfaces contain several properties that
are non-existent in two dimensions. The 3D position is
one of the visible properties but lots of the additional
properties are invisible. In our specific case, several of
these properties concern haptics.
One of these haptic properties are tactile textures, which
offer possibilities for the user to feel the structure of
certain regions. Another example are force fields. Cur-
rently, each button contains a spherical magnetic force

field at its centre in order to prevent the user from drift-
ing, while operating the button.
The magnitude of this force field or the structure of the
tactile texture are properties that can easily be inte-
grated within VRIXML.

CONCLUSION
In this paper we presented a framework through which
we try to abstract the description of virtual environ-
ments and the interaction within these computer gen-
erated worlds. In order to describe the user interface,
which is part of those interaction techniques, we pro-
posed a description language, called VRIXML. Through
the use of a user interface description language, we cre-
ated possibilities to design a user interface or adjust its
behavior within a VE.
We are convinced that the use of this UIDL is a good
first step in our VR-DeMo project.

FUTURE WORK
The main goal of our ongoing work is to develop an ex-
tensive graphical tool that allows easy creation of a user
interface within the presented VE framework. Once the
interface is designed, and all functionality is coupled to
it, the tool will automatically generate the XML de-
scription(s) for the created user interface. In addition
to the generation of the user interface description, the
toolset will support also several automatic code gener-
ation possibilities that are based on high level descrip-
tions of the environment’s functionalities.
The IDs that are used during the automatic generation
process, are all based on a shared XML file in which
the designer has to define all program constants such
as event IDs, IDs of user interface elements, . . . (e.g.
<EventID id="14">SetDiffuseColor</EventID>).
Within the tool, the user does not have to worry about
the value of these identifiers. Instead, he can use the
string values, attached to them.
Another objective will be to further explore the possi-
bilities of adding extra data to the user interface de-
scription, in order to describe the runtime behavior of

certain system functionalities. Finally we are aiming for
automatic layout management. Currently, the designer
of the interface has to specify the position of each widget
within its parent widget as shown in Listing 1. A possi-
ble approach to automatize this process is presented in
[14]. They use 2D constraints to specify spatial relations
between the user interface widgets. These constraints
can possibly be extended to three dimensions.UI

ACKNOWLEDGEMENTS
The research at EDM is partly funded by the Flemish
Government and EFRO (European Fund for Regional
Development).
The VR-DeMo project (IWT 030284) is directly funded
by the IWT, a Flemish subsidy organization.

REFERENCES
1. Marc Abrams and Constantinos Phanouriou.

UIML: an XML language for building
device-independent user interfaces. In Proceedings
of XML ’99, december 1999.

2. T. Anderson, A. Breckenridge, and G. Davidson.
FBG: A graphical and haptic user interface for
creating graphical, haptic user interfaces. In
Proceedings of the Fourth PHANToM Users Group
Workshop, Dedham, MA, USA, October 1999.

3. Farid BenHajji and Erik Dybner. 3D Graphical
User Interfaces. PhD thesis, Department of
Computer and Systems Sciences Stockholm
University and The Royal Institute of Technology,
October 1999.

4. Joan De Boeck, Chris Raymaekers, and Karin
Coninx. Aspects of haptic feedback in a
multi-modal interface for object modeling. Virtual
Reality Journal, 6:257–270, 2003.

5. Karin Coninx, Frank Van Reeth, and Eddy
Flerackers. A hybrid 2D/3D user interface for
immersive object modeling. In Computer Graphics
International ’97, pages 47–55, Diepenbeek, BE,
January 1997. IEEE Computer Society Press.

6. Joan De Boeck, Chris Raymaekers, Erwin
Cuppens, Tom De Weyer, and Karin Coninx.
Task-based abstraction of haptic and multisensory
applications. accepted for Eurohaptics 2004,
Munchen, DE, June 5–7 2004.

7. M. Deering. The holosketch VR sketching system.
Communications of the ACM, 39(5):54–61, May
1996.

8. Inc eNode. World Wide Web,
http://www.enode.com/, 2002.

9. Voice XML Forum. VoiceXML: Voice extensible
markup language, March 2000.

10. WAP Forum. Wireless application protocol white
paper, June 2000.

11. M. Green and S. Halliday. A geometric modeling
and animation system for virtual reality.
Communications of the ACM, 39(5):46–53, May
1996.

12. Jed Hartman and Josie Wernecke. The VRML 2.0
Handbook. Silicon Graphics Inc, 1996.

13. Kris Luyten and Karin Coninx. An xml-based
runtime user interface description language for
mobile computing devices. In Chris Johnson,
editor, Interactive Systems: Design, Specification,
and Verification, volume 2220, pages 1–15,
Glasgow, Scotland, UK, June 13–15 2001. 8th
International Workshop, DSV-IS 2001,
Springer-Verlag.

14. Kris Luyten, Bert Creemers, and Karin Coninx.
Multi-device layout management for mobile
computing devices. Technical Report
TR-LUC-EDM-0301, Limburgs Universitair
Centrum, Universitaire Campus gebouw D, B-3590
Diepenbeek, September 2003.

15. Thomas H. Massie and Kenneth J. Salisbury. The
PHANToM haptic interface: A device for probing
virtual objects. In Proceedings of the ASME
Winter Annual Meeting, Symposium on Haptic
Interfaces for Virtual Environment and
Teleoperator Systems, Chicago, IL, November
1994.

16. Chris Raymaekers and Karin Coninx. Menu
interactions in a desktop haptic environment. In
Proceedings of Eurohaptics 2001, pages 49–53,
Birmingham, UK, July 1–4 2001.

17. Chris Raymaekers, Tom De Weyer, Karin Coninx,
Frank Van Reeth, and Eddy Flerackers. ICOME:
An immersive collaborative 3d object modeling
environment. Virtual Reality Journal, pages
265–274, 1999.

18. Lawrence J. Rosenblum and Michael R.
Macedonia. PHANToM-based haptic interaction
with virtual objects. IEEEComputer Graphics and
Applications, 17(5):6–10, September-October 1997.

19. Kenneth J. Salisbury. Making graphics physically
tangible. Communications of the ACM,
42(8):75–81, August 1999.

20. Ben Shneiderman. Designing the User Interface -
Effective Strategies for Effective Human-Computer
Interaction, chapter 7: Menu Selection, Form
Fillin, and Dialog Boxes, pages 235–274.
Addison-Wesley, third edition, 1998.

Multimodal Dialog Description for Mobile Devices

Steffen Bleul
Paderborn University /

C-LAB
Fuerstenallee 11,

Paderborn, Germany
bleul@upb.de

Wolfgang Mueller
Paderborn University /

C-LAB
Fuerstenallee 11,

Paderborn, Germany
wolfgang@c-lab.de

Robbie Schaefer
Paderborn University /

C-LAB
Fuerstenallee 11,

Paderborn, Germany
robbie@c-lab.de

ABSTRACT
The provision of personalized user interfaces for mobile de-
vices is a challenging task since different devices with vary-
ing capabilities and interaction modalities have to be sup-
ported. Multiple variants of different UIs for one application
almost enforces the employment of a model-based approach
in order to design one interface and to adapt to or render it
on those devices. This position paper presents a new dia-
log modelling language named DISL (Dialog and Interface
Specification Language) that is based on UIML and DSN
(Dialog Specification Notation). DISL supports the mod-
elling of advanced dialogs in a comprehensive way. The
dialog descriptions are device- and modality-agnostic and
therefore highly scalable with focus on limited devices, like
mobile phones.

1 INTRODUCTION
With the wide ability of considerably powerful mobile com-
puting devices, the design of portable interactive User In-
terfaces (UIs) is posed to new challenges, as each device
may have different capabilities and modalities for UI ren-
dering. The growing variety of different mobile devices to
access information on the Internet has induced the introduc-
tion of special purpose content presentation languages, like
WML [17] and CompactHTML [8]. However, their appli-
cation on limited devices is cumbersome and most often re-
quires advanced skills. Therefore, we expect that advanced
speech recognition and synthesis will soon complement cur-
rent technologies for user-, hardware-, and situation-dependant
multimodal interaction in the context of embedded and mo-
bile devices. First applications are developed in the area of
Ambient Intelligence (AmI) [1], which combines the areas
multimodal user interface and ubiquitous/pervasive comput-
ing [18].

For generic multimodal user interface description languages,
there are currently only very few activities. In the area of
graphical user interface description languages, the User In-
terface Markup Language (UIML) [2] has been established

and is currently available as UIML 3.0. UIML is mainly
for the description of static user interfaces (structures) and
their properties (styles) also leading to the description of
User Interfaces, which are not completely independent from
the target platform. The behavioural part of UIML is not
well developed and does not give sufficient means to spec-
ify real interactive, state-oriented user interfaces. The same
counts also for CUIML [13], which is a bit more flexible by
introducing generic components that can be used for multi-
modal interaction. VoiceXML [9] is widely recognized as
a standard for the specification of speech based dialogs. In
addition to both, InkXML [16] has been defined to support
interaction with hand writing interfaces. However, UIML,
VoiceXML, and InkXML only cover their individual domains
and do not integrate with other modalities. Beyond those,
there are other XML-based multimedia languages for gen-
eral interactive multimedia presentation, such as MHEG, Hy-
Time, ZyX, and SMIL [3]. They enable simple authoring
of rich multimedia presentations including layout, timing of
streaming audio, video, images, text etc. as well as some
very basic interactions in order to select a specific path in
an interactive presentation. Considering all XML-based lan-
guages, only UIML and VoiceXML provide partial and SMIL
limited support for user interaction description. Neverthe-
less, both are still rather limited for the specification of more
complex state–based dialogs as they frequently appear in the
interaction with mobile devices and remote control via those
devices.

Numerous other approaches employ high level modeling tech-
niques as e.g. task modeling like it is done in the TERESA
project [10], or described in [4] and [6]. Our approach how-
ever concentrates on a lower level in order to define a dialog
model which could also be generated from those higher level
models. The description of the dialog and control model will
be provided in [14] in more detail.

The W3C has established activities for an architecture for
general multimodal interaction [7]. The Multimodal Inter-
action (MMI) Framework (cf. 1) defines an architecture for
combined audio, speech, handwriting, and keyboard inter-
action as a set of properties (e.g., presentation parameters or
input constraints); a set of methods (e.g., begin playback or
recognition); and a set of events raised by the component
(e.g., mouse clicks, speech events). The MMI framework
covers

• multiple input modes such as audio, speech, handwriting,

and keyboarding;

• multiple output modes such as speech, text, graphics, au-
dio files, and animation.

Figure 1. W3C Multimodal Interaction Framework

MMI concepts consider human user interaction via a so-
called interaction manager. The human user enters input into
the system, observes, and hears information presented by the
system. The interaction manager is the logical component
that coordinates data and manages execution flow from vari-
ous input and output modalities. It maintains the interaction
state and context of the application by responding to inputs
from component interface objects and changes in the system
and environment.

This paper introduces an instance of an MMI framework. We
present the architecture of our architecture for the provision
of multimodal UIs. In the context of that architecture, we in-
troduce the XML-based Dialog and Interface Specification
Language (DISL). DISL is based on an UIML subset, which
is extended by rule-based descriptions of state-oriented di-
alogs for the specification of advanced multimodal interac-
tion and the corresponding interfaces. DISL defines the state
of the UI as a graph, where operations on UI elements per-
form state transitions. DISL’s dialog part is based on DSN
(Dialog Specification Notation), which was introduced to
describe User Interface control models. Additionally, DISL
gives means for a generic description of interactive user di-
alogs so that each dialog can be easily tailored to individ-
ual input/output device properties, e.g., graphical display or
voice. In combination with DISL, we additionally introduce
S-DISL (Sequential DISL). S-DISL is a sequentialized rep-
resentation of DISL dedicated to the limited processing ca-
pabilities of mobile devices.

The remainder of this paper is structured as follows. The
next section presents an architecture for multimodal UI pro-
visioning. Section 3 introduces dialog modelling concepts
and DISL. Section 4 gives the simple example of a remotely
controlled media player before the paper closes with a con-
clusion and outlook.

2 ARCHITECTURE
Before going into the details of the modelling language DISL,
we present a client-server architecture that provides user in-
terface descriptions for mobile devices. This architecture al-
lows controlling applications on the mobile device, on the
server or using the device as a universal remote control as
it is done in the pebbles project [11]. Having a UI server
allows also a more flexible handling of UI descriptions as

they can be transformed into specific target formats for mo-
bile devices, which do not have dedicated DISL renderers.
In fact, our DISL renderer for mobile phones also requires a
pre transformation, which is done server side in order to es-
tablish a highly efficient parsing process on the client device.
Figure 2 shows a simplified view of the architecture for use
with mobile devices that are equipped with DISL (or more
specifically S-DISL) renderers. For systems without DISL
or S-DISL renderers, e.g., simple WAP-phones, the trans-
formation component has to generate other target formats.
However, in that case some of the advances by using DISL
are lost.

Interpreter

Renderer

Transform

Mobile Device

DISL
S-DISL

XSLT

Server

HW &

User

Profile

Figure 2. System Architecture

Since this architecture aims to support limited mobile de-
vices with different interaction modalities, several constraints
arise which influence the development of the dialog mod-
elling language.

For supporting different modalities on a client device, the
dialog representation, which is requested from the server,
should be as generic as possible, so that a renderer can adapt
it for a specific modality. The interpreter spans several ren-
derers, one for each supported modality. In order to realize
multimodal presentation, each generic widget is mapped to
a concrete widget in the targeted modality. Interaction han-
dling is performed, as each input event for a concrete widget
in a specific modality is mapped reversely to a generic wid-
get, so that the DISL control model can process the content
which is detailed in [14].

Currently available mobile phones communicate over GSM
networks, where network traffic produces costs to the user.
Therefore the number of connections to the server and the
amount of data transported should be limited, which means
that processing and changing the dialog states has to be done
on the mobile client.

We should also take into account that network connections
are not reliable all the time. The UI should not freeze in
case of errors or late server responses; therefore a concept of
timed dialog state transitions is required.

As mobile phones usually come with low processing power
and limited heap space, The dialog descriptions should be
easy to parse which lead to the development of the S-DISL
format, presented in Subsection 3.4.

3 DIALOG DESCRIPTION
For describing dialogs, UIML [2] is a good starting point as
its meta interface model provides a clear separation between
logic and presentation. The interface part of UIML sepa-

rates between structure, style, content, and behaviour. We
have taken this interface modelling structure and extended
the behavioural part with DSN [5] concepts. Additionally, in
order to meet the requirement of supporting the most limited
devices as well as different interaction modalities, we pro-
vide a vocabulary of generic widgets. The notion of generic
widgets is inspired amongst others by [12] where a generic
UIML vocabulary for the generation of graphical and voice
user interfaces is defined.

3.1 Generic Vocabulary
We tried to find out the most basic elements, which are of
importance for graphical UI, voice interaction gestures and
other modalities and come up with following items that can
be grouped into informative, interaction and collection ele-
ments.

As informative elements there are variablefield and textfield.
The purpose of both informative elements is to provide feed-
back to the user. However, variablefield is designed to show
the simple value or status of a variable, while textfield is for
displaying or speaking larger portions of text, which means
that a renderer has to supply additional means for naviga-
tion through larger information chunks, e.g., scrollbars for
visual interfaces or interrupts in speech dialogs. These two
elements obviously allow rendering for voice or graphical /
text based dialogs, but even minimal output modalities are
possible. For example, we can specify the variablefield to be
an alert, which then could be rendered as beeps, vibrations
or flashing lights.

For interaction purposes, the elements command, confirma-
tion, variablebox and textbox are allowed. As variablefield
and textfield are used for output of values and text, variable-
box and textbox are used for input of the corresponding data.
The difference between commands and confirmation lies in
the user initiative. While the user can trigger a command,
e.g., by pressing a button, the system may require confirma-
tions when performing a specific task.

For structuring and selection of structured elements, choice-
group and widgetlist are provided. While the widgetlist just
groups elements together according to the structure the mod-
eller determines, the choicegroup is used to group elements
from which one or more can be selected. The renderer is
again responsible how the logical grouping is communicated
to the user, e.g., by drawing boxes or in voice dialogs by
prompting something as ”You have following choices: A, B,
C...”.

For the case that we did not think of a basic widget, which is
necessary for future interaction modalities, or to use plat-
form specific code, we provide genericfield, genericcom-
mand and genericbox as extension elements. They allow the
use of arbitrary binary data.

Common to all Elements is that – provided they are used –
they have to be attributed with several properties that specify
them more clearly and by that provide hints to the renderer.
We identified following property groups for our generic vo-

cabulary:

• Render properties are used to describe the widgets and to
guide the rendering process, for example by specifying
labels.

• Render flags can be employed to determine if widgets
have to be rendered or not. This is useful to cut widgets
without modifying the interface structure.

• Interaction properties are needed to specify the value of
an interaction object.

• Interaction flags show the current state of an interaction
element, e.g. whether an interaction element is activated
or if an element has been selected.

• dynamic properties are used for properties that are inher-
ited for every element of a collection.

• System properties are provided by the system itself. For
example for mobile phones, a system property could pro-
vide the number of characters that fit into a text line.

3.2 DISL Structure
DISL employs the same global structure as UIML but does
not allow the peers section, because peers would destroy the
concept of generality in our approach. By forcing not to use
platform-specific widgets or logic, we can ensure that DISL
descriptions can be rendered or easily transformed on most
different devices and even for varying interaction modali-
ties. Therefore, instead of using peers, we presume dedi-
cated DISL renderers, which interpret generic UI elements
or would otherwise perform a complete transformation of
the DISL description to a target language. On the other
hand, communication with the back-end application is still
required and that is applied through the calls, which are ex-
ecuted in the action part of the behavior section.

Interfaces in the DISL language consist of structure, style,
and behavior. The structure part in DISL is less complex
than in UIML and consists of a set of nested generic wid-
gets, as described above. The different types of widgets are
instanced by attributes, which means that the set of possible
widgets is fixed with the DTD. However, the set of prop-
erties for each widget is for the moment open and depends
on which properties for each widget are supported by the
renderer or transformation application. In our DISL specifi-
cation we defined a set of properties, which is mandatory to
achieve meaningful dialog modelling.

The widget properties are specified in the ”style” section of
DISL. There within each ”part” element, the properties for
the corresponding widgets from the ”structure” section are
set, which follows the same type of separation from structure
and style as in UIML.

3.3 Advanced Dialog Control
Major changes to UIML, apart from the definition of a fixed
set of generic widgets, are in the behavioural section. As
many approaches for specifying the dialog-flow are based on
state transitions, the simpler modelling concepts can end up

in a difficult to handle large set of states. Therefore, we use
concepts inherited from DSN [5], which is able to process
sets of states during each transition and by that reducing the
number of transition rules. Following example should make
this concept clearer:

USER INPUT EVENTS
switches (iVolumeUp, iVolumeDown,

iPlay, iStop)

SYSTEM STATES
volume (#loud #normal #quiet)
power (#on #off)

RULES
#normal #on iVolumeUp --> #loud

It defines four interaction based events and two states. The
rule fires when the interaction event iVolumeUp occurs, vol-
ume equals #normal, and power is #on. After firing, the rule
sets volume to #loud.

This concept is reflected in the behaviour section, where the
traditional UIML-based approach is extended with possibil-
ities to specify variables, events, rules (operating different
from UIML-rules) and transitions. Variables are used as con-
tent elements of the control model, which can be assigned to
influence the dialog flow. For example a variable ”volume”
could keep the current volume of a music application and
will be set to zero, if within a dialog, a mute-control is trig-
gered.

Based on these variables and events we can model powerful
rules that modify the dialog state. In the simplest form rules
are used to set a Boolean value, but normally they evaluate
a complex condition that evaluate Boolean expressions over
variable content, constants, numerous events like timeouts,
results of external calls, periodic events and much more.

After having specified a set of rules, transitions are specified.
These transitions implement the DSN-functionality as they
allow the evaluation of several conditions at the same time.
Only if all conditions are met, the transition may fire. Firing
means that the action part of the transition is evaluated.

The action part allows calls to the backend application, re-
structuring the UI but also exchanging a complete interface,
statements and loops, e.g., for assigning variables with new
values. Statements are also used to activate self-defined events,
while on the other hand several system events can occur e.g.
when the external communication with the backend applica-
tion is timed out.

This event mechanism introduces a new concept, which is
derived from the concept of timed transitions in ODSN [15].
Events support advanced reactive UIs on remote clients, since
they provide the basis for, e.g., timers. DISL events contain
an action part as transitions. However, this action is not trig-
gered by a set of rules evaluating to true rather it depends on
a timer, which is set as an attribute. An event may be fired

only once after the predefined timer expired or it may peri-
odically fire. It is also possible to specify the activation or
deactivation of events.

The following example shows, how the event mechanism is
used to periodically check, which song is currently playing
in a remote music player. Additionally, it outlines how ex-
ternal calls can be applied.

<event id="checkplaying" activated="yes"
repeat="yes" timer="20s">

<action>
<call source="http://.../servlet"

id="getsong" synchronized="yes"
timeout="5s" maxsize="2">

<parameter id="request">
<value-of>getplaypos</value-of>

</parameter>
</call>
...

</action>
</event>

A call consists of a source. This is typically an http request
but any other protocols can be supported as well. The call
represents the communication with the communication with
the real application. The call id is used as a pointer to the re-
turn value of the application, which can also be an exception
in case of an error. The timeout parameter is used to catch
unexpected errors, e.g., when an application is not respond-
ing due to a network failure. Rules based on such unexpected
errors can be specified, so it is up to the interface designer to
model the behaviour after the timeout. The timer based event
mechanism also allows client based synchronization with the
backend application since querying external resources can
modify internal UI-states.

The next example illustrates a DISL rule by specifying the
volume control of a media player:

<behavior>
<variable id="Volume" internal="no"

type="integer">128</variable>
<variable id="incVolumeValue" internal="no"

type="integer">20</variable>
...
<rule id="IncVolume">

<condition>
<equal>

<property-content
generic-widget="IncVolume"
id="selected">

yes
</property-content>

</equal>
</condition>

</rule>
...
<transition>

<if-true rule-id="IncVolume"/>
<action>
<statement assignment="add">

<variable-content id="Volume"/>
<variable-content id="incVolumeValue"/>

</statement>
<statement>

<property-content id="visible"

generic-widget="Apply">
yes

</property-content>
</statement>

...
</action>

</transition>
<behavior>

First, variables for the current volume and a value for in-
creasing the volume are assigned. The rule ”IncVolume”
implements the condition that evaluates to true, if the wid-
get ”IncVolume” is selected. After the conditions of each
rule are evaluated we have to decide which transitions will
be fired. This is done for every transition, where the con-
dition of the if-true tag is true, then a set of statements is
processed in the action part. There, the ”incVolumeValue” is
added to the previous set volume, and statements update the
UI, e.g.,setting a ”yes” and ”cancel” control.

3.4 DISL for Limited Devices
Since DISL is designed for mobile devices with limited re-
sources limited, we developed a serialized form of DISL that
allows faster processing and a smaller memory footprint,
namely S-DISL. The idea behind S-DISL is that an S-DISL
interpreter just has to process a list of elements rather than
complex tree structures. On the one hand this saves pro-
cessing time, on the other hand gives a smaller footprint for
the interpreter, which both saves resources required for UI
rendering. To achieve a serialized form, a preprocessor im-
plements a multi-pass XSLT transformation of the DISL file
to S-DISL.

The first two passes are used to flatten the tree structure.
To avoid information loss, new attributes providing links,
like ”nextoperation”, ”nextrule” etc. have to be introduced.
Through that, the 42 elements of the SDML DTD can be re-
duced to 10 basic elements. For example, all action elements
are reduced to one with a mode attribute defining the type.

The next transformation step sorts the ten element types into
ten lists. Ids are replaced by references and empty attributes
are deleted in order to get a lean serialized document. The
final output is a stream of serialized elements. Although the
stream is bigger than the original tree structure, the saved
processing time outweights the disadvantage. The size of
the stream however can be additionally reduced by using the
binaryXML.

4 EXAMPLE
To demonstrate the working architecture for DISL, we give
an example, which already is already completely implemented
and in use. The idea is to control home entertainment equip-
ment through mobile devices. More specifically, we control
the playback of MP3 files on a PC by a J2ME-MIDP enabled
mobile phone1.
1In order to become attractive, consider cost-free, short-range
Bluetooth communication of a mobile phone, so that it can be used
as an universal remote control within the home environment. How-
ever, the current implementation applies bundled GSM transmis-
sion based communication (GPRS) with the server.

On a PC, a user is able to use a full fledged graphical user
interface as it comes, e.g., with Winamp (see Fig. 3). How-
ever, that UI cannot be rendered on a mobile phone with a
tiny display. Therefore, we have applied the aforementioned
concepts in developing a generic user interface, which en-
ables control of the MP3 player. This generic UI can be im-
plemented as a service, which can be downloaded and used
by the mobile phone.

Figure 3. GUI of Windows based MP3 Player

The generic UI - in DISL Notation - mainly describes the
control model together with rendering hints. It is transformed
in a very memory and space efficient manner to the inter-
mediate S-DISL format through several XSLT transforma-
tion steps and finally transmitted to the mobile device, which
runs the interpreter and renderer given as a Java Midlet.

The UI for our music player consists of controls to switch
the player on or off, to start playback, to stop playback, to
mute or to pause the sound, and to jump to the next or the
previous title; volume control is also possible.

The collection of these controls is provided as a list of widget
elements in the DISL description, which also describes the
state transitions as well as their binding to commands of the
backend application, i.e., the Winamp player. The follow-
ing S-DISL code fragment gives the widget list for volume
control:

<structure>
<widget id="TitleScreen"

generic-widget="variablefield"/>
<widget id="ActVolume"

generic-widget="variablefield"/>
<widget id="SetVolume"

generic-widget="variablebox"/>
<widget id="IncVolume"

generic-widget="command"/>
<widget id="DecVolume"

generic-widget="command"/>
<widget id="Cancel" generic-widget="command"/>
<widget id="Back" generic-widget="command"/>
<widget id="Apply" generic-widget="command"/>

</structure>

The structural part of the interface description is followed
by a style description for each supported widget. The style
elements provide information for the renderer. For example,
it defines whether the widget is visible or not. The following
code fragment shows the style component for one widget:

<part generic-widget="IncVolume">
<property id="title">Increase Volume</property>

<property id="description">
Increases Volume by 10

</property>
<property id="help">

Every time this command is activated
the volume will be increased by 10%

</property>
<property id="selected">no</property>
<property id="visible">yes</property>
<property id="activated">yes</property>

</part>

DISL structure and style specifications are quite similar to
UIML. The following behavioural part largely differs from
UIML and extends UIML towards state oriented DSN. The
specification consists of rules and transitions as introduced
before. We only show one transition illustrating the action
of the ”increase volume” command. The transition fires, af-
ter the ”IncVolume” rule becomes true. Then, the value of
the variable ”IncVolumeValue” is added to the variable ”Vol-
ume”. The following actions then switch the ”Apply” and
”Cancel” widgets to visible2.

<transition>
<if-true rule-id="IncVolume"/>
<action>

<statement assignment="add">
<variable id="Volume"/>
<variable id="IncVolumeValue"/>

</statement>
<statement>
<property id="visible"

generic-widget="Apply">
yes

</property>
</statement>
<statement>
<property id="visible"

generic-widget="Cancel">
yes

</property>
</statement>

</action>
</transition>

Commands to the backend application are provided as http
requests, which are handled by the Interaction Manager who
is responsible for passing the commands to the application.
The UI Interaction Manager can employ the functionality of
a webserver, since WAP enabled phones and PDA’s typically
support HTTP. In our implementation, the communication
part of our system is written as a set of servlets based on the
Apache webserver. In our test environment, the player soft-
ware to be triggered resides on the same machine as the Web-
server, but this can be easily changed to a distributed system,
e.g., with the OSGi Framework (http://www.osgi.org/). That
would allow controlling applications on multiple target de-
vices, for example, TV, VCR, radio.

The client we are currently using is a Siemens S55 mobile
phone (see Fig. 4) that comes with Java MIDP which sup-
ports simple basic UI elements. The pictures showing some
interfaces on the mobile phone where taken from an emula-

2”visible” is interpreted as ”audible” for voice rendering

tor, as photographs from the real device are not clear enough.
When the music player application is selected, the UI is re-
quested from the web server and all internal structures are
initialised, before the UI can be rendered. This procedure
has to be performed only once at the initial startup and may
take some seconds. Afterwards even operations, which re-
quire server communication, are as fast a one can expect
when communicating with a WAP server.

Figure 4. UI rendered on Mobile Phone

Figure 5: UI on Siemens M55: emulator (left) and mobile
phone (right)

5 CONCLUSION
This paper introduced an multimodal UI provisioning ar-
chitecture together with the XML-based Dialog and Inter-
face Specification Language DISL. DISL is based on an ex-
tended UIML subset. The extensions are based on DSN (Di-
alog Specification Notation). Our current implementation
has demonstrated the feasibility for mobile phones. Major
parts of MIRS run on an Apache webserver in combina-
tion with a J2ME MIDP1.0 enabled Siemens M55 mobile
phone. The implementation currently covers the complete
definition of DISL, its transformation to S-DISL by a XSLT
transformer, the complete S-DISL interpreter, as well as a
graphical renderer.

Yet missing is advanced support for UI designers through
modeling tools. For the moment, additional convenience can
only be achieved by using standard XML editing tools.

In order to complete and test the current implementation we
still have to extend it by a voice-based renderer and voice
recognition. However, currently available mobile phones as
well as PDAs do not provide sufficient processing power;
neither for software-based real-time voice synthesis nor for

speech recognition. Therefore, we have established a PC-
based test bed, which also is also used for the evaluation of
user and hardware profile dependent rendering of multime-
dia information.

REFERENCES
1. E. Aarts. Ambient intelligence in homelab, 2002. Royal

Philips Electronics.

2. M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster. UIML: an
appliance-independent xml user interface language. In
Computer Networks 31, Elsevier Science, 1999.

3. S. Boll, W. Klas, and U. Wertermann. A comparison of
multimedia document models concerning advanced
requirements. Technical report, Computer Science
Department, University of Ulm, Germany, 1999.

4. T. Clerckx, K. Luyten, and K. Coninx. Generating
context-sensitive multiple device interfaces from
design. In Proceedings Fifth International Conference
on Computer Aided Design of User Interfaces (CADUI
2004). Kluwer Academic, 2004.

5. M. B. Curry and A. F. Monk. Dialogue modelling of
graphical user interfaces with a production system. In
Behaviour and Information Technology, Vol. 14, No. 1,
pp 41-55, 1995.

6. J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying
model-based techniques to the development of uis for
mobile computers. In Proceedings of Intelligent User
Interfaces Conference (IUI2001), 2001.

7. D. Raggett (eds.) J. A. Larson, T.V. Raman. W3c
multimodal interaction framework, May 2003. W3C
NOTE 06 May 2003.

8. T. Kamada. Compact HTML for Small Information
Appliances, W3CNote, Februar 1998.

9. S. McGlashan et al. Voice extensible markup language
(voicexml) version 2.0, w3c proposed recommendation,
2004. http://www.w3.org/TR/voicexml20.

10. G. Mori, F. Paternò, and C. Santoro. Tool support for
designing nomadic applications. In Proceedings of the
8th international conference on Intelligent user
interfaces, 2003.

11. J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K.
Harris, R. Rosenfeld, and M. Pignol. Generating
remote control interfaces for complex appliances. In
CHI Letters: ACM Symposium on User Interface
Software and Technology, UIST’02, 2002.

12. J. Plomp and O. Mayora-Ibarra. A generic widget
vocabulary for the generation of graphical and
speech-driven user interfaces. International Journal of
Speech Technology, 5(1):39–47, January 2002.

13. C. SAndor and T. Reicher. Cuiml: A language for
generating multimodal human-computer interfaces. In
Proceedings of the European UIML Conference, 2001.

14. R. Schaefer, S. Bleul, and W. Mueller. A novel dialog
model for the design of multimodal user interfaces. In
Submitted for publication, 2004.

15. G. Szwillus. Object oriented dialogue specification
with odsn. In Proceedings of Software-Ergonomie ’93,
Teubner, Stuttgart, 1997.

16. Z. Trabelsi, S.-H. Cha, D. Desai, and Ch. Tappert. A
voice and ink xml multimodal architecture for mobile
e-commerce system. In Proceedings of the second
international workshop on Mobile commerce, 2002 ,
Atlanta, Georgia, USA, 2002.

17. WAP Forum. Wireless Markup Language Specification
Version 1.1, Juni 1999.

18. M. Weiser. The computer for the 21st century, 1991.
Scientific American 265(3): 94-104.

Extending an XML environment definition language for
spoken dialogue and web-based interfaces

Pablo A.
Haya

EPS-UAM
Madrid, Spain

+34 91 497 22 67
Pablo.Haya
@uam.es

Germán
Montoro

EPS-UAM
Madrid, Spain

+34 91 497 22 10
German.Montoro

@uam.es

Xavier
Alamán

EPS-UAM
Madrid, Spain

+34 91 497 22 50
Xavier.Alaman

@uam.es

Rubén
Cabello

EPS-UAM
Madrid, Spain

+34 91 497 22 68
Ruben.Cabello

@uam.es

Javier
Martínez
EPS-UAM

Madrid, Spain
+34 91 497 22 54
Javier.Martinez

@uam.es

ABSTRACT
In this work we describe how we employ XML-compliant
languages to define an intelligent environment. This
language represents the environment, its entities and their
relationships. The XML environment definition is
transformed in a middleware layer that provides interaction
with the environment. Additionally, this XML definition
language has been extended to support two different user
interfaces. A spoken dialogue interface is created by means
of specific linguistic information. GUI interaction
information is converted in a web-based interface.

Keywords
Interface design, XML, UIDL, intelligent environments,
spoken dialogues, web interfaces.

INTRODUCTION
Within the ubiquitous computing [13] research area it is
necessary the study of the design of transparent user
interfaces for the interaction with intelligent environments
[4]. These interfaces provide new ways of interaction [14],
adapt to the users and the environment and offer new
challenges to interface designers [11].
Intelligent environment interfaces can range from a GUI
mobile-interface (for instance a web-based interface,
accessible from a computer or a PDA) to a higher-level
interface (such as a spoken dialogue or a gesture-based
interface).
Given the dynamic characteristics of intelligent
environments, these interfaces have to be easily
configurable and adaptable [7, 10] and have to provide
standard methods of definition and configuration.
Bearing in mind these conditions we have developed an
XML-compliant language that allows to define the
characteristics of an intelligent environment. Furthermore,
we have added interface information to the language,
creating a user interface description language (UIDL) that
permits to automatically create a web-based interface and a
spoken dialogue interface based on the environment
information.

Here we present the main ideas of our XML-based
language that defines the intelligent environment and these
two interfaces. Next sections are organized as follows:
first, we give brief overview of the user interface definition
languages; next, we describe the environment
representation through our XML language; after that, we
present the definition of the web-based and spoken
dialogue interfaces; next we explain the implemented
environment and, finally, we present the conclusions.

USER INTERFACE DEFINITION LANGUAGES
XML stands as a solution for the standardization of the
interoperability between applications. Therefore, new
XML-compliant languages are employed to define user
interfaces. These are the XML-compliant user interface
definition languages (XML-UIDL). They have the
advantage of being transparent to different interface
technologies and providing a homogeneous resource for
heterogeneous ways of interaction [1].
According to [12] these XML languages for interface
representation must be applicable to any target, any
delivery context, personalizable, flexible and extensible.
On the other hand, they should separate the interface
elements from their presentation. The user interface
elements must be explicitly represented and in a format that
can be rendered in any delivered context. The presentation
information should be provided in an abstract form that is
target and delivery-context independent.
Two representative languages are:
• UIML [2], an XML-compliant language which permits

the creation of user interfaces for any device, any target
language and any operating system. It describes the
appearance of the interface, the user interaction with the
interface and how it is connected to the application logic.

• XIML [9], an XML-based "interface representation
language for universal support of functionality across the
entire lifecycle of a user interface: design, development,
operation, management, organization, and evaluation".

Other languages are XUL [6], that allows to build easily
customizable graphical user interfaces for multiple

platforms. AAIML [15], an XML-based language used to
communicate an abstract user interface definition for a
service or device to a user's personal device. And XAML
[8], the Microsoft XML based language employed for
visual interfaces to define a layout of text, images and
controls.

XML ENVIRONMENT DEFINITION
The physical environment is represented in a document,
where each environment entity is described using an XML
format. Entities are not only formed by the physical devices
presented in the environment, but also by software
applications, people definition or abstract concepts.
This XML representation also allows to describe the
relationships between the environment entities. These
relationships define the distribution of the environment
(buildings, rooms, etc.), aggregations of people (by
workgroups, range, etc.) and dynamic links between
entities (the favorite paintings of a person, the output
speaker for a music source, etc.).
The XML information is processed by a parser and
transformed in a middleware layer, which will act as an
interaction layer between the user interfaces and the
physical environment.
The middleware implementation lies on a global data
structure, called blackboard [5]. This blackboard is a model
of the world, where all the prominent information related to
the environment is stored. The blackboard provides an
asynchronous communication mechanism. Senders publish
environment information in the blackboard, and receivers
can be subscribed to these changes or pull them directly
from the blackboard. This mechanism permits a loosely-
coupled interaction among senders and receivers given that
it is not needed that either both of them are active at the
same time or they know each other. Therefore, the
blackboard allows to communicate environment changes,
finding available devices and revealing if a device has been
added or removed.

Environment representation
The environment information stored in this blackboard can
be viewed as a two-layered structure. On the one hand, a
relationship layer has information about the relations
between entities. On the other hand, an entity layer stores
information about each particular entity.
The relationship layer is a non-directed graph where each
node is an entity. Each entity node represents relevant
environment information such as physical devices,
software applications, occupants or abstract concepts. Arcs
between entity nodes denote some kind of relationship
(composition, aggregation, association, etc.). For example,
the location of a person is modelled as an arc between that
person and the room where s/he is located. Given that we
employ non-directed arcs, reciprocal relations are also
modelled. Therefore, each room has a relationship with
every one of its occupants.

Every entity node has assigned a name. This is a unique
alphanumerical string. This way, the node name univocally
represents the entity. Moreover, entity nodes hold extra
information that indicates the entity type (an entity can be a
device, a person, a room, etc.).
The entity layer is composed as follows. Every entity has a
collection of properties. Entities of the same type inherit a
set of common properties, which defines their specific
characteristics. Besides, the entities can define new
common properties, called parameters, which represent
custom information for the entity.
The composition of each environment entity is reflected in
the blackboard as a tree structure. The tree root is one of
the nodes of the previously described relationship graph.
This node has a set of child nodes that defines its properties
and parameters.
A property node constitutes an intrinsic and universally
accepted feature of the entity. Properties have a name and a
value. Thus, two properties that belong to the same entity
must have distinct names. Values are leaf nodes that store
literal values which can be of type string, integer or real.
Besides, the changes on the values of the properties that
represent physical variables are reflected in the real world.
Thus, when an application or an interface needs to get or to
change the physical state of a device, it only has to access
to the right node in the graph and get or change its value.
Parameter nodes represent a set of specific features defined
by an application or a group of applications, and allow to
customize the entity model. Parameters hang of a parameter
set node (aka paramSet node). Each group of applications
can define its own paramSet independently of the rest.
Parameters, like properties, are name-value pairs.
Nevertheless, they can be associated not only to an entity
but also to a property. This mechanism provides fine-grain
parameterisation.

Figure 1. Blackboard: entities and their relationships
So, combining these two layers, the resulting blackboard
structure can be seen like a graph of entities, where each
entity is described as tree of properties and parameters.
Figure 1 depicts a schematic blackboard graph. It contains
five entity nodes, four property nodes and two paramSet
nodes with one parameter each. Entities are within a blank
circle, with their name and type (for instance, Andrew and
person). Double-arrow lines indicate a bidirectional

relationship. Shadowed solid circles represent property
nodes (for instance, e-mail), blank dashed circles represent
paramSets (for instance, Jeoffrey) and shadowed dashed
circles represent parameters (for instance, image). Finally,
rectangles hold the node value (for instance,
dave@uam.es).
This structure allows to organize the environment
information using several abstraction levels. The deepest
nodes represent more concrete properties, while the upper
nodes in the hierarchy reflect structural relationships
among entities.

Name Space
An entity node can be indexed by its name. Besides, a node
can be located, starting from any entity node and following
the relationship path. This is called the node path. It is
composed by a list of tokens separated by the slash
character. Their order is determined as follows: the first
token of the path is the word “name”, the second one must
be the entity name and the next tokens come as the result of
concatenating the names of all the intermediate nodes until
the target node. For instance, in the example showed in the
figure 1, the lamp_1 status path is /name/lamp_1/status.
In addition, wildcards can be used to substitute one or
several tokens. This allows referencing several nodes at the
same time. For example, based on the figure 1,
/name/dave/* references all the properties, paramSets and
related entities of the entity Dave. As a result it gets the
following list: the e-mail and busy property nodes and the
Lab_407 entity node.
Another two naming mechanisms are provided to improve
the use of wildcards:
• Predefined hierarchy. This mechanism restricts the

nodes that compose a path. It specifies how to go through
the graph. To do this, each hierarchy defines a sequence
of types of entities. For example, the first type of entity
must be a room, the second one a device, etc…
Therefore, when a wildcard is used, only the nodes that
match with the expected type will be substituted. These
hierarchies are called predefined because they are hard-
wired. Following with the example of the figure 1, the
path /roomdevice/lab407/*/props/status is interpreted as
follows: the initial token identifies the hierarchy
roomdevice. This hierarchy establishes that the first type
of entity must be a room followed by a device. The other
nodes remain unrestricted. Therefore, this path references
the value of the status of all the devices located in lab407.

• Typed hierarchy. This is a particular case of the
previous mechanism. By default, there will be as many
hierarchies as types of entities. The initial token of these
hierarchies is the type of entity. For example, in the
figure 1 there are three default hierarchies: person, room
and device, so that /person/*/mail retrieves the e-mails
from everybody.

Interaction with the blackboard
Interfaces do not interact directly with the environment
physical entities but they only have access to the
middleware information. So, the implementation details of
an entity are hidden to the applications and these only have
to use the same standard communication rules for any
entity of the environment.
The middleware provides a set of operations that allows to
retrieve the information stored in blackboard, make
changes on the values of the properties and add or remove
an entity or a relationship. To access or change the
blackboard information, applications and interfaces employ
a simple communication mechanism through the HTTP
protocol, by means of XML-compliant messages.
Figure 2 shows an XML representation of a generic entity
obtained from the blackboard.
Thereby, the initial backboard structure can be generated
from a set of XML files that store the environment
configuration.
As we have seen in this section it is simple and standard to
describe the environment, retrieve the state of its entities or

<entity name=“id” type=“type”>
 <property name=“name“>value</property>
 <property name=“name“>value
 <paramSet name=“name“>
 <param name=“name“>value</param>
 <param name=“name“>value</param>

 </paramSet>
 </property>

 <paramSet name=“name“>
 <param name=“name“>value</param>
 <param name=“name“>value</param>

 </paramSet>
 <paramSet name=“name“>
 <param name=“name“>value</param>
 <param name=“name“>value</param>

 </paramSet>

 <entity name=”name”/>
 …..
</entity>

Figure 2. XML template for an entity

change it. The XML-compliant definition language serves
as a standard tool to specify the characteristics of the
environment. Once created, to get or change the physical
state of an entity of the environment or add or remove new
entities is also possible by means of standard instructions.

XML INTERFACE DEFINITION
Besides the definition of the entity properties, employed to
build the middleware layer, the entities have associated
other XML information employed to automatically build
diverse user interfaces.
Currently, our XML-compliant environment definition
language supports the automatic construction of two
different user interfaces: a spoken dialogue interface and a
web-based interface.

Spoken dialogue interface
Spoken interaction becomes necessary for an intuitive
communication between users and intelligent environments
[3]. Considering this, we have added new XML dialogue
tags to the environment description, in order to support the
automatic creation of a Spanish dialogue interface.
Dialogues are associated to each entity, so that when a new
entity appears in the environment a new dialogue allows
the users to interact with that entity. If the entity is not part
of the environment, the dialogue will not be available.
Each dialogue entity depends on the type of entity, so the

entities of the same type will inherit the same kind of
possible interactions. Entity dialogues can be customized
for each entity, in order to distinguish between them. A
supervisor is in charge of managing the dialogue
interactions, resolving conflicts, for instance, when there
are several entities of the same type, among many others.
Each entity must have associated all the possible ways a
user can interact with it. For this we have defined an initial
set of linguistic parts, which tries to cover the possible
interactions between the user and the entity. This set is
formed by:
• A verb part, which corresponds with the action that the

user wants to perform with the entity.
• An object part, related with the name that the user

gives to the entity.
• An indirect object part, the person who receives the

action.
• A modifier part, the kind of object part entity.
• A location part, which informs of the location of the

entity in the environment.
The last two parts permit to distinguish between several
entities of the same type. These linguistics parts allow the
use of synonyms and there can be as many sets of parts as
necessary for each entity. The figure 3 shows the definition
of two different sets of linguistic parts for one entity of
type fluorescent. Translating the case from Spanish, it is
considered that a user could utter sentences of the type:
“please, could you switch on the ceiling light” but not of
the type “please, could you switch on the fluorescent” (for
fluorescents, users only employ the verb turn on). Besides,
some parts contain synonyms (turn on and switch on, or
ceiling and above).

To create an entity based on a defined type it is only
necessary to declare an instance of the entity type. This
entity instance inherits all the entity type definition
properties, including the linguistic information. In many
cases, it will not be necessary to customize this linguistic
information, and to declare the entity will be enough to
automatically add its dialogue interactions to the interface.

<class name="fluorescent">
<property name=”Status”>
<paramSet name=”dialogue”>
 <paramSet name=“sentence“>
 <param name=“verbPart”>turn_on switch_on</param>
 <param name=“objectPart”>light</param>
 <param name=“modifierPart”> </param>
 <param name=“locationPart”>ceiling above</param>
 <param name=“indirectObjectPart”></param>
 </paramSet>
 <paramSet name=“sentence” >
 <param name=“verbPart”>turn_on </param>
 <param name=“objectPart”>fluorescent</param>
 <param name=“modifierPart”> </param>
 <param name=“locationPart”> </param>
 <param name=“indirectObjectPart”></param>
 </paramSet>
</paramSet>
</property>
</class>

Figure 3. Linguistic information for an entity definition

<entity name=”Lamp_1” type="fluorescent">
 <property name=”status”>
 <paramSet name=”dialogue”>
 <paramSet name=“sentence” >
 <param name=“modifierPart”>main</param>
 </paramSet>
 </paramSet>
 <property>
</entity>

Figure 4. Customized entity instance

In other cases, the entity instance can be customized to
adapt to the environment specific characteristics or
distinguish itself from other entities of the same type.
Figure 4 shows an entity instance customized for a specific
environment.
Additionally, the entity type definition also has to declare:
• A grammar template, which serves as the skeleton to

define the recognition grammar.
A grammar template has a set of common rules and empty
linguistic parts (marked as nil). The nil marks can be filled
in with the linguistic parts provided by the entity definition.
Figure 5 shows a simplified section of an action grammar
template for an imperative sentence. Besides these
imperative sentences, it also supports noun sentences,

subjunctive sentences (in present, past, singular and plural)
and interrogative sentences.
Every word in the set of linguistic parts is sent to a
morphological analyzer. This gets its part of speech
information and, based on it, retrieves its different forms.
Then it adds each word form to the right grammar rule. For
instance, based on the exampled showed in the figure 3, the
morphological analyzer gets that turn on is verb, so that it
gets all the possible declinations for that verb (in Spanish,
verb declinations change for each mode, tense, number and
person). Then, it adds the right forms to the rules
<imperative informal verb> and <imperative formal
verb>, among others.
This process is repeated with each linguistic part of an
entity type, taking into consideration if the word is a noun,
a verb, an adjective, etc.
Grammar templates employ fixed rules that not only
combine the added words in a proper way but also allow to
employ more general and natural utterances, avoiding to
use commands. These sentences try to cover the whole
corpus of possibilities that a person employs to address to
the entity.
The entity designer can use any of the available grammar
templates. A designer can employ the preexisting grammar
templates or declare new ones. In this case, s/he only needs
to keep the name of the rules that will be filled in with the
entity linguistic parts, this is, rules of the kind
<infinitive verb>, <singular male noun>, etc. S/he only has

to declare the rules that correspond with linguistic parts
that are necessary for the interaction, avoiding to declare
those not needed.
And finally, it is necessary that the entity definition
declares a pointer to two different methods:
• An action method, which receives the action requested

by the user (the verb part) and performs that action with
the entity. To do this task it serves of the middleware
layer.

• A state method, which also receives the verb part and
returns if the current state of the entity is the same or
different to the user requested state. Again, it also serves
of the middleware layer.

The action method is employed to execute the environment
physical action requested by the user. It only has to be
implemented once by the designer of entity type so the
entity instances will automatically inherit this method.
The state method is utilized in the interaction process to
determinate if the entity instance has to be processed. In the
case that the entity has the same state as the requested by
the user the dialogue interaction does not need to consider
that entity and can continue processing other entities with a
different state. Again, this method only has to be defined
once by the designer of the entity type. The interface
definition process will automatically inherit this method for
every entity of the same type.
Both methods employ the middleware layer to
communicate with the physical environment. To do this,
they only have to specify the entity property that they want
to interact with, if they want to get or set a value for this
property and, in the last case, the value that they want to
set. As it was explained above, this communication follows
a standard process through the HTTP protocol.

Web-based interface
We have also developed a web based interface to control
environment’s devices and appliances. This interface is
called Jeoffrey. It is a custom and partial view of the
environment information stored in the blackboard.
The blackboard contains generic information regarding the
number of rooms and the entities that it hosts. Each entity
is represented in the blackboard. Its representation includes
the properties required to interact with it. Additionally, new
specific information has been added in order to create the
Jeoffrey interface. It is composed by three parts
hierarchically structured:
• The top level is a stand-alone list box containing the

rooms of the environment. When the user selects a room,
a new window will pop up.

• This new window shows a map of the room, which
includes the location of the furniture and entities. The
map layout is composed overlapping a fixed background
image with the device representation images. Every time

<imperative sentence> = <imperative verb> [<noun>];
<imperative verb> = <imperative informal verb>
 | <imperative formal verb>

 | <infinitive verb>;
<imperative informal verb> = nil;
<imperative formal verb> = nil;
<infinitive verb> = nil;

Figure 5. Section of a grammar template

the interface is loaded, the map is dynamically generated
using the blackboard information.

• Finally, a custom control panel is showed when a user
clicks on an entity, allowing to interact with it.

Figure 6. Jeoffrey’s user interface.

Figure 6 shows a Jeoffrey user interface screenshot. The
most left window is the root list box. The background
window corresponds to the map that appears when a room
is selected. Finally, the other three windows correspond to
invoked entity control panels.
Jeoffrey gathers the information stored in the blackboard to
dynamically render the user interface. The blackboard
graph includes an entity node for each room and for each
entity. A relationship between a room and an entity reflects
that the entity is located in that room. This way, Jeoffrey
can easily ask for all the rooms and, for each of them,
which entities are inside.
Each entity includes several Jeoffrey’s parameters that help
to render its graphical interface. Figure 7 illustrates the
Jeoffrey interface information of a fluorescent XML
instance. Bold font is used to highlight the Jeoffrey’s
parameters. There are two paramSets. The first one is
associated to the entity and contains three parameters. The
image parameter defines its corresponding image file. The
x and y parameters are the coordinates where this image
will be drawn. The second paramSet is associated to the
status property and defines its related widget.
As we have mentioned above, the interaction with the
entities is managed by a custom control panel composed of
widgets. This panel is customized depending on the entity
properties. Each property is rendered into a widget that
allows interacting with the entity property. There are five
different generic widgets: text areas, switches, sliders, list
boxes and alarms. Text areas permit to change the value of
a string. Switches act as a toggle button associated to on-
off properties. Sliders correspond to properties that take a
value from an interval. List boxes define a list of possible
values where the user can choose one. And finally, alarms
are colored labels that change their color depending on the
value of the property.

 As figure 7 shows, the fluorescent called Lamp_1 has only
a status property. This property is associated with a switch
widget. Besides, several switch parameters defining
presentation features are established. These features are:
• The button text: this text changes depending on the

state of the property. The “text_off” parameter is
displayed when the light is off whereas the “text_on”
parameter is showed when the light is on.

• The button color: by default the color is gray when the
light is off. When the light is on, the color is defined by
the “color_on” parameter.

Figure 8 illustrates the rendered control panel for a
florescent and the image painted on the map.
Finally, the “cmd_off” and “cmd_on” parameters define the
value of the status property that will be set when the button
is pressed.

Figure 8. User interface for a fluorescent
When a user clicks on the picture of an entity, Jeoffrey
reads the descriptions of its properties from the blackboard,
translates the properties to widgets and generates a custom
control panel. If the entity has more than one property, the

<entity name="Lamp_1" type="fluorescent">
 <property name="Status“>

 <paramSet name="jeoffrey”>
 <param name="type">switch</param>
 <param name="text_off">Turn on</param>
 <param name="text_on">Turn off</param>
 <param name="cmd_on">0</param>
 <param name=”cmd_off”>1</param>
 <param name="color_on">0x00FF00</param>
 </paramSet>
 </property>

 <paramSet name="jeoffrey">
 <param name="image">reflectante.gif</param>
 <param name="x">460</param>
 <param name="y">247</param>
 </paramSet>
 </entity>

Figure 7. XML entity representation

Figure 9. Overview of the system

control panel will be composed by the aggregation of the
widgets corresponding to each property.
Jeoffrey employs the blackboard as a proxy to interact with
the physical entities, for instance, to change the speaker
volume, switch on the lights, etc., and to receive the
changes occurred in the environment. Jeoffrey is
subscribed to every event. All the changes in the state of an
entity are reflected in the user interface. For instance, if a
property has associated a widget alarm, when its value
changes, the blackboard will notify this to Jeoffrey and it
will modify the color of the alarm widget.

IMPLEMENTED ENVIRONMENT
Currently we have implemented a real intelligent
environment that allows to control and interact with a
fluorescent light, two reading lights, two dimmable lights,
the main gate lock mechanism and an FM tuner with
thirteen different radio stations, among other functionalities
(such as sending messages, showing personalized
paintings, etc.). All these devices are part of the laboratory
number 407, so they hang from the path /lab407/device/
These devices already come with their common XML
entity definition, their action and state method and their
associated grammar template. The device manufacturer is
in charge of providing this information, so an environment
designer only has to declare the instances of the elements
and their distribution in the environment.
The environment designer declares the entities according to
the template showed in the figure 2. If it is not necessary to
customize the linguistic or web-based information for the
current environment s/he will not have to declare any
specific information related to the interfaces. Then the
system adds the interface class information to the entity
declaration. All this information is compiled to create the
system representation file. With this file the system builds
the blackboard, containing information about the
environment and the interfaces (see an overview of the
system in the figure 9).
For instance, in our developed environment the
environment designer only has to declare the seven device
members of the laboratory 407. Given that there are some
devices of the same type, s/he will have to customize some

interface information. In this case s/he employs new
linguistic information to distinguish between the two
dimmable lights, adding to the location part the words left
and right respectively (see another example in figure 4). A
similar case occurs with the two reading lights. Finally, the
entity declaration is customized by specifying the
coordinates x and y for the Jeoffrey’s web-based interface.
With this, the system automatically creates the blackboard.
Whenever the web-based interface is executed it consults
the blackboard to create the interface showed in the figure
6. The information for all the devices of the laboratory 407
is retrieved employing the following path
/roomdevice/lab407/*/*/jeoffrey/*. The dialogue
information is retrieved in a similar way and it forms a
linguistic tree as the core of the spoken interface.
Once the interfaces are created users can interact with the
environment. The spoken dialogue interface allows natural
interaction with the elements of the environment. Users can
refer in different ways to the actions that can be taken with
the devices and the system responds either uttering answers
or executing actions. The interface supports interpretation
of user sentences, based on the current physical context
stored on the blackboard. A clarification request is
produced when it does not have enough information to
carry on an action. Besides, it supports anaphora resolution.
The dialogue interaction adapts to the elements of the
environment and their state. Answers and system actions
vary depending on the elements declared for each
environment. This is done by means of the linguistic tree
obtained from the blackboard at startup. This tree contains
all the possible interactions with the environment and the
entities that support them. Again, this is an automatic
process and the environment designer only needs to declare
the entities that form the environment.
A real example of an interaction produced in this
environment is showed in the figure 10. It demonstrates
how the system changes the interpretation of the same
sentence for different states of the environment, interprets
incomplete sentences or reacts when there are several
entities of the same type.

CONCLUSIONS
We have presented a graph model that allows to represent
the entities of an intelligent environment and their
relationships. This model is created using an XML-
compliant language, and it is stored in a global data
structure, called blackboard. A blackboard middleware
provides a set of operations to interact with the graph
model. An application can add or remove entities, retrieve
or modify their state, and subscribe to the changes done by
other applications.
Two user interfaces have been developed to interact with
the environment. These interfaces are created by means of
an extension of the environment XML model. The first
extended language automatically creates a customized
spoken dialogue interface. This language adds linguistic
information to the XML model. The second one
dynamically builds a web based interface. Again, new
XML tags allow to specify GUI information.
The middleware and the interfaces have been developed in
a real environment. It is composed of several devices,
including different types of lights, sensors, a door opening
mechanism, an FM tuner, etc. Both interfaces provide real
interaction with these devices.

ACKNOWLEDGMENTS
This work has been sponsored by the Spanish Ministry of
Science and Technology, project number TIC2000-0464.
REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L.,

Williams, S., and Shuster, J.E. UIML: An Appliance-
Independent XML User Interface Language. In
Proceedings of the Eighth International WWW
Conference, Toronto, Canada, 1999.

2. Ali, M.A., Pérez-Quiñones, M.A., Abrams, M., and
Shell, E. Building Multi-Platform User Interfaces with
UIML. In Proceedings of CADUI, 2002.

3. Brumitt, B., and Cadiz, JJ. “Let there be light!”
Comparing interfaces for homes of the future. In
Proceedings of INTERACT '01, 375–382, 2001.

4. Coen, M.H. Design Principles for Intelligent
Environments. In Proceedings of the AAAI Spring
Symposium on Intelligent Environments, Palo Alto,
California, 1998.

5. Engelmore, R., and Morgan, T. Blackboard Systems.
Addison-Wesley, 1988

6. McFarlane, N. Rapid Application Development with
Mozilla. Bruce Perens' Open Source Series. Prentice
Hall, 2003

7. Paternò, F., and Santoro, C. One Model, Many
Interfaces. In Proceedings of CADUI, 2002.

8. Petzold, C. Create Real Apps Using New Code and
Markup Model. MSDN Magazine, January 2004.

9. Puerta, A. and Eisenstein, J. XIML: A Universal
Language for User Interfaces. White paper. Available at
http://www.ximl.org/Docs.asp. 2001.

10. Rayner, M., Lewin, I., Gorrell, G., and Boye, J. Plug
and Play Speech Understanding. 2nd SIGdial Workshop
on Discourse and Dialogue, September 2001.

11. Shafer, S., Brumitt, B., and Cadiz, JJ. Interaction Issues
in Context-Aware Intelligent Environments. Human-
Computer Interaction, 16, 363-378, 2001.

12. Trewin, S., Zimmermann, G., and Vanderheiden, G.
Abstract user interface representations: How well do
they support universal access?. In Proceedings of the
2nd ACM International Conference on Universal
Usability, Vancouver, Canada, 2003.

13. Weiser, M. The computer of the 21st century. Scientific
American, 265, 3, 66-75, 1991.

14. Weiser, M. The world is not a desktop. ACM
Interactions, 1, 1, 7-8, 1994.

15. Zimmermann, G., Vanderheiden, G., and Gilman, A.
Universal Remote Console Prototyping of an Emerging
XML Based Alternate User Interface Access Standard.
In Proceedings of the Eleventh International WWW
Conference, Hawaii, 2002.

User: Please, could you turn on the light?
System: What light would you like to turn on?
U: The reading light, please.
S: The one on the left or on the right.
U: The left light.

(The system turns on the left reading light)
U: Turn on the radio.
S: What station do you prefer?
U: I would like M80.

(The system turns on the radio with M80)
U: Please, turn it up.

(The system turns up the radio volume)
U: More.

(The system turns it up again)
U: I would like you to switch off…
S: Do you prefer to switch off the left reading light or
the radio.
U: The radio, please

(The system turns off the radio)
U: I would like you to switch off…

(The system directly turns off the left reading light)

Figure 10. Spoken interaction with the environment

 1

IM2L: A User Interface Description Language Supporting
Electronic Annotation

Daniela Fogli
Dipartimento di Elettronica per

l’Automazione
Università di Brescia, Italy

fogli@ing.unibs.it

Giuseppe Fresta
Istituto di Scienza e Tecnologia

dell'Informazione (ISTI)
CNR, Pisa, Italy

giuseppe.fresta@isti.cnr.it

Andrea Marcante, Piero Mussio
Dipartimento di Scienze

dell’Informazione
Università di Milano, Italy

{marcante,mussio}@dico.unimi.it

ABSTRACT
The user interface description language IM2L (Interaction
Multimodal Markup Language) - an XML compliant
language - is introduced and its interpreter is discussed. The
design of IM2L is motivated by the need to support the
activity of electronic document creation, management and
updating in scientific and technical fields. In these domains,
annotation emerged as the basic operator for electronic
document management. IM2L is a user interface description
language in that an IM2L program defines an interactive
environment – including its interface. An IM2L program
can be interpreted by an XML processor and physically
made active by an adequate application.

Keywords
XML, user interfaces, electronic document, electronic
annotation.

1. INTRODUCTION
Electronic documents (e-documents) appear as a new
media, complementing the traditional documents in
recording, evolving and making available community
knowledge. In the electronic world, documents become
‘electronic’, in that they are no more recorded on a
permanent support, but exist ‘virtually’ as the results of the
interpretation of a program P by a computer [13]. Users can
perceive electronic documents, because the computational
process generates some physical representations
perceivable by them, for example images on a screen, in
which texts, pictures and graphs appear. These physical
representations only exist and are perceivable until the
electronic machinery maintains them in existence. E-
documents are less persistent than paper-based ones, but
this dependence on a computer offers some advantages.
Interactive computers allow e-documents to be managed
and adapted by their users more easily than paper-based
ones; e-documents also can evolve during their usage and
adapt to their users. With the advent of the web, the e-
document evolves to “a unit consisting of dynamic,
flexible, non linear content, represented as a set of linked
information items, stored in one or more physical media or
networked sites; created and used by one or more
individuals in the facilitation of some process or project”
[15]. However, e-documents appear to users as single
entities even when their content is distributed in different,

geographically remote repositories. Moreover, the physical
representation results from a mapping of the content of the
document into output events perceivable by users (e.g. the
images on the screen or a speech through a microphone).
This paper introduces the definition of a user interface
description language, IM2L (Interaction Multimodal
Markup Language), and of its interpreter. IM2L is an XML
compliant language, which permits the specification of e-
documents separating the definition and realization of their
physical representation from the definition and management
of their content.
The paper first discusses the motivations and goals of the
project (Section 2), presents a technique to model and
specify the e-document (Section 3), and the important
annotation operator, which is basic for e-document
management (Section 4). These concepts are made concrete
discussing in Section 5 a scenario inspired by a case under
development. The next Section (Section 6) describes the
interpreter implementation and behavior. Last, conclusions
are derived (Section 7).

2. MOTIVATIONS AND GOALS
In recent years, the Pictorial Computing Laboratory (PCL)
researchers developed a model of human-computer
interaction which allows the specification of the process of
interaction between human and e-document separating the
materialization from the computing process [2]. This
separation allows the definition and implementation of
adequate control of the human-e-document dialogue based
on the ability to capture, trap and manage each action
performed by the user on the e-document itself [3]. The
separation between materialization and computing implies
the separation of the process of creating the content and
logical structure of a document from the process of
specification of its materialization (physical representation),
which may be multimodal. The materialization can be
adapted to the culture, skills and abilities of the current
user, without altering its content and logical structure.
In this way the traditional notations used in a specific
domain to create documents, prescribe procedures and
communicate data and results can be assumed as the kernel
of the interaction language. The look and feel of the
interface therefore reflects the mental models of the users
about the task to be performed.

 2

This model stemmed from experiences on the description of
the activity of human-e-document interaction in the
scientific and technical fields, even if it can be generalized
to other interaction activities [12][5]. In these fields,
annotation emerged as a first class operator in workgroups
performing data analysis and experiments through the web.
An experimenter sends annotated results, tools and
procedures to his/her coworkers. Annotation is the tool used
to make clear the gained insight, the doubts, the questions
arising in the work. Coworkers then examine the data, and
experiment the tools, mark them up electronically with
annotations and return them [5][9].
This model of human-e-document interaction maps
naturally into the XML suite approach for organizing
interoperable, distributed documents.
On one hand, the XML technology permits the management
of distributed contents; on the other hand, the
materialization based on SVG (the XML specification for
vector graphics) permits the capture and check of each
action performed on each pixel composing the physical
representation of the e-document. In WIMP systems, an e-
document is presented to the user (materialized, in the
following) as an image on the screen, whose pixels can
therefore be addressed singularly. This approach has two
consequences. First also texts are treated as images in the
interaction process. Images, graphs, texts, and the mixes of
them are treated in a uniform way. Second, the possibility
of capturing and checking each action performed on each
pixel permits the implementation of: 1) a mechanism for
adequate control of the interaction and 2) a mechanism for
linking annotation to any element of the physical
representation of the document.
An XML-based language, IM2L, has been specified, which
admits annotation and interaction control as first class
operators. An IM2L program P describes an interactive
environment and, can be interpreted by every SVG
compliant browser which generates the e-document and
controls the interaction process. The browser acts as a table
driven interpreter: in this way it can adapt the interaction
style to the local user culture.
This approach is similar to the one proposed in [10], in
which a rendering engine interprets a UIML (User Interface
Markup Language) document [1]. The two approaches
differ in the definition of the e-document to be rendered
and in the implementation of the rendering machine. Behind
the possibility of managing and annotating images, graphic
and text in an uniform way and of adequate control of the
interaction the IM2L approach has two other features. An
IM2L document is a description of an interface which can
be plugged in any XML compliant browser equipped with
materialization applications. When interpreted by the
browser, the IM2L document is transformed into an
intermediate data structure (a DOM tree), which is
successively materialized by a suitable application. The
application is chosen depending on the current context and
user. The IM2L document can be materialized according to

the user need in a specific context. The hosting system
becomes equipped with an interface, which is locally
customized to the user culture and skill and can be tailored
by the users themselves to their specific needs [7].
Moreover, the content of the e-documents can be
materialized as a visual, aural or tactile signal, or a
combination of them according to the application adopted
for materialization.

3. MODELING AND SPECIFYING THE E-DOCUMENT
In the PCL approach, HCI is modeled as a process in which
the user and the computer communicate by materializing
and interpreting a sequence of messages at successive
instants of time. If we restrict to the case of WIMP
interaction [13], the messages exchanged are the whole
images which appear on the screen display of a computer
and are formed by text, icons, graphs, pictures, windows.
Two interpretations of each element on the screen and of
each action arise during the interaction: one performed by
the user, depending on his/her role in the task, as well as on
his/her culture, experience, and skills, and the second
internal to the system, associating the image with a
computational meaning, as determined by the programs
implemented in the system [5]. The user identifies some
subsets of pixels on the screen as functional or perceptual
units, called characteristic structures (css).
Each cs on the screen exists, is made perceivable and
evolves because a program exists which is being interpreted
by the computer. Each screen layout, and the sequences of
screen layout which arise during the interaction come to
existence and are made perceivable to humans because of
the interpretation of a program. They all are manifestation
of virtual entities. A virtual entity (ve in the following) is a
system which exists as the result of the interpretation of a
program by a computer. A ve is a dynamic system in that it
is able to capture the user inputs, compute the reaction to
them and materialize its own state - the results of the
computation – in a form perceivable by the user.
At each instant, the ve state is defined as a characteristic
pattern cp=<cs, u, <intcs, matcs>>, where intcs
(interpretation) is a function, mapping ve current cs to the
state u of the program generating it and matcs
(materialization) a function mapping u to cs.
Users manifest their intentions performing some operation
on an input device, which the ve perceives as a set of input
events op and refers to a cs on the screen. The pair
a=<op,cs>, is called a user activity. The dynamic behavior
of the ve appears to the users as a sequence of css
generated in reaction to users activities.
A ve becomes an e-document, when some humans use it
as a tool of study, consultation or research in achieving a
task [11]. An important type of e-document are interactive
environments, e-documents whose css are whole images
on the screen. An image i on the screen is the
materialization of the state d of a program P and is
constituted by a finite set of css, each csi being associated
with the state ui of a sub-program of P. Two functions, int

 3

and mat relate the css in i to the elements ui in the
description d of the state of P. The triple <i,d,<int, mat>>
describes the current state of an interactive environment and
is called visual sentence (vs). The set of admissible states
of an interactive environment is a set of vss, the visual
language we called Environment Visual Language (E-VL).
Each visual sentence must be generated so that it belongs to
E-VL. To this end, first a finite set (visual alphabet) of the
cp types, whose instances may be composed to form a vs is
defined. Next we define on the visual alphabet a Visual
Conditional Attributed Rewriting system (vCARW) [3]. A
vCARW system contains a set of visual rewriting rules R,
which are used to transform a vs1 into another vs2, by
introducing new cps or modifying existing ones. The rules
of a vCARW state how cps of given types can be combined
with cps of other types in order to create complex cps up to
vss. A Visual Language is specified by coupling a vCARW
system with an axiom (vs0) which is a visual sentence from
which the rewriting starts. VCARWs are characterized by
rules in which a pictorial and a textual part are made
explicit. The pictorial part states the physical appearance –
i.e. topology, geometry and shape – of each cs involved in
the rewriting step. The textual part makes explicit the
computational meaning and operation to be performed.
Using the formal specification of a vCARW as a tool for
implementation, it is convenient to divide the set R into two
subsets: the set of composition rules grouping the textual
and topological part of the rule, which determine the vs
structural organization and the set of materialization rules,
which determine the shape and geometry of the resulting
vs. A finite specification of the interactive environment
dynamics is obtained from the following observations: 1)
the interaction with an interactive environment always starts
from an initial state, a visual sentence vs0, which is
instantiated when the user first accesses the interactive
environment; 2) in each state of the interaction a finite
number of user activities can be performed; 3) as a
consequence of the user activity a, a visual sentence vs1 is
transformed into a visual sentence vs2 [5]. The designer
describes the transformation as tr:<a,<vs1⇒vs2>>, where
cs in a=<op, cs> also belongs to the cs of vs1. The
interaction process is specified as a sequence of such
transformations. In a transformation, vs1 and vs2 share a
common part, while the variable part of vs1 is transformed
into the variable part of vs2 through the application of a
transformation rule in the form tr = <ai, r>, where ai is the
user activity and r is a rewriting rule of a vCARW. In [5], it
is shown that the set TR of transformation rules is finite.

4. ELECTRONIC ANNOTATION AND THE TOOLS
SUPPORTING IT
In our current implementation, an e-document is
constituted by a body and the tools to operate on it. The
body in turn includes data and metadata. Data may be a
text, a graph, an image or a mixed of them. Metadata
describe properties of the data, such as author, date,
procedures followed to create the data. An e-annotation is
multimedia-multimodal comment which is added to a part

of an e-document, the target e-document. E-annotations
can only exist associated to a target e-document.
Users create e-annotations with reference to a cs of a target
e-document. A user identifies the annotation base, i.e. a
subset of pixels (some words in a text, a structure in an
image) s/he wants to comment within the cs of the target e-
document. The user can make evident the base by creating
a visual identifier and/or make explicit the existence of the
annotation by a visual link. In any case, the user creates an
e-annotation, which can be later retrieved, consulted and
updated by the same or other users. Creation, retrieving,
updating, and consultation can be performed following
different strategies and using different tools. In the scenario
described in the next section a stand alone strategy
implemented using an annotation bench is illustrated [8]. In
this strategy, the annotation is materialized by selecting the
visual link. As a result, a ve, the annotation bench, is made
active. The machine needs to know the link between e-
annotation and base so that it can retrieve the e-annotation,
display it whenever required, use it as an index of the target
e-document and update it. On the other side, users need to
know if the e-document has been annotated and to be able
to manage the e-annotation when necessary.
These activities are allowed by the set of ves described in
the following, which a) make manifest to the human the e-
annotation, the base and their relations to the target
document, and b) permit the construction, retrieving and
manipulation of the e-annotation. These ves are here
described stressing the interaction point of view. The set of
ves consists of:
1. the visual identifier is a ve whose css identify the base

of the annotation. It can be created by the machine as a
reaction to a user action, or by the user. In this last case
the target document must be equipped with the tools
which permit its creation. The visual identifier is
optional. When it is created it may be stationary – when
selected it does not react -, reactive, or an active or pro-
active widget. In this paper only stationary visual
identifiers are used and described, for active and
proactive example see [5][6].

2. the visual link is a ve that links the base to its
annotation. Its cs is an icon, materialized near or
pointing to the base. The selection of its current cs
determines the activation of the annotation bench which
permits the management of annotation data. The visual
link is created by the e-document, as a reaction to the
user action of selection of an annotation button. The
user has also to indicate the point where it must be
placed. Its cs is defined at the document design time -
for a rhetoric study of its design see [4].

3. the annotation bench is a complex ve, which allows the
creation and updating of a set of annotations that users
consider logically related. Its cs displays the annotation,
(possibly) some metadata on the annotation and the set
of tools through which the user can create the annotation
and interact with it. The annotation and metadata can be

 4

represented as textual notes, images, pictures, graphs, or
a mixture of them [5][6].

5 A SCENARIO
To make concrete the above considerations, we provide
here an example describing how a team of glaciologists and
phointerpreters reach the classification of a remote sensed
image, by the exchange of electronic annotations. Photo-
interpreters and glaciologists interpret the image using two
prototypal interactive environments, B-Glaciologist and B-
Photointerpreter, which allow management, editing,
processing and annotation of target e-documents. The
specification of the two environments has been performed
by following the approach described in Section 3, through
which the definition of the corresponding E-VLs have been
obtained. Some elements of B-Glaciologist E-VL, and their
relations and dynamics, are described in the following. The
environments share a knowledge repository, in which e-
documents and annotations are stored. The environments
run under a web browser (Internet Explorer in this case),
and therefore environments and repository may reside in
(possibly) different places and can be used at (possibly)
different time. Photo-interpreters and glaciologists report
the results of their activity and their observations as
annotations, which can be independently accessed and
improved by all the participants to the activity. In this
implementation, annotations are displayed on the screen by
an annotation bench, an e-document whose body is

constituted by a set of annotations and related metadata (in
this case the prototype environment in which the annotation
is generated, title of the annotation, number of the
annotation at hand, total number of the annotations
associated to the base in the current thread, title of the
target e-document). Fig. 1 displays a screenshot of B-
Glaciologist, representing the current state in an
interpretation process. In the screenshot, the Explorer tools
css can be recognized at the top of the figure. Under them a
header identifies the team of system developers. Three css
lie under the header: an equipment area on the right with a
title identifying B-Glaciologist, a working area on the left,
and a message area on the bottom. In the equipment area,
three menus are present for the management of repositories
of entities to be worked (images and annotations) and
equipments to work on entities. In the working area, the css
of a target e-document and an annotation bench are
present. The user (a glaciologist) is annotating a target e-
document, formed by a body and a set of tools to work on
it. The body is constituted by the data (a raster image in our
case), and metadata, the name of the geographical entity
("Gruppo Adamello"), the name of the current user (“Mario
Bianchi") analyzing the image of interest. Tools are
represented by icons in a toolbar on the top of the body.
Among the tools, the button labeled 'a' is the cs of a visual
link creator and the button labeled with the closed curve of
a visual identifier creator .

Fig. 1: Interacting with B-Glaciologist the second glaciologist is seeing the annotation performed by the first glaciologist and is
adding his own annotation.

 5

The screenshot is the result of the following process. A first
glaciologist has recognized a structure of interest in the
body data of the target e-document, and marked it as a
visual identifier, the opaque shield surrounded by a closed
red line. To this end he selected the visual identifier creator
icon. B-Glaciologist visual identifier creator reacted to this
selection displaying a cursor – a cross - which the
glaciologist used to trace the boundary of the base. The
visual identifier creator generated the opaque shield within
the boundary. Next the glaciologist created a first
annotation, by selecting the visual link creator and then a
pixel within the visual identifier. B-Glaciologist visual link
creator reacted to this selection creating a visual link ve,
whose icon is the pencil and activating an annotation bench.
Visual link and visual identifier are created as two ves,
which become components of the target e-document. The
visual identifier cs is created at run time by the user as a
graphical SVG entity, while the visual link cs is a
predefined bitmap. These two css are superimposed to the
cs of the target e-document. The annotation bench
displayed its cs, a form which the first glaciologist filled
composing his annotation. Then he saved the annotation by
clicking the “add note” button and left the environment. In
the current situation the glaciologist Mario Bianchi
retrieved the annotation and target document from the
archive and is replying by adding his own annotation. Note
that the annotation bench css displays its current state.
Under a toolbar and an header identifying the target e-
document, two different forms are materialized. The first
in turn shows a menu and an annotation body .The menu
allows the selection of one of the existing annotations: its
caption displays the number of the currently displayed
annotations and the number of exiting ones. The annotation
metadata are the author and title, the data of the annotation
are in this case a text – could be a graph or an image or a
mix of them. This first form permits the exploration of set
of annotations which resume the history of the current task.
The second form collects the data (text in this case) and
metadata (title) provided by the user: Metadata about the
author are automatically derived by the annotation bench.
The two forms constitute the cs of an annotation group. If
the user thinks that he needs to report a different thread of
reasoning on the annotation base, he can open a second
group by restarting the visual link creation procedure. At
the end of this annotation activity, the glaciologist may
store the annotation in the knowledge repository by
selecting the 'add Nota' (add note) button. Later the photo-
interpreter can access the annotated target e-document
using B-Photointerpreter. The target e-document conveys
its visual identifiers and visual links, from which the photo-
interpreter can retrieve the e-annotations [8].

6. AN XML IMPLEMENTATION
In this section we outline the architecture underlying the
two prototypal interactive environments, with the aim of
explaining the choice of the XML technology [16].
Moreover, we show how the use of SVG (the XML
specification for vector graphics [17]) permits to see each

element of the e-document and e-annotation as a graphical
entity, which therefore can be managed as such. This
feature is exploited to permit the capture and check of each
action on each pixel composing the image on the screen and
the tailoring to the user needs.

6.1 The system architecture
Figure 2 sketches the architecture of the system: an SVG
compliant browser interprets an IM2L program. IM2L
(Interaction Multimodal Markup Language) is an XML-
compliant language, whose markup encodes a description
of the ves' storage layout and logical structure [14]. IM2L is
designed to allow a proper interaction with multimedia and
multimodal data. To this end, data are embedded into
virtual entities equipped with a set of tools which support
the desired interaction. An IM2L program describes a whole
interactive environment [6][7]. An IM2L program is
composed by: a) one or more IM2L fragments, which define
the content and logical structure of the interactive
environment; b) one or more fragments expressed by using
languages suitable for materialization; c) one or more
fragments written in a suitable programming language,
which specify the dynamics of the interactive environment
and are suitable for web-based interaction. In the current
implementation, sketched in Fig. 2, an IM2L program is
constituted by:

• A Starter SVG. It is the starter system linking the IM2L
document with its interpreter.

• An IM2L document, composed of one or more IM2L
fragments specifying the contents and the logical structure
of the ves composing the interactive environment and of
the interactive environment itself.

• The DTD of IM2L, defining the grammar to compose
the elements of an IM2L document. The grammar is
composed by a vocabulary containing the atomic elements
of the Visual Language, and the composition rules
determined in the specific user domain. It thus
implements the visual alphabet of cps and the
composition rules defined at the specification step.

• The DTD of SVG, defining the composition rules of the
elements of an SVG document.

• The set of SVG prototypes, specifying the physical
materialization of the ves and their topological relations.

• The set of javascript instantiation functions, which
implement the materialization rules defined at the
specification step. They instantiate the SVG prototypes
with the information included in the IM2L document and
compute their materialization features, such as geometry,
color, appearance. The result of the instantiation is used
by the viewer to establish the image i on the screen.

• The set of javascript interaction managing functions,
which implement the transformation rules of virtual
entities defined at the specification step. They compute
the topological and geometrical features of virtual entities
whenever their appearance or position must be modified.
They also compute the reactions of ves to the user
activities. An IM2L program is interpreted by an SVG

 6

compliant browser. The browser coordinates the
interpretation of the input events (user activities)
according to the IM2L program. Such interpretation is
performed by a standard XML processor [16], an
interpreter of the used programming language, and a
standard SVG viewer (in our case the Adobe SVG Viewer
plug-in). The next section describes how the browser
instantiates the initial state of the interactive environment,

a necessary introduction to the description of how
interactive annotation creation and evolution.

6.2 Interactive environment initial state instantiation
The first user access results into the system initial state
(vs0) instantiation. This process is illustrated in fig. 2 as the
path of arrows with ordinal numbers.

Fig. 2– The interaction between the user and interactive environment: ordinal numbers indicate the steps in the creation of the vs0;
roman numbers the steps in the management of an interaction event which causes the modification of the DOM tree (‘(n)’ indicates
that a step is repeated n times ; ‘*’ indicates that the icon represents a same program used in different steps of the process on
different parameters).

The steps in the process are:
1. The user loads the SVG starter within the browser.

This document is processed and validated by the XML
processor using the DTD of SVG.

2. The XML processor creates the DOM (Document
Object Model) tree of the SVG starter.

3. The DOM tree of the SVG starter is analyzed by the
inizializator, which loads the IM2L document.

4. The IM2L document is loaded in the web browser and
is processed and validated by the XML processor
using the DTD of IM2L.

5. The XML processor creates the DOM tree of the IM2L
document.

6. The DOM tree of the IM2L document is an input for
the transformer (a javascript interpreter).

7. The transformer fires the XML Processor, asking for
the set of SVG prototypes corresponding to the virtual
entities in the DOM tree of the IM2L document.

8. Each SVG prototype is processed and validated by the
XML processor using the DTD of SVG.

9. The XML processor produces a DOM tree fragment
for each SVG prototype.

10. Each DOM tree fragment of an SVG prototype is
instantiated by the transformer using the information
included in the DOM tree of the IM2L document.

11. The transformer embeds each DOM tree fragment of
the SVG prototypes into the full SVG DOM tree.

 7

12. The full SVG DOM tree is the input of the SVG
viewer that materializes the state of the interactive
environment on the screen.

6.3 Interaction with the interactive environment to
create an e-annotation
The SVG DOM tree is a data structure that represents the
hierarchy of virtual entities whose css are currently
visualized. The viewer interprets it to materialize the image
i representing the current state of the interactive
environment on the screen. Within such tree, some nodes,
called here ve nodes, correspond to virtual entities, while
the child nodes of ve nodes may correspond to attributes of
the virtual entities or to virtual entities (and therefore they
are in turn ve nodes) composing the considered ones. The
user creates an e-annotation with reference to a target e-
document. Whenever the user performs an activity to
create an e-annotation, the viewer captures the events
generated by the activity, and sends them to the javascript
interpreter, which calls the interaction managing functions
associated to the events. These functions modify the DOM
tree: new nodes are added as child nodes of the sub-tree
describing the target e-document being annotated, more
precisely, the ve node associated with it. This node is the
root of the sub-tree which specifies the target e-document
and its elements. Figure 3 shows this node after several
annotation activities have been performed on only one base.
Users reported different threads of reasoning, creating M
groups of e-annotations. Each group in turn includes several
annotation bodies. In this situation, only one visual
identifier exist, while M visual links have been created to
permit independent access to each thread of reasoning. The
child nodes created by the annotation activities are: a) ve
nodes, i.e. the visual identifier and the visual links; b) the
node annotation data, which is the root of a sub-tree
containing the information on the annotation bodies. The
child nodes of the node annotation data describe
annotation groups, each one linked to a visual link (number
2 in figure 3). An annotation group, in turn, is the root of a
sub-tree, whose child nodes are annotation body nodes. An
annotation body node has two child nodes: data and
metadata. Data may include images, text and graphic
entities properly combined. Metadata contain data about
the annotation, such as the author, the title, and a possible
link to an url or a file. In the case of visual identifiers and
visual links creation, new virtual entities are generated at
run-time. This corresponds to the creation of new ve nodes
in the DOM tree. For each new virtual entity, an IM2L
document fragment must be loaded and processed to be
included as a new node within the full SVG DOM tree
materialized by the viewer. Due to space limitations, we do
not describe here this process. Details about the interactive
creation of virtual entities and the integration of the
corresponding nodes into the full SVG DOM tree can be
found in [14]. On the other hand, annotation data have a
different nature: they are associated to the target e-
document being annotated, but are accessed, interpreted
and made manifest by an annotation bench, whose

corresponding node is already present in the DOM tree
while the user is interacting with the system to insert (or
delete) his/her annotation. Therefore, these data are stored
as a sub-tree rooted in annotation data node. The process
of creation and updating of annotation data is illustrated in
fig. 2 as the path of arrows with Roman numbers:
I. The event generated by the user activity (e.g. typing a

character to compose the content of the annotation) is
captured by the SVG viewer and passed to the
interaction manager.

II. The interaction manager calls for the execution of the
interaction managing function related to the user
activity.

III. The interaction manager interprets the function.
IV. The interaction manager updates the overall SVG

DOM tree, by: a) if this is the first character, creating
the sub-tree necessary for storing annotation; and b)
modifying the attribute Data of the interested
annotation body.

V. The modified SVG DOM tree is the new input of the
viewer, which is materialized on the screen.

The last process is the creation of the link between the
visual identifier and a visual link. When the user selects a
point to be the annotation anchor within the visual
identifier, the system creates a visual link, and pro-actively
creates a link between the visual identifier and the visual
link. Therefore, a link between the corresponding nodes is
created in the DOM tree (number 1 in figure 3). A visual
link may exist without being related to any visual identifier,
for example, when the user has selected a point in the target
e-document not included in a visual identifier.

7. CONCLUSIONS
IM2L is a user interface description language in that an
IM2L program defines an interactive environment and its
interface. An XML processor, in our case embedded in a
browser, can interpret an IM2L program. The result of the
interpretation is a new document in an intermediate
language, for example the SVG DOM tree in Fig. 2. This
new document can be interpreted by every application
capable of managing and materializing documents in the
intermediate language; in our case, this role is played by the
SVG viewer. On the other side, the IM2L document
describes the interactive environment – and hence its
interface -independently from the style of materialization,
the device of materialization and the materialization mode
(visual, aural, haptic). The materialization style and modes
are embedded in different IM2L program fragments, in the
example the SVG prototypes and javascript instantiation
functions. The application, enriched by the plug-in
specified in the program (in the example the DTD of SVG)
translates an IM2L document into a document in the
language for which a materialization application exists.
Exploiting the modularity of the W3C approach, and using
other open-source tools available on the net, a first
prototype of the kit that manages e-documents and e-
annotations has been developed as an interoperable and off-
the-shelf system.

 8

ACKNOWLEDGMENTS
The authors wish to thank: A. Rampini of IREA-CNR, who
provided the case study; M. F. Costabile and her group for

the stimulating discussions during the development of this
work; R. Gentile and E. Villani who developed the
prototypes.

Fig. 3– DOM tree fragment at a certain instant t: it represents the state of the annotated target e-document, to be interpreted by the
viewer. Ordinal numbers indicate the links described in the text

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A., L., Williama,

S., Shuster, J., E., UIML: An applicance-Independent XML
User Interface Language, WWW8 / Computer Networks,
31(11-16), 1999, 1695-1708.

2. Bottoni, P., Costabile, M. F., Levialdi, S., Mussio, P.,
Defining Visual Languages for Interactive Computing, IEEE
Transactions on SMC, 27(6), 1997, 773-783.

3. Bottoni, P., Costabile, M. F., Mussio, P., Specification and
Dialog Control of Visual Interaction. ACM TOPLAS 21(6),
1999, 1077-1136.

4. Bottoni, P., Levialdi, S., Rizzo, P., An Analysis and Case
Study of Digital Annotation, Proc. 3rd Int. Workshop DNIS
2003, Aizu, Japan, LNCS 2822, 2003, pp. 216-231.

5. Carrara, P., Fogli, D., Fresta, G., Mussio, P., Toward
overcoming culture, skill and situation hurdles in human-
computer interaction, Int. J. Universal Access in the
Information Society, 1(4), 2002, pp. 288-304.

6. Costabile, M.F., Fogli, D., Fresta, G., Mussio, P., Piccinno,
A., Computer Environments for Improving End-User
Accessibility”, Proc. of 7th ERCIM Workshop "User
Interfaces For All”, Paris, October 23-25, 2002, pp. 187-
198.

7. Costabile, M. F., Fogli, D., Fresta, G., Mussio, P., Piccinno,
A. Building Environments for End-User Development and
Tailoring, Proc. 2003 IEEE Symposia on Human Centric
(HCC’03), Aukland, New Zeland, October 2003, 31-38.

8. Fogli, D., Fresta, G., Mussio, P., On Electronic Annotation
and Its Implementation, Accepted at AVI 2004, May 2004.

9. Heck, R., M., Luebke, S. M., Obermark, C. H., A survey of
Web Annotation Systems. Digital Documents 1999, Id. 31.

10. Luyten, K., Coninx, K., UIML.NET: An Open UIML
Rendere for the .Net Framework, Proc. CADUI 2004,
Funchal, Madeira Island (Portugal), 2004.

11. Mussio, P. E-Documents as tools for the humanized
management of community knowledge, Keynote Address,
ISD 2003, Melbourne, Aug. 2003.

12. Mussio, P., Finadri, M., Gentini, P., Colombo, F., A
bootstrap approach to visual user-interface design and
development, Visual Computer, 8, 1992, 75-93.

13. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S.,
Carey, T. Human-Computer Interaction, Addison-Wesley,
Wokingham, UK, 1994.

14. Salvi,D., Progettazione di ambienti integrati per la
produzione di ambienti interattivi, Thesis, Univ. di Brescia,
Italy, 2003.

15. Shamber, L. What is a document? Rethinking the concept in
uneasy times. Journal of the ASIS, 47 (9), 1996, 669-671.

16. W3C Consortium, Extensible markup language (XML),
2001, http://www.w3.org/XML.

17. W3C: Scalable Vector Graphics (SVG), [Online] 2001 http:
//www.w3.org/Graphics/SVG

Extending XML UIDLs for Multi-Device Scenarios

Elmar Braun ∗, Max Mühlhäuser
Telecooperation Group

Department of Computer Science
Darmstadt University of Technology

Alexanderstr. 6, 64283 Darmstadt, Germany
{elmar, max}@tk.informatik.tu-darmstadt.de

ABSTRACT
Device independent user interface description languages are
used to create concrete user interfaces for a multitude of de-
vices from a single abstract user interface description. All
current languages have in common that the target device for
the concrete user interface is assumed to be a single self-
contained device. But what about ubiquitous computing en-
vironments, which are generously equipped with large num-
ber of publicly available devices that are associated on de-
mand by users who roam among devices? In this case the
set of devices currently near the user forms a virtual target
device. This virtual device can have unusual properties. For
example, it can have more than one screen. It also changes
when the user moves in or out of context of a device. We
explore how current XML-based single authoring languages
can be extended to support such scenarios.

INTRODUCTION
Many user interface description languages (UIDL) have been
motivated by the need for device independence. The advent
of a multitude of mobile devices (PDAs, cell phones, . . .)
has made it necessary to provide several different user inter-
faces for a single application: one for each device type on
which users might conceivably want to use the application.
“Handcrafting” the user interface once per device incurs a
prohibitive amount of effort for design and development.
The reuse of user interfaces that were written for a specific
device is not possible. Since the targeted devices can vary
greatly regarding their means of interaction (e.g. graphical
vs. voice-based, large vs. small screen, normal vs. numerical
vs. no keyboard, . . .), a user interface which is well designed
for one device can be unusable on another.

What is required issingle authoring: onedevice indepen-
dentdescription of a user interface, which can automatically
∗The author’s work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) as part of the Graduiertenkolleg (Research
Training Group) “Systemintegration für ubiquiẗares Rechnen in der
Informationstechnik”.

be adapted to the specifics of all conceivable target devices.
This goal has sparked a considerable number of research ef-
forts. While some have researched device independent wid-
get toolkits (e.g. [9,12]), many have focused on XML-based
markup languages (e.g. UIML [1]).

If an authoring scheme is truly device independent, it should
be possible to generate a user interface foranyconceivable
target device with it. That includes device types which the
developers of the authoring scheme did not consider in their
design, either because the developers were unaware of them,
or even because they had not been invented yet. In the re-
search domain,ubiquitous computing[21] confronts us with
such a scenario, in which unusual devices meet a strong need
for single authoring. Our ubiquitous computing research ex-
plores the concept offederated devices: rather than access-
ing applications through a single full-featured device, they
are rendered on a set of several associated devices. For ex-
ample, a user could use a private minimal voice-only head-
set device in conjunction with a publicly available display,
which was associated on demand. We will explain such
ubiquitous environments, and their challenges regarding au-
thoring of user interfaces, in more detail in the next section.

The need for single authoring is quite obvious in this sce-
nario. The set of target devices, for which a user interface
needs to be provided, has grown from all full-featured stand-
alone devices to all feasible combinations of devices. This
diversity makes single authoring and automated generation
of concrete user interfaces inevitable. But traditional sin-
gle authoring schemes were not developed with such device
groups as the “virtual target device” in mind. Our work in
progress investigates how current single authoring schemes
can be applied to such scenarios, and which extensions they
need in order to transcode for device federations. Instead of
reinventing the wheel by developing a new single authoring
language, we have decided to extend an existing markup lan-
guage (subsets of XHTML [4] and XForms [8]). The use of
XML allows easy extension of the existing markup with tags
and attributes from another namespace. We are also develop-
ing software which orchestrates multiple devices of various
modalities, so that we can test the productions of our single
authoring and transcoding components.

UBIQUITOUS COMPUTING
Before judging, and possibly extending, existing single au-
thoring approaches for ubiquitous computing settings, the

traits and requirements of such settings need to be explored
more closely. Mark Weiser described ubiquitous comput-
ing as “enhancing computer use by making many computers
available throughout the physical environment, but making
them effectively invisible to the user” [21]. Our research fo-
cuses on two aspects derived from this quote. The first is ex-
ploring ubiquitous computing environments which are am-
ply augmented with interactive devices. The second aspect
is to allow sessions to move from device to device, follow-
ing the user, in order to avoid impairing user mobility and
convenience by binding them to a fixed device.

Public and Shared Devices
The first part of the quote advocates a more relaxed relation-
ship between users and devices. Instead of today’s model
of exclusively personal devices, computers are envisioned
to be pervasively woven into the infrastructure, and anyone
who has need for their services can associate them. In the
ubiquitous environment which our group is building, that in-
cludes interactive devices like displays. A practical example
of this is a display in a public space: any user who has need
for visual access to some information can walk up to such a
display, be automatically associated with it (because the in-
frastructure detects the user’s presence), and start accessing
personalized information and applications.

Of course, ubiquitous computing does not dispute the need
for personal mobile devices. On the contrary, it can “radi-
calize” the concept of mobile devices. Current mobile de-
vices need to have satisfactory input and output capabili-
ties; they cannot be minimized much further because their
usability would suffer too much. But if the user is able to
associate interactive devices from the environment on de-
mand, the isolated use of a mobile device only occurs in the
rare case that the user is nowhere near an ubiquitously aug-
mented space. Consequently, its interactive capabilities can
be stripped down to a bare minimum of “last resort” abili-
ties. Some researchers have gone as far as to propose mo-
bile devices completely without any means of interaction,
which solely rely on associating devices from the infrastruc-
ture [20].

Our group is developing a voice-only headset calledTalking
Assistant(TA) [3]. When worn, simple commands or infor-
mation queries can be quickly activated by voice; it is neither
necessary to disengage hands and eyes from their current oc-
cupation to operate a PDA-like device, nor to walk up to and
associate the nearest public screen. But for more complex
interactions, the user is expected to use a public screen or
pick up some other nearby device. When the user does that,
the TA does not go dormant. It forms a federation with the
other device, which can now be controlled by voice through
the TA, and thereby achieves a multimodal presentation.

The second part of Mark Weiser’s quote (“making them ef-
fectively invisible”) challenges us to make the use of asso-
ciated devices as natural as possible. Associating a device
should neither force the user to perform a lengthy login or
reconfiguration process, nor should it require restarting run-
ning applications. Ideally it should not require any conscious

user action at all. We are experimenting with various user
tracking technologies to detect user intention. The TA in-
cludes head position and bearing trackers, which can be used
to detect which device a user is looking at. Association with
a screen can be performed by detecting a prolonged glance
at that screen.

Session Mobility
Effortless dissociation of devices is as important as effortless
association. A user should not be bound to a device once it
is associated. The user might want to move to a different de-
vice that is better suited to her needs, or leave a fixed device
because she needs to go to some other place. Requiring the
user to explicitly save and close a running application, and
restore its state on the next device she uses, would not be
“invisible”. Instead it should be possible to roam between
devices at runtime, “carrying” running applications from de-
vice to device. Applications are made mobile by making ses-
sions mobile, rather than making the device on which they
run mobile.

This is also referred to asteleporting[7]. The original tele-
porting works by forwarding a user’s desktop to whichever
computer she happens to be near. Obviously this only works
within one modality and device type: from desktop com-
puter to desktop computer. Combining this with user inter-
faces authored in a device independent manner allows tele-
porting a running application between different devices and
modalities, e.g. from a screen to a voice-based device.

SINGLE AUTHORING FOR MULTI-DEVICE INTERFACES
A single-authoring language for multi-device UIs shares sev-
eral basic requirements with the single device case. One
example is a device independent representation of widgets
(e.g. “select one” instead of “radio button”). We decided
to base our experiments on the existing work of one of the
many available XML single authoring languages. The ad-
vantage of an XML language is the simple extensibility. We
decided to use use subsets of XForms [8] and XHTML [4].
While other single authoring languages may be better in cer-
tain aspects, we wanted to base our extensions on rather “ba-
sic” language. We wanted to avoid that these extensions be-
come dependent on some special features of the underlying
UIDL, so that they are general enough to be used in other
UIDLs as well. We may evaluate how easily we can apply
our concepts to a different UIDL in the future, to see whether
this goal has been met. In addition, HTML has the advantage
that it is well-known, there are many available tools for pro-
cessing it, and transcoding to real HTML is simple, which
allows us to use standard web browsers as clients (see be-
low).

Our extensions take the form of a number of additional tags
and attributes1. We will explain the most important elements
below.

1Note: the XML examples are simplified for the sake of readabil-
ity. This includes lacking namespaces, and using simplified and
shortened tag an attribute names, which differ from those used in
our language.

Placing Widgets
The two main problems with multiple channels and devices
is choosing on which channel to render a widget, and decid-
ing whether to render it on multiple channels concurrently.
For example, consider the use of a handheld PDA, which
offers easy to reach input capabilities (because it usually is
in the hand of the user), in conjunction with a large wall
mounted screen. This combination shall display a user in-
terface consisting of a large text and a number of buttons for
navigating to other pages of the text. How should the ele-
ments of the user interface be distributed to the devices? The
text should be rendered on the wall mounted display only, as
it would be difficult to read on the PDA, while the buttons
go on the PDA, where they can be pressed. Even if the wall
mounted display has touch interaction, the user would have
walk up to it to press a button, while the PDA can act as a
remote control.

How is this expressed in markup2? We assign an importance
attribute, or weight, ranging from 0 to 1, to each widget.
When rendering, we use this attribute to place more impor-
tant widgets first on devices that are easier to interact with.

<button value="1.0"/>
<p value="0.5">Long text...</p>

This however does not take into account that these widgets
have a different value regarding input and output. There-
fore these can be specified separately. The other form still
is available as a shorthand for widgets with equal weight for
input and output.

<button valueIn="1.0" valueOut="0.0"/>
<p valueIn="0.0" valueOut="1.0">...</p>

The weight is also used to determine which items to drop if
the space on a channel is limited. For example, if there were
a large number of buttons, not all would fit on the PDA. The
highest-valued would then be displayed on the PDA, while
lower-valued buttons would overflow to the wall mounted
screen if it has touch interaction capabilities. (Otherwise the
only possibility is putting all buttons on the PDA and force
scrolling.) This effectively creates a remote control with the
most used buttons, while allowing access to the full func-
tionality on the wall screen.

Duplicating Widgets
In a single-channel UI, each element of the UI has to be ren-
dered exactly once. Rendering more than once on the same
channel has little benefit, while rendering a widget not at all
would make the UI inoperable. In an environment where
the user interface is rendered on multiple channels concur-
rently, it may make sense to render the same element more
than once. One example is multimodality: the same widget
is rendered in different modalities concurrently. In the input
2Actually for this example, no additional markup is needed. The
transcoder detects that the text requires much screen space and
is output only, while the buttons need to be rendered on a device
where they can be pressed, and require no visual feedback if they
have no state. However, for the sake of an easy example, it is pre-
sented with explicit markup here.

case this has the advantage that the user can pick to do input
through the modality she feels most comfortable with. In the
output case it has the advantage that the combined presenta-
tion through multiple channels may be easier to grasp than
a single-modal presentation. On multiple channels of iden-
tical modality, it is usually not reasonable to show a widget
multiple times, since the user normally can focus at at most
one device at a time. However, if the button from the above
example has a visible state, it might make sense to display it
on the large screen too, so that the user does not have to look
at the input device only to verify its state.

The weight from the last paragraph is also useful as a hint
whether an element is sufficiently important to justify dupli-
cating it or not. However, there is also an explicit syntax to
influence this behavior:

<button replicate="..."/>

Setting this attribute toonce prevents duplication, whereas
always tries to render a widget multiple times even on
identical modalities.

Grouping Widgets
Obviously automatically placing widgets to different devices
incurs the danger of splitting up groups of related widgets,
which should be displayed close to each other. Therefore
one of the most important tags is the<group> tag, which
allows to bind related tags together. For convenience it is
also possible to attach attributes to the group tags, which are
then inherited by the enclosed widgets.

Privacy
Since we assume frequent use of public devices in ubiqui-
tous computing environments, privacy is an issue. Private
data should not be displayed on a large public display, even
if it was the best available device. Widgets can be marked as
private (never shown publicly), shared (made public if pos-
sible, useful for limited cooperative work support), or non-
sensitive (no preference). This attribute can be set at run-
time; such elements default to private, but can be toggled
to shared. The transcoder creates an additional private but-
ton, which when activated switches the view to reveal the
previously private data. Furthermore we have two levels of
“public”: one that uses any public device, and one that uses
public devices only within a trusted environment like a pri-
vate office.

Interim Conclusion
This list of additional tags and attributes may appear to be
rather short. This is not only because of its work in progress
state. While some less important tags have not been listed
here (e.g. requesting a specific modality for a elements of
the user interface that make only sense in that modality), this
list covered the most important ones. Since our goal was to
single-author multi-device interfaces with as little additional
effort as possible, having few additional tags and attributes,
which cause additional authoring effort, is quite positive, as
long as they are sufficient to create multi-device interfaces.

Whether these hints work well depends on how the trans-
coder evaluates them. So far we have found them to be suffi-
cient to create reasonable multi-device interfaces. However,
in future versions it shall be possible to pass new transcod-
ing rules to the transcoder in the application markup, in order
to achieve better than default user interfaces at the expense
of additional authoring effort. This is discussed in the next
chapter.

RENDERING ON MULTIPLE DEVICES AT RUNTIME
In order to test that user interfaces specified with our UIDL
transcode into reasonable usable interfaces, we have to ren-
der and test them in an actual ubiquitous environment. We
are currently building a room equipped with several large
and small screens, as well as other input and output devices,
embedded in the infrastructure. Besides the necessary hard-
ware infrastructure, we also have developed software which
orchestrates all those devices. Rendering a user interface
with this runtime environment comprises of a number of
steps.

The first step is discovering which devices are in the user’s
vicinity. For this purpose we use a user tracking system [2],
and correlate the user location to a world model (a database
of device locations). Another method we use are badges
worn by each user, which detect transmissions from nearby
infrared-emitting tags that are fixed to each device. While
less exact, this method has the advantage of not needing a
world model.

Finally, while the application is running, we need to syn-
chronize the input and output among the federated devices.

Distributing to Devices
In the second step the runtime must decide which devices
should render which parts of the UI, and transcode the de-
vice independent UI representation into a format that the de-
vices can process. The rules for picking devices and dis-
tributing elements of the user interface often look like this:
“if there is a speech device and a screen device, then . . . ”;
or “ if there is a large screen and a small screen, then . . . ”.
The conditions in these rules refer to the available devices
and their properties (e.g. “is a speech device” or “screen x
is larger than screen y”). In order to express and evaluate
these conditions, the devices must provide a description of
their capabilities. Currently we use simple (self-written, not
vendor-provided) descriptions based on the Composite Ca-
pabilities/Preferences Profile (CC/PP) [14], but we may re-
place it with a language of our own in the future.

The rules itself are currently hard-coded in Java in the trans-
coding engine. This is an unsatisfactory way of expressing
them, since it is hard to add new rules, or expand and tune
existing rules. This is why we plan to express such rules
as markup as well. This would make extensions easier, and
allow for user-defined preferences (e.g. a blind person could
specify never to use screens), as well as application specific
rules.

One might ask whether such rules should be necessary at all.

Should not the UIDL alone deliver sufficient information to
pick devices and perform the transcoding? In our experi-
ence, the problem with specifying rules that refer to partic-
ular devices is that the resulting markup is hardly device in-
dependent, that they require much effort to specify common
sense rules again and again for each user interface, and that
it is easy to forget to provide rules for a particular device
or device combination. Therefore we deliberately designed
our UIDL to consists mostly of hints to the transcoder, rather
than tags and attributes with a rigid deterministic behavior.
Instead, optionally additional transcoder rules can be embed-
ded in the UIDL. This gives the user interface author some
control over the authoring effort / quality tradeoff. The au-
thor can trust the default rules of the transcoder to gener-
ate reasonable results from the UIDL alone, while for better
quality or for frequently used device combinations a custom
rule can be added.

Transcoding for Specific Devices
The output of the transcoder, that distributes elements of the
user interface to the devices, is not yet device specific. In-
stead it generates for each device a document in an interme-
diate format, which again consists of subsets of XHTML and
XForms. This document consists of those parts of the source
document that have been selected to be rendered on this par-
ticular device. In a second transcoding step, a device specific
user interface is generated from the intermediate document.
Our group has developed a sophisticated method for such
transcoding from a device independent representation to a
concrete user interface (see [12]). However, currently we
simply use web browsers for rendering our user interfaces
(see below). This means that the last transcoding step is
transcoding from pseudo-HTML to HTML, which does not
require such a sophisticated transcoding scheme. It mostly
consists replacing XForms with with HTML forms (due to
lack of browser support), and adding styling.

Synchronizing Devices
Now that we have distributed the different elements of the
UI to the devices, they can render their respective portion
of the UI. For that purpose the devices need client software
which performs the rendering. For our first prototype, we
have decided to use a web browser as the renderer, because
most of our target devices have a browser available.

For our desktop and large screen client we implemented a
wrapper around the Internet Explorer. As explained above,
transcoding into the native format simply means transcoding
to HTML with form elements as input widgets. The browser
performs rendering and interaction, and the wrapper is re-
sponsible for starting the browser when a user steps up to a
screen. The wrapper also closes the browser when the user
leaves the screen, and communicates with the other feder-
ated devices (see below). A speech client, which wraps IBM
ViaVoice in a similar fashion, is currently under develop-
ment.

Once the UI is rendered on multiple federated devices, these
devices need to be coordinated. When a user makes an in-
put, she should get some feedback that the input has been

Store1
Store2
Store3

Annual

Dec

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov

Store 1 Store 2 Store 3

A
p

p
lic

a
tio

n

Dialog
Manager

User Interface
Updates

Unified Input
Events

User
Input

User
Input

Input
Fusion

Adapted
User Interface

Figure 1: The dialog manager synchronizes input and
output events among several devices and the application.

recognized correctly. Input and output of the feedback need
not occur through the same channel. For example, when a
user makes speech input through her headset, an associated
display should update the respective input field with the rec-
ognized value.

For the coordination, all clients immediately send all in-
put they receive to a server which we calldialog manager
(DM, see Figure 1). The DM forwards this input to all other
clients, which update their view accordingly. In other words,
the DM holds the model in a MVC pattern with multiple dis-
tributed views and controllers. The DM is also where the
actual application connects to the UI. In our case, the appli-
cation is a Java class that receives events about input from
the DM, and can make changes to the model, causing the
DM to send out the appropriate updates to all clients.

EXAMPLE APPLICATION
To help understanding our work, we will demonstrate a sim-
ple audio player UI as an example. An audio player is a good
example of the type of user interface we are investigating.
While using the application and listening to music, the user
will only sporadically focus on the UI of the player. There-
fore the user cannot be expected to permanently be in front
of a full featured device like a desktop PC. Yet it should be
possible to quickly acquire control of the player. And if the
user so desires, the player should be able to provide detailed
additional information about the music being played.

<p valueIn="0" valueOut="1">
Now Playing:
Night on Bald Mountain

<p>
<p valueIn="0" valueOut="0.5">

Artist Info:
Modest Mussorgsky, born into a ...

<p>
<select1 valueIn="0.5" valueOut="0.5">

<item>Night on Bald Mountain</item>
<item>Pictures at an Exhibition</item>
<item>Boris Godunov</item>
<item>...</item>

</select1>
<group valueIn="1" valueOut="0">

<button>Play</button>
<button>Pause</button>
<button>Stop</button>
<button>Next Song</button>

<button>Previous Song</button>
<button>Increase Volume</button>
<button>Decrease Volume</button>

</group>

This UI consists of four main parts: The first simply displays
the title of the currently playing song. The second part dis-
plays a longer text with information about the artist. These
two elements have no value as input elements. Regarding
output, the information about the artist is considered less im-
portant than the currently playing title. The third part is a
playlist, which lists all songs that are enqueued to be played,
and allows the user to select a title to jump directly to it. This
element is both valuable for input (“select a song”) and out-
put (“show which songs are next”). The last part is a group
of buttons, which allow to control the most frequently used
functions of an audio player: starting and stoping, skipping
forward or backward, and volume control. These widgets
have no informative value, but are input controls of high im-
portance.

How would this interface be rendered on a combination of
a PDA and a larger display? The PDA displays primarily
the buttons, and acts as a form of remote control. Besides
the buttons, its screen also has space for rendering the most
important output element and therefore displays the song ti-
tle (see Figure 2(a)). The large display has space to show
the entire interface (see Figure 2(b)). Whether it displays
the buttons depends on whether it also has input capabilities
(e.g. a touch screen or through an attached mouse). Fig-
ure 2(b) assumes an output-only display.

RELATED WORK
Since single authoring for multi-device interfaces has not
received much scrutiny yet, the related work can be cate-
gorized in two groups: work that deals mostly with multi-
device interfaces but not with single authoring, and work
that deals with single authoring but only for single-device
interfaces.

Multi-Device Interfaces and Browsers
The use of portable and stationary devices together has been
explored before (e.g. [19,15]). However, such research usu-
ally focused on exploring one particular application on one
particular fixed combination of devices. Our work provides
single-authoring for an arbitrary set of devices, determined
at run-time.

Since our prototype is mostly based on web technology, it
resembles a multimodal browser that uses different devices
for the different modalities. Browsers which span more than
one device have been explored before in several projects.
The development of a multimodal browser by synchroniz-
ing browsers on multiple devices has been described in [13].
Pages for this browser are authored by manually creating
multiple versions of the same page in HTML, WML, and
VoiceXML. Single authoring was not considered. The sim-
ilar WebSplitter [11] also synchronizes multiple browsers,
but does not support non-visual modalities. It features a
single-authoring approach, albeit with a different goal: dif-

(a) The PDA part of the audio player UI. (b) The large screen part of the audio player UI.

ferent views for different user roles (e.g. teacher, student)
are created from a single source, and then co-browsed syn-
chronously by multiple collaborating users.

Other multi-device browsers do not focus on multimodal-
ity or teleporting between devices, but on remote control-
ling other associated devices from one central device. The
UbicompBrowser [6] runs on a handheld device, and con-
trols nearby devices through specialized URLs. For exam-
ple, the URLtv://local/station causes a nearby TV
to show the channel “station”. Interaction with this system
always takes place through the handheld; associating nearby
devices to render a better user interface was not among the
goals of the UbicompBrowser. The similar Small Screen /
Composite Device (SS/CD) project [18] renders multimedia
on multiple federated devices, which are automatically se-
lected from the devices available in the user’s environment.
Rendering multimedia output is considerably different from
rendering a user interface, and has no need for single author-
ing: the source consists of media in a particular modality
(e.g. video), and transcoding this to another medium (e.g. au-
dio) is in most cases neither sensible nor possible.

Bandelloni and Paternò [5] propose a system which uses
single-authoring and supports runtime migration of web ap-
plications between different device types. To our knowledge
the concurrent use of multiple devices is not their goal, un-
like the other projects mentioned here.

Single Authoring
The problem of single authoring in a device independent
manner has received much attention in the past, both in the
form of device independent widget toolkits [9] and number
of markup languages like UIML [1]. To our knowledge,
none of these deal with multiple federated devices. How-
ever, G̈obel et. al. propose, along with their own UIDL, an
algorithm which partitions a user interface into several parts,
for the purpose of displaying them on multiple successive
pages [10]. This algorithm might be adapted to partition-
ing a user interface into parts that are rendered concurrently
rather than successively on several devices.

Other projects like XWeb [16] approach single authoring by
expressing an application’s model, rather than view and con-

troller, in a canonical device-independent way. Each client
device should have its own XWeb client (comparable to a
web browser), which knows which widget best represents a
particular piece of the model. Olsen et. al. did consider ren-
dering a XWeb interface on multiple devices concurrently,
but did not provide the devices with a specialized UI for this
case [17]. To our understanding, each device simply renders
its stand-alone UI even when used concurrently with others.

XHTML [4] and XForms [8], which we have used, are lim-
ited as device independent UIDL, because, besides other is-
sues, the only type of user interface they can describe are
forms. So far this limitation has been acceptable for us, since
we explore primarily simple user interfaces that are used ca-
sually. Complex user interfaces (e.g. with multiple concur-
rent windows) usually require the full attention of the user
due to their complexity, and are unlikely to be used in such a
casual manner while the user is roaming about from device
to device.

CONCLUSIONS
We have presented our work in progress on building user in-
terfaces that are rendered across multiple devices and modal-
ities concurrently. Using our methods, applications can es-
cape the limitations of a single device, while not requiring
considerably more authoring effort than with current single-
device single-authoring languages.

Besides a single authoring scheme for such multi-device in-
terfaces, we have shown how to discover and assemble such
device federations, how to generate useable user interfaces
for them, and how to synchronize multiple devices at run-
time with our dialog manager. Future work will include user
studies to fine tune and verify our transcoding scheme.

REFERENCES
1. ABRAMS, M., PHANOURIOU, C., BATONGBACAL ,

A. L., W ILLIAMS , S. M., AND SHUSTER, J. E.
UIML: an appliance-independent XML user interface
language.Computer Networks (Amsterdam,
Netherlands: 1999) 31, 11–16 (May 1999), 1695–1708.

2. AITENBICHLER, E., AND M ÜHLHÄUSER, M. An IR
Local Positioning System for Smart Items and Devices.

3rd International Workshop on Smart Appliances and
Wearable Computing(2003), 334–339.

3. AITENBICHLER, E., AND M ÜHLHÄUSER, M. The
Talking Assistant Headset: A Novel Terminal for
Ubiquitous Computing. Tech. Rep. TK-02/02,
Fachbereich Informatik, TU Darmstadt, 2002.

4. AXELSSON, J., EPPERSON, B., ISHIKAWA , M.,
MCCARRON, S., NAVARRO, A., AND PEMBERTON,
S. XHTML 2.0.http://www.w3.org/TR/2003/
WD-xhtml2-20030506 , May 2003.

5. BANDELLONI , R., AND PATERNÒ, F. Platform
Awareness in Dynamic Web User Interfaces Migration.
In Proceedings of MobileHCI 2003(2003).

6. BEIGL, M., SCHMIDT, A., LAUFF, M., AND
GELLERSEN, H.-W. The ubicompbrowser. In
Proceedings of the 4th ERCIM Workshop on ’User
Interfaces for All’(1998), ERCIM.

7. BENNETT, F., RICHARDSON, T., AND HARTER, A.
Teleporting - Making Applications Mobile. In
Proceedings of 1994 Workshop on Mobile Computing
Systems and Applications(Santa Cruz, USA, 1994).

8. DUBINKO , M., KLOTZS, L. L., AND RAMAN , T. V.
XForms 1.0.http://www.w3.org/TR/2003/
REC-xforms-20031014/ , Oct. 2003.

9. GELLERSEN, H.-W. Modality Abstraction: Capturing
Logical Interaction Design as Abstraction from ”User
Interfaces for All”. InProceedings of the 1st ERCIM
Workshop on ’User Interfaces for All’(1995), ERCIM.

10. GOEBEL, S., BUCHHOLZ, S., ZIEGERT, T., AND
SCHILL , A. Device Independent Representation of
Web-based Dialogs and Contents. InProc. of the IEEE
Youth Forum in Computer Science and Engineering
(Nov. 2001).

11. HAN , R., PERRET, V., AND NAGHSHINEH, M.
WebSplitter: A Unified XML Framework for
Multi-Device Collaborative Web Browsing. In
Proceedings of ACM CSCW’00 Conference on
Computer-Supported Cooperative Work(2000),
pp. 221–230.

12. HARTL , A. A WidgetBased Approach for Creating
Voice Applications. InProceedings of MobileHCI
(Udine, Italy, 2003), pp. 7–10.

13. KLEINDIENST, J., SEREDI, L., KAPANEN, P.,AND
BERGMAN, J. Loosely-coupled approach towards
multi-modal browsing.Universal Access in the
Information Society 2, 2 (June 2003), 173–188.

14. KLYNE , G., REYNOLDS, F., WOODROW, C., OHTO,
H., HJELM, J., BUTLER, M. H., AND TRAN, L. W3C
recommendation: Composite capability/preference
profiles (CC/PP): Structure and vocabularies 1.0.
http://www.w3.org/TR/2004/
REC-CCPP-struct-vocab-20040115/ , Jan.
2004.

15. MYERS, B. A. Using Handhelds and PCs Together.
Commun. ACM 44, 11 (2001), 34–41.

16. OLSEN, JR., D. R., JEFFERIES, S., NIELSEN, T.,
MOYES, W., AND FREDRICKSON, P. Cross-Modal
Interaction using XWeb. InProceedings of the ACM
Symposium on User Interface Software and Technology
(2000), Toolkit Support for UI, pp. 191–200.

17. OLSEN, JR., D. R., NIELSEN, T., AND PARSLOW, D.
Join and Capture: A Model for Nomadic Interaction. In
Proceedings of the 14th annual ACM symposium on
User interface software and technology(Nov. 2001),
ACM Press, pp. 131–140.

18. PHAM , T., SCHNEIDER, G., AND GOOSE, S. A
Situated Computing Framework for Mobile and
Ubiquitous Multimedia Access Using Small Screen and
Composite Devices. InProceedings of the 8th ACM
international conference on Multimedia(Marina del
Rey, USA, 2000), ACM Press, pp. 323–331.

19. REKIMOTO, J. A Multiple Device Approach for
Supporting Whiteboard-Based Interactions. In
Proceedings of ACM CHI 98 Conference on Human
Factors in Computing Systems(1998), pp. 344–351.

20. WANT, R., PERING, T., DANNEELS, G., KUMAR ,
M., SUNDAR, M., AND L IGHT, J. The Personal
Server: Changing the Way We Think about Ubiquitous
Computing.Lecture Notes in Computer Science 2498
(2002), 194–209.

21. WEISER, M. Some Computer Science Issues in
Ubiquitous Computing.Communications of the ACM
36, 7 (July 1993), 74–84.

http://www.w3.org/TR/2003/WD-xhtml2-20030506
http://www.w3.org/TR/2003/WD-xhtml2-20030506
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

Adaptation for Device Independent Authoring

Guido Menkhaus and Sebastian Fischmeister
Software Research Lab, University of Salzburg, Salzburg, Austria

{Menkhaus, Fischmeister}@SoftwareResearch.Net

ABSTRACT
The impact of device independent authoring on software en-
gineering manifests itself mainly at the middleware level.
Until recently middleware platforms were targeted at vertical
coverage of specific scenarios. Consumer devices with inte-
grated Internet-access are becoming more popular and their
diversity grows with their market penetration and with the
extension of the mobile communication infrastructure. This
requires software architectures that are capable of supporting
horizontal coverage of a wide range of devices and scenar-
ios. This paper presents the Multi User Interface, Single Ap-
plication project. It provides a feasable approach for multi-
platform support through the introduction of an adaptable
and abstract interaction-oriented user interface language.

Author Keywords
Device Independent Authoring, User Interface Adaptation

INTRODUCTION
Due to the emergence and proliferation of new classes of
devices accessing services on the Web, device independent
authoring became an important issue. The vision of device
independence authoring is to allow services and content on
the Web to be accessible by anyone, anywhere, anytime,
and anyhow [21] by simultaneous reuse of authored source
across multiple contexts and environments. Because of the
variety of different UI platforms, content authors cannot af-
ford creating and developing content and UIs that target only
one out of a set of target platforms. This has a profound
impact on the way UIs are build. Systems must scale up
well to environments that include a wide variety of different
devices that can easily and flexibly connect to application
logic. The objective is to develop UIs for the same applica-
tion only once and not for each particular class of computing
device to avoid fragmentation of the web space into spaces
that are solely accessible with specific type of devices.

There are research projects that look into new generation UIs
that no longer consist of a display, but for example of wear-
able glasses projecting the UI onto the eye of the user [9]

or wearable computers with small and semitransparent dis-
plays placed only centimeters from the user’s eye in front of
the line of sight [24]. These UIs, although small in physical
size, will no longer have size constraints concerning the UI.
However, user acceptance seems to be low [2]. We think that
traditional UIs still have a strong potential for improvement
and that this technology will prevail in the near future on the
consumer market [11].

The dynamics of the mobile environment and the limita-
tions of mobile computing resources make adaptation a nec-
essary technique. Adaptation is necessary when there is a
significant mismatch between the supply and demand of a
resource, which is typical for a mobile and pervasive com-
puting environments [18]. A permanent solution therefore
requires models and techniques that allow UI designer to
generate adaptive UIs.

This article presents the Multi User Interface, Single Ap-
plication (MUSA) system. The MUSA project concentrates
on multi-platform support. We argue that the introduction
of an abstract interaction-oriented UI language is an essen-
tial component that eases the development of UIs for mobile
computing devices. MUSA allows a Web-based service to
be delivered to a variety of target platforms without addi-
tional effort. When a user requests a service, context infor-
mation triggers the adaptation mechanism tailoring the event
handler graph (written in EGXML) and the content of the
service to a target platform specific presentation form. The
event handler (EH) graph mediates between the concrete UI
and the application logic. Figure 1 sketches the scenario of
device independent authoring with the EH graph.

Adaptation Process.
Selection

Transformation
Modification
Manipulation

Rules

Dialog Model.
Event Handler Graph

Application
Service

Context
Information

Presentation
Data

Figure 1: Scenario of device independent service author-
ing.

The remaining of the article is organized as follows: The fol-
lowing section presents a short overview of UI architecture

1

and related work. We then introduce the MUSA system and
model. The adaptation mechanisms of the EGXML is dis-
cussed and results are presented. We close the article with
concluding remarks and a short discussion about our future
work.

USER INTERFACE ARCHITECTURE AND RELATED WORK
Model-based UI software development has introduced con-
cepts and techniques that assist in the process of UI devel-
opment and a large number of layered architectures have
been devised [15, 20]. Myers for example, has identified
four general layers: window, widget, view, and model [13].
This division corresponds roughly to the linguistic model
of architecture of interactive software that distinguishes be-
tween the following three layers: The semantic layer de-
scribes the tasks users should be able to perform using the
application for which the UI provides the interaction means.
This layer corresponds to the model in Myer’s layered ar-
chitecture. The syntactic layer describes the structure and
the interaction behavior of the UI. This can be mapped onto
Myer’s view component. The lexical layer consists of the de-
tailed description of the visual part of the UI and corresponds
to the window and the widget layer of Myer’s architecture.

The Arch-Slinky model refines the level of abstraction with
which it describes the reference model for UI management
systems [23]. It proposes a structural and functional decom-
position into the following five components:

1. Functional Core. The functional core is the creator of
data that the system represents. It manipulates data and
performs other domain-oriented functions.

2. Functional Core Adapter. The functional core uses the
functional core adapter as its channel of communication
to the dialog component.

3. Dialog. The dialog component mediates between domain
specific and presentation specific data. It controls task se-
quencing.

4. Logical Interaction. The physical interaction and the di-
alog component interact through the logical interactor that
provides corresponding interfaces and objects.

5. Physical Interaction. The physical interaction compo-
nent consumes the presentation specific data and provides
input to the functional core. It deals with input and output
of data on the target device.

The Arch-Slinky model minimizes the effect of future modi-
fication to an application and its environment by isolating the
dialog component from the functional core and the physical
interaction component.

There are a number of approaches for designing and imple-
menting UI software. They range from the automatic gener-
ation of the presentation model from a more or less formal
task model [3] to informal, structured guidelines on how to
build UI software [10]. However, lots of effort has been
dedicated to approaches that can be placed somewhere in
the middle of the both extremes [1, 6, 17]. Common to

these approaches is the application of a single XML-based
description implementing the presentation and/or the dialog
model, respectively. The description is adapted according
to a device profile at run-time into a device adequate form.
The approach supports device independent authoring so that
a single description is enabled to serve a multitude of plat-
forms. Wong presents a high-level task model description
of a web application that has a tree-like structure [22]. The
tree-like structure is adapted according to device-dependent
information to match the target device. Adaptation on the
task and concept and the UI level is presented in [8]. Rules
are defined and prioritized that tailor a UI at different levels
for graceful degradation. Most of the work concentrates on
transformation of UI elements. Adaptation at the task and
concept level focuses on deletion and insertion of tasks.

The introduction of a custom platform-independent markup
language can help to solve the problem of the Tower of Ba-
bel in UI languages, since one obstacle to device indepen-
dent authoring is that each platform with its typical browser
has its own markup language and each language aims at a
specific platform and is optimized for supporting it. How-
ever, the support of different platforms is a problem that can
be solved at the physical interaction / UI level of abstrac-
tion. Another main obstacle to device independent author-
ing is the growing number of networking enabled devices
with a wide variety of UI capability and device specific plat-
forms. One of the main differences they share is different
screen size. How to enable content to be adapted to various
screen sizes? The same content may require varying num-
bers of windows to display and a different navigational struc-
ture, depending on the platform. For example, content fitting
on one PC window may require three windows on a mo-
bile phone. Yet, all these windows originate from the same,
single authored UI. The device profile delivers information
about the limitations and restrictions of the target platform.
The adaptation process for EGXML exploits this informa-
tion for adapting the content and the navigational structure.
This results in a hierarchical structure of dialogs.

MUSA
The MUSA system utilizes device independent UI descrip-
tion in EGXML and supports the integration and composi-
tion of Web services. The objective is a reduction of devel-
opment time, cost, as well as improved maintainability and
flexibility.

Figure 2 illustrates the high-level architecture of MUSA.
The system is conceptually split into four tiers and employs
an event-driven design.

Client: The client environment represents the first tier. The
client is represented by a device with a UI. No service data is
installed on the client side and the client communicates via
wireline or wireless Internet with the service. Typically, the
client is some sort of browser, but in principle, could also be
a device with no visualization capacity such as a telephone.

Request Processor and Client Gateways: The communica-
tion between the service and the client passes through the

2

Encoding
Transformer SPU

MUSA Core System

Presentation Model
Integrator SPU

Integrator

PM Repository

Personalization
 SPU

SOAP Service
Broker

SOAP Service
Proxy

Application
Specific

Web
Services

Application
Specific

Web
Services

Application
Specific

Web
Services

Event Handler Graph
Interpreter SPU

SMS
Gateway

Request Processor

HTML

WML

SMS

Mediator

Event Handler Graph
Manager SPU

EGXML
Event Handler Graph

Description

Figure 2. High-level architecture of MUSA system.

request processor. It forwards the communication stream to
the MUSA core system and converts the client requests into
events that are used throughout the MUSA architecture.

MUSA Core System: The MUSA core system consists of
specialized processing units (SPU), which reflect the sepa-
ration of concerns of the system.

1. Event Handler Graph Interpreter SPU. The EH graph
interpreter handles the event processing. The incoming
events from the request processor are sent to individual
EHs that contain the necessary information to properly
respond to the input event. In response to the event pro-
cessing the system generates outgoing events for each in-
coming event, which are further processed in the MUSA
system.

2. Event Handler Graph Manager SPU. The EH graph
manager SPU manages the EH graphs. It controls the ac-
cess and the transformations of the EH graph.

3. Personalization SPU. The personalization SPU enables
users to personalize, i.e., to modify and adapt the EH graph
to their preferences. The adaptation is done via direct ma-
nipulation technique [19]. For example, EHs can be re-
moved from the EH graph. Once an EH is removed, the
removal can be undone. EHs can be given a different de-
scription and they can be preset with default values. This
is helpful, when a user applies a form over and over again,
and the text of only a few input fields varies. It helps re-
ducing the time to fill a form.

4. Encoding Transformer SPU. The transformer SPU trans-
forms and maps outgoing EHs of the EH graph to an ap-
propriate presentation form. If the client is a device with a
graphical UI, the EHs are mapped to those concrete UI el-
ements, which are able to implement and trigger the spec-
ified events, which are associated to specific EHs. The
SPU applies a transformation on the EH graph depending
on the client’s profile. Figure 2 shows three transformers:
a HTML, a WML, and a SMS transformer.

5. Presentation Model Integrator SPU. The integrator SPU
models the overall presentation layout of the EH graph,

which are transmitted in the course of the current inter-
action between users and applications. The presentation
model integrator SPU has a repository of presentation mod-
els. The presentation models are created at design time
by a UI designer. This allows the EH graph and the pre-
sentation models to be developed, maintained, and modi-
fied independently. A presentation model in the repository
consists of a file written in a concrete UI language en-
riched with special integrator commands, which indicate
where to integrate the EHs of the EH graph. An opening
command opens an integrator command and each opening
command has a corresponding closing command, which
delimits it, such as a XML element has an opening tag and
a closing tag. Each concrete UI element, which is between
the opening and the corresponding closing command, be-
longs to this integrator command. The insert command in-
dicates the place where to insert the EH of the EH graph.
If the associated EH is not present, the complete command
and its content is removed and not transferred to the en-
coding transformer SPU. The simplest presentation model
consists solely of integrator commands.

Service Proxy: The service logic is the body of code for
which the MUSA system provides the service facade. The
Web services that implement the service logic are accessi-
ble via service proxies, which connect the MUSA system to
other Web services.

MUSA Model
MUSA builds on the Arch-Slinky model adopting the cardi-
nal functional decomposition in a physical interaction, logi-
cal interaction, dialog, functional core adapter and the func-
tional core component. The MUSA model (Figure 3) refines
the Dialog component, by introducing the MUSA EH graph
and the Physical interaction component, by splitting it into a
global and local component. The MUSA Model tries to map
the abstraction a Web designer would use while designing
a Web-based service onto the vocabulary of the EH graph.
Within the dialog component, we observe two kinds of in-
formation flows: the vertical traversal of the EH graph and
the lateral information flow with the functional core adapter
and the logical presentation component. An EH of the EH
graph may be related to one or multiple objects of the func-

3

Functional Core /
Application

Global
Physical

Interaction
Component

Logical Interaction /
Presentation ComponentFunctional Core Adapter

Service

Dialog

Dialoglet

Simple
Event Handler

1..n

1..n

1..n

1..n
1..n

Composite
Event Handler

1..n

Local
Physical

Interaction
Component

DialogProfile

1..n

Dialog Component

Figure 3. MUSA Model.

tional core adapter. Similarly, each part of the EH graph is
connected to one or multiple presentation objects of the log-
ical interaction component.

The physical interaction component is split into a global and
a local part. This allows the both parts to vary independently.
This avoids a permanent binding of the encoding of the ob-
jects of the logical interactor and the global layout of the
logical interactor to each other.

The MUSA Event Handler Graph (EGXML)
The EH graph is at the core of the MUSA model. The in-
troduction of the EH graph follows the idea of the reactive
constraint graph described in [4]. It is an abstract descrip-
tion of a service logic, which is available for service access
to a wide range of clients. The basic building blocks of the
EH graph are represented by specific EHs. The EHs receive
events from the client dispatched by the logical interaction
component and emit events in response to the event pro-
cessing. In case of a client with a UI, outgoing events are
assigned and eventually mapped in the physical interaction
component to concrete UI elements that are able to trigger
the corresponding EHs. The UI elements trigger the event
either on display of the UI elements or in response to user
interaction.

The objective of the concept of the EH graph is to structure
the service design by using the abstractions Service, Dialog,
Dialoglet, Composite and Simple Event Handler. Each of
these plays an important role in service UI design in prac-
tice. By providing the EH graph for describing these ab-
stractions, the vocabulary of the designers informal design
practices is matched. This makes it easy for the designer to
map its vocabulary to the abstractions, both in terms of for-
malizing an informal specification and communicating the
results to other stakeholders.

The EH graph as an implementation of the dialog component
runs inside an EH graph interpreter and contains the descrip-

tion of the service logic in EH graph XML (EGXML). It
handles the event sequencing and processing. The follow-
ing hierarchical structures help the designer to organize the
service logic into a dialog model.

1. Simple Event Handler. An EH is an abstract interac-
tion object. It contains the necessary information on how
to handle an event coming from a UI and to delegate the
processing of the event and its associated data. It is a con-
crete UI object’s target and represents it from a behavioral
point of view.

2. Composite Event Handler. An EH is composite, if it is
composed of other EHs.

3. Dialoglet. A dialoglet consists of a number of EH, which
belong to one group – logically and semantically.

4. Dialog Profile. A Dialog Profile consists of a device pro-
file and one or more dialoglets.

5. Dialog. A dialog is designed to represent a task or a sub
task of a specific Web-based service. A dialog contains
one or more dialog profiles. A dialog profile represents
the dialog through the filter of a specific device profile. A
dialog is composed of an initial dialog, from which other
dialogs are chained.

6. Service. A service is composed of a sequence of dialogs.

During the design of the EH graph, the difficulty consisted of
the support of a wide variety of possible UIs for the access
of web-based interactive services. The least sophisticated
format determines the features of the EH graph. This effect
is also known as the least denominator problem. The EH
graph format incorporates elements that can be transformed
to equivalent elements in all target formats. For example,
the graphical UI of a service intended for a desktop com-
puter may be quite different to a UI that is appropriate for
a mobile telephone with a very small display. However, al-
though the concrete UI elements are quite different for each
target device and the layout mechanisms vary, the interaction
mechanisms are similar.

EGXML ADAPTATION
The definition of a single dialog model is still oriented at the
”one device - one functionality” paradigm, but today we can
access mutually any service through any device [5]. This
requires an appropriate mechanism to dynamically adapt the
dialog model. In this article a dialoglet of the dialog model
will be represented by a two-dimensional discrete function
e(x, y), which is digitized both in spatial coordinates and
feature value: dialoglet = [e(x, y)]P×Q where P ×Q is the
size of the dialog, (x, y) denotes the spatial coordinate and
e(x, y) ∈ EH the type of EH of the EH graph from the set of
available EHs EH . Without loss of generality we consider
only the case, where Q = 1.

Clustering EHs that implement the dialog model into a hi-
erarchical structure of dialoglets is the essential step in our
adaptation process that leads to device independent author-
ing (Figure 4). For this, the dialog model adaptation pro-
cess partitions the EHs implementing the dialog model into

4

non-intersecting dialoglets such that each dialoglet satisfies
a homogeneity predicate. We consider the case, where the
current dialog model was intended to be displayed on a de-
vice like a desktop PC with a monitor and the actual de-
vice that accesses the service is a PDA or mobile telephone
with a much smaller screen. This situation is typical for mo-
bile computing: Services target primarily desktop PC with
a monitor and latter are ported to a wide variety of mobile
computing devices. The situation in which a service targets
small devices and is accessed by a desktop PC with a moni-
tor is not further discussed here.

....

Dialoglet

Dialoglet Dialoglet Dialoglet

Dialog
Adaptation

Dialog Profile

Figure 4. Dialog adaptation.

Formally, the process of adaptation of the dialog model can
be defined as follows: If a dialog model consists of a set of
EHs and P is a homogeneity predicate, then the adaptation
of the dialog model is a partitioning of EHs into a set of
connected dialoglets (d1, d2, . . . , dn), which will eventually
be converted into a hierarchical navigationable structure of
dialoglets, such that:

dialoglet = ∪n
i=1(di\enavigation(di))

di ∩ dj = ∅, i 6= j

di is a connected set of event handlers

P (di) = true, i = 1, . . . , n

P (di ∪ dj) = false, if di is adjacent to dj

A user accessing a service supported by a dialog model needs
to navigate from one dialoglet to the next dialoglet. How-
ever, not all navigation elements are in the original dialog.
Thus, they have to be integrated into the dialoglets resulting
from the adaptation process. The set of all UI elements in
the dialoglets equals the EHs in the original dialog plus the
integrated new EHs dedicated to the navigation between the
dialoglets, the enavigation(di).

EGXML Adaptation using Event Handler Clustering
The above definition of the process of adaptation is very sim-
ilar to image segmentation as defined in [16]. Analogous to
segmentation and clustering processes, the more context and
domain information is known beforehand and integrated into
the process, the better the process’ results.

Approaches exploring dialog model adaptation can broadly
be divided into two categories. Processes of the first cate-
gory do not consider context knowledge such as screen size
during design time. They work bottom-up and rely uniquely
on dynamic adaptation of the dialog model. The other cate-
gory explicitly uses top-level domain and task model knowl-
edge during design time. The processes are configured with
a priori known target contexts. The quality of the latter ap-
proach depends on the configuration and the type of content

that is presented. The former approach has the drawback of
working only on syntactic information. We propose a hybrid
approach that combines the advantages of both approaches,
fast design, no need to produce sophistic configuration data
and integration of semantic information.

The two main challenges of the hybrid approach to dialog
model adaptation are: How to incorporate low-level seman-
tic information into the dialog model? How to adapt the di-
alog model respecting the semantic information? Our adap-
tation technique is based on a linking strategy of two hierar-
chies of graphs [12, 14]. It allows remodeling a dialog of the
dialog model into dialoglets of connected EH and the use of
low-level task model information.

The elements of the dialog model are placed as EHs into
a stack of regular grids, as illustrated in Figure 5. In the
lowest level of the stack, each cell of the grid corresponds
to a single EH. Each cell of level i + 1 represents a group
of cells of level i. The adaptation algorithm always forms
linear structures of 3 × 1 cells. The cells overlap in such a
way that the outer cells on level i belong to two cells of level
i + 1. The cells in a group of level i, represented by a cell of
level i+1, are called the subcells or the children of this cell.
The representing cell is called the parent of its children.

Cell CellCell

Cell

Event Handler Event Handler Event Handler Event Handler Event Handler Event Handler Event Handler

Figure 5: Stack of a regular grid of cells that places a
structure on a set of EHs. Three EHs form a cell on the
lowest level. Cells on a lower level are candidates for cells
on a higher level.

The clustering of a set of EHs into a set of dialoglets is done
within the boundaries of the induced stack of cells and is of
primary interest. To come to the final set of dialoglets, we
dynamically build up a stack of EH-regions. An EH corre-
sponds to a EH-region on the lowest level. Adaptation of a
dialog is performed by clustering EH-regions of level i into
EH-regions of level i + 1. However, EH-regions can only be
grouped within the boundaries of a cell in which they reside,
as illustrated in Figure 6, and if they satisfy the homogene-
ity predicate. This guarantees that we cluster only connected
and adjacent EH-regions. Complete EH-regions, i.e. regions
that cannot further be clustered, result in dialoglets.

The framework to describe the adaptation technique is the
description as a hierarchy of graphs. The first hierarchy of
graphs forms a syntactic based and static structure that guar-
antees that the resulting dialoglets are connected. The sec-
ond hierarchy is dynamically built up respecting the low-
level semantic information integrated into the dialog model

5

at design time. The two hierarchies of graphs implement the
dialog model adaptation process. The process consists of the
following four phases:

• Bottom-up Clustering. EH-regions of level i are grouped
into EH-regions of level i + 1 within the boundaries of
their cell and satisfying a predicate P .

• Top-down Separation. EH-regions that fail to group on
level i are separated recursively down to level 0.

• Horizontal Separation. Large-sized EH-regions of level
i, especially when they contain a single EH, are split.

• Relinking. The user should be able to navigate from one
dialoglet to the next dialoglet. To ensure usability, EH-
regions are relinked by integrating additional navigation
EHs.

Bottom-up Clustering: The clustering process determines
the set of connected EH-regions of level i of a specific cell
and groups them. In order to form a new region ri+1 (the
subscript indicates the level) in a cell ci+1, the set of sub-
cells are determined. Each subcell has a set of regions asso-
ciated that are candidates for grouping into ri+1. A region
si groups into the region ri+1, if it satisfies the homogeneity
predicate P (ri+1 ∪ si) = true. Two regions si, ti are con-
nected, if they have a common subregion: ui−1. Regions
of the lowest level are connected with their neighboring re-
gions. The overlapping structure of the stack of cells guaran-
tees that the clustering process considers only those regions,
which are connected or have a path of connected regions on
the lowest level. The clustering process is illustrated in Fig-
ure 6.

Region s Region t

Region r
(Dialgolet, if complete)

Cells

Event Handler ...Event Handler Event Handler Event Handler Event Handler

Figure 6: Clustering process. Regions are grouped
within the boundary of a cell.

The homogeneity predicate decides, if regions will be clus-
tered or not. The predicate consists of two parts, which both
need to evaluate to true; P (r) = Size(r)∧Context(r), r ∈
Ri.

• Size. On different devices a dialoglet is displayed with a
varying number and size of EHs. If the size of a region and
its parent region is lower than a predefined threshold (e.g.,

RelinkingComplete
Region

(Dialoglet)

Region Region

Region
Complete

Region
(Dialoglet)

Region Region

Region
Region

with
Navigation

Event Handler

Figure 7: A region containing a single navigation EH will
replace a complete region. The new region takes part in
the bottom-up clustering phase on behalf of the complete
region.

three times of the screen size) the regions are clustered,
otherwise they are separated, either horizontally or top-
down. The size of a region is device dependent.

• Context. The designer of the original dialog model inte-
grates in it semantic information. The information deals
with the semantic relation of an EH with its neighboring
EHs. A region si and its tentative parent region ri+1 will
be grouped, if their semantic intent does not exceed a pre-
defined threshold d(σ(si), σ(ri+1)) < Θ. In the current
version of the adaptation process, we simply assign inte-
ger values to EHs, to indicate semantic similarity. d(·, ·)
is a distance measure like the Euclidian distance.

Top-down Separation: If the grouping process fails, because
a region si does not satisfy the homogeneity predicate P ,
the region need to be separated from its connected region
ti. The region need to be separated since they have a com-
mon subregion ui−1, which needs to be assigned to a single
parent region (Figure 6). The separation process assigns the
common subregion to the region, whose semantic value is
the most similar. The process is recursively applied down
to the lowest level. For level i − 1 in Figure 6 it would be
applied to ui−1, the common subregion of si and ti, and to
those subregions of regions of level i, which have a common
subregion with ui−1.

Horizontal Separation: If the size of a region ri prevents
it from clustering with other regions, although it could from
the homogeneity predicate’s point of view, it is split into a se-
quence of n smaller, mutually linked regions r0,i, r1,i, . . . , rn,i.
E.g., a lengthy text message is split into a sequence of re-
gions or EHs containing each a part of the text message.
Only the head of the sequence continues to take part in the
grouping process.

Relinking: A region that cannot further be clustered with
other regions into a region of a higher level is called com-
plete and results in a dialoglet after the adaptation process.
A complete region that has reached the threshold of the max-
imal allowed size or that cannot further be clustered from
a semantic context point of view does not drop out of the
grouping process. Instead, a new region is created contain-
ing a single navigation EH pointing to the complete region.
The new region takes the place of the complete region and
continues the grouping process on behalf of it. The pro-
cess is illustrated in Figure 7. The effect of the relinking
phase is that the adaptation process creates a linked tree-
structure. The regions representing the leaves of that tree-

6

structure contain the EHs of the original dialog. The inter-
mediate nodes of the tree-structure are regions including the
navigation EHs that have been created in the relinking pro-
cess.

The set of complete regions resulting from the adaptation
process are transformed into a set of dialoglets and eventu-
ally into a concrete UI applying the Presentation Integrator
SPU and the Encoding Transformer SPU of MUSA.

RESULTS
To illustrate the adaptation technique of a dialog model, we
have implemented a message board service build with soft-
ware agents for a location-based systems [7]. The message
board contains location specific information and users can
read and store messages on the message board. A mobile
user moving from location to location accesses different mes-
sage boards depending on the geographical position. Differ-
ent users use different devices to access the message board
such as laptops, PDAs, or mobile phones. The dialog model

Figure 8: HTML browser showing the Message Board
”Main Menu”.

that results in the graphical UI on a HTML browser is shown
in Figure 8. It shows the UI of the message board service.
This browser is a powerful tool, so that there is no need to
perform any adaptation of the dialog model. Additionally to
the dialog a global presentation model is defined, which is
responsible for the layout of the Web-page. The two aspects
that guide the adaptation process are size and context. The
context information is inserted into the dialog model at de-
sign time. Size, however, or the screen space that is available
for presentation of the UI, is device dependent. The adapta-
tion process needs size information of the device’s UI that
accesses the service. This information is delivered in device
profiles.

Figure 9 shows the same dialog model that results in the UI
of a HTML browser in Figure 8, but this time adapted to the
small screen of a mobile telephone. There are two things
to note. First, the menu is hierarchically structured into a

Figure 9: WML-Browser showing the Message Board
”Main Menu” on a mobile telephone.

two level menu, with a main menu containing links to each
menu item, which are presented on their distinct screen. The
main menu is created during the relinking process of the
adaptation and is not present in the original dialog model.
The clustering process groups the newly created navigation
UI elements together, which results in the main menu. Sec-
ond, the service description, which is a lengthy text, is split
into a series of screens, which are linked with each other.
The user navigates with the ”Continue” and ”Back” links
from one screen containing part of the description to the next
screen. The size threshold of the homogeneity predicate for
this adaptation process is set to three device screen sizes.

Figure 10 shows the results for the device profile with the
size threshold set to two device screens. The adaptation pro-
cess has added another level of indirection. The main menu
has a hierarchical structure of depth three to cope with the
small screen size. The figure shows only part of the col-
lection of UI screens. It illustrates the different hierarchical
menu structure in comparison to Figure 9.

Figure 10: WML-Browser showing the Message Board
”Main Menu” on a mobile telephone with size threshold
of two device screens.

CONCLUDING REMARKS
The article has presented the MUSA project. It is a novel
approach to device independent authoring. Adaptation of a
dialog model represented by the EH graph in EGXML is
based on bottom-up clustering and top-down separation us-

7

ing low-level semantic context information. It results in a
hierarchical structure of dialoglets by clustering, separating,
and relinking regions and EH. The process is guided by low-
level semantic information that is provided by the designer
of the dialog model at design time. The adaptation process
remodels dynamically a presentation of the dialog model to
better fit it to the current device.

The presented experiments with the dialog model adaptation
technique are promising and show that the concept is sound.
The use of the hierarchy of graph has been proven flexible
and is a viable concept for future UI development.

In our future work, we will elaborate the adaptation algo-
rithm to include user specific settings such as window size
of the running application or user-preferred font size. We
conduct experiments with more complex dialog models. The
integration of task model related information into the dialog
model is somehow simple. Exploration of more powerful
but equally simple methods needs to be carried out. How-
ever, simplicity for the designer is an important objective to
encourage use of this design technique.

REFERENCES
1. M. Abrams, C. Phanouriou, A. Batongbacal,

S. Williams, and J. Shuster. UIML: An
Appliance-Independent XML User Interface Language.
WWW8 / Computer Networks, 31(11-16):1695–1708,
1999.

2. Mark Alpert. Machine Chic. Sci.Am, August 2002.

3. D. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A
domain specific language for form-based services.
IEEE Transaction on Software Engineering,
25(3):334–346, 1999.

4. T. Ball, P. Danielson, L. Jagadeesan, R. Jagadeesan,
K. Laeufer, P. Mataga, and K. Rehor. Sisl: Several
Interfaces, Single Logic. ”International Journal of
Speech Technology”, 3:93–108, June 2000.

5. Christian Elting, Jan Zwickel, and Rainer Malaka.
Device-Dependant Modality Selection for User
Interfaces – An Emprical Study. In ACM IUI, San
Fransisco, California, USA, January 2002.

6. Mir Farooq and Marc Abrams. Simplifying
Construction of Multi-Platform User Interface Using
UIML. In UIML Europe Conference, ”March” 2001.

7. Sebastian Fischmeister. Mobile software agents for
location-based systems. In Agents and Software
Engineering, volume 2592 of LNCS, pages 226 – 239.
Springer Verlag Heidelberg, 2003.

8. M. Florins and J. Vanderdonckt. Graceful Degradation
of User Interfaces as a Design Method for
Multiplatform Systems. In Conference on Intelligent
User Interfaces (IUI04), pages 140 – 147, Funchal,
Portugal, 2004.

9. Futuremind. The Next Generation in Light and Sound
Technology Transforms your PC into the Ultimate
Mind Machine, 2002.

10. Glenn E. Krasner and Stephen T. Pope. A cookbook for
using the model-view-controller user interface
paradigm in smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August/September 1988.

11. Aaron Marcus and Eugene Chen. Designing the PDA
of the Future. Interactions, 9(1):34–44, 2002.

12. Guido Menkhaus and Sebastian Fischmeister. Dialog
Model Clustering for User Interface Adaptation. In Web
Engineering, Proceedings of ICWE 03, pages 194 –
203. 2003.

13. Brad Myers. User Interface Software Tools. ACM
Transaction on Computer-Human Interaction,
2(1):64–103, March 1995.

14. Peter Nacken. Image Segmentation By Connectivity
Preserving Relinking in Hierarchical Graph Structures.
Pattern Recognition, 28(6):907–920, 1995.

15. Paulo Pinheiro da Silva. User Interface Declarative
Models and Development Environments: A Survey. In
Proceedings of DSV-IS2000, pages 207–226, Limerick,
Ireland, June 2000.

16. Nikhil R.Pal and Sankar K.Pal. A Review on Image
Segmentation Techniques. Pattern Recognition,
26(9):1277–1294, 1993.

17. Subhasis Saha, Mark Jamtgaard, and John Villasenor.
Bringing the Wireless Internet to Mobile Devices.
IEEE Computer, 34(6):54–58, 2001.

18. M. Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Persoanl Communications, pages
10–17, August 2001.

19. Ben Shneiderman. Direct Manipulation for
Comprehensible, Predictable and Controllable User
Interfaces. In Intelligent User Interfaces, pages 33–39,
1997.

20. P. Szekely. Retrospective and Challenges for
Model-Based Interface Development. In F. Bodart and
J. Vanderdonckt, editors, Design, Specification and
Verification of Interactive Systems ’96, pages 1–27,
Wien, 1996. Springer-Verlag.

21. W3C. Mobility Access Activity Statement, 2001.

22. C. Wong, H.H. Chu, and Katagiri M. A.
Single-Authoring Technique for Building
Device-Independent Presentations. In W3C Workshop
on Device Independent Authoring Techniques, 2002.

23. UIMS Tool Developers Workshop. A Metamodel for
the Runtime Architecture of an Interactive System.
SIGCHI Bulletin, 24(1):32–37, 1994.

24. Xybernaut. poma, 2002.

8

Best of both worlds - linking of XUL to X3USGP

Andreas Müller
Chair of Software Engineering
Institute of Computer Science

Albert-Einstein-Str. 21
18059 Rostock, Germany

xray@informatik.uni-rostock.de

Peter Forbrig
Chair of Software Engineering
Institute of Computer Science

Albert-Einstein-Str. 21
18059 Rostock, Germany

pforbrig@informatik.uni-rostock.de

ABSTRACT
In this paper we discuss an approach linking XUL
specifications to our own X3USGP (XML-based User
Interface Specification and Generation Process, 3
languages) concept. This linking is intended to combine the
main advantages of both approaches. On the one hand, it
will be presented how the real device independence of the
X3USGP concept and the easy handling concrete
specifications by XUL can be combined. On the other
hand, it will be shown that the disadvantages of both
solutions: the restriction to virtual GUI’s of the XUL
approach and the complicacy of specification of the
interaction behavior on a very abstract level of the X3USGP
concept can be eliminated.
The main focus is on the device-independent result of the
specification of user interfaces and on a simple “human-
like” handling of the specification process. Furthermore, a
transparent generation process to the resulting user
interface without the necessity of proprietary generation
tools for each possible target-device is supported.

Keywords
User Interface, XML, Markup Language, XUL,

INTRODUCTION
The presentation of the project CanonSketch [6] during the
workshop of “Making Model-Based UI Design Practical:
Usable and Open Methods and Tools” inspired us to
combine our abstract development approach of user
interfaces X3USGP with our more concrete project of a
graphical editor GUIXUL [13] for XUL [1,2]
specifications within the eclipse [12] environment.
CanonSketch is a graphical editor for describing user
interfaces in an abstract way. Such an editor delivers the
abstract representation of a user interface, which is the
input for our X3USGP approach, which will be discussed
in a little bit more detail later on.
However, by looking at the editor of CanonSketch we got
the impression that it is very hard for a user interface

designer to express his idea immediately in an abstract
way. Especially the graphical appearance of abstract
element seems to be crucial. It might be easier to design a
concrete user interface first and abstract later on to an
abstract specification than the other way round. This
impression inspired us to combine our ongoing work on a
graphical editor for XUL with an abstraction process,
which leads to the abstract specification of a user interface.
The process is similar to a reverse engineering and a
following forward engineering process in software
engineering. The starting points are concrete designs,
which are abstracted and later on refined to new or
alternative designs.

RELATED WORK
UIML
The development of UIML [3] started in 1997. The goal of
this project was the specification of device-independent
UI’s. UIML is based on XML for specification. To
generate a specific user interface a generation-tool called
renderer is needed. For each possible end-device-type a
specific renderer is needed. A flexible reaction to new
device-types is difficult.
UIML has a commercial background by the company
“Harmonia”.

XIML
Another commercial solution (“Redwhale”) is the XIML-
concept [4,5]. XIML started in 1999 and is focused on
device-independence primarily of mobile devices. XIML is
model-based but like the UIML-variant it needs a specific
tool (converter) to create a specific type of user interface.

CanonSketch
The project CanonSketch [6] is intended to support the
requirement analysis process. It is a new type of editor. It
looks like a graphical editor but it provides elements of the
user interface in a very abstract form only. More precisely,
it is a tool for the creation, design and editing of Canonical
Abstract Prototypes according to [7].
An editor like CanonSketch is able to deliver a model of
abstract interaction models, the intended input of our
X3USGP development process.

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

Fig. 1: The CanonSketch editor

THE APPROACHES THE IDEA IS BASED ON
Graphical editor for XUL
XUL [1,2] was presented in 1999 by the mozilla project to
specify Graphical User Interfaces of the mozilla-browser in
platform-independent matter. XUL allows the specification
of interactive objects like buttons, labels, and text fields.
Unfortunately, it is restricted to Graphical User Interfaces.
Only virtual interfaces can be specified, physical interfaces
of information terminals, banking terminals, different
mobile phone solutions and other proprietary interface
types are not intended to be used for XUL specifications.
Thus, there is not really a device independence.
Nevertheless, XUL provides the opportunity to specify
concrete user interfaces, which can be used as the starting
point for abstractions.
Based on an existing open source project v4All [11] a GUI
editor was developed for the eclipse environment that
stores its results as XUL specifications.

Fig. 2: GUI-Editor for XUL

The editor allows the design of new interfaces.
Additionally, it reads an existing XUL specification,
displays the graphical user interface, and allows changes to
it.

The x3usgp approach
The X3USGP – concept is a multi-stage process that is
intended to specify and generate user interfaces in a really
device-independent matter. We have presented this concept
in detail in [8, 9].
The first step of this process is the specification of the
interaction behavior of a user interface on a very abstract
level. We use a small set of abstract user interface objects
like 1-of-n-choice, m-of-n-choice, trigger-objects, string-
objects.

Fig. 3: Multi-stage process

On this abstract level we divide the set of interaction
objects into input-objects and output-objects. Later on, we
have specific interaction objects that can offer both
services and provide input- and output-behavior. The result
of this first step is a device-independent specification of the
interaction behavior of a user interface – an Abstract
Interaction Model (AIM). An XML-based language called
X-AIM was presented in [9] for this purpose.
In the second step follows a mapping of this AIM to
specific target-devices. Therefore, we need a description of
all properties of a specific device, which are relevant for
the presentation. Such properties are e.g. color,
coordinates, dimension, and label. For each potential target
device such a device specification of all design properties
is needed. An XML-based language called X-DES [9] was
presented for such device specifications.
The result of this second step is a device-dependent
specification of interaction behavior – a Specific
Interaction Model (SIM). All presentation properties of a
specific device are already included in this model.
However, at this stage they have no content (value).
At this development stage having, a device dependent
specific interaction model, there is only a skeleton of a user
interface specified. The design (specifying the design
properties by values) will be discussed below. For
describing the model, we presented an XML-based
language called X-SIM [9].
The mapping procedure described in Fig. 4 is a
semiautomatic interactive process. The mapping of an
abstract interaction object to a specific one is ambiguous.
Some mapping rules are presented in [9] but normally
interactive support is necessary.

 We strongly believe that it is often much easier to discuss
concrete appearances and later on abstract to more general
concepts than the other way round. In our projects sketches
on paper with concrete appearances had been made before
abstract specifications were developed. Why should a
designer develop a user interface and at the same time
abstract from concrete representations? The design process
is already difficult without abstractions. The abstraction
process has to be supported by tools and later on alternative
design decisions should be presented.

We suggest to use a GUI editor during the first step of the
specification of a user interface as a graphical user
interface. In our case we suggest the usage of our editor
[13] delivering XUL specifications. XUL has a manageable
and known set of graphical user interface objects like
button, group box, radio box, and slider. We can find these
objects in tools for creating GUI’s like Java.AWT,
Java.Swing and Delphi. This set of user interface objects is
platform independent but it is not device independent [9].
There exist also already some tools supporting the
interpretation of XUL specifications. Fig. 6 demonstrates
the visualization of the GUI specified using our editor (Fig.
2).

Fig. 4: Mapping process

In the third step the design of a concrete user interface is
performed. This is based on the output of the second step
that is called SIM.

Fig. 5: Design process

 This design process is interactive as well. The design
properties of a specific device are specified by values. As
the result we get XSL-based transformation instructions for
generating a concrete user interface.

In the last step a concrete user interface will be created. For
this we need an XSL-processor. As the result we get a file
representing the user interface (e.g. java, wml, html, a
control file for physical devices, etc.)

The specification of interaction behavior takes place in a
very abstract matter. This could be a disadvantage of this
approach.

LINKING XUL TO X3USGP
Fig. 6: Interpretation of a XUL specification by the mozilla browser Within this paragraph we discuss in a little bit more detail

our idea of the development process of user interfaces by: It was a design decision to use XUL but in principle our
approach is not restricted to XUL. XUL can easily be
replaced by another language. • Specifying a specific GUI.

• Creating a device-independent abstraction of the
GUI.

Creating of a device-independent abstraction • Mapping the abstraction of the GUI to other
devices. All objects of the defined set of interface objects in XUL

can be mapped to a more abstract one of the Abstract
Interaction Model (AIM). To do that we propose an
extension to XUL, this consists of a table of proper
matches of specific objects of XUL to objects of the AIM.
This table can be used to support the mapping process from
XUL to AIM.

We will comment on each activity.

Specifying a specific GUI
In contrast to the X3USGP-approach the specification of
interaction behavior will not be realized on an abstract
level any more. We realized that it is very difficult to
discuss with customers the design of abstract user
interfaces. The discussion is mostly related to concrete
appearances of user interface elements.

After specification of a prototype interface (dependent to a
class of devices: GUI’s) we get a device-independent
result of this XUL-extension, which contains an interface
description also with abstract counterparts of user interface

objects. For describing this we develop a XML-based
solution. This XML-based result has to contain

• A chosen concrete object in XUL.
• Design properties of this object
• Properties, which specify the behavior or

appearance of an object in detail (domain, range,
interval etc.).

• The abstract counterpart.

Fig. 9: Development process

Devices of other device classes
For the mapping to a device of another device class (mobile
phone, physical info terminal, PDA, etc.), we only need the
abstract counterparts of the XUL-extender result. Probably,
we can use also other specified properties like labels,
domains, or ranges,. Most of design properties like
dimensions, and positions can be ignored.

Fig. 7: Abstract object for specific GUI elements

In some sense, this new approach is contrary to the straight
development from abstract models to concrete once. Figure 7 gives an impression how concrete user interface

elements can be abstracted to more general elements. The
general approach is visualized by figure 8.

RELATED TOOL SUPPORT abstraction

XULXUL X-SIMX-SIM

X-AIMX-AIM

X-SIMX-SIM
X-SIMX-SIM

...
XULXUL X-SIMX-SIM

X-AIMX-AIM

X-SIMX-SIM
X-SIMX-SIM

...

Tool support for the XUL specification step
To support the XUL specification process we presented a
GUI for XUL specifications (Fig. 2), which is based on the
editor V4All [11].

 Tool support for the abstraction process

Tool support for the abstraction support is under
development. At the moment transformations have to be
made interactively with XSL.

 time Tool support for the x3usgp process
Fig. 8: Developed models To support the X3USGP-process we developed an open

source prototype solution [9,10]. Currently there is only a
tool support for the mapping process. The tool manages
different specifications of different devices, reads AIM
specifications and creates different SIM specifications in an
interactive way.

Mapping to other devices
The mapping process of the user interface to different
devices depends on the class the device belongs to. There
are some advantages if the device belongs to the same class
as the original one. In our case it is the class of GUIs.

 CONCLUSION
The combination of XUL and the X3USGP – approach
seems to be a practicable way to specify device
independent user interfaces. It combines the advantages of
both solutions – the simple and “human-like” specification
of GUI-based user interfaces with given tool support by
XUL and the real device-independence of the X3USGP –
approach.

Devices of the same device class
If we have to map a X-AIM specification to another device
of the same device class most design properties have
already been specified during the first phase – the XUL
specification. Indeed, it is easy to create a prototype user
interface of another GUI type. We have platform
independence within this device class. Probably a manual
correction of the resulting prototype is necessary. A tool support for linking XUL to X3USGP is currently

under development. We hope that we are able to

demonstrate the tool with some examples during the
workshop

REFERENCES

1. Deakin, N.: XUL Tutorial. XUL Planet. 2000.
2. Mozilla.org: XUL Programmer’s Reference 2001
3. Phanouriou, C. and et al: UIML-Specification. 2000.
4. Puerta, Angel and Eisenstein, Jacob: XIML: A

Universal Language for User Interfaces. 2001.
5. Puerta, Angel and Eisenstein, Jacob: XIML: A

Common Representation for Interaction Data.
Poster Reception, IUI2002. 2002.

6. CanonSketch: http://dme2.uma.pt/canonsketch/

7. Constantine, L. Canonical Abstract Prototypes for
Abstract Visual and Interaction Design. DSV-IS,
Madeira, June 2003, Portugal.

8. Müller, A. and Forbrig, P. and Cap, C.: Model-based
User Interface Design Using Markup Concepts.
DSVIS2001, Glasgow, 2001

9. Müller, A.: Spezifikation geräteunabhängiger Be-
nutzerschnittstellen durch Markup-Konzepte. PhD-
Thesis, University of Rostock. 2003.

10. Hecking, J.-P.: Implementierung des UI-Mapper.
University of Rostock. 2001.

11. v4All: http://v4all.sourceforge.net/index_start.html
12. eclipse: http://www.eclipse.org
13. GUIXUL: GUI editor based on [11]

http://v4all.sourceforge.net/index_start.html
http://www.eclipse.org/

	ABSTRACT
	Keywords

	INTRODUCTION
	RELATED WORK
	DESIGN PRINCIPLES
	PRELIMINARY USER STUDIES
	Interface Analysis

	SPECIFICATION LANGUAGE
	State Variables, Commands, and Explanations
	Type Information
	Label Information
	Group Tree
	Complex Types

	Dependency Information
	Smart Templates

	EVALUATION
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	StefanKost-paper-avi2004.pdf
	Introduction
	Interaction
	Adaption
	Interfaces
	Interface models
	Existing approaches
	Aim of this the GITK project

	Thesis
	Solution
	Conclusion
	Future
	REFERENCES

	ElmarBraun_final.pdf
	Introduction
	Ubiquitous Computing
	Public and Shared Devices
	Session Mobility

	Single Authoring for Multi-Device Interfaces
	Placing Widgets
	Duplicating Widgets
	Grouping Widgets
	Privacy
	Interim Conclusion

	Rendering on Multiple Devices at Runtime
	Distributing to Devices
	Transcoding for Specific Devices
	Synchronizing Devices

	Example Application
	Related Work
	Multi-Device Interfaces and Browsers
	Single Authoring

	Conclusions
	REFERENCES

	useML-_A_Human-Machine_Interface_Description_Language.pdf
	ABSTRACT
	Keywords

	INTRODUCTION
	THE USEWARE DEVELOPMENT PROCESS
	THE USEWARE MARKUP LANGUAGE (useML)
	Elements of useML
	The Root Element <use model>
	The Element <use object> (UO)
	The <elementary use objects> (eUOs)
	The Element <condition>
	The Element <mapping>

	UI Prototyping with useML
	An example of using useML
	useML and the MB-UID

	RELATED WORK
	
	The XML-based User Interface Language (XUL)
	The User Interface Markup Language (UIML)
	The Cooperative User Interfaces Markup Language (CUIML)
	The Interaction Markup Language (IML)
	The eXtensible Interface Markup Language (XIML)

	CONCLUSION AND FUTURE WORK
	REFERENCES

