
The FUSE–System: an Integrated User Inter-
face Design Environment

Frank Lonczewski and Siegfried Schreiber

Institut für Informatik, Technische Universität München, Arcisstraße 21,
D-80290 München, Germany

Phone: +49-89-289-22035 – Fax: +49-89-289-28180
E-mail: {lonczews, schreibs} @informatik.tu-muenchen.de
WWW: http://www2.informatik.tu-muenchen.de/persons/

{lonczews/fralo.html, schreibs/schreibs.html}
WWW: http://www2.informatik.tu-muenchen.de/research/ui/ui.html

Abstract
With the FUSE (Formal User Interface Specification Environment)–System we pre-
sent a methodology and a set of integrated tools for the automatic generation of
graphical user interfaces. FUSE provides tool–based support for all phases (task-,
user–, problem domain analysis, design of the logical user interface, design of user
interface in a particular layout style) of the user interface development process.
Based on a formal specification of dialogue– and layout guidelines, FUSE allows the
automatic generation of user interfaces out of specifications of the task-, problem
domain– and user–model. Moreover, the FUSE–System incorporates a component
for the automatic generation of powerful help– and user guidance components. In
this paper, we describe the FUSE–methodology by modelling user interfaces of an
ISDN phone simulation. Furthermore, the two major components of FUSE (BOSS,
PLUG–IN) are presented: The BOSS–System supports the design of the logical user
interface and the formal specification of layout guidelines. PLUG–IN generates
task–based help– and user guidance components.

Keywords
Automatic generation of user interfaces, model-based interface design, specifica-
tion of styleguides, user guidance, user interface design, generated on-line help.

Introduction
Even with the most advanced layout oriented UI construction tools (UI toolkits,
UI builders, UIMS) the task–based and user–oriented development of GUIs re-
mains a time–consuming and difficult process. Therefore tools for the formal
specification and automatic generation of UIs (MB-IDEs) have gained rising re-
search interest. Regarding the evolution of model based tools from the early ap-
proaches (e.g., MIKE, MIKEY, HIGGENS) to the most recent ones (e.g., MASTER-
MIND, TRIDENT, TADEUS) we recognize that more and more phases of the UI de-
velopment process are supported. The FUSE (Formal User interface Specification

38 Computer-Aided Design of User Interfaces

Environment)–System described in this paper belongs to this new generation of
model based interface tools. The main goals and properties of the FUSE–System
are:

• Tool–based support for all phases of the UI development process.
• Generation of working prototypes in early phases of the development process.
• Standardization of UIs by formal specification of UI styleguides.
• Generation of powerful help– and user guidance components.

The paper is organized as follows: in section 1 we describe the overall methodol-
ogy and architecture of the FUSE–System ; in section 2 we demonstrate the capa-
bilities of FUSE for the generation of UIs in different layout styles and of help– and
user guidance components by using the example of an ISDN phone simulation.
Section 3 describes the stages in the development process of the ISDN UI using
the FUSE–System. In section 4 we discuss related work in the field of model-based
UI construction. Finally we give an overview about practical experience with FUSE
and directions of further research.

1 The FUSE-Methodology: an Overview

The overall architecture of the FUSE–System is shown in figure 1. FUSE consists of
the four components BOSS (BedienOberflächen-SpezifikationsSystem, the german
translation of “user interface specification system” [Schreiber94a, Schreiber94b]),
FLUID (FormaL User Interface Development, [Bauer96]), PLUG–IN (PLan–based
User Guidance for Intelligent Navigation [Lonczewski95a, Lonczewski95b]) and
FIRE (Formal Interface Requirements Engineering [Schwab95]). Each of these
tools may also be used independently of the FUSE–System.

The UI development process with FUSE consists of the phases requirements analy-
sis, design and evaluation. For the UI part of an interactive application no imple-
mentation phase is needed, as FUSE generates running UIs from design–level
specifications. Some activities in the development process have to be carried out
only once for a whole class of UIs. As these activities mainly refer to the definition
of software–ergonomic guidelines (dialogue– and layout guidelines, see figure 1),
they belong to the Guideline Definition Layer (GDL). The other activities have to
be carried out in each UI development process. As these activities consist mainly
of the application of the Guidelines defined in the GDL, they belong to the Guide-
line Application Layer (GAL).

In the analysis phase of the development process, an application analyst defines the
requirements for the UI by setting up the formal specification of three models. The
specification of the task model describes the task hierarchy of the application.

The problem domain model (application interface) consists of an algebraic specifi-
cation of the functions and data structures of the UI–relevant part of the func-
tional core of the interactive application.

 The FUSE-System: an Integrated User Interface Design Environment 39

Phase in
Development
Process

Guideline Definition Layer (GDL) Guideline Application Layer (GAL)

Application Analyst Application AnalystApplication Analyst

Formal Specification
Problem Domain Model
(Application Interface)

Formal Specification
User Model

Formal Specification
Task Model

FLUID
Formal User Interface

Development

Analysis

Design

Dialog
Design

Dialog
Guideline
Designer

Formal, constructive
Specification of
Dialog Guidelines
(Dialog Style d)

Formal Specification
of logical User Interface
(Dialog Style d)

BOSS
BedienOberfächen

SpezifikationsSystem

PLUG-IN
Plan-based User

Guidance for
Intelligent Navigation

Formal, constructive
Specification of
Layout Guidelines
(Layout Style l1)

Layout
Guideline
Designer

(Layout Style ln)

Layout
Design

Evaluation

Interactive Application

Functional Core
of Application

User Interface
(Dialog Style d, Layout

Styles l1, ... , ln)

Online Documentation,
User Guidance Component
with Simulation & Animation

Elaboration
by Hand

Formal
Specification Generator Generated

Program

()Dialog Designer

Figure 1. Overall Architecture of the FUSE-System

The user model is a description of static and dynamic properties of user groups
and individual users which influences both the UI generation process and the kind
and depth of the help offered by the user guidance component. To support the re-
quirements analysis phase the FUSE–System contains a component called FIRE (not
shown in figure 1). FIRE provides graphical editors for setting up the three models
and a tool for the generation of an early UI prototype. This prototype represents
the task– and problem domain model in terms of menus and dialogue–boxes and
provides a good basis for discussing the results of the requirements analysis with
end–users.

In the design phase of the UI development process, software–ergonomic guide-
lines are formally specified by human factors experts in the roles of dialogue– and
layout guideline designers. Dialogue guidelines describe the transformation of the
task–, problem domain– and user models of interactive applications into formal
specifications of so called logical UIs in a particular dialogue style. At the abstrac-
tion level of logical UIs, static and dynamic properties of UIs are described without
considering presentation issues. Layout guidelines describe the transformation
from specifications of logical UIs into specifications of UIs in a particular layout
style. The formal specification of dialogue– and layout guidelines has to be carried
out once for a whole class of UIs (i.e., belongs to the GDL–layer in the develop-
ment process) and can be regarded as the specification of an UI styleguide.

40 Computer-Aided Design of User Interfaces

Within FUSE, the FLUID–System plays the role of an automatic dialogue designer.
From the specifications of dialogue guidelines for a dialogue style d and the specifi-
cations of the task–, problem domain– and user model of an interactive applica-
tion, FLUID generates the specification of static and dynamic properties of a logical
UI in this dialogue style d.

This specification may be modified by a human dialogue designer. For the repre-
sentation of the design of the logical UI, FUSE employs a specification technique
called Hierarchic Interaction graph Templates (HIT), which is based on attribute
grammars and dataflow diagrams.

Besides the automatic generation with FLUID, which requires a formal specification
of the models in the requirements analysis, FUSE also offers support for designers
not skilled in formal techniques like algebraic specification. Based on an informal
description of the task–, problem domain– and user model a human dialogue de-
signer can elaborate the HIT specification of the logical UI by hand.

From the specifications of layout guidelines for the layout styles l , ..., l1 n and the
specification of a logical UI (generated automatically by FLUID or specified by a
human dialogue designer) in a dialogue style d the BOSS–System generates an im-
plementation of a UI in the dialogue style d, in which the end–user can switch at
run–time between the layout styles l , ..., l1 n.

For the formal specification of the layout guidelines BOSS also uses the HIT speci-
fication technique. The separation between logical UIs and UIs in particular layout
styles in the design phase (see figure 1), which is typical for model based UI tools,
can be also found in related research domains like document architecture (see e.g.,
[Eickel90, Schreiber93]).

Based on the specification of the task–model and the specification of the dynamics
of the logical UI generated by FLUID the PLUG–IN–System generates a component
for intelligent user guidance, which is bound (i.e., “plugged in”) to the UI imple-
mentation generated by BOSS. This user guidance component supports the end–
users during their work with the UI by context–sensitive hypertext help–pages.
These provide information about the current state of the UI. Moreover, the gener-
ated user guidance component uses animation sequences to demonstrate how
complex tasks can be accomplished by the user.

2 User Support for an ISDN Phone with FUSE

In this section we present examples of different UI for an ISDN phone simulation
generated with the BOSS system. The ISDN phone simulation is an interactive ap-
plication for the simulation of the real ISDN phone described in [Siemens92]. Fur-
thermore we look into the problems that the user can possibly have when using
one or more of these UIs. We also show the various kinds of help that PLUG-IN
provides for the ISDN phone simulation.

 The FUSE-System: an Integrated User Interface Design Environment 41

2.1 User Interfaces of an ISDN Phone

With the ISDN phone simulation the user can accomplish a number of tasks with
different complexity. An example of a simple task is Create1stConnection. This task
can be decomposed into the subtasks Start1stConnection and DialTelephoneNumber.
If the user at the other end responds, the two parties are connected to each other
afterwards. Other example tasks of the ISDN phone simulation are: DefineDi-
rectCallButton, EstablishConference and EstablishConnectionBetweenOtherParties.

Figure 2. Button Interface Figure 3. Menu Interface

In figures 2 and 3 we can see two different UIs of the ISDN phone simulation.
The left figure displays the button interface. The elements of this UI are a handset
button, a liquid crystal display, eight direct call buttons (each one with name and
phone number label), a digit block and five special function buttons. A phone
number can be entered by using the digit block or one of the direct call buttons.

If a direct call button is used, a predefined phone number associated with the but-
ton is dialed. The right figure displays a functional equivalent menu interface for
the phone simulation. Both UIs are generated with the BOSS-System. The user can
change the layout between the two styles presented above during runtime.

The alternative UI of the ISDN phone simulation in figure 3 consists of a menu-
pane with three menus named BasicFunctions, AdvancedFunctions and PhoneBook.
In the first one the basic phone functions (e.g., to start a phone call) are listed,
whereas the more complex functions (e.g., to create a connection to a second party
while already connected to a first one) can be found in the second menu. With the
third menu the phonebook of the ISDN simulation can be administered.

In comparison to the button interface the menu interface displays the state of the
phone simulation more explicitly by displaying icons under the three labels Exter-
nalLine, Line 1 and Line 2. These are helpful for the user as the state of the phone
simulation can be deduced from them. As a smiling face is displayed for Line 1, the
user is currently connected to a party on the first of two available phone lines. If

42 Computer-Aided Design of User Interfaces

the state of the phone simulation changes, the displayed icons change accordingly
(e.g. if the user terminates the phone call, the smiling face will disappear).

One of the more complex tasks of the ISDN phone simulation is StartConference.
In an ISDN phone conference the three participating parties can talk and hear each
other simultaneously. Despite the fact that a Conference button is available on the
button UI (and similarly a StartConference menu entry in the menu AdvancedFunc-
tions of the menu UI), it is a complex task to establish a conference with the phone.

As the interactive phone application simulates the behaviour of a real ISDN phone
[Siemens92], it is not as easy as just pressing the conference button on the UI. If
the phone is not in an appropriate state, only the message “Conference not possi-
ble” is shown on the LCD.

In this situation the user would look into the reference guide of the phone trying to
find out how to establish the conference. While working with an interactive simula-
tion, a user guidance component can offer even more than an on-line reference
guide in hypertext form.

PLUG-IN supports the user of interactive applications with dynamic on-line help
and task-based user guidance. For this purpose all user interactions are observed.

2.2 Task–Based User Support with PLUG-IN

In order to support task-based user guidance, PLUG-IN tries to determine the cur-
rent tasks of the user while she is working with an interactive application. If the
observed interactions can be matched with parts of a task valid in the current state,
the system searches for a method to solve the identified task.

A task can be accomplished if its task–goal can be reached. Typically a unique
(sub)state of the UI is associated with each task goal. If the task can be performed
in the current state, the user guidance component helps the user by:

• generating an animation sequence (upon user request) that simulates the neces-
sary user interactions to accomplish the given task;

• updating and visualizing a list of tasks that the user is currently performing out
of the view of the user guidance component.

To provide the task-oriented help, an application analyst first creates the task
model. It contains a layout independent description of the tasks that the user can
accomplish with the application. A task description of the ISDN phone simulation
is presented in section 3.1.

A list of ISDN phone tasks is shown in figure 4. If the user selects a task from the
list while working with the phone simulation, the necessary interaction sequences
are simulated on the UI.

 The FUSE-System: an Integrated User Interface Design Environment 43

2.3 Dynamic On-Line Help with PLUG-IN

The dynamic on-line help is based on the various possible states and state transi-
tions of the interactive application. As not all possible application states and transi-
tions are interesting from the user’s point of view, only those relevant for the user
support are taken into account.

This subset can be derived by using the information coded into the task–, problem
domain– and user–model and can be represented as a set of finite state automa-
tons. The information contained in these can be used to:

• generate help pages (see below);
• visualize the set of finite state automatons as State Transition Diagrams (STDs);
• generate animation sequences that simulate the necessary user interactions to

change the state of the application to another state selected by the user.

As an example a STD for the ISDN phone simulation is shown in figure 5. The
highlighted node NoConnection describes the current state of the phone. The ac-
tions that the user can perform in the different states are denoted by directed arcs.

In the current state the user can only start a phone call. PLUG-IN uses the set of
state transition diagrams to generate dynamic on-line help pages and animation se-
quences. The dynamic on-line help pages can be inspected with a WWW browser
like Netscape or NCSA Mosaic.

One dynamic on-line help page is displayed in figure 6. Each dynamic on-line help
page is typically divided into four regions:

• information about the current state of the application from the user’s point of
view;

• information about the set of possible actions the user can perform in the cur-
rent state;

• for each of the possible actions: information about the necessary user interac-
tions to perform the action;

• information about further documentation material, e.g., references to a hyper-
text version of the user manual of the application.

Since all operations the user can perform on the original UI can also be triggered
through the WWW browser, it can be regarded as an alternative UI. In contrast to
the original UI, the goal of the WWW-based UI is to guide the user during the
work with the application.

The information displayed helps the user to accomplish a given task. Furthermore,
the user can learn how to interact with the original UI through simulations pro-
vided by PLUG-IN.

44 Computer-Aided Design of User Interfaces

Figure 6. One Dynamic On-Line Help

Page generated by PLUG-IN

Figure 4. Task List for ISDN Phone
Simulation

Figure 5. STD for ISDN
Phone Simulation

Depending on the current state of the application (in figure 5 this is the highlighted
state NoConnection of the STD) and the chosen layout style for the UI, PLUG-IN
generates different on-line help pages on the fly. The generated on-line help page
corresponding to the current state of the phone’s UI shown in figure 2 is displayed
in figure 6. If the user selects the light bulb icon on the page, the described user in-
teractions are animated on the UI. In this example PLUG-IN would take control of
the mouse pointer, then change the shape of the mouse pointer to provide visual
feedback for the user. Afterwards it moves the mouse pointer to the handset but-
ton on the UI and selects the button by simulating a click with the left mouse but-
ton. Finally, a new on-line help page is generated and displayed with the WWW
browser.

The user can also interact with the displayed STD. Here he simply selects a state
node and PLUG-IN tries to find a path to the selected node. If a path can be found,
the corresponding user interactions are animated on the displayed UI.

PLUG-IN has the capability to deal with different UI layouts with regard to the
generated on-line help pages and animation sequences. If the layout style of the UI
changes during runtime, the description of the necessary interaction steps on the
dynamic on-line help pages are altered correspondingly. Also the generated anima-
tion sequences are tailored to the new layout style. It would be very hard to build a
help system by hand that provides the various kinds of help offered by PLUG-IN,

 The FUSE-System: an Integrated User Interface Design Environment 45

because the designer has not only to take into account the various possible states of
the interactive application, but also the various layout styles that can be changed
during runtime. The approach used with PLUG-IN is very flexible, because the help
offered adapts itself automatically to the runtime context.

It is worth mentioning that PLUG-IN can be used independently of the FUSE–
System. In this case, PLUG-IN provides a comfortable environment (e.g., a graphi-
cal editor) for creating the required STDs. Within FUSE the FLUID–System [Bauer-
96] will provide the automatic generation of these STDs by using the information
from the task–, problem domain– and user model.

3 Modelling the ISDN User Interface with FUSE

In the following we describe the systematic development of the ISDN UI de-
scribed in section 2. In section 3.1 we demonstrate how the task– and problem
domain models are represented during the requirements analysis. In section 3.2 we
focus on the design of the ISDN UIs using the BOSS–System.

In this context we show how the logical ISDN UI is designed by a human dialogue
designer “by hand” without using the FLUID–System. The use of the FLUID–
System for generating an initial design of the logical ISDN UI can be found in
[Bauer96].

3.1 Defining the Requirements for the ISDN UI

During the phase “requirements analysis” in the UI–development process (see fig-
ure 1) the application analyst defines the requirements for the UI in terms of a
problem domain–, task– and user model.

In the FUSE–System, the conceptual objects and functions of the problem domain
model (Application Interface, AI) are represented as an algebraic specification Spe-
c = <Σ , Ax >.AI AI AI The signature part ΣAI consists of the definitions of sorts (data
types) with associated constructor– and selector functions for the description of
the conceptual problem–domain objects. Furthermore ΣAI describes the functional-
ity (argument– and result parameters) of the so called interface functions, i.e. func-
tions which end–users apply to conceptual objects.

Figure 7 shows the sorts, constructor– and selector functions of the problem do-
main model of the ISDN phone in the graphical notation used in the FUSE–
System. The sort ISDNStateType describes the set of possible states of an ISDN
phone. ISDNStateType is defined as a tuple with the components ExternalLine (state
of the external line), Line1 and Line2 (state of the two internal lines).

The sort ConnectionStateType describes the possible states (Idle, Dialing, Active,
Waiting) of an internal line. The sort PhoneBookType describes the phone book, an
abstraction of the direct call buttons, as a list of elements of the sort PhoneBookEn-
tryType (tuple with components Name and PhoneNumber). The sort Phone-

46 Computer-Aided Design of User Interfaces

ISDNStateType

ISDNState

PhoneNumberType

ConnectionStateTypeConnectionStateTypeExternalConnectionStateType

ExternalLine Line1 Line2

Idle Dialing, Active, Waiting

PhoneNumber

PhoneNumberType

DigitType PhoneNumberType PhoneBookType

CHAR[‘1’, ..., ‘9’, ‘0’] STRING[‘1’, ..., ‘9’, ‘0’]

PhoneBookEntryType

PhoneBookEntry

Waiting Idle

PhoneNumber

PhoneNumberType

PhoneNumberName

STRING

Constructor, Selector Functionslistalternativetuple (i.e. record)

Figure 7. Sorts, Constructor- and Selector Functions for the ISDN Phone
NumberType defines phone numbers as strings out of the ordered character set
{’1’,...,’9’,’0’}. This character set is also described by the sort DigitType. The func-
tionality of the interface functions in the problem domain model of the ISDN
phone is shown in figure 8.

 // ... start and terminate connections on the first line

 start_1st_connection: ISDNStateType sb -> ISDNStateType sa
 terminate_1st_connection: ISDNStateType sb -> ISDNStateType sa

 // ... dial with the digit block (db) or the direct call buttons (dcb)

 dial_with_db: ISDNStateType sb, DigitType d -> ISDNStateType sa
 dial_with_dcb: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

 // ... receive connection request

 receive_request: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

 // ... start and terminate inquiries and conferences

 start_inquiry: ISDNStateType sb -> ISDNStateType sa
 start_conference: ISDNStateType sb -> ISDNStateType sa
 terminate_conference: ISDNStateType sb -> ISDNStateType sa
 hand_over: ISDNStateType sb -> ISDNStateType sa
 terminate_2nd_connection: ISDNStateType sb -> ISDNStateType sa
 switch_connections: ISDNStateType sb -> ISDNStateType sa

Figure 8. Functionality of ISDN Interface Functions

The function start_1st_connection is used to start a phone call on line 1. The argu-
ment parameter sb (state before) denotes the state of the phone before, the result
parameter sa (state after) the state after calling start_1st_connection. The function
terminate_1st_connection is used to terminate phone calls on line 1. With the func-
tion dial_with_db the user enters a digit (argument parameter d) of the phone num-
ber. With the function dial_with_dcb a complete phone number (argument parame-
ter n) is entered with one of the direct call buttons.

The semantic part AxAI of the algebraic specification SpecAI of the ISDN problem
domain model describes the semantics of the interface functions in terms of pre–
and postconditions. E.g. for the function start_1st_connection we demand the pre-
condition is_idle(Line1(sb)) ∧ is_Idle(Line2(sb)), i.e. the phone is not in use. After

 The FUSE-System: an Integrated User Interface Design Environment 47

calling start_1st_connection, line 1 of the phone should be in the state Active, if
there was a phone call request on the external line. If there was no such request,
line 1 should be in the state Dialing. This behaviour is expressed by the axioms
∀ n ∈ PhoneNumberType:
 start_1st_connection(ISDNState(Waiting(n),Idle(),Idle())) = ISDNState(Idle(),Active(n),Idle())
 start_1st_connection(ISDNState(Idle(),Idle(),Idle())) = ISDNState(Idle(),Dialing(<>),Idle())
In a similar way, the semantics of the other interface functions are described. The
information in the algebraic specification SpecAI of the ISDN problem domain
model can be used for different purposes in the UI development process. Using
techniques from theorem proving, the STD for PLUG-IN (e.g., figure 5) can be
generated automatically (see [Bauer96]). Moreover, the information in SpecAI is
used for the specification of the dynamics of the logical UI (see section 3.2.2).

While the problem domain model defines the requirements for the UI from the
view of the application functionality, the task model describes the UI–requirements
from the view of potential end–users. Its content, the task–space, is a decomposi-
tion of tasks into subtasks, actions and associated functions of the problem domain
model. An example is shown in figure 9.

The task EstablishConference can be decomposed into the subtasks Create1st-
Connection, MakeInquiry and the action StartConference. The subtasks and the action
have to be performed in the order given from left to right, therefore the sequence
symbol () is displayed above the task EstablishConference. Links from ac-
tions of the task space to functions of the problem domain model are denoted by
the symbol . Besides the sequence, other constructs define temporal relations in
the task space. Each nodes pre- and postcondition refering to a particular system
state can be used to define the context in which a task or an action is applicable.
The task DialTelephoneNumber (figure 9) uses the choice–construct ().
Here the user can choose to dial with the digit block or one of the direct call but-
tons.

In the property sheet of figure 10 the precondition ISDNStateBefore=ISDNState
(Idle(), Idle(),Idle()) states the fact that this task can be only performed if the phone
is not in use. Other properties of the sheet define the behaviour of the user guid-
ance component during runtime.

The requirements analysis phase is completed by defining the static and dynamic
properties of the user model. With the static properties of the user model various
user stereotypes are modelled. Examples of static properties are “user’s motiva-
tion”, “user’s application knowledge” and “user’s task knowledge”. All of these
properties can have one value of the set {low, medium, high} and are predefined by
the application analyst for a whole user class. Besides the static properties, we also
plan to incorporate dynamic properties into the user model. Dynamic properties
are obtained during runtime. With these it will be possible to give help that is
adapted to the user’s individual interaction behaviour. One example of a dynamic
property is the “frequency of already solved tasks”. With this property it is possible

48 Computer-Aided Design of User Interfaces

Figure 10. Property Sheet of

 Example Task
Figure 9. Excerpts from Task Space of Phone

Simulation

to reason about tasks still unknown to the user. Furthermore the property can be
exploited to order the task-based on-line help with respect to the measured task
frequency. Overall, the various properties defined in the user model control the
behaviour of the user guidance component during runtime.

3.2 Design of the ISDN UI with BOSS

Within the FUSE–architecture, the BOSS–System is the main tool for supporting
the design–phase in the UI development process. During this phase, BOSS is used
by an automatic (i.e., the FLUID–System, see [Bauer96]) or a human (the scenario
we assume in this paper) dialogue designer for the specification of the logical struc-
tures of UIs and by a human layout guideline designer for the specification of lay-
out guidelines.

Important properties of BOSS include:

• BOSS uses an encompassing specification technique (HIT, Hierarchic Interac-
tion graph Templates) for the specification of the logical structures of UIs, UIs
in a particular layout style and layout guidelines. The HIT specification tech-
nique is based on two well–known software construction methods: Dynamic
Attribute Grammars (DAG) and Data Flow Diagrams (DFD).

• The HIT specification technique allows the creation of very modular specifica-
tions: The specification of the logical UI can be composed of reusable building
blocks representing single tasks or groups of related tasks (“views”) of the task
model. Moreover, these building blocks can be stored in libraries for reuse in
different projects. Because of this modularity, this HIT specification technique
scales up for modelling complex UIs.

 The FUSE-System: an Integrated User Interface Design Environment 49

• BOSS offers an Integrated graphical Development Environment (IDE) for
working out HIT–specifications in a visual-programming-like manner (a textual
specification is also possible). HIT–specifications can be transformed into effi-
cient C++ programs using standard techniques from compiler generation.

In the following we give a brief introduction to the HIT specification technique
(section 3.2.1). In sections 3.2.2 and 3.2.3 we show how HIT is used for modelling
logical UIs and layout guidelines.

3.2.1 The HIT Specification Technique: an Overview

The HIT specification technique extends a well–known technique in compiler con-
struction, DAGs [Ganzinger78], with timing– and event–concepts. A HIT specifi-
cation consists of a set of basic sort (data type) and function definitions and a set
of templates called Hierarchic Interaction graph Templates (HITs). HITs serve as
prototypes for creating objects (HIT–instances) that maintain their own state, react
in response to external messages and are connected with other objects in an object
structure.

A definition of a HIT consists of a structural (syntactic) and a semantic part. The
structural definition describes how a HIT h is constructed from “simpler” HITs h1,
..., hn using operators like construction of tuples (i.e., “parallel” composition, h =
(h1, ... ,hn)) or alternatives, h = h1 | ... | hn. As in attribute grammars the structural de-
scription is enriched by semantic information. Associated with a HIT are various
kinds of data flow constraints between the following entities:

• slots (known as attributes in the context of attribute grammars) store the state
of a HIT instance. Certain slots of a HIT are distinguished: Through its argu-
ment–, argument/result– and result– parameter slots a HIT instance shares part
of its state with related HIT instances in an object structure. Input slots may be
modified by an external entity (e.g. a human user), the values of output slots are
relevant to the environment (and have to be visualized by the UI);

• message ports receive events from external entities and distribute messages
across a structure of HIT–instances. Like slots, message ports may serve as pa-
rameters of a HIT or may be used for receiving (input message ports) and send-
ing (output message ports) messages to external entities;

• rules define either a directed equation in a “spreadsheet–like” manner (i.e. one–
way constraints which should hold at every time) or a transaction caused by an
external entity (e.g. an application function called by a user).

Input slots, input message ports and transactions rules may have preconditions.
Each alternative hi of an alternative HIT h = h1 | ... | hn is assigned an applicability
condition depending on the argument parameter slots of hi. Creating an instance of
an alternative HIT h = h1 | ... | hn with argument parameter values a1, ... , anh results
in creating an instance of one of those alternatives with satisfied applicability con-
dition. When a tuple HIT h = (h1, ... ,hn) is instantiated, instances for each compo-
nent HIT hi are created.

50 Computer-Aided Design of User Interfaces

3.2.2 Specification of the Logical ISDN UI

Designing the logical UI consists of designing views which contain user interac-
tions, system interactions and problem domain objects for a single task or a group
of logically related tasks. In our example we follow the goal of designing a logical
UI which is similar to the real ISDN phone. Therefore we introduce four views.
With the BasicFunctions view users gain access to the basic functionality of the
ISDN phone for starting and terminating phone calls on line 1 (i.e., functions
start_1st_connection, terminate_1st_connection, see figure 8). The AdvancedFunctions
view provides access to the advanced functions of the ISDN phone dealing with
inquiries and conferences (i.e., functions start_inquiry, ..., switch_connections, see
figure 8). The DialPhoneNumberTask view corresponds to the task DialPhoneNumber
(see figure 9) allowing users to dial phone numbers directly digit by digit or to se-
lect phone numbers from the phone book. Finally the LogicalISDNUI view describes
the entire logical ISDN UI, i.e., LogicalISDNUI contains the BasicFunctions, Ad-
vancedFunctions and DialPhoneNumberTask views. Moreover the LogicalISDNUI
view should illustrate the state of the ISDN phone and allow users to add and re-
move entries from the phone book.

The views of the logical ISDN UI can be easily represented in the HIT specifica-
tion technique. Figure 11 shows how the logical ISDN UI is represented as a tu-
ple–HIT named LogicalISDNUI. The component HITs BasicFunctions, Advanced-
Functions and DialPhoneNumberTask represent the views in the logical ISDN UI de-
scribed above. Through its argument message port RequestForConnection the HIT
LogicalISDNUI receives phone calls on the external line. The slot ISDNState stores
the current state of the ISDN phone. As the user should be permanently informed
about the state of the phone, ISDNState is declared as an output slot.

LogicalISDNUIRequestForConnection:
PhoneNumberType

ISDNState:
ISDNStateType

Basic-
Functions

ISDNState:
ISDNStateType

Advanced-
Functions

ISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

DialPhoneNumber-
Task

ISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

receive_request

handle_request

a a r

rISDNState(Idle(),Idle(),Idle())

init_state

h1 hn

h
Definition of
Tuple-HIT

Definition
of Slot

Definition of
Message Port

Port Name:
Port Type

Slot Name:
Slot Type Argument Parameter

Argument/Result-

Result-

Output
Slot/Message Port

Input
Slot/Message Port

argument
function
result

Rule

Figure 11. LogicalISDNUI view of logical ISDN UI

The slot PhoneBook stores the phone book. As the user should be able to add and
remove entries from the phone book, PhoneBook is declared as an input slot. To
indicate that the state ISDNState can be altered by user interactions in the Ba-
sicFunctions, AdvancedFunctions and DialPhoneNumberTask views, the slot ISDN-

 The FUSE-System: an Integrated User Interface Design Environment 51

State is connected to the corresponding argument/result–parameter slots of the
component HITs. The slot ISDNState is initialized by the rule init_state to the initial
state ISDNState(Idle(),Idle(),Idle()) of the phone. A message in the argument message
port RequestForConnection triggers the rule handle_request, which causes an update
on the state of the ISDN phone (value of the slot ISDNState) according to the se-
mantics of the receive_request function.

Basic-
Functions

ISDNState:
ISDNStateType

start_1st_connection
a r

tr_Start1StConnection tr_Terminate1StConnection

a r
terminate_1st_connection

PC:
 is_Idle(Line1(ISDNState)) &&
 is_Idle(Line2(ISDNState))

PC:
 is_Dialing(Line1(ISDNState)) ||
 is_Active(Line1(ISDNState))

a r

Transaction Rule

PC: Precondition

Figure 12. BasicFunctions view of logical ISDN UI

Figure 12 shows the HIT–representation of the BasicFunctions view. It groups user
interactions related to start and terminate connections on line 1. As these interac-
tions alter the state of the phone, the HIT BasicFunctions has an argument/result–
parameter slot ISDNState.

Through the transaction rule tr_Start1stConnection the user starts a phone call on
line 1 by applying the function start_1st_connection (see figure 8) to the current
state ISDNState of the phone. As the UI should prevent users from calling func-
tions with parameters violating the function’s precondition, the transaction rule
tr_Start1stConnection is guarded by the precondition of the function start_1st_con-
nection taken directly from the algebraic specification SpecAI of the problem do-
main model. By triggering the transaction rule tr_Terminate1stConnection the user
can terminate a connection on line 1.

In figure 13 we show how the DialPhoneNumberTask view (which corresponds to
the DialPhoneNumber task in the task model, see figure 9) is represented by a corre-
sponding HIT. Like the HITs BasicFunctions and AdvancedFunctions, DialPho-
neNumberTask has an argument/result–parameter slot ISDNState to indicate that
the state of the ISDN phone is accessed and altered by user interactions. Through
the argument parameter slot PhoneBook the phone book is passed. As the user is
allowed to enter the phone number digit by digit, the HIT DialPhoneNumberTask
contains an input message port Digit. A message (i.e., a digit of the phone number)
in the Digit message port triggers the rule handle_db, which alters the state of the
ISDN phone according to the semantics of the dial_with_db function. To allow us-
ers to select a phone number directly from the phone book, we introduce an input
message port PhoneBookEntry.

A message (i.e., a selected entry of the phone book) in the PhoneBookEntry message
port triggers the rule handle_dcb, which updates the state of the phone according to
the semantics of the dial_with_dcb interface function. The preconditions of Digit
and PhoneBookEntry ensure that user interactions with these message ports are en-

52 Computer-Aided Design of User Interfaces

abled only in appropriate states of the phone. The selection from the phone book
is modelled through a HIT OneFromListSelectionTask, whose argument parameter
slots are supplied with a reference to the PhoneBookEntry message port (the selec-
tion should cause a message in PhoneBookEntry) and with the value of the Phone-
Book slot (the list from which the item should be selected). As the user interaction
“selection from a list” appears in many logical UI, the BOSS–System provides a
standard library containing HITs like OneFromListSelectionTask for the representa-
tion of standard interaction tasks.

PhoneBook:
PhoneBookType

DialPhoneNumberTaskISDNState:
ISDNStateType

List:
LIST

OneFromListSelectionTaskRef:
REFERENCE

Reference

PhoneBookEntry:
PhoneBookEntryType

Digit:
DigitType

PC:
 is_Dialing(Line1(ISDNState)) ||
 is_Dialing(Line2(ISDNState))

PC:
 is_Dialing(Line1(ISDNState)) ||
 is_Dialing(Line2(ISDNState))

dial_with_db

a r

a

a r

a
dial_with_dcb

a

r
Number

&handle_dcbhandle_db

&

Figure 13. DialPhoneNumberTask view of logical ISDN UI

The BOSS–System provides a very comfortable, integrated development environ-
ment (IDE) which allows drawing specifications in the graphical notation shown in
figures 11–13. Like the specification of the logical ISDN UI, the specification of
more complex logical UI is made up of small, reusable building blocks. In this way
the HIT specification technique scales up for more complex examples.

3.2.3 Specification of Layout Guidelines

Assuming a given set of layout guidelines, all the steps from a given specification of
the logical UI (e.g., figures 11–13) to the production of a “running” UI implemen-
tation (e.g., figures 2-3) are performed automatically by the BOSS–System. Similar
to the approach followed in the HUMANOID–System [Luo93], layout guidelines
within BOSS describe the mapping from logical UIs to UIs in particular layout
styles by defining the representation of the states and state transitions of the logical
UI in terms of AIOs. As the actual UI layout is computed at runtime, it is possible
to specify context sensitive UI layouts depending on values known only at runtime.
Due to this approach, systems like BOSS or HUMANOID reach a higher degree of
flexibility than systems generating a static UI layout at design time.

In BOSS the HIT specification technique is used both for the representation of the
logical UI and the UI in a particular layout style. Consequently, as shown in fig-
ure 14, layout guidelines in BOSS model the transformation from the HIT–

 The FUSE-System: an Integrated User Interface Design Environment 53

specification of a logical UI into the HIT–specification of a UI in the layout styles
described by the guidelines. Given layout guidelines for the styles l1, ..., ln a HIT h in
the specification of the logical UI is refined into a HIT hStyle_l1_..._ln.
hStyle_l1_..._ln contains an additional argument parameter slot UserModel and addi-
tional result parameter slots CurrentStateLayoutStyle_l1, ... , CurrentStateLayout-
Style_ln. The result parameter slot CurrentStateLayoutStyle_li contains the layout of
the current UI state represented in terms of AIOs for the layout style li depending
on the properties of the user model passed in the argument parameter slot User-
Model. This architecture results in high flexibility of the generated UI: As
hStyle_l1...ln contains layout information for each style, it’s possible to switch the
layout style at runtime.

BOSS

HIT-specification of logical UI (containing a HIT h)

h... ...

(Layout Guidelines Style l1)

Presentation
Templates

Refinement
Templates

(Layout Guidelines Style ln)

HIT-specification of UI in Layout Styles l1, ..., ln (containing refined HITs from logical UI and Presentation Templates)

... ...hStyle_l1_..._ln... UserModel:
UserModelType

... CurrentStateLayoutStyle_l1:
AbstractInteractionObjectType

... CurrentStateLayoutStyle_ln:
AbstractInteractionObjectType

... ...

Figure 14. Layout Guidelines in the BOSS-System

The specifications of layout guidelines for a style li consists of a set of presentation
templates and a set of refinement templates. For each element in the HIT specifi-
cation language dealing with user interaction (input–,output slots, input–, output
message ports, transaction rules) a specialized presentation template is defined (e.g.
a template PresentOutputSlotStateStyle_li for the presentation of the value of output
slots).

The refinement templates describe the refinement from HITs without layout in-
formation (e.g., h) to HITs with layout information (e.g., hStyle_l1_..._ln). This re-
finement is done by attaching the appropriate presentation templates to the interac-
tive parts of a HIT. E.g., in the HIT LogicalISDNUI, which describes the main view
on the logical ISDN UI, a PresentOutputSlotStateStyle_li presentation template is at-
tached to the output slot ISDNState.

In the BOSS–System, presentation– and refinement templates are defined in the
HIT specification technique itself. E.g., the presentation template PresentOutput-
SlotStateStyle_li is defined as a HIT with argument parameter slots UserModel (the
user model) and OutputSlotState (i.e., the value of the output slot) and a result pa-
rameter slot OutputSlotStateLayout, which delivers a layout in terms of AIOs. The
HIT specification technique is well–suited for representing such presentation tem-

54 Computer-Aided Design of User Interfaces

plates, as the typical decision–tree–like structure (see e.g., [Bodart93]) can be ex-
pressed easily through nested alternative HITs.

As the HIT specification technique allows modular specifications, the specifica-
tions of guidelines for different layout styles differ only in a few presentation and
refinement templates. Furthermore, it is possible to combine general–purpose
guidelines with guidelines for a specific problem domain. For the generation of the
ISDN interfaces shown in figures 2 and 3 we combined a general–purpose
styleguide with a ISDN styleguide containing a few specialized presentation tem-
plates e.g., for presenting objects of the sort ConnectionStateType as “smilies”.

4 Related Work

In the following we give a brief overview of related work in the field of model
based UI construction. At the end of this section we summarize the main differ-
ences between these approaches and our FUSE–System.

MIKE [Olsen86], MIKEY [Olsen89], HIGGENS [Hudson86] and JANUS [Balzert95a]
are examples of tools, which generate UI based alone on a specification of the
problem domain model. JANUS differs from the first tools in using a much more
powerful technique for data modelling (OOA class diagrams). As none of these
tools provides means for the explicit specification of UI dynamics, they are tailored
to applications, where the UI dynamics can be derived from data models (i.e. data–
base oriented applications).

The ITS–System [Wiecha89] offers a frame–based language for the specification of
logical UI (“dialogue content”). Moreover, ITS allows the specification of style
rules, which describe the mapping between logical UI and UI in a particular style.

In the UIDE–System [Foley94], the UI development process consists of the de-
scription of two models. In the application model, the logical UI is described in
terms of application objects and –tasks. The UI–model describes the coupling of
the application model to a UI layout by linking application tasks to interface tasks,
interaction techniques and –objects. The links between the models are used by a
runtime engine to provide animated help.

HUMANOID [Luo93] divides the UI development process into the activities of ap-
plication design, dialogue sequencing, action side effects, presentation design and
manipulation design. In the first three design dimensions the logical structure of a
UI is described in terms of the structure and the behaviour of so called application
objects.

The mapping of the state of the application objects in a logical UI to a UI layout is
described in the design dimensions presentation– and manipulation design through
presentation and manipulation templates. Based on the model described above,
HUMANOID is able to provide textual help (see [Moriyón94]). Recently the research
on UIDE and HUMANOID was joined in the MASTERMIND project.

 The FUSE-System: an Integrated User Interface Design Environment 55

In the ADEPT–System [Johnson92b], a process–algebra–like specification tech-
nique called Task Knowledge Structures (TKSs) is used for the specification of the
task model of an interactive application. In the design phase of the UI develop-
ment process, the task model is transformed into the specification of the so called
Abstract Interface Model (AIM), which corresponds to the term “logical user inter-
face” in figure 1. Based on design rules in a user model, the ADEPT–System derives
a Concrete Interface Model (CIM) from the AIM by replacing the AIOs in the
AIM by the appropriate CIOs in the CIM.

The GENIUS–System [Janssen93] generates UIs for data–base oriented applica-
tions. In GENIUS, the problem domain model is represented by an ERA–diagram.
Based on this ERA–diagram static aspects of the logical UI are described in terms
of so called views, which can be regarded as abstract representations of UI win-
dows. For the representation of the dynamics of the logical UI, GENIUS employs a
petri–net–like specification technique (“dialogue–nets”).

For each view in the logical UI, the static UI layout is generated by applying soft-
ware–ergonomic guidelines, which are described as decision tables (e.g., for the se-
lection of interaction objects). A similar approach is presented in the TADEUS–
System [Elwert95]. TADEUS differs from GENIUS in the use of different specifica-
tion techniques for the representation of the problem domain model (TADEUS uses
an object oriented approach) and the dynamics of the UI (dialogue–graphs).

The TRIDENT–System [Bodart94b] consists of a methodology and a support envi-
ronment for developing UIs for business–oriented interactive applications. TRI-
DENT uses ERA–diagrams for the description of the problem domain model. For
the representation of the task model TRIDENT provides a data–flow–graph–like
specification technique called Activity Chaining Graphs (ACGs). Each ACG is
structured into presentation units. From these presentation units, the static UI lay-
out can be generated by applying rules for the selection of AIOs, rules for mapping
AIOs to CIOs and rules for the placement of CIOs.

PLUS [Fehrle93] is a task-oriented help system for domain-specific interactive ap-
plications. It uses a database of hierarchical plans described by an application ana-
lyst. With this database the system reasons about the hypothetical tasks the user
currently performs. In the task description knowledge about application– and UI
specific (e.g., UI layout) properties is combined.

The main difference between FUSE and the approaches presented above is the
combination of the following properties: FUSE offers tool–based support across
the whole UI development process, whereas e.g., MIKE, MIKEY, ITS, JANUS or
ADEPT correspond to subsystems of FUSE (BOSS and FIRE). Like in HUMANOID
the UI layout is computed at runtime, which results in a higher flexibility (e.g., the
layout depends on values known only at runtime, the layout style can change at
runtime) compared to systems generating the static UI layout at design time.

The flexibility is also supported by the powerful on-line help– and user guidance
components generated by the PLUG-IN system. In contrast to the approach to on-

56 Computer-Aided Design of User Interfaces

line help used in HUMANOID, PLUG-IN generates dynamic online help pages in
HTML format that can be inspected with a WWW browser. In comparison with
the PLUS-System, where it is neccessary to change the database used for the provi-
sion of user guidance by hand if the application functionality or layout guidelines
are changed, PLUG-IN’s generated on-line help adapts itself automatically to the
currently used layout style of the UI.

Conclusion

The BOSS–System has been implemented in C++ on top of UNIX/X11R6. It
currently supports the Athena and the OSF/Motif toolkits. The animation
component of PLUG-IN is based on Tcl/Tk. The context–sensitive help–compo-
nent of PLUG-IN is based on the WWW browser Mosaic. The FLUID–System (see
[Bauer96]) is currently under development.

The FUSE methodology and tools have been applied successfully to a number of
examples (ISDN phone simulation, UI for a literature retrieval system, UI for a
home banking system, formula editor for LATEX). Important parts of the FUSE
development environment (e.g., the subsystem FIRE) have been specified with
BOSS.

Up to now, the FUSE system and especially BOSS have been used by developers
skilled in related methods from software construction (e.g., attribute grammars).
With this background these developers were able to achieve quite soon a high level
of productivity using our tools. However, we are aware of the fact that much more
practical experience has to be gained with the FUSE–methodology and the related
tools. As a first step in this direction we plan to organize a course in UI specifica-
tion at the Munich University of Technology.

Acknowledgements

This work has been partially supported by Siemens Corporate Research and De-
velopment, Department of System Ergonomics and Interaction (ZFE ST SN 51).
The authors would like to thank Werner Schreiber and the anonymous reviewers
for their useful comments and suggestions on draft versions of this paper.

References

[Balzert95a] Balzert, H., From OOA to GUI - The JANUS-System, in Proceedings of
the 5th IFIP TC13 Conference on Human-Computer Interaction INTERACT’95,
Lillehammer, 25-29 June 1995, K. Nordbyn, P.H. Helmersen, D.J. Gilmore and
S.A. Arnesen (Eds.), Chapman & Hall, London, 1995, pp. 319-324.
http://www.swt.ruhr-uni-bochum.de/forschung/janus/lillehammer. html

[Bauer96] Bauer, B., Generating User Interfaces from Formal Specifications of the Applica-
tion, in Proceedings of 2nd International Workshop on Computer-Aided Design of

 The FUSE-System: an Integrated User Interface Design Environment 57

User Interfaces CADUI’96, J. Vanderdonckt (Ed.), Presses Univesitaires de Na-
mur, Namur, 1996, pp. 141-158.

[Bodart93] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Sacré, I., Vander-
donckt, J., Architecture Elements for Highly-Interactive Business-Oriented Applications, in
Proceedings of the East-West International Conference on Human-Computer In-
teraction EWHCI’93 (Moscow, 1993), L. Bass, J. Gornostaev and C. Unger (Eds.),
Lecture Notes in Computer Science, Vol. 753, Springer-Verlag, Berlin, 1993, pp.
83-104.

[Bodart94b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Vander-
donckt, J., A Model-based Approach to Presentation: A Continuum from Task Analysis to
Prototype, in Proceedings of 1st Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994),
Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp. 77-94.

[Eickel90] Eickel, J., Logical and Layout Structures of Documents, Computer Physics
Communication, Vol. 61, 1990, pp. 201-208.

[Elwert95] Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User In-
terfaces in the TADEUS Approach, in Proceedings of 2nd Eurographics Workshop on
Design, Specification, Verification of Interactive Systems DSV-IS’95 (Château de
Bonas, 7-9 June 1995), R. Bastide and Ph. Palanque (Eds.), Eurographics Series,
Springer-Verlag, Vienna, 1995, pp. 193-208. http://www. informatik.uni-
rostock.de/~schlung/TADEUS/paper/DSV-IS95.html

[Fehrle93] Fehrle, T., Klöckner, K., Schölles, V., Berger, F., Thies, M., Wahlster,
W., PLUS - Plan-based User Support, Deutsches Forschungszentrum für künstliche
Intelligenz, Technical report RR-93-15, 1993.

[Foley94] Foley, J.D., History, Results and Bibliography of the User Interface Design Envi-
ronment (UIDE), an Early Model-based Systems for User Interface Design and Implementation,
in Proceedings of 1st Eurographics Workshop on Design, Specification, Verifica-
tion of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994), Focus on
Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp. 3-14.

[Ganzinger78] Ganzinger, H., Optimierende Erzeugung von Uebersetzerteilen aus implemen-
tierungsorientierten Sprachbeschreibungen, PhD thesis, Technische Universitaet
Muenchen, 1978.

[Hudson86] Hudson, S.E., King, R., A Generator of Direct Manipulation Office Systems,
ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986, pp.
132-163.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423.

58 Computer-Aided Design of User Interfaces

[Johnson92b] Johnson, P., Markopoulos, P., Johnson, H., Task Knowledge Structures:
A specification of user task models and interaction dialogues, in Proceedings of 11th Inter-
disciplinary workshop on informatics and psychology, Vol. 6, 1992.

[Lonczewski95a] Lonczewski, F., PLUG--IN: Using Tcl/Tk for Plan Based User Guid-
ance, in Proceedings of the Tcl/Tk Workshop (Toronto, 6-8 July 1995), USENIX
Association, 1995, pp. 141-144.

[Lonczewski95b] Lonczewski F., Using a WWW-Browser as an alternative user interface
for interactive applications, in Poster Proceedings of the 3rd World Wide Web Confer-
ence (Darmstadt), R. Holzapfel (Ed.), Fraunhofer Institute for Computer Graphics,
1995, pp. 132-135.

[Luo93] Luo, P., Szekely, P., Neches, R., Management of Interface Design in HUMA-
NOID, in Proceedings of the Conference on Human Factors in Computing Systems
INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April 1993), S.
Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM Press,
New York, 1993, pp. 107-114. http://www.isi.edu/isd/CHI93-manager.ps

[Moriyón94] Moriyón, R., Szekely, P., Neches, R., Automatic Generation of Help from
Interface Design Models, in Companion of the Conference on Human Factors in
Computing Systems CHI’94 « Celebrating Interdependence » (Boston, 24-28 April
1994), C. Plaisant (Ed.), ACM Press, New York, 1994, pp. 225-231.
http://www.isi.edu/isd/CHI94-Help.ps

[Olsen86] Olsen, D.R., MIKE: The Menu Interaction Kontrol Environment, ACM Trans-
actions on Information Systems, Vol. 5, No. 4, pp. 318-344.

[Olsen89] Olsen, D.R., A programming language basis for user interface management, in
Proceedings of the Conference on Human Factors in Computing Systems CHI’89
« Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis (Eds.),
ACM Press, New York, 1989, pp. 171-176.

[Schreiber93] Schreiber, W., Prosaische Logik fuer Dichter und Denker -- Textverarbeitung
massgeschneidert, Forschung fuer Bayern, Vol. 6, Technische Universitaet Muenchen,
1993.

[Schreiber94a] Schreiber, S., The BOSS System: Coupling Visual Programming with Model
Based Interface Design, in Proceedings of 1st Eurographics Workshop on Design,
Specification, Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10
June 1994), Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995, pp.
161-179. ftp://hpeick7.informatik.tu-muenchen.de/pub/papers/sis/ eg94.ps.Z

[Schreiber94b] Schreiber, S., Specification and Generation of User Interfaces with the
BOSS-System, in Proceedings of the East-West International Conference on Hu-
man-Computer Interaction EWHCI’94 (St. Petersburgh, 1994), B. Blumenthal, J.
Gornostaev, C. Unger (Eds.), Lecture Notes in Computer Sciences, Vol. 876,
Springer-Verlag, Berlin, 1994, pp. 107-120. ftp://hpeick7.informatik.tu-muenchen.
de/pub/papers/sis/ewhci94.ps.Z

 The FUSE-System: an Integrated User Interface Design Environment 59

[Schwab95] Schwab, R., Generierung von Standardbedienoberflaechen aus Applikations-
beschreibungen, Master's thesis, Technische Universitaet Muenchen, 1995.

[Siemens92] Telefon Bedienungsanleitung Hicom Standard 300, Siemens AG, 1992.

[Wiecha89] Wiecha, C., Bennett, W., et al., Generating Highly Interactive User Interfaces,
in Proceedings of the Conference on Human Factors in Computing Systems
CHI’89 « Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis
(Eds.), ACM Press, New York, 1989, pp. 277-282.

	Abstract
	Keywords
	Introduction
	1 The Fuse-Methodology: an Overview
	2 User Support for an ISDN Phone with Fuse
	2.1 User Interfaces of an ISDN Phone
	2.2 Task–Based User Support with Plug-In
	2.3 Dynamic On-Line Help with Plug-In

	3 Modelling the ISDN User Interface with Fuse
	3.1 Defining the Requirements for the ISDN UI
	3.2 Design of the ISDN UI with Boss
	3.2.1 The HIT Specification Technique: an Overview
	3.2.2 Specification of the Logical ISDN UI
	3.2.3 Specification of Layout Guidelines

	4 Related Work
	Conclusion
	Acknowledgements
	References

