

MULTIMODALITY AND CONTEXT-AWARE
ADAPTATION

Quentin Limbourg and Jean Vanderdonckt
Université catholique de Louvain (UCL), School of Management (IAG), ISYS-BCHI
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
Phone: +32-10 / 478525 – Fax: +32-10 / 478324
E-mail: {limbourg, vanderdonckt}@isys.ucl.ac.be
Web: http://www.isys.ucl.ac.be/bchi/members/{qli,jva}

Abstract: In principle, context-aware adaptation is assumed to bring to the end user the
benefit of adapting the user interface currently being used according to signifi-
cant changes of the context of use in which the user interface is manipulated.
To address major shortcomings of system that hardcode the adaptation logic
into the user interface or the interactive software, a mechanism is introduced to
express context-aware adaptation as a set of logical production rules. These
rules are gathered in graph grammars and applied on graphs representing ele-
ments subject to change and conditions imposed on the context of use. These
rules can express both adaptations within the same modality of interaction (in-
tra-modality adaptation) and across several modalities of interaction (trans-
modality adaptation).

Keywords: Adaptation, Context of use, Graph grammars, Graph transformations, Intra-
modality adaptation, Production rules, Trans-modality adaptation.

1. INTRODUCTION

The context of use is typically considered as a potential source of infor-
mation to trigger an adaptation of the User Interface (UI) of a system accord-
ing to significant changes of some properties of interest (Thevenin, 2001).
The context of use is hereby defined as a triplet (U,P,E) where U represents
the user and her properties (e.g., demographics attributes, skills, preferences,
native language, motivations), P represents the computing platform and re-
lated properties (e.g., screen resolution, interaction capabilities, devices), and
E represents the environment in which the user is carrying out the interactive

2 Quentin Limbourg and Jean Vanderdonckt

task on the computing platform (Calvary et al., 2003). Similarly, the envi-
ronment is described by attributes like organisational structure, psychologi-
cal parameters (e.g., level of stress). Any change of the current value of any
of the U, P, and E parameters can potentially indicate a change of the con-
text of use. However, in practice, only some of them truly represent a sig-
nificant change of the context of use that should have an impact on the user
interface. The adaptation logic that reacts to these significant changes of
context is generally embedded in the software (i.e. hardcoded), thus resulting
into little or no flexibility for changing it. In addition, the adaptation logic is
rarely expressed in a formal way that is immediately executable by an
automaton without requiring further modification. To address these short-
comings and to enable any person to express an adaptation rule according to
the same language that can be communicated, we relied on the mechanism of
graph transformations (Freund et al., 1992) that is further explained in the
next section. The steps of the methodology are (Limbourg & Vanderdonckt.,
2004):

1. The context of use is represented by a graph (with nodes and arcs).
2. Other models that are typical of model-based approaches for multi-

platform UIs (Paternò & Santoro, 2002) (e.g., presentation and dialog
of the UI) are also represented by graphs.

3. The adaptation logic is expressed by transformation rules that check
existing graphs for satisfying conditions of applicability and apply
them consequently so as to create new specifications imposed on the
adapted UI that can then be rendered.

4. The adaptation logic can be executed statically at design time or dy-
namically at execution time (Kawai et al., 1996).

2. GRAPH TRANSFORMATION FOR CONTEXT-
AWARE ADAPTATION

TOMATO consists of a general-purpose methodology that systematically
applies design knowledge to produce a final UI by performing different steps
based on a transformational approach. This approach enables expressing and
simultaneously executing transformation of models describing UIs view-
points. Fig. 1 illustrates the transformations steps supported in TOMATO:
 Reification is a transformation of a high-level requirement into a form

that is appropriate for low-level analysis or design.
 Abstraction is a transformation of a low level the extraction of high-

level requirement from a set of low-level requirements artefacts or from
code (Bouillon et al. 2003).

 Translation is a transformation a UI in consequence of a context of use

Multimodality and context-aware adaptation 3

change.
 Reflection is a transformation of the artefacts of any level onto artefacts

of the same level of abstraction, but different constructs or various con-
tents.

 Code generation is a process of transforming a concrete UI model into a
compilable or interpretable code.

 Code reverse engineering is the inverse process of code generation.

Task and
Domain
Task and
Domain

Abstract
User Interface

Abstract
User Interface

Concrete
User Interface

Concrete
User Interface

User Interface
Code

User Interface
Code

Reification

Abstraction

Translation

Code Generation

Code Reverse
Engineering

Task and
Domain
Task and
Domain

Abstract
User Interface

Abstract
User Interface

Concrete
User Interface

Concrete
User Interface

User Interface
Code

User Interface
Code

Reification

Abstraction

Translation

Code Generation

Code Reverse
Engineering

Reification

Abstraction

Translation

Code Generation

Code Reverse
Engineering

Figure 1. Transformations between viewpoints.

The different transformation types are instantiated by development steps
(each occurrence of a numbered arrow in Fig. 1). These development steps
may be combined to form development paths. While code generation and
code reverse engineering are supported by specific techniques, we use graph
transformations to perform model-to-model transformations i.e., reifications,
abstractions and translations. TOMATO models have been designed with an
underlying graph structure. Consequently any graph transformation rule can
be applied to any TOMATO specification. Graph transformations have been
shown convenient formalism for our present purpose in (Limbourg et al.,
2004). The main reasons of this choice are (1) an attractive graphical syntax
(2) a clear execution semantic (3) an inherent declarativeness of this formal-
ism. Development steps are realized with transformation systems. A trans-
formation system is a set of (individual) transformation rules. A transforma-
tion rule is a graph rewriting rule equipped with negative application condi-
tions and attribute conditions (Roszenberg, 1997).

Fig. 2 illustrates how a transformation system applies to a TOMATO
specification: let G be a TOMATO specification, when 1) a Left Hand Side
(LHS) matches into G and 2) a Negative Application Condition (NAC) does
not matches into G (note that several NAC may be associated with a rule) 3)

4 Quentin Limbourg and Jean Vanderdonckt

the LHS is replaced by a Right Hand Side (RHS). G is consequently trans-
formed into G’, a resultant TOMATO specification. All elements of G not
covered by the match are considered as unchanged. All elements contained
in the LHS and not contained in the RHS are considered as deleted (i.e.,
rules have destructive power). To add to the expressive power of transforma-
tion rules, variables may be associated to attributes within a LHS. Theses
variables are initialized in the LHS, their value can be used to assign an at-
tribute in the expression of the RHS (e.g., LHS : button.name:=x, RHS :
task.name:=x). An expression may also be defined to compare a variable de-
clared in the LHS with a constant or with another variable. This mechanism
is called ‘attribute condition’.

Figure 2. A transformation system in TOMATO methodology.

3. ADAPTATION TO CONTEXT CHANGE

 According to the Cameleon reference framework (Calvary et al., 2003),
adaptation with respect to the context change can take place at three levels
(Fig. 3): (1) at the “task & domain” level where one or both models are af-
fected to reflect a change of context of use (e.g., a change in the organisa-
tional structure may move a task from one role to another one, thus resulting
in deleting this task from the task set of a person); (2) at the “abstract UI“
level, where the UI is described independently of any modality of interac-
tion; (3) at the “concrete UI” level, where the UI is described with specific
modalities, but still independently of any computing platform. In terms of
graph transformations, context adaptation covers model transformations
adapting a viewpoint to another context of use. This adaptation is performed
at any of the three above levels.

Fig. 4 depicts a production rule that perform the following adaptation: for
each pair of abstract individual component mapped onto concurrent tasks,
transfer all facets of the abstract individual component that is mapped onto
the task that is target of the concurrency relationship, to the other abstract

Multimodality and context-aware adaptation 5

individual component. Abstract individual components represent a sort of
abstraction of interaction objects independently of their modality of interac-
tion. As such, they are located higher than traditional Abstract Interaction
Objects (Vanderdonckt & Bodart, 1993). This rule should not be applied to
task that still have decomposition. In other words, the rule is applied only on
leaf tasks of the task model (Paternò & Santoro, 2002).

Task and
Domain

Abstract
User Interface

Concrete
User Interface

User Interface
Code

Task and
Domain

User Interface
Code

Context A Context BAdaptation

T1

Abstract
User Interface

Concrete
User Interface

T2

T3

Task and
Domain

Abstract
User Interface

Concrete
User Interface

User Interface
Code

Task and
Domain

User Interface
Code

Context A Context BAdaptation

T1

Abstract
User Interface

Abstract
User Interface

Concrete
User Interface

Concrete
User Interface

T2

T3

Figure 3. Context adaptation at different levels of TOMATO.

NAC LHS RHS

::=::=

NAC LHS RHS

::=::=

Figure 4. A merging of facets of abstract individual components

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the European IST CAME-
LEON research project (http://giove.cnuce.cnr.it/cameleon.html), the
CAMELEON partners for fruitful exchanges and discussions, and the SIMI-
LAR network of excellence (http://www.similar.cc), the European research
task force creating human-machine interfaces similar to human-human
communication of the European Sixth Framework Programme.

6 Quentin Limbourg and Jean Vanderdonckt

REFERENCES
Bouillon, L., Vanderdonckt, J., and Chow, K.C.: 2004, Flexible Re-

engineering of Web Sites. In: Proceedings of 8th ACM Int. Conf. on Intel-
ligent User Interfaces (IUI’2004). Funchal, 13-16 January 2004. ACM
Press, New York, pp. 132-139.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Van-
derdonckt, J.: June 2003, A Unifying Reference Framework for Multi-
Target User Interfaces. Interacting with Computers 15(3) 289–308.

Freund, R., Haberstroh, B., and Stary, C.: 1992, Applying Graph Grammars
for Task-Oriented User Interface Development. In: Koczkodaj, W.W.,
Lauer, P.E., Toptsis, A.A. (eds.): Proceedings of 4th International Con-
ference on Computing and Information (ICCI’92). Toronto, May 28-30,
1992. IEEE Computer Society Press, Los Alamitos, pp. 389–392.

Kawai, S., Aida, H., Saito, T.: 1996, Designing Interface Toolkit with Dy-
namic Selectable Modality. In: Proceedings of 2nd ACM International
Conference on Assistive Technologies (ASSETS’96). Vancouver, April
11-12, 1996. ACM Press, New York, pp. 72–79.

Limbourg, Q. and Vanderdonckt, J.: 2004, Transformational Development of
User Interfaces with Graph Transformations. In: Proceedings of 5th In-
ternational Conference on Computer-Aided Design of User Interfaces
(CADUI’2004). Madeira, January 14-16, 2004. Kluwer Academics Pub-
lishers, Dordrecht.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., and
Trevisan, D.: 25 May 2004, USIXML: A User Interface Description
Language for Context-Sensitive User Interfaces. In: Proceedings of the
ACM AVI’2004 Workshop “Developing User Interfaces with XML: Ad-
vances on User Interface Description Languages” (UIXML’04)

Paternò, F. and Santoro, C.: 2002, One Model, Many Interfaces. Chapter 13.
In: Kolski, Ch., Vanderdonckt, J. (eds.), Proceedings of 4th International
Conference on Computer-Aided Design of User Interfaces (CA-
DUI’2002). Valenciennes, May 15-17, 2002. Kluwer Academics Pub-
lishers, Dordrecht, pp. 143–154.

Rozenberg, G. (Ed.): 1997, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations, World Scientific.

Thevenin, D.: December 2001, Adaptation en Interaction Homme-Machine:
le cas de la Plasticité, Ph.D. thesis. Grenoble, France, 2001. On-line:
http://iihm.imag.fr/publs/2001

Vanderdonckt, J. and Bodart, F.: 1993, Encapsulating Knowledge for Intelli-
gent Automatic Interaction Objects Selection. In: Ashlund, S., Mullet, K.
Henderson, A., Hollnagel, E., White, T. (eds.): Proceedings of the ACM
Conference on Human Factors in Computing Systems (InterCHI’93).
Amsterdam, April 14-19, 1993. ACM Press, New York, pp. 424–429.

	INTRODUCTION
	GRAPH TRANSFORMATION FOR CONTEXT-AWARE ADAPTATION
	ADAPTATION TO CONTEXT CHANGE

