
USIXML: A User Interface Description Language for
Context-Sensitive User Interfaces

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon,
Murielle Florins, and Daniela Trevisan

Université catholique de Louvain (UCL) – School of Management (IAG)
Information Systems Research Unit (ISYS) – Belgian Lab. of Computer-Human Interaction (BCHI)

B-1348 Louvain-la-Neuve, Belgium
Phone: +32-10/478525 – Fax : +32-10/478324

{limbourg, vanderdonckt, michotte, bouillon, florins, trevisan}@isys.ucl.ac.be

ABSTRACT
This paper presents USIXML (USer Interface eXtensible Markup
Language), a User Interface Description Language aimed at de-
scribing user interfaces with various levels of details and abstrac-
tions, depending on the context of use. USIXML supports a fam-
ily of user interfaces such as, but not limited to: device-
independent, platform-independent, modality independent, and ul-
timately context-independent. This paper consequently details
how context-sensitive user interfaces may be specified and pro-
duced from the USIXML specifications. USIXML allows specify-
ing multiple models involved in user interface design such as:
task, domain, presentation, dialog, and context of use, which is in
turn decomposed into user, platform, and environment. These
models are structured according to the four layers of the Came-
leon framework: task & concepts, abstract user interface, concrete
user interface, and final user interface. To support relationships
between these models, a model for inter-model mapping is also
introduced that cover forward and reverse engineering as well as
translation from one context of use to another.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods (e.g., rapid prototyping, interviews, JAD).
D.2.2 [Software Engineering]: Design Tools and Techniques –
user interfaces. H.2.4 [Database Management]: Systems –
transaction processing. I.3.6 [Computer Graphics] Methodology
and Techniques – interaction techniques.
General Terms: Design, Languages, Human Factors.
Keywords: Computing platform, context-aware adaptation,
device independent, model-based approach, multi-platform, user
interface description language, user interface engineering.

1. INTRODUCTION
Since the dawn of the discipline of Human-Computer Interaction
(HCI), people have attempted to define many languages address-
ing different aspects of user interfaces (UIs). In particular, a lot of
effort has been devoted to introduce various UI Description Lan-
guages (UIDLs) with various objectives in mind:

- To introduce a UIDL as a specification language.
- To introduce a UIDL as a communication format.
- To introduce a UIDL to express portability in virtual toolkits.
- To support adaptation.
- To support computing-platform independence.
- To support context-sensitivity.
- To support different families of UIs such as multimodal UIs,

multimedia, hypermedia, etc.

The main goal of this paper is to define a UIDL that cumulates the

previous requirements into one single language. Such UIDLs may
pursue various goals:

- Ensuring portability of UIs from one computing platform to
another while preserving some consistency between [4] or
with the target computing platform [1,18].

- Capturing UI requirements for an abstract definition that re-
mains stable over time [1,5,19].

- Improving the reusability of UI design [11,25].
- Making one UI design for multiple devices, platforms, or ap-

pliances. This goal is often referred to as the device-, plat-
form- , or appliance-independence rendering [1,3,8,9,15,16].

- Supporting extensibility and adaptability of UI [10].
- Using a UI description to enable automated generation of UI

code [1,3,5,8,9,10,11,15,16,18,19,25].

On top of these goals are added to more goals that are considered
uncovered by ongoing initiatives:

- Making one UI design independently of any modality of in-
teraction (e.g., graphical UI, vocal UI, virtual UI, multimo-
dal,…) so that a design a this level may initiate more concrete
designs once a particular modality has been selected.

- Supporting the integration of any model used in the UI devel-
opment process, such as, but not limited to: the context of use,
the user, the platform, the environment, the devices used,…

- Expressing explicitly mappings between models and elements
when appropriate to address the mapping problem [8].

- Supporting the continuous and seamless manipulation of
models from the abstract level to the concrete levels, such as
in the Model-Driven Architecture (MDA) of the OMG Group.

- Expressing UIs at a given instant of usage so as to capture
relevant information to ensure runtime migration.

Reaching a UIDL that fully addresses all these requirements and
encompasses all the properties of interest of all these types of UIs
is certainly neither possible nor desirable. Therefore, this UIDL
pursues the goal of capturing the essential properties of interest
that turn out to be vital for specifying, describing, designing, and
developing such UIs. Consequently, this paper will present and
motivate the choices that have been made to drive the definition
of USIXML, a UIDL addressing the above requirements by defin-
ing models involved in this process. The remainder of this paper
is structured as follows: section 2 provides a state of the art in the
domain of UIDLs addressing partially or totally the above re-
quirements. Section 3 presents the structure of the USIXML lan-
guage by showing its scope that is wider than some existing
UIDLs. Section 4 defines the different models and mappings that
constitute USIXML. The original part of USIXML is emphasized
when appropriate. Section 5 concludes the paper by bringing up
the main benefits of USIXML with respect to other UIDLs.

2. RELATED WORK
It is worth to notice that many initiatives addressing the design of
UIs for multiple platforms almost resuscitated the problem of
UIDL that was for a time left forgotten after the question of port-
able UI has been achieved. Consequently, many initiatives for
solving the design of UIs for multiple computing platforms or
multiple contexts of use simultaneously consider a UIDL and
software based on this UIDL to produce various types of UIs.

The PIMA Project [11] aims at producing applications that are
device independent. A Platform Independent Application can be
created either by a design tool or by abstracting a concrete UI
thanks to the generalization process. Generalization is done by re-
verse engineering [6] the code of the UI. This process starts with
the detection of interaction elements. Secondly, the properties and
semantic information of these elements can be inferred. A special-
ized engine with a device profile then creates another application
specialized for a particular device.

TERESA [18] produces different UIs for multiple computing plat-
form from a general task model which is progressively refined for
the different platforms. Then, various presentation and dialogues
techniques are used to map the general specifications expressed
into XHTML code for each platform such as web, PocketPC, and
mobile phones. The TERESA (Transformation Environment for in-
teRactivE Systems representAtions) exploits a UIDL called
TERESAXML that supports several types of transformations such
as: task model into presentation task sets, task model into abstract
UI, abstract UI to concrete UI, generation of the final UI. In [25],
a very interesting algorithm is provided that maps a hierarchical
task model to a presentation model that explicitly takes into ac-
count platform characteristics such as screen resolution.

UIML [1] is also a UIDL intended to support the development of
UIs for multiple computing platforms by introducing a description
that is platform-independent that will be further expanded with
peers once a target platform has been chosen. Recently, the TIDE
tool introduced transformations from a basic task model.

XIML [8,19] is a UIDL containing mechanisms for specifying
any type of model, of model element, and relationships between.
Although some predefined models and relationships exist, one can
expand the existing set to fit a particular context of use. XIML has
been used in MANNA for platform adaptation [8], in VAQUITA to
support reverse engineering [3], and in Envir3D to transform a
graphical UI into a virtual Ui thanks to mapping tables [3].

WSXL [9] covers UI and Web services that are attached to these
UIs. eNode (http://www.enode.com) is also an interesting UIDL
in the sense that the dialog part is precisely described, especially
at the widget level where abstract events allow a precise defini-
tion of any widget behavior. SeescoaXML [21] is the base UIDL
exploited in the Seescoa project to support the production of UIs
for multiple platforms and the run-time migration of the full UI at
run-time. From the same specifications, multiple UIs can be gen-
erated for multiple computing platforms.

Many UIDLs exist today that cover similar and different require-
ments, some of them having been reviewed in [20]. USIXML, the
UIDL that is presented in this paper, is similar to the above
UIDLs in the sense that is also cover multiples aspects supported
by these languages, but it is especially intended for context-
sensitive UIs.

3. STRUCTURE OF USIXML
USIXML is structured according to the four basic levels of ab-
stractions defined in the Cameleon reference framework [4] that is
intended to express the UI development life cycle for context-
sensitive interactive applications (Fig. 1).

Final User Interface

Context of use #1 Context of use #2

Concrete User Interface

Abstract User Interface

Task & Concepts

Final User Interface

Concrete User Interface

Abstract User Interface

Task & Concepts

Final User Interface

Context of use #1 Context of use #2

Concrete User Interface

Abstract User Interface

Task & Concepts

Final User Interface

Concrete User Interface

Abstract User Interface

Task & Concepts

Figure 1. The four basic levels of the Cameleon reference framework [8].

At the bottom is the Final User Interface (FUI) related to any UI
running on a particular computing platform either by interpreta-
tion (e.g., through a Web browser) or by execution (e.g., after
compilation of code in an interactive development environment).
A Concrete User Interface (CUI) abstracts a FUI into a UI defini-
tion that is independent of any computing platform. Although a
CUI makes explicit the final look and feel of a FUI, it is still a
mockup that runs only within a particular environment. A CUI
can also be considered as a reification of a AUI at the upper level
and an abstraction of the FUI with respect to the platform.
An Abstract User Interface (AUI) abstract a CUI into a UI defini-
tion that is independent of any modality of interaction (e.g.,
graphical interaction, vocal interaction, speech synthesis and rec-
ognition, video-based interaction, virtual, augmented or mixed re-
ality). An AUI can also be considered as a canonical expression
of the rendering of the domain concepts and tasks in a way that is
independent from any modality of interaction. For example, in
SEGUIA [24], an AUI is a collection of related presentation units.
The relations between the presentation units are inferred from the
task relationships expressed at the upper level (task and concepts).
An AUI is considered as an abstraction of a CUI with respect to
modality.
At the top of the framework is the Task & Concepts level where
the interactive task to be carried out by the end user is defined ac-
cording to her viewpoint, along with the various objects that are
manipulated by these tasks. These objects are considered as in-
stances of classes representing the concepts manipulated.
A transient model [4] is an intermediate model that is required
only momentarily during the development life cycle of a FUI.
Task-oriented descriptions, AUI and CUI are typical examples of
transient models.
On the other hand, ontological models [4] are meta-models that
are independent of any domain of human activity (e.g., medical
domain, surgery, and accounting) and any interactive system.
Roughly speaking, they identify key dimensions for addressing a
given UI design problem. When instantiated, they give rise to ar-
chetypal models [4] that are models dependent of an interactive
system for a given domain of human activity.

There are three ontological models for context-sensitivity [4]:
- Domain models that support the description of the concepts

and user tasks relative to a domain;
- Context models that characterize the context of use in terms

of user, platform, and environment. The context model is con-
sequently further decomposed into a user model, a platform
model, and an environment model. At least one of these sub-
models should be present to build a context model.

- Adaptation models that specify how a UI can be adapted after
a change of the context of use that is significant enough to
trigger

4. CONTENTS OF USIXML
4.1 Task
A task model describes the various tasks to be carried out by a
user in interaction with an interactive system. After a comparison
of several task modeling technique, an extended version of Con-
curTaskTree (CTT) [17] has been chosen to represent user’s tasks
and their logical and temporal ordering. A task model is therefore
composed of tasks and task relationships.
Tasks are, notably, described with a name, a type (user’s, interac-
tive, system and abstract [17]), a task frequency (relative fre-
quency of execution of a task. Task frequency is evaluated on a
scale from 1 to 5. A value of 1 meaning that a task has a low fre-
quency, 5 meaning that a task is very frequent), a task importance
(relative importance of a task with respect to main user’s goals.
As task frequency, task importance is evaluated on a scale from 1
to 5. A value of 1 means that a task has a low frequency, 5 means
that a task is very frequent). Frequency and importance are inter-
esting attributes when it comes to adapt a UI to a constraining
context imposing a UI system to be pruned. Finally, an action
type is based on a taxonomy introduced to better qualify tasks the
leave of a task tree. This taxonomy, strongly inspired by [12]
(Table 1), is twofold: a verb describes the type of activity at hand;
an expression designates the type of object on which the action is
operated. By combining these two dimensions a fine derivation of
interaction objects supposed to support a task becomes possible.
Task relationships are of two main types: decomposition enables
to represent the hierarchical structure a task tree hierarchical
structure, temporal allows specifying a temporal relationship be-
tween sibling tasks of a task tree. LOTOS operators are used here.

Action Item
Start/go, stop/exit, select, choose,
create, delete, modify, move, du-
plicate, toggle, view, monitor

Operation, container, col-
lection, element

Table 1. Taxonomy of action types for tasks.

4.2 Domain
A domain model describes the real-world concepts and their inter-
actions as understood by users. Many formalisms have been in-
troduced to represent systems of concepts: frames, semantic net-
works, entity relationship schemas, class diagrams,… USIXML
domain model has the form of a UML class diagram. Concepts
contained in USIXML domain model are at a certain point ma-
nipulated by users. By manipulated, it is meant that either attrib-
ute values are rendered through the UI or that methods attached to
classes of objects are used by a user (i.e., triggered by a user
event).

Domain model concepts are classes, attributes, methods and do-
main relationships. A class describes the characteristics of a set of
objects sharing a set of common properties. A class may contain
several attributes and methods. Attributes are described with their
type, cardinality. Extensive specification of enumerated domains
is possible. An original typology allows to characterize the type
of domain of an attribute. Indeed, attribute_domain_char
acterization takes the value of: interval, continuous interval,
discrete interval, linear interval, circular interval, set[n] (where n
is the number of possible values in an attribute domain). Used in
combination with a task model, this typology helps to map do-
main attributes to a type of interaction object by which it will be
rendered. For instance, a choose element task on an attribute with
a circular interval enable the derivation of a (multi-state) toggle
button. Methods are described with their signature i.e., with their
name, type, and parameters. A set of predefined method name in-
spired from OO patterns are used to facilitate the definition of ge-
neric design heuristics. For instance, the CRUD pattern is used
any method realizing a Create, Read, Update or Delete operation
[12]. Finally, domain relationships describe various types of rela-
tionships between classes. They can be classified in three types:
generalization, aggregation, and ad hoc. Class relationships are
described with several attributes enabling the specification of role
names and cardinalities.

4.3 Context model
A context model describes all the entities that may influence car-
rying out the interactive task of user with the intended UI. It is as-
sumed to capture any relevant attribute of the context of use, in
which the user is. A context model consists of:

• A user model that recursively decomposes the user population
into stereotypes (or profiles) and sub-stereotypes, each stereo-
type sharing a same series of attributes and associated values.

• A platform model captures relevant attributes for each couple
software-hardware platform that may significantly influence the
context-sensitivity. For instance, screen resolution of the plat-
form is a major property taken into account in adaptation [8]
and graceful degradation of UIs [10] when the UI designed for a
normal screen is reduced for a more constrained screen. An in-
teresting initiative related to platform modelling is the W3C
CC/PP profiles (Composite Capabilities/Preferences Profile). A
CC/PP profile is a description of device capabilities and user
preferences that can be used to guide the adaptation of content
presented to that device. Although CC/PP is not a vocabulary
that would permit us to describe a platform, it is a generic
XML-based language that allows to write vocabularies peculiar
to various platforms. For the purpose of USIXML, we inte-
grated a subset of CC/PP into platform families that are recur-
sively decomposed.

• An environment model describes any property of interest of the
physical environment where the user is using the UI on the
computing platform to accomplish her interactive tasks. Such
attributes may be physical (e.g., lighting conditions), psycho-
logical (e.g., level of stress), and organization (e.g., location and
role definition in the organization chart).

4.4 Abstract User Interface (AUI)
A AUI model is a UI model that represents a canonical expression
of the renderings and manipulation of the domain concepts and
functions in a way that is independent from any modality and
computing platform. An AUI is populated by abstract interaction

objects and abstract user interface relationship.

4.4.1 Abstract Interaction Object (AIO)
An AIO consists of any element populating an AUI model consist-
ing in an abstraction of widgets found in most toolkits like win-
dows, buttons but, also, vocal output widget in auditory interface.
An AIO is supposed to be independent of any modality of interac-
tion and any platform. AUI types are presented in hierarchy. The
more a specification is precise the more the mapping to a concrete
object will be precise. AIO are composed of multiple facets. We
call them multi-faceted. Each facet describes a particular function
an AIO may assume. Four main facets are identified:

1. An input facet describes the input type accepted by an AIO.
2. An output facet describes what data may be presented to the

user by an AIO.
3. A navigation facet describes the possible container transition

a particular AIO may enable.
4. A control facet describes possible methods of the functional

core that may be triggered from a particular widget.

An AIO may assume several facets in the same time. For instance,
an AIO may display an output while accepting an input from a
user, ensure a transition between windows and trigger a method
from the functional core.
In order to group AIOs together, the Interaction Space is a type of
AIO that support the execution of a set of logically/semantically
connected tasks. An interaction space contains other interaction or
other AIO’s (see grouping relationship). It may be reified into
one or more graphical containers like windows, dialog boxes or
time slot in the case of auditory user interfaces. It is very impor-
tant to note that an interaction space in not necessarily reified into
a visible object. For instance, an outputer (a textbox) and inputer
(a label) may be grouped together, their possible materialisations
i.e., respectively a textbox and an inputer will only be bound to-
gether by an internal constraint (not perceivable by the user as is).

4.4.2 Abstract User Interface Relationship (AUI relationship)
An AUI relationship is an abstract relationship among AUI ob-
jects that indicate the existence of some spatio-temporal setting
among them (e.g., a navigation between two interaction spaces).
Relationships may have multiple source and multiple targets. Two
main types of AUI relationships are therefore distinguished: dia-
log transitions and spatio-temporal relationships.

Dialog Transition is a type of AUI relationship that enables to
specify a navigation transition between one interaction space and
on another or several others with the following possibilities:

• Suspend: is a type of AUI relationship that enables to specify
that the source interaction space is suspended to enable the
target interaction space. A (reverse) resume relationship be-
tween these interaction spaces must exist for the coherence of
the model.

• Resume: is a type of AUI relationship that enables to specify
that the target window is re-enabled after having been sus-
pended by a prior suspend relationship.

• Disables: is a type of AUI relationship that enables to specify
that the source interaction space disables the target interaction
spaces.

• Enables: is a type of AUI relationship that enables to specify
that the source interaction space enables the target interaction
spaces.

Grouping is a type of AUI relationship that enables to specify a
collection of grouped AIOs. The source of a grouping relationship
is always an interaction space. Additional information can be
specified to precise the nature of the grouping relationship. For
instance some ordering may be specified between grouped ele-
ments. This ordering can be based on an alphabetical order or a
numerical order. Furthermore, it may be specified that grouped
element must be specifically differentiated with each other (e.g.,
by using different colours or dissimilar tone of voices).
At the AUI level, the designer is interested in expressing only
high-level relationships between AIOs, if any, without expressing
low-level details of the relationships, such as specific distance or
time. Spatio-temporal relationships characterise the physical
constraints between AIOs as they are presented in time and space.
Since an AUI does not preclude the usage of any particular mo-
dality, we do not know whether a particular AUI will be further
reified into a CUI that is graphical, vocal, multimodal, or virtual.
Therefore, spatio-temporal relationships should be expressed in a
way that is independent of any modality.
For this purpose, the thirteen possible temporal relationships from
Allen are considered. Basically, there are two types of temporal
relationships (Table 2): sequential (before relationship) and simul-
taneous (that can be equal, meets, overlaps, during, starts, or fin-
ishes relationships). Each basic relationship has an inverse rela-
tionship, except the equal relationship which is symmetric. Al-
though Allen relationships have been introduced to characterise
temporal intervals, they are suitable for expressing constraints for
space and time thanks to a space-time value. All simultaneous re-
lationships (such as overlaps, during, starts, and finishes) can be
generalised a the equal relationship by inserting some delay time
when needed. For example, in the x before y relationship, there is
a space-time value greater than zero between x and y while in the
x meets y relationship the space-time value is equal zero between
x and y. As relationships are abstract at the AUI level, the space-
time value is left unspecified until needed at the CUI level. The
spatial relationship between A and B is defined as follows:

Spatial_Composition (A,B) = (Ri , Rj), where i, j ∈ {1,…,13}, Ri
is the identifier of the spatial relationship between A and B ac-
cording to the X axis and Rj is the identifier of the spatial relation-
ship between A and B according to the Y axis in the matrix repro-
duced in Fig. 3. When a spatial arrangement is expressed only ac-
cording to one dimension, Ri = ∅ ou Rj = ∅.
The temporal relationship between the A and B is defined as fol-
lows: Temporal_Composition (A,B) = (Ri , Rj), where i, j ∈
{1,…,13} as defined in Fig. 3.

4.5 Concrete User Interface
A CUI is a UI model allowing a specification of an appearance
and behavior of a UI with elements that can be perceived by us-
ers. A CUI consists of:
 Modality dependent i.e., an instance of a CUI addresses a single
modality at a time. Two modalities lie in the intended scope of
USIXML: graphical and auditory.

 Platform independent i.e., elements populating a CUI realize an
abstraction of common languages used to program UIs.
o Concrete Interaction Objects realize an abstraction of widget

sets found in popular graphical toolkits (Java AWT/Swing,
HTML 4.O, Flash DRK6). A CIO is defined as an entity that
users can perceive and/or manipulate (e.g., a push button, a

list box, a check box). Orthogonally to AIOs, CIOs are
devided into two types graphicalContainers (e.g., window,
panel, table, cell, dialog box,…) and graphicalIndividual-
Components (e.g., a button, a text component, an video com-
ponent, a menu, a spin button,…). In SEGUIA [38], a CUI con-
sists of a hierarchy of CIOs resulting from a transformation
of AIOs [37].

o The layout of the CUI is defined without any absolute coordi-
nates. A box embedding mechanisms is used to specify a lay-
out. Alignments between CIOs are defined with a special rela-
tionship called alignment.

Fig. 6 shows a simple declaration of a window containing a top-
centered label and an OK button.

A
s
T
p
e
t
F
g
H
2
r
b
d
c
c
F
f
u
C
8

4
M
o
l
w
f
a
m
s
f
m

•

1 to 5. 1 meaning that domain concepts is not central, 5 that is
completely necessary (i.e., essential to the execution of the
task).

• Is Rendered By maps a domain concept onto a presentation
element either that a domain concept is subject to user input
or that it is only presented to a user. An attribute of this rela-
tionship specifies if the values of the mapped attribute may be
updated from the UI or not. If not, values are only visualized.

• Is Executed In maps a task onto an AUI or CUI element. It in-
dicates that a task is performed through this (set of) AUI(s) or
CUI(s) element(s).

• Is Abstracted Into and Is Reified Into map AUI and CUI ele-
ments. This relationship indicates that an element has been
derived, through reification or abstraction (see framework of
Fig. 1), from another.

n- • Has Context maps any model element to one or several con-
texts of use.

• Corresponds To maps a task temporal relationship with a
navigation relationship as defined in a AUI or a CUI.

4.7 Dynamic aspects in USIXML
<window id=”W1” name=”Main Window”>
<box … type = “main” splittable=true detachable=false… >
<box … type = “horizontal” >
<textComponent id=”TX1” name=”Text1” offsetVertical=”top” offsetHorizo
tal=”center” defaultContent=”Hello World!”/>
</box>
<box type=”horizontal”>
<button id=”B1” name=”OkButton” defaultContent=”OK” />
</box>
</box>

</window>
Figure 6. USIXML specification of a window containing widgets.

 CUI is equipped with a mechanism, called dialog, allowing the
pecification of the dynamic behavior of a concrete user interface.
his mechanism covers a navigation definition language and a
owerful event/action language. For clarity purpose, we isolated
xplanations on this aspect. To better understand the differences
hat exist between AIOs and CIOs in the context of USIXML,
ig. 2 shows that the FUI level is populated by the true final wid-
et in the target platform, e.g., a Download pushbutton written in
TML and rendered on a MacOS X platform (bottom left of Fig.
). At the FUI level, the HTML source code of this button may
emain the same, but can be rendered differently depending on the
rowser, the platform and other parameters. At the CIO level, the
ifferent physical widgets are abstracted from their platform and
lassified into CIO types. At the AIO level, these objects are suc-
essively abstracted from their modality of interaction.
ig. 2 shows that thanks to these different levels, it is possible to
ind out alternate CIO or AIO in case of change of the context of
se, especially in graceful degradation [16]. Fig. 7 shows alternate
IOs for a menu AIO in the same graphical modality, while Fig.
 shows alternate AIOs with different modalities.

.6 Inter-model Mapping
odel integration is a well-known issue in model-based approach

f UI development. Rather than proposing a collection of unre-
ated models and model elements, USIXML provides the designer
ith a set of pre-defined relationships allowing to map elements

rom heterogeneous models. This may be useful, for instance, for
rchitecture derivation (mappings between domain and CUI/AUI
odels), for traceability in the development cycle (reification, ab-

traction and translation), for addressing context sensitive issues,
or improving the preciseness of model derivation heuristics. The
appings between the different models are of several types:

 Manipulates maps a task onto a domain concept i.e., a class,
an attribute, an operation or any combination of these types.
This relationship has an attribute ‘centrality’ which specifies
the relative importance of a domain element to the execution
of its corresponding task. This item is evaluated on a scale of

Dynamics of USIXML cover several aspects:

• Requirements derivation (dubbed reification) along our de-
velopment cycle structure (Fig. XX). By requirement derivation
it is meant the changing or translation of a high-level require-
ment into a form that is appropriate for low-level analysis or de-
sign.

• Reverse engineering (dubbed abstraction) along our develop-
ment cycle (see Fig. 1). By reverse engineering it is meant the
extraction of high-level requirement from a set of low-level re-
quirements artifacts or from code.

• Context (of use) adaptation (dubbed translation). The con-
text of use is defined as a triple of the form (e, p, u) where e is
an possible or actual environments considered for a software
system, p is a possible or actual target platform, u is a user cate-
gory. Context adaptation is a process of modifying a user inter-
face in consequence of a change of one or several element of
the triple described above.

• Dialog specification of the user interface. Dialog can be de-
fined as a description of user interface state change along with
the event/action specification resulting in a state changes.

The three first items are referred with the generic term of trans-
formation. Both transformation and dialog are specified using
transformation systems. Transformation systems rely on the the-
ory of graph grammars [20]. We first explain what a transforma-
tion system is. Transformations and dialog specification are, then,
further explained.

4.7.1 Transformation systems
The proposed formalism to represent model transformation and
dialog in USIXML is graph transformation. This formalism has
been discussed in [19]). USIXML has been designed with an un-
derlying graph structure. Consequently any graph transformation
rule can be applied to a USIXML specification. This formalism
conveniently applies to model transformation and dialog specifi-
cation.
A transformation system is composed of several transformation
rules. Technically, a rule is graph rewriting rule equipped with
negative application conditions and attribute conditions [20].

Fig. 9 illustrates how a transformation system applies to a
USIXML specification: let G be a USIXML specification, when
1) a Left Hand Side (LHS) matches into G and 2) a Negative
Appplication Condition (NAC) does not matches into G (note that
several NAC may be associated with a rule) 3) the LHS is re-
placed by a Right Hand Side (RHS). G is resultantly transformed
into G’, a resultant USIXML specification. All elements of G not
covered by the match are considered as unchanged. To add to the
expressive power of transformation rules, variables may be asso-
ciated to attributes within a LHS. An expression may compare
this variable with a constant or with another variable. This
mechanism is called ‘attribute condition’.

Figure 9. Characterisation of a transformation in USIXML.

4.7.2 Dialog specification
USIXML is equipped with a concrete dialog model. This dialog
model is integrated into the concrete user interface model. For il-
lustration purpose we have isolated the dialog parts from the CUI
model. The basis of our dialog is an event/action language. Every
concrete interaction object may be associated with one or several
behavior specification. A behavior is a couple event/action.
 Events may be composite (composed by other events) allow-

ing the expression of complex expressions.
o Events may be chosen within a predefined event language

(Table 3).
o Events may be composed with temporal operators. Each

operator is represented with its symbol: >> is a sequence,
||| is order independence, OR is a disjunction, (n) is an it-
eration where n is the iteration factor.

 Actions are performed by transformation systems. Transfor-
mation systems are sets of transformation rules operating on a
specification. Actions have the expressive power of graph
grammars. Graph grammars have been proved very powerful
(as powerful as Petri nets) represent the behavior of dynamic
systems. Concretely, the result of an action may be any
change in the CIO model including the triggering of methods
from the domain model. An example is given in Fig. 10.

CIO Events
All graphical CIOs movePointer(X,device), pointerOver(X,device),

moveOutPointer(X,device), click(X,device), dou-
bleClick(X,device), depress(X,device), release
(X,device), dragOver(X,Y,device), dragDrop(X,
Y,device), hasFocus(X), lostFocus(X)

graphicalContainer resize(xFactor,yFactor)

textComponent change

slider move(cursor,x)

spin spinUp, spinDown

Table 3. Events of CIOs.

Figure 10. Event Language in USIXML at the CIO level: Clicking on but-
ton 1 erases all editable textComponents of registerWindow

Navigation is part of a dialog specification; consequently it is eas-
ily described with dialog elements exposed above. Nonetheless,
from previous works [36], we consider navigation definition as a
pattern-based activity. USIXML provides an ad hoc relationship
to define navigation in a straightforward way: graphicalCon-
tainerTransition. This relationship type enables to specify
an open/close, suspend/resume, minimize/maximize relationship
among containers populating an application.

4.7.3 Transformation model
A transformation model has been introduced to represent the pos-
sible transformations as defined in the framework of Fig. 1 (i.e.,
abstraction, reification, translation). Like actions in the behavior
specification, transformations are performed via graph transfor-
mation rules as introduced in [20]. A model transformation is per-
formed by one or several transformation system. Each transforma-
tion system realizes an identifiable design goal (i.e., widget selec-
tion, layout, navigation definition,…) in the transformation proc-
ess. Fig. 12 shows a simple transformation (a translation) consist-
ing in one single rule aligning vertically all widgets of a con-
tainer. This rule has been design with the graph grammar editor
AGG (http://tfs.cs.tu-berlin.de/agg/). Its textual equivalent in
USIXML is shown in Fig. 11.

…
<translation id= ”TL1” name = “squeezeDisplay” description= “this translation
vertically aligns all widgets of a container” >
<sourceModel> cui<sourceModel>
<targetModel>cui<targetModel>
<transformationSystem id = “TR1” name = “Transfo1” … >
<transformationRule id = “rule1” name “squeeze1” >

<lhs>
<box mapId =”M1”>
<graphicalIndividualComponent ruleSpecificId”gi1” mapId =M2>
</graphicalIndividualComponent>
</box>

</lhs>
<rhs>

<box mapId =”M1”>
<graphicalIndividualComponent ruleSpecificId”gi1” mapId =M2
glueHoriz=“left” >
</graphicalIndividualComponent>
</box>

</rhs>
<nac>

<box mapId =”M1”>
<graphicalIndividualComponent ruleSpecificId”gi1” mapId =M2
glueHoriz=“left” >
</graphicalIndividualComponent>
</box>

</nac>
</transformationRule>
</transformationSystem>
</translation>
…

Figure 11. Translation expressed in USIXML.

<button …name=”ClearButton1”…>
 <behavior>
<event>doubleClick(self,Mouse1)</event>
<action>
<transformationSystem …>
<lhs>
<window … mapId = “M1” name=”registerWindow”…>
<textComponent … mapId =”M2” isEditable=true/></window>
</lhs>
<rhs>
<window … mapId = “M1” name=”registerWindow”…>
<textComponent…mapId=”M2” isEditable=true content=“”/></window>
</rhs>
</transformationSystem> </action> </behavior>
…
</button>

http://tfs.cs.tu-berlin.de/agg/

LHSNAC RHS

::=

LHSNAC RHS

::=

Figure 12. Aligning rule expressed in AGG in terms of a transformation.

5. CONCLUSION
In this paper, we have presented USIXML, a UIDL that addresses
various requirements in UI design such as coverage of multiple
models, relationships, and levels of abstraction. Graph transfor-
mations are explicitly used to define an executable mapping
mechanism between these fragments so as to support continuous
and seamless development of UIs from multiple entry points.
USIXML is original and different with respect to existing UIDL
regarding the following aspects:
- USIXML is precisely structured into four levels of abstraction

that do not need all to be specified to obtain a UI.
- USIXML can be used to specify a platform-independent, a

context-independent, and a modality-independent UI. For in-
stance, a UI that is defined at the AUI level is assumed to be
independent of any modality and platform. Therefore, it can
be reified into different situations. Conversely, a UI that is de-
fined at the CUI level can be abstracted into the AUI level so
as to be transformed for another context of use.

- USIXML allows the simultaneous specification of multiple
facets for each AIO, independently of any modality.

- USIXML encompasses a detailed model for specifying the
dynamic aspects of UI based on productions (right-hand side,
left-hand side, and negative conditions) and graph transforma-
tions. These aspects are considered as the basic blocks of a
dialog model that is directly attached to the CIOs of interest,
thus facilitating the local specification.

- Thanks to these dynamic aspects, virtually any type of adapta-
tion can be explicitly specified. In particular, a transformation
model consisting of a series of adaptation rules can be speci-
fied equally in an integrated way with the rest of the UI.

- USIXML contains a simplified abstraction for navigation
based on windows transitions, that is compatible with dynam-
ics.

- USIXML is based on Allen relationships for specifying con-
straints in time and space at the AUI level, that can be in turn
mapped onto more precise relationships at the CUI level.
These relationships are applicable to graphical UIs, vocal UIs,
multimodal UIs, and virtual reality UIs.

- Similarly, a progressively more precise specification of the
CIO layout can be introduced locally to concretize the Allen
constraints imposed at the AUI level.

- USIXML defines a wide range of CIOs in different modalities
of use so as not to be limited only to graphical CIOs.

- USIXML already introduced a catalogue of predefined, ca-
nonical inter-model mapping that can be expanded and a tax-
onomy of task types that facilitate the identification and selec-
tion of concepts at both the AUI and CUI levels.

From these advances, we can conclude that USIXML is probably
one of the mostly integrated UIDL that addresses platform-, mo-
dality-, and context-independence and sensitivity. Depending on
the kind of UI that is envisioned, USIXML can be used to specify
only those parts that are required for a specific case.

ACKNOWLEDGEMENTS
The authors would like to thank Cameleon partners who contrib-
uted USIXML V1.2: Lionel Balme, Gaëlle Calvary, Cristina
Chesta, Alexandre Demeure, Joëlle Coutaz, Jean-Thierry Lechein,
Fabio Paternò, Stéphane Raymond, Carmen Santoro, and Youri
Vanden Berghe. This paper presents USIXML V1.4, an extension
of USIXML V1.2 with dialog model, more inter-model mappings,
a context model made up of user, platform, and environment, and
the concrete user interface level. Laurent Bouillon is supported by
the “Cameleon” research project (http://giove.cnuce.cnr.it/ came-
leon.html) under the umbrella of the European Fifth Framework
Programme (FP5-IST2). Murielle Florins is supported by “Sala-
mandre” research project (http://www.isys.ucl.ac.be/research/
salamandre.html) under convention n°001/4511 of “Initiatives II”
research program, Walloon Region (Belgium). Benjamin Mi-
chotte is supported by the SIMILAR network of excellence
(http://www.similar.cc), the European research task force creating
human-machine interfaces similar to human-human communica-
tion of the European Sixth Framework Programme (FP6-2002-
IST1-507609). Daniela Trevisan is supported by the Mercator
project.

REFERENCES
1. Ali, M.F., Pérez-Quiñones M.A., Abrams M., Building Multi-

Platform User Interfaces With UIML, in A. Seffah & H. Java-
hery (eds.) Multiple User Interfaces: Engineering and Appli-
cation Framework, John Wiley and Sons, 2003.

2. Allen, J.F., Maintaining Knowledge about Temporal Inter-
vals, Communications of the ACM, Vol. 26, No. 11, Novem-
ber 1983, pp. 832-843.

3. Bouillon, L., Vanderdonckt, J., Chow, K.C., Flexible Re-
engineering of Web Sites, Proc. of 8th ACM Int. Conf. on In-
telligent User Interfaces IUI’2004 (Funchal, 13-16 January
2004), ACM Press, New York, 2004, pp. 132-139.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., Vanderdonckt, J., A Unifying Reference Framework
for Multi-Target User Interfaces, Interacting with Computers,
Vol. 15, No. 3, June 2003, pp. 289-308.

5. Chamberlain, D., Angel Diaz, Dan Gisolfi, Ravi Konuru, John
Lucassen, Julie Macnaught, Stephane Maes, Roland Merrick,
David Mundel, TV Raman, Shankar Ramaswamy, Thomas
Schaeck, Rich Thompson, and Charles Wiecha, WSXL: a web
services language for integrating end-user experience, in
Proc. of 3rd Conf. on Computer-Aided Design of User Inter-
faces CADUI’2002, Kluwer Ac., Dordrecht, 2002, pp. 35-50.

6. Chikofsky, E.J. and Cross, J.H., Reverse Engineering and De-
sign Recovery: A Taxonomy, IEEE Software, Vol. 1, No. 7,
January 1990, pp. 13-17.

7. Constantine, L., Canonical Abstract Prototypes for Abstract
Visual and Interaction Design, in Proc. of 10th Int. Workshop
on Design, Specification, and Verification of Interactive Sys-
tems DSVIS’2003, LNCS, Springer-Verlag, 2003.

8. Eisenstein, J., Vanderdonckt, J., Puerta, A., Model-Based
User-Interface Development Techniques for Mobile Comput-
ing, Proc. of 5th ACM Int. Conf. on Intelligent User Inter-
faces IUI’2001 (Santa Fe, 14-17 January 2001), Lester, J.
(Ed.), ACM Press, New York, 2001, pp. 69-76.

9. Elting, Ch., Zwickel, J.and Malaka, R., Device-Dependent
Modality Selection for User Interfaces – An Empirical Study,
in Proceedings of 6th Int. Conf. on Intelligent User Interfaces
IUI’2002 (January 13-16, 2002, San Francisco), ACM Press,

http://giove.cnuce.cnr.it/ cameleon.html
http://giove.cnuce.cnr.it/ cameleon.html
http://www.isys.ucl.ac.be/research/ salamandre.html
http://www.isys.ucl.ac.be/research/ salamandre.html
http://www.similar.cc/

New York.
10. Florins, M., Vanderdonckt, J., Graceful Degradation of User

Interfaces as a Design Method for Multiplatform Systems, in
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces
IUI’2004 (Funchal, 13-16 January 2004), ACM Press, New
York, 2004, pp. 140-147.

11. Gaeremynck, Y., Bergman, L.D., Lau, T., MORE for Less:
Model Recovery from Visual Interfaces for Multi-Device Ap-
plication Design, in Proc. of ACM Int. Conf. on Intelligent
User Interfaces IUI’2003 (Miami, January 12-15, 2003),
ACM Press, New York, pp. 69-76.

12. Larman, C., Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Proc-
ess, Prentice Hall, July 2001.

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, B.,
TOMATOXML, a General Purpose XML Compliant User In-
terface Description Language, TomatoXML V1.2.0, Working
Paper n°105, IAG, Louvain-la-Neuve, 19 February 2004.

14. Limbourg, Q., Vanderdonckt, J., Transformational Develop-
ment of User Interfaces with Graph Transformations, Proc. of
5th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2004 (Madeira, 14-16 January 2004), Kluwer Aca-
demics Pub., Dordrecht, 2004.

15. Luyten, K., Van Laerhoven, T., Coninx, K., Van Reeth, F.,
Runtime Transformations for Modal Independent User Inter-
face Migration, Interacting with Computers, Vol. 15, No. 3,
2003, pp. 329-347.

16. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M., Generating Remote Control
Interfaces for Complex Appliances, Proc. of the 15th Annual
ACM Symposium on User Interface Software and Technol-
ogy UIST’2002, ACM Press, New York, 2002.

17. Paternò, F., Model-Based Design and Evaluation of Interac-
tive Applications, Springer-Verlag, Berlin, 2000.

18. Paternò, F., Santoro, C., One Model, Many Interfaces, in Proc.

of 3rd Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2002, Kluwer Acad., Dordrecht, 2002, pp. 143-154.

19. Puerta, A. and Eisenstein, J., Developing a Multiple User In-
terface Representation Framework for Industry, in: A. Seffah
& H. Javahery (eds.) Multiple User Interfaces: Engineering
and Application Framework, John Wiley and Sons, 2003.

20. Souchon, N., Vanderdonckt, J., A Review of XML-Compliant
User Interface Description Languages, Proc. of 10th Int. Conf.
on Design, Specification, and Verification of Interactive Sys-
tems DSV-IS’2003, Lecture Notes in Computer Science, Vol.
2844, Springer-Verlag, Berlin, 2003, pp. 377-391.

21. Trevisan, D., Vanderdonckt, J., Macq, B., Analyzing Interac-
tion in Augmented Reality Systems, Proc. of ACM Multimedia
2002 International Workshop on Immersive Telepresence
ITP’2002 (Juan Les Pins, 6 December 2002), Pingali, G., Jain,
R. (Eds.), ACM Press, New York, 2002, pp. 56-59.

22. Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving the
Navigational Structure of a User Interface, Proc. of 9th IFIP
Conf. on Human-Computer Interaction INTERACT’2003
(Zurich, 1-5 September 2003), M. Rauterberg, M. Menozzi, J.
Wesson (Eds.), IOS Press, Amsterdam, 2003, pp. 455-462.

23. Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for
Intelligent Automatic Interaction Objects Selection, in Proc.
of the ACM Conf. on Human Factors in Computing Systems
INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press,
New York, 1993, pp. 424-429.

24. Vanderdonckt, J., Berquin, P., Towards a very large model-
based approach for user interface Development, in Proc. of
1st IEEE Int. Workshop on User Interfaces to Data Intensive
Systems UIDIS’99, IEEE Computer Society Press, Los
Alamitos, 1999, pp. 76-85.

25. Wong C., Chu H.H. and Katagiri M.A., Single-Authoring
Technique for Building Device-Independent Presentations, in
Proceedings of W3C Workshop on Device Independent Au-
thoring Techniques (St. Leon-Rot, 15-26 September 2002).

	INTRODUCTION
	RELATED WORK
	STRUCTURE OF USIXML
	CONTENTS OF USIXML
	Task
	Domain
	Context model
	Abstract User Interface (AUI)
	Abstract Interaction Object (AIO)
	Abstract User Interface Relationship (AUI relationship)

	Concrete User Interface
	Inter-model Mapping
	Dynamic aspects in USIXML
	Transformation systems
	Dialog specification
	Transformation model

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

