
TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 155

Addressing the Mapping Problem 
in User Interface Design with UsiXML 

Quentin Limbourg and Jean Vanderdonckt 
1Université catholique de Louvain, School of Management (IAG) 

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium) 
{limbourg, vanderdonckt}@isys.ucl.ac.be – http://www.usixml.org 

Phone: +32-1047 {8379, 8525} – Fax: +32-10478324 
 

ABSTRACT 
The mapping problem has been defined as any method 
aimed at mapping models capturing various aspects of an 
interactive system throughout their development life 
cycle to support model-based design of user interfaces. 
This field has followed a long tradition of establishing 
models and maintaining mappings between them so as to 
create and maintain accurate specifications of a user 
interface. In this paper, potential mappings between 
models are defined so as to create a uniform and 
integrated framework of adding, removing, and 
modifying mappings throughout the development life 
cycle of interactive systems. The mappings can be 
established from any source model to any target model, 
one or many, in the same formalism, or from any model 
element to any other. Those models include task, domain, 
presentation, dialog, and context of use. The context of 
use is itself decomposed into user, platform, and 
environment. To support the manipulation of mappings 
between models, two examples of supporting software 
are detailed. TRANSFORMIXML consists of a Java 
application that triggers transformations of models 
expressed by graph grammars. IDEALXML consists of a 
Java application allowing the designer to edit any model 
at any time, and element of any model and to establish a 
set of mappings. Both software are based on UsiXML, a 
User Interface Description Language 

ACM Classification Keywords 
D.2.2 [Software Engineering]: Design Tools and 
Techniques – user interfaces. H.2.4 [Database 
Management]: Systems – transaction processing. H.5.2 
[Information Interfaces and Presentation]: User 
interfaces – graphical user interfaces, prototyping, screen 
design, user interface management systems. I.3.6 
[Computer Graphics] Methodology and Techniques – 
interaction techniques. 

General terms: Design, Languages, Human Factors. 
 
Author Keywords: 
Abstract user interface, Abstraction, Adaptation, 

Concrete user interface, Domain model, Final user 
interface, Mapping problem, Model mapping, Reification, 
Specifications, Task model, Transformation model, User 
interface description language, USer Interface eXtensible 
Markup Language (UsiXML). 

INTRODUCTION 
One approach existing in software development consists 
in establishing a model of the future software to be 
developed and to produce code from this model in a 
forward engineering manner. This approach largely 
contrasts with traditional approaches where the software 
is directly coded without any model or any specifications. 
This approach contrasts less with approaches where the 
software is specified and manually coded from the 
specifications. The development of the User Interface 
(UI), one component of the software, does not escape 
from this observation and lead to the approach of model-
based design of user interfaces. 

In this approach, a UI model is typically referred to as a 
set of concepts, a representation structure, and a series of 
primitives and terms that can be used to explicitly capture 
various forms of knowledge about the UI and its related 
interactive application using appropriate abstractions. A 
model is assumed to abstract selected concepts of the real 
world, but not all. Any concept of the real world can 
therefore lead to multiple abstractions depending on how 
each abstraction will be exploited in the future: 
descriptive (when the model is used primarily for 
specifications purposes) or generative (when the model is 
intended to be used for generating other information or 
code). The mapping problem has been defined as any 
method aimed at mapping models capturing these various 
concepts of an interactive system throughout their 
development life cycle to support model-based design of 
user interfaces [12,13]. In the mapping problem, models 
could be either descriptive or generative. In the same 
way, the relationships that can be established between 
models could be incorporated for specifications only 
(descriptive) or for producing more information such as 
other models and/or code (generative). 

So far, the main issues raised by the mapping problem, 
but not all, are the following: 

• Specific definitions of models and relationships: 
most of the time, each project and/or tool introduces 
its own definition of the models and the relationships 
between that only fit the local purposes of the project 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and 
that copies bear this notice and the full citation on the first page. To 
copy otherwise, or republish, to post on servers or to redistribute to 
lists, requires prior specific permission and/or a fee. 

TAMODIA’04,  Prague, Czeck Republic. 
Copyright ©2004 ACM 1-59593-000-0/04/0011…$5.00 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 156

and/or tool, thus leaving little or no room for sharing 
and reusing them in another development context. 
Their specification definitions prevent them from 
being largely used by other development teams. The 
definitions remain mostly physical, not logical. 

• Hard coding of models and relationships: most of 
the time, the models and the relationships between 
are hard coded in the supporting tools themselves, 
thus leaving limited flexibility for modifying the 
handling primitives (e.g., create, read, update, and 
modify a relationship) and the algorithms that can be 
developed around (e.g., an algorithm that 
automatically establishes relationships between a 
task model and a presentation model). 

• Unequal handling of relationships: some tools 
actually include a real handling of the relationships 
between the models while some others only allow 
designers to establish mappings between models, but 
without any handling of them. 

These shortcomings stem for the need for a logical 
definition of mappings based on a mathematical 
representation that further allows a computational 
handling of them (as suggested in [12]) as opposed to a 
physical handling hardcoded in particular software. 

The remainder of this paper is structured ad follows: the 
next section explains how some selected software address 
the mapping problem and what are the consequences of 
the way they handle the mappings. The third section 
introduces a structural definition of the mappings. The 
fourth section details how a logical definition of 
mappings can be established and ensured in a systematic 
way through a transformation-based engine. The fifth 
section concludes the paper. 

RELATED WORK 
To present work related to the mapping problem with 
respect to a same reference, some significant and 
representative efforts made in existing environments 
supporting model-based approach have been selected. 
They are then presented according to a reference 
framework that represents the various levels and models 
where a UI development process may appear. 

The Cameleon Reference Framework [3] locates UI 
development steps for context-sensitive interactive 
applications. A context is defined as a triple of the form 
<E, P, U> where E is an element of the environments set 
considered for the interactive system, P is an element of 
the platforms set considered for the interactive system 
and U is an element of the users set for the interactive 
system. A simplified version (Fig. 1) structures 
development for two contexts of use, here for two 
platforms: the one on the left represents the source and 
the one on the right represents the target. The 
development process can be decomposed into four steps: 

1. Task and concepts: describe the various tasks to be 
carried out and the domain-oriented concepts as they 
are required by these tasks to be performed. 

2. Abstract User Interface (AUI): a canonical 

expression of the renderings and manipulation of the 
domain concepts and functions in a way that is 
independent of the concrete interactors available on the 
targets. The elements used in the logical UI are 
abstractions of existing widgets. 

3. Concrete User Interface (CUI): concretizes a AUI 
into Interaction Objects independent from the toolkit 
[16] so as to define widgets layout and interface 
navigation. This interface is now composed of existing 
UI widgets. 

4. Final User Interface (FUI): The UI produced at the 
very last step of the reification process is supported by 
a multi-target development environment. A FUI is 
typically the UI code in any language, interpreted or 
compiled. 

 
Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction  
Figure 1. The UI Reference Framework [3]. 

The downward arrows represent reification steps 
(forward engineering), from the more abstract to the 
operational interface. Reification is the transformation of 
a description (or of a set of descriptions) into a 
description (or a set of descriptions) whose level of 
abstraction is lower than that of the source one(s). In the 
multi-target reference framework, it is the inference 
process that covers the inference process from high-level 
abstract descriptions to run-time code. Upward arrows 
stand for abstraction steps. This process transforms any 
specifications into specifications at a higher level of 
abstraction. Here, abstraction is the elicitation of 
descriptions that are more abstract than the descriptions 
that serve as input to this process. Finally, horizontal 
arrows correspond to the translation of the interface from 
one type of platform to another, or more generally, from 
one context to another. Not all steps should be achieved 
in a sequential ordering dictated by the levels. Instead, 
locating what steps are performed, when, from which 
entry point and toward what subsequent step are 
important. In Fig. 2, transcoding tools start with a FUI for 
a source platform ( ) and transforms it into another FUI 
for a target platform ( ). Similarly, portability tools start 
with a CUI for a source platform ( ) and transforms it 
into another CUI for another platform ( ), that in turn 
leads to a new FUI for that platform ( ). To overcome 
shortcomings identified for these tools, there is a need to 
raise the level of abstraction by working at the AUI level. 
UI Reverse Engineering abstracts any initial FUI ( ) into 
concepts and relationships denoting a AUI ( ), which 
can then be translated into a new AUI ( ) by taking into 
account constraints and opportunities for the target 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 157

platform. UI Forward Engineering then exploits this AUI 
( ) to regenerate a new AUI adapted to this platform, by 
recomposing the CUI ( ) which in turn is reified in an 
executable FUI ( ). 

The TADEUS (Task Analysis/Design/End User Systems) 
approach [6,15] provides a model-based framework for 
representation, a methodology, and a corresponding 
environment for user interface development. The inputs 
for this approach have been provided by techniques from 
workflow modeling as well as by user interface 
description languages, aiming at task-based and user-
oriented development of interactive software. The basic 
design activities in TADEUS start with a specification of 
the task and user (role) model according to the 
organisation of work. Then, a data model is derived from 
these models, followed by migrating interaction features 
with the previous results. Finally, either prototyping with 
end users might be performed, or code may be generated 
from the integrated object-oriented representation. 
TADEUS supports modeling of the following aspects: 
task, user, data, interaction, and application. More 
recently, a workflow model has been incorporated to 
relate existing models in the global modeling of the 
organisation. TADEUS allows the designer to establish 
relationships of the types summarised in Table 1, but no 
handling exist in the tool to exploit the semantics of these 
relationships, e.g. to derive a new model. Furthermore, 
there is no true definition of the semantics of these 
relationships. On the one hand, this allows some 
flexibility of use, but on the other hand, it prevents from 
rigorous and systematic applying. In terms of the 
Cameleon reference framework, TADEUS editor 
supports editing the “Task & Concepts” level, the CUI 
level, and the generation of a FUI. 

Set up Reification 
& 
abstraction 

Relate 

Employ, 
has 

Is a, has part Handles, creates, concerns, 
informs, controls, requires, 
before, is based on, 
corresponds to, is attached to 

Table 1. Semantic relationships in TADEUS. 

XIML is a User Interface Description Language (UIDL) 
that supports expressing several UI models 
simultaneously and relationships between them. In its 
standard definition, it contains information for basic 
models, called canonical models, i.e. the task, the user, 
the presentation, the dialog, and the platform. XIML is 
very unique in its capability to introduce in any XIML 
specifications the definition and the statement of any 
model and any relationship, even custom models and 
relationships. Thanks to the definition of a ‘general 
purpose’ model, XIML can introduce any new model that 
was not defined before. On the one hand, this provides a 
significant advantage of openness and flexibility. On the 
other hand, it means that if this definition is not shared by 
other tools, the definition will remain local. The basic 
XIML editor supports all canonical and user-defined 

models and relationships in a syntax-directed editor (Fig. 
2). In this way, the editor remains independent of any 
introduction of any model and relationship, but it does 
not provide any graphical representation of the 
corresponding models nor does it exploit the semantics of 
these relationships for further development. In terms of 
the Cameleon reference framework, the XIML editor 
supports editing the “Task & Concepts” level, the AUI 
level, the CUI level and mappings between, but no 
computational handling of them. 

 
Figure 2. The XIML basic editor. 

The problem of multiple coordinated representations of a 
UI model has been addressed in the FormsVBT 
environment [1]. At any time, a GUI is represented by its 
corresponding specifications in the FormsVBT language, 
largely inspired by TeX and by a hierarchical view of the 
UI composition (Fig. 3). At any time, the designer can 
change the FormsVBT specifications and see the 
hierarchical view changed accordingly and vice versa. 
Any change is any view is immediately propagated in the 
other views, thus maintaining a bijection between all 
representations. 

Although this bijection is certainly desirable, it is hard to 
achieve it for every UI model which may hold a different 
graphical representation or several ones. In terms of the 
Cameleon reference framework, FormsVBT maintains a 
tight coupling between the CUI and the FUI levels of a 
GUI. The definition of the relationships between the CUI 
and the FUI levels are not made salient, but are 
maintained internally in the tool at any time. 

 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 158

 
Figure 3. The two views in the FormsVBT editor [1]. 

Vista [2,5] enables the designer to define mappings 
between four views of the same interactive system (Fig. 
4): a task model consisting of a recursive decomposition 
of the task into sub-tasks, a CUI model, specifications of 
the interaction in terms of the UAN notation, and 
specifications of the architecture. Some of these 
relationships can be established and maintained semi-
automatically by Vista. Again, no logical definition of 
them is made explicit. 

 
Figure 4. The various views in the VISTA environment [2,5]. 

Teallach [7] uses mapping rules in several places in its 
architecture to allow mappings between the various 
models (Fig. 5). For example, a set of mapping rules exist 
between the task model and its abstract presentation 
model counterpart. In addition to these mappings, an 
additional set of rules exist between the abstract and 
concrete presentation models.  
These mapping rules take into consideration the 
information captured in the user model, to provide the 
intended users of the system with a generated interface 
suitable to their requirements. These mapping rules are 
simple in nature, selecting from a 1:m correspondence 
between abstract PM concepts and PM Beans. The 
mapping rules consult the UM to decide which Bean from 
those applicable should be used, and reflect the implicit 

structure of many task model ordering constraints. The 
mapping rules can also use environmental information, 
such as the target display medium, to affect the 
characteristics of the generated PM layout. In addition to 
defining mappings between tasks and Beans, the mapping 
rules define which layout manager should be used by 
each container Bean. 

 

Figure 5. The various views in the TEALLACH environment [7]. 

STRUCTURAL DEFINITION OF MAPPINGS 
Ideally, a model should be declarative rather than 
imperative or procedural. It should also be editable, 
preferably through tools, and finally it should be 
analysable, so as to allow some degree of automation. A 
model consists of a number of features (Fig. 6). It is 
typically built as a hierarchical decomposition of abstract 
concepts into more refined sub-concepts. Any concept 
can then be characterized by a name, a description and 
properties of interest. A model should also encompass 
relationships between these concepts with roles. These 
relationships apply both within models (called intra-
model relationships) and between models (called inter-
model relationships). Any of these relationships (i.e., the 
definition, the decomposition, the intra- or inter-model 
relationships) can possess a number of attributes. 

MODEL

Features

MODEL RELATION

Relation features

DEFINITION

Definition attributes

CONCEPT

Name
Description
Properties

DECOMPOSITION

Decomp. attributes

CONCEPT RELATION

Concept rel. attributes

Is composed ofIs decomposed into

0-n0-n

 
Figure 6. Definition of the user interface model. 

How many models do we need? A single UI model is 
probably too complex to handle because it combines all 
static and dynamic relationships in the same model. It is 
also preferable to avoid using a large number of models, 
because this requires establishing and maintaining a large 
number of relationships between the models. Model 
separability is desirable in this case. Model separability 
adheres to the Principle of Separation of Concerns, 
which states that each concept should be clearly separated 
from the others and classified in only one category. 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 159

Therefore, the quality of separability depends on the 
desired results and the human capacity to properly 
identify and classify concepts.  

Separability is hereby defined as the ability of a model to 
classify any abstraction of a real world aspect of interest 
into one single model (based on the Principle of 
Separation of Concerns). 

Correlability is hereby defined as the ability of two or 
more models to establish relationships between 
themselves so as to represent a real world aspect of 
interest. To ensure separability or correlability, a series of 
relationships is required with respect to their source and 
target models from a structural point of view (Table 2). 

 
Table 2. Table of potential mapping types. 

THE TRANSFORMIXML ENVIRONMENT 
TransformiXML [8] is an environment that addresses the 
mapping problem (any type of structural mapping) by 
supporting a mathematical expression of the relationships 
(based on graph grammars) and allowing the definition 
and the application of transformation rules. This 
environment is sub-divided into two components [8,10]: 
an Application Programming Interface (TransformiXML 
API) hat can be used by any application to apply 
transformation rules in a batch-like way (non interactive) 
and a Graphical User Interface that serves as a front-end 
application to the API (TransformiXML GUI) in an 
interactive way. Those two components are further 
described in the next sub-sections and an example 
illustrates how the second component can drive a 
transformation process involving several models in a UI 
development process. Both components share a generic 
requirement: to manipulate any UI description model 
expressed in USer Interface eXtensible Markup Language 
(UsiXML – http://www.usixml.org) and to apply 
transformation rules in the models contained in this 
description. 

TransformiXML API 
The specific requirement of this component is the 
following: to be enable the interpretation of 
transformation rules from a UsiXML description of rules 
and host models.  

Several Application Programming Interfaces are available 
to perform model-to-model transformations (e.g., DMOF  
at http://www.dstc.edu.au/Products/CORBA/MOF/ or 
Univers@lis at http://universalis.elibel.tm.fr/site/). 
Attributed Graph Grammars (AGG) API was selected due 
to our prior experience with its GUI version. Using AGG 
API as a transformation tool allows us to realize the 
following scenario (Fig. 7): an initial model along with a 
set of rules expressed in UsiXML is transmitted to 
TransformiXML API. UsiXML elements (models and 
rules) are parsed and transformed into AGG object types. 
Rules are successively applied to the models. The 
resulting specification, under the form of AGG objects, is 
parsed and transformed into UsiXML elements [8,10]. 

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules 
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules 
expressed in USIXML

::=

Transformation rules 
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

 
Figure 7. Development process based 

on transformation application. 

TransformiXML GUI 
The specific requirements of this component are: 
• To manage a development library (a library 

containing a catalog of transformation rules). 
• To associate development sub-step with 

transformation systems. 
• To execute transformations in an interactive manner. 
Fig. 8 presents a prototype of TransformiXML. The basic 
flow of tasks with TransformiXML GUI is the following: 
a user chooses an input file containing models to 
transform. She, then, chooses a development path by 
selecting a starting point and a destination point (e.g., the 
viewpoint to obtain at the end of the process). Depending 
on the content of the input file some of the development 
paths may not be available. A tree allows the user to 
visualize the proposed development model (i.e., all the 
steps and sub-steps for a chosen path). The user can load 
another development model for the selected path. Now 
the task of the user consists in attaching one 
transformation system for each development sub-step. By 
clicking on a sub-step in the tree, a set of transformation 
systems realizing the chosen sub-step are displayed. A 
transformation system may be attached to the current sub-
step by clicking “Attach to current sub-step”. The user 
may also want to edit the rules either in an XML editor 
(the one of grafiXML, for instance) or in AGG 
environment. After attaching a transformation system for 
each rule in the development model, the user may apply 
the transformation either step by step or as a whole. The 
result of the transformation is then explicitly saved in a 
UsiXML file. In the next section, we exemplify what kind 
of relationships can be established between models 
depending on their types. 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 160

Mappings between the domain model and the UI 
models  
Several relationships can be defined to explicit the 
relationships between the domain model and the UI 
models (both abstract and concrete): 
 Observes is a mapping defined between an 

interaction object and a domain model concept 

(either an attribute, or an output parameter of a 
method). This mapping may be interpreted as 
follows: the content of a UI object must be 
synchronized when   
- A mapped attribute is modified. The new state 

resulting from this modification should be 
presented on the UI (the notion of view could be 
of interest). 

- A mapped method is executed. Its output 
parameters are displayed on the UI.   

 Updates is a mapping defined between an interaction 
object and a domain model concept (specifically, an 
attribute). “Updates” describes the situation where 
the attribute of an object in the domain model must 
be synchronized with the content of a UI object. 

 Triggers is a mapping defined between an interaction 
object and a domain model concept (specifically, an 
operation). This mapping describes that a UI object 
is able to trigger a method from the domain model.   

Mappings for traceability of the development cycle  
Our ontology is designed to be integrated in a framework 
where models are transformed into other models. This 
framework defines several types of transformations in 
order to achieve multi-path development of UIs. 
Traceability mappings are helpful for keeping a trace of 
the execution of the transformations. For instance it may 
be interesting to know which concrete object reifies 
which abstract object, or vice versa, which abstract object 

is an abstraction of which concrete object.  
 Is Executed In maps a task to an interaction object (a 

container or an individual component) allowing its 
execution. This relationship is notably useful for 
deriving a dialog control component, for ensuring 
that all tasks are supported appropriately by the 
system.  

 Is Reified By indicates that a concrete object is the 
reification of an abstract one through a reification 
transformation.  

 Is Abstracted Into indicates that an abstract object is 
the reification of a concrete one through an 
abstraction transformation.  

 Is Adapted Into indicates that an interaction object 
(abstract or concrete) is adapted into another one as a 
result of an adaptation transformation.  

Other mappings 
Other useful mappings are:   

• Manipulates maps a task to a domain concept. It may 
be an attribute, a set of attributes, a class (or an object), 
or a set of classes (or a set of objects). This relationship 
is useful when it comes to find the most appropriate 
interaction object to support a specific task.  

• Has Context maps any model element to one or several 
contexts of use.  

EXAMPLE OF MAPPING HANDLING 
Fig. 9 depicts manipulates relationships between the 
task and the domain model as dashed arrows. Provide 
Personal Data is mapped onto Participant class. Show 
Question is mapped onto the attribute title of class 
Question. The task Select Answer is mapped onto the 
attribute title of the class Answer. 

 

 
Figure 8. The front-end interface of TransformiXML. 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 161

And finally, the task Send Questionnaire is mapped onto 
the method sendQuestionnaire of the class Questionnaire. 
Fig. 10 depicts a mapping exploiting the “manipulates” 
relationship between a task and an attribute of the domain 
model and a “isExecutedin” relationship between a task 
model and components of an AUI. The transformation 
rule states that: for each task creating an element, 
manipulating a domain attribute and being executed in an 
abstract individual component, there should be in this 
component a facet for allowing the end user to input the 
value of that domain attribute. Note that this 

transformation rule does not specify how this facet will 
be implemented since we remain at the AUI level. It is 
the responsibility of another rule to map this facet to 
some widgets for creating a CUI that will be in turn 
reified into a FUI. Also note that traceability is ensured 
thanks to the “isExecutedIn” relationship.  

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Figure 10. Transformation rule for creating an input 

facet to any abstract individual component that 
realise creation tasks. 

The transformation rule depicted in Fig. 11 can be fired 

and executed by TransformiXML subsequently to the rule 
of Fig. 10. This rule states: each time there is a need to 
input an alphanumeric value (component for creating the 
value of a string), a group box should be generated that 
contains a non-editable text containing the label followed 
by an editable text for accepting the future value. In 
addition the relationship “isReifiedBy” ensures some 
traceability by keeping the information that this group 
box has been generated at the CUI level for each such 

 
Figure 9. Relationships between a task model and a domain model. 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Figure 11. Relationships between a task model and a domain model. 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 162

component at the AUI level. A potential corresponding 
CUI is depicted in Fig. 12 
 

Participate to Opinion PollParticipate to Opinion Poll

Provide Personnal Data

create name

select ageCategory

18-35

45+

35-45

create zipCode 

select sex
Female

Male

Send Questionnaire

Answer Question

Question

Answer

Select Answer

Content to determine 
at run-time

Participate to Opinion PollParticipate to Opinion Poll

Provide Personnal Data

create name

select ageCategory

18-35

45+

35-45

create zipCode 

select sex
Female

Male

Send Questionnaire

Answer Question

Question

Answer

Select Answer

Content to determine 
at run-time

 

Figure 12. Graphical representation of the resulting 
Concrete User Interface. 

CONCLUSION 
The major benefit of addressing the mapping problem in 
TransformiXML is that all the design knowledge required 
to progressively move from abstract models to concrete 
models, and ultimately the FUI can be expressed through 
rules that can then be automatically applied on demand. 
Contrarily to TransformiXML, the designer may want to 
establish and maintain relationships between the models 
in a manual way so as to maximize the control over the 
development life cycle in a way that is more 
opportunistic. IdealXML is another software based on 
UsiXML that has been developed for this purpose. At any 
time it can maintain the relationships defined, but no 
automation is provided. 

ACKNOWLEDGMENTS 
We gratefully acknowledge the support of the Cameleon 
research project (http://giove.cnuce.cnr.it/cameleon.html) 
under the umbrella of the European Fifth Framework 
Programme (FP5-2000-IST2) in which the UsiXML 
language (http://www.usixml.org) has been defined and 
the SIMILAR network of excellence 
(http://www.similar.cc), the European research task force 
creating human-machine interfaces similar to human-
human communication of the European Sixth Framework 
Programme (FP6-2002-IST1-507609). 

REFERENCES 
1.Avrahami, G., Brooks, K.P. and Brown, M.H. A Two-

view Approach to Constructing User Interfaces. Proc. 
of the 16th Annual Conf. on Computer Graphics and 
Interactive Techniques SIGGRAPH’89 (Boston, 31 July-4 
August 1989). Comp. Graphics 23, 3 (July 1989), 137–
146. 

2. Brown, J., Graham, T.C.N., and Wright, T. The Vista 
Environment for the Coevolutinary Design of User 
Interfaces. Proc. of ACM Conf. on Human Factors in 
Computing Systems CHI’98 (Los Angeles, 18-24 
April 1998). ACM Press, New York (1998), 376–383. 

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., 
Bouillon, L. and Vanderdonckt, J. A Unifying 
Reference Framework for Multi-Target User 
Interfaces. Interacting with Computers 15, 3 (2003), 

289–308. 
4. Eisenstein, J., Vanderdonckt, J., and Puerta, A.R. 

Model-Based User-Interface Development Techniques 
for Mobile Computing. Proc. of 5th ACM Int. Conf. on 
Intelligent User Interfaces IUI’2001 (Santa Fe, 14-17 
January 2001). ACM Press, New York (2001), 69–76. 

5. Elnaffar, S.S. and Graham, T.C.N. Semi-Automated 
Linking of User Interface Design Artifacts. In: Kolski, 
Ch., Vanderdonckt, J. (eds.), Proc. of 3rd Int. Conf. on 
Computer-Aided Design of User Interfaces CADUI'99 
(Louvain-la-Neuve, 21-23 October 1999). Kluwer 
Academic Pub., Dordrecht (1999). 

6. Elwert, T. and Schlungbaum, T. Modelling and 
Generation of Graphical User Interfaces in the 
TADEUS Approach. Proc. of the 2nd Int. Worskhop 
on Design, Specification, and Verification of 
Interactive Systems DSV-IS’95 (Château de Bonas, 7-
9 June 1995). Springer-Verlag, Vienna (1995), 193–
208. 

7. Griffiths, T., Barclay, P., Paton, N.W., McKirdy, J., 
Kennedy, J., Gray, P.D., Cooper, R., Goble, C., and 
Pinheiro da Silva, P. Teallach: a Model-based User 
Interface Development Environment for Object 
Databases. Interacting with Computers 14, 1 (2001) 
31–68. 

8. Limbourg, Q., Vanderdonckt, J., Michotte, B., 
Bouillon, L. and Lopez, V., UsiXML: a Language 
Supporting Multi-Path Development of User 
Interfaces. Proc. of  9th IFIP Working Conf. on 
Engineering for Human-Computer Interaction jointly 
with 11th Int. Workshop on Design, Specification, and 
Verification of Interactive Systems EHCI-DSVIS’2004 
(Hamburg, 11-13 July 2004). Kluwer Academic Press, 
Dordrecht (2004). 

9. Limbourg, Q., Vanderdonckt, J., Michotte, B., 
Bouillon, L., Florins, M. and Trevisan, D. UsiXML: A 
User Interface Description Language for Context-
Sensitive User Interfaces. Proc. of the AVI’2004 
Workshop “Developing User Interfaces with XML: 
Advances on User Interface Description Languages” 
UIXML’04 (Gallipoli, 25 May 2004). EDM-Luc, 
Diepenbeek (2004), 55–62. 

10. Limbourg, Q., Multi-path Development of User 
Interfaces, Ph.D. thesis, Université catholique de 
Louvain, Institut d’Administration et de Gestion, 
Louvain-la-Neuve, 4 November 2004. 

11. López-Jaquero, V., Montero, F., Molina, J.P., Fernán-
dez-Caballero, A. and González, P. Model-Based 
Design of Adaptive User Interfaces through 
Connectors. Proc. of 10th International Workshop on 
Design, Specification, and Verification of Interactive 
Systems DSV-IS’ 2003 (Funchal, 11-13 June 2003). 
Lecture Notes in Computer Science, Vol. 2844. 
Springer-Verlag, Berlin (2003), 245–257. 

12. Puerta, A.R. and Eisenstein, J. Towards a General 
Computational Framework for Model-Based Interface 
Development Systems. Knowledge-based Systems 12 
(1999), 433–442. 

13. Puerta, A.R. and Eisenstein, J. Towards a General 
Computational Framework for Model-Based Interface 



TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic 

 163

Development Systems. Proc. of the 4th ACM Conf. on 
Intelligent User Interfaces IUI’99 (Los Angeles, 5-8 
January 1999). ACM Press, New York (1999), 171–
178 

14. Puerta, A.R. and Eisenstein, J. XIML: A Multiple 
User Interface Representation Framework for 
Industry. Chapter 7. In Seffah, A., Javahery, H. (eds.), 
Mutiple User Interfaces: Cross-Platform Applications 
and Context-Aware Interfaces. John Wiley & Sons, 
(2003). 

15. Stary, Ch. Meeting Activity Theory through Task-
based and User-Oriented Development of User 

Interfaces. In Kolski C., Vanderdonckt J. (eds.), Proc. 
of 3rd Int. Conf. on Computer-Aided Design of User 
Interfaces CADUI‘2002 (Valenciennes, 15-17 May 
2002), Computer-Aided Design of User Interfaces III. 
Kluwer Academic Pub., Dordrecht (2002), 193–204. 

16. Vanderdonckt, J. and Bodart, F. Encapsulating 
Knowledge for Intelligent Automatic Interaction 
Objects Selection. Proc. of the ACM Conf. on Human 
Factors in Computing Systems INTERCHI'93 
(Amsterdam, 24-29 April 1993). ACM Press, New 
York (1993), 424–429. 

 
 




