
 
 
 
 
 
 
 

  
 

 

Multi-Path 
Development of User 

Interfaces 
 

 

By Quentin Limbourg 
 

A dissertation submitted in fulfillment of the requirements for 
the degree of  

 
Doctor of Philosophy in  
Management Sciences 

of the Université catholique de Louvain 

 
 

Committee in charge: 
 

Prof.  Jean Vanderdonckt, Advisor 
Prof. Manuel Kolp, Examiner 

Prof. Joëlle Coutaz, Université J. Fourier, Reader 
Prof. Oscar Pastor, Universidad Politécnica de Valencia, Reader 

Autumn 2004

Prof. Thierry Van den Berghe, ICHEC, Examiner 



 
 
 
 
 
 
 



 
 
 
 
 
 
 

Table of  Contents 
TABLE OF CONTENTS ........................................................................3 

ACKNOWLEDGEMENT......................................................................10 

ABSTRACT .........................................................................................11 

CHAPTER 1 INTRODUCTION ........................................................12 

1.1 User Interfaces in the Scope of the Software Crisis..........................12 

1.2 On Fragile Bridges between HCI and SE ........................................15 

1.3 Thesis ............................................................................................... 22 

1.4 Reading Map.................................................................................... 23 

CHAPTER 2 STATE OF THE ART..................................................25 

2.1 Current Approaches in User Interface Development ...................... 25 

2.2 Exploratory Approach...................................................................... 28 
2.2.1 Mock-up Approach ...................................................................................... 28 
2.2.2 Visual Programming..................................................................................... 29 

Programmatic Approach ..............................................................................31 
2.2.3 Low Level Programming ............................................................................. 31 
2.2.4 High Level Programming ............................................................................ 31 
2.2.5 Toolkit Programming................................................................................... 32 
2.2.6 Mark-up Languages ...................................................................................... 33 

2.3 Specification-Based Approach......................................................... 35 
2.3.1 Abstractions................................................................................................... 36 
2.3.2 Task Model .................................................................................................... 36 
2.3.3 Domain Model .............................................................................................. 38 
2.3.4 User Interface Model ................................................................................... 39 

2.3.4.a Presentation model.............................................................................. 42 
2.3.4.b Dialog model ........................................................................................ 43 

2.3.5 MBIDE Methods and Tools....................................................................... 48 



 
 
 
 
 
 
 

2.3.5.a Adept ..................................................................................................... 48 
2.3.5.b Art Studio.............................................................................................. 50 
2.3.5.c Trident................................................................................................... 51 
2.3.5.d FUSE (Formal User Interface Specification Environment).......... 53 
2.3.5.e Genova.................................................................................................. 54 
2.3.5.f Janus ...................................................................................................... 55 
2.3.5.g JustUI .................................................................................................... 57 
2.3.5.h Mastermind (Models Allowing Shared Tools and Explicit 
Representations Making Interfaces Natural to Develop) ................................ 59 
2.3.5.i MOBI-D ............................................................................................... 60 
2.3.5.j TADEUS .............................................................................................. 62 
2.3.5.k Teallach ................................................................................................. 63 
2.3.5.l Teresa .................................................................................................... 66 
2.3.5.m Seescoa .................................................................................................. 67 
2.3.5.n Vista ....................................................................................................... 68 
2.3.5.o Morph.................................................................................................... 69 
2.3.5.p More ...................................................................................................... 70 
2.3.5.q Tamex.................................................................................................... 71 
2.3.5.r WebRevenge......................................................................................... 72 

2.3.6 Comparison on MBIDEs ............................................................................ 72 
2.3.6.a Ontological properties ........................................................................ 72 
2.3.6.b Methodological properties.................................................................. 73 

2.4 Conclusion ....................................................................................... 77 
2.4.1 Observations ................................................................................................. 78 
2.4.2 Shortcomings................................................................................................. 80 
2.4.3 Ontological Requirements........................................................................... 83 
2.4.4 Methodological Requirements .................................................................... 84 

CHAPTER 3 AN ONTOLOGY FOR USER INTERFACE 
SPECIFICATION .................................................................................87 

3.1 Introduction ..................................................................................... 87 

3.2 Conceptual Content of the Language.............................................. 90 
3.2.1 Task Model .................................................................................................... 94 
3.2.2 Domain Model ............................................................................................ 101 
3.2.3 Abstract User Interface Model ................................................................. 103 
3.2.4 Concrete User Interface Model ................................................................ 108 



 
 
 
 
 
 
 

3.2.5 Context Model ............................................................................................ 119 
3.2.6 Inter-Model Relationships......................................................................... 120 

3.2.6.a Mappings between the domain models and the UI models........ 121 
3.2.6.b Mappings to ensure the traceability of the development cycle ... 121 
3.2.6.c Other mappings ................................................................................. 122 

3.3 Abstract Syntax: graphs as underlying formalism.......................... 123 
3.3.1 General Definitions .................................................................................... 123 
3.3.2 Category Theory and Graphs Morphisms .............................................. 124 
3.3.3 Identified Graphs........................................................................................ 125 
3.3.4 Labeled Graphs........................................................................................... 126 
3.3.5 Constrained Graphs ................................................................................... 128 
3.3.6 Typed Graphs.............................................................................................. 128 
3.3.7 Identified, Labeled, Constrained and Typed graph ............................... 129 
3.3.8 An Improved Typing Function ................................................................ 130 

3.4 Concrete Syntax: a visual and textual syntax.................................. 135 
3.4.1 Visual syntax................................................................................................ 136 
3.4.2 UsiXML: textual syntax ............................................................................. 136 

3.5 Conclusion ...................................................................................... 139 

CHAPTER 4 MULTI-PATH DEVELOPMENT OF USER 
INTERFACES 141 

4.1 Introduction .................................................................................... 141 

4.2 Reference Development Framework .............................................. 143 

4.3 A Language for Specifying UI Models Transformation: conditional 
graph rewriting ........................................................................................... 146 

4.3.1 Introduction................................................................................................. 146 
4.3.2 Graph Rewriting and Graph Grammars: an overview.......................... 148 

4.3.2.a An introduction to graph grammars ............................................... 148 
4.3.2.b Conditional graph rewriting ............................................................. 152 

4.3.3 Graph Grammars and the Reference Framework ................................. 153 
4.3.4 Concrete Syntax for Transformation Rules ............................................ 154 

4.3.4.a Visual syntax for transformation rules ........................................... 154 
4.3.4.b Textual syntax .................................................................................... 159 

4.3.5 Application Strategy of Transformation Systems .................................. 160 



 
 
 
 
 
 
 

4.4 Forward Engineering...................................................................... 162 
4.4.1 Step: From Task & Domain to Abstract User Interface ...................... 163 

4.4.1.a Sub-step: Identification of Abstract UI structure ......................... 164 
4.4.1.b Sub-step: Selection of abstract individual component ................. 165 
4.4.1.c Sub-step: Spatio-temporal arrangement of abstract interaction 
objects 168 
4.4.1.d Sub-step: Definition of Abstract Dialog Control ......................... 169 
4.4.1.e Sub-step: Derivation of AUI to domain mappings ...................... 171 

4.4.2 Step: From Abstract User Interface to Concrete User Interface......... 173 
4.4.2.a Sub-step: Reification of abstract containers into concrete 
containers. ............................................................................................................. 174 
4.4.2.b Sub-step: Selection of concrete individual components. ............. 176 
4.4.2.c Sub-step: Arrangement of concrete individual component. ....... 177 
4.4.2.d Sub-step: Definition of navigation.................................................. 179 
4.4.2.e Sub-step: Concrete Dialog Control Definition ............................. 179 
4.4.2.f Sub-step: Derivation of CUI to domain relationships ................. 180 

4.4.3 From Concrete User Interface to Code .................................................. 181 

4.5 Reverse Engineering....................................................................... 181 

4.6 Adaptation to context change......................................................... 184 
4.6.1 Step: From Task & Domain to Task & Domain ................................... 184 

4.6.1.a Sub-step: Transformation of a task model..................................... 184 
4.6.2 Step: From Abstract User Interface to Abstract User Interface.......... 185 

4.6.2.a Sub-step: Abstract individual component facet modification..... 186 
4.6.3 Step: From Concrete User Interface to Concrete User Interface ....... 187 

4.6.3.a Sub-step: Concrete container re-formation ................................... 187 
4.6.3.b Sub-step: Concrete individual component re-selection ............... 188 
4.6.3.c Sub-step: Layout re-shuffling........................................................... 189 

4.7 Tool Support ................................................................................... 190 

4.8 Conclusion ...................................................................................... 192 

CHAPTER 5 CASE STUDIES ....................................................... 195 

5.1 Introduction .................................................................................... 195 

5.2 Case Study 1: a Virtual Polling System ........................................... 197 
5.2.1 Initial Representation ................................................................................. 197 



 
 
 
 
 
 
 

5.2.2 Transformation to an Abstract User Interface....................................... 202 
5.2.2.a Identification of abstract UI structure............................................ 202 
5.2.2.b Selection of AIC ................................................................................ 204 
5.2.2.c Spatio-Temporal arrangement of abstract interaction objects.... 205 
5.2.2.d Definition of abstract dialog control .............................................. 207 
5.2.2.e Derivation of AUI to domain mappings........................................ 207 
5.2.2.f Resulting specification ...................................................................... 208 

5.2.3 From Abstract User Interface to Concrete User Interface .................. 210 
5.2.3.a Reification of AC into CC................................................................ 210 
5.2.3.b Selection of CICs ............................................................................... 210 
5.2.3.c CIC placement ................................................................................... 212 
5.2.3.d Navigation  definition ....................................................................... 212 
5.2.3.e Concrete dialog control definition .................................................. 212 
5.2.3.f Derivation of CUI to domain relationships................................... 212 
5.2.3.g Resulting specification ...................................................................... 212 

5.2.4 Graphical Reshuffling of the CUI............................................................ 214 
5.2.5 Reverse Engineering the AUI ................................................................... 215 
5.2.6 Resulting Specification............................................................................... 219 

5.3 Case Study 2: a Virtual Travel Agent ..............................................220 
5.3.1 Initial Representations................................................................................ 221 
5.3.2 Derivation of the AUI ............................................................................... 224 
5.3.3 Derivation of CUI for desktop................................................................. 225 
5.3.4 Derivation of CUI for small display ........................................................ 226 

5.3.4.a Reification of AC into CC................................................................ 227 
5.3.4.b Navigation definition ........................................................................ 229 
5.3.4.c Resulting specification ...................................................................... 229 

5.3.5 Derivation of Auditory Interface ............................................................. 230 
5.3.6 Translation of the Task Model and Forward Engineering the CUI.... 232 

5.4 Conclusion ......................................................................................235 

CHAPTER 6 CONCLUSION.......................................................... 239 

6.1 Context of This Work......................................................................239 

6.2 Content of This Dissertation ..........................................................240 

6.3 Validation ........................................................................................242 
6.3.1 External Validation..................................................................................... 242 



 
 
 
 
 
 
 

6.3.2 Internal Validation...................................................................................... 243 
6.3.2.a Ontological Requirements................................................................ 243 
6.3.2.b Methodological Requirements ......................................................... 248 

6.4 Summary of Contributions.............................................................. 251 

6.5 Future works ...................................................................................253 

REFERENCES .................................................................................. 256 

ANNEX: TOOL SUPPORT ................................................................ 281 
Attributed Graph Grammars tool.......................................................................... 281 
TransformiXML API............................................................................................... 282 
TransformiXML GUI.............................................................................................. 283 
GrafiXML.................................................................................................................. 284 
IdealXML .................................................................................................................. 286 
ReversiXML .............................................................................................................. 287 
Code Generators and Interpreters......................................................................... 287 



 
 
 
 
 
 
 

To Nancy, Eloïse, those who left and those who come.  
 
  



 
 
 
 
 
 
 

Acknowledgement 
 
 
 
 
 
 
 
 
I would like to express my thanks to: 
 

− My advisor, Professor Jean Vanderdonckt, for his constant support and 
enthusiasm regarding my work. 

 
− Professors Joëlle Coutaz, Oscar Pastor, Manuel Kolp, and Thierry 

Van den Berghe for accepting to participate to the jury of this dissertation.   
 

− My colleagues from IAG school of management at Université catholique 
de Louvain. 

 
− My family and friends. 

 
 



 
 
 
 
 
 
 

 

Abstract 
 
 
 
 
 
 
 
 
In software engineering transformational development is a paradigm consisting in 
the progressive refinement of abstract models into concrete models, until 
program code. This thesis applies transformational development concepts to User 
Interfaces (UIs). It enlarges the paradigm of transformational development by 
defining a methodology allowing the realization of various types of development 
paths (e.g., forward engineering, reverse engineering, context of use adaptation) in 

order to realize multi-path development, we propose an ontology of concepts 
defining various viewpoints that can be maintained on a UI system. Viewpoints 
are hierarchically structured depending on their level of abstraction. They describe 
user tasks, classes of objects, presentational and behavioral aspects of UIs, context 
of use, and a set of mappings between these representations. The underlying 
mathematical formalism of our ontology being a graph structure (directed, 
identified, labeled, constrained, and typed graphs), we transform one viewpoint 
into another by the application of conditional graph rewriting rules gathered in 
graph grammars. These enable us expressing a wide variety of transformational 
heuristics so as to be able to express multiple development paths. Ontology and 
transformations may be stored in an XML format called UsiXML (User interface 
eXtensible Markup Language) allowing the dissemination, the capitalization, and 
the consolidation of UI specifications and transformation catalogs. 
 
 

a unique framework. Such methodology is referred to as multi-path development. In 
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Chapter 1 Introduction 
 
 
 
 
 
 
 
 
This dissertation is located in the discipline of Engineering for Human-Computer 
Interaction (EHCI). This discipline is at the crossroad of two disciplines: Software 
Engineering (SE) and Human-Computer Interaction (HCI). SE can be defined as “the 
application of a systematic, disciplined, quantifiable approach to development, 
operation, and maintenance of software; that is, the application of engineering to 
software” [IEEE90]. HCI can be defined as “a discipline concerned with the 
design, evaluation and implementation of interactive computing systems for 
human use and with the study of major phenomena surrounding them” [Hewe96]. 
 
Interactive computing systems are computer systems allowing a certain level of 
control by a human agent. This control is operated through a User Interface (UI). A 
UI can be defined as any software and/or hardware piece allowing a user to 
communicate with a computer system. In other words, a UI is a software 
component, a hardware component, or a series of such components enabling a 
user to interact with an application so as to reach her task’s goals. Typical user’s 
goals are information retrieval, browsing, visualization, resource management in 
the large, process or automation control, etc.  

1.1 User Interfaces in the Scope of the Software Crisis  

 
The software crisis is a concept that emerged in the early seventies [Dijk72]. The 
development of hardware computing power and storage capacity has 
progressively pushed software systems to an unprecedented level of complexity. 
Software development became a slow, tedious, expensive and error prone activity. 
As failure stories accumulated in the history of software development [Meye97, 
Stan95], it was acknowledged that software had to be taken out of the hands of 
crafted developers and brought to the ones of engineers. Software systems 
because of their growing complexity could not be handled neither by a single 
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person anymore nor by a group of cognoscenti. All speaking the same language, the 
one of the machines! Software development had to become a team activity where 
communication and coordination takes, at least, as much time as coding.  
 
The software crisis is still going on. Software development today is still closer to 
craft than to science. The quality of software artifacts produced intrinsically 
depends on the skills of developers, as the technique they use is rarely measurable 
or reproducible. 
 
Many people dreamed about a computer discipline with a level of rigour that is 
usually found in “hard” sciences like mathematics, physics or chemistry. Since the 
early days of software crisis diagnosis, a lot of efforts have been devoted to make 
software projects more structured, predictable, and controllable. This is the role of 
the software engineering community.  
 
Numerous research works are conducted in fields such as project management, 
requirements analysis, specification languages, software architectures, 
programming languages, verification methods and quality testing. These 
researches fostered results such as, but not limited to, management practices, 
methodological recommendations (e.g., software project management), formal 
methods (e.g., B specifications [Abri96]), Computer-Aided Software Engineering 
(CASE) tools (e.g., DB-MAIN [Engl99]), programming practices (e.g., use of 
patterns [Fowl96]) and concepts (e.g., abstract data types [Lizk74], design by 
contract [Meye97]). 
 
Model engineering (i.e., a discipline that is concerned with the development of 
models) is part of the numerous solutions proposed to overcome the software 
crisis.  
 
A model can be defined as an intentional and simplified representation of a real-
world thing. Model primitives (i.e., model building blocks) are gathered in meta-
models i.e., models describing other models’ concepts and relationships. 
“Intentional” stresses that there is always some intent or goal behind the 
identification of abstractions populating a model. A model can, for instance, 
facilitate understanding, simulation, or testing. A model is said to be a 
simplification as it abstracts away details that do not seem relevant to the goal of 
the modeling activity. The same real-world artifact could consequently be 
modeled with different abstractions.  
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The viewpoint concept characterizes the different perspectives that can be 
maintained about some real-world thing.  Each viewpoint permits the 
construction of a peculiar view on the same real-world thing. The concept of real-
world thing should not abuse the reader. A real-world thing is not necessarily 
something that has a material existence. A real-world thing refers to a thing, i.e., a 
separate and distinct individual quality, fact, idea or usually entity [Merr04]. In 
other words, a real-world thing is something that can be distinguished from other 
things. 
 
Model-driven development is a development paradigm that relies on model engineering 
i.e., in the power of models to build computer systems. It advocates that software 
development should be guided as much as possible by the construction, and 
refinement of software models at various levels of abstraction. Most of current 
development methodologies have been influenced by, can be affiliated to, or are 
totally in debt with, this paradigm, for instance: object-oriented methodologies, 
database engineering, or agent-oriented methodologies. 
 
Transformational development can be considered as a sub-paradigm of model-driven 
development. It presents the development of software as a progressive refinement 
of abstract models into concrete models, until program code [Somm99]. In order 
to do this, transformational development, it relies on catalogs of transformations 
able to (semi-)automatically perform model-to-model and model-to-code 
transformations.  Transformational development has attracted the attention of the 
SE from the beginning (for instance: [Balze72, Chea81, Bend83]).  
 
More recently, along with the Model Driven Architecture (MDA) proposal 
[Mill03], model processing and transformation have gained  particular importance 
in the software engineering literature [Rens03, Kusk02, Gerb02, Mell03]. The 
main motivation of these works is to tackle the problem of computing platform 
heterogeneousness. For this purpose MDA defines a set of abstraction layers able 
to factor out specificities of implementation platforms. In this context, explicit 
model-to-model transformations enable the realization of the development 
process. 
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1.2 On Fragile Bridges between HCI and SE  

 
During the last years, the area of HCI has been compared to the area of SE, the 
former being described as mainly empirical, experience-based, and relying on 
implicit knowledge as opposed to the latter being notoriously and deliberately 
structured, principle-based, and relying on explicit knowledge. The development 
life cycle of highly-interactive systems in general and of their UI in particular 
forms the cornerstone of HCI. It has been observed for suffering from several 
shortcomings that are intrinsic either to the type of interactive systems developed 
or to the adopted existing practices. For many years, there has been a dream of 
developing any UI in such a way to preserve the quality properties of the SE area. 
Among the criticisms addressed to HCI are the following observations: 
 
 Lack of rigour: The development life cycle of interactive systems shared by HCI 

and SE does not involve the same level of rigour that is typically used in SE 
[Brow97].  In addition, HCI development life cycle is estimated to involve an 
order of complexity higher than those found in SE [Wegn97]. 

 
 Lack of systematization: as SE dreamed of a well-structured method for 

developing highly complex systems, so did HCI for developing interactive 
systems. However, the systematization, and the reproducibility  found in SE 
methods cannot be transposed equally in HCI: the development life cycle 
remains inherently open, ill-defined, and highly iterative [Sumn97] as opposed 
to the domain of SE where it is structured, well-defined, and progressive 
[DSou99]. 

 
 Lack of a principle-based approach: where SE methodologies define system 

development as a succession of one stage after another according to well-
established principles. In contrast HCI usually advances in a more 
opportunistic way when the current result is usable enough to proceed to the 
next stage [Puer97]. 

 
 Lack of explicitness: not only is the knowledge required to properly conduct the 

development life cycle of interactive systems is not as principled as in SE, but 
also is it implicitly maintained in the mind of experienced designers. This 
knowledge is therefore harder to communicate from one person to another, 
although initiatives exist that make this knowledge more explicit through 
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design patterns, usability guidelines, etc. [Szek96, Pate00]. Even more, when 
this knowledge is made more explicit, nothing can guarantee that it is applied 
uniformly and consistently within the same development project or across 
various development projects. 

 
It can be observed that the above comparison holds as long as significant efforts 
towards structured, principle-based and explicitly-based process realized in SE 
remain unparalleled within the area of HCI.  
 
On the other hand, it can be argued that software engineering has paid very little 
attention to the problem raised by UIs development. A user interface is an 
essential component of software systems. It determines how easily a user may 
control underlying functions of a computer program. A program equipped with 
powerful functionalities but with a poor UI has little value if its user audience is 
supposed to be large and varied. Numerous studies show the importance of a well 
designed UI system [Niel94, Sinh04]. But what is a well designed UI? How to 
build it? Unfortunately, SE methodologies rarely propose concepts and practices 
to achieve the development of UIs. UIs are treated as any pieces of software. And, 
from our opinion, they are not!  
 
Although efforts have been undertaken since more than 10 years to bridge the gap 
between SE methods and HCI methods [Tarb93, Lim94, Balz95, Bart95, Bod95a, 
Boda95b, Robe98, Nune00, Sanc01], it can be said that SE methods rarely adopt a 
particular insight on an essential aspect to interactive systems development: the 
user. 
 
User Centered Design [Cons99] was proposed as a development paradigm that 
focuses on the quality of interaction in the first place (referred as usability).  
 
UCD represents both a collection of user-centric methods and more generally a 
philosophy for approaching technology design. UCD methods engage the user, its 
activities and its environment in all stages of an interactive application’s analysis 
and design. UCD typically uses an extensive initial research phase, coupled with 
methods for conceptualizing users and its activities. UCD methods are particularly 
suited for constraining contexts of use, complex tasks or critical situations that 
require user characteristics, goals and environment to be well understood. 
 
A community of research tries to combine the objectives of UCD with the ones 
of software engineering. This community has given birth to numerous research 
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providing results, notably, in formal methods [Thimb90, Harr90, Dix91, Unge96, 
Pala97, Chat99, Pate00], quality inspection (i.e. usability engineering and 
evaluation methods), requirement analysis (i.e., user engineering), methodological 
recommendations (see methods cited above), software architecture, CASE tools, 
etc. 
 
Model-Driven Development of User Interface (MDDUI) has emerged from this research 
stream as a field relying on models to guide the development of user interfaces. 
The use of models in HCI to reason on abstract properties of user interfaces has 
been a long tradition since [Parn67]. A lot of efforts have been made in applying 
formal methods to HCI (see references above), and identifying the abstractions 
that were appropriate to HCI with respect to software engineering. Similarly to 
what happened in SE, a portion of the scientific community tries to identify how 
user interface models can be automatically, or semi-automatically, refined to come 
closer to the implementation of the UI system itself. 
  
Transformational development of user-interfaces (TDUI) is a sub-paradigm of model-
driven development of UIs. By analogy with transformational development in SE, 
it defines the development of user interface systems as a successive application of 
transformations to an initial representation.  This generally implies a progressive 
refinement of abstract models into concrete models, until program (here UI) 
code.  
 
Since the mid-nineties, numerous engineering methods have been proposed to 
support transformational development of user interfaces. Most of them are 
concentrated on deriving UI code from abstract models, others are focused on 
recovering a model from a UI implementation. A more recent trend gave birth to 
methods specifically devoted to the adaptation of a UI system to multiple contexts 
of use.  
 
Like for the MDA mentioned above, transformational development of UI finds 
its root motivations in the concept of heterogeneousness. In this case the 
heterogeneousness concerns the variety of contexts of use (referred as a triple 
<user, computing platform, physical environment> [Thev01]) for which a UI is 
designed. This heterogeneousness stresses the need for abstractions able to factor 
out details relevant to specific contexts. From these abstractions, it is possible to 
obtain context specific representations by progressive refinements. The advantage 
of accessing to such representations is to be able to reason on one single model 
and obtain many different UIs.  
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Another strong motivation for transformational development of UI is to resist a 
constant pressure imposed on UIs: change. UIs is a component that has to rapidly 
evolve, this may be due, but not limited to, a change in the: 
 

 Organizational structure [Brow97]: it may be a task redefinition, task 
reallocation among workers, redefinition of the organization structure, 
adaptation to a dynamic business environment, transfer of task from one 
user to another one. 

 
 Organizational process: as a matter of fact, organizations react to changes in 

very different ways in their UI development processes. For instance, one 
organization starts by recovering existing input/output screens, by 
redrawing them and by completing the functional core when the new UI is 
validated by the customer (bottom-up approach). Another prefers to modify 
the requirement of the system and remaps it to screen design (top-down 
approach). A third one tends to apply in parallel all the required adaptations 
where they occur (wide spreading approach). A fourth one relies on an 
intermediate model and proceeds simultaneously to requirement models, 
and the screen design (middle-out approach) [Luo94].   

 
 Hardware platforms: support of new computing platforms [Gaer03], 

migration from stationary platforms to mobile computing [Mori03], 
adaptation to dynamic environments [Luyt03].   

 
 Software platform: change of the computing language, redesign due to 

obsolescence [Boui04]. 
 

 User’s requirements: evolution of users with more demands, increasing need 
for more usable UIs, evolution of the domain of application [Agra03]. 

 
To address the challenges posed by the pressure of change, the existing 
development processes are not always considered as appropriate, as they do not 
reflect the implication of change throughout the complete application life cycle.  
 
[Sumn97] emphasize the fact that the development process, as usually conducted 
in HCI, is a process that is eminently open (several development steps can be 
conducted or considered simultaneously), ill-defined (the initial requirements are 
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usually broadly incomplete, if not inconsistent), and mostly iterative (it seems 
impossible to conduct a development step in a way that its output is definitive). 
Nanard and Nanard [Nana95] report that the development life cycle of an 
interactive application consists of a sophisticated “Echternach” process that does 
not always proceed linearly in a predefined way. It is rather an interwoven set of 
development steps, which alternate bottom-up and top-down paths, with 
selecting, backtracking, and switching among several actions. Thus any method 
and development tool is expected to effectively and efficiently support a flexible 
development life cycle, which doesn’t stiffen the mental process of expert 
designers in a fixed procedural schema. On the other end, when we consider the 
needs of moderately experienced designers, the method and its supporting tool 
should enforce a minimum number of priority constraints. These constraints 
should define which development artifacts must be specified before others, 
suggesting for example how and when to proceed from one development stage to 
another.  
 
Relying on model transformations to build a software product allows to better 
face change as these changes do not have to be understood in terms of 
implementation but in terms of abstract concepts.   
 
A state of the art in transformational development of user interface reveals two 
families of shortcomings: ontological and methodological. We address these in the 
following sub-sections. 
 
Ontological shortcomings  
 
Ontological shortcomings concern the conceptual frameworks of the approaches 
defined so far. 
 
A certain coarse-grain convergence in the concepts that are used to model UI may 
be observed. In most of the methods a domain and a task model are used as an 
expression of the requirements of the UI system being built. A domain model 
describes the objects of an application domain, a task model describes a logical 
and temporal ordering of tasks as performed by users in interaction with a system. 
Most of the surveyed methods are also equipped with a set of abstractions 
enabling a description of the UI itself. These abstractions enable a description of a 
UI appearance and behavior in a way that is independent of implementation 
details. 
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Unfortunately, these similarities hide an important heterogeneousness in the way 
each of these models are defined and communicated to the method’s user.  
Four main shortcomings may be pointed out from these observations:  
 

 Lack of ontological explicitness - A few methods define in an explicit manner 
their underlying concepts. Concepts are generally bounded to tools or 
methodological recommendations, thus preventing a designer to grasp the 
conceptual foundations of the methodology. 

 
 Lack of ontological rigour - When a method explicitly defines its ontology, the 

preciseness of concepts definitions highly varies from one method to 
another. In addition, concepts are seldom formally expressed, especially 
the relationships between the ontological concepts. 

 
 Lack of ontological commitment - The ontological commitment refers to a 

shared understanding of concepts among a scientific community. The fact 
that a few ontologies have been defined so far prevents convergence 
around a set of concepts. 

 
 Lack of communication of concepts - Research teams tend to conduct their 

research and development on their own models. Conceptual consolidation 
across methods is difficult as cross-method understanding is a tedious and 
time-consuming activity, requiring the full understanding of each method 
and establishing correspondence between them. As a consequence, 
communication among researchers is made complex. 

 
 Lack of extensibility of concepts – When available, the concepts manipulated 

by methods are hardly extensible. This prevents the adaptation of 
methodologies to cover new model concepts, notably, the ones related to 
new interaction modalities. 

 
Methodological shortcomings  
 
Methodological shortcomings concern the way existing approaches concretize 
transformational development with the definition of methodological stages, steps 
(i.e., transitions between stages), and transformation catalogs to perform these 
steps. 
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 Lack of methodological explicitness - Existing approaches are seriously lacking 
of explicitness in the way they propose their catalog of transformations 
both to the designer and to researchers. The transformation catalogs are 
often implicitly maintained in the head of developers and designers 
and/or hard-coded in supporting software. Consequently, the 
transformational process proposed in the literature consists essentially in a 
black box. 

 
 Lack of methodological rigour - When development steps and transformation 

catalogs are made explicit the preciseness of their expression is limited. 
We are not aware of any formally defined transformation catalog in the 
domain of HCI.  

 
 Lack of consistency in applying methodology - When such design knowledge 

exists, it is generally not systematically, consistently and correctly applied 
throughout the project or across projects. Methodological steps remain 
open to interpretation while lack of methodological explicitness hampers 
any structured reasoning on the application of transformations. 

 
 Lack of communication of transformation catalogs - Consequently to the lack of 

explicitness, the exchange of knowledge regarding transformation catalogs 
can be hardly achieved. Even when transformation catalogs are made 
explicit in tools, their heterogeneous formats prevent the reuse of 
transformations outside the context for which they were designed.  

 
 Lack of predictability of transformation - The implicitness of transformations 

decreases the predictability of the transformation results. This causes a 
frequent reproach made to transformational development [Myers95,00].   

 
 Lack of modifiability of transformation catalogs - Developing UIs is about 

making heuristic decisions in a vast design space. Transformations have 
consequently an inherent heuristic nature as they try to translate into 
algorithms part of these design decisions. Proposed methods offer very 
little possibilities to the designer to modify built-in heuristics: adding, 
deleting, modifying, reusing transformations is almost impossible.   

 
 Lack of flexibility in methodological steps. Methods generally come with their 

models, their development steps. Due to the implicitness of their 
transformation formalism it is almost impossible to adapt the proposed 
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methodological steps to the designers’ needs and the project context. 
Flexibility is a notorious requirement for user interface development 
methods [Brow97]. 

 
These shortcomings lead us to conclude that transformational development of 
user interfaces can be improved along several dimensions.  
 

1.3 Thesis  

 
Thesis statement 
 
This dissertation addresses the shortcomings previously outlined for achieving 
transformation-driven development of user interface. This dissertation provides 
an:  
 
(1) ontological framework based on an explicit and rigorous representation of 
concepts relevant to UI development. 
 
(2) methodological framework based on the ontological framework previously 
introduced. This methodological framework introduces a new paradigm for UI 
development called multi-path development of UIs that is characterized by the 
following principles: 
 

 Transformation driven: a development method is composed of development 
stages. A development step is a transition from one stage to another one. 
Development steps rely on explicit and rigorous transformation catalogs. 

 
 Multiple-path: The context of development projects may involve variable 

arrangements of development steps. A development path refers to a 
particular arrangement of steps. Multi-path development refers to the 
capacity of a method to accommodate to various development paths. 

 
Validation 
 
Two kinds of validation are provided to assess the validity of this thesis. A 
theoretical validation confronts the methodological framework introduced by this 
thesis to the requirements identified after a state of the art of existing 
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transformation-driven development methods. A practical validation is provided by 
illustrating how the methodological framework can be instantiated on two case 
studies.  
 
Scope  
 
The scope of this thesis is delineated by the following statements:  
 

 We focus on a specific kind of software i.e., information systems. 
Information systems is “a means of recording and communicating 
information to satisfy the requirements of all users, the business activities 
they are engaged in and the objectives established for them”[Olle88].  

 
 We consider that the typical user interfaces of information systems are 

either: 
  

− Graphical User Interfaces (GUI), which are 2-dimensional and 
based on widgets that belong to standard toolkits and window 
managers. 

− Vocal User Interfaces (VUI), which are UIs exploiting the auditory 
channel by standard speech synthesizers and voice recognizers.  

 
 We target this dissertation primarily to the research community and those 

persons who define development methodologies in organizations. 
 

1.4 Reading Map 

In addition to the introduction and the conclusion, this dissertation is organized in 
four chapters. 
  
Chapter 2 reports on some significant pieces of work related to the paradigm of 
transformational development of user interfaces. We survey in this chapter more 
than 20 different approaches and try to identify and compare their conceptual 
content along with their transformational development process. A set of 
observations and shortcomings is raised in conclusion of a comparative analysis. 
From these observations, we establish a list of requirements for addressing the 
observed shortcomings. This list of requirements will help us to assess the 
appropriateness of our solution.  
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Chapter 3 introduces the reference representations that are used throughout this 
work. This addresses the principles of expressiveness and rigour of models 
identified above. In this chapter, we rely on conceptual schemas to provide a view 
of each important abstraction populating our framework. We present a structuring 
of concepts in viewpoints, capturing various levels of abstraction that can be 
maintained on a UI.  After that, we present the abstract syntax that has been used 
to represent our concepts, namely: directed, identified, labeled, and typed graphs. 
Finally, we present two concrete syntaxes (i.e., graphical and textual) used to 
represent our concepts. 
 
Chapter 4 shows how transformations are represented and executed thanks to 
conditional graph rewriting and graph grammars. In a first part, a theoretical 
explanation on the formalism and the way we exploit it is provided. An illustration 
of the graphical syntax used to represent transformations allows the reader to 
quickly understand the examples provided in the rest of the chapter. An 
application of this formalism is then presented by proposing several types of 
development paths with graph transformations i.e., forward engineering, reverse 
engineering, context of use adaptation. Finally, we expose the type of tool support 
that has been realized to achieve multi-path transformational development of user 
interfaces.  
 
Chapter 5 illustrates the principles of multi-paths transformational development 
for two case studies. The first one concerns the development of an on-line polling 
system. The second one concerns the development of a virtual travel agent. We 
conclude this chapter by an evaluation of the two case studies.    
 
Chapter 6 concludes by discussing the appropriateness of the solution proposed 
in this dissertation. Our contributions are summarized and by future works are 
proposed. 
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Chapter 2 State of  the Art 
 
 
 
 
 
 
 
 

2.1 Current Approaches in User Interface Development 

Two elements define the smallest common denominator of what a UI is: 
 

1. A presentation - concerns the physical description of the UI. It consists of a 
static representation using available interactors as building blocks. Without 
any presentation, a UI has no appearance (or “look”).   

 
2. A dialog - concerns the dynamic behavior of the presentation elements. It 

describes the input/output flows between a user and an interactive 
application (mediated by the UI). Without any dialog specification, a UI 
has no behavior (or “feel”). 

 
Various approaches to build these two UI elements have been reported in the 
literature as well as experienced by practitioners. To characterize these 
approaches, we rely on three starting points for initiating UI construction, as 
defined in the Diane methodology [Bart88] (Fig. 2-1):  
 

1. The internal view – relates to the UI implementation and its description as it 
is relevant for the UI developer. 

 
2. The external view – relates to the interface appearance and its behavior, as 

perceived by the end user 
 

3. The conceptual view – provides an insight on the logical structure underlying 
a UI in designer’s terms. A conceptual view provides the designer with a 
set of abstract concepts facilitating reasoning on the artifact that is being 
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built (e.g., a finite state machine, a class diagram). 
 
These three views define three possible points where the process of UI 
construction can be initiated. All possible transitions between these 
representations enable a definition of nine theoretical approaches for constructing 
the UI can be identified (Fig. 2-1). 
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Figure 2-1 A framework for classifying approaches of UI development practices (adapted 

from [Bart88]) 

 
 A programmatic approach (transition 1). In this approach, the internal 

representation is obtained by directly coding the UI in its target computer 
language, e.g., HTML for a markup language or Basic, Pascal for imperative 
languages and Java as object-oriented language. Theoretically, a UI can be 
coded with any of these languages. Practically, some languages provide 
designers with a better support by, offering sets of pre-defined components 
especially tailored for UI construction. Several development transitions can be 
defined when starting from an internal representation:      

 
– An internal-external generation approach (transition 4) - derives an 

external representation from an internal representation (e.g., 
interpretation of HTML code and its rendering within a computing 
platform). 

 
– An internal-conceptual derivation approach (transition 7) - derives from 

the internal representation a conceptual representation (e.g., reverse 
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engineering HTML code to obtain an abstract view of its presentation, 
reverse engineering of a domain model from a form displayed. A state 
of UI reverse engineering can be found in [Boui04]). 

  
 An exploratory approach (transition 2). In this approach, a developer firstly 

provides an external representation of the UI (e.g., with a graphical editor like 
those found in Integrated Development Environments like Visual Basic, or 
Visual C++, or a mock-up produced by a drawing tool such as Microsoft 
Visio). 

 
– An external-internal representation approach (transition 5) – derives an 

internal representation from an external representation (e.g., code 
generation from forms built in Visual Basic editor). 

 
– An external conceptual (transition 8) derivation - derives a conceptual 

representation from an external representation (e.g., Cellest tool 
[Elra01] reverse engineers an abstract specification of the presentation 
from screen dumps of a UI).  

 
 A specification-based approach (transition 3). This development approach starts 

with an abstract representation of a UI (i.e., any UI model). 
 

– A conceptual-external generation approach (transition 9) – derives an 
external representation from the conceptual representation. For 
instance, Genova [Geno04] produces a UI preview (an external 
representation) before generation based on a selection of relevant 
information from a class diagram (a conceptual representation) 

 
– A conceptual-internal generation approach (transition 6) - derives an 

internal representation from the conceptual representation. In this 
case, the tool directly produces the code from the conceptual 
representation without any intermediate representation. For instance, 
MacIDA directly generates MacApp code from its Activity Chaining 
Graph that serves as a conceptual representation [Boda95] 

 
As all these approaches are relevant to our domain of research, these development 
approaches and the concepts they manipulate are detailed in the next subsections.      
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2.2 Exploratory Approach 

 
The exploratory approach consists of initiating a UI development by a graphical 
representation. Two major trends are clearly identified in the exploratory 
approach: a mockup approach and a visual programming approach. 

2.2.1 Mock-up Approach  

 
Exploratory approach is often used in consulting companies to quickly produce a 
working draft to convince a potential client at low cost and to validate the 
mockup with the customer so as to begin coding as soon as possible. This 
approach finds its extreme in paper prototyping where the UI is drawn on pieces 
of paper and post-it that are manipulated by a person to animate the behavior of 
the UI depending on the customer’s requests. An exploratory approach consists 
of either a hand-drawing or a mock-up constructing.  For the first category, 
general purpose drawing software (e.g., Corel Draw, Microsoft Powerpoint, Aldus 
Persuasion) can be used. Software dedicated to industrial drawing (e.g., Microsoft 
Visio, ABC Flowchart) can be preferred as they already encompass the vectorial 
drawing of the widgets composing a UI. Even more, DEMAIS [Bail03] already 
supports main graphical mechanisms fro expressing presentation constructs and 
dialog transitions for a simple multimedia application. For the second category, 
sketching tools like Silk [Land96], Denim [Hong01] or JavaSketchit [Caet02] can 
be used. A state of of the art on sketching tools can be found in [Coye04]. 
 
The Denim tool [Hong01, Newm03] is such a tool that allow designers to draw a 
sketch of the presentation of any web page and then to link these sketches 
together with arrows (Fig. 2-2). The transition between presentation and 
navigation is smoothly ensured thanks to a zoom visualization. The tool never 
recognizes however the layout or the widgets as Silk or JavaSketchIt do. This 
intuitive and simplistic tool allows the developer sketching a future UI without 
being interfered by low level details nor be distracted by physical attributes. 
Similarly in FreeForm [Plim04], the developer can then mock-up screen by screen 
the future application. Part of the dynamic behavior (e.g., window transitions) of 
the UI can be added to simulate UI state transitions. 
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Figure 2-2 The Denim tool 

 
The mock-up approach is adequate for preliminary studies. It is very suggestive, 
especially for the users. But when it comes to turn a mock-up into a shippable 
package, part of the effort might be lost when there no recognition of the mock-
up. Indeed, if no computer support is provided to get an internal representation, a 
developer has to completely re-implement the previously done job in a genuine 
programming language with no guarantee of consistency with what was sketched 
before.   

2.2.2 Visual Programming 

 
Visual programming is the most popular way to construct a UI. Most of the major 
programming languages or toolkits possess their proprietary visual environment. 
Visual specification systems allow the developer to build a UI by combining two 
types of aspects:  

1. A visual aspect by direct manipulation of widgets: each widget is dragged 
from a palette of widgets and dropped onto a working area. As such, 
visual programming may be used for constructing mock-ups. 

 
2. A programming aspect of the application underlying a UI. Callbacks 

procedures are programmed in a high-level programming language or a 
scripting language. 
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Figure 2-3 Visual programming with Glade environment 

 
Fig. 2-3 shows the Glade environment [Glad04], the visual environment for 
GTK+ [GTK04]. This environment is rather typical of all UI builders. In the top 
left corner, a toolbox permits to select different sorts of widgets that the 
developer will place by direct manipulation on a working area (in the top right 
corner) depicting the UI. Properties such as graphical appearance or event they 
respond to can be configured in a property sheet (bottom left corner). The 
multiplicity of working spaces (windows) is managed by a project manager 
(bottom right corner). 
 
Visual programming is typically based on UI toolkits. Visual programming a UI is 
extremely easy and natural as GUIs are visual by nature. It is very efficient for 
building simple interfaces. Visual programming increases developers’ productivity 
but suffers from the same shortcomings as for programming approaches i.e., 
mainly, a risk of unstructured programming and a difficulty of reasoning on the 
properties of the artifact that is being built.   
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Programmatic Approach 

 
Interface development practices have significantly evolved with programming 
languages development. Roughly, major steps of UI programmatic approach are: 
low level programming (i.e., assembly code), high level programming (e.g., C++), 
toolkit programming (e.g., Java Foundation Classes [SUN04,Flan99]), scripting, 
and use of mark-up language. Note that this classification is not a total partition. 
It is based on development practices that evolved with contingent factors such as 
technology constraints and application domain requirements. 
 

2.2.3 Low Level Programming 

 
Low level programming consists in providing instructions in machine or assembly 
language. Low-level programming for UI development is no longer a common 
practice today. It is still used where UI response time is critical (e.g., computer 
games programming, real-time applications). Low level programming dramatically 
reduces portability and reusability. It requires a high computing knowledge, 
advanced programming skills and is time consuming. 
 

2.2.4 High Level Programming 

 
High-level programming develops a UI faster than low level programming thanks 
to a set of human-understandable symbols replacing cryptic assembly or machine 
instructions. Interface programming using a high level language solely is a line-
consuming activity. High-level programming tries to rely on reusable libraries 
containing drawing routines and/or graphical components. These libraries are 
often called toolkits. 
 
UI portability is increased with high level languages. One could think that the 
interface could be executed on any platform. Unfortunately, this is not the case: 
interface systems strongly rely on peculiar OS services for rendering the interface. 
By themselves, high-level languages do not intrinsically support UI portability. 
Furthermore, they remain cryptic for the non-expert (and sometimes for the 
expert too!). Consequently, a developer spends a lot of time to solve 
implementation and his prevented to develop higher level reasoning on the 



 
 
 
 
2. State of the Art 

 
 

32

 

artifact that is being built.    

2.2.5 Toolkit Programming 

 
Toolkits are UI program libraries. They contain common widgets used to build 
the interface like input fields, buttons, menus, pre-defined dialog boxes, etc. They 
also provide support functions for manipulating widget like events and I/O 
handling. Thanks to toolkits, low level issues related to the widget manipulation 
can be disregarded by developers. Popular toolkits are Microsoft Foundation 
Classes [Feur97](MFC) for Windows operating system, Abstract Windowing 
Toolkit (AWT) [SUN04, Flan01] or Swing components [Ecks98] for Java Virtual 
Machine, GTK for Linux, Tk [Oust94] or Motif [Foun00] for Unix operating 
systems. Fig. 2-4 shows an ‘HelloWorld’ program using AWT toolkit frame 
object. 
 

import java.awt.*;

public class Hello extends Frame {
 public static void main(String argv[])
 {
  new Hello();
 }

}

}
show();
resize(200, 200);
add("Center", hello);
Label hello = new Label("Hello World");
Hello() {

 
Figure 2-4 Toolkit programming provides high level constructs 

(a Java/AWT excerpt for drawing a window) 

 
The main advantage of toolkits is that they provide a great flexibility and an 
improved control over the UI elements while maintaining a relative ease of use. A 
problem with toolkits appears in tradeoffs between the number of features, the 
ease of use and the portability. For instance, it turns out that AWT is highly 
portable across various platforms but very poor in terms of number or variety of 
widgets and customization as it only supports the smallest common denominator 
of platforms. OSF Motif, on the other side, is extremely rich and customizable, 
yet poorly portable as it only works on top on Unix BSD4.2. 
 
Toolkits require a high learning curve. Several months are generally needed to 
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master a specific toolkit. UI quality largely depends on the programmer’s 
experience. As toolkits allow developing complex UIs without any constraint, the 
problem of “spaghetti callbacks” becomes predominant. Callbacks are calls to 
procedures notifying the application that a user action has been achieved. When 
the amount of callbacks between the application and the UI is increasing, their 
management becomes intractable if no structured approach is adopted. 
 

2.2.6 Mark-up Languages 

 
Mark-up languages [Luyt04] are at the fringe of programming approach and 
specification-based approach. Mark-up languages are declarative languages. They 
describe what a UI is rather than what to do to produce it. Mark-up languages are 
especially good at describing presentation elements of the interface and static 
properties such as widget layout, style characteristics,... The considerable success 
of mark-up languages for UI development is due to its ease of use. Initially 
designed for data, mark-up languages provide a raw description of the UI 
elements that can be interpreted by browsers compliant with the mark-up 
language. A survey of UI languages has been provided in [Cout02].  Fig. 2-5 gives 
an example of dialog described with the User Interface Mark-up Language 
(UIML) [Abra99,UIML04]. 
 

<UIML>
<HEAD>

NAME="PrintFinishedDialog">

</HEAD>
<APP CLASS="App" NAME="DialogApp">

<AUTHOR>Hubert Lingot</AUTHOR>
<DATE>July 16, 2001</DATE>

<GROUP CLASS="Dialog"

<ELEM CLASS="DialogMessage"
NAME="PrintFinishedMessage"/>
<ELEM CLASS="Dialog Button"
NAME="OKButton"/>

</GROUP>
</APP>
<DEFINE NAME="OkButton"W

<PROPERTIES>
<ACTION

VALUE="DialogApp.EXIST=false"
TRIGGER="Selected"

/>
</PROPERTIES>

</DEFINE>
</UIML>  

 

Figure 2-5 A UIML Dialog Description Example 

 
Mark-up languages are purely descriptive. A purely descriptive language is 
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generally insufficient for describing dynamic aspects (i.e., the behavior) of the 
interface. Mark-up languages are generally complemented with scripting 
languages. Mark-up languages are easy to understand, even for novice developers. 
They allow the developer to concentrate on the content of the UI rather than on 
presentation aspects. They are very resistant to bit-errors. These reasons explain 
the success of XML family languages. From a portability point of view, mark-up 
languages rely on platform specific implementation of programs called 
“renderers” (or sometimes “browser”). 
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2.3 Specification-Based Approach 

In software engineering, specification-based (or model-driven) approach relies in 
the power of models to construct and reason about software systems.  
 
A model is a simplified and intentional view of real-world things. A model is a 
simplification as it withdraws details of real-world objects and tries to identify 
properties of interest of real-world objects. Identifying these properties requires 
some kind of judgment. That is why modeling is said to be an intentional activity. 
One never models for the sake of modeling. Real world concepts can be 
abstracted away in different ways. In other words, modeling is not a deterministic 
process resulting from observation of the real world.  
 
The goal of specification-based, or model-based approach, for user interface 
development is to propose a set of abstractions, development processes and tools 
enabling a engineering approach of user interface development. The 
characteristics of an engineering approach are its systematic (development based 
of rational principles), its reproducibility, its orientation towards quality criteria.  
 
Compared to programming, specifying a UI means to describe it at a higher level 
of abstraction which is independent of the implementation. As argued by 
[Schn98], the default form for specification in any field is the natural language. It 
holds inconvenience of being ambiguous, lengthy and vague. Furthermore natural 
language specifications are difficult to prove consistent, correct or complete. The 
specification approach uses some form of formal or semi-formal notation to 
describe a UI. It has the advantage of being very specific to the interface part to 
be described. It presents a disadvantage of being longer to learn but ensures 
abstraction. 
 
We present specification-based approaches in three steps. Throughout Sec. 2.4.1 
to Sec. 2.4.5, we provide an overview of different abstractions and models defined 
in the literature to achieve a specification-based development of UIs. In Sec 2.4.6, 
an overview of development methodologies and tools that are considered 
significant with respect to specification-based approaches is delivered. This 
overview is based on the abstractions and models introduced in Sec. 2.4.1 to 2.4.5. 
Sec. 2.4.7 concludes this discussion by providing a systematic comparison of these 
methodologies and their associated tools. 
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2.3.1 Abstractions  

By examining the existing literature, abstractions related to the UI development 
can be categorized in three families: 

 Computing-independent abstractions are abstractions enabling a UI description 
of the system to be built without any reference to the computing 
resources with which a UI will be implemented. Computing independent 
abstractions encompass task models and domain models. 

 UI focused abstractions are abstractions enabling a UI description to be built 
while taking into account details of its design. For instance, a given 
modality, a particular computing-platform or a widget set. UI focused 
abstractions are gathered in two models: a presentation model and a dialog 
model.   

 Context of use abstractions are abstractions concerning contextual 
information describing “situations” for which a system is designed. A 
context model or a user model contains such abstractions.        

2.3.2 Task Model 

 
User-Centered Design (UCD) has yielded many forms of design practices in 
which various characteristics of the context of use are considered. Among these, 
task analysis is widely recognized as one fundamental way not only to ensure some 
user-centered design [Hack98] but also to improve the understanding of how a 
user can interact with a user interface to accomplish a given interactive task.  
 
A task model is often defined as a description of an interactive task to be 
performed by the user of an application through the application’s user interface. 
Individual elements in a task model represent specific actions that the user may 
undertake. Information on subtask ordering as well as conditions on task 
execution is also included in this model. 
 
Task analysis methods have been introduced from disciplines with different 
backgrounds, different concerns, and different focuses on task. The disciplines 
include: 
 

 Cognitive psychology or ergonomics [Stan98]. Task models are used to ensure 
the understanding of how users can interact with a given user interface for 
carrying out a particular interactive task. Task analysis is useful for 
identifying the cognitive processes (e.g., data manipulation, thinking, 
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problem solving) and structures (e.g., the intellectual skills and knowledge 
of a task) exploited by a user when carrying out a task and for showing 
how a user can dynamically change them as the task proceeds [John84]. It 
can also be used to predict cognitive load and rectify usability flaws. 

 Task planning and allocation. Task models are used to assess task workload, 
to plan and allocate tasks to users in a particular organization, and to 
provide indicators to redesign work allocation to fit time, space, and other 
available resources [Kirw92].  

 Software engineering. Task models can capture relevant task information in an 
operational form that is machine understandable. This is especially useful 
where a system needs to maintain an internal task representation for 
dynamic purposes, such as to enable a control on the system state, or an 
adaptation to variations in the context of use [Lewi94, Smit96]. 

 Ethnography. Task models can focus on how humans interact with a 
particular user interface in a given context of use, possibly interacting with 
other users at the same time. 

 
Existing task models show a great diversity in terms of formalism and depth of 
analysis. They are also used to achieve a range of objectives [Boms98, Boms99]:  
 

 To inform designers about potential usability problems, as in HTA 
[Ann67]. 

 To evaluate human performance, as in GOMS [Card83]. 
 To support design by providing a detailed task model describing task 

hierarchy, objects used, and knowledge structures exploited while 
interacting, as in TKS [John92] or CTT [Pate00]. 

 To generate a UI prototype, as in TERESA tool [Pate04]. 
 
In general, any task analysis method may involve three related poles: 
 

 Models − capture some facets of the problem and translate them into 
systems specifications. 

 A stepwise approach − in which a sequence of steps is used to work on 
models. 

 Software tools − support the approach by manipulating the appropriate 
models. 

 
We focus on the first pole, that is, on models. It is assumed that the structuring of 
a method’s steps for modeling tasks should remain independent of the task 
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model’s contents. Therefore, the methodological part of each task model was 
taken to fall outside the scope of our analysis. A tool clearly facilitates the task 
modeling activity in hiding the model notation from the analyst and helping her to 
capture it, edit it for any modification, and exploit it for future use (e.g., task 
simulation, user interface derivation). Most models presented below are software 
supported. 
 
Lots of task models have been proposed in the literature. Some representative 
task models are CTT [Pate99], Diane+ [Bart88,Tarb93], GOMS [John96], GTA 
[Weli98], HTA [Shep95], MAD* [Scap89, Gamb97], MUSE [Lim94], TAG 
[Payn86], TAKD [Diap89],  TKS [John92]. In [Limb03], we proposed a meta-
model expressing in a common way the concepts manipulated by these task 
models.  From this survey, core concepts for engineering an interactive system 
were identified: 
 

 A set of task attributes enabling a description of the nature of the task 
independently of its concrete realization on a particular computer system.  

 A hierarchical decomposition of tasks allows a structuring of tasks starting 
from high level tasks onto leaf tasks representing user’s actions. 

 A task temporal ordering. Sister tasks may be temporally arranged with a 
set of temporal operators (e.g., sequencing, parallelism, choice).  

 A set of relationship to domain concepts enable to express the “things” 
on which a task is operated on.   

2.3.3 Domain Model 

A domain model captures concepts from the semantics of the application domain. 
Without domain concepts a UI description would be an empty shell.   
 
Domain modeling comes from software engineering [Dsou99]. It represents an 
essential ingredient to UI engineering methods as it describes its informational 
content. The domain model is usually developed by software engineers and 
provide “as is” to the UI designers e.g., under the form of an Application 
Programming Interface (API). UI designer’s job consists afterwards in connecting 
a UI to the provided API.   
 
Historically, the role and content of domain models used for UI development has 
evolved from hard-coded data models [Balz95], to entity-relationship-attributes 
schemas [Boda94b, Boda95], and to conceptual class diagrams and class diagrams 
with methods [Grif02].  
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Entity-Relationship-Attribute model (ERA) finds its roots in philosophy (theory of 
ontology) and database engineering. ERA models seek to represent real-world 
objects as entities equipped with attributes. Relationships can be defined among these 
entities to express the possible interaction within entities.  ERA is complemented 
with a constraint mechanism allowing a limitation on relationships instances 
defined among entities e.g., a limitation on the number of instances of entities 
participating into a same relationship type (i.e. cardinality constraints). Trident 
[Boda95a,b] uses an entity-relationship to describe concepts manipulated by users 
while interacting with the system.  
 
A class diagram is an extension of ERA model in the context of Object-Oriented 
(OO). It is defined [Breu97] as the description of the static structure of a system 
consisting of a number of classes and their relationships. A class describes the 
properties of a set of objects and contains attributes and, potentially, methods which 
are process manipulating classes’ instances. Structural relationships between 
classes of objects can be defined, theses relationships being called associations. 
Certain types of associations are so common across different systems that a 
precise has been defined for them, they are called generic associations. Two generic 
relationships are popular among analysts: Generalization is an association between a 
more general class (called superclass) and a more specific class (called subclass). A 
subclass holds all features of its superclass and adds some; Aggregation represents a 
whole part relationship. Class diagrams have been used notably in [Grif02]. 
 
In some cases, a domain model is simply hard coded in the system. This technique 
is still considered as part of modeling practices since, in systems using this 
technique, abstract characteristics of the code are extracted to enable an 
application of model derivation heuristics.  For instance, Janus system [Balz95] 
uses C++ class structure to derive a presentation model. 
     
Some domain models are expressed in ad hoc formalism. By ad hoc, it is meant a 
formalism that is not commonly found within usual CASE tools. The Mimic 
language in Mecano [Puer96] expresses the domain model with a structured 
declarative language.  
 

2.3.4 User Interface Model 

 
User interface models propose abstractions to improve comprehension, reasoning 
and manipulation of what a UI is. The real-world objects abstracted away in this 
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case concern all manifestations of a UI in the real world i.e., UI appearance (i.e., 
presentation model) and behavior (i.e., dialog model). Methodologies described in the 
literature vary according various dimensions:  

 Coverage. Some methods concentrate on behavioral specification only (e.g., 
for property checking) and leave aside the problems related to UI 
appearance e.g., Petri Nets [Pala97] or Process Algebra. The integration of 
these methods with presentational aspects is still a hot research topic. 

 Separation of concerns. Some methods do not make an explicit distinction 
between dialog and presentation. For instance, ADEPT [John92] relies on 
the task model as only description of the dynamics of the system.  

 Level of abstraction. UI models proposed in the literature show a great 
diversity in terms of levels of abstraction of their concept. Three levels of 
abstraction, and corresponding model, are recurrently mentioned in the 
literature: abstract UI model, concrete UI model and final UI (also called 
implementation or code level). Abstract and Concrete UI raise many 
interpretation issues: What is abstract? What is concrete? With respect to 
what? In Fig. 2-6, we identified several levels of abstract and their 
correspondence.  
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Figure 2-6 Various abstraction levels for UI models 

 
A final UI, is composed of two sub-levels. The rendering level concerns the 
way a piece of UI related code is rendered on the screen (or other 
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interactive space) and made perceivable by a user. Note that this level may 
also cover physical devices enabling the interaction with the system. The 
code level is the implementation of the user interface. This implementation 
is realized using a programming language.  
 
A toolkit dependent specification is a representation of a UI that makes explicit 
reference to elements of a specific programming language (or toolkit) 
while abstracting away syntactic details of this language. Fig. 2-7 provides 
such an example for a UIML? specification making reference to Java 
toolkit  

 

 
Figure 2-7 UIML specification atToolkit Dependent Level 

 
A Toolkit Independent level manipulates a set of concepts that do not make 
any reference to specific toolkits. At this level interactor (i.e., widgets) are 
defined e.g., a button, a menu, a window. Generally, this level realizes an 
abstraction of several toolkits at the same time. This level allows a 
description of a UI that can be refined later on for different target 
languages (and environments). 
 
A Interactor-Type Independent level provides us with a description of the UI in 
terms that are independent of interactor types. The concepts proposed at 
this level make a reference to a function endorsed by an interactor (e.g., 
selection, input of a value, output of a value). Assuming that several 
interactor types may endorse a same function, a description at this level 
allows a refining towards a wide variety of UIs.  
 
Task and domain however not part as is of UI models may be presented at 
the top of this framework as they represent the most abstract viewpoint 
that can be defined on a UI system.   
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2.3.4.a Presentation model 

 
A presentation model is a description of the appearance of a user interface. Most 
presentation models found in the literature concern graphical, 2-D, widget-based 
UIs that is to say WIMP interfaces (Windows, Icons, Menus and Pointing device). 
Some presentation models allow a representation of voice interfaces [Klem00].  
 
The content of presentation models varies across different methodologies. Two 
dimensions may help to categorize them: 
 
(1) Type of elements in the scope of the model. The type of elements may be 
differentiated across the various levels of abstractions presented in Fig. 2-6. 
 
(2) Layout mechanism exploited. Nearly all models are based on a hierarchical 
organization of elements populating an interface. Additional information may be 
used to refine a layout description: spatial constraints (e.g., alignment, adjacency) 
are used in [Thev02], a mechanism of box embedding is used in Latex typesetting 
system [Mitt99] or XUL [Gind01], a specification of absolute coordinates (in 
most of programming toolkits).   
 
Constraint language allows specifying constraints on interface elements [Huds96]. 
Constraints languages provide a natural mechanism for expressing relationships 
within the interface structure. They are widely used for layout managers. Some 
guidelines are particularly well expressed with constraint languages. Alignment or 
groupings of widgets are elements that can be expressed in constraints. 
Constraints are generally small chunks of knowledge that are verified at run-time. 
 

X.height = X.parent.height 
X.width = [X.parent.width] - 10 

Figure 2-8 Definition of widget constraints 

 
Fig. 2-8 shows constraints expressing that a graphical object x should have the 
same height as its parent, but a width of 10 pixel less. 
 
A problem with constraint languages is the ambiguity they leave when only a few 
constraints are specified (e.g., the usual case). Consistency of constraints is also 
something that is to check before rendering. On the other hand, constraints 
systems allow a designer to only specify constraints that are relevant in her model 
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and leave aside all layout details that do not matter for her at rendering.       
 
Box embedding systems rely on a structuring of elementary widgets within 
abstract boxes determining the layout of its content. A box can impose a vertical 
or horizontal alignment of its content, an arrangement in grid structures, etc. Box 
embedding are used in most of the UI mark up languages [Cout02]. They bring 
the advantage of a precise interpretation as they are totally unambiguous while 
omitting any reference to absolute coordinates i.e., the layout declaration stays 
logical. Furthermore, because of their unambiguousness they are very cheap (in 
terms of computational power) to render. 
 
A layout based on absolute coordinates is done through the definition of a set of 
coordinates on a display surface where pixels are used as unit references. Absolute 
coordinates are absolutely unambiguous, cheap to render. Absolute coordinate 
layout presents two major disadvantages: (1) it requires from the designer an 
enormous amount of time for specifying each element’s coordinates (2) because 
of its lack of abstraction it obfuscates the logical structure of the UI. 
 

2.3.4.b Dialog model 

 
Dialog models enable to reason about the behavior of a UI system. For many, 
dialog models are a continuation of task model concepts [Gram96]. We hereafter 
give a brief survey of dialog modeling methods that percolated into the field of 
HCI methods.  
 

 Backus-Naur Form (BNF) grammars 
 
BNF grammars are typically used to specify command languages. Command 
languages express commands that modify the state of the UI on the users 
initiative. Fig. 2-9 exemplifies a grammar describing a file manipulation in UNIX. 
 

file-op[Op] := command[Op] + filename + filename | 
command[Op] + filelename + directory 
command[Op=copy] := 'cp' 
command[Op=move] := 'mv' 
command[Op=link] := 'ln' 

Figure 2-9 A BNF grammar for fille manipulation with UNIX 
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Grammars are particularly good in detecting inconsistencies within command sets. 
An inconsistent UI may contain unordered or unpredictable interaction. 
Inconsistency renders the UI error prone and hard to learn. [Reis81] proposed an 
action grammar to describe GUIs. [Payn86], with their Task-Action Grammar 
(TAG) extended this grammar by, namely, addressing three levels of 
inconsistency: lexical, syntactic, and semantic. These established TAGs accuracy in 
predicting. Grammars are effective for expressing sequential commands or users 
actions but when it comes to multimodal or direct manipulation they tend to be 
heavy to manipulate. 
 

 State Transition Diagrams 
 
A state transition diagram is a finite state machine representation that consists in a 
graph of nodes linked by edges. Each node represents a particular state of the 
system. Each edge species the input (i.e., event) required to go from one state to 
another. State transition diagrams like statecharts presented bellow provide a 
mean for specifying the dynamic behavior of the interface. Fig. 2-10 is such a 
representation applied to an event/action specification, very frequent in UI field. 
 

e2/a3,a5

e4/a6

State 2

State 3

e1/

State 1

e1/a1,a2 e1/a3

 
 

Figure 2-10 State-transition diagram specifying UI events and actions. 

 
Each edge of the type Ex=ax; ay; a::: where Ex is an event associated to a set of 
actions ax; ay; a::: which ensure the transition to a target state. 
 
State transition diagrams present several drawbacks for modeling the UI. Indeed, 
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today's UI tend to be modeless where one state can lead to many states. 
Furthermore this can be done using many different widgets of the UI. Theses two 
requirements match the quality criteria of reachability and device multiplicity. In 
consequence, state transition diagrams are prone to a combinatorial explosion and 
tend to replace nodes by screen prints. [Schn98] reduces the transition space to 
window managers in graphical state transition diagrams. 
 

 Statecharts 
 
Similarly to state transition diagrams, statecharts support a graphical 
representation of dynamic aspects of systems. Some work specially address the 
modeling of UI behavior with statecharts [Horr98]. Statecharts represent state 
variables with rounded rectangles called states. State changing mechanisms are 
represented with edges between states. State changing is triggered by events and 
can be further conditioned (Fig. 2-11). Statecharts facilitate the representation of 
state nesting, state history, concurrency and external interrupts. 
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Figure 2-11 A CD player behavior with statecharts 
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Statecharts [Hare87] propose solutions to the shortcomings of state transition 
diagrams: statecharts have representational capacities for modularity and 
abstraction. The number of states with respect to the complexity of the modeled 
system increases slower with statecharts than with state transition diagrams. 
Statecharts avoid the problem of duplicating states and transitions. States in 
statecharts are hierarchical and capable of representing different levels of 
abstraction. Statechart are more convenient for multimodal interfaces as they 
provide nesting facilities, external interrupt specification and con-currency 
representation. 
 

 Petri Nets 
 
Petri Nets is a graphical formalism associated with a formal notation. Petri nets 
are best suited to represent concurrency aspects in software systems. Fig. 2-12 
represents a cash withdrawal operation with an automatic telling machine. Petri 
nets represent systems with state variables called places (depicted as ellipses), and 
state-changing operators called transitions (depicted as rectangles). 
 

 
Card in pocket Ready to use ATM

ATM Insert Card
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Withdraw requested

ATM.Withdraw Request

Need money
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ATM.Withdraw Cash
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Figure 2-12 Petri net representing a cash withdrawal operation (from [?]) 

 
Connections between places and transitions are called arcs (represented by edges). 
State marking mechanism called tokens (represented by black solid circles 
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distributed around places). State change is the consequence of a mechanism called 
firing. A transition is red when all of its input places contain tokens. Firing 
involves the redistribution of tokens in the net i.e., input tokens are withdrawn 
from input places and output tokens are added in output places. Like State Charts, 
Petri nets hold mechanisms to represent additional conditions and nested states. 
Petri nets have the advantage of being entirely formalized (State Chart 
concurrency mechanism, for instance, has no formal background). Petri nets allow 
a checking of several properties of the represented information (e.g., a dialog 
model expressed with a Petri net can be checked for completeness or coherence). 
In the context of UI they have been used notably by [Pala94,97]. 
 

 Event-Response Languages 
 
Event languages treat input stream as a set of events. Events are addressed to 
event handlers. Each handler responds to a specific type of event when activated. 
This type is specified in a condition clause. The body of the event generates 
another event, changes internal state of the system or calls an application 
procedure.  
 
Several formalisms are suited for event-response specification. They can be 
distinguished following their capacity in managing dialog state variables and 
concurrency control. Production rules are often used to describe event-response 
specifications.  
 

C−point start−line −> rest−line <rubber band on>
C−point rest−line  −> rest−line <draw line>
D−Point rest−line −> <draw line> <rubber band off>

Sel−line           −> start−line <highlight ’line’>

 
 

Figure 2-13 Event-Response specification using production rules (from [Dix98]) 

 
The example given in Fig. 2-13 shows a set of four production rules representing 
a poly-line drawing dialog sequence. User events begin with upper case. Sel line 
event represents user's selection of line option (e.g., in a menu bar), C-point and D-
point represent user's clicks on the drawing space. System events begin with lower 
case, rest-line event means the recording on coordinates of users first point 
selection. System events keep trace of the dialog state. System responses are 
enclosed within '<>'. They are perceivable events. 
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2.3.5 MBIDE Methods and Tools 

 
A wide panel of UI development methodologies exploiting have been proposed in 
the literature. These methodologies have been called Model-Based (user) Interface 
Development Environments (MBIDEs). A selection of MBIDEs was made on the 
basis of the following criteria: originality of the concepts, originality of the 
development cycle, definition of an explicit methodology, minimal tool support.  
 
For each MBIDE presented hereafter a summary of the underlying concepts and 
development process is proposed. A unified iconographic representation is used 
to present development processes (Fig. 2-14). Each symbol represents a type of 
models. This constitutes a first attempt to harmonize conceptual frameworks of 
these different approaches. Note that the difference between “interactor-type 
independent” and “toolkit independent” representation (see Fig. 2-6) is stressed 
by two different icons associated with abstract UI. A dialog model is also 
represented as a separated entity when the dialog model is substantially important 
in the development process. Solid arrows represent the derivation of one model 
from one or several other ones. Dashed arrows represent a significant knowledge 
adjunction in the design process (e.g., a designer manually determines a layout, a 
template is chosen to drive the derivation). 
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Figure 2-14 Symbols used for the state of the art on CADUI tools 

2.3.5.a Adept 

 
Adept adopts a user centered design approach [Wils96]. It is based on a 
sophisticated task model called Task Knowledge Structure (TKS) [John89, 
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John92]. Adept holds a users model [Kel92]. Both task and users models are 
elicited during the requirement stage of the application development (Fig. 2-15).  
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Figure 2-15 Adept development steps 

 
A task model is, here, defined thanks to a Task Knowledge Structure (TKS). A 
TKS is a conceptual representation a person has stored in her memory about a 
particular task. Each task in TKS has an associated goal, procedure, actions and 
domain objects. Note the inclusion of the domain model into the task model. 
 
A user model in Adept consists of a rule-based system associating design rules 
with user stereotypes. It is constructed thanks to a questionnaire that segregates 
users characteristics from design options. Retained characteristics are for instance 
knowledge of the domain, computer experience, motivation and attitude towards 
the system. Production rules are used to derive a UI model. For instance, a rule 
“IF Experience =high THEN textual commands” allows a selection of an interaction 
style depending on some assessment of a user experience.   
 
After defining a task and user model, an Abstract Interface Model (AIM) is 
derived from the task model. The AIM defines abstract interaction objects to be 
manipulated by the leaf tasks of an Adept task specification. As it contains 
information about the commands to execute to accomplish task, it can be partly 
considered as a dialog model. Subsequently, a concrete interface model (CIM) is 
built. This model is derived from the AIM and the users' model, it instantiates 
Abstract Interaction Objects (AIOs) into concrete interaction objects. The CIM is 
then translated into Smalltalk code to produce an executable interface. 
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Design knowledge in Adept is expressed under the form of production rules. A 
tool (Fig. 2-16) allows a designer to choose among possible conflicting rules, to 
modify rules, to add new rules. The right part of the Fig. 2-6 represents 
production rules available in the system. For instance, the highlighted rule states 
that if an abstract object associated with a task of type “selection” widget and the 
manipulated object is of the type “range” then derived concrete object has to be 
of a type “slide bar”. The left window of the figure shows a trace of the dialog 
between the system and the designer to resolve conflicts between rules. 
 

 
Figure 2-16 Selecting transformation heuristics with Adept 

Adept offers as tool support: a model editor, a user interface design assistant, an 
implementation tool. 
 

2.3.5.b Art Studio 

 
ArtStudio [Thev02] consists of a development environment for producing multi-
target UIs embedded with support of plasticity at design-time. For this purpose, 
ArtStudio starts from a task model and its relationship to a domain model 
(referred to as a concept model in ArtStudio). The task model is decorated with 
various mechanisms to indicate variations of the task model depending on 
variation of the context of use, primarily the type of platform. This way, the 
context model consists of a combination of a platform, a user, and its surrounding 
environment. 
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The decorated task model initiates then a process where an abstract UI is derived 
from the task model so as to identify abstract workspaces (or Presentation Units). 
Abstract workspaces, in turn, give rise to a definition of the UI in concrete terms.  
A final UI in Java is produced from the concrete specification (Fig. 2-17). 
ArtStudio is original in that the UI that is generated supports to some degree the 
property of plasticity, that is, the capability of the UI to adapt itself to the current 
context of use while maintaining predefined usability properties [Calv01]. 
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Figure 2-17 The approach followed in Art Studion. 

 

2.3.5.c Trident  

 
Trident [Boda94,Boda95b] uses a task model, a domain model (including a flow 
of control specification), and a presentation model. Trident development process 
(Fig. 2-18) starts with a contextual analysis. Context in the sense of Trident means 
tasks, users and organizational contexts identification. Trident task model is a 
Task Knowledge Structure (TKS) (see above). This task specification embeds part 
of a domain description and user mental model.  
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Figure 2-18 Trident development process 

 
From this, so called, contextual analysis several elements can be derived. A 
domain model is derived under the form of an entity-relationship-attribute model; 
an dialog model skeleton is defined from the specification of actions contained in 
a task analysis. Dialog model is specified using an activity chaining graph formally 
showing sequences of functions and their respective input/output flow. A 
designer selects between several interaction styles. Interaction styles help to 
determine dialog mode, dialog control, function triggering mode, and metaphor 
style. 
 
Presentation model elements are derived from the activity chaining graphs. Sub-
graphs are mapped onto presentation units that are decomposed into logical 
windows. Those logical windows are then populated with abstract interaction 
objects (i.e., independent of a target platform). This whole process is guided by 
the application of ergonomic rules exposed [Vand97]. AIOs are then mapped 
onto concrete interaction objects (i.e., platform-dependent objects). A knowledge 
of the target environment is necessary to achieve this step. CIOs are finally 
arranged thanks to a sophisticated placement algorithm. Within the environment, 
the UI generated can be interpreted for testing purposes and edited. Once the 
beautification process is finished, the FUI can be generated for Microsoft Visual 
Basic 3.0. 
 
Although Trident contains some extensive design knowledge in a knowledge base 
(hundreds of production rules are provided for supporting the development 
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process), these rules are hard-coded and totally embedded (i.e., totally unavailable 
to a designer) in the system. It is possible to view them, to control their 
application (in a mixed-initiative way), but any modification of such a rule would 
require a direct intervention of a highly skilled developer who is familiar with, for 
instance, the underlying expert system (i.e. AION/DS) and the mechanism of 
selection trees. 

2.3.5.d  FUSE (Formal User Interface Specification Environment) 

 
FUSE [Lonc96] generates a UI code from the task, domain and user model. An 
FUSE is also capable of generating help and guidance files, which is original with 
respect to other environments. A task model in FUSE consists of a hierarchy of 
tasks successively decomposed into sub-tasks until leaf tasks. Leaf tasks are 
associated with a function implemented in C++. Other models are also exploited 
in Fuse as depicted on Fig. 2-19. 
 
A domain model is a set of algebraic specifications of the functions and data 
structures. Algebraic functions are under the form ,AI AI AISpec sum Ax=< >  
where AIsum  is a declaration of data types and function signatures and AIAx  is a 
set of pre- and post-conditions associated with functions.  
 
A user model describes user groups and individual users. Users are stereotyped 
along three dimensions: motivation, knowledge on the computer system, task 
knowledge (each rated low, medium or high). FUSE also holds a dynamic system 
to record user's properties at run-time.  
 

Final UI

UserDomainTask

Presentation 
Guidelines

Dialog 
Guidelines

Abstract
UI (logical UI)

Final UI

UserUserDomainDomainTaskTask

Presentation 
Guidelines

Dialog 
Guidelines

Abstract
UI (logical UI)

Abstract
UI (logical UI)

 
Figure 2-19 Fuse development process 

 
Once created, FUSE input models are transformed into a logical UI model. 
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“Dialog guidelines” are provided to achieve this transformation operation. A 
logical UI is a sort of abstract UI model, it consists in a set of views containing a 
description of user actions, system actions, and objects associated with user tasks. 
A logical UI is represented with a formalism called Hierarchic Interaction graph 
Template (HIT). This formalism is based on attributed grammars and on data 
flow diagrams. From a logical UI and a set of “layout guideline” specification, a 
C++ user interface (along with help and guidance files) is generated at run-time.  
 

2.3.5.e Genova 

 
Genova is a commercial tool that generates a UI code for several languages (Java, 
C++, Visual Basic) starting with an enriched class diagram (Fig. 2-20). 
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Figure 2-20 Genova Development Process 

 
As a start, a designer defines an application class diagram. Classes that have to be 
represented on the user interface are annotated. From this information, a draft 
presentation model is generated. Roughly, this draft presentation model consists 
of a filtering of the input class diagram according to designer’s annotations.  
 
From this draft presentation model, a designer is able to choose between 
presentation templates called style guides. She uses built-in transformation rules 
for this purpose. For instance, the developer can map data types to abstract 
interaction objects (i.e., types of objects independent of any target platform) or 
choose among a dozen of heuristics to determine the choice of dialog units.  
 
Genova consists of a plug-in on top of the Rational Rose CASE tool that is used 
to edit the class diagram. Its UI design assistant proposes dialog windows to 
customize pre-existing transformation rules (Fig. 2-21).  
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Figure 2-21 Defining presentation characteristics using Genova 

 
Although Genova is distinguishable as it enables designers to modify dialog 
templates, it does not make explicit neither the internal format of models nor the 
transformation rules between them. In other words, the customization process is 
limited to the tool options.  
 

2.3.5.f Janus 
 
Janus [Balz93,95,96] allows its user to perform a derivation of a presentation 
model on the basis of an object model. Janus application model is an object 
oriented model issued from an object oriented analysis (Fig. 2-22). 
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Figure 2-22 Janus Development Process 

 
Janus transformations rules consist in window definition and widget selection 
rules.  For instance a rule asserts that every domain class (that is not abstract) 
must give rise to a window. A knowledge base associates method names with 
concrete interaction objects. Janus uses generic relationships like aggregation or 
generalization in order to derive, notably, windows transitions. 
 

 
Figure 2-23 Illustration of a transformation heuristic in Janus 

 
Janus development cycle is presented in Fig. 2-22. After being transformed into 
an internal format (JSD), a domain model is transformed into a form-based 
presentation that is linked to methods implementations in C++. Fig. 2-23 
graphically represents how an object class of the domain model (left part) is 
mapped onto a window in the presentation model (right part). Although this 
graphical representation facilitates the understanding of the aims and scope of the 
transformation, little or no information is provided on their format. Being hard 
coded in the sofware, nobody can access them, unless perhaps the developers of 
Janus. Janus has been recently packaged in a commercial tool, called Otris 
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(www.otris.de), that suffers from the same shortcomings. 

2.3.5.g JustUI 

 
JustUI consists of a UI development method starting from a CTT task model and 
a domain model expressed as a UML class diagram specified in Oliva Nova Model 
Editor (ON ME) [Moli02]. From the information contained in both models, a 
pattern-matching approach is adopted that identifies stereotypical sub-tasks and 
map them onto typical patterns for information systems. These patterns are 
structured into three levels in a Hierarchical Action Tree (HAT) (Fig. 2-24): 
 

 Level 1: The first level contains the HAT pattern, providing the access to 
the application. 

 Level 2: The second level contains the Interaction Units. The UI is 
decomposed in several scenarios to support user tasks. 

 Level 3: The third level is composed of patterns that add semantics for 
interaction units.  

 
Once these patterns are applied, an abstract UI is generated that consists of a 
hierarchical decomposition of Interaction Units, a generalization of Presentation 
Units [Boda95c] to both presentation and dialog. This decomposition of 
Interaction Units is exploited to give rise to the final code, which can be generated 
for multiple computing platforms, including JavaBeans, ColdFusion, HTML, 
C++ and Visual Basic. 
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Figure 2-24 The Hierarchical Action Tree of JustUI. 
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Figure 2-25 Illustration of the pattern-matching approach followed by JustUI 
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2.3.5.h Mastermind (Models Allowing Shared Tools and Explicit 
Representations Making Interfaces Natural to Develop) 

 
Mastermind is the continuation of Humanoid [Luo93,Szek90,Szek92] and UIDE 
[Fole91,Fole95].  
 

Domain

Final UI

Abstract
UI Task

Concrete
UI 

DomainDomain

Final UI

Abstract
UI 

Abstract
UI TaskTask

Concrete
UI 

Concrete
UI 

 
Figure 2-27 Mastermind’s development process 

 
Mastermind has three component models: task, presentation and application. 
These models are implemented with CORBA IDL. The use of a unique language 
facilitates the establishment of mappings between models (Fig. 2-27).  
 
A task model consists of a hierarchy of tasks decomposed in necessary sub-tasks. 
A task is described by several attributes such as: goal and effect (i.e., task post-
condition), task type, associated methods signature, and associated presentation 
elements (i.e., widgets). A task model in Mastermind covers aspects of dialog 
specification as it also specifies user's interaction with the system. The task model 
plays a central role in Mastermind architecture as it expresses constraints on the 
sequencing of behavior in presentation and application model.    
   
A domain model (application model is Masterminds terminology) is based on OO 
design techniques. It contains application class structures and methods signatures. 
Objects are extended with a mechanism of pre-condition and notification i.e., a 
publish-subscribe event language. This event language allows task or presentation 
model elements to declare interest in any modification of the domain model.  
 
An abstract UI model specifies both static (in terms of toolkit independent 
widgets) and dynamic aspects (a combination of statecharts and Petri nets). An 
event response language (called interaction diagram) operates as a binding 
between presentation and dialog. Mastermind takes into account direct 
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manipulation interfaces, by using a mechanism for expressing functional 
constraints between the presentation elements. 
 
Mastermind starts with the definition of task, domain and presentation models. 
No tool is provided to support this task. Models can be defined in parallel but 
some co-ordination is needed. Models are linked by hand. An implementation 
tool generates C++ code from the declarative specifications in Corba IDL.  
 
Humanoid is complemented by Kurt Sirewalt [Stir9,Stir98, Stir99,Stir00] works on 
Mastermind Dialog Language (MDL). MDL formalizes models as concurrent 
agents that synchronize on common events. It seeks efficiency by implementing a 
dialog component (i.e., implementation of the task model) that synchronizes 
presentation and application components. Humanoid is more interested in 
resolving the problem of composing models to form a run-time system than to 
define a transformational mechanism allowing a derivation of a component from 
another.  
 

2.3.5.i MOBI-D 

 
Mobi-D [Puer97] is the continuation of Mecano environment [Puer96]. Mobi-D 
involves five basic models in the development Process (Fig. 2-28): task, domain, 
user, presentation, and dialog model. Mobi-D distinguishes between two levels of 
abstraction among models. The abstract level concerns task, domain, and user 
model. A concrete level concerns presentation, and dialog model.   
 

Final UI

Abstract
UI 

Domain UserTask

Dialog and presentation
parameters

Widget selection 
parameters

Final UI

Abstract
UI 

Abstract
UI 

Domain UserTask DomainDomain UserUserTaskTask

Dialog and presentation
parameters

Widget selection 
parameters

 
Figure 2-28 Mobi-D development process 

 
Mobi-D development cycle is the following. A task, domain, and user model are 
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obtained from a requirement analysis. A tool (U-tel) is provided to extract 
elements of these three models from scenarios. Mobi-D offers two software tools 
to improve UI derivation. The first tool is a model editor that allows users to 
manually link elements of models by dragging and dropping elements onto each 
other.  This editor does not provide any guidance in how to set the mappings and 
is intended to be used for mapping models of the same level of abstraction (i.e., 
abstract level). Inter-level mapping is supported by a tool called TIMM. TIMM's 
role is to explore all concrete elements that could potentially be linked with the 
current abstract element and to select a subset of these interactors using the rules 
of its knowledge base. Developers can freely choose to use one of the proposed 
interactors or to set their own mappings. They can access to the knowledge base 
and modify existing rules. TIMM also allows the establishment global orientations 
for the task and domain to abstract UI model: navigational preferences, style, 
number and size of windows, etc. Fig. 2-29 exemplifies a dialog window allowing 
a developer to configure transformation rules enabling a derivation of CIOs from 
AIOs.  
 

 
Figure 2-29 Abstract Interaction Object Selection in Mobi-D 

 
At the end of the design phase, the Mobi-D interface-builder tool exploits all 
parameters provided by a designer to generate a C++ UI. Models components are 
declaratively described using a language called Mimic. The entire mapping 
between elements of the interface is declared using MIMIC in a sixth model 
component called the design model. Following Mimics's grammar, a design model 
is an unordered collection of design mappings. Each design consists of a mapping 
between model elements that can be conditioned.   
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2.3.5.j TADEUS 

 
TADEUS [Elwe95] uses four models: task, domain, user and dialog to generate an 
executable UI specification (Fig. 2-30). 
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Figure 2-30 Tadeus development process 

 
Instead of generating executable code, Tadeus generates specification file 
executable by an external UIMS (User Interface Management System), namely the 
ISA system. A task model in Tadeus is similar to the one used in Adept (see 
above). It consists in a hierarchy of task/goals, sub-tasks/sub-goals ordered by 
temporal operators. Tasks are linked to users interested in the task performance 
and onto domain objects manipulated during the task execution. Task and domain 
models are part of a single graphical representation used to construct a dialog 
model. 
 
A domain model is the result of an OO-like analysis. It consists in a class diagram 
schema with attributes and methods for each object. 
 
A user model, in Tadeus, is also inspired from TKSs. It categorizes users of the 
system and maps them onto roles. The relationship between roles and task has 
several attributes such as task execution frequency, preferred input device, etc. 
These attributes govern the selection of interaction techniques, including widgets. 
 
An abstract user interface consists of a so-called dialog model that intertwines 
structural and behavioral aspects. This dialog model is built in two steps. Dialog 
modeling assumes a prior construction of task, domain and user model. The first 
step of dialog modeling is to define views on task/domain model. The definition 
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of views consists of designating tasks and domain objects that should be 
represented on a same window. The developer performs this step by annotating a 
task/domain tree. This annotation results of a static state specification of the 
dialog model. A second step consists in building a dynamic specification with 
dialog graphs [Schl96]. Dialog graphs are a notation for specifying multiple instances 
of windows, hierarchical dialog structuring and modal dialogue boxes. Dialogue 
graphs theory makes a distinction between intra-view dialog called processing dialog 
and inter-views dialog called navigation dialog. 
 
Intra-view dialog is defined through interaction tables. It consists mainly in 
grouping concrete objects together and determining a position for groups. Intra-
view dialog is specified after the abstract to concrete mapping. Inter-views dialog 
is specified via dialog graph in itself. 
 
Dialog graphs distinguish different dialog view types (single, multimodal, 
complex,...) and transition types (concurrent or sequential). A graph manipulation 
algorithm reduces the graph complexity (a major shortcoming of state transition 
diagram).  
 
At the end of the development process, a designer has to define several layout 
attributes such as background color, default interactors to display on windows. 
Additionally, for each view determined in the dialog modeling, a designer defines 
which abstract object should represent the view. Abstract objects are then 
mapped onto one or several concrete object. Rules are provided for the selection 
of concrete objects. These rules essentially exploit data types.    
 
Design knowledge is mentioned to be used in Tadeus. Due to the lack of 
information provided it is unsure to determine its nature and use. No external 
mechanism is provided to manipulate rules. We suppose they are hard-coded in 
the system.   
 

2.3.5.k Teallach 

 
Teallach [Brif98,Barc99,Grif01] is an MBIDE specifically designed for OO 
databases access applications. It exploits model mapping in a very explicit manner. 
It also holds a flexible development cycle allowing a construction and cross-
consolidation of different models simultaneously. Teallach contains a domain, 
task, and presentation models. Dialog elements are distributed across task and 
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presentation models.  
 
A domain model is expressed with an object-oriented data along with a 
specification of operations manipulating these data. Data and operations are 
defined in the context of an object-oriented database on top of which an 
application is built. Teallach domain model is automatically generated from an 
object database schema under the ODMG format. Transient and persistent 
objects are represented the same way. Originally, Teallach allows definitions of 
object states.   
 
A task model holds, here, information about the dynamic aspects of the 
interaction of the user with the system and data processing requirements. Leaf 
tasks (called primitive tasks) are either action tasks or interaction tasks. Action tasks 
are activities that can be carried out by the application or by the user. They can be 
mapped to a domain object operation. Interaction tasks are interactive behavior 
carried out by the user. An interaction task is mapped onto a presentation object. 
To specify the information flows within the task model elements, Teallach uses a 
mapping between tasks and domain object states or presentation elements states. 
A domain object state or presentation element state is associated with any 
composite task (e.g., intermediary level tasks). 
 
A presentation model is a specification of the interface appearance. It is 
hierarchical. The presentation uses external resources i.e., existing widget sets or 
any developer defined widget. Two levels of abstraction are explicitly defined 
within Teallach: 
 
The final user interface generated by Teallach relies on Java Swing's widget set. 
Designer is allowed to define custom widgets. An abstract presentation model 
defines high-level categories of widget. Categories are established on the base of 
roles a widget can play within an interface. Categories are: free container (i.e., a 
top level container), container (i.e., a non-top level container), inputter (e.g., an 
input box), displayer (e.g., a label), editor (e.g., an updatable table), chooser (e.g., a 
radio button), action item (e.g., a button).   
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Figure 2-31 Teallach Development Process 

 
Teallach development process (Fig. 2-31) consists of two activities: component 
models construction and component model mapping. Mappings have been 
divided into two categories: linking and deriving. Linking consists of simply 
associating two component model elements. Deriving consists of constructing one 
component model element from another one. Both activities are further explained 
later. Teallach development cycle has the originality of being lowly constraining in 
the sequence of development steps. Indeed, Teallach allows the developer to start 
with any of the three component models construction. In the same way, mappings 
can be done in any order. Teallach generates a running interface in Java. 
 
Design knowledge in Teallach surely exists at least in the head of their authors but 
is not documented anywhere. Therefore, we were not able to specify these design 
knowledge properties. 
 
Tool support consists of a model editor, a design assistant, and an implementation 
module. Fig. 2-32 represents the model editor. The left window is the domain 
model editor. The top right window is the task model editor. The bottom right 
window is the presentation model editor. Models can be mapped graphically by 
drawing lines between model elements. Dialog boxes appear for specifying further 
information on a newly created mapping. 
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Figure 2-32 Teallach Model Editor 

 
In addition, Teallach holds a mechanism for maintaining links integrity through an 
alert system that warns the developer for any link breaking.  

2.3.5.l Teresa 

 
[Pate03] introduced a method for producing multiple FUIs for multiple 
computing platforms at design time. They suggest starting with the task model of 
the system, then identifying the AUI specifications in terms of its static structure 
(the presentation model) and dynamic behavior (the dialog model): such abstract 
specifications are exploited to drive the implementation. This time, the translation 
from one context of use to another is operated at the highest level: task and 
concepts. This allows maximal flexibility, to later support multiple variations of 
the task depending on constraints imposed by the context of use. Here again, the 
context of use is limited to computing platforms only. The whole process is 
defined for design time and not for run-time. For instance, there is no embarked 
model that will be used during the execution of the interactive system, contrarily 
to the Seescoa approach analyzed below. Fig. 2-33 graphically depicts how the 
TERESA tool supports this approach. At the AUI level, the tool provides designers 
with some assistance in refining the specifications for the different computing 
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platforms considered. The AUI is described in terms of Abstract Interaction 
Objects (AIOs) [Vand93] that are in turn transformed into Concrete Interaction 
Objects (CIOs) [Vand93] once a specific target has been selected. 
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Figure 2-33 The TERESA development approach 

2.3.5.m Seescoa 

 
Seescoa [Luyt03] consists of a suite of models and a mechanism to automatically 
produce different FUIs at runtime for different computing platforms, possibly 
equipped with different input/output devices offering various modalities (e.g. a 
joystick). This system is context-sensitive as it is expressed first in a modality-
independent way, and then connected to a specialization for each specific 
platform. The context-sensitivity of the UI is here focusing on computing 
platforms variations. An AUI is maintained that contains specifications for the 
different rendering mechanisms (presentation aspects) and their related behavior 
(dialog aspects). These specifications are written in a XML-compliant User 
Interface Description Language (UIDL) that is then transformed into platform-
specific specifications using XSLT transformations. These specifications are then 
connected to a high-level description of input/output devices. A case study is 
presented that automatically produces three Final UIs at run-time: for HTML in a 
Web browser, for Java with Abstract Window Toolkit (AWT) on a Java-enabled 
terminal, and for Java with Swing library. Although the process is straightforward, 
generated UIs appear to have the same layout of final objects, but coming from 
the same CIOs. 
Fig. 2-34(a) graphically depicts the process followed in this work to produce 
context-sensitive UIs. A translation is performed at the abstract level before going 
down in the framework for each specific configuration (here restricted to a 
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platform). No concepts or task models are explicitly used in this version. The 
entry point of this forward engineering approach is therefore located at the level 
of Abstract UIs. Dygimes [Luyt04] is an extended version of Seescoa that adopts 
the same approach as in Seescoa, except that the AUI is obtained from a CTT 
task model [Pate00] that is progressively transformed into a priority tree as a 
starting point for obtaining the AUI. These differences are highlighted in Fig. 2-
34(b). 
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Figure 2-34 The Seescoa development approach (a) and its Dygimes extension (b) 

2.3.5.n Vista 

 
Vista is a system supporting a so called co-evolutionary design of interactive systems. 
Co-evolutionary design is defined as the co-evolution (i.e., concurrent) of as set of 
design artifacts maintained by different stakeholders in a development process 
(i.e., software engineers and HCI specialists). The following views are considered in 
Vista: 

 A task model codifies the human activities that the computer system is 
meant to support. A dialog model (termed task-oriented specification) is 
based on the task hierarchy. The task-oriented specification is formalized 
in User-Action Notation (UAN) [Hart90]. UAN specifies the user actions, 
interface feedbacks, and interface state resulting from the action. 

 A domain model is an architectural model called clock architecture. Clock 
architecture is a layered Model-View-Controller (MVC) cluster [Grah96]. 
Components in this model are responsible for the processing of user 
inputs and maintenance of display devices. 
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 A final UI, at code level, is also presented to designers. This enables a 
visualisation at the code level of any change done to other models. 

 
Links between these representations are established in a mixed-initiative, that is 
partly by hand and partly through automated analysis conducted by the system. 
This automation is based on a set of syntactic linking rules maintained in a 
dictionary. Application code is represented by the FUI rectangle.   
 
Fig. 2-36 shows possible design representations. Window (a) is the task model. A 
link goes from leave tasks to action specification in window (b). The UAN 
specification is linked onto architectural components on window (c). Architectural 
components are in their turn linked to the application code.  
 

 
Figure 2-36 Model editor of Vista Tool (model linking is represented by arrows) 

2.3.5.o Morph  

 
MORPH [Moor96, Moor97] identifies basic user interaction tasks (i.e., interactor-
type independent level of Fig. 2-6) in legacy code by applying static program 
analysis techniques, including: control flow analysis, data flow analysis, and pattern 
matching (Fig. 2-37). The resulting model is then used to transform the detected 
abstractions in a graphical environment from a specific widget toolkit.  
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Figure 2-37 Development process in Morph 

 
The original code is then modified to take into account the new dialogue structure 
of GUIs. MORPH is part of a larger environment called MORALE supporting 
complete reengineering process. Morph actually supports separation of concern 
with only one level of abstraction, the engine being driven by some parameters 
that give already some degree of flexibility. Operationalization is partially 
achieved: introducing a new heuristic or rule requires some intervention of 
MORPH’s developer. 
 

 
Figure 2-38 Selection rules in Morph 

2.3.5.p More  

 
MORE [Berg04] produces applications that are device independent. A Platform 
Independent Application (PIA) can be created either by a design tool or by 
abstracting a FUI thanks to a generalization process (Fig. 2-39). 
 
Generalization is done by reverse engineering of HTML code. This process starts 
with the detection of interaction elements. Secondly, the properties and semantic 
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information of these elements can be inferred. A specialized engine with a device 
profile then creates another application specialized for this particular device. 
Similarly to MORPH, operationalization and designers’s control remain partial. 
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Figure 2-39 More Development Process 

2.3.5.q Tamex 

 
The reengineering process in TAMEX [Elra01] allows one to produce HTML UIs 
composed of data contained in several other Web pages. The approach (Fig. 2-40) 
followed by Tamex is based on the concept of task-specific mediation: 
information sources within an application domain are encapsulated in wrapper 
agents (data extraction) interacting with an intelligent intermediary agent, the 
mediator (aggregate data).  
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Figure 2-40 Tamex Development Process 

 
XML is used as an intermediate data structure for information exchange and as a 
modeling language for the mediator’s domain ontology and task structure. The 
information extraction is done with an XPath-based algorithm for generating 
extraction rules from HTML.  
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2.3.5.r WebRevenge  

 
WebRevenge [Paga03] analyzes Web site HTML code to automatically detect an 
underlying logical interaction design (Fig. 2-41). Such a design is represented 
through task models that describe how activities should be performed to reach 
users’ goals. WebRevenge is capable of deducing a task model from web pages, 
which is different from ReversiXML [Boui04], which only recovers the 
presentation of the concrete UI. 
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Figure 2-41 Web Revenge Design Process 

 

2.3.6 Comparison on MBIDEs 

The present section gives a synthetic overview of MBIDEs surveyed in this 
chapter. For this purpose, two families of properties are segregated: properties 
regarding conceptual content of methodologies, and properties regarding the 
model transformations underlying these methodologies. Table 2-1 and Table 2-2 
sum up this comparative analysis. 

2.3.6.a Ontological properties  

 
Mod. (Models): describes the type of models manipulated by the methodology. T = 
task, Do = Domain, Di = dialog, AUI =abstract presentation, AUI = abstract 
presentation in terms of user actions and/or interaction space definition, CUI = 
concrete user interface,   U = user, C = context.   
 
Lnk (Linking): indicates the type of manual linking between different models 
involved in the methodology. For instance, T   Do indicates that task model 
concepts could be manually linked to domain model concepts.  
 
Sep. (Separation of concerns): indicates the extent to which concepts relevant to each 
category are separated within the methodology. 



 
 
 
 
2. State of the Art 

 
 

73

 

 
Trg (Target Language): designates the languages of the UI to produce. 
 
Uni. (Uniformity of formalism): refers to the representation formats of different 
models in the methodology, whether they are represented using a same formalism. 
Value: √ for yes and  for no. 
 
Avl. Mod. (Availability of models): refers to the possibility for an external tool to 
process the manipulated models. Possible values:  

 : models are stored in an internal format not made explicit e.g., models 
are tightly coupled with the tools.  

 √: means that an external format for models exists e.g. models are 
available under a machine understandable format. A typical form is an  
XML language. 

 
Ext. Mod. (Extensibility of models definition): refers to the possibility of extending 
definitions of models with new elements.  
 Orig.: means that models were intended to be extensible, but only by the 

originator of the methodology. This guarantees some interoperability of tools 
around a language. 

 Design: means that models are extensible and the designer (e.g., the tool user) 
is responsible for this extension.  

  : means that no mechanism supports model extension e.g., the system is 
bundled with a particular set of model definitions.         

2.3.6.b Methodological properties  

 
Dvt (Development path): indicates the type of development path that is covered by 
the methodology. Possible values:  

 Fo: means forward engineering  
 Re: means reverse engineering  
 Ad: means adaptation to context of use.    

 
Tra. (Transformation types): expresses the type of transformations that are supported 
automatically or semi-automatically by the tool. Ex “(T, Do, C)  AUI illustrates 
the transformation process in Teresa e.g., an AUI is transformed from the 
combination of a task model, a domain model, and a context model.  
 
Tra. For. (Transformation formalism): refers to the formalism exploited to represent 
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transformation rules. Possible values: 
 OA: stands for opportunistic algorithm. It means that the transformations 

are hard coded and varying according to the type of manipulation at hand. In 
other words there is no homogeneity in the way models are processed.   

 PR : stands for production rules e.g., rules under the format “If Condition 
Then assertion”. 

 GR: stands for graph rewriting. The technique exposed in this 
dissertation.               

 
(Avl Tra.) Availability of transformation rules:  refers to the availability of the 
transformation rules for an external tool or method. Possible values: √ for yes and 

 for no.            
 
Extensibility of transformation rules: refers to the possibility of extending definitions 
of transformation rules with new rules.  

 Orig.: means that an extension mechanism exists for rules but solely by 
the originator of the methodology.  

 Design: means that rules are extensible by the designer. 
 : means that no mechanism supports transformation rules extension 

e.g., the rules are bundled with the system.         
 
Traceability of transformations: indicates whether the application of transformation 
may be observed or not. Value: √ for yes and  for no.           
 
Pattern support: refers to the possibility of using patterns either as building blocks 
for model construction or as support for model transformation. Value: √ for yes 
and  for no. 
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2.4 Conclusion 

 
Three UI development approaches were considered in this state of the art:  
 
An exploratory approach provides us with a means of quickly collecting user's 
feedback. In this sense, it allows early evaluation and contributes to interface 
quality. The problem is that when it comes to produce a running UI, the 
developer has to completely re-implement the previously done job in a genuine 
programming language. This offers no guarantee of consistency with what was 
done before and, consequently, endangers the benefits obtained from an early 
user feedback. In consequence, exploratory approach should be taken as it is and 
stays confined in the limits of early requirement development steps. 
 
A programming approach allows a straightforward implementation of a final 
interface. In terms of quality criteria, these approaches vary depending on the 
degree of portability, the resource consumption (expressed in time units, 
monetary units, lines of code, etc), and the ease of use (which depends on 
provided tool support, intuitiveness of the concepts, legibility of the code, etc). 
The programming approach provides no guarantee of quality per se. Programming 
(and maintaining) a UI without any method can be a haphazard activity. It gives 
no guarantee for regularity.  “Rushing to code” without any structure favors a 
“trial and error” method. The result of such a work will highly depend on 
contingency factors such as the developer's experience or the development 
context. Furthermore, communicability between stakeholders is hindered. 
Programming languages are poor communication mechanisms. Stakeholders will 
hardly reason about UI properties in the programming approach. Programming 
approach should be taken as it is. Programming an interface is not engineering it !  
 
A specification-based approach provides us with means to specify relevant properties 
of a UI at various levels of abstraction. This approach has many benefits notably 
of being reproducible and allowing high level reasoning. 
 
To conclude on these approaches we operate a three step analysis:   

 
First, a set of selected observations is provided. An observation is a synthetic and 
descriptive assessment (as opposed to a normative assessment) that is made regarding 
properties of surveyed transformational methodologies. 
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Second, shortcomings are outlined from observations. A shortcoming is a normative 
assessment that is made regarding a property of surveyed transformational 
methodologies. A shortcoming is normative in the sense that it positions the state 
of the art with respect to ideal properties identified in the software engineering 
literature. 
 
Third, a set of requirements for a solution to overcome the above mentioned 
shortcomings is identified. The internal validity of the solution proposed in this 
dissertation will be assessed with respect to this set of requirements.  

2.4.1 Observations  

 
Observation 1: Methodological diversity. Surveyed tools can be categorized 
into different categories depending on their main goal. Older tools like Janus, 
Trident, Teallach focus on forward engineering user interface starting from 
models that abstract away definitions of the interface itself. Mostly coming from 
the reverse engineering community, tools like Tamex, More, Morph, and 
WebRevenge shed a new light on the need for rich abstract models able to 
describe UI aspects in a way that is independent of implementation details. More 
recent contributions like Teresa, Seescoa, and ArtStudio introduce new 
abstractions to tackle the, so called, problem of multi-context user interfaces. 
Again these methods raise the need for high level abstraction allowing a 
description of a UI independently of the context in which it is supposed to be 
implemented. This question is still a hot research topic. Two methods adopt 
slightly different goals than the one described above. Mastermind’s originality lies 
in its proposal to compose models at run-time. For this purpose it proposes a set 
of inter-model relationships that becomes first class citizens when it comes to 
generate a final UI. The problem of model-to-model transformation is out of the 
scope of Mastermind. Vista has a different focus as its main goal is to correlate 
artifacts being used during a software development process. Vista also proposes a 
set of inter-model relationships. Interestingly, part of the discovery of these links 
is done automatically.  
 
Observation 2: Inter-method conceptual similarities. A striking convergence 
in using certain concepts is to be noticed among all the tools that have been 
presented. A domain model is defined in all the presented methods, a task model 
is used in a great share of them, a use of UI models (at various levels of 
abstraction) is also present in all methods. Regarding dialog models, things seem a 
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little bit more heterogeneous. Dialog graphs are presented in Tadeus, Activity-
Chaining Graphs in Trident, Statecharts and Petri Nets in Mastermind, State 
Transition Networks in Seescoa, Hierarchical Interaction Templates in Fuse. In 
Teresa, the user task model itself constitutes the pivot element to organize the 
dialog of the interface elements. A presentation model seems in all methods a 
hierarchic decomposition of elements realizing an abstraction from toolkit 
specificities. A major common aspect of all the methods is that they all propose 
one or several levels of abstractions for describing the presentation of the UI.  
 
Observation 3: Inter-method conceptual dissimilarities. If a coarse-grain 
similarity can be assessed (observation 2), a low level comparison of concepts 
reveals important dissimilarities between methods. Comparing these model 
variations is a tedious activity. As a consequence, cross-method understanding is 
hard to gain.  
 
Observation 4: Intra-method heterogeneity. Inside methods, specification 
models are numerous and do not easily relate to each other. Each model gives an 
insight on some particular aspect of the UI. One model is good for expressing 
constraints, another for expressing the behavior and the other the presentation. 
While these models may be necessary, they remain hard to integrate because their 
modeling primitives are heterogeneous, because they may appear inconsistent with 
each other, because their relationships are not explicitly defined, because their 
heterogeneous syntaxes raise barriers for their integration.  
 
Observation 5: Conceptual closeness. No method seems to have a particular 
concern for extension possibilities of their underlying ontology. 
 
Observation 6: A focus on graphical modality. All (except one) environments 
deal at the first place with graphical modality. Only Teresa is concerned with 
auditory interfaces. 
 
Observation 7: Transformations are not first class citizens.  Transformations 
are in most methods hidden to the designer (i.e., built-in), untraceable and, not 
modifiable. In some environments, though, rules can be parameterized by dialog 
wizards (Mobi-D, Genova), by adjunction of templates (FUSE, Trident), or by 
model annotation (Janus, Artstudio). In no method a designer is provided with a 
stand-alone language allowing her to define custom transformation rules. 
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Observation 8: Multiplicity of transformation formats. For the approaches 
where transformations can be identified, a multiplicity of formats, and underlying 
paradigms, can be observed. Adept and ArtStudio use production rules, Seescoa 
use XSLT transformations and afterwards Java code, Trident uses a prolog-like 
expert system and selection trees, Mobi-D uses C++ algorithms, Genius is based 
on declarative correspondence tables. 
 
Observation 9: Methodological conglutination of concern. transformation 
rules proposed in methods (when they are visible) are not dissociated according 
the type of operations they realize on models. A rule partitioning is nowhere made 
explicit to the designer. 
 
Observation 10: Single entry point, single exit point. Methods define their 
development process with one single entry point (i.e., the development process 
starts from an imposed artifact) and one single exit point (i.e., the artifact resulting 
from the development cycle is fixed by the method). 
 
Observation 11: Methodological closeness. Proposed methodologies commit 
to the definition of development steps. The sequence in which development steps 
may be arranged is in no case modifiable. 
 

2.4.2 Shortcomings 

 
From these observations, we can conclude by presenting several shortcomings: 
 
Methodological shortcomings 
 
Shortcoming 1: Lack of ontological explicitness – A few methods define in 
an explicit manner their underlying concepts. Concepts are generally bounded to 
tools or methodological recommendations, thus preventing a designer to grasp 
the conceptual foundations of a methodology (Obs. 1, 3, 4).  
 
Shortcoming 2: Lack of ontological rigour – When a method explicitly defines 
its ontology, the preciseness of concepts definitions largely varies from one 
method to another. In addition, concepts are seldom formally expressed., 
especially the relationships between the ontological concepts (Obs. 1, 2, 3, 4).  
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Shortcoming 3: Lack of ontological commitment – The ontological 
commitment refers to a shared understanding of concepts among a scientific 
community. The fact that a few ontologies have been defined so far prevents 
convergence around a set of concepts (Obs. 1, 2, 3, 4). 
 
Shortcoming 4: Lack of communication of concepts – Research teams tend 
to conduct their researches and developments on their own models. Conceptual 
consolidation across methods is difficult. Cross-method understanding is a 
tedious and time-consuming activity because it necessitates understanding each 
peculiarity of each method and establishing correspondence between them. As a 
consequence, communication among researchers is made complex (Obs. 1, 3, 4). 
 
Shortcoming 5: Lack of extendibility of concepts – When available, the 
concepts manipulated by methods are hardly extendible. This prevents the 
adaptation of methodologies to cover new model concepts, notably, the ones 
related to new interaction modalities (Obs. 5, 6). 
 
Methodological shortcomings  
 
Methodological shortcomings concern the way existing approaches concretize 
transformational development with the definition of methodological stages, steps 
(i.e., transitions between stages), and transformation catalogs to perform these 
steps. 
 
Shortcoming 6: Lack of methodological explicitness – Existing approaches 
seriously lack of explicitness in the way they propose their catalog of 
transformations both to the designer and to researchers. The transformation 
catalogs are often implicitly maintained in the head of developers and designers 
and/or hard-coded in supporting software. Consequently, the transformational 
processes proposed in the literature consist essentially in black boxes. This lack of 
explicitness dramatically hampers methodological guidance (Obs. 1, 7, 8).  
 
Shortcoming 7: Lack of methodological rigour – When development steps 
and transformation catalogs are made explicit the preciseness of their expression 
is limited. We are not aware of any formally defined transformation catalog in the 
domain of HCI (Obs. 8, 9).  
 
Shortcoming 8: Lack of consistency in applying methodology – When such 
design knowledge exists, it is not always systematically, consistently and correctly 
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applied throughout the project or across projects. Methodological steps remain 
open to interpretation while lack of methodological explicitness hampers any 
structured reasoning on the application of transformations (Obs. 4, 9). 
 
Shortcoming 9: Lack of communication of transformation catalogs –
Consequently to the lack of explicitness, the exchange of knowledge regarding 
transformation catalogs can be hardly achieved. Even when transformation 
catalogs are made explicit in tools, their heterogeneous formats prevents the 
reuse of transformations outside the context for which they were designed (Obs. 
7, 8).  
 
Shortcoming 10: Lack of predictability of transformation – The implicitness 
of transformations decreases the predictability of the transformation results. This 
causes a frequent reproach made to transformational development of user 
interfaces [Myers95] (Obs. 4, 7, 8, 9). 
 
Shortcoming 11: Lack of modifiability of transformation catalogs – 
Developing UIs is about making heuristic decisions in a vast design space. 
Transformations have consequently an inherent heuristic nature as they try to 
translate into algorithms part of these design decisions. Proposed methods offer 
very little possibilities to the designer to modify built-in heuristics: adding, 
deleting, modifying, reusing transformations is almost impossible (Obs. 7, 10, 11). 
 
Shortcoming 12: Lack of flexibility in methodological steps – Methods come 
usually with their models, their development steps. Due to the implicitness of 
their transformation formalism it is almost impossible to tailor the proposed 
methodological steps to the designers’ needs and the project context. Flexibility is 
a notorious requirement for user interface development methods [Brow97] (Obs. 
7, 8, 10, 11). 
 
These shortcomings lead us to conclude that transformational development of 
user interfaces can be improved along several dimensions. We provide hereafter a 
list of requirement we seek to address with this dissertation. Some of these 
requirements are motivated by the above observations and shortcomings, some 
are desirable properties found in the literature that apply on any methodology. 
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2.4.3 Ontological Requirements  

 
Requirement 1: Ontological explicitness – states that our ontology should be 
defined externally to any methodology manipulating it and in an explicit way that 
facilitates its dissemination and manipulation among stakeholders (Motivation: 
Short. 1).  
 
Requirement 2: Expressivity – means that a conceptual framework should 
provide enough details to address problems that motivated the elicitation of its 
constituent concepts. In our context models should, at least, provide enough 
details to allow an implementation of the system it describes. This essential 
requirement is not fulfilled by many formal methods, for instance those focusing 
on verifying state properties of the system that is being built (Motivation: general 
principle in software engineering, Obs. 6). 
 
Requirement 3: Human readable – means that the provided ontology should 
be proposed in a format that enables its legibility by a human agent (Motivation: 
Short. 1, 3, 4).  
 
Requirement 4: Formality – states that models are expressed in such a level of 
accuracy that it enables automatic reasoning on their properties. (Motivation: 
Short. 2, 4). 
 
Requirement 5: Machine readable – states that the proposed ontology should 
be legible by a machine. (Motivation: Short. 1, 2, 3, 4).   
 
Requirement 6: Ontological separation of concern – states that models 
should differentiate aspects of the problem at hand [Parna72, Dijk76]. Models 
defined in our methodology should capture and, segregate, different levels of 
abstractions (Motivation: general principle of software engineering).  
 
Requirement 7: Verifiability of specification – is defined as: “the ease of 
preparing acceptance procedures, especially test data, and procedures for detecting 
failures and tracing them to errors during the validation and operation phases” 
[Meye97]. Applied to specification, verifiability refers to the possibility of checking 
easily desirable properties (e.g., consistency, usability criteria). This requirement is 
facilitated by formality and explicitness. (Motivation: general principle of software 
engineering, Short. 2).  
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Requirement 8: Ontological homogeneity – refers to the property of a set of 
concepts of being defined using a common syntax. All models concepts should be 
described in a single formalism that facilitates their integration and processing 
(Motivation: Short. 4). 
 
Requirement 9: Reuse of specifications – refers to the possibility of reusing 
whole or a part of a specification for another system. The proposed framework 
should facilitate reusing specifications (Motivation: Short. 3, 4, general principle in 
software engineering [Meye97]). 
 
Requirement 10: Ontological extendibility – refers to the ease of adapting a 
conceptual structure to the occurrence of newly elicited concepts. HCI is a vast 
area covering the definition of multiple types of interfaces, interaction techniques, 
and interaction contexts. A specification language should be equipped with 
extension mechanisms to allow its evolution in parallel with the artifact it seeks to 
model. (Motivation: Short. 5, general principle of software engineering). 
 
Requirement 11: Standards – states that the expression means used to represent 
our ontology should rely on well accepted standards in the software engineering 
community. (Motivation: Short. 3, 4). 
 

2.4.4 Methodological Requirements  

 
Requirement 12: Methodological explicitness – states that the constituent 
steps of our methodology should be defined in a way that facilitates the 
comprehension of its internal logic and its application. (Motivation: Short. 6).   
 
Requirement 13:  Methodological flexibility – refers to the ability to initiate 
the development from any development stage (i.e., multiple entry points) and to 
terminate it at any development stage (i.e., multiple exit points). (Motivation: 
Short. 12).  
  
Requirement 14: Methodological formality – states that development steps 
should be expressed in such a level of accuracy that it enables an unambiguous 
interpretation of the process they describe. (Motivation: Short. 7, 9).   
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Requirement 15: Executability – states that development steps should be 
expressed in such a level of accuracy that it is possible to execute them by an 
automaton. (Motivation: general principle with transformational development 
[Send03]).   
 
Requirement 16: Methodological separation of concern. – refers to a 
partitioning of methodological steps according to the process types they realize 
(Motivation: Obs. 9, Short. 8, general principle in software engineering).  
 
Requirement 17: Methodological extendibility – refers to the ability left to the 
designer to extend the development steps proposed in a methodology. 
(Motivation: Short. 11, 12). 
 
Requirement 18: Methodological Homogeneity – refers to the property of 
methodological steps of being defined using a common syntax. All transformation 
steps should be described in a single formalism that facilitates their understanding 
and processing (Motivation: Short. 8, Obs. 8, 4).  
  
Requirement 19: Predictability – refers to the possibility provided by a 
methodology to foretell the result of the application of development steps. 
(Motivation: Short. 10).   
 
Requirement 20: Traceability – is defined [IEEE90] as the “degree to which a 
relationship can be established between two or more products (i.e., here models) 
of the development process, especially products having a predecessor-successor 
or master-subordinate relationship to one another” (Motivation: general principle 
in software engineering, Short. 6). 
 
Requirement 21: Correctness – may be defined as the ability of a software to 
perform their exact tasks [Meye97]. In the context transformational development, 
correctness can be defined as the adequacy of an artifact A with respect to the 
other artifact(s) B such that B is the source artifact that was used to derive A 
(Motivation: Short. 7) 
 
Requirement 22: Support for tool interoperability – Tool interoperability 
refers to the possibility of reusing the output provided by a tool into another tool.  
Our method should foster interoperability of tools working on specification 
models e.g., editors, critiquing tools, code generators, interpreter (Motivation: 
Short. 9). 
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Requirement 23: Methodological reuse – refers to the possibility in a 
methodology to capitalize on the knowledge defined by designers to perform 
development steps and re-using this knowledge for other developments. 
(Motivation: Short. 9, general principle in software engineering).   
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Chapter 3 An Ontology for 
User Interface Specification 

 
 
 
 
 
 
 
 

3.1 Introduction  

Chapter 2 concluded with a list of observations on the state of the art in 
transformational development of UIs. From these observations a set of 
shortcomings outlined some deficiencies in the approaches described so far in the 
literature. A set of requirements was finally elicited to address these shortcomings. 
 
This third chapter addresses the ontological shortcomings and requirements of 
Chapter 2 by defining an original ontology aimed at describing various concepts 
relevant to UI development. 
 
The word "ontology" initially comes from the area of philosophy where it is a 
branch of metaphysics concerned with the nature and relations of being.  
It is also defined as a particular theory about the nature of being or the kinds of 
existents [Merr04]. In the context of information sciences, an ontology is a formal 
specification of a conceptualization [Grub93]. 
 
A conceptualization is a simplified representation of the world produced for some 
purpose. An ontology is, thus, a set of descriptions of the concepts and 
relationships within a field of knowledge used among a community of agents 
(humans or computers). Ontologies constrain the interpretation of concepts 
within a domain.   
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The main purposes of an ontology is to enable communication between computer 
systems in a way that is independent of the individual system technologies, 
information architectures and application domain.  
 
A key ingredient of an ontology is a vocabulary of basic terms and a precise 
definition of what those terms mean. The terms in an ontology are selected with 
great care, ensuring that the most basic (abstract) foundational concepts and 
distinctions are defined and specified. The terms chosen form a complete set, 
whose relationship one to another is defined using formal or semi-formal 
techniques.  
 
Defining an ontology is not only about enumerating its constituent concepts.  
Formal foundations used to build an ontology have to be identified and defined 
precisely. One should also, and finally, define the appearance of the ontology 
considering that an ontology containing the same concepts may be materialized in 
the real world through different communication channels. The concepts of 
“apple” may be for instance simply orally pronounced or written, but can also be 
drawn on a piece of paper or mimed. 
 
The framework presented in Fig. 3-1 (inspired from [Bare02]) distinguishes three 
essential components to introduce any ontology: a conceptual content (i.e., 
abstract concepts), the formal foundations used to represent the ontology (i.e., 
abstract syntax), the definition of the appearance of the ontology (i.e., concrete 
syntax). The structure of this chapter reflects these three aspects.  
 

Abstract Concepts

Model description
Section 3-2 

Abstract Syntax

Identified, Labelled, Typed, Constrained – Graphs
Section 3-3

Concrete Syntax

AGG Visual Notation + usiXML
Section 3-4

Semantic
Mapping

Abstract to Concrete
Mapping

Abstract Concepts

Model description
Section 3-2 

Abstract Syntax

Identified, Labelled, Typed, Constrained – Graphs
Section 3-3

Concrete Syntax

AGG Visual Notation + usiXML
Section 3-4

Semantic
Mapping

Abstract to Concrete
Mapping

 
Figure 3-1 Our language structure 
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Section 3-2 presents the conceptual content of our language. After introducing the 
concept of viewpoint, each model type will be described along with its constituent 
concepts. UML class diagrams are used for this purpose along with definitions in 
natural language.   
 
Section 3-3, presents the mathematical structures underlying our ontology, i.e., its 
abstract syntax. The notion of “directed, identified, labeled typed graph” is 
introduced, motivated and exposed. 
 
Section 3-4 presents the concrete syntax of our language. Two syntaxes are going 
to be presented: a visual (i.e., graphical) and a textual one (i.e., an XML language 
called UsiXML).   
 
 
 



 
 
 
 
3. An Ontology for User Interface Specification 
 
 

90

3.2 Conceptual Content of the Language  

 
Separation of concerns has been defined after Dikstra [Dijk76]. This principle 
states that the different aspects of a problem should be isolated from one to each 
other. Separation of concerns allows studying fractions of a matter in an 
independent manner while modularizing this matter. A concern gathers properties 
relevant to one perspective that can be maintained on an artifact.  
 
A viewpoint is the materialization of a concern. A viewpoint is associated with a 
perspective of the thing it models. For instance, in the field of architecture, it is 
possible to maintain several viewpoints on a building with respect to a specific 
property of this building. Preliminary sketches enable a global vision of the 
building to build. A “general prescription document” describes the main 
functionalities according to what was agreed with the customer. A “detailed 
prescription document” provides a detailed vision of the technical solutions that 
must be implemented to meet the general prescription document. The detailed 
prescription document may segregate aspects such as electrical equipment, or 
sanitary equipment.  
 
In an analogous manner, a structuring in viewpoints, in the context of software 
development processes, allows segregating different aspects of the application 
being built. Viewpoints may be organized in hierarchy according to the level of 
abstraction they provide. 
 
Several viewpoints are identified and motivated in [Calv03]. Our conceptual 
framework relies on this work. These viewpoints are hierarchically organized 
around a property of independence it holds with respect to the context in which 
the system is being built. Four viewpoints are defined:   
 
1. Final UI (FUI): is the operational UI i.e. any UI running on a particular 

computing platform either by interpretation (e.g., through a Web browser) or 
by execution (e.g., after compilation of code in an interactive development 
environment). The final UI has two possible representations, the code and the 
rendering. The code concerns the UI representation either as a set of 
instructions (in a procedural language) or as a set of assertions (in a declarative 
language), or a mix of both. The rendering of the system is a user perceivable 
representation of the UI.  
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2. Concrete UI (CUI): provides a specification of the user interface in terms of 

Concrete Interaction Objects and concrete relationships. Concrete objects and 
relationships provide a vocabulary that is as independent as possible of any 
programming language or toolkit used to implement the UI. A CUI is an 
abstraction of the FUI. A CUI defines widgets, layout and interface navigation 
and detailed behavior. Although a CUI makes explicit to the final Look & Feel 
of a FUI, it is still a mock-up that runs only within a particular environment. A 
CUI can also be considered as a reification (i.e., a concretization) of an AUI at 
the upper level.  

 
3. Abstract UI (AUI): provides a specification of the user interface in terms of 

Abstract Interaction Objects (AIO) and abstract relationships. Abstract 
objects and relationships provide us with a vocabulary that is as independent 
as possible of any modality (e.g., graphical interaction, vocal interaction, 
speech synthesis and recognition, video-based interaction, virtual, augmented 
or mixed reality). An AUI can also be defined as a canonical expression of the 
rendering of the domain concepts and tasks in a way that is independent from 
any modality of interaction. For example, in ARTStudio [Thev01], an AUI is a 
collection of related workspaces. The relations between the workspaces are 
inferred from the task relationships expressed at the upper level (task and 
concepts). AIOs are said to be widget-type independent (see Fig 2-6). An AUI 
defines interaction spaces by grouping AUIs (and implicitly tasks of the task 
model) according to various criteria (e.g., task model structural patterns, 
cognitive load analysis, semantic relationships identification). A set of abstract 
relationships is provided to organize AIOs in such a way that a derivation of 
navigation and layout is possible at the concrete level. An AUI is considered 
as an abstraction of a CUI with respect to modality.  

 
4. Task & Domain (T&D): describe the various tasks to be carried out by the 

user in interaction with the system along with the domain-oriented concepts 
as they are required by these tasks to be performed. Domain objects are 
considered as instances of classes representing the concepts manipulated. 

 
In addition to these viewpoints a context model is introduced to enable to 
associate any model element to the context(s) for which it is valid.  
 
From a software engineering background, it is interesting to note that our 
viewpoint structuring can be compared (Table 3-1) to the Model-Driven 



 
 
 
 
3. An Ontology for User Interface Specification 
 
 

92

Architecture proposal provided by the Object Management Group 
[OMG01,Mill03]. Model-Driven Architecture proposes a set of concepts and 
methodological recommendations to address the development of systems in a 
context characterized by a diversity of evolving computing platforms (note that 
the concept of platform remains very fuzzy in MDA proposal)..  
 
MDA viewpoints are: (1) a Computation Independent Model (CIM), sometimes 
called business model, shows a system in a way that is totally independent of 
technology (typically a business class diagram in OO methods). (2) A Platform 
Independent Model (PIM) provides a view of the system independently of any 
details of the possible platform for which a system is supposed to be built. (3) A 
Platform Specific Model (PSM) provides a view of a system that is dependent on a 
specific platform type for which a system is supposed to be built. (4) An 
implementation is a specification providing all details necessary to put a system 
into operation. 
 

Model Driven Architecture Our method 

Computing Independent Model Task and Domain  
Platform Independent Model (1) Abstract UI  

(2) Concrete UI  
Platform Specific Model — 

Implementation Final UI  

Platform Model Context Model 

Table 3-1 A comparison of MDA models and our method 

The current chapter describes the concepts needed to realize multi-path 
development of user interfaces. These concepts were elicited after a state of the 
art, partially presented in Chapter 2.  
 
Several ontological formats have been proposed in the literature to formalize 
ontologies. OWL Web Ontology Language [W3C04b] is mostly referenced in the 
literature. To describe the concepts of our ontology, UML class diagrams 
[OMG03a] are used along with natural language explanation and graphical 
illustrations when relevant. The use of class diagrams is motivated by the 
following arguments. First, our ontology was developed in the context of the 
“Cameleon european project”. Communicating easily the content of our ontology 
was a major requirement. UML appeared to us an ideal vector as this notation has 
become a de facto lingua franca in the software engineering community. Second, 
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UML is an appropriate notation for describing conceptual schemas [Mart98]. 
Third, UML is supported by a wide variety of tools (e.g., graphical editors, 
documentation, generation) which was not the case of most existing ontology 
languages (including OWL) when our ontology was initiated. Fourth, UML class 
diagrams proved very useful as a documentation for our XML-based textual 
syntax as one class is associated with one XML element, one class attribute is 
associated with one XML attribute, composition relationships are associated with 
embeddings of XML elements and finally generalizations are translated by XML 
schemas [W3C01] generalizations. 
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3.2.1 Task Model  

 
A task model describes the various tasks to be carried out by a user in interaction 
with an interactive system.  

 
After a comparison of a dozen of task modeling techniques [Limb03], an 
extended version of ConcurTaskTree (CTT) [Pate97] has been selected to 
represent user’s tasks along with their logical and temporal ordering. This choice 
has been done for the following reasons:  
 Software engineering orientation. CTT, proposes a set of task attributes and task 

relationships, that is more oriented to software engineering than psycho-
cognitive analysis (e.g., TKS [John92]).  

 Formalism. CTT combines hierarchical structuring of tasks to temporal 
ordering of elements with a subset of LOTOS operators. LOTOS is a 
grounded formal notation in software engineering for specifying the 
ordering of processes in time [Pate97]. 

 Communication. CTT is supported by a usable tool (i.e., CTTE) and a 
graphical notation that facilitates its dissemination and communication 
among practitioners.  

decomposition
temporal

symbol : string

unaryRelationship
binaryRelationship

independentConcurrencyconcurrencyWithInformationPassing

orderIndependencedisabling suspendResumeenabling

enablingWithInformationPassing

target
targetId : string

source
sourceId : string

taskRelationship
id : string
name : string

1..n

1

1..n

1

1..n1 1..n1

iteration fini teIteration
iterationNumber : integer

optional

deterministicChoice undeterministicChoice

taskModel

task
id : string
name : string
type : string
frequency : integer
importance : integer
structurationLevel : integer
complexityLevel : integer
criticity : integer
centrality : integer
terminationValue : string
userAction : string
taskItem : string

1..n
1

1..n
1

 
Figure 3-1 Conceptual view on the task model 
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A task model is therefore composed of tasks and task relationships (Fig. 3-1). 
Tasks are, notably, described with a name, and a type. Task type may be: user’s, 
interactive, system or abstract. A user task refers to a cognitive action like taking a 
decision, or acquiring information. User tasks are notably useful to predict a task 
execution time. An interactive task involves an active interaction of the user with 
the system (e.g., selecting a value, browsing a collection of items). A system task is 
an action that is performed by the system (e.g., check a credit card number, 
display a banner). An abstract task is an intermediary construct allowing a 
grouping of tasks of different types. Tasks can also have attributes. A task frequency 
attribute is an assessment of the relative frequency of execution of a task. Task 
frequency is evaluated on a scale from 1 to 5. A task importance attribute assesses 
the relative importance of a task with respect to main user’s goals. Task importance 
is evaluated on a scale from 1 to 5. A value of 1 means that a task has a low 
importance, 5 means that a task is very important. Frequency and importance are 
interesting attributes when it comes to adapt a UI to a constraining context 
imposing a UI to be pruned of some of its elements (e.g., as display space 
decreases it may be interesting to filter out widgets that allow the execution of 
unimportant tasks). 
 
Action type and action item enable a refined expression of the nature of leaf tasks 
(sometimes called action tasks or leaf tasks). This expression is based on a 
taxonomy introduced by [Cons03] to qualify a UI in terms of abstract actions it 
supports (Fig. 3-2). The taxonomy is twofold: a verb describes the type of activity 
at hand; an expression designates the type of object on which the action is 
operated. By combining these two dimensions a derivation of interaction objects 
supposed to support a task becomes possible. 
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Figure 3-2 Constantine's Canonical Abstractions 

 
Task relationships are of two main types: decomposition and temporal. 
 
 Decomposition enables representing the hierarchical structure of a task tree. 
 Temporal allows specifying a temporal relationship between sibling tasks of 

a task tree. LOTOS [Pate97] operators are used here. 
 
To illustrate task temporal relationships we propose an interpretation of each 
operator based on the “design by contract” paradigm introduced by [Meye97]. 
 
This paradigm promotes a use of a contract mechanism established with pre- and 
post conditions between different methods populating a (object-oriented) system. 
In this perspective, a pre-condition is an assertion on the system’s state that a 
method requires to guarantee to ensure a post-condition after its execution.   
 
To apply such a mechanism to task modeling concepts and their temporal 
relationships, two important types of assertions on state variables of the task 
model have to be defined: task termination and task initiation.  
 
Task termination represents a possible conjunction of events allowing asserting that 
a task has been performed. For instance, if a task consists in “inputting” a value, it 
will terminate when a system event confirms the proper input of this value. A task 
consisting, for a train driver, to monitor a value (e.g., the train speed), each 15 
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minutes, will be considered has terminated if the driver explicitly pushes on a 
physical button.   
 
Task initiation represents a possible conjunction of events allowing asserting that a 
task has been initiated. For instance, a user has initiated the input of a value but it 
was not sent to the database yet. 
 
In this perspective, the execution of an interactive task consists in “accumulating” 
events required to its termination. In consequence, it is, by principle, impossible 
to guarantee that any interactive task will terminate somewhere in the future as its 
termination conditions depend on a user task. With respect to the discussion in 
[Dix90], we could ironically argue that the user’s behavior is the first cause of 
non-determinism of interactive systems. For system tasks, a value may be 
transmitted from the system to assess the termination of an operation.  
 
We propose hereafter a set of tables providing an interpretation for each LOTOS 
operator. For each operator we define what a task requires to be initiated and 
what it ensures. A termination condition is also provided for each operator. This 
condition tells when two temporally related tasks can be considered as terminated. 
 

 Enabling (T1 has to be finished in order to initiate T2) 
 

 
 Non-deterministic choice (Once one task is finished the other cannot be 

accomplished anymore)   
 

T1  
>> 
T2 

T1 Requires: Ø 
Ensures: ?  

T2 Requires: T1.Termination  
Ensures : ?  

Termination T1.Termination AND T2.Termination   

T1  
π 
T2 

T1 Requires: NOT (T2.Termination) 
Ensures: ?  

T2 Requires: NOT (T1.Termination) 
Ensures : ?  

Termination T1.Termination XOR T2.Termination   
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 Deterministic Choice (Once one task is initiated, the other cannot be 

accomplished anymore) 
 

 
 Parallelism (T1 is interleaved with T2) 

 

 
 Sequential independence (Is equivalent to (T1>>T2) OR (T2 >>T1))  

 

 

T1  
[ ] 
T2 

T1 Requires: NOT (T2.Initiation) 
Ensures: ?  

T2 Requires: NOT (T1.Initiation) 
Ensures: ?  

Termination T1.Termination XOR T2.Termination   

T1  
||| 
T2 

T1 Requires: Ø 
Ensures: ?  

T2 Requires: Ø 
Ensures : ?  

Termination T1.Termination AND T2.Termination   

T1  
|=| 
T2 

T1 Requires:  NOT(T2.Initiation) XOR T2.Termination 
Ensures: ?  

T2 
Ensures : ?  

Termination T1.Termination AND T2.Termination   

Requires: NOT(T1.Initiation) XOR T1.Termination  
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 Deactivation (T2 may interrupt T1 before the termination of T1;. T1 cannot be 

resumed after T2 has terminated.) 
  

 
 Suspend/Resume (T2 may interrupt T1 before the termination of T1. Once 

T2 is finished, T1 may be resumed.) 
 

 
 About Information Passing 

 
Several temporal operators may be decorated with an information passing symbol: 
Enabling with information passing (symbol: “[]>”); parallelism with information 
passing (symbol: ”|[]|”). Information passing means that two tasks synchronize 
on a same piece of data. 
 
For these operators we have to introduce a new assertion on the task model state 
regarding the passing of data from one task to another, let’s call it data synchronized. 

T1  
[> 
T2 

T1 Requires: Ø 
Ensures:  Ø  

T2 Requires: T1.Initiation AND NOT(T1.Termination) 
Ensures: ?   

Termination Termination XOR T2.Termination   

T1  
|> 
T2 

T1 Requires: Ø 
Ensures: ?  

T2 Requires: T1.initiation 
Ensures: ?   

Termination T1.termination OR T2.Termination   
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 Enabling with information passing (T1 has to be finished in order to 

initiate T2 and T2 is synchronized with T1 on some piece of data) 
 

 
 Parallelism with information passing (T1 is interleaved with T2 while they 

synchronize on some data) 
 

 
Additional operators may affect a task in relation with itself, these operators are 
called unary temporal relationships (see Table 3-2).   
 
T* (Iteration) T can be iterated an infinite number of times 
T(n) (Finite Iteration) T can be iterated n times 
[T] (optional)  T is optional 

Table 3-2 Unary task relationships  

 
Several additional constraints may be formulated on the consistency of a task 
model:  
 
 There exists a maximum of one binary (i.e., temporal or decomposition) 

relationship between two tasks. 
 If a task is decomposed into another task then this last task must have a 

brother task. 

T1  
>> 
T2 

T1 Requires: Ø 
Ensures: ?  

T2 Requires: T1.termination and dataSynchronized 
Ensures : ?  

Termination T1.termination AND T2.Termination   

T1  
|[]| 
T2 

T1 Requires: NOT(T2.initiated) OR dataSynchronized 
Ensures: ?  

T2 Requires: NOT(T1.initiated) OR dataSynchronized 
Ensures : ?  

Termination T1.termination AND T2.Termination   
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 There is only one root task. This means that there is only one element with no 
decomposition relationship pointing to it. 

 

3.2.2 Domain Model 

 
A domain model describes the real-world concepts, and their interactions as 
understood by users and the operations that are possible on these concepts 
[DSou99].  
 
The domain model is generally developed by software engineers and given “as is” 
(often under the form of an Application Programming Interface (API)) to UI 
designers. The rest of the job consists of connecting the UI to the functional core 
API while respecting some architectural principles (e.g., Pac [Cout87], MVC 
[Reen79,Kras88]). 
  
As shown in Chapter 2, many formal notations have been introduced to represent 
systems of concepts: frames, semantic networks, entity relationship schemas, 
structured data models. We selected UML class diagrams as the basis of 
expression for our domain model. We considered UML class diagrams as 
Extended Entity Relationship model (EER) [Teor86]. The main reason for this 
choice is that UML has become a lingua franca in the domain of software 
engineering (Req. 11: Standards) and is widely used in industrial practice.  
 
Our meta-model of an UML class diagram is presented in Fig. 3-3. Several 
features have been added to the initial UML standard in order to better tackle the 
problem of transformational development of UIs. For instance, the domain n of 
values attached to attributes is described with a richer precision in order to allow 
widget selection (e.g., enumerated domains can be described extensively). 
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Figure 3-3 Conceptual model for a domain model 

 
Domain model concepts are classes, attributes, methods, objects and domain 
relationships.  
 
A class describes the characteristics of a set of objects sharing a set of common 
properties. A class is described with a name. A class may be composed of two 
types of features: attributes and methods.  
 
An attribute enables a description of a particular feature of a class. The type of an 
attribute refers to common data types found in most programming language i.e., 
Boolean, char, string, integer, float. The type attribute may also make reference to 
an object type. The cardinality of an attribute indicates the number of values an 
attribute may be associated with. A cardinality can be specified by providing two 
integers: a minimal cardinality and a maximal cardinality. An original typology 
allows characterizing a type of domain for an attribute. Indeed, 
attributeDomainCharacterization takes the value of: interval, continuous interval, 
discrete interval, linear interval, circular interval, set[n] (where n is the number of 
possible values in an attribute domain). When used in combination with a task 
model, this typology helps to map domain attributes to a type of interaction object 
by which it will be rendered. For instance, a “choose element” task on an attribute 
with a circular interval enables the derivation of a (multi-state) toggle button.  
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Methods (in this context) are presences which are called either by objects of the 
domain or by user interface components. Methods manipulate object’s attributes. 
Methods are, here, described with their signature i.e., with their name, type, and 
parameters. A set of predefined method names inspired from object oriented 
patterns are proposed to facilitate the definition of generic design heuristics. For 
instance, the CRUD pattern is used to refer to any method realizing a Create, 
Read, Update or Delete operation [Larm01].  
 
Objects are instances of a class. An object is composed of attribute instances which 
may have values and define the state of an object. 
 
Finally, domain class relationships describe various types of relationships between 
classes. They can be classified in three types: generalization, aggregation, and ad hoc. 
Class relationships are described with several attributes enabling the specification 
of role names and cardinalities.  
 

3.2.3 Abstract User Interface Model 

An Abstract User Interface (AUI) model is a user interface model that represents a 
canonical expression of the renderings and manipulation of the domain concepts 
and functions in a way that is as independent as possible from modalities and 
computing platform specificities.  
 
An AUI (Fig. 3-4) is populated by Abstract Interaction Objects (AIO) and abstract user 
interface relationships. These concepts constitute a vocabulary that is independent of 
the modality and the computing resources for which a system is targeted at. 
 
A modality (also called interaction technique) can be defined more precisely, after 
[Niga95], as the coupling of a physical device d with an interaction language L: 
<d, L>. Our language supports, at the concrete level, two modalities: speech (i.e. 
auditory) input and output and graphic (i.e., graphical) input and output. 
 
Abstract Interaction Object (AIO) may be of two types Abstract Individual 
Components (AIC) and Abstract Containers (AC). 
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Figure 3-4 Concept model for abstract user interfaces  

 
An Abstract Individual Component (AIC) is an abstraction that allows the description 
of interaction objects in a way that is independent of the modality in which it will 
be rendered in the physical world. Fig. 3-5 presents three possible reification of a 
set of abstract interaction objects for, respectively from left to right, tactile 
modality, auditory modality and 2D graphical modality. An AIC may be 
composed of multiple facets. Each facet describes a particular function an AIC 
may endorse in the physical world. Four main facets are identified: 
 
 An input facet describes the input action supported by an AIC. 
 An output facet describes what data may be presented to the user by an AIC. 
 A navigation facet describes the possible container transition a particular AIC 

may enable. 
 A control facet describes the links between an AIC and system functions i.e., 

methods from the domain model when existing. 
 
A single AIC may assume several facets at the same time. The AIO that reifies 
this multi-facetted AIO will assume all those ‘functionalities’. For instance, a CIO 
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may display an output while accepting an input from a user, ensure a transition 
between windows and trigger a method defined in the domain model. 
 

 
Figure 3-5 Different reifications in different modalities for a set of control AIC (courtesy of 

C. Stephanidis)  

 
An Abstract Container (AC) is an entity allowing a logical grouping of other abstract 
containers or abstract individual components. AC are said to support the 
execution of a set of logically/semantically connected tasks. They are called 
presentation units in [Boda95c] and work spaces in [Thev01]. An AC may be 
reified, at the concrete level, into one or more graphical containers like windows, 
dialog boxes, layout boxes or time slots in the case of auditory user interfaces.  
 
Abstract User Interface Relationships (AUI relationship) are relationships that can be 
drawn between abstract interaction objects of all kinds. 
 
Five types of abstract relationships may be defined at this level: 
 
 Decomposition relationship allows specifying a hierarchical structure of abstract 

containers and abstract individual components. 
 AbstractAdjacency relationship indicates that two AIO are logically adjacent.   
 Spatio-temporal relationship allows a specification of a very precise layout in 

time or space in a way that is independent of any modality. For this purpose, 
the thirteen possible temporal relationships from Allen [Alle83] are 
considered. Basically, there are two types of temporal relationships (Table 3-
3): before (sequential relationship) and simultaneous (that can be equal, meets, 
overlaps, during, starts, or finishes relationships). Each basic relationship has 
an inverse relationship, except the equal relationship which is symmetric. 
Although Allen relationships have been introduced to characterize temporal 
intervals, they are suitable for expressing constraints for space and time thanks 
to a space-time value. For example, in an “x before y” relationship, there is a 
space-time value greater than zero between x and y while in the “x meets y” 
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relationship the space-time value is equal zero between x and y. As 
relationships are abstract at the AUI level, the space-time value is left 
unspecified until needed at the CUI level. 

 
Relationship Presentation Relationship Presentation 
x before y (1) x after y 

(8) 
 

x meets y (2) 

 

y meets x 
(9) 

 
x overlays y (3) 

 

y overlays x 
(10) 

 
x starts y 
(4) 

 

x starts y 
(11) 

 

x during y (5) 

 

y during x 
(12) 

 
x finishes y (6) 

 

y finishes x 
(13) 

 
x equal y (7) 

 
 

Table 3-3 Allen relationships and their inverse. 

 
Example 1: a before relationship can be used to specify that an AIO 
InputFirstname will be presented before another AIO InputLastname. At the 
CUI level, this will be turned into for instance: (1) In a graphical desktop: an 
edit box for entering the first name, followed by a second edit box for the last 
name in the same dialog box. In this case, the relationship represents in a 2-
dimensional space along with a particular space interval. (2) In a mobile 
phone interface: a field for entering the first name is first displayed and when 
the user has completed the entry, a second field for entering the last name is 
displayed. In this case, the relationship represents navigation between two 
screens of a UI system.  
 
So far, Allen relationships allow expressing physical constraints according to 
one dimension (1D) only: time or space. Allen relationships can be 
generalized to n dimensions for expressing similar constraints in a nD space, 
and consequently gain in precision. Here, the 2D generalization is kept to 
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express space relationships more precisely in any type of UI involving spatial 
expressions [Sung02, Lee03]. To exemplify this, let us assume two AIOs A, 
B. The spatial relationship between A and B is defined as follows: 
Spatial_Composition (A,B) = (Ri , Rj), where i, j ∈ {1,…,13}, Ri is the identifier 
of the spatial relationship between A and B according to the X axis and Rj is 
the identifier of the spatial relationship between A and B according to the Y 
axis in the matrix reproduced in Fig. 3-7. When a spatial arrangement is 
expressed only according to one dimension, Ri = ∅ or Rj = ∅. 
 

R1,1 R2,1 R13,1

R13,13

R1,2

R1,12

R1,3

R1,13 R2,13 Ri,13

R1,11

R1,j

Ri,1R1,1 R2,1 R13,1

R13,13

R1,2

R1,12

R1,3

R1,13 R2,13 Ri,13

R1,11

R1,j

Ri,1

 
Figure 3-6 Matrix of 2D Allen Relationship 

 
 Dialog control relationship allows a specification of a flow of control between 

the abstract interaction objects. Like for task models, LOTOS (see Sec. 3.2.1) 
operators are used for this purpose. For instance a relationship 
AIC1.EnterCountry []> AIC2.EnterProvince, indicates that AIC2 cannot be 
initiated while AIC1 is not achieved and that AIC1 has provided a value for the 
data on which the two components synchronize with. Like for tasks, an 
interpretation for each type of LOTOS operator may be provided in terms of 
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pre/post-conditions, termination and initiation states. Dialog control 
relationships are defined in a same manner at the concrete UI level.   

 Mutual emphasis relationship allows specifying that two components should be 
somehow differentiated at the concrete level. This relationship may be useful 
in a user interface where the probability of confusing two UI elements is high 
(e.g., in an airplane cockpit, a field displaying the angular speed and the 
absolute speed). 

 
An additional constraint may be formulated about abstract models: 
 
 There is only one root in the decomposition tree of abstract containers.   

3.2.4 Concrete User Interface Model  

A Concrete User Interface (CUI) model is a UI model allowing a specification of an 
appearance and behavior of a UI with elements that can be perceived by users  
 
By definition, a CUI is modality dependent as any CUI instance refers to the 
interaction modalities that have been selected for this UI. This reference can be 
unique in case of a “mono-modal” CUI or multiple in case of a multimodal CUI. 
Our language supports two modalities for the moment, speech and graphic. In 
reference to the definition of the modality found in [Niga95] and provided in Sec. 
3.2.3. Speech modality is a combination of speech input and speech output. 
Speech Input is described as the couple <microphone, pseudo-natural language 
NL>, where NL is defined by a specific grammar. Speech output is similarly 
described as the couple <speech synthesizer, pseudo natural language NL>. 
Graphic modality is composed of a combination of graphic input and graphic 
output. Graphic input is described in terms of <pointing device PD, direct 
manipulation> where PD is generally a mouse. Graphic output corresponds to 
the couple <screen, drawing language> where a drawing language can be, for 
instance,  procedural or  declarative, pixel based or vector based. 
 
In contrast to its modality dependence, a CUI remains toolkit independent as no 
CUI instance does refer to any physical element (i.e., toolkit elements or widget) 
of the computing platform. Nonetheless, a CUI description can be detailed 
enough to allow a complete rendering of a user interface. 
 
A CUI model (Fig. 3-7) is composed of Concrete Interaction Objects (CIO) and concrete 
relationships. Concrete interaction objects and relationships are further refined into 
graphical objects and relationships and auditory objects and relationships. Other 
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types might complement these two categories as more modalities could be taken 
into account. 
 

 
Figure 3-7 Root elements of the concrete user interface model 

 
A Concrete Interaction Object (CIO) is defined as an entity that users can 
perceive and/or manipulate (e.g., a push button, a list box, a check box, a sound). 
A CIO realizes an abstraction of widget sets found in popular toolkits: graphical 
(Java Swing [Ecks98], HTML 4.01 [W3C99], Flash DRK6 [Macr04]) and auditory 
(earcons [Crea99] and VoiceXML 2.0 [W3C04]). In other words, CIOs allows an 
expression of UI elements that is independent of their actual rendering. Fig. 3-8 
shows an example of different renderings for a menu element on three different 
platforms. 
     

 
Figure 3-8 Examples of different graphical CIOs corresponding to a selection AIO 

[Courtesy of C. Stephanidis, ICS Forth] 
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CIOs are further classified depending on the modality they allow to support: 
graphical and auditory (Fig. 3-7). Graphical and auditory CIOs are further 
decomposed into containers and individual components. We have, thus, elements 
called Graphical Containers (GC), Graphical Individual Components (GIC), 
Auditory Containers (AC), Auditory Individual Components (AudIC). 
 
The graphical part is the most detailed part of the language as a consequence of 
the complexity of this type of UI compared to pure auditory ones.  
 

 
Figure 3-9 Graphical containers 

 
Graphical containers are detailed in Fig. 3-9. They are classified in the following 
types: 
 

 A window is a container that is found in nearly all 2D graphical toolkits. A 
window is equipped with native behavior such as close, tile, restore, 
minimize, maximize. A window may contain other graphical containers. 

 
 A tabbed dialog box can be viewed as a set of windows stacked onto each 

other whose access in enabled by a set of tabs. Tabbed dialog boxes are 
composed of tabbed items.    
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 A table is composed of cells, a table may contain any other graphical 

container, including another table. A table is not considered, as in some 
languages (e.g., HTML 4.0), a layout mechanism.  

 
 A dialog box is an independent box equipped by default of a confirmation 

or cancellation control. 
 

 A menu bar is a container type that hosts menu and menu items.  
 

 A box is the basic layout mechanism in our language. A box can only 
contain another box of a graphical individual container. We use a Tex-like 
[Mitt04] boxing system, allowing a very precise description of the layout 
while omitting any reference to an absolute coordinates positioning of 
elements. Boxes may be of several types (differentiated by their attribute 
Type): horizontal boxes, vertical boxes, horizontal grid and vertical grid. 
Fig. 3-10 shows an example of an embedding of boxes within a window. 
Window1 contains a vertical box (VBox1). This vertical box is further 
decomposed into a vertical box (VBox2) and a horizontal box (HBox1). 
The individual components are displayed accordingly to their mother box 
type.    

 

 
Figure 3-10 Illustration of the embedded box system to specify a 2D layout 

 
Graphical Individual Components (GIC) are detailed in Fig. 3-11. Text components 
represent text-based components like a label, an input field, a password field, a 
multi-line input field, a complex textual output as a rtf file. A property (isEditable) 
allows differentiating text components subject to input or not. Image components 
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represent all images and can be divided into sub-zones. Video components enable 
specifying the insertion of a streaming of images into a UI. A whole range of CUI 
enables control, or choice: button, toggle button, check boxes, radio buttons. Spin, combo 
box and tree can be populated with an item CIO. A menu is populated with menu 
items. A slider may be associated with one or two cursors. Common composed 
components are also proposed: drawing canvas, color picker, file picker, date picker, hour 
picker, and progression bar.  
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Figure 3-11 Graphical Individual Components Types 
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Auditory interaction objects are represented in Fig. 3-12. Auditory Containers represent a 
logical grouping of other auditory containers or auditory individual components. 
Auditory individual components are of two types: auditory output which may consist in 
music, voice or a simple “earcon” (i.e., an auditory icon) or auditory input which 
is a mere time slot allowing the user to provide an auditory input using her voice, 
or any other physical device able to produce sound. 
 

 
Figure 3-12 Graphical interaction objects and auditory interaction objects (detail from 

CUI) 

 
CUI relationships are exposed in Fig. 3-13. Similarly to Concrete Interaction 
Objects they are divided into auditory relationships and graphical relationships. Dialog 
control relationship can be defined between both types of interaction objects.  
 
Auditory relationships are of two types: auditory transition enables to specify a 
transition between two auditory containers. An attribute transition type 
determines the type of transition e.g., open, mute, reduce volume, or restore 
volume. A transition effect allows to specify an auditory effect to the transition 
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e.g., fade-out, fade-in. A relationship auditoryAdjacency indicates a time adjacency 
between two auditory components. A delay expressed in seconds indicates a time 
space between these components. 
 
Graphical relationships are of four types. Graphical transition specifies navigation links 
between the different containers populating the UI. Transition types are : open, 
close, minimize, maximize, tile and restore. Some transition effects may be 
specified like “box-out”, “box-in”, “fade-out”, “fade-in”. The source of a 
graphical transition is generally a graphical individual component. An alignment 
may also be specified among any individual component belonging to the same 
window. Adjacency indicates that two components are topologically adjacent. A 
graphical emphasis indicates that two interaction objects must be differentiated 
using rendering artifacts (e.g., using two different colors).  
 
Dialog control allows a specification of a flow of control between the concrete 
interaction objects. As so a dialog control may be specified independently of a 
task model. LOTOS (see Sec. 3.2.1) operators are used for this purpose. For 
instance a relationship CIC1.EnterCountry []> CIC2.EnterProvince, indicates that 
CIC2 cannot be initiated while CIC1 is not terminated and that CIC1 has provided 
a value for the data on which the two component synchronize with. An 
interpretation for each type of LOTOS operator may be provided with pre/post 
conditions, termination and initiation states. A Dialog control at the concrete level 
is differentiated from dialog control at the abstract level. While initiation and 
termination of objects cannot be fully specified at the abstract level (indeed, 
abstract objects cannot be mapped onto events), they may be at the concrete level. 
For instance, an event may be associated with the termination of a CIO e.g., a 
container terminates if such button is pressed. 
 
Any CIO may be associated with any number of behaviors (see Fig. 3-14).  
A behavior is the description of an event-response mechanism that results in a 
system state change. The specification of a behavior may be decomposed into 
three types of elements: an event, a condition, and an action. 
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Figure 3-13 Relationships ate the concrete user interface level 

 
An event is a description of a run-time occurrence that triggers an action. Some 
typical events are described in table 3-4. They consist of any system event (i.e., 
issued from a process belonging to the domain), user interface event (i.e., issued in 
the context of the user interface). For instance movePointer([X], [device]) refers to 
an event that consists in moving a pointer in the context of a CIO [X]. Events 
cannot make any reference to coordinates, as CUI does not. Like User Action 
Notation [Hart90], the concept of context of an object (identified by its id) is used 
to reference a display area where a particular object is rendered. Note that, the 
negative expression of an object context is also allowed. For instance, 
depress(NOT[X]), [device]), refers to a depress event (e.g., a mouse down) outside 
the context of [X]..[X] can also be unimportant in the realization of an event in 
such a case a value null is referenced. The [device] parameter makes reference to 
the device from which the event is generated. Each device or device part, is 
referenced in a device model (not in the scope of this dissertation) with a unique 
identifier. 
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Figure 3-14 Behavioral specification at the concrete level 

 
CIO Events  
System event ellapsedTime(n), systemEvent(eventName)  
Graphical User Interface Events  
All graphical CIOs movePointer(X,device), pointerOver(X,device), moveOutPointer(X,device), click(X,device), 

doubleClick(X,device), depress(X,device), release (X,device), dragOver(X,Y,device),  

dragDrop(X, Y,device), hasFocus(X), lostFocus(X). 

graphicalContainer resize(xFactor,yFactor) 

textComponent  Change 

Slider move(cursor,x) 

Spin spinUp, spinDown 

Auditory User 
Interface 

depress(tone) 

Table 3-4 List of typical events 

Events can be composed into more complex event expressions using a subset of 
the LOTOS operators introduced earlier (Sec. 3.2.1). “|||” indicates a 
concurrence of events (to be interpreted as a disjunction). “>>” indicates a strict 
sequence of events. “|=|” indicates an order independent sequence of events. 
“(n)” indicates a finite iteration of events where n is an integer indicating the 
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iteration factor. For instance, click(Button1, Mouse1LeftBut) |=| depress(null, 
KeyBrd_Z) is an event that is an order independent composition of a mouse click 
on a button and a keyboard depress.  
 
A condition is the expression of a state that has to hold true before (pre-condition) 
or after (post-condition) an action is performed. A condition may be positive or 
negative. We express condition as patterns (i.e., a partial description of a state) on 
the user interface specification itself. Conditions may be composed using 
traditional logical operator. “AND” indicates a conjunction of conditions. “OR” 
indicates a disjunction of conditions. “XOR” indicates an exclusive disjunction of 
conditions. “IMPLIES” indicates an implication between two conditions.  
 
An action is a process that results in a state change in the system. An action can be 
of three types: a method call, a transformation system, or a transition.  
 
A method call is a call to a method that is external to the UI. If a domain model 
exists, all method calls must reference a method belonging to this model. A 
method call is normally specified with the name of the method (under the form 
Class.methodName), but other referencing techniques are not forbidden. The 
method call parameters can be specified by making a reference to the value of a 
property of an object belonging to the CUI. 
 
A transformation system is the expression of any property change at the UI level. We 
use a mechanism to specify property changes on the UI. This mechanism is 
similar to the one that will be introduced in Chapter 4. To avoid too much 
forward reference, it can be said that a transformation system can be explained as 
follows: when a pattern is found in CUI specification, changes should occur on 
the elements matching the pattern. A transformation system might be, for 
instance, “when a green button is found in the specification, change the color 
property of this button to red” or “For all text components belonging to the main 
window, increase their font by a factor of 2”. 
  
A transition, also called navigation, is a description of a change in the container’s 
visibility property of a user interface system. A transition has a source (a 
navigation individual component) and a target (generally a container). Depending 
on the type of modality, transitions may be of different types (see above in this 
Section). 
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3.2.5 Context Model  

 
A context model (Fig. 3.15) is a model describing the three aspects of a context of 
use in which an end user is carrying out an interactive task with a specific 
computing platform in a given surrounding environment [Thev01]. Consequently, 
a context is hereby defined as a triple of the form <e, p, u> where e is an element 
of the environments set considered for the interactive system, p is an element of 
the platforms set considered for the interactive system and u is an element of the 
users set for the interactive system. 
 
A User model consists of a user stereotypes. A user stereotype is any set of users 
sharing similar characteristics. Stereotypes can be arranged in hierarchy. As so, a 
stereotype can be decomposed into sub-stereotypes. 
 
A Platform model captures relevant attributes for each couple software-hardware 
platform and attached devices that may significantly influence the context of use 
in which the user is carrying the interactive task. Our context model has been 
developed in [Flor04]. A platform specification can consist of a series of physical 
hardware devices (hardware platform components), a series of software 
components (software platform), the characteristics of the network to which the 
platform is connected, the capability to support wireless (WapCharacteristics), and 
the capability of browsing web pages (BrowserUA). 
 
An Environment model describes any property of interest of the physical 
environment where the user is using the UI on the computing platform to 
accomplish her interactive tasks. Such attributes may be physical (e.g., lighting 
conditions), psychological (e.g., level of stress), and organizational (e.g., location 
and role definition in the organization chart). 
 
The context model will not be used in the transformational process described in 
this dissertation. Although any UI specification model may be attached to any 
number of context specification thanks to the “hasContext” relationship 
described in next section. 
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Figure 3-15 Context model 

 

3.2.6 Inter-Model Relationships  

Model integration is a well-known issue in transformation driven development of 
UI [Puer99]. Rather than proposing a collection of unrelated models and model 
elements, our proposal provides a designer with a set of pre-defined relationships 
allowing a mapping of elements from heterogeneous models and viewpoints (Fig. 
3-16). This can be useful, for instance, for enabling the derivation of the system 
architecture (mappings between domain and CUI/AUI models), for traceability in 
the development cycle (reification, abstraction and translation), for addressing 
context sensitive issues (has context), for dialog control issues, for improving the 
preciseness of model derivation heuristics.  
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Figure 3-16 Inter-Model Mappings 

 

3.2.6.a Mappings between the domain models and the UI models  

 
Several relationships can be defined to explicit the relationships between the 
domain model and the UI models (both abstract and concrete):  
 
 Observes is a mapping defined between an interaction object and a domain 

model concept (either an attribute, or an output parameter of a method). This 
mapping may be interpreted as follows: the content of a UI object must be 
synchronized when   

- A mapped attribute is modified. The new state resulting from this 
modification should be presented on the UI (the notion of view could 
be of interest here). 

- A mapped method is executed. Its output parameters are displayed on 
the UI.   

 Updates is a mapping defined between an interaction object and a domain 
model concept (specifically, an attribute). “Updates” describes the situation 
where the attribute of an object in the domain model must be synchronized 
with the content of a UI object.    

 Triggers is a mapping defined between an interaction object and a domain 
model concept (specifically, an operation). This mapping describes that a UI 
object is able to trigger a method from the domain model.   

3.2.6.b Mappings to ensure the traceability of the development cycle  

 
Our ontology is designed to be integrated in a framework where models are 
transformed into other models (see Chapter 4). This framework defines several 
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types of transformations in order to achieve multi-path development of user 
interfaces.  Traceability mappings are helpful for keeping a trace of the execution of 
the transformations. For instance it may be interesting to know which concrete 
object reifies which abstract object, or vice versa, which abstract object is an 
abstraction of which concrete object. 
  
 Is Executed In maps a task to an interaction object (a container or an individual 

component) allowing its execution. This relationship is notably useful for 
deriving a dialog control component, for ensuring that all tasks are supported 
appropriately by the system.  

 Is Reified By indicates that a concrete object is the reification of an abstract one 
through a reification transformation.  

 Is Abstracted Into indicates that an abstract object is the reification of a concrete 
one through an abstraction transformation.  

 Is Adapted Into indicates that an interaction object (abstract or concrete) is 
adapted into another one as a result of an adaptation transformation.  

3.2.6.c Other mappings 

Other useful mappings are:   
 
 Manipulates maps a task to a domain concept. It may be an attribute, a set of 

attributes, a class (or an object), or a set of classes (or a set of objects). This 
relationship is useful when it comes to find the most appropriate interaction 
object to support a specific task.  

 Has Context maps any model element to one or several contexts of use.  
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3.3 Abstract Syntax: graphs as underlying formalism 

 
The abstract syntax is defined as the hidden structure of a language, its 
mathematical background [Meyer90]. Our abstract syntax takes the form of a, so 
called, “enriched” directed graph. That is to say an identified, labeled, typed, 
constrained graph. A graph structure naturally describes a set of concepts and 
their relationships, it is strongly correlated to the concept of ontology [John01]. 
Graph structures are appropriate when the number of relationships among the 
concepts of an ontology become too large to represent them with another 
mathematical structure (e.g., lists, trees, sets). As argued by [Sowa92] graphs are 
logically precise (Req. 4: Formality), humanly readable (Req. 3), and 
computationally tractable (Req. 5: machine readable). They have been used, for 
instance, to represent artifacts like code structures, system requirements, expert 
knowledge, causal systems, probabilistic systems, social structures. Additionally, 
extensive collections of algorithms for their manipulation are provided in the 
scientific literature. 
 
In this section, we use the method introduced in [Mens99] to progressively 
consolidate our enriched graph structures that is the foundation of our ontology. 
 

3.3.1 General Definitions  

 

 
 

 
 

Definition 1.  A graph g is defined by a quadruple ( g g g gV E source target, , , ) 
such that:  

1. gV is a finite set of vertices (or nodes);  
2. gE  is a finite set of edges (or arcs);  
3. gsource : E →  V, is an injective function that assigns a source 

to each edge of E;  
4. gtarget : E → V, is an injective function that assigns a target to 

each edge of E. 

Definition 2. g is said to directed iff 
( ) ( )g i j g i je E v v V source e v target e v∀ ∈ ,∃! , ∈ | = ∧ =   
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3.3.2 Category Theory and Graphs Morphisms 

 
Category theory is a generalized mathematical theory of structures. One of its 
goals is to reveal the universal properties of structures of a given kind via their 
relationships with one another [Marq97].  
 
A category describes a set of objects that have an identical mathematical structure, 
and for which there exists morphisms between those objects and preserving this 
structure [Fokk92]. The major benefit of working with categories is that any 
property established for a category can established for any structure of this 
category.  
 
Graphs are objects of a category of graphs with morphisms as structure 
preserving mappings between them.  
 

Notation 1. Implicit graph reference. The notation [ ]gSetName  (e.g. gV ) or 
[ ]gFunctionName  (e.g. gsource ) will be replaced by [ ]SetName  (e.g. V ) or 
[ ]FunctionName  (e.g. source ) if no confusion is possible (i.e. only one graph 
is concerned).  

Notation 2. Graph component or element. The expression graph 
component or element refers undiscernibly to vertex or edges.  

Notation 3. Implicit function reference. Let x  stand for a graph 
component, [ ]( )FunctionName x  denotes a function applied to x . In case of 
ambiguity : [ ] ( ) [ ]( )v v VFunctionName x FunctionName xσ ∈=  and 
[ ] ( ) [ ]( )e e EFunctionName x FunctionName xσ ∈=   
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Other properties of interest of graphs morphisms are :  
 

 
 
Thanks to morphisms, our initial graph definition (definition 1) will be extended 
with several features (i.e., identifies, label, type, constraints) while being sure to 
benefit of all theoretical results provided for the graph category. All features are 
then consolidated into a single graph definition to form the mathematical basis of 
our language. Such a way to proceed is found in [Mens99] 

3.3.3 Identified Graphs  

 
An identification function is introduced in order to univocally identify each node 
or edge of a graph. This function is useful as it allows differentiating instances of a 
same node that would be considered identical without this identifier. 
 

 
 

Definition 4. Interesting graphs morphisms properties: 
1. If vm  and em  are injective (resp. surjective) m  is injective (resp. 

surjective).  
2. If m  is injective and surjective (i.e. bijective), m is said to be isomorphic 

(written :m G H≅  or simply G H≅ ).  
3. If vm , em  are total functions, m is said to be a total graph morphism. 

Otherwise m  is said to be a partial graph morphism.  

Definition 3.  Let g = ( g g g gV E target source, , , ) and h = 
( h h h hV E target source, , , ) be two Graphs; a graph morphism from g to h is a 
pair ( )v em m m= ,  of mappings v g h e g hm V V m E E: → , : → , such that:  

1. ( ) ( ( ))g h e v ge E source m m source e∀ ∈ , =  (source nodes are preserved);  
2. ( ) ( ( ))g h e v he E target m m target e∀ ∈ , =  (target nodes are preserved).  

Definition 5.  Let L = (NodeId, EdgeId) be a pair of disjoint and finite sets of 
predefined labels. g  is said to be a (I)-graph iff g  is a tuple (g, Id) such that:  

1. g  is a graph (see definition1);  
2. Id is a pair of bijective functions, ( )v eId Id Id= ,  where 

vId V NodeId: →  and eId E EdgeId: → .  
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From definition 5 and 6, it can be said that (I)-Graph is a category with (I)-Graphs 
as objects and identifier preserving morphisms as morphisms.  
 
Note that  vId  and eId   are bijective functions. Two nodes or edges cannot share 
the same identifier and for each identifier is univocally mapped onto an identifier. 
In mathematical term this can be expressed as follows:  
 

, ( ), ( ) ( )x y V E Id x Id y x y∀ ∈ ∪ = ⇒ =  ( Id  is injective).  
, ( ) | ( )y NodeId EdgeId x V E Id x y∀ ∈ ∪ ∃ ∈ ∪ =  ( Id  is a surjection).  

3.3.4 Labeled Graphs 

 
A label attached to each node and edge is introduced in order to label graph 
components with a name.  
 

 
 

Definition 7.  Let L = (NodeLabel, EdgeLabel) be a pair of disjoint and finite 
sets of predefined labels. g  is said to be a (L)-graph iff g is a tuple (g, Label) 
such that:  

1. g is a graph (see definition 1) ;  
2. Label is a pair of functions, Label = ( v eLabel Label, ) where 

vLabel V NodeLabel: →  and eLabel E EdgeLabel: → .  

Definition 6.  Let g  and h  be two (I)-Graphs; Let m  be a pair ( )v em m m= ,  
of mappings v g h e g hm V V m E E: → , : → ; m  is an identifier preserving (I)-
Graph morphism if:  

1. ( ) ( ( ))g g e v ge E source m m source e∀ ∈ , =  (source nodes are preserved);  
2. ( ) ( ( ))g h e v ge E target m m target e∀ ∈ , =  (target nodes are preserved);  
3. ( ) ( )v v gId g Id g m=  (nodes Id are preserved);  
4. ( ) ( )e e gId g Id g m=  (edges Id are preserved).  
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From definition 7 and 8, it can be deduced that (L)-Graph is a category with (L)-
Graphs as objects and label preserving morphisms as morphisms.  
 
An important discussion on the nature of labeling functions is to be made. 
Indeed, the property of this function varies following the level of abstraction on 
which it is defined.  
 
When our graph structure is exploited to describe a meta-model, a labeling 
functions vLabel  and eLabel  is totally bijective. This property can be 
mathematically expressed as follows:  
 

, ( ), ( ) ( )x y V E Label x Label y x y∀ ∈ ∪ = ⇒ =  ( Label  is injective).  
, ( ) | ( )y NodeLabel EdgeLabel x V E Label x y∀ ∈ ∪ ∃ ∈ ∪ =  ( Label  is a 

surjection).  
 
This means that each graph component is univocally associated with a label and 
that each label is associated with a graph component. At this level identification 
and labeling functions are partly redundant.  
 
But our graph language is supposed to describe meta-types as well as their 
instances (these instances being UI models). In this case the labeling functions 

vLabel  and eLabel  are only partial functions. This means that two UI model 
elements may share a same label.   
 
Another important remark to be made is that the label is not used to specify a 
graph component type. An additional typing mechanism is introduced for this 
purpose.  
 

Definition 8. Let g  and h  be two (L)-Graphs; Let m  be a pair ( )v em m m= ,  
of mappings v g h e g hm V V m E E: → , : → ; m  is an label preserving (L)-

Graph morphism if:  
1. ( ) ( ( ))g g e v ge E source m m source e∀ ∈ , =  (source nodes are preserved);  
2. ( ) ( ( ))g h e v ge E target m m target e∀ ∈ , =  (target nodes are preserved);  
3. ( ) ( )v v gLabel g Label g m=  (node labels are preserved);  
4. ( ) ( )e e gLabel g Label g m=  (edge labels are preserved). 
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3.3.5 Constrained Graphs  

 
Constraining functions that operate on nodes or edges allow us to attach to any 
node or edge an arbitrary number of constraints. Constraints can consist in the 
expression of cardinality constraints, restrictions on the domain or the co-domain 
of certain functions, etc. It is proposed to express these constraints with first 
order logic expressions.  
 

 
 

 
 
From definition 9 and 10, it can be deduced that a (C)-Graph is a category with 
(C)-graphs as objects and constraint preserving morphisms as morphisms.  
 

3.3.6 Typed Graphs 

 
Typing allows classifying nodes and edges by attaching types to them. Attaching 
several nodes (or edges) to the same types indicates a commonality in terms of 
properties between these nodes (or edges). 

Definition 10.  Let g  and h  be two (C)-Graphs; Let m  be a pair 
( )v em m m= ,  of mappings v g h e g hm V V m E E: → , : → ; m  is an constraint 

preserving (C)-Graph morphism if:  
1. ( ) ( ( ))g h e v ge E source m m source e∀ ∈ , =  (source nodes are preserved);  
2. ( ) ( ( ))g h e v ge E target m m target e∀ ∈ , =  (target nodes are preserved);  
3. ( ) ( )v v gCo g Co h m=  (nodes constraints are preserved);  
4. ( ) ( )e e gCo g Co g m=  (edges constraints are preserved). 

Definition 9.  Let C = (NodeConstraint, EdgeConstraint) be a pair of disjoint and 
finite sets of node constraints and edge constraints. g  is said to be a (C)-
graph iif g  is a tuple ( g Co, ) such that:  
 

1. g  is a graph (see definition 1);  
2. Co  is a pair of surjective functions, Co  = ( )v eCo Co,  where 

vCo V NodeConstraint: →  and eCo E EdgeConstraint: → .  
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From definition 11 and 12, it can be deduced that a (L)-Graph is a category with 
(L)-graphs as objects and type preserving morphisms as morphisms.  
 
The typing functions introduced here are total. This means that for all graph 
component there is a corresponding type. A same type may be assigned to several 
elements. A type may have no graph component of its type. This is 
mathematically expressed as follows:  
 

( ), | ( )x V E y NodeType EdgeType Type x y∀ ∈ ∪ ∃ ∈ ∪ =  
 

3.3.7 Identified, Labeled, Constrained and Typed graph  

 
All features defined above can be consolidated in a single graph category called 
(Identified, Labeled, Constrained, Typed)-Graphs (in short: (I,L,C,TY)-Graphs). 
Note that this consolidation could be modularized that is to say that features 
presented above can be consolidated "a la carte".  
 

Definition 12.  Let g  and h  be two (TY)-Graphs; Let m  be a pair 
( )v em m m= ,  of mappings v g h e g hm V V m E E: → , : → ; m  is an type 

preserving (TY)-Graph morphism if:  
1. ( ) ( ( ))g h e v ge E source m m source e∀ ∈ , =  (source nodes are 

preserved);  
2. ( ) ( ( ))g h e v ge E target m m target e∀ ∈ , =  (target nodes are 

preserved);  
3. ( ) ( )v v gTy g Ty g m=  (nodes types are preserved);  
4. ( ) ( )e e gTy g Ty g m=  (edges types are preserved). 

Definition 11.  Let TY = (NodeType, EdgeType) be a pair of disjoint and finite 
sets of predefined types. g  is said to be a (TY)-graph iff g  is a pair ( g ,Ty) 
such that :  

1. g  = is a graph (see definition 1);  
2. Ty is a pair of total functions attaching a type to each node and 

edge of the graph. Type = ( )v eTy Ty,  where vTy V NodeType: →  
and eTy E EdgeType: → .  
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From definition 13 and 14, it can be deduced that (I,L,C,TY)-Graph is a category 
with (I,L,C,TY)-graph as objects and (I,L,C,TY)-Graph morphism as morphisms.  
 
This consolidation has the advantage of being modular. This means that features 
presented above can be consolidated in an "a la carte" way to form other 
categories. 

3.3.8 An Improved Typing Function 

 
We want to have a better control on the typing mechanism. Graph types are 
introduced for this purpose ([Monta96,Corra96,Heck96]). Graph types contain all 
"type information" that is used to type the model level. 
 
Types that are returned by the functions vTy  and eTy  (see definition 11) belong 
to two type sets ( NodeType , EdgeType ). These sets contain possible types.  
The main idea with graph types is to replace type sets by graphs. In order to 
support this, the typing mechanism of definition 11 has to be slightly adapted.  
 

Definition 14.  Let g  and h  be two (I,L,C,TY)-Graphs; Let m  be a pair 
( )v em m m= ,  of mappings v g h e g hm V V m E E: → , : → ; m  is an identifier, 

label, constraint, and type preserving (I,L,C,TY)-Graph morphism iff:  
1. m  is a graph morphism (definition 5)   
2. m  is an identifier preserving morphism (definition 7)  
3. m  is a label preserving morphism (definition 9)  
4. m  is a constraint preserving morphism (definition 11)   
5. m  is a type preserving morphism (definition 13).  

Definition 13.  g is an (Identified,Labelled,Constrained,Typed)-graph iff:  
1. g is a graph (see definition 1)  
2. g is an identified graph (see definition 6)  
3. g is a labeled graph (see definition 8)  
4. g is a constrained graph (see definition 10)  
5. g is a typed graph (see definition 12).  
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The above definition asserts that there must be a correspondence between, on the 
one hand, node and edge type at the model level and, on the second hand, node 
and edge labels at the meta-level. Furthermore, constraints defined on labels in 
TG are applicable to types in g . This situation is expressed in Fig. 3-17.  
 

(n53)In a Silent Way 

: Track

(n45)M. Davis

: Artist

(n46)C. Corea

: Artist

(e14)   : Recordsε

Accompanies

Records 0..*
TrackArtist

(e15)   : Recordsε

(e17)    : Accompaniesε

TG−Typed Graph

Type Graph TG

IsOf

 
 

Figure 3-17 Typed Graph and its Graph Type 

 
In addition the following graph morphisms can be defined:  
 

 
 
 
From definition 15 and 16 it can be said that (L,C)-Graph is a category with (L,C)-
graphs as objects and nesting preserving morphisms as morphisms.  
 

Definition 16.  Let g  and h  be two (I,L,C,TY) TG-Typed Graphs; 
m g h: →  is a (I,L,C,TY) TG-Type preserving graph morphism iff:  

1. f  is a (I,L,C,TY) graph morphism (see definition 17)  
2. ( ) ( ) ( )x dom m type h f type g∀ ∈ : = . 

Definition 15.  Let ( )Type NodeType EdgeType= , be a pair of disjoint and 
finite sets of types. Let TG be a fixed (L,C)-graph (TG is called a type graph). g 
is said to be a (I,L,C,TY) TG-Typed graph iff g is a pair (g,Ty )TG  where: 

1. g is a (I,L,C,TY,N)-graph (see definition 16).  
2. TGTy g TG: →  such that type  is a total (L,C)-graph morphism.  
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From definition 15 and 16, it can be asserted that constraints defined in a type 
graph TG can also constrain the corresponding TG-Typed graph. For instance, a 
cardinality constraint on an edge between two types in a TG graph is effective on 
the TG-Typed graph. This could be expressed mathematically as follows: 
 

( ) " "
{ ( ) " " ( ) } (1 3)

v V ifTy v tutorial E E
E e E Label e isGivenBy source e v E

′∀ ∈ , = ⇒ ∃ ⊆ ∧
′ ′= ∈ | = ∧ = ∧ ≤| |≤  

 
In the above expression we define a cardinality constraint between a node 
representing an entity labeled "tutorial" and another entity labeled "speaker". The 
expressed constraint says that a tutorial cannot be given by more than three 
speakers.  
 
Other constraints can limit the domain or the co-domain of source and target 
functions in order to avoid or force the use of certain type of edges with certain 
type of nodes. For instance an edge with the label "Is Husband Of" can only 
occur between two nodes with label "man" and "woman" (not the case anymore 
in Belgium). This example is mathematically expressed as follows:  
 

1 2 1

2 1

( ) " " ( )
( ) ( ) " " ( ) " "e

e E label e isHusbandOf v v V source e v
target e v Label v man Label v woman
∀ ∈ , = ,∃ , ∈ | = ∧

= ⇒ = ∧ =   
 
The reader may have noticed that examples of constraints have been defined on 
labels and not on types. Indeed, these examples are expressed at the concept level. 
They will be enforced at the model level. As labels at the concept level are types at 
the model level it is normal to express constraints on labels at the meta-level. In 
the second example, the "translation" of the constraint at the model level gives:  
 

1 2, ( ) " ", , | ( )e E Type e isHusbandOf v v V source e∀ ∈ = ∃ ∈ ∧  
2 1 2( ) ( ) " " ( ) " "target e v Type v man Type v woman= ⇒ = ∧ =  

 
In order, to simplify the expression of type graphs, types can be structured into 
partial orders. Organizing nodes and edges of the type graph into a partial order 
(see definition 18) presents the advantage of propagating constraints i.e., 
constraints applicable to one type can be directly inherited by all subtypes of this 
type.  
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As said above the definition of type graphs can be exploited to propagate 
constraints among types. Such a propagation mechanism is expressed in definition 
20.  
 

Definition 19. The set of EdgeLabel  (see definition 8) is a partial order if 

e E∃≤ ∈ , such that:  
1. Reflexivity: vedgelabel EdgeLabel edgelabel n∀ ∈ ⇒ ≤   
2. Antisymmetry: 

i j i v j

j v i i j

edgelabel edgelabel EdgeLabel ifedgelabel edgelabel

edgelabel edgelabel edgelabel edgelabel

∀ , ∈ , ≤ ∧

≤ ⇒ =
  

3. Transitivity: 
i j k i v

j j v k i v k

edgelabel edgelabel edgelabel EdgeLabel ifedgelabel

edgelabel edgelabel edgelabel edgelabel edgelabel

∀ , , ∈ , ≤

∧ ≤ ⇒ ≤
 

Definition 17.  A (L,C)-type graph TG  is said to be ( v e≤ ,≤ )-ordered graph if 
(NodeLabel, v≤ ) and (EdgeLabel, e≤ ) are partial order.  

Definition 18.  The set of NodeLabel  (see definition 8) is a partial order if 
v E∃≤ ∈ , such that:  
1. Reflexivity: vnodelabel NodeLabel nodelabel nodelabel∀ ∈ ⇒ ≤   
2. Antisymmetry: 

i j i v j

j v i i j

nodelabel nodelabel NodeLabel ifnodelabel nodelabel

nodelabel nodelabel nodelabel nodelabel

∀ , ∈ , ≤

∧ ≤ ⇒ =
  

3. Transitivity: 
i j k i v

j j v k i v k

nodelabel nodelabel nodelabel NodeLabel if nodelabel

nodelabel nodelabel nodelabel nodelabel nodelabel

∀ , , ∈ , ≤

∧ ≤ ⇒ ≤
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Definition 20.  If T is partial-ordered type graph then the following 
inheritance mechanisms must be defined:  

1. ( ) ( )t vv w V ifvlabel v vlabel w∀ , ∈ : ≤ then 
( ) ( )vconstraints w vconstraints v⊆ (constraints of supertypes are 

inherited from subtypes)  

2. 

1 2 1 2 1 1

2 1 2 1

2 2

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

t t

v

t

e E s s t t V if source e s target e t
vlabel s vlabel s vlabel t vlabel t

f E source f s target f t
elabel f elabel e econstraints f econstraints e

∀ ∈ :∀ , , , ∈ : = ∧ = ∧

≤ ∧ ≤ ⇒
∃ ∈ | = ∧ = ∧

= ∧ =

  

(edge constraints between supertypes are inherited by edges among 
subtypes).  
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3.4 Concrete Syntax: a visual and textual syntax 

 
A concrete syntax is an external appearance of a language. Describing a concrete 
syntax of a language consists of describing the allowed sentences of this language.  
 
Historically, concrete syntaxes for formal languages have been expressed textually. 
Extended Backus-Naur Form grammars (EBNF), for instance, have been 
extensively used for this purpose [ISO96]. Fig. 3-18 shows a possible grammar for 
our language. 
 
<uiSpecification>::={<uiModel>} 
 <uiModel>::={<node>}| {<edge>} 
<node>::= <nodeId> | <name> | <type> | {<attribute>} |{<constraint>} 
<edge>::= <edgeId> | <label> | <type> | {<constraint>} | sourceNode | targetNode  
<nodeId>::=<id> 
<edgeId>::=<id> 
<id>::= <char> | {<char>} 
<name>::= <char> | {<char>} 
<char> ::= a|b|c|d|e|f|g|h|i|k|…|8|9|0|… 
<attribute> ::= <name> | value 
<value>::=  <char> | {<char>} 
<type>::= [listOfTypes] 
<edge>::= <type> | <attribute> |  <sourceNodeId> | <targetNodeId> 
<sourceNodeId>::=<id>  
<targetNodeId>::=<id> 
<constraint>::=  … 

 Figure 3-18 An excerpt of a BNF grammar of our language 

 
We propose two types of syntax for our language: a visual one and a textual one.  
The visual syntax consists of boxes and arrows, a somewhat classic representation 
for a graphical structure. This visual syntax is mainly used in this work as an 
expression means for the transformation rules that are going to be developed in 
Chap. 4. The textual syntax is an XML based language, called UsiXML, its main 
use is to serve as exchange format between various applications exploiting our UI 
specification models at all development stages.   
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3.4.1 Visual syntax  

 
A simple visual syntax is proposed based on the conceptual schemas described 
above. This syntax is taken from Attributed Graph Grammar tool (AGG) 
[Ehri99], a generic tool for specifying and executing graph transformations. This 
visual notation is illustrated in Fig. 3-19.  A node is represented as a box. Node 
types are indicated on the upper part of this box, attribute-value couples are listed 
in the upper part of the box. Edges are represented as directional arrows. Their 
type appears as their label.  
 

Node type
Node

(Attribute,value)
Edge type

Edge
(Attribute,value)

Node

Edge

Node type
Node

(Attribute,value)
Edge type

Edge
(Attribute,value)

Node

Edge

 
Figure 3-19 Visual syntax for expressing a host graph 

3.4.2 UsiXML: textual syntax 

 
XML stands for eXtensible Markup Language. XML is a subset of SGML, like 
HTML. An XML document is a textual document describing a set of data (not 
information!) with a tree-like structure. The aim of this format is to define a 
standard for exchanging data between heterogeneous applications (Req.22: Support 
for tool interoperability).  
 
Unlike HTML, XML allows its users to define customized language elements. 
That’s why XML is said extensible (Req. 10: Ontological extendibility). Even if XML, 
and markup languages in the large, was designed to be read by machines (Req. 5: 
Machine-readable) the fact that the data is conveyed with its underlying structure 
facilitates its legibility by a human agent (Req. 3: Human readable). 
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A definition of elements valid for a certain class of XML documents may be 
gathered in a Document Type Definition (DTD) or in a Schema [W3C01]. XML 
Schemas were introduced after DTD’s and have the two main advantages of 
allowing a stronger typing mechanism, and a definition of inheritance 
relationships.   
 
The conceptual schemas presented in Sec. 3.2 have been translated into an XML 
schema. The main difficulty in working with XML schemas is that, like DTDs, 
they only allow a description of tree-structured documents. A difficulty emerges as 
our abstract syntax consists of graphs. To mimic this graph structure we introduce 
two main types of XML elements: those that describe concepts called elements nodes 
(classes in conceptual schemas), those that describe concept relationships called 
element relationship (association classes or associations in conceptual schemas).  
 
Element nodes are described with an XML element tag. XML attributes are used 
to describe the element’s attributes (e.g., Fig. 3-20). 
 

 
Figure 3-20 a UsiXML element 

Element relationships are all described using the same structure. An element 
allows designating the relationship name. A tag source and a tag target enable a  
specification of the source and target of the relationship (e.g., Fig. 3-21). 
 

 
Figure 3-21 a UsiXML relationship 

 
It is important to note that several relationships may be defined implicitly in 
UsiXML taking advantage of an XML document structure.  
 

 
Figure 3-22 Implicit relationships in UsiXML 
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The relationships representing a structural decomposition are represented using 
the tag embedding structure (i.e., tree structure) of XML. These relationships are 
task decomposition and interaction objects decomposition relationships. From 
Fig 3-22, a graphicalContainment relationship between Window1 and Button1 may 
be inferred from the embedding of the second element in the first one. 
 
The adjacency relationships (abstract, graphical and auditory) are represented by 
the sequence of elements in a specification. In Fig. 3-22, a relationship of 
graphicalAdjacency may be inferred between Button1 and Button2 from the 
ordering of declaration of these elements with Window1. 
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3.5 Conclusion 

 
This chapter has presented an ontology for the specification of UIs.  
 
For this purpose it introduced the following concepts: 
 
 Viewpoints materializing different “concerns” on the UI system (Req. 6: 

Ontological separation of concern). Four viewpoints have been introduced, 
motivated, and extensively defined: A final UI viewpoint is the implementation 
of a UI system it can be seen from the code level or from the rendering level 
(i.e., its appearance); A concrete UI viewpoint is a description of a UI that is, as 
independent as possible, of any reference to implementation details (i.e., 
toolkit). An abstract UI has been defined as a description of the UI that is, as 
independent as possible, of any reference to the modalities for which a UI is 
designed (e.g., graphical interaction, vocal interaction). A Task and Domain 
viewpoint concerns a representation of UI systems in terms of tasks to be 
carried out by a user in interaction with the system along with the domain-
oriented concepts as they are required by these tasks to be performed. 

 UI models have been exposed thanks to conceptual schemas expressed in UML 
(Req. 1: Ontological explicitness). UI models gather abstractions of interest in the 
development of a UI system. Some of the UI models are transversal to all 
viewpoints. A context model describes the context for which a set of models, 
a model or a part of a model is specified for. An inter-model relationship 
allows relating different models (Req. 8: Ontological homogeneity) either if they 
belong to different viewpoints (Req. 20: Traceability) or to a same viewpoint.   

 
In Sec. 3.3, a mathematical formalism has been presented as an abstract syntax for 
representing the conceptual schemas of Sec. 3.2., and their instance (Req. 4:  
Formality, Req. 8: Ontological homogeneity). This formalism consists in “directed, 
identified, labeled, constrained and typed graphs”. We relied on the theory of 
categories and the morphism construct to progressively enrich an initial definition 
of a directed graph with the desired features. In this way, any theoretical result 
proven for the category of graphs can be applied to the graph construct exposed 
in this chapter. 
 
Finally, in Sec. 3.4., as any ontology needs a concretization to be manipulated in 
the real world, we defined two different, yet semantically equivalent, concrete 
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syntaxes. These two syntaxes reflect the conceptual structure introduced in Sec. 
3.2. while respecting the graph-based mathematical notation introduced in Sec. 
3.3. A graphical syntax relies on boxes and arrows to express concepts in the 
scope of our language and their relationships. A textual syntax, called UsiXML, is 
based on an XML schema definition (Req 5: machine readable, Req. 22: Support for 
tool interoperability). 
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Chapter 4 Multi-Path Devel-
opment of  User Interfaces 

 
 
 
 
 
 
 
 

4.1 Introduction 

Chapter 2 concluded with an enumeration of observations on the state of the art 
in transformational development of UIs. From these observations a set of 
shortcomings outlined deficiencies in the approaches described so far in the 
literature. A set of requirements was finally elicited to address these shortcomings. 
 
This chapter addresses the methodological shortcomings and requirements of 
Chapter 2 by defining a flexible methodological framework for achieving 
transformational development of UIs.  
 
Chapter 3 introduced an ontology for describing UIs according to various 
viewpoints. This chapter introduces the principles of multi-path development of 
UI by integrating the viewpoints in a development methodology where (1) each 
viewpoint becomes a development stage (2) each transition between viewpoints is 
a development step (3) each development step is realized through a series of 
transformations defined in a transformation catalog. 
 
In such a framework, three types of transformations can be identified: model-to-
model transformations, model-to-code transformations (for generating UI code 
from models), and finally, code-to-model transformations (for extracting a model 
from UI code). 
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This dissertation is focused on model-to-model transformations. Model-to-code 
transformations are supported by techniques that have already benefited of a lot 
of attention in the literature [Czar00]. Although we also propose, a model-to-code 
tool (Sec. 4.8.5), it is simply an adaptation of existing model-to-code solutions to 
our proper case. Code-to-model transformations are supported by specific 
techniques that would necessitate a dissertation in itself. We rely on [Boui04] to 
perform this transformation. 
 
Section 4-2 presents the reference framework that is used to illustrate the multi-
path development of user interfaces. This framework introduces the concepts of 
development path, development step and development sub-step. 
 
Section 4.3 introduces the language that is used to perform development steps of 
our framework i.e., graph rewriting and graph grammars. Graph rewriting and 
graph grammars are introduced and motivated in Sec. 4.3.2.  An articulation of 
graph grammars with our reference framework is discussed in Sec. 4.3.3. A series 
of examples is then provided along with the presentation of the syntax used to 
represent graph rewriting rules (Sec. 4.3.4). Finally, the strategy for the application 
of rewriting rules is discussed in Sec. 4.3.5.   
 
Section 4.4 illustrates a specific path i.e., forward engineering by decomposing this 
path into steps, and then steps into sub-steps.  Each sub-step is discussed and 
illustrated with one or several graph transformation rules that enable the 
realization of this sub-step. 
 
Section 4.5 discusses the application of graph transformation to another 
development path: reverse engineering. 
 
Section 4.6 addresses a third type of development path, namely context of use 
adaptation. A transformation step has been defined for transforming each 
viewpoint into a viewpoint of the same type but adapted to new constraints 
imposed by a change in the intended context of use of the UI to build.  
 
Section 4.7 presents a series of tools that have been developed around the 
concept of multi-path development of UIs.  
 
Section 4.8 concludes by, notably, discussing our solution to the light of the 
requirements identified in Chapter 2. 
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4.2 Reference Development Framework  

 
Chapter 3 introduced a concept of UI viewpoint i.e., task and domain, abstract user 
interface, concrete user interface, final user interface. Viewpoints are not only 
conceptual perspectives on a UI but also possible stages in a development 
process. A framework introduced by [Calv03], integrates viewpoints into a 
development process perspective (left part of Fig. 4-1). This framework defines 
transitions between different viewpoints. Theses transitions are called development 
steps (each occurrence of a numbered arrow of Fig. 4-1). 
  
A development step (hereafter referred as step) is a transformation process of an 
instance of a source viewpoint into another instance of a target viewpoint where 
source and target viewpoints types are directly adjacent in the development 
process.  
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Figure 4-1 Transformation between viewpoints (left, mid.) & chapter reading map (right)  

Development steps may be categorized as follows: 
 
 Reification (1,2 in Fig. 4-1) is a transformation of a high-level 

requirement into a form that is appropriate for low-level analysis or 
design.  

 Abstraction (5,6 in Fig. 4-1) is a transformation of a low level 
specification into a high-level specification  
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 Translation (7,8,9 in Fig. 4-1) is a transformation of a UI specification to 
adapt this specification to the constraints imposed by a new context of 
use. The context of use is defined after [Thev01] as a triple of the form (e, 
p, u) where e is a possible or actual environments considered for a software 
system, p is a possible or actual target platform, u is a user stereotype. 

 Code generation (3 in Fig. 4-1) is a process of transforming a concrete 
UI model into a compilable or interpretable code.          

 Code reverse engineering (4 in Fig. 4-1) is the inverse process of code 
generation i.e., it retrieves a concrete UI specification from a coded 
artifact. 

 
Development steps may be combined to form development paths.  
 
A development path (hereafter referred as path) represents a realization of a 
development activity in a particular project context. It is characterized by an initial 
viewpoint and a final viewpoint that is the goal of the development activity. A 
development path is represented by an archetypal composition of development 
steps.  
 
Different types of development paths can be identified: 
 
 Forward engineering (or requirement derivation) is “the traditional 

process of moving from high-level abstractions and logical, 
implementation-independent designs to the physical implementation” 
[Chik90, Byrn92]. In this dissertation forward engineering can be viewed 
as  a composition of reifications and code generation enabling a transformation 
of a high-level viewpoint into a lower level viewpoint.   

 Reverse engineering is “the process of analyzing a subject system to 
(i)identify the system's components and their interrelationships and 
(ii)create representations of the system in another form or a higher level of 
abstraction” [Chik90, Byrn92]. In this dissertation reverse engineering can 
be seen as a composition of abstractions and code reverse engineering enabling a 
transformation of a low-level viewpoint into a higher level viewpoint.   

 Context (of use) adaptation is the process of adapting a UI specification 
for another context from the one it was designed for. Context adaptation 
can be obtained from a translation of a UI model at any level.  

 
Other development paths like: 
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 Retargeting. This transition is useful in processes where an existing system 
should be retargeted, that is migrated from one source computing platform to 
another target computing platform that poses different constraints. 
Retargeting can be composition of reverse engineering, context adaptation 
and forward engineering. In other words a UI code is abstracted away into a 
CUI (or an AUI). This CUI (or AUI) is reshuffled according to specific 
adaptation heuristics. From this reshuffled CUI (or AUI) a new interface code 
is created along a forward engineering process. 

 
 Middle-Out development is a term coined by [Luo95]. It refers to a 

situation where a developer starts a development by a specification of the UI 
(no task or concept specification is priory built). Several contributions have 
shown that, in reality, a development cycle is rarely sequential and even rarely 
begins by a task and domain specification. The literature in rapid prototyping 
converges with similar observations. Middle-out development shows a 
development path starting in the middle of the development cycle e.g., by the 
creation of a CUI or AUI model. After several iteration at this level (more 
likely until customer’s satisfaction is reached) a specification is reverse 
engineered. From this specification the forward engineering path is followed. 

 
 Leapfrog development refers to the situation where an intermediary 

viewpoint is bypassed in the transformation process. In our framework for 
instance, it might not be needed to define an AUI if only one modality is 
targeted.   

 
Development steps may be decomposed into development sub-steps.  
 
A development sub-step (hereafter referred as sub-step) represents the 
realization of a particular concern in the achievement of a development step.  
 
Some of these activities have been identified by [Luo95]. It can consist, for 
instance, of the selection of concrete interaction objects, the definition of the 
navigation, the definition of the container structure. This chapter proposes a set 
of sub-steps associated to each development step. The definition of development 
sub-steps may depend on the designer’s practice, the organization rules, the type 
of artifact that is built, etc.    
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4.3 A Language for Specifying UI Models 
Transformation: conditional graph rewriting   

4.3.1 Introduction 

 
Model-to-model transformations have received a lot of attention in the recent 
literature [Varr02b, Mell03, Agra03]. The profusion of works on model-to-model 
transformation is mainly due to the Object Management Group (OMG) proposal 
on Model Driven Architecture [Mill02, OMG04].  
 
Several techniques have been proposed in the literature to perform model-to-
model transformation as required by our general framework (see Fig. 4-1). They 
have been surveyed in [Gerb02,Send03,Czar03]. The most relevant ones are:  
 

 Imperative languages provide a mean to perform model transformation:  
 

− Text-processing languages like Perl or Awk are popular to perform 
small text transformation. These languages cannot be considered 
to specify complex transformation systems as they force the 
programmer to focus on very low- level syntactic details. 

− Several environments provide APIs to manipulate and transform 
models and, often, their corresponding meta-models. Jamda 
[Booc99], UMLAUT [Ho99], dMof [dMof02], Univers@lis 
[Univ99].  

 
 Relational approaches [Ake03, Gerb02] rely on the declaration of mappings 

between source and target element types along with the conditions in 
which a mapping must be instantiated. Mapping rules can be purely 
declarative, and non executable, or executable thanks to a definition of an 
execution semantic. Relational approaches are generally implemented 
using a logic-based programming language and require a clear separation 
of the source and target models. 

 
 XSLT [Clar99] transformations are a good candidate as models have, 

generally, a syntactical representation in an XML-compliant format.  The 
way XSLT proceeds is very appealing as it 1) searches for matches in a 
source XML document 2) executes a set of procedural instructions, when 
a match is found, to progressively construct a target XML file. 
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Unfortunately, some experiences [Gerb02] showed that XSLT 
transformations are not convenient to compute model transformation for 
two main reasons 1) their verbosity has been identified as a major problem 
to manage complex sets of transformation rules 2) their lack of 
abstraction: progressively constructing a target XML file entails an 
inclusion, in transformation rules, of syntactic details relative to the target 
file.  

 
 Common Warehouse Metamodel specification [OMG03b] provides us with a 

set of concepts to describe model transformation. Transformations can be 
specified using a black box or a white box metaphor. Transformations are 
grouped in transformation tasks (some meaningful set of 
transformations). These are themselves grouped in transformation 
activities. A control flow of transformation can be defined between 
transformation tasks at this level (with the concept of transformation 
step). Even if transformations allow a fine-grained mapping between 
source and target elements, CWM does not provide us with a predefined 
language to specify the way these elements are transformed one to 
another.   

 
 Graph rewriting has been used for many years to represent complex 

transformation systems. Graph rewriting is based on a pattern matching 
mechanism that selects a sub-graph in a graph structure and applies to this 
sub-graph any type of transformation (adding, deleting, or modifying a 
node or an edge). Graph rewriting rules may be gathered along with the 
graph on which they apply to form a, so called, graph grammar. Graph 
grammars have been applied in the software engineering field for 
representing, notably: software refactoring [Mens03], software evolution 
[Heck02], multi-agent system modeling [Depk02], modeling language 
formalization [Varr02a]. In the context of UI development, two 
approaches make an interesting use of graph rewriting rules: [Freu92] 
defines primitives for the manipulation of task models while 
[Sucr97,Sucr98] defines state based automaton where state transitions are 
operated with transformation rules.   

 
Graph rewriting and graph grammars have been selected in the context of this 
dissertation to represent the various types of development steps populating our 
framework (see Fig. 4-1). The main reasons for this choice are that graph 
grammars:   
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 are rather declarative (they are based on graph patterns expression) and 

provide an appealing graphical syntax which does not exclude the use of a 
textual one (Req. 12: Methodological explicitness, Req. 17:  Methodological 
extendibility). 

 
 are based on a formally defined execution semantics based notably on 

pushout theory, for which many proofs have been provided (i.e., 
completeness [Habe01]; confluence [Heck02b]).  (Req. 14: Methodological 
formality, Req. 15:  Executability, Req. 19: Predicatbility). 

 
 allow to describe transformations with the same vocabulary as 

specification models in a very consistent manner and for all development 
steps (Req. 18: Methodological homogeneity). 

 
 provide extensions (i.e., conditional graph rewriting, typed graph 

rewriting) to check important properties of the artifact that is produced 
after a transformation (Req. 21: Correctness).  

 
 offer modularity by allowing the fragmentation of complex transformation 

heuristics into small, independent chunks. The fact that graph rewritings 
have no-side effects facilitates this modularization (Req. 16. Methodological 
separation of concern).  

 

4.3.2 Graph Rewriting and Graph Grammars: an overview   

 
In Chapter 3, we have introduced a formalism that enables a representation of a 
UI specification using a graph structure. For the reasons developed above, graph 
rewriting systems appeared a natural choice to perform “high level manipulation” 
of graph structures i.e., reification, abstraction, and translation (see Sec. 4-2). We 
explain in this section the type of approach adopted in this work. 
 

4.3.2.a An introduction to graph grammars 

 
Graph grammars provide us with an intuitive formalism for manipulating graph 
structures. A graph grammar is a set of graph rewriting rules (called in this work 
graph transformation rules), a graph to transform (called host graph or initial graph) and 
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a set of parameters (called embed) defining how to apply the rules on the host 
graph.  
 
An algebraic approach to graph grammars has been invented by [Ehri73,79].   
This approach generalizes, from strings to graphs, context-free grammars as 
introduced by Chomsky [Chom56].  This approach is called algebraic because it 
considers graphs as a special kind of algebra and defines a gluing operation of 
graphs as an algebraic construction called pushout in the category of graphs and 
total graph morphisms [Corra97].  
 
The main advantage of the algebraic approach is that it enables proofs for a 
general category of graphs (it is based on category theory). Consequently, it is 
possible to apply those proofs to a large body of structures belonging to a general 
category of graphs.  
 
After [Löwe93], a graph transformation rule (LHS,K,RHS) may be defined as a set of 
three graphs LHS, K, RHS. LHS is the Left Hand Side of the rule. It expresses a 
graph pattern that, if it matches in the host graph, will be modified to result in 
another graph called resultant graph. A LHS may be seen as a condition under 
which a transformation rule is applicable. RHS is the Right Hand Side of a rule. K, 
called gluing graph, is a sub-graph of LHS or RHS. It has two roles: (1) representing 
what is preserved during the rule application (2) showing where added elements 
are attached during the rule execution. 
 
Definition 21. The application of a rule r to a graph G consists in the following 
steps: 
1. Find an occurrence of LHS in G (this occurrence is called a match). If several 

occurrences exist, choose one non-deterministically. 
2. Remove the part of G which corresponds to (LHS – K) 
3. Add RHS – K to the result of last step 
4. Embed RHS – K into G – (L – K) as it is given by the corresponding relation 

between RHS – K and K 
 
The application of the four steps presented above is common to all algebraic 
approaches described in the literature. Two main transformation approaches have 
to been introduced in the literature [Roze97]: the Double Pushout Approach 
(DPO) and the Single Pushout Approach (SPO).  The double pushout approach 
is the first approach presented in the literature. The single pushout approach 
[Löwe93] is a simplification of the first technique. The main difference between 
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the two techniques is that the first one makes an explicit use of an intermediary 
graph construct K  called gluing graph from which two total graph morphisms may 
be defined :l K LHS→  and :r K RHS→ . The SPO (illustrated by Fig. 4-2) 
defines a direct relation between a LHS and its corresponding RHS, this relation 
consists of a partial graph morphism :r LHS RHS→  (see definition 4). In this 
dissertation we decided to use a SPO because the results obtained for the DPO 
are valid for the SPO as this latter has been proved a generalization of the first. 
Furthermore, the SPO is more intuitive than the DPO.  
 
Definition 22. A transformation rule r LHS RHS: →  is a partial graph 
morphism (see definition 4) from LHS  to RHS   
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Figure 4-2 A rule application with the simple pushout approach 

From definition 22, a direct transformation from G to G’ may be defined as 
follows: 
 
Definition 23. A , 'r mG G⇒  is a direct transformation such that  ∃  total graph 
morphism :m LHS G→  that forms a pushout ( *r and *m ) with 

:r LHS RHS→ .  
  
Intuitivelly,  a pushout can be understood as  a construction that allows to glue one 
part of a structure to another part of a structure. It may be understood as follows:    
 
Definition 24. A pushout (Fig. 4-2) of two graph morphisms  :m LHS G→  and   

:r LHS RHS→  is a triple ( ', *: ', *: ')G m RHS G r G G→ →  such that: 
1. G is a graph (see definition 1), *m  and *r  are graph morphisms (see 

definition 4).  
2. *m r°  = *r m°  (Commutativity. This property guarantees the existence of the 

pushout)  
3. ∀  graph E , ∀  graph morphism 1 :h RHS E→ , 2 :h G E→  and 
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1 2 : !h r h m° = ° ∃  graph morphism : 'h G E→  such that 1*h m h° =  and 
2*h r h° =  (Universality. This property guarantees that 'G  is minimal. For any 

other graph for which the commutative property holds there should be only 
one graph morphism between 'G  and this graph).  
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Figure 4-3 Pushout construction  applied to graph morphisms 

 
Transformations can be combined to form transformation systems: 
 
Definition 25. A transformation system is an arbitrary group of transformation 
rules 1 2 3, , ,..., nr r r r  indexed by their name. 
 
From this definition a graph grammar may be defined as:    
 
Definition 26.  A graph grammar G can be defined as a tuple ( , )G R where G  
is a host graph (or initial graph) and R is a transformation system (see definition 25). 
 
An “embed” is an important parameter in the application of a graph transformation 
rule. Specifying removals and additions of elements in the resulting graph is not 
enough. Indeed, one has to specify what happens with edges coming and going 
from a node that is altered during an execution of a transformation. Are they left 
dangling? Are they systematically erased? Different types of embed have been 
studied in the literature. We adopt a simple and conservative approach regarding 
this problem:  

 If a node in LHS has a correspondence in RHS, all edges adjacent to this 
node are preserved.  

 If a node in LHS has no correspondence in RHS, all edges adjacent to this 
node are erased. 
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4.3.2.b Conditional graph rewriting  

 
Conditional graph grammars have been discussed very early in the literature. 
Conditions may be positive, Positive Application Conditions (PAC), or negative, 
Negative Application Condition (NAC). They may be also differentiated 
depending on the moment they are checked. The following categories of 
application conditions may be listed:      
 

 Positive application pre-conditions are assertions on the host graph that have to 
hold true before the application of a rule.  Positive application conditions 
were already mentioned in the seminal paper on graph grammars in 1969 
[Pfalz69] and extended in [Ehri86, Habe96]. Most of positive application 
conditions can be expressed within the LHS of a rule itself. Nevertheless, 
when a condition falls far from the scope of a LHS it may be useful to 
express such condition as a separate structure.  

 Negative application pre-conditions, also called forbidden contexts, are 
assertions that have to hold false before the application of a rule. Negative 
application conditions were mentioned very early in the literature in  
[Montanari70] and extended in [Ehrig86, Habe96].  

 Positive and Negative application post-conditions are assertions that have to hold 
respectively true or false after the application of a rule. If not verified, the 
rule application is cancelled. Theoretical foundation of this technique can 
be found in [Heck95]. 

 
Conditional graph rewriting significantly enhances the expressivity of 
transformation rules. It is important to note that our implementation uses positive 
application condition to verify the consistency of our grammars. That is to say, verify 
that each graph produced by a transformation constitutes a legal sentence of the 
target vocabulary. Our target vocabulary is defined by typed graphs (as explained 
in Chapter 3). After each application of a rule the transformation engine checks if 
the resultant graph is well compliant with the meta-language defined in the graph 
of type. This process is referred in the literature as typed graph transformation. 
 
Conditional graph rewriting entails a redefinition of our description of a rule 
application:  
 
Definition 27. The application of a rule (with pre- and post-conditions) r to a 
graph G consists in the following steps: 
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1. Find an occurrence of LHS in G (this occurrence is called a match). If several 
occurrences exist, choose one non-deterministically. 

2. Check preconditions of both type PAC and NAC. If not verified, then skip   
3. Remove the part of G which corresponds to (LHS – K) 
4. Add RHS – K to the result of last step 
5. Embed RHS – K into G – (L – K) as it is given by the corresponding relation 

between RHS – K and K 
6. Check postconditions of both type PAC (and notably that the resulting graph 

is properly typed) and NAC. If not verified, then undo the transformation rule 
 

4.3.3 Graph Grammars and the Reference Framework 

 
Graph transformations are used to perform viewpoint-to-viewpoint 
transformations i.e., reifications, abstractions and translations (see Fig. 4-1). We 
transform a UI specification with a set of transformation rules taken from a 
transformation catalog. Transformation rules have a common meta-model with 
UI specification models. Indeed, a rule term (i.e., a NAC, a LHS, or a RHS) may be 
seen as a fragment of specification. We preserve the consistency of transformed 
artifact as the resultant UI specification is checked upon its meta-model. 
Transformation rules resulting in a non-consistent resulting graph are not applied. 
Our transformations are type preserving. 
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Figure 4-4 Type preserving UI model transformations 

 
Fig. 4-4 shows how graph transformation articulates with the methodological 
concepts introduced in Sec. 4.2. A development path is composed of 
development steps. The latter being decomposed into development sub-steps. A 
development sub-step is realized by one (and only one) transformation system 
and a transformation system is realized by a set of graph transformation rules.   
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Figure 4-5 Articulation of graph transformations with transformational development of 

UIs 

 
In the remainder of this chapter, we illustrate three important path types i.e., 
forward engineering, reverse engineering, and adaptation to the context of use. An 
example for each development step, and sub-step is provided. All examples use 
the graphical formalism of the graph transformation tool AGG [Ehri99] 
presented hereafter.  
 

4.3.4 Concrete Syntax for Transformation Rules  

 

4.3.4.a Visual syntax for transformation rules  

 
This section provides several examples of basic transformations in order to allow 
a reader that is unfamiliar with the graph transformation techniques to better 
understand the more complex transformations of Sec. 4.4, 4.5, and 4.6. We use 
simple node types (inspired from football) across the different examples. Each 
example shows a particular feature on the type of transformation defined in this 
dissertation. 
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 Node creation 
 
The simplest rule that can operate on a graph is a node creation. Fig. 4-6 
represents such a rule. Note the emptiness of the left hand side providing that no 
condition is necessary to create the node described in the right hand side.    
 

LHS RHS

::=Ø

LHS RHS

::=Ø
 

Figure 4-6 Creation of a node with attributes 

 
 Node modification (identified instance) 

 
Fig. 4-7 shows a rule selecting a specific node on the base of its id attribute and 
assigns to this node a specific attribute value. In this case graph transformation 
rules can not be considered as a pattern language as they make an explicit 
reference to one graph element in the host graph. Note that even if the node 
subject to the transformation is selected on the base of its id, it is necessary to 
indicate explicitly the gluing conditions (i.e., figures before the node type).  Indeed 
the system does not know the semantics of the id (e.g., its uniqueness). 
 

LHS RHS

::=

LHS RHS

::=

 
Figure 4-7 Node modification (identified instance) 
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 Node modification (unidentified instance) 
 
Fig. 4-8 shows a rule that could be expressed as follows: “for all players that 
played the match on the 04/06/04, align their salary to 2000”. 
  

L H S R H S

::=

L H S R H S

::=

 
Figure 4-8 Node modification unidentified instance 

 Negative application condition (1) 
 
A negative application condition could be added to the preceding rule (Fig. 4-9). 
This negative application condition transforms the meaning of the rule into: “for 
all players that played the match on the 04/06/04, raise their salary to 2000 unless 
they played the match of the 10/10/03” (this last match was a very bad one!).    

 

LHS RHS

::=

NAC LHS RHS

::=

NAC

 
Figure 4-9 Negative application condition 

 Negative application condition for iterative execution of rules (2) 
 
If we want to be able to define rules that detect patterns on a graph structure and 
make appropriate modifications depending on the presence of this pattern, we 
have to let the system search iteratively for the left hand side. Consequently, there 
is a risk that the pattern matching algorithm will match several times on the same 
instances leading to an infinite looping of the execution of the rule. For this 
purpose a special negative application condition has to be introduced. “NAC2” in 
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Fig. 4-10, is such an example. It says that the rule should not be applied if the 
salary of the player equals already “2000”.   
 

LHS RHS

::=

NAC1 NAC2 LHS RHS

::=

NAC1 NAC2

 
Figure 4-10 Negative Application Condition (2) 

 
 Rule with variable and variable condition as positive application condition 

 
Fig. 4-11 could be expressed as follows: “raise by 500 the salary of all players that 
played the match of the 04/06/04 only if their salary was inferior to 3000”. This 
rule illustrates two different mechanisms. A first one consists in the use of a 
variable in the left hand side, this variable is incremented by a constant in the right 
hand side (“x:=x+500”). A second one consists in the use of a positive application 
condition that compares the value of a variable with a constant (note that x could 
have been compared with another variable).        
 

LHS RHS

::=

PAC

“X < 3000” 

LHS RHS

::=

PAC

“X < 3000” 

 
Figure 4-11 Rule with variable and positive application condition 

 Transfer of an attribute value  
 
Fig. 4-12 illustrates a very altruistic rule, which may be expressed as follows: “If 
two players of a same team are friends and one earns more than the other, then 
align their salaries”. Here the value of a variable is transferred from one node (the 
richest player) to another one (the poor friend).      
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PAC LHS RHS

::=“X > Y”

PAC LHS RHS

::=“X > Y”

 
Figure 4-12 Transfer of an attribute value 

 
 Edge creation 

 
Fig. 4-13 illustrates a rule that could be expressed as follows “All players of 
Louvain United with a salary greater than 3000 should be assigned to the match of 
the 04/06/04” (It will be a tough match !) 

    

LHS RHS

::=

PAC

“X > 3000” 

NAC LHS RHS

::=

PAC

“X > 3000” 

NAC

 
Figure 4-13 Edge creation 

 Node deletion  
 
Fig. 4-14 shows the most delicate operations of all: node deletion. Indeed, the 
problem with node deletion is that they raise the question of dangling edges (see 
discussion in Sec. 4.3.5). We adopt a very clear policy regarding this problem: all 
edges pointing to or originating from a deleted node should be erased. In other 
words, no dangling edges are allowed.       
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LHS RHS

::=

LHS RHS

::=

 
Figure 4-14 Node deletion 

4.3.4.b Textual syntax  

 
A textual expression of the transformation rules has been embedded in UsiXML 
(see Sec. 3.4.2). This textual syntax allows us to store rules and constitute 
transformation catalogs.  Fig. 4-16 provides an example of the textual syntax used 
for a rule. Note that, the implicitness of the adjacency relationship cannot be 
transposed for rules as it raises ambiguities in the interpretation of rules (see 
discussion in Sec. 3.4.2).  

 
Figure 4-15 Textual syntax for expressing transformation rules 
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4.3.5 Application Strategy of Transformation Systems  

 
A transformation system is composed of several rules. This raises the problem of 
how to apply those rules while guaranteeing  important properties: confluence and 
termination. 
 
An application strategy of a graph grammar is defined as the order in which 
transformation rules are applied to an initial graph. Rules can be applied 
concurrently, in an order independent manner, or in a controlled sequential way. 
The rule application strategy raises the problem of the determinism of a grammar 
i.e., its ability to produce one and only one resultant graph. This property is also 
called confluence. The confluence property has been proved for a particular type of 
grammars where transformation rules were shown parallely independent [Löwe93].  
Very intuitively, confluence can be proved for a parallel execution if one can 
demonstrate that transformation rules in a grammar do not interfere with each 
other. That is to say that no rule deletes or introduces nodes that are needed by 
another one to match.  
 
In the context of this dissertation, the property of parallel independence is almost 
never possible to possible to assess. This observation is a consequence of the 
intrinsic nature of the process applied to an initial specification model. Indeed, 
our transformation systems realize an incremental consolidation of an initial 
specification. A transformation system relies, in most cases, on the information 
(i.e., specification chunks) generated by a preceding application of another 
transformation system. 
 
Consequently, transformation systems proposed in this work must be controlled 
with a special technique called Programmed Graph Rewriting [Schü97], a 
generalization of ordered rewrite systems introduced in [Bunk82]. This techniques 
uses graph rewriting rules as process units that may be composed arbitrarily using 
a set of pre-defined operators (e.g., sequences, parallel sequences, loop structures, 
test) as so to obtain a desired algorithmic behavior.  
 
Our application strategy is represented in Fig. 4-16. A development step is 
externally initiated (e.g., in response to a context change, by a designer’s decision, 
by any external entity). Then the first transformation system is executed, when it 
is terminated, the second one is applied and so forth until the last transformation 
system terminates. A similar progression is applied into transformation systems. 
This trivial application strategy solves the problem of confluence.    
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Figure 4-16 An ordered application strategy 

 
Considering the application strategy of Fig. 4-16, it can be said that the 
termination of a development path can be guaranteed if each of its development 
steps terminates. A development step terminates if each of its sub-steps 
terminates. (i.e., its associated transformation systems).  A transformation system 
terminates if each of its composing rules terminates.  
  
A rule terminates when no more match can be found in the resultant graph. Note 
that a problem of infinite looping may arise, especially when dealing with non-
deleting grammars. Indeed, a rule application consists at first of searching, non 
deterministically, a match into a host graph. It is more likely that a LHS will match 
several times on the same sub-graph if no precaution is taken. To solve this 
problem, a technique would be to tag already matched sub-graph, an alternative 
technique consists of replicating part of a right hand side in the negative 
application condition. This last technique was adopted in this work (see example 
in Fig. 4-10). 
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4.4 Forward Engineering 

 
Forward engineering can be seen as a sequence of progressive refinements applied 
on a high level specification in order to obtain an application code or a lower level 
specification. [Czar00] identifies several types of refinements. The following ones 
are relevant in our context:  
 

 Decomposition consists of refining a high level concept into a set of lower 
level concepts. For instance, a task is mapped onto a set of interaction 
objects.  

 Choice of representation associate a representation with a higher level concept, 
for instance a couple (task, domain concept) is mapped onto a particular 
abstract interaction object. 

 Specialization states that a more general abstraction is transformed into a 
more concrete one, being more specific for a particular context of use. For 
instance, an abstract interaction object equipped with an input facet is 
transformed into an input field for the graphical modality.  

 Concretization involves adding more detail to a concept. For instance, 
adding style attributes (e.g., color, border style) to a concrete user interface 
specification.  

 
Many of the transformations illustrated bellow can be assigned to one or several 
of these types. 
 
Historically, model-driven methodologies have focused primarily on the 
derivation of a widget-dependent specification or, even, straightforwardly code 
(see Chap. 2) from a data model, a form of a domain model restricted to only data 
structures. When such methods and tools had to be used for producing several 
UIs for different computing platforms, it turned out that there was no support 
and no identification of the common parts, thus resulting on restarting the whole 
methodological process from scratch. Toolkit-independent models were 
introduced [Paus92] to tackle this problem. These abstractions became the goal 
viewpoint of forward engineering processes. In the meantime, it was realized that 
domain model (in its various forms) was not expressive enough to describe the 
wide variety of user tasks and, more important, their logical and temporal 
relationship. Indeed, a domain model is only able to express pattern tasks with a 
predefined semantics like create, read, update, delete, search, etc. The only way to 
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specify temporal relationships between these tasks was by using pre-conditions on 
domain methods, a very indirect way to describe the interaction of a person with a 
system!  Task models were introduced in UI engineering [John92] to enable a rich 
expression of user’s tasks. It is now acknowledged that task and domain models 
should be used in parallel as a starting point of a forward engineering path. That is 
the option that has been taken in the illustrations provided in this section. Note, 
however, that our approach can accommodate with a definition of rules relying 
solely on a task or a domain model. Coverage of older heuristics is thus also 
possible. 
 
As shown in Fig. 4-17, the starting point of UI forward engineering is the 
construction of a task specification and a domain model. This initial 
representation is then transformed into an abstract user interface, which is then 
transformed into a concrete user interface model. The concrete user interface 
model is then used to generate UI code. A forward engineering development path 
is detailed hereafter by decomposing it into development steps, and sub-steps.  
 

Task and 
Domain

Abstract 
User Interface

Concrete 
User Interface 

Final
User Interface

T1

T2

T3
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ard

Task and 
Domain
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User Interface

Concrete 
User Interface 
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T2

T3
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ard

 
Figure 4-17 Forward development of UIs 

4.4.1 Step: From Task & Domain to Abstract User Interface 

 
Step T1 (see 4-17) concerns the derivation of an AUI from models at the T&D 
viewpoint (e.g., a task, a domain or task and domain model). This development 
step may involve development sub-steps illustrated in Fig. 4-18.  
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Figure 4-18 Development step : from Task & Domain to AUI 

 
To illustrate this step, a decomposition into five sub-steps arranged by logical 
order is proposed. This decomposition illustrates the separation of concern 
principle applied to transformation processes (Req. 16).  
 
First, abstract containers and abstract individual components (i.e., groups of 
abstract objects) are identified; then individual elements specification are refined 
and, finally, arranged into the previously identified containers. This completes the 
design of the abstract presentation. Then, the dialog is added thanks to two 
phases: a definition of abstract dialog control and the derivation of AUI to 
domain relationships. 
  
This shows that the decomposition of this step into sub-steps can follow a logical 
order that is principle-based, here in a top-down approach.  
 

4.4.1.a Sub-step: Identification of Abstract UI structure  

 
It consists of the definition of groups of abstract interaction objects. Each group 
corresponds to a group of tasks tightly coupled together. The meaning of “task 
coupling” may vary from one method to another. It goes from simple heuristics 
like “for each group of tasks, child of a same task, generate an interaction space” 
to sophisticated heuristics exploiting temporal ordering and decomposition 
structure between tasks (e.g., enable task sets method proposed by [Pate99] or 
information flow between tasks in TRIDENT method proposed by [Boba95c]). 
We propose an example based on Teallach methodology [Grif99] that creates an 
AUI structure, a transposition of a task hierarchical structure. 
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Example 1 is a transformation system composed of two rules (Rule 4-1, 4-2) 
enabling the creation of a simple hierarchical structure containing abstract 
individual components and abstract containers. 
  
Rule 4-1: For each leaf task of a task tree, create an Abstract Individual 
Component. For each task, parent of a leaf task, create an Abstract Container. 
Link the abstract container and the Abstract Individual Element by a containment 
relationship.  
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-1 Creation of abstract individual components derived from task model leaves 

 
Rule 4-2: Create an Abstract Container structure parallel to the task 
decomposition structure. 
  

LHS RHS

::=

NAC LHS RHS

::=

NAC

 
Rule 4-2 Creation of abstract containers derived from task model structure 

4.4.1.b Sub-step: Selection of abstract individual component  

 
The current sub-step merges the information contained in the task model and in 
the domain model to produce the specification of AICs. An AIC specification is 
provided by the identification of its facets. As so, “responsibilities” of each AIC 
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are identified independently of the task and domain models (Req. 13: Methodological 
flexibility). To perform this transformation, several elements may be taken into 
consideration: action types, action items, task types, data types of domain 
attributes, domain of value of domain concepts, enumerated domains, structure of 
the domain model (e.g., inheritance, aggregations). It is hard to compare this sub-
step with the literature. The level of abstraction of interactors we propose at this 
level is present only in [Grif99]. Consequently, we propose our own heuristic.  
 
Leaf tasks of a task mode are described with an actionType and an itemType 
indicating a generic action and a generic object on which an action is being 
performed (see Sec 3.2.1). A manipulates relationship add information on the 
domain concepts that a task manipulates (itemType being very generic). 
 
Table 4-1, provides us with a systematic expression of possible mappings of task 
types to AIC facet types. The left column presents a set of meaningful 
combination of values for task actionType and task actionItem. The right column 
shows corresponding AIC facets with a refined expression of the actionType and 
actionItem at the AIC level, depending on the type of domain concept that is 
manipulated (an attribute, a collection of attributes, an object or a collection of 
objects). 
 

Task [actionType] + 
[actionItem] 

AIC Facet type + [actionType] + [actionItem]   

[Start/go] + [Operation] [Control] 
[Stop/exit] + [Operation] [Control] 
[Start/Go] + [Container] [Navigation] 
[Stop/exit] + [Container] [Navigation] 
[Select] + [Element] [Input] + ([Select] + [Attribute Value] OR [Select] [Object]) 
[Select] + [Collection] [Input] + ([Select] [Attribute Value Set] OR [Choose] 

[Object Set]) 
[Create] + [Element] [Input] + ([Create]  [Attribute Value] OR  [Create] [Object]) 
[Create] + [Collection] [Input] + ([Create] [Attribute Value Set] OR [Create] [Object 

Set]) 
[Delete] + [Element] [Input] + ([Delete] [Attribute Value] OR [Delete] [Object]) 
[Delete] + [Collection] [Input] + ([Delete] [Attribute Value Set] OR [Delete] [Object 

Set]) 
[Modify] + [Element] [Input] + ([Update] [Attribute Value] OR [Update] [Object]) 
[Modify] + [Collection] [Input] + ([Update] [Attribute Value Set] OR [Update] 

[Object Set]) 
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[View] + [Element] [Output] + ([View] [Attribute Value] OR [view] [object]) 
[View] + [Collection] [Output] + ([View] [Attribute Value Set] OR [View] [Object 

Set]) 
[Monitor] + [Element] [Output] + ([Monitor] [Attribute Value] OR [Monitor] 

[Object]) 
[Monitor] + [Collection] [Output] + ([Monitor] [Attribute Value Set] OR [Monitor] 

[Object Set]) 
[Move] + [Element] [Input] + ([Move] [Attribute] OR [Move] [Object])   
[Move] + [Collection] [Input] + ([Move] [Attribute Value Set] OR [Move] [Object 

Set]) 
[Duplicate] + [Element] [Input] + ([Duplicate] [Attribute] OR [Duplicate] [Object]) 
[Duplicate] + [Collection] [Input] + ([Duplicate] [Attribute Value Set] OR [Duplicate] 

[Object Set]) 

Table 4-1 Association of task action types with AUI facets 

 
Example 2 is composed of Rule 4-3. It exploits information on task action types 
to attach appropriate facets to corresponding abstract individual components.        
 
Rule 4-3: for each abstract individual element mapped onto a task such that the 
tasks nature consists of the activation of a method and this task is mapped onto a 
class, assign to the abstract individual component an action facet that activates the 
mapped method.  
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-3 Creation of a facet for an abstract individual component derived from task action 

type 
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4.4.1.c Sub-step: Spatio-temporal arrangement of abstract interaction 
objects  

 
The principle of this sub-step is to exploit a task model structure to derive 
information on a spatio-temporal arrangement of elements populating an AUI. 
Spatio-temporal arrangement is not to be confused with a mechanism for 
controlling the locus of control of the UI (this latter concept is referred, in Chap. 
3, to dialog control). Spatio-temporal relationships only allow a specification of 
layout constraints between AIOs.  
A task or domain model contains little information for a precise spatio-temporal 
specification. It cannot be said, for instance, that an abstract container partially 
overlaps another one, or that two AICs are “right aligned” on the simple basis 
that the tasks these AIOs represent are in such or such temporal relationship.  
 
It is not amazing that the problem of layout derivation from task and domain 
model have been left in the shadow by the literature. Three solutions are 
proposed to face the problem of layout definition: (1) some heavy (and hard-
coded) assumptions are done on the way elements should be organized 
topologically. Teresa [Pate03] tool, for instance, calculates layout on the basis of a 
built-in algorithm (2) presentation templates are at disposal of the designer to 
customize layout structure of the UI [Lonc96] (3) a designer is able, through a 
specific tool, to re-shuffle the layout by hand in the model itself [Boda95b]. Of 
course in any case a designer is always able to edit and reshuffle a UI at the code 
level (i.e., final UI). A problem with this solution is that modifications done in the 
code, potentially, endanger the consistency of the UI models with the code that 
has been generated.  
 
Nonetheless, we consider that the order in which tasks are specified may reflect 
designer’s intent about the ordering of elements allowing the realization of a task. 
An abstractAdjacence relationship expresses the existence of an Allen relationship 
(with no further detail) between two AIOs. This relationship might be either 
specified latter on by hand, by the designer, or left “as is” and transformed into a 
concrete relationship  
 
Example 3 is composed of Rule 4-4. It places abstract individual components in 
precedence relationship (with abstractAdjacency) based on the fact that the tasks 
they represent are sequentially ordered. To perform a complete arrangement, 
every type of task temporal relationship has to be covered by a rule. 
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 Rule 4-4: for every couple of AIC mapped onto sister tasks that are sequential 
“>>”, create a relationship of type “abstractAdjacence” between these AIOs. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-4 A sequentialisation of abstract individual component derived from task temporal 

relationships 

4.4.1.d Sub-step: Definition of Abstract Dialog Control  

 
A task model defines temporal constraints between tasks. These constraints have 
been expressed in term of pre- and post- conditions in Sec. 3.2.1. Tasks have been 
mapped onto abstract containers and abstract individual components in a 
preceding sub-step (Sec. 4.4.1.a). The present sub-step transposes task temporal 
constraints to the AUI. 
 
The dialog control expresses the locus of control (i.e., availability) for initiating the 
dialog in a UI. Dialog control consists of controlling certain states of the user 
interface in order to enforce temporal constraints imposed between the elements 
of the interface. Dialog control allows answering to the following question: when 
is such interaction object available or not?  
 
As for task temporal operators, the abstract dialog control proposed here is based 
on an implicit mechanism of pre- and post- conditions underlying temporal 
constraints. Fig. 4-19 illustrates a dialog specification for an AUI. Facet types are 
represented as icons (i.e., a pen for input, a machine for control on machine 
initiative, a user working on a machine for control on user initiative). Abstract 
containers are represented as boxes. Temporal constraints are defined between 
these elements (see Sec. 3.2.1 for an explanation on temporal operators). 
  
This representation allows a determination of the locus of control of elements i.e., 
to determine when they are available and when they are not. For instance it can be 
said that AC.2 cannot be available until AC.1 is “terminated”. And AC.1 will be 
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terminated iff AIC.11 and AIC.12 and AIC.13 will be terminated and so on. Now 
an essential question is: what terminates an AIC exactly ? For a control AIC, the 
output of the method that is executed can determine if the AIC is terminated or 
not. But what terminates an input AIC ? This question is impossible to answer at 
this level as the concrete object that will reify this AIC is not known. It might be 
an auditoryInput or a textComponent. Their termination events might be, for 
instance: a blank for a period of 2 sec. for the auditory element, a click outside the 
focus of the object or a “tab key” press for the graphical component.  
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Figure 4-19 Abstract Dialog 

 
Example 4: is composed of Rule 4-5. It consists of a transposition of task 
temporal relationship to abstract dialog control relationships.  
 
Rule 4-5: for each couple of sister tasks mapped onto AICs, define a dialog 
control relationship between these AIC that has the same semantic as the 
temporal relationship.   
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NAC LHS RHS

::=
NAC LHS RHS

::=

 
Rule 4-5 Abstract Dialog Derivation from Task Model 

4.4.1.e Sub-step: Derivation of AUI to domain mappings 

 
Manipulates relationship has been introduced in Sec. 3.2.6. The information 
contained in this relationship may be the basis of a refinement expressing 
mappings between a UI model (at abstract or concrete level) and domain model. 
Three different heuristics may operate in order to achieve this goal: (1) tasks 
realizing an input on a domain value allow a derivation of an updates relationship, 
(2) a view task or a monitor task may allow a derivation of an observes 
relationship, and (3) a task having an operation as item allows a derivation of a 
triggers relationship. This example shows a heuristic that is more complex than 
merely mapping tasks or domain to UI elements.  
 
Example 5 is composed of one single rule (Rule 4-6) and derives triggers 
relationship between an abstract individual component and a domain concept.  
 
Rule 4-6: for each task that manipulates a method, the AIC that represents this 
task triggers the method.   

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-6 Deriving triggering relationships from task domain mappings 
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Example 6 is composed of Rule 4-7 and Rule 4-8. It sheds a new light on 
information passing relationship (see Sec. 3.2.1). 
 
Rule 4-7: if two sister tasks manipulate a same attribute and are temporally 
constrained with a “sequence with information passing” relationship, each of 
these tasks being mapped onto  an AIC, then the AIC that is mapped with the 
first task updates the attribute manipulated by the tasks. The second AIC observes 
this attribute. 
 

LHS RHS

::=

NAC

LHS RHS

::=

NAC

 
Rule 4-7 Derivation of Updates and observes structure on the base of a task relationship of 

sequential information passing 

Rule 4-8: if two sister tasks manipulate a same attribute and are temporally 
constrained with a “concurrent information passing” relationship, and each of 
these tasks is mapped onto an AIC, then both AIC observe and update the 
attribute that is manipulated by the tasks.  
 
 



 
 
 
 
4. Multi-Path Development of User Interfaces 

173

LHS RHS

::=

NAC

LHS RHS

::=

NAC

 
Rule 4-8 Derivation of Updates and Observes structure on the basis of a task relationship 

of concurrent information passing  

4.4.2 Step: From Abstract User Interface to Concrete User Interface       

Step T2 (see Fig. 4-1) consists of generating a concrete user interface from an 
abstract user interface. This development step may involve the development sub-
steps illustrated in Fig. 4-20. 
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Figure 4-20 Development Step : from AUI to CUI 
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We decomposed this step into six sub-steps that are arranged by logical order.  
First, concrete containers (i.e., windows, boxes for the graphical modality) are 
identified; then the individual elements are derived and arranged into the 
previously identified containers. This completes the design of the presentation. 
After that, the dialog is added thanks to three phases: a definition of potential 
navigation, of the control of this navigation, and of other behaviors. Finally CUI 
to domain relationships are established by transposing these relationships from 
the AUI model. 
 
Again, this shows that a decomposition of the current step into sub-steps can 
follow a logical order that is principle-based.  
 
One can equally imagine a bottom-up process where individual elements are first 
identified. Then, these objects are assembled together in larger elements, along 
with their navigation. This approach largely contrasts with approaches where 
presentation and dialog work hand in hand (e.g., in programming by 
demonstration). In this type of approach, a combined approach is adopted, but it 
is very hard to expand the design knowledge used without largely affecting the 
rest of the design knowledge. This does not satisfy Req. 16: methodological separation 
of concern. 
 

4.4.2.a Sub-step: Reification of abstract containers into concrete 
containers.  

 
An abstract container can be reified into different types of concrete containers. 
Variables influencing this transformation are, notably: modality (graphical and 
auditory are supported by our conceptual framework), context of use (e.g., 
containers for a cell phone will not be the same that for a wall display), interaction 
style (e.g., direct manipulation, menu selection, forms, command language, natural 
language), designer’s preference. A major difficulty of this step lies in the problem 
of choosing an appropriate level to group abstract containers into a concrete 
container (typically a window for a graphical modality). A minimal choice would 
be to create a concrete container (e.g., a window) for each leaf group of AIC in 
the AUI hierarchy. A maximal solution would be to group all abstract individual 
components and all abstract containers into one single concrete container (e.g., 
one window). Several window identification algorithms have been proposed in the 
literature. [Jans93] uses the concept of view on entity relationship schema to 
identify windows (the principle being one window per defined view); [Balz93] and 
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[Puer94] exploit a class diagram structure (i.e., generalization for [Balz93], 
generalization and aggregation in [Puer94]). [Boda95c] relies on a task centered 
representation mixed with a specification of task input and output flows (activity 
chaining graphs) to identify windows and window transitions. [Pate00] and 
[Luyt03] rely solely on task model structure (hierarchical decomposition and 
temporal relationships) to identify windows and window transitions. Here again all 
these approaches propose algorithms tightly coupled with the representation they 
manipulate. In the following example we externalize a simple heuristic based on 
Teallach derivation rules [Griff99]. In the original rule, the level “leaf-1” of task 
tree was assigned to a window. We exploit here the AUI hierarchical 
decomposition for window identification to apply a similar heuristic. An 
advantage of our approach is that each proposed algorithm may be modified, 
tested, and refined. 
 
Example 7 is a transformation system composed of rule 4-9 and rule 4-10.  This 
system transforms into windows, abstract containers at a certain depth in the 
abstract container hierarchy. All abstract containers content is reified and 
embedded into the newly created window.   
 
Rule 4-9: Each abstract container at level “leaf-l” is transformed into a window. 
Note that an abstract container is always reified into a, so called, box at the 
concrete level. This box is then embedded into a window.   
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-9 A creation of windows derived from containment relationships at the abstract 

level 

Rule 4-10: each abstract container contained into an abstract container that was 
reified into a window is transformed into an horizontal box and embedded into 
the window. 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-10 A generation of window structure derived from containment relationship at the 

abstract level 

4.4.2.b Sub-step: Selection of concrete individual components. 

 
Functionalities of abstract individual components are identified with their facet. 
Selection of concrete individual components consists of choosing the appropriate 
concrete element that will support whole or a part of the facets associated with an 
abstract individual component.  
 
The selection of concrete individual components can be assimilated to the 
perennial problem of “widget selection” (see Chapter 2). The major difference in 
our approach is that we introduce an intermediary level between task&domain 
and concrete widget selection (i.e., the abstract level that synthesizes functionality 
of interactors). For instance, MacIda [Peto93] proposes an exploitation of the 
characteristics of domain concepts. Rules like the following may be found in this 
method: “For each attribute in the domain model generate an input field whose 
label is the name of the attribute”.  In [Vand97] the widget selection problem was 
extensively treated as 238 widget selection rules were provided. Until now it is the 
most extensive catalog of rules on the topic. Our method is able to cover all of 
these rules. 
 
Example 8 is composed of Rule 4-11. It creates an editable text component (i.e., 
a textbox ) to reify an AIO with an input facet. 
 
Rule 4-11: each input facet of an abstract individual component is reified by a 
graphical individual component (a type of concrete individual component) of type 
“editable text component” (i.e., a text box). 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-11  Creation of an editable text component (i.e., an input field) derived from facets  

type of abstract components 

4.4.2.c Sub-step: Arrangement of concrete individual component.   

 
If specified, Allen relationships between abstract interaction objects may be 
interpreted in order to provide concrete layout information (see Sec. 3.2.3 for 
more details). It was discussed in Sec. 4.4.1.c that task and domain models provide 
very poor information on abstract layout. Abstract layout being defined with 
abstractAdjacency relationship, we rely on a concreteAdjacency (specialized into 
graphicalAdjacency and auditoryAdjacency) to specify a layout structure at the CUI 
level. Combined with our boxing system, this relationship allows us to define 
unambiguous layout specifications. Fig. 4-21 shows a layout that is enabled by  
these concepts. For this example, the specification would be:  
 
graphicalContainement: MainWindow contains Box1, Box 1 contains Box 11 and 
Box 12, Box 12 contains Box 121 and Box 122, Box 121 contains menuItem 1, 2, 
3, etc. 
graphicalAdjacency (excerpt): Box11 adjacent Box11, Box121 adjacent Box122., 
menuItem1 adjacent menuItem2, menuItem2 adjacent menuItem3,…  
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Figure 4-21 Possible layout using concreteAdjacency and a box embedding system. 

 
Example 9 is composed of Rule 4-12. This example transforms an AUI into a 
concrete model for the graphical modality. It chains concrete individual 
components according to abstract individual component sequencing.  
 
Rule 4-12: for each couple of abstract individual components related by an 
“abstractAjacency” relationship and reified into concrete individual components, 
generate a “concreteAdjacency” relationship between the concrete individual 
components. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-12 A placement of graphical individual components derived from spatio-temporal 

relationships at the abstract level 
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4.4.2.d Sub-step: Definition of navigation  

 
Navigation is defined by a set of transitions between containers populating a UI. 
The reader has probably noticed that no navigation has been defined at the 
abstract level. Navigation is indeed not an abstract concept as it necessitates a 
partitioning into concrete containers. Navigation is only a side effect of reification 
of abstract containers into concrete containers. An all embracing UI on a wall 
display will require a little navigation in comparison of a cell phone. Ad hoc 
navigation objects may be created for this purpose (e.g., a menu bar, a tabbed 
dialog box).   
 
Example 10 is composed of Rule 4-13. It generates a button to enable a 
navigation between two windows. 
 
Rule 4-13: for each container related to another container belonging to different 
windows, and their respective abstract container being related by a “is before 
relationship”, generate a navigation button in source container pointing to the 
window of target container. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-13 A window navigation definition derived from container adjacency relationships 

4.4.2.e Sub-step: Concrete Dialog Control Definition 

 
This sub-step consists of a simple transposition of abstract dialog relationships in 
the concrete world.  
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Example 11 is composed of Rule 4-14 transposes a dialog control relationship 
between two containers. 
 
Rule 4-14: for each couple of abstract container with a dialog control relationship, 
transpose this relationship to the couple of concrete containers that reify them. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-14 Derivation of the concrete dialog from abstract dialog 

4.4.2.f Sub-step: Derivation of CUI to domain relationships  

 
This step consists of a transposition of “AUI to domain relationships” to the 
concrete level. A simple transitivity property between a domain concept, an 
abstract concept and a concrete concept is assumed.  
 
Example 12 is composed of rule Rule 4-15. It transposes an “updates” 
relationship from an AIC to the CIC that reifies it.  
 
Rule 4-15: for each AIC updating a domain concept, if a CIC reifies this AIC 
then the CIC updates this same domain concept. 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-15 Transposition of update relationship 

 

4.4.3 From Concrete User Interface to Code  

Step T3 consists in code generation from a CUI. Code generation techniques for 
UIs is a very well known topic. [Czar00] presents a state-of-the art of model to 
code techniques (e.g., visitor-based approach and template based approach). 
Scientific results for this transformation have been shown in systems issued from 
research like: Janus [Balze95], Trident [Boda95b], Modi-D [Puer97] or from 
commercial world e.g., Genova [Geno04] or Oliva Nova [Moli02]. The present 
work does not particularly contribute to this area although several tools have been 
developed to provide code generation support from the concrete user interface 
level. 
 

4.5 Reverse Engineering  

 
As shown in Fig. 4-22, the starting point of UI reverse engineering is the user 
interface code. This code is analyzed and transformed into a higher level 
representation i.e., a concrete user interface. From this CUI model, an AUI and, 
finally, a task and domain model are retrieved. 
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Figure 4-22 Reverse Transformational Development of UIs 

 
Step T1 (see Fig. 4-22) consists of retrieving a concrete UI model from UI code 
or appearance. A state of the art in reverse engineering of UIs expressed 
according to the IEEE Terminology [Chik90] can be found in [Bouil04].  
 
Transition T1 is notably supported by ReversiXML (formerly called Rutabaga 
[Boui04]). ReversiXML is an on-line tool functioning as a module of an Apache 
server. It takes as input a static HTML page, a configuration file containing a set 
of user defined options, and produces a UI at concrete and/or abstract level. The 
target language that is used by this tool is UsiXML (see Sec. 3.3.2). T1 step is a 
tedious operation since it may require as many “concretizers” as existing 
languages. Of course, if one restricts to, let us say markup-languages, some reuse 
can be considered. For other families of language (e.g., Lisp, Prolog, Python, 
Caml, C++, C#), a separate concretizer may be needed each time. This represents 
a serious development effort.  
 
Transition T2 (see Fig. 4-22) consists of deriving an abstract UI specification from 
a concrete one. This derivation is relatively trivial because (1) the source model 
holds more information than the target model (2) there is a very smooth 
conceptual continuum between these two levels. Nevertheless, several 
development sub-steps may be identified: abstraction of CIO into AIO, 
abstraction of layout relationships, abstraction of navigation, abstraction of dialog, 
etc.  We provide hereafter an example of such sub-step.  In addition this transition 
is illustrated by our case study in Sec. 5.2.5.  
 
Example 13 is composed of Rule 4-16. It consists of obtaining an abstract 
individual component equipped with an input facet.  
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Rule 4-16: for each editable graphical individual component, create an abstract 
individual component equipped with an input facet. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-16 Creation of a facet at the abstract level derived from a type analysis of graphical 

individual components 

Transition T3 (see Fig. 4-22) is the derivation of a task and concept specification 
from an abstract UI. A conceptual gap between AUI level and task and domain 
level being large, little information can be extracted from an AUI model to 
retrieve a task or domain specification. 
 
Example 14 is composed of Rule 4-17. This example derives information on task 
action type from the abstract user interface level.  
 
Rule 4-17: for each abstract individual component equipped with a navigation 
facet create a task with action type “start/go” on an item of type “element”. 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-17 Definition of task action types derived from an analysis of facets at the abstract 

level  
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4.6 Adaptation to context change  
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Figure 4-23 Context adaptation at different levels our framework 

 
Context adaptation (illustrated in Fig. 4-23) covers model transformations 
adapting a viewpoint to another context of use. This adaptation may be done by 
the application of translations to models belonging to any viewpoint.  
 

4.6.1 Step: From Task & Domain to Task & Domain 

 
We propose one development sub-step type to exemplify adaptation at T1 level 
(see Fig. 4-23): transformation of a task model.  

4.6.1.a Sub-step: Transformation of a task model  

 
Transformation of a task model can be useful to adapt a task specification to 
various categories of users, to various environments. For instance, an expert user 
needs less structuring in the accomplishment of a task than a novice user. This has 
an influence on the relationships between tasks. Another example is the 
management of user’s permissions. Some users may not be allowed to perform 
certain tasks (e.g.., editing a document). A task model may also be ‘filtered’ 
according to various criteria (e.g., erase all tasks manipulating a video stream). 
Transformation rules may be defined to adapt a task specification to these 
constraints.  
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Example 15 is a transformation system composed of Rule 4-18  and Rule 4-19.  
A task hierarchy is “flattened” to allow an (expert) user to perform all tasks at the 
same time (i.e., concurrently).   
 
Rule 4-18: (1) erases each intermediary task (i.e., non-leaf and non-root tasks). (2) 
attaches every leaf task to the root.   
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-18 Flattening of a task tree structure 

  
Rule 4-19: for each sister tasks change their temporal relationship into concurrent.  
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-19 Transforming all temporal relationship to concurrent 

4.6.2 Step: From Abstract User Interface to Abstract User Interface  

 
Adaptation at the abstract level concerns abstract container reshuffling and 
abstract individual component modification (e.g., facet modification, facet 
splitting, facet merging). An example of abstract individual component 
modification.  
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4.6.2.a Sub-step: Abstract individual component facet modification.  

 
A modification of an abstract individual component affects its facets in their 
specification (e.g., an input facet is mapped onto a different domain concept) or 
their structuring (e.g., a facet is transferred onto another abstract component, a 
facet is erased).      
 
Example 16 is a transformation system containing Rule 4-20 and Rule 4-21. It 
merges the facets of two abstract individual components mapped onto concurrent 
tasks. This example is based on the assumption that the tasks of a system must be 
concentrated into a lesser number of abstract components. This means that 
concrete components resulting from the abstract specification will have to assume 
more ‘functionalities’ than in the source version of the specification.    
 
Rule 4-20: for each pair of abstract individual component mapped onto 
concurrent tasks, transfer all facets of the abstract individual component that is 
mapped onto the task target of the concurrency relationship, to the other abstract 
individual component. 
 

NAC LHS RHS

::=::=

NAC LHS RHS

::=::=

 
Rule 4-20 A merging of facets of abstract individual components 

Rule 4-21: erase all abstract individual components that have no facets left.   
 

NAC LHS RHS

::= Ø

NAC LHS RHS

::= Ø
 

Rule 4-21 Erasing abstract individual components with no facets left 
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4.6.3 Step: From Concrete User Interface to Concrete User Interface  

 
Adaptation at the concrete level is illustrated by several development sub-steps: 
container type modification (called concrete container re-formation), modification 
of the types of concrete individual components (called concrete individual 
components re-selection), layout modification (layout re-shuffling), or navigation 
re-definition. Examples for these first three adaptation types are given hereafter.    
 

4.6.3.a Sub-step: Concrete container re-formation  

 
Concrete container Re-Formation may cover situations like container type 
transformation (e.g., a window is transformed into a tabbed dialog box), container 
system modification (e.g., a system of windows is merged into a single window).  
 
Example 17 is a transformation system composed of Rule 4-22, Rule 4-23, Rule 
4-25. This transformation adapts a window into a tabbed dialog box and transfer 
the window content into several “tabbed items”.   
 
Rule 4-22: each window is selected and mapped onto a newly created tabbed 
dialog box.   
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-22 Initializing of the adaptation process by creating graphical component to adapt 

into 

 
Rule 4-23: transfers every first level box of the window to adapt it into a tabbed 
item composing a tabbed dialog box.  
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LHS RHS

::=

LHS RHS

::=

 
Rule 4-23 Creation of  a tabbed item and transfer of the content of the adapted window 

 
Rule 4-25: cleans up the specification of remaining empty main boxes.     
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-24 Deletion of unnecessary containers 

4.6.3.b Sub-step: Concrete individual component re-selection 

 
Re-selection transformations adapt individual component into other individual 
components. This covers individual component merging or slitting, or 
replacement. 
     
Example 18 is composed of Rule 4-25. It merges a non-editable text component 
(i.e., a label) and its adjacent editable text component into one editable text 
component. The content of the non-editable text component is transferred into 
the editable text component.     
 
Rule 4-25: for each couple of adjacent editable text component and non-editable 
text component. Erase the editable text component and transfer its content into 
the non-editable text component (unless a content has already been transferred). 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-25 Merging of a non-editable text component (e.g., a label) and an editable text 

component (e.g., an input field) into one single editable text component 

4.6.3.c Sub-step: Layout re-shuffling  

 
A layout at the concrete level is specified with horizontal and vertical boxes. An 
elements contained into a box may be glued to an edge of this box. Any 
transformation modifying this structuring is categorized as layout reshuffling 
transformation. 
 
Example 19 is composed of Rule 4-26. It squeezes all boxes in order to 
“verticalize” its layout.  
 
Rule 4-26: each box is transformed into a vertical box and every individual 
component is glued to left.  
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 4-26 Squeezing of a layout structure to display vertically 
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4.7 Tool Support 

  
An identification of tools required to the development of UIs adopting a model-
driven approach has been discussed in [Szek96, Schl96, Puert97]: 
 

 Model editors assist a designer in constructing the models. These tools 
consist in syntax editors, form based tools, or visual builders. Some model 
editors maintain a textual specification consistent with a graphical 
representation. 

 Design critics provide a designer with quality assessment facilities. 
Models capturing explicit properties of the artifact are an ideal 
representation to perform evaluation. 

 Design assistants help a designer in refining modeling artifacts. These 
tools propose knowledge bases represented as rules (most of them are 
production rules). 

 Implementation tools translate a specification into a representation that 
can be used by a compiler, an interpreter or an interface builder. 

 
We add to this list: 

 Transformation tools provide support to the designer to edit, store and 
execute model transformation rules.  

 Reverse engineering tools extract a modeling artifact from a coded 
representation. 

 
Several tools have been exploited or developed in the context of this dissertation. 
They all play a certain role in making multi-path development a reality. We have 
classified these tools according to the classification framework presented above. 
More details on tools is provided in Annex 1. 
 

Tool Functional Coverage Credits 
GrafiXML [Usix04] Graphical model editor: CUI 

(high fidelity), context model 
+ Textual model editor: all 
UsiXML models + Code 
generation: XHTML 1.0, Java 
Swing 

In collaboration 
with Benjamin 
Michotte 

VisiXML [Usix04] Graphical model editor: CUI 
(mid fidelity) 

In collaboration 
with Manuel Van 
Sluys 

FlashiXML Flash Renderer In collaboration 
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with Youri 
Vanden Berghe  

IdealXML[Usix04] Model editor: Task & 
Domain, AUI, inter-model 
relationships 

In collaboration 
with Francisco 
Montero 

ReversiXML[Boui03] Reverse engineering: from 
HTML 4.0 to CUI and/or 
AUI   

Laurent Bouillon 

TransformiXML 
API/GUI [Limb04] 

Model transformation: from 
any UsiXML model to any 
UsiXML model 

In collaboration 
with Victor 
Jaquero and 
Benjamin 
Michotte 

AGG Transformation  General purpose tool for 
graph transformation 

Olga Runge, TU 
Berlin  

Table 4-2 Tools to support our approach  
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4.8 Conclusion 

In this chapter, a multi-path development method based on graph transformation   
has been introduced, defined and illustrated.  
 
This development method decomposes any development activity in a succession 
of development steps that consist of the transformation of the artifact(s) in the 
scope of a development stage (here referred as viewpoint) into other development 
artifacts. In this context, a development path is defined as an archetypal 
composition of development steps. We identified three typical development 
paths: forward engineering, reverse engineering, and context (of use) adaptation. 
These paths are basically expressed on three types of transformation (i.e., 
abstraction, reification, and translation) so that any development path, consisting 
of development steps, can be supported by a transformational approach by 
combining transformations of the three types (Req. 13: Methodological flexibility).  
 
To address the requirement of methodological separation of concern (Req. 16), 
development steps, have been further decomposed into development sub-steps. A 
development sub-step realizes one ‘concern’ of the transformation process e.g., 
definition of the dialog control, definition of the navigation, choice of interactors 
type.  
 
To enable the expression (Req. 12: Methodological explicitness) and the execution 
(Req. 15: Executability) of the development steps. Each sub-step populating a step 
may be associated with a so-called transformation system, itself decomposed into 
transformation rules. Transformation systems and transformation rules are 
conditional graph rewriting rules sequentially composed into grammars. As so, 
transformations can be uniformly and consistently applied through all possible 
development paths (Req. 18: Methodological homogeneity). This application is based 
on a rigorous execution semantics provided by the graph transformation literature 
(Req. 14: Methodological formality, Req. 13: Executability, Req. 17: Predicatbility). 
Transformation rules and transformation systems may be stored in a textual 
format to enable their capitalization in a sort of development library (Req. 23: 
Methodological Reuse, Req. 22: Tool Interoperability).   
 
Transformation systems and transformation sub-steps proposed in this chapter 
are only one possibility of realizing different development paths. Our 
methodology allows the introduction of new development sub-steps and/or new 
transformation systems for realizing sub-steps (Req. 17: methodological extendibility).  
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Allowing a designer to define her own transformation heuristics raises the 
problem of the correctness (Req. 21) of our method. Correctness is a relative 
notion depending on the context in which it is addressed. Two types of 
correctness may be considered: Syntactic (structural) correctness and semantic 
correctness [Varr02b]. Syntactic correctness stipulates that for any well-formed 
source model, any transformation rule produces a well-formed target model. 
Syntactic correctness is guaranteed by construction within our framework by the 
fact that all our transformations are type preserving. Graph type checking ensures 
that a given transformation will not be applied if the resulting model it produces 
violates the meta-model it is supposed to conform to. A graph of types can also 
be complemented with the expression of specific consistency constraints 
inexpressible within the graph of types. Object Constraint Language (OCL) is 
used for this purpose in [Agra03], pre- and post-condition with graph patterns are 
used in [Akeh03]. This approach is compatible with ours. Semantic correctness 
stipulates a semantic adequacy between a source and a target model. In our 
context, semantic correctness proving is very hard to consider as by definition the 
domain of discourse of source model and target model are different. Furthermore, 
a designer being allowed to define her own transformation rules, a correctness 
proof would have to be instantiated for each newly defined rule. 
 
Traceability (Req. 20) has been defined in Chapter 2 as the “degree to which a 
relationship can be established between two or more products (i.e., here models) 
of the development process, especially products having a predecessor-successor 
or master-subordinate relationship to one another” [IEEE90]. A set of inter-
model relationships have been introduced in Chapter 3 to enable the expressing of 
relationships of elements across viewpoints. In sec 4-4, 4-5, 4-6, we have seen that 
these relationships ensured traceability of the application of transformations i.e., it 
is possible to say, using these relationships, which model element is derived from 
another one. Although our solution meets the desired requirement, it could be 
regretted that these relationships have to be part of the expression of the rule it 
self. It could indeed be imagined to produce these traceability relationships 
automatically.  
 
A collection of tools has been outlined in Sec. 4-7. These tools materialize our 
approach and show how each viewpoint of our framework can be edited (Req. 12 
Methodological flexibility) and transformed. The existence of this collection of tools 
contributes to the requirement of tool interoperability (Req. 22: Support for tool 
interoperability).  
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Practically, the mere fact of decomposing a transformational development process 
into steps and sub-steps enables an identification of weaknesses of certain models 
in terms of expressivity. As the accuracy in the expression of transformation grew, 
some models revealed to need enrichment to allow their exploitation for 
derivation means e.g., the task model had to be enriched with various concepts for 
instance to describe the  intrinsic nature of a task, the domain model needed a 
better expression on the nature of the domain of attributes. Some other concepts 
needed a more precise interpretation to exploit them in a transformation process 
e.g., the information passing.   
 
On the other hand, some elements of a UI specification were shown very difficult 
to derive.  A notable case is layout derivation. Two solutions can be considered to 
overcome this problem. A first one consists of adopting a lot of hypotheses on 
the UI structure. We used for instance in Sec. 4.4.1.c a simple heuristic to 
sequentialize widgets derived from the relationships between tasks they 
supported. This method, however fully automatic, gave arguable results in terms 
of both usability and aesthetic. A second solution would be to allow a designer to 
visually reshuffle models in a graphical editor. This method is very seducing but 
has the major drawback of endangering the consistency of carefully built, or 
derived, models. Two solutions may be combined to solve this problem: limit the 
designer’s activity to tasks having no consequence on the model consistency, 
design specific algorithms (using probably graph grammars) to re-enforce 
consistency between models. 
  
While layout generation proved to be very hard to realize automatically, other 
aspects of UI construction might also need the intervention of a designer in the 
refinement. Transformation driven development of UI have suffered from a lack 
of flexibility in their methodological stances. This does not refer only to the 
multiple entry point and exit point mentioned in the shortcomings of Chapter 2 
but also to the little possibilities that are proposed to a designer to edit a model at 
any stage in the transformation process and enrich it manually. This is the 
underlying idea of the tool collection presented in Sec. 4.7.  We believe that this 
essential feature if achieved while keeping a good level of consistency could 
benefit substantially to the acceptance of transformational approaches. 
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Chapter 5 Case Studies 
 
 
 
 
 
 
 
 

5.1 Introduction 

 
This chapter applies multi-path development of user interface to two different 
case studies. The two cases are progressive in terms of complexity. Their 
presentation relies on a series of illustrations showing how artifacts are 
progressively transformed according to various development sub-steps, steps, and 
paths. 
  
The process adopted to develop the case studies of this chapter consists of: (1) 
Building initial models. Such models have been edited with their associated editing 
tool. For instance, IdealXML [Mont04] has been used to edit the task and domain 
model. (2) Editing and debugging of rules within the AGG graphical 
environment. Most of the rules have been elicited prior to realizing these case 
studies by a theoretical analysis of development sub-steps as illustrated in Chapter 
4.  (3) Importing initial models into the AGG graphical environment. (4) Selecting 
a transformation set and firing the rules contained in this set. (5) Exporting 
resulting models from AGG to UsiXML and illustration. 
 
To facilitate the understanding and the continuous reading of the case studies, 
only a significant portion of transformation rules is provided for most sub-steps. 
The remaining rules can be defined by analogy to rules previously defined in the 
same set. 
 
The first case study is devoted to the development of an opinion polling system, a 
reasonable scaled example of a typical information system. The development 
scenario is the following: a forward engineering path is applied from a definition 
of the task and domain viewpoint to produce both an AUI and a CUI. The CUI is 
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reshuffled by hand in our GrafiXML graphical editor. As these modifications are 
important and may endanger the consistency with the AUI, a reverse engineering 
path is applied to this modified CUI in order to recover a consistent AUI.  
 
The second case study is devoted to the development of a virtual travel agent 
inspired from the FIPA [FIPA00] example since it is considered as a 
benchmarking case in information systems. The development scenario differs 
from the first case study: from a task and domain viewpoint, an AUI is derived. 
From this AUI, three different CUIs are forward engineered. Two CUIs specify 
two 2D graphical user interfaces. The first one is targeted to a context for a 
desktop computing platform allowing the realization of all tasks into one single 
window. The second CUI is targeted to a small display context that is typical for a 
Personal Digital Assistant (PDA). Elements are distributed as a set of small 
screens with a navigation scheme between. The third CUI is devoted to a 
derivation of an auditory interface. After this, the initial task model is pruned 
according to a heuristics that selects only important tasks so as to produce a new 
AUI and a new CUI.  
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5.2 Case Study 1: a Virtual Polling System 

This case study applies a transformational approach in order to develop a UI 
aiming at collecting opinions of users. The scenario proposed for this case study is 
(Fig. 5-1): from initial Task & Domain models, an AUI is produced (T1) from 
which a CUI is derived (T2). After this, the CUI is manually reshuffled in a CUI 
graphical editor and reversed engineered to another AUI to address the round-trip 
problem (T3). The CUI can be rendered thanks to any UsiXML-compliant 
rendering engine. 
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Figure 5-1 Development scenario for case study 1 

5.2.1 Initial Representation  

 
Fig. 5-2 illustrates the domain model of our UI as produced by a software 
engineer. A participant participates to a questionnaire. A questionnaire is made of 
several questions. A question is attached to a series of answers. 
 

 
Figure 5-2 Class diagram for an opinion poll system 
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Fig 5-3. proposes the UsiXML specifications corresponding to the domain model. 
Lines 36 to 65 define the four classes of our diagram, the remaining elements 
defining the relationships between the domain classes. Lines 38 to 42 show the 
definition of an attribute with an enumerated domain, which is difficult with 
UML. Lines 51 to 53 show the definition of a method with its parameters. 
 

 
Figure 5-3 Domain Model in UsiXML 

 
Fig. 5-4 depicts a CTT representation of the task model envisioned for the future 
system. The root task consists of participating to an opinion poll. In order to do 
this, the user has to provide the system with personal data. After that, the user 
iteratively answers some questions. Answering a question is composed of a system 
task showing the title of the question and of an interactive task consisting in 
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selecting one answer among several proposed ones. Once the questions are 
answered, the questionnaire is sent back to its initiator. All temporal relationships 
are enabling which means that the source task has to terminate before the target 
task can be initiated. 
 

 
Figure 5-4 Task Model for an Opinion Poll System 

 
Fig. 5-5 presents the UsiXML specifications corresponding to the task model. 
Lines 8 to 15 define tasks and their hierarchical structure, while lines 16 to 31 
define the temporal relationships between these tasks. 
 

 
Figure 5-5 Task model expressed in UsiXML 
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Fig. 5-6 depicts manipulates relationships between the task and the domain model 
as dashed arrows. Provide Personal Data is mapped onto Participant class. Show 
Question is mapped onto the attribute title of class Question. The task Select 
Answer is mapped onto the attribute title of the class Answer.  And finally, the task 
Send Questionnaire is mapped onto the method sendQuestionnaire of the class 
Questionnaire.  
 

 
Figure 5-6 Mappings between a task model and a domain model 

 
The UsiXML specifications of the relationships between the task model and the 
domain model are reproduced in Fig. 5-7, these relationships are made on the 
base of the id attribute of mapped elements. 
 

 
Figure 5-7 Task to Domain Mapping in UsiXML 
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Unfortunately, the initial task representation is not precise enough to perform 
transformations. Indeed the task Provide Personal Data is an interactive task 
consisting in creating instances of Participant. In reality this task will consist in 
providing a value for each attribute of Participant. This could mean that the task 
model is not detailed up to the required level of decomposition. Therefore, rule 5-
1 is applied to the task model and decomposes Provide Personal Data into four 
new sub-tasks, each of them manipulating an attribute of Participant. These new 
sub-tasks have the same type as their mother task. Note the way they are named 
using a post-condition on their name attribute. 
    

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-1 Consolidation of the task model 

 
Consequently to the execution of this rule, four new tasks are created: create 
name, create zipCode, create ageCategory, create sex. “Create” is a very general 
action type. In the case of ageCategory and sex, create can be specialized into 
select because ageCategory and sex both hold an enumerated domain. This could 
be done by hand or performed automatically with the Rule 5-2. Rule 5-3 provides 
a default temporal relationship (set to enabling) when two sister tasks have no 
temporal relationships. The resulting task specification is provided in Fig. 5-8. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=
 

Rule 5-2 Specializing user action 



 
 
 
 
5. Case Studies 

202

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-3 Enabling as default temporal relationships between two sister tasks 

 

 
Figure 5-8 Refined Task Model for a Virtual Polling System 

5.2.2 Transformation to an Abstract User Interface  

From these initial representations, a transformation process is initiated to obtain 
an abstract user interface model.  

5.2.2.a Identification of abstract UI structure  

 
The identification of AUI structure is ensured by applying Rule 5-4, Rule 5-5, 
Rule 5-6, Rule 5-7, and Rule 5-8. These rules essentially recreate the task model 
structure by a hierarchical decomposition of abstract containers and abstract 
individual components.    
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-4 Create an AC for task that has task children  

 



 
 
 
 
5. Case Studies 

203

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-5 Create an AIC for leaf tasks 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-6 Iterative tasks are mapped onto repetitive AC 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-7 Reconstruct containment relationships between AC 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-8 Reconstruct containment relationships between AIC 

 
Fig. 5-9 shows how this sub-step is executed: dashed squares depict tasks 
grouping in abstract containers, dashed circles depict abstract individual 
components. As expressed in Sec. 4-4, more complex heuristics can be deployed 
to perform this transformation. Note that the designer can also want to define 
abstract containers by hand.  
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AIC13

AIC112AIC111 AIC113 AIC114

AC1

AC11 AC12
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AIC13

AIC112AIC111 AIC113 AIC114

 
Figure 5-9 Mapping between a task model and an abstract UI 

5.2.2.b Selection of AIC 

 
Each AIC can be equipped with facets describing its main purpose/functionality.  
As explained in Chapter 4, these facets are derived from the combination of the 
task model, the domain model, and the mappings between them.  The mappings 
between the task and the domain models have been described above. We illustrate 
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some of the rules applicable to the present case study. From these mappings it can 
be derived that: 
 
 AICs create name and create zipCode are equipped with an input facet of type 

“create attribute value”. 
 AICs select sex and select ageCategory are equipped with an input facet of 

type “select attribute value”. The enumerated values associated to the attribute 
are transferred as selection value of the facet from the domain model.      

 AIC Show Question is equipped with an output facet of type “output attribute 
value” (i.e., the question title). 

 AIC Select Answer is equipped with an input facet of type “select attribute 
value”. It is also set to repetitive as the amount of instances of answer is only 
known at run-time: no enumerated values are provided nor attribute instances. 

 AIC Send Questionnaire is equipped with a facet control that references the 
name of the method on which it is associated, here sendQuestionnaire 

 
NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-9 Create an input facet to AICs that realize creation tasks 

5.2.2.c Spatio-Temporal arrangement of abstract interaction objects  
 
We apply Rule 4-4 (reproduced as Rule 5-10), Rule 5-11, Rule 5-12, Rule 5-13. 
These rules reveal how implementing hierarchical rules in AGG could be 
repetitive: one rule should be introduced for each possible couple with AC and 
AIC as elements, that is a total of four rules.  
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-10 Deriving abstract adjacency for <AIC,AIC> couple 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-11 Deriving abstract adjacency for <AC,AIC> couple 

 
NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-12 Deriving abstract adjacency for <AIC,AC> couple 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-13 Deriving abstract adjacency for <AC,AC> couple 

5.2.2.d Definition of abstract dialog control  

 
We apply Rule 4-5 and the like to realize this sub-step. Similarly to the previous 
step, a rule is defined for each combination of couple with AC and AIC as 
elements.  

5.2.2.e Derivation of AUI to domain mappings  

 
Rule 4-6 is one of the rules applied in this sub-step.  Rule 5-14 is another rule that 
is applicable to our case. It creates an updates relationship between the input facet 
of an AIC and the attribute manipulated by its associated task. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-14 Derivation of the updates relationship for an input facet 
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5.2.2.f Resulting specification  

 
Figs. 5-15 and 5-16 respectively present the results of the above sub-steps and 
their corresponding UsiXML specifications. Lines 3 to 36 develop the AIO 
decomposition. Lines 38 to 61 represent relationships of abstract dialog control.     
 

*dialog controlabstract adjacency repetitive

>>

>>

>>

>>

>>

>>

>>

AC1 Partcipate Opinion Poll

AC11 Provide Personal Data

AIC Input name

AIC Input 
ageCategory

AIC Input zipCode

AIC Input sex

AC12 Answer Question *
AIC Output Question
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AIC Control Send 
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AIC Input address

 
Rule 5-15 Representation of the AUI model for a Virtual Polling System 



 
 
 
 
5. Case Studies 

209

 

 

 
Figure 5-10 UsiXML code for AUI 
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5.2.3 From Abstract User Interface to Concrete User Interface  

5.2.3.a Reification of AC into CC 

 
The simple heuristic solving the current problem consists of representing all tasks 
into one single window. This solution is often referred to as the “maximal window 
selection” [Vand94]. Other window identification schemes found in [Van94] can 
be equally defined. Rule 4-9 and 4-10 are applied to realize this sub-step.  Each 
abstract container becomes a box except the top level that becomes a window 
(“maximal window” solution). 
 
A variant of this rule is used in Sec. 5.3.4.a such that each abstract container 
becomes a window. 

5.2.3.b Selection of CICs 

 
This sub-step involves the highest number of rules of all transformation sets as 
the different combinations of facet types, data types, cardinalities,…, are 
numerous. Table 5-1 provides the subset of rules applied in this case study. The 
designer can choose among the different alternatives provided by these rules. 
 

Abstract Interaction 
Component 

Facet 
Specification 

Information to take into 
account 

Possible 
Concrete 

Interaction 
Component 

“create name” and 
“create zipCode” 

Create attribute 
value  

Data type,  domain 
characteristics 

A box with a 
label and an 
input field (Rule 
5-16) 

“select sex and select 
ageCategory” 

Select attribute 
value + selection 
values known 

Data type, domain 
characteristics, selection 
values 

A dropdown list, 
a group of 
option buttons 
(Rule 5-17 and 
Rule 5-18) 

“Show 
Questionnaire” 

Output  (value 
unknown)  

Attribute, data type, 
domain characteristics 

A label 

“Select Answer” Select attribute 
value + repetitive 
(selection values 
not known)   

Data type, domain 
characteristics  

A dropdown list, 
a group of 
option buttons  

“Send Questionnaire” Control Feedback  A button 

Table 5-1 correspondence between AIO types and CIO types 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-16 Creation of an input CIO from an input AIO 

NAC LHS RHS

::=

NAC LHS RHS

::=

 

Rule 5-17 Creation of a box to hold radio button 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-18 Creation of one radio button per selection value 
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5.2.3.c CIC placement 

 
Rule 4-12 is mainly used to perform CIC placement. Like for abstract 
arrangement, a duplication of rules is necessary for covering combinations of 
couples with CC and CIC as elements.    

5.2.3.d Navigation  definition 

 
Navigation specifies how the visibility property of CCs is set and, consequently, 
defines transitions between them. Since all elements are presented simultaneously 
into the same window, there is no particular need to define a sophisticated 
navigation scheme, which is the choice adopted here. However, some schemes 
can be added later on depending on the level of sophistication the designer want 
to add. Navigation definition is applied in Sec. 5.3.4.b. 

5.2.3.e Concrete dialog control definition 

 
Rule 4-14 is mainly used to perform CIC placement.   

5.2.3.f Derivation of CUI to domain relationships 

 
Rules like Rule 4-15 achieve the transposition of inter-model relationships.   

5.2.3.g    Resulting specification  

 
The resulting specifications are obtained by realizing the above development sub-
steps. Fig. 5-11 presents a mock-up of the graphical UI. Red rectangles denote 
invisible boxes, that are boxes whose visibility property has been set to “invisible” 
thanks to rules involved in the navigation definition (Section 5.2.3.d). Grey 
rounded rectangles denote visible boxes. The content of Answer Question will be a 
table containing questions and answers. The contents of this table will be 
determined at run-time when instances of questions and answers are known. 
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Figure 5-11 UsiXML code for CUI level 
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Figure 5-12 CUI appearance for Virtual Polling System  
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5.2.4 Graphical Reshuffling of the CUI 

A satisfactory layout is hard to derive in a systematic manner [Vand94]. No 
method surveyed in Chapter 2 allows a graphical reshuffling of the UI layout 
before being transformed to a final UI (FUI). With a UsiXML-compliant visual 
editing tool, such thing becomes possible. Fig. 5-13 shows a modification (i.e., an 
insertion of a box containing a label and a text editing zone) of the CUI presented 
in Fig. 5-12. 
 
Consistency problems could arise when the CUI level is modified. If an element is 
withdrawn, the AIO it reifies (and transitively the tasks it supports) are no longer 
in correspondence and should be consequently erased. If an element is added, an 
element at the AUI should be added. Placement and dialog control relationships 
should be regenerated in both cases. If an attribute of an object is modified then 
AUI and CUI stay consistent. In our development scenario, the CUI is simply 
reverse engineered to a new AUI, rebuilt from scratch. Although solving the 
round-trip problem is beyond the scope of this dissertation, we demonstrate that a 
development scenario could be imagined on top of the concerned levels so as to 
address it. The means to address this problem are therefore already present. This 
is highlighted in the next section that reverse engineers the reshuffled UI layout. 
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Figure 5-13 Reshuffled CUI 
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5.2.5 Reverse Engineering the AUI 

 
After reshuffling the CUI manually, we define Rule 5-19, Rule 5-20, Rule 5-21, 
and Rule 5-22 to reconstruct the AUI structure from scratch.     
  

NAC LHS RHS

::=

NAC LHS RHS

::=

  

Rule 5-19 Creating an AC for each graphical container 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-20 Creating an AIC for each graphical individual component 

NAC LHS RHS

::=

NAC LHS RHS

::=

 

Rule 5-21 Recreating abstract containment relationships between ACs and AICs 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 

Rule 5-22 Recreating abstract containment relationships between ACs 

 
After this, AICs facet types have to be recovered from the CIC specifications. 
This problem gives birth to many different rules. Here again, the restriction that 
“only one right hand side can be specified at a time”, i.e., no disjunction allowed, 
turns out to be a true inconvenient. Indeed many different patterns in the CUI 
entail creating similar elements at the abstract level. Table 5-2 shows associations 
between CIC types and AIC facet types applicable to this case study. The column 
“special action” indicates some additional details for the rule representing this 
association. 
 

CIC AIC Facet Type  

Button Control AIC (Rule 5-23) 
Radio button Input for group of radio button. Transfer 

of selection values   
text components if editable (i.e., 
input field) 

Input (See Rule 5-24) 

text components if not-editable 
(i.e., labels) 

Output 

Table 5-2 CICs and their associated facet types 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-23 Reverse engineering of a button 
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LHS

::=

LHS

::=
 

RHSRHS

 
Rule 5-24 RHS to reverse engineer a box containing a label and an input field 

Rule 5-24 performs reverse engineering of a complex structure i.e., a box 
containing a label that is adjacent to an input field to a corresponding structure at 
the AUI level, thus achieving some form of design recovery. 
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Rule 5-25 and Rule 5-26 are rules used to reverse engineer, respectively, abstract 
adjacency relationship and abstract dialog control. Similarly to forward 
engineering, a rule should be defined to cover any possible combinations. 
  

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-25 Reverse engineering abstract adjacency 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-26 Reverse engineering AUI dialog control 
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5.2.6 Resulting Specification  

 The resulting abstract specification is illustrated by Fig. 5-14.  
 

*dialog controlabstract adjacency repetitive

>>

>>

>>

>>

>>

>>

>>

AC1 Partcipate Opinion Poll

AC11 Provide Personal Data

AIC Input name

AIC Input 
ageCategory

AIC Input zipCode

AIC Input sex

AC12 Answer Question *
AIC Output Question

*AIC Select Answer

AIC Control Send 
Questionnaire

AIC Input address

 
Figure 5-14 AUI model after reverse engineering process 
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5.3 Case Study 2: a Virtual Travel Agent 

 
The second case study considered in this chapter is inspired by the benchmark 
specification provided by the FIPA [FIPA00]. This specification describes a 
Personal Travel Agent (PTA). The main function of this system is to allow a user 
searching, booking, and paying a flight, a rental car, or a hotel room.  
 
The development scenario of this case study starts with an initial Task & Domain 
viewpoint (Fig. 5-14). From this viewpoint, an AUI (T1) is produced. Three 
different transformations are applied to the AUI to derive a graphical 2D CUI for 
a desktop PC i.e., a normal display (T2), a graphical 2D CUI for a small display 
(T3), and an auditory CUI (T4). Then the initial Task and Domain viewpoint is 
translated (T5) for a new context of use that is considered different and complex 
enough to complete the transformation from an adapted AUI instead of the same 
initial AUI. This is reflected by some changes in the task and domain models. 
From this adaptation, a new AUI is derived (T6) and a CUI for a normal display 
(T7) model is translated. This development scenario shows that transformations 
can be applied whenever and wherever they are considered appropriate. In this 
case, two different AUIs are derived from two task and domain models sharing 
the same initial point and several CUIs are derived from the first AUI. Again, only 
the newly introduced constructs are detailed. 
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Figure 5-15 Development scenario for case study 2 
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5.3.1 Initial Representations  

 

 
Figure 5-16 Class diagram for a PTA 

The class diagram (Fig. 5-16) involves 9 classes. Flight characterizes an airplane 
flight with its origin, destination, time, date, etc. Client describes client’s 
characteristics. FlightPreference describes the preferences of a client in terms of 
destination, schedules, and budget. Payment gathers information related to a flight 
payment. CreditCard provides information on credit cards, the only payment mean 
considered in our system. Budget, Location, Travel-Time and Airport are classes that 
are used as data types by FlightPreference and Flight classes. 
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The task model represented in Fig. 5-17 with the CTT notation can be described 
as follows: the user may either arrange a flight, a hotel room, or a rental car. This 
case study focuses on the first possibility. To arrange a flight, the user has first to 
search for a flight and then to pay for this flight. To search for a flight, the user 
has to determine her preferences, to launch the search and to select a flight among 
the results returned by the system. After selecting a flight, the user proceeds to 
final payment. For this purpose, the user inputs the details concerning her credit 

Figure 5-17 Task model for the PTA 
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card whose validity is verified by a system task. The user then confirms her 
payment. 
 
The UsiXML specifications corresponding to this case study are substantially 
larger than those of the first case study. For this reason, the relationships between 
the domain model and the task model are summed up in Table 5-3. A dotted 
notation of the form Class.attribute denotes attributes.  
 

Task Domain concept 
Determine origin (create element) FlightPreference.origin  
Determine Destination (create element) FlightPreference.destination 
Determine Via (create element) FlightPreference.via 
Determine Time (create element) FlightPreference.time 
Determine Budget (create element) FlightPreference.budget 
Launch Search (start operation) FlightPreference.searchFlight( ) 
Select Flight (select element)  Output parameter of 

FlightPreference.searchFlight( ) 
Select Card Type (select element) CreditCard.cardType 
Input Card Holder (select element) CreditCard.cardNumber 
Input Card Number (select element) CreditCard.cardHolder 
Input Expiration Date (select element) CreditCard.expirationDate 
CheckCard (start operation) CreditCard.checkValidity( ) 
Confirm Payment (start operation) Payment.proceedPayment( ) 

Table 5-3 Mappings between the Task and the Domain for the PTA 

Like for the first case study, before initiating the transformation process, we have 
to make sure that the decomposition level is appropriate. From the Task and 
Domain viewpoint introduced above, it is observed that all create tasks are well 
mapped onto corresponding attributes. This has been identified in the first case 
study as an appropriate level of decomposition. To support attributes attached to 
complex types, Rule 5-27 creates a sub-task for each attribute composing the 
complex data type. For example, the attribute origin is of type Airport ; Rule 5-28 
therefore creates three sub-tasks to input the three attributes of the data type: 
name, city, and country. 
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NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-27 Creating sub-tasks for tasks manipulating complex types 

5.3.2 Derivation of the AUI 

 
The derivation of the AUI (result in Fig. 5-18) defined for the first case study can 
now be reused  with two noticeable differences:  
 The inclusion of a select task manipulating the output parameter of a method. 

This enables the user to perform a selection of the flights returned by the 
searchFlight method. As for Answer.title in the first case study, the exact 
amount of items in the selection is known only at run-time. Like in this latter 
case, this type of configuration gives birth to a repetitive AUI with a input 
selection facet.  

 The inclusion of a system task of start operation type. This system task is not a 
inherent part of the UI but may be represented by a feedback object. Later on, 
one can decide whether this feedback object should be incorporated in the 
same containers (e.g., a label providing a feedback) or not (e.g., a pop-up 
window provides the feedback). In any case, the system task is translated into 
a AIC with a control facet. 
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Figure 5-18 AUI for Virtual Travel Agent 

5.3.3 Derivation of CUI for desktop 

The derivation of the CUI for the desktop computing platform (Fig. 5-19) is 
based on the same principles than those we for the first case study. In this case, 
we define combination boxes (“combo boxes”) for performing a selection when 
the number of items to select is greater than three. Any AUI part operating on a 
Date data type is mapped onto boxes containing four CICs: a label, a drop-down 
list for the day, a drop-down list for the month, and a drop-down list for the year. 
Note that a mapping of a date to a date picker at the CUI level can be defined 
alternatively. 
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Figure 5-19 CUI of the PTA for a desktop application 

5.3.4 Derivation of CUI for small display 

 
This derivation seeks to adapt the previously defined AUI for a display that is 
smaller than for a desktop. Only a few elements of previously defined 
transformation systems have to be re-defined to obtain a UI that is more 
appropriate for this constrained display. These transformations are detailed in the 
next subsections. 
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5.3.4.a Reification of AC into CC 

 
Rule 5-28 states that all ACs at all decomposition levels are mapped onto 
windows to reduce the screen density of information manipulated in each 
window. More sophisticated rules for graceful degradation of UIs for small 
displays are discussed in [Flor04]. 
 

NAC LHS RHS

::=

NAC LHS RHS

::=

 
Rule 5-28 Every AC gives birth to a window 
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5.3.4.b Navigation definition 

 
Since a new type of display is considered, this step is different from the first case 
study and the first part of the current case study. The navigation defined here 
enables a user to navigate: (1) from any parent window to its children and (2) 
from any child to its respective parent window (Rule 5-29).  

5.3.4.c Resulting specification  

 
The resulting specification of this step is illustrated in Fig. 5-20. 
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Figure 5-20 CUI of the PTA for a small display 
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5.3.5 Derivation of Auditory Interface 

There is not a wide range of auditory CIOs in our ontology. Auditory containers 
gather auditory individual components. Auditory individual components are 
auditory input components and auditory output components. These elements 
allow us building auditory UIs as a succession of questions and answers.  
 
Sequentially applying the different development sub-steps defined in Chapter 4 is 
not strictly necessary as the complexity of executing this development step is 
reasonable. 
 
The reification of AC into CC consists of creating an auditory container for each 
AC. Auditory UIs being one-dimensional, per definition the structuring of 
interactors in auditory containers has only an importance for navigation definition 
i.e., when a possibility is offered to the user to initiate one part of the interface or 
another. 
 
The selection of auditory individual components is the richest operation in the 
derivation of an auditory CUI. This operation consists of selecting an appropriate 
combination of output and input auditory components. Rule 5-30 operates such a 
complex transformation by deriving, from an input AIC, what could be called a 
“block” of speech dialogue defining a “question-answer-cancel” composite 
element. As it may be observed in this rule, inter-model relationships with the 
domain model are exploited to directly derive CUI to domain relationship. This 
violation of the methodological separation of concern is justified by the fact that 
elements of the domain model are used in the definition of the created auditory 
components e.g., the name of the mapped domain attribute becomes part of the 
output of an auditory element. 
 
Our derivation rules are illustrated on a sub-tree of the case study. Fig. 5-21 
proposes an illustration of the dialogue between the user and the vocal system.  
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Rule 5-30 Transforming create AIC into complex input auditory components 
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 Please insert the [cardType] 
 [Visa] 

 You have entered  
 [Visa] 
 If you want to restart your input, say 

yes  
 [yes] 

 Please insert the [cardType] 
 [Amex] 

 You have entered 
 [Amex] 
 If you want to restart your input, say 

yes 
 [-] 

 Please insert the [CardHolder] 
 … 

Figure 5-21 Instance of a dialog between a user and a vocal system 

5.3.6 Translation of the Task Model and Forward Engineering the CUI 

As described in the scenario of Fig. 5-15, after producing the three UI described 
above, the designer wants to regenerate a UI from a slightly altered version of the 
task model. For this purpose, the designer prunes this task model according to the 
task importance which is an attribute of the task evaluated on a scale of 1 to 5. 
Rule 5-31, Rule 5-32, Rule 5-33, Rule 5-34 realize a pruning of the task model 
presented in Fig. 5-16. 
 

PAC LHS RHS

::=
X < 5

PAC LHS RHS

::=
X < 5

 
Rule 5-31 Erasing unimportant tasks while reconstructing temporal relationships 
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Rule 5-32 Erasing unimportant task that have no successor sister 

 
Rule 5-33 Erasing unimportant tasks that have no predecessor sister 

 
Rule 5-34 erasing all tasks that have no father except the root 

The task model resulting from the application of these four rules is showed in Fig. 
5-22. From this task model it is possible to initiate a development process similar 
to the one described at Sec. 5.3.2 and 5.3.3. 
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Figure 5-22 Task model of Fig. 5-16 after being pruned 
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5.4 Conclusion 

The two case studies presented in this chapter show how multi-path 
development applies to low to mid-complex examples of both graphical and 
auditory interfaces.  
 
To solve these case studies we have followed the following procedure: (1) 
Building initial models. Such models have been edited with their associated editing 
tool. (2) Editing and debugging of rules within the AGG graphical environment. 
Most of these rules have been elicited prior to realizing these case studies by a 
theoretical analysis of development sub-steps as illustrated in Chapter 4. (3) 
Importing initial models into the AGG graphical environment. (4) Selecting a 
transformation set and firing the rules contained in this set. (5) Exporting 
resulting models from AGG to UsiXML and illustration. 
 
This process led us to deduce the following conclusions regarding the strengths 
and weaknesses of our method. 
 
Our case studies showed the feasibility of developing a UI in a principled-based 
and rigorous manner relying on explicit transformation catalogs at any time. The 
diversity of development paths that have been presented highlight the possibility 
of manipulating UI related artifacts according to different development scenarios 
and pave the way to consider multiple other alternatives. In particular, new 
development scenarios can be developed by refinement (e.g. a more elaborated 
scenario), by composition (e.g., a new scenario by composing several existing 
scenarios), by transformation (e.g., a newly defined scenario by deriving other 
forms of scenarios from existing ones) or by reusing. The reuse of 
transformations has been illustrated when transformation systems have been 
straightforwardly reused from one case study to another one. As so, we avoid ad 
hoc development catalogs and enable a capitalization of transformations in a 
consolidated approach while trying to avoid the proliferation of scenarios that are 
close to each other.        
 
The difficulty and weaknesses we encountered while realizing these case studies 
are the following: 
 
Lack of expressivity of models. As it was observed in Chapter 4, the mere fact 
of decomposing a transformational development process into steps and sub-steps 
enables an identification of weaknesses of certain models in terms of expressivity. 
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As the preciseness in the expression of transformation grows, some models 
revealed to need enrichment to allow their exploitation for derivation means e.g., 
the task model had to be enriched with various concepts. For instance, to describe 
the intrinsic nature of a task, the domain model needed a better expression on the 
nature of the domain of attributes. 
 
Inherent complexity of certain sub-steps. The complexity of some sub-steps 
(for instance, those involving a definition of the layout) relies in the multiple 
criteria to be considered simultaneously and the high number of possible design 
options. This complexity is not diminished by our method. Only the elements 
underlying design options are made explicit, and their performance is enabled in a 
formal manner. 
 
Difficulty in finding an appropriate level of generalization when defining 
rules remains difficult. Conditional graph rewriting offers expressions having no 
side effect i.e., a rule only affect parts of the graph defined in its scope. 
Nonetheless, a rule may always have a “wider” scope than planned by its designer. 
It therefore affects unexpected graph elements. On the other hand, defining very 
precise rules entails defining a collection of rules for realizing a transformation 
that could be obtained with the application of one single and more generic rule. 
An automatic recognition of sets of rules able to be synthesized in one rule would 
be desirable in this case. This problem is an illustration of the rule composition issue 
raised in the literature.  
 
Lack of disjunction in the rule expression. There is a redundancy in the 
expression of certain rules. Indeed, certain sets of rules operate a similar 
modification to the initial graph (i.e., they have a similar RHS) but have slightly 
different application conditions (i.e., their LHS). Imagine a rule applying a 
transformation to all AICs manipulating String or Integer data.  To handle this 
case, two distinct rules should be defined. As so, we think that the possibility of 
using disjunction in the application conditions of rules could help us to decrease 
the number of rules and the risk of inconsistencies in the application of the 
method. 
 
Difficulty to get meta-information on the graph. During the execution of 
certain sub-steps, it turned out that the state of the specification could have been, 
advantageously, complemented by meta-information on the specification itself. 
Meta-information is information that is processed by externally analyzing the state of 
the specification. For instance, a meta-information could consist of counting the 
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number of edges pointing or starting from a specific node. This meta-information 
could help us to define meta-heuristics that are rules able to select an appropriate 
transformation rule.  
 
Difficulty in ordering rules within transformation systems. It happens that 
two rules of a same transformation system apply to similar graph nodes. These 
rules are referred to in the literature as a critical pair. In this case, the ordering of 
rules has an impact on the graph resulting from the transformation system. Critical 
pair analysis is an algorithmic analysis technique operating on graph grammars and 
identifying conflicting rule couples. This technique is available in the AGG 
environment. Nonetheless, once these pairs are identified, it remains tedious to   
modify or re-arrange conflicting rule couples.  
 
Difficulty in ordering sub-steps within steps. In a similar manner to rules, it is 
not an easy task to order sub-steps within a same step. Each sub-step, along with 
its associated transformation system, produces a graph presenting certain 
characteristic i.e., type of nodes and relationships produced during the execution 
of the sub-step. Arranging sub-steps such that the information produced by the 
previous sub-step will not be modified afterwards remains an undetermined 
activity. The help of a formal expression of pre- and post- condition of each sub-
step would certainly improve this aspect. 
 
Difficulty in implementing generalization in AGG environment. AGG as 
such does not support hierarchy. This hierarchy had to be mimicked in this 
environment by merging sub-types of certain nodes into a single node and using 
an attribute to differentiate the subtypes. This is a well known solution to people 
who want to translate UML generalizations into database relational schemas. 
Consequently, in some cases this entailed the definition of several rules when only 
one could be defined. Nonetheless, the lack of hierarchy in AGG did not reduce 
the expressivity of the transformation system themselves. Some of them are just 
verbose.    
 
Difficulty in coordinating tools around an evolving ontology. The method 
that is proposed involves the collaboration of many tools. On the other hand, our 
ontology, after its first expression, one year ago, has evolved rapidly. This is due 
notably to the feedback received from the first users of UsiXML. Any change 
applied to the ontology entails the adaptation of several tools resulting in a lot of 
development effort and, also, delays in the support of modifications brought to 
the ontology. Coordinating tools in such context is not an easy task. 
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Difficulty in generating identifiers. By definition, a rule does not generate the 
identifiers of the created elements as it applies to a pattern. Adding the identifier 
at the export of the specification has been the choice we made to solve.
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Chapter 6 Conclusion 
 
 
 
 
 
 
 
 
 

6.1 Context of This Work  

 
Transformational development is one of the answers provided by the Software 
Engineering (SE) community to tackle the problem of building software in a 
systematic and principle-based way.  
 
Transformational development in SE defines the development of software as a 
progressive refinement of abstract models into concrete models, until program 
code [Somm99]. This transformational development relies on catalogs of 
transformations able to (semi-)automatically perform model-to-model and model-
to-code transformations.   
 
Transformational development of user-interfaces (TDUI) specializes principles of 
transformational development in the context of UI development. By analogy with 
transformational development in SE, it defines the development of user interface 
systems as a successive application of transformations to an initial representation.  
This generally implies a progressive refinement of an abstract model into a 
concrete model, until program (here UI) code, or vice versa.   
 
Since the mid-nineties, numerous engineering methods have been proposed to 
support TDUI (see Chapter 2). Most of them are concentrated on deriving UI 
code from abstract models, others are focused on recovering a model from a UI 
implementation. A more recent trend gave birth to methods dedicated to the 
adaptation of a UI system to multiple contexts of use, as many variations of these 
contexts have been observed.  
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6.2 Content of This Dissertation  

 
The state of the art of Chapter 2 reveals a series of shortcomings in existing 
approaches for achieving TDUI. These shortcomings delineated our problem 
space. These shortcomings lead us to conclude that TDUI can be improved 
along several dimensions.  
 
For this purpose, this dissertation proposes (1) an ontological framework based 
on an explicit and rigorous representation of concepts relevant to UI development 
(2) a methodological framework based on the ontological framework previously 
introduced. This methodological framework introduces a new paradigm for UI 
development called multi-path development of UIs that is characterized by the 
following principles: 
 

 Transformation driven: a development method is composed of development 
stages. A development step is a transition from one stage to another one. 
Development steps rely on explicit and rigorous transformation catalogs. 

 
 Multiple-path: the context of development projects may involve variable 

arrangements of development steps. A development path refers to a 
particular arrangement of steps. Multi-path development refers to the 
capacity of a method to accommodate to various development paths. 

 
Chapter 3 presents an ontology for the specification of UIs. 
 
Sec. 3-2 details the concepts and relationships in the scope of our ontology. Two 
essential artifacts were introduced to structure this ontology: 
 
 Viewpoints materialize different “concerns” on the UI system. Four viewpoints 

have been introduced, motivated, and defined: A final UI viewpoint is the 
implementation of a UI system as it can be seen from the code level or from 
the rendering level (i.e., its appearance); A concrete UI viewpoint is a description 
of a UI which is, as independent as possible, of any reference to 
implementation details (i.e., toolkit). An abstract UI has been defined as a 
description of the UI that is as independent as possible of any reference to the 
modalities for which a UI is designed (e.g., graphical interaction, vocal 
interaction). A Task and Domain viewpoint concerns a representation of UI 
systems in terms of tasks to be carried out by a user in interaction with the 
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system along with the domain-oriented concepts as they are required by these 
tasks to be performed. 

 
 UI models have been exposed thanks to conceptual schemas expressed in 

UML. UI models gather concepts of interest in the development of a UI 
system. Some of the UI models are transversal to all viewpoints: a context 
model describes the context for which a set of models, a model or a part of a 
model is specified for. An inter-model relationship allows a designer to  relate 
different models across or inside viewpoints. 

 
In Sec. 3.3, a mathematical formalism for representing our ontology is motivated 
and presented. This formalism consists in “directed, identified, labeled, 
constrained and typed graphs” and can be considered as the abstract syntax of our 
ontology. Sec. 3.4. illustrates two different, yet semantically equivalent, concrete 
syntaxes for our ontology. These two syntaxes reflect the conceptual structure 
introduced in Sec. 3.2. while respecting the graph-based mathematical notation 
introduced in Sec. 3.3. A graphical syntax relies on boxes and arrows to express 
concepts in the scope of our language and their relationships. An XML compliant 
syntax, called UsiXML, relies on XML schemas to enable a textual representation 
of any concepts presented in Sec. 3.2. 
 
As a result of Chapter 3, any UI specification model and viewpoint is represented 
under the form of a large graph. Chapter 4 introduced a methodology for 
manipulating this graph structure to support TDUI. 
 
Chapter 4 presents a development method for achieving multi-path development 
of UIs. 
 
This development method decomposes any development activity (i.e, a 
development scenario) in a series of development steps consisting in the 
transformation of the artifact(s) in the scope of a development stage (here referred as 
viewpoint) into other development artifacts. In this context, a development path is 
defined as an archetypal composition of development steps. We identified three 
typical development paths: forward engineering, reverse engineering, and context 
(of use) adaptation. 
 
These paths are basically expressed on three types of transformation (i.e., 
abstraction, reification, and translation) so that any development path, consisting 
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of development steps, can be supported by a transformational approach by 
combining transformations of the three types.  
 
Development steps have been further decomposed into development sub-steps. A 
development sub-step realizes one ‘concern’ of the transformation process at a 
time. For instance, the definition of the dialog control, the definition of the 
navigation, or the selection of appropriate interactors. 
 
To enable an expression and an execution of the development steps, each sub-
step populating a step may be associated with a so-called transformation system, itself 
decomposed into transformation rules.  
 
Transformation systems and transformation rules are conditional graph rewriting rules 
sequentially composed into grammars. Conditional graph rewriting and graph 
grammars are advantageous in our context as they propose a declarative syntax, an 
reasonable computational power, a formally defined execution semantics, an 
appealing graphical syntax, a high degree of modularity, and last but not least, they 
perfectly integrate with our ontological framework as transformation rules are 
composed of fragments of specifications (i.e., patterns). 
 
Transformation rules and transformation systems may be stored in a textual 
format to enable their capitalization in a sort of transformation catalogs called 
development library. 
 
A collection of tools has been introduced in Sec. 4-7 and annex 1. These tools 
materialize our approach and show how each viewpoint of our framework can be 
edited and transformed. The existence of this collection of tools contributes to 
the requirement of tool interoperability. 
  

6.3 Validation 

6.3.1 External Validation 

 
External validation is realized by the application of our method on case studies. 
The main goal of these case studies is to show the feasibility i.e., the capability to 
solve the problems raised by the presented case studies. 
 



 
 
 
 
6. Conclusion 
 
 

243

The two case studies presented in this chapter show how multi-path development 
applies to low to mid-complex examples of both graphical and auditory interfaces.  
 
Our case studies showed the feasibility of developing a UI in a principled-based 
and rigorous manner relying on explicit transformation catalogs at any time. The 
diversity of development paths that have been presented highlights the possibility 
of manipulating UI related artifacts according to different development scenarios 
and paves the way to consider multiple other alternatives. In particular, new 
development scenarios can be developed by refinement (e.g. a more elaborated 
scenario), by composition (e.g., a new scenario by composing several existing 
scenarios), by transformation (e.g., a newly defined scenario by deriving other 
forms of scenarios from existing ones) or by reusing. The reuse of 
transformations has been illustrated when transformation systems have been 
straightforwardly reused from one case study to another one. As so, we avoid ad 
hoc development catalogs and enable a capitalization of transformations in a 
consolidated approach while trying to avoid the proliferation of scenarios that are 
close to each other. 
 

6.3.2 Internal Validation 

 
The internal validation of a methodology consists in assessing its characteristics 
against a set of selected criteria. The relevant criteria, called requirements, for our 
methodology have been elicited and motivated after the state of the art of Chapter 
2. This section proposes a discussion for each of these requirements.           
 

6.3.2.a Ontological Requirements  

 
Requirement 1: Ontological explicitness – states that our ontology should be 
defined externally to any methodology manipulating it and in an explicit way that 
facilitates its dissemination and manipulation among stakeholders. (Motivation: 
Short. 1).  
 
Discussion: Ontological explicitness has been fully achieved. An ontology for UI 
specification has been presented in Chapter 3. This ontology has been defined 
independently of any process manipulating it. Any external agent is able to learn 
our ontology, access its inner concepts, structure and logic.      
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Requirement 2: Expressivity – means that a conceptual framework should 
provide enough details to address problems that motivated the elicitation of its 
constituent concepts. In our context models should, at least, provide enough 
details to allow an implementation of the system it describes. This essential 
requirement is not fulfilled by many formal methods, for instance those focusing 
on verifying state properties of the system that is being built.  
 
Discussion: The expressivity of our ontology can be assessed with several 
arguments:  
 
 Concepts at the CUI provide enough details to enable the generation of a final 

UI for several toolkits, including HTML, XHTML, Flash DRK6, Java AWT, 
Java Swing, to name a few. 

 
 Concepts at AUI provide enough details to enable the generation of a CUI for 

several modalities. This has been namely illustrated in Chapter 4 and in the 
second case study of Chapter 5.  

 
 The expressivity of the domain model is the one of UML class/object 

diagrams (although several concepts were added to enable UI derivation). It is 
out of the scope of this dissertation to discussion of the expressivity of such 
notation.   

 
 The expressivity of our task model outweighs the one of CTT, the reference 

formalism that was chosen to represent user’s tasks. This formalism has 
proven unsatisfactory for several reasons: the expression of leaf task is not 
precise (or constrained) enough to enable the derivation of precise UI 
specifications, the connection to the domain model remain somewhat vague 
(they are only done using a reference to a textual list of objects), the LOTOS 
temporal relationships give rise to interpretation arguments between experts. 
Yet, CTT remains the most popular notation in TDUI for user task 
specification.  

 
 Inter-model relationships increase dramatically the expressivity of each model 

taken individually. 
 
Lack of expressivity could appear in the future along with the application of our 
method for UI types or development context for which it was not thought for.  
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Requirement 3: Human readable – means that the provided ontology should be 
proposed in a format that enables its legibility by a human agent.  
 
Discussion: The assessment of this requirement is somewhat tempered. Indeed, our 
graphical syntax has been proved efficient for specifying rules. The examples of 
Chapter 4 and 5 show the appropriateness of this formalism for human use. On 
the other hand when it comes to visualize models, graphical notation becomes 
hard to manage as the number of nodes and relationships grows. That is why 
tools presented in Chapter 4 use UML, CTT, WYSIWYG UI representations 
instead of a collection of nodes and edges. Property sheets allow us to provide 
and visualize complementary details of a specification. On the other hand, the 
XML syntax, called UsiXML, is not intended for direct human usage. UsiXML 
allows a grasp on the structure of specification models (e.g., for visualizing 
hierarchy of elements) but is very hard to read when it comes to interpret 
relationships (the reader has to search the Id of the nodes in relation in the 
specification).   
 
Requirement 4: Formality – states that models are expressed in such a level of 
accuracy that it enables automatic reasoning on their properties. (Motivation: 
Short. 2, 4).  
 
Discussion: The formality of our ontology relies in its abstract syntax i.e., a 
mathematical graph structure (i.e., directed, identified, labeled, constrained, typed 
graphs). This graph structure is built by a progressive consolidation of an initial 
simple graph category thanks to graph morphisms. This allows us to benefit from 
any theoretical result proved for a simple graph category.   
 
Requirement 5: Machine readable – states that the proposed ontology should be 
legible by a machine.  
 
Discussion: This requirement is completely met by the definition of an XML syntax 
enabling the expression of the concepts of our ontology and in compliance with 
the abstract syntax defined for this ontology. The collection of tools that 
manipulate UsiXML format is an evidence of the machine readability of this 
syntax.   
 
Requirement 6: Ontological separation of concern – states that models should 
differentiate aspects of the problem at hand [Parna72,Dijk76]. Models defined in 
our methodology should capture and, segregate, different levels of abstractions.  
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Discussion: The concepts of viewpoint and UI model allow a segregation of the 
concepts of our ontology into different abstraction layers. The CUI viewpoint is 
the toolkit independent level, the AUI level is the modality independent level, the 
Task and Domain viewpoint is the computation independent level. 
 
Requirement 7: Verifiability of specification – is defined as: “the ease of 
preparing acceptance procedures, especially test data, and procedures for detecting 
failures and tracing them to errors during the validation and operation phases” 
[Meye97]. Applied to specification, verifiability refers to the possibility of checking 
easily desirable properties (e.g., consistency, usability criteria).  
 
Discussion: This requirement is facilitated by formality and explicitness. Verifiability 
has not been addressed, per se, in the context of this dissertation. The fact that 
our ontology has been defined explicitly and formally facilitates its verification.  
 
Requirement 8: Ontological homogeneity – refers to the property for a set of 
concepts of being defined using a common syntax. All models concepts should be 
described in a single formalism that facilitates their integration and processing.  
 
Discussion: This requirement is met by the definition of all our concepts within a 
single abstract syntax. This requirement has been a major motivation for choosing 
graphs as a representational structure.   
 
Requirement 9: Reuse of specifications – refers to the possibility of reusing 
whole or a part of a specification for another system. The proposed framework 
should facilitate reusing specifications.  
 
Discussion: The fact that any specification can be exchanged using an XML syntax 
facilitates reuse of specifications. The ability of transforming theses specifications 
with a set of transformation rules increase the possibilities for reusing the 
specifications. Yet, this dissertation has not addressed the problem of providing 
meta-descriptors for indexing specification fragments. The use of specification 
chunks as a pattern language should be addressed in our future works.   
 
Requirement 10: Ontological extendibility – refers to the ease of adapting a 
conceptual structure to the occurrence of newly elicited concepts. HCI is a vast 
area covering the definition of multiple types of interfaces, interaction techniques, 
and interaction contexts. A specification language should be equipped with 
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extension mechanisms to allow its evolution in parallel with the artifact it seeks to 
model. This property is particularly relevant in the domain of TDUI as new 
widgets, interaction devices, techniques and styles are constantly appearing.      
 
Discussion: Extendibility is facilitated by several characteristics of our ontology: 
 
 Modularity of our framework. Each model of our framework is defined 

independently of the others (application of separation of concerns). Extending 
our methodology to other models is possible by simply defining a conceptual 
schema for this model and translating it into our concrete syntax. New inter-
model relationships can be defined to relate this newly introduced artifact with 
the rest of our ontology. New rules may then be defined to take this new 
model into account in the transformation process.  

 
 Structuring of models. Each model is based on partial orders of node types 

and edge types. This clear structuring facilitates the introduction of new 
concepts while not endangering the existing structure of models, thus 
implying some ontological stability.  For instance, CIO types are sub-typed 
into graphical CIO and auditory CIO, CUI relationships are partitioned in 
graphical relationship and auditory relationship. Adding 3D CIOs and 3D 
relationships would consist in adding a type for CIO and a type for CUI 
relationships. 

 
Requirement 11: Standards – states that the expression means that the rules used 
to represent our ontology should rely on well accepted standards in the software 
engineering community.  
 
Discussion: The expression of the conceptual schemas relies on UML class 
diagrams. Our textual concrete syntax relies on XML schemas. The advantages of 
these respective techniques remain valid in our approach. 
Methodological Requirements  
 
Requirement 12: Methodological explicitness – states that the constituent steps 
of our methodology should be defined in a way that facilitates the comprehension 
of its internal logic and its application. 
 
Discussion: Methodological explicitness is guaranteed by several factors: 
Ontological explicitness is a pre-requisite of methodological explicitness.   
Decomposition of development paths into development steps, and sub-steps. 
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Existence of a well-defined syntax for expressing methodological steps.  
 
Requirement 13:  Methodological flexibility – refers to the ability to initiate the 
development from any development stage (i.e., multiple entry points) and to 
terminate it at any development stage (i.e., multiple exit points).  
 
Discussion: Methodological flexibility has been demonstrated in Chapter 4 and 5. It 
is improved by several factors: 
 Ontological separation of concerns. 
 Our ontology was designed to allow an exploitation of models independently 

of the definition of other models. For instance it is possible to initiate 
development from any model, single or combined with others, and to 
terminate it similarly with an equivalent degree of freedom.  

 
Requirement 14: Methodological formality – states that development steps 
should be expressed in such a level of accuracy that it enables an unambiguous 
interpretation of the process they describe.   
 
Discussion: the level of formality of our methodology is tantamount to the one of 
conditional graph rewriting and graph grammars. Therefore no room is left for 
another interpretation of development steps and sub-steps that is not allowed by 
this formalism.   
 
Requirement 15: Executability – states that development steps should be 
expressed in such a level of accuracy that it is possible to execute them by an 
automaton.  
 
Discussion: Using conditional graph rewriting and graph grammars enables the 
executability of our transformation rules. The fact that each development sub-step 
is coupled with one transformation system ensures the executability of each 
transformation step. 
 

6.3.2.b Methodological Requirements  

 
Requirement 16: Methodological separation of concerns. – refers to a 
partitioning of methodological steps according to the process types they realize.  
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Discussion: Methodological separation of concerns is one property that is satisfied 
by the underlying concepts of our methodology: viewpoint, development stage, 
development path, development step and development sub-step. These 
methodological concepts have been dissociated from the concepts realizing them 
i.e., transformation systems and transformation rules.  
 
Requirement 17: Methodological extendibility – refers to the ability left to the 
designer to extend the development steps proposed in a methodology. 
 
Discussion:  Transformation systems and transformation sub-steps proposed in 
Chapter 4 and 5 are only possibilities of realizing different development paths. 
Our methodology allows the introduction of new development sub-steps and/or 
new transformation systems for realizing sub-steps, thus encouraging the 
exploration of alternatives for each sub-step. 
 
Requirement 18: Methodological homogeneity – refers to the property of 
methodological steps of being defined using a common syntax. All transformation 
steps should be described in a single formalism that facilitates their understanding 
and processing.  
 
Discussion: This requirement is met for any model-to-model transformation. It 
could be regretted that, in EHCI, graph grammars have not yet been used in the 
model-to-code and code-to-model steps. 
  
Requirement 19: Predictability – refers to the possibility provided by a 
methodology to foretell the result of the application of development steps.  
 
Discussion: Predictability is positively impacted by several elements.  
 The execution of rules relies on an explicit and formal execution semantics.  
 The application strategy of grammars defined in Sec. 4.3.5 ensures the 

confluence of our grammars.  
 The designer is at any time able to access and modify the transformation 

systems and sub-steps definitions.  
 Methodological steps may be applied step by step.  

Consequently, our development process is totally transparent to the designer. The 
only barrier to predictability remains the knowledge prerequisites from the 
designer’s side. 
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Requirement 20: Traceability – is defined [IEEE90] as the “degree to which a 
relationship can be established between two or more products (i.e., here models) 
of the development process, especially products having a predecessor-successor 
or master-subordinate relationship to one another”.  
 
Discussion: A set of inter-model relationships have been introduced in Chapter 3 to 
enable the expression of relationships of elements across viewpoints. In sec 4-4, 
4-5, 4-6, these relationships have been used to ensure traceability of the 
application of transformations i.e., it is possible to say, using these relationships, 
which model element is derived from another one. Our solution meets the desired 
requirement, although it can be regretted that these relationships have to be part 
of the rule expression itself. These traceability relationships could be produced 
automatically. 
  
Requirement 21: Correctness – can be defined as the ability of a software to 
perform their exact tasks [Meye97]. In the context transformational development, 
correctness can be defined as the adequacy of an artifact A with respect to the 
other artifact(s) B such that B is the source artifact that was used to derive A.  
 
Discussion: Correctness is a relative notion depending on the context in which it is 
addressed. Two types of correctness can be considered: Syntactic (structural) 
correctness and semantic correctness [Varro02b]. Syntactic correctness states that 
for any well-formed source model, any transformation rule produces a well-
formed target model. Syntactic correctness is guaranteed by construction within 
our framework by the fact that all our transformations are type preserving. Graph 
type checking ensures that a given transformation will not be applied if the 
resulting model it produces violates the meta-model it is supposed to conform to. 
A graph of types may also be accompanied with the expression of specific 
consistency constraints inexpressible within the graph of types. Object Constraint 
Language (OCL) is used for this purpose in [Agra03], pre- and post-condition 
with graph patterns are used in [Akeh03]. Semantic correctness states that a 
semantic adequacy between a source and a target model (this corresponds to the 
definition given for Req. 21). In our context, proving semantic correctness is  hard  
as, by definition, the domain of discourse of source model and target model are 
different. Furthermore, a designer is allowed to define her own transformation 
rules, a correctness proof would have to be instantiated for each newly defined 
rule. 
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Requirement 22: Support for tool interoperability – Tool interoperability refers 
to the possibility of reusing the output provided by a tool into another tool.  Our 
method should foster interoperability of tools working on specification models 
e.g., editors, critiquing tools, code generators, interpreters.  
 
Discussion:  Support for tool interoperability is positively impacted by a common 
UI description language that is shared among tools (UsiXML) and that the 
coverage of UsiXML is large enough to accommodate multiple tools. When new 
concepts need to be introduced in our ontology, the support of new tolls can be 
maintained by relying on ontological extendibility.  
 
Requirement 23: Methodological reuse – refers to the possibility in a 
methodology to capitalize on the knowledge defined by designers to perform 
development steps and re-using this knowledge for other developments.     
 
Discussion: The reuse of transformations has been illustrated by the fact that 
transformation systems can be reused from one case study to another one. When 
no possibilities exist for reusing a transformation sub-step, the methodological 
extendibility enables the definition of new transformations. 
 

6.4 Summary of Contributions   

The contributions of this work can be summarized depending on the type of 
audience it might affect: 
 
 The intended audience of this dissertation is the research community and 

those persons responsible for development methodologies in organizations. 
This dissertation provides a mean of expression, structuring, and execution 
of a TDUI realizing various development scenarios so as to support multi-
path development of user interfaces. 

 
− The expression of transformation catalogs realizing TDUI relies on 

an explicit and formal definition of concepts partitioned in different 
viewpoints, each maintaining a particular insight on UI systems. 
Transformations themselves are formally expressed with conditional 
graph rewriting and graph grammars. This expression enables and 
exchange of transformation catalogs among the research community 
and thus fosters incremental research and development efforts. 
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− The structuring of the development process is ensured by the 

introduction of the following concepts: development path, 
development step, development sub-step. Both the underlying 
concepts and their articulation together structure TDUI so as to 
enable a composition of development steps into relevant development 
paths. 

 
− The execution of transformation catalogs realizing TDUI is defined 

by the execution semantics provided for programmed graph rewriting. 
Development sub-steps are associated with development systems 
which in turn are composed of transformation rules.  

 
Although not initially intended, this dissertation is also beneficial for other 
communities such as:  
 
 HCI designers and developers: 

 
− Expression of design knowledge. The design knowledge that is tacitly 

and implicitly maintained in the head of designers is made explicit, 
thus identifying potential gaps. 

− Formalization of design knowledge and models used to design UIs. 
This allows identifying potential conflicts, contradictions and 
underspecified aspects of the design knowledge used to design UIs in 
the everyday practice. 

− Communication of design knowledge and models. Once explicit the 
design knowledge can be communicated and consolidated among 
designers. This fosters consistency in the development efforts across 
development projects in an organization. 

 
 Software engineering community. Those interested in transformational 

approaches in software engineering will find in this dissertation an 
application of this paradigm to a specific problem domain. 

 
 Graph transformation community. The graph transformation community 

consolidates its theoretical fundamentals since the late sixties. This dissertation 
provides a significant application of these fundamentals to a domain that 
remains unprecedented. 
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6.5 Future works  

 
A lot of things remain to be done around the framework presented in this 
dissertation. We point out the following things as the most interesting issues for 
us: 
 
Extend the ontology to other types of UI: the ontology that was proposed only 
covers concrete user interfaces for 2-D graphical interfaces and auditory user 
interface. One could consider extensions to 3-D UIs, virtual reality, mixed reality 
and tangible interfaces. The extension to multi-modal UIs (i.e. UIs where 
modalities are intertwined) could also be considered.        
 
Extend the ontology to other types of model and concepts: Models in the 
scope of our ontology have been defined in a modular manner. Right now, the 
most desirable model extension we’d like to do is to consider UML workflow 
models for replacing CTT models. Workflow models present many advantages 
with respect to CTT and offer a very appropriate notation for collaborative 
applications. Another model that could be consolidated is the context model.  For 
instance, a context model for multi-surface and distributed user interface could be 
taken into account [Lach04]. 
 
Define high-level building blocks for supporting design. As we dispose of a 
language for expressing a wide range of concepts describing UIs, an idea could be 
to define high-level building blocks that would overweight the level of individual 
concepts themselves. Like proposed by [Fowl01] with his analysis patterns 
[Fowl96], it is possible with our textual syntax to store UI descriptions 
corresponding to commonly found UI across various business areas. These 
“patterns” could be defined at different levels of our ontology. At domain level: 
reusing existing OO patterns could even be considered. At task level: Molina 
[Moli03] identified several task-based patterns that could be expressed using our 
syntax. More complex patterns could couple domain patterns and task patterns. 
At abstract and concrete UI levels, specification chunks could describe domain 
specific UI parts like a form for a registration, or a payment window. This raises 
the problem of indexing these specification chunks, retrieving them and 
assembling them in a meaningful manner. 
 
Extend methodological steps definition. The decomposition of the 
development process proposed in this dissertation is probably not adequate for all 
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development situations. New sub-steps could be identified depending on the 
application type and the development context. 
 
Expand the flexibility of development steps. This may be done by introducing 
richer control structures to pilot the application of rules (e.g., loops, conditional 
structures), and by introducing human intervention for controlling methodological 
steps during their execution. 
 
Extend catalogs of transformations. This dissertation has shown that for a 
same sub-step definition alternate transformation systems could be applied. Our 
transformation catalogs are certainly not exhaustive and could be enriched with 
new transformation systems. 
 
Extend formal foundations to improve the articulation of sub-steps. 
Considering the difficulties to order sub-steps within steps, it would be worth to 
define a formal foundation of the expression of sub-step pre and post conditions. 
Such formal expression could rely on the theory of abstract proving that 
automatically generates a valid post condition by applying a transformation on a 
precondition, thus allowing a checking of a property of correctness by construction 
[Abra87]. 
 
Validate catalogs of transformation by human factors experts. This may be 
done by: (1) empirical testing of transformation catalogs by human factors expert 
conducting studies to discover, introduce or modify transformation rules within a 
same transformation system or across (2) usability testing of UIs produced by our 
application of the TDUI paradigm (3) external validation of our method on more 
case studies with varying parameters (4) consider the incorporation of usability 
properties in the transformation process itself. 
 
Hide the complexity. It might be argued that conditional graph rewriting and 
graph grammars require, from the designer’s side, a substantial knowledge in 
formal methods. Interesting works could lead to a decrease in complexity in the 
expression of transformation rules. For instance, generating traceability links 
automatically could be considered. 
 
Embed transformation systems in run-time scenarios. The transformation 
process proposed in this work was imagined at design time. Nonetheless, no 
elements of our methodology prevent to consider the application of 
transformation systems at run-time. This might be considered for scenarios such 
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as dynamic (re-)allocation of tasks, dynamic adaptation to changes in the context 
of use, partial or total migration, and distributed UIs. 
 
 
 
 
 
 
 
 

Thanks for reading this document or at least this last page ! 
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Annex: Tool Support  

 
Attributed Graph Grammars tool  

 
Requirements:  

 Edition (including debugging) of transformation rules and models 
 Execution of transformations 
 Import and export function to and from UsiXML. 

 
AGG (Attributed Graph Grammars tool) [Ehri99] is an multi-purpose graph 
transformation tool built in the “graph grammar group” at TU Berlin. It provides 
1) a programming language enabling the specification of graph grammars 2) a 
customizable interpreter enabling graph transformations. AGG may be used in 
two different ways: through its Graphical User Interface (GUI) or through its 
Application Programming Interface (API). AGG can be considered as a genuine 
programming environment based on graph transformations. Fig. A-1 illustrates 
the GUI of AGG. Frame 1 is the grammar explorer. Frames 2, 3 and 4 enable to 
specify sub-graphs composing a production: a negative application (frame 2), a 
left hand side (frame 3) and a right hand side (frame 4). The host graph on which 
a production will be applied is represented in Frame 5. 
 
In the context of this dissertation, AGG was used as a transformation editor 
(including debugging functions) and interpreter. An import and an export 
function from and to (a preliminary version of) UsiXML models has been 
developed and described in [Stan04]. 
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Figure A-1 AGG Graphical User Interface 

TransformiXML API 

 
Requirement: 

 Interpretation of transformation rules from a UsiXML description of rules 
and host models. 

 
Several Application Programming Interfaces are available to perform model-to-
model transformations (e.g., DMOF [dMof02] or Univers@lis [univ99]). AGG 
API was selected due to our prior experience with its GUI version. Using AGG 
API as a transformation tool allows us to realize the following scenario (Fig. A-2): 
an initial model along with a set of rules expressed in UsiXML are transmitted to 
transformiXML API. UsiXML elements (models and rules) are parsed and  
transformed into AGG object types. Rules are successively applied to the models. 
The resulting specification, under the form of AGG objects, is parsed and 
transformed into UsiXML elements. This process is notably described in 
[Limb04].  
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Figure A-2 Development process based on transformation application. 

 

TransformiXML GUI 

Requirements: 
 Allow to manage a development library (a library containing a catalog of 

transformation rules)  
 Allow to associate development sub-step with transformation systems 
 Execute transformations  

 
Fig A-3 presents a prototype of TransformiXML. The basic flow of tasks with 
transformiXML GUI is the following: a user chooses an input file containing 
models to transform. She, then, chooses a development path by selecting a 
starting point and a destination point (e.g., the viewpoint to obtain at the end of 
the process). Depending on the content of the input file some of the development 
paths may not be available. A tree allows the user to visualize the proposed 
development model (i.e., all the steps and sub-steps for a chosen path). The user 
can load another development model for the selected path. Now the task of the 
user consists in attaching one transformation system for each development sub-
step. By clicking on a sub-step in the tree, a set of transformation systems 
realizing the chosen sub-step are displayed. A transformation system may be 
attached to the current sub-step by clicking “Attach to current sub-step”. The user 
may also want to edit the rules either in an XML editor (the one of grafiXML, for 
instance) or in AGG environment. After attaching a transformation system for 
each rule in the development model, the user may apply the transformation either 
step by step or as a whole. The result of the transformation is then explicitly saved 
in a UsiXML file. 
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Figure A-3 TransformiXML 

 

GrafiXML 

Requirements: 
 Edition in a WYSIWYG manner (What You See Is What You Get) of 

models at the CUI level (for graphical UIs). 
 Import/ Export from and to UsiXML. 

 
Editing a concrete UI in UsiXML directly can be considered as a tedious task, a 
specific editor called GrafiXML has been developed to face the development of 
CUI models. In this editor, the designer can draw in direct manipulation any 
graphical UI by directly placing CIOs and editing their properties in a property 
sheet (Fig. A-4). At any time, the designer may want to see the corresponding 
UsiXML specifications (Fig. A-5) and edit it. Selecting a UsiXML tag 
automatically displays possible values for this tag in a contextual menu. When the 
tag or the elements are modified, those changes are propagated to the graphical 
representation. In this way, a bidirectional mapping is maintained between a UI 
and its UsiXML specifications: each time a part is modified, the other one is 
updated accordingly. 
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Figure A-4 GrafiXML main window 

 
Figure A-5 UsiXML textual editor within GrafiXML tool 
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IdealXML 

 
Requirement: 

 Edition of Domain Model   
 Edition of Task model 
 Edition of AUI Model 

 
IdealXML is described in [Mont04]. IdealXML enables to specify in a WYSIWYG 
manner the task model (Fig A-6 upper-left), the domain model (Fig 4-29 upper-
right) and, the abstract user interface model (Fig A-6 lower-left). 
The task model has the appearance of CTT notation introduced by [Pate99]. The 
domain model has the appearance of a class diagram. The AUI model has the 
form of a hierarchical structure of embedded boxes whose leafs are abstract 
individual components and their facets (specific icons have been designed to 
represent facet types).  
 
 

 

Figure A-6 Domain, Task, AUI model editors in IdealXML 
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ReversiXML 

 
A specific tool, called ReversiXML (formerly called Rutabaga [Boui04]), 
automatically reverse engineers the presentation aspects from an existing HTML 
Web page at both the CUI and AUI levels. This tool allows developers to recover 
an existing UI so as to incorporate it again in the development process. In this 
case, a re-engineering can be obtained by combining two abstractions, one 
translation, and two reifications. This is particularly useful for the evolution of 
legacy systems. 
 

Code Generators and Interpreters  

Requirements: 
 Generate “renderable” code in a high level language 
 Render UsiXML 

 
Two tools allow one to obtain a graphical rendering from a CUI specification. 
GrafiXML is equipped with an export module that allows a generation of 
XHTML code and Java Swing objects (see export menu in Fig. A-7). 
TransformiXML allows an interpretation of a CUI specification directly in flash. 
In this case a CUI may be assimilated to the final user interface. 
 

       
Figure A-7 GrafiXML export formats (left) and a UsiXML specification interpreted by 

FlashiXML (right)  
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