

Multi-Path
Development of User

Interfaces

By Quentin Limbourg

A dissertation submitted in fulfillment of the requirements for
the degree of

Doctor of Philosophy in
Management Sciences

of the Université catholique de Louvain

Committee in charge:

Prof. Jean Vanderdonckt, Advisor
Prof. Manuel Kolp, Examiner

Prof. Joëlle Coutaz, Université J. Fourier, Reader
Prof. Oscar Pastor, Universidad Politécnica de Valencia, Reader

Autumn 2004

Prof. Thierry Van den Berghe, ICHEC, Examiner

Table of Contents
TABLE OF CONTENTS ..3

ACKNOWLEDGEMENT..10

ABSTRACT ...11

CHAPTER 1 INTRODUCTION ..12

1.1 User Interfaces in the Scope of the Software Crisis..........................12

1.2 On Fragile Bridges between HCI and SE ..15

1.3 Thesis ... 22

1.4 Reading Map.. 23

CHAPTER 2 STATE OF THE ART..25

2.1 Current Approaches in User Interface Development 25

2.2 Exploratory Approach.. 28
2.2.1 Mock-up Approach .. 28
2.2.2 Visual Programming... 29

Programmatic Approach ..31
2.2.3 Low Level Programming ... 31
2.2.4 High Level Programming .. 31
2.2.5 Toolkit Programming... 32
2.2.6 Mark-up Languages .. 33

2.3 Specification-Based Approach... 35
2.3.1 Abstractions... 36
2.3.2 Task Model .. 36
2.3.3 Domain Model .. 38
2.3.4 User Interface Model ... 39

2.3.4.a Presentation model.. 42
2.3.4.b Dialog model .. 43

2.3.5 MBIDE Methods and Tools... 48

2.3.5.a Adept ... 48
2.3.5.b Art Studio.. 50
2.3.5.c Trident... 51
2.3.5.d FUSE (Formal User Interface Specification Environment).......... 53
2.3.5.e Genova.. 54
2.3.5.f Janus .. 55
2.3.5.g JustUI .. 57
2.3.5.h Mastermind (Models Allowing Shared Tools and Explicit
Representations Making Interfaces Natural to Develop) 59
2.3.5.i MOBI-D ... 60
2.3.5.j TADEUS .. 62
2.3.5.k Teallach ... 63
2.3.5.l Teresa .. 66
2.3.5.m Seescoa .. 67
2.3.5.n Vista ... 68
2.3.5.o Morph.. 69
2.3.5.p More .. 70
2.3.5.q Tamex.. 71
2.3.5.r WebRevenge... 72

2.3.6 Comparison on MBIDEs .. 72
2.3.6.a Ontological properties .. 72
2.3.6.b Methodological properties.. 73

2.4 Conclusion ... 77
2.4.1 Observations ... 78
2.4.2 Shortcomings... 80
2.4.3 Ontological Requirements... 83
2.4.4 Methodological Requirements .. 84

CHAPTER 3 AN ONTOLOGY FOR USER INTERFACE
SPECIFICATION ...87

3.1 Introduction ... 87

3.2 Conceptual Content of the Language.. 90
3.2.1 Task Model .. 94
3.2.2 Domain Model .. 101
3.2.3 Abstract User Interface Model ... 103
3.2.4 Concrete User Interface Model .. 108

3.2.5 Context Model .. 119
3.2.6 Inter-Model Relationships... 120

3.2.6.a Mappings between the domain models and the UI models........ 121
3.2.6.b Mappings to ensure the traceability of the development cycle ... 121
3.2.6.c Other mappings ... 122

3.3 Abstract Syntax: graphs as underlying formalism.......................... 123
3.3.1 General Definitions .. 123
3.3.2 Category Theory and Graphs Morphisms .. 124
3.3.3 Identified Graphs.. 125
3.3.4 Labeled Graphs... 126
3.3.5 Constrained Graphs ... 128
3.3.6 Typed Graphs.. 128
3.3.7 Identified, Labeled, Constrained and Typed graph 129
3.3.8 An Improved Typing Function .. 130

3.4 Concrete Syntax: a visual and textual syntax.................................. 135
3.4.1 Visual syntax.. 136
3.4.2 UsiXML: textual syntax ... 136

3.5 Conclusion .. 139

CHAPTER 4 MULTI-PATH DEVELOPMENT OF USER
INTERFACES 141

4.1 Introduction .. 141

4.2 Reference Development Framework .. 143

4.3 A Language for Specifying UI Models Transformation: conditional
graph rewriting ... 146

4.3.1 Introduction... 146
4.3.2 Graph Rewriting and Graph Grammars: an overview.......................... 148

4.3.2.a An introduction to graph grammars ... 148
4.3.2.b Conditional graph rewriting ... 152

4.3.3 Graph Grammars and the Reference Framework 153
4.3.4 Concrete Syntax for Transformation Rules .. 154

4.3.4.a Visual syntax for transformation rules ... 154
4.3.4.b Textual syntax .. 159

4.3.5 Application Strategy of Transformation Systems 160

4.4 Forward Engineering.. 162
4.4.1 Step: From Task & Domain to Abstract User Interface 163

4.4.1.a Sub-step: Identification of Abstract UI structure 164
4.4.1.b Sub-step: Selection of abstract individual component 165
4.4.1.c Sub-step: Spatio-temporal arrangement of abstract interaction
objects 168
4.4.1.d Sub-step: Definition of Abstract Dialog Control 169
4.4.1.e Sub-step: Derivation of AUI to domain mappings 171

4.4.2 Step: From Abstract User Interface to Concrete User Interface......... 173
4.4.2.a Sub-step: Reification of abstract containers into concrete
containers. ... 174
4.4.2.b Sub-step: Selection of concrete individual components. 176
4.4.2.c Sub-step: Arrangement of concrete individual component. 177
4.4.2.d Sub-step: Definition of navigation.. 179
4.4.2.e Sub-step: Concrete Dialog Control Definition 179
4.4.2.f Sub-step: Derivation of CUI to domain relationships 180

4.4.3 From Concrete User Interface to Code .. 181

4.5 Reverse Engineering... 181

4.6 Adaptation to context change... 184
4.6.1 Step: From Task & Domain to Task & Domain 184

4.6.1.a Sub-step: Transformation of a task model..................................... 184
4.6.2 Step: From Abstract User Interface to Abstract User Interface.......... 185

4.6.2.a Sub-step: Abstract individual component facet modification..... 186
4.6.3 Step: From Concrete User Interface to Concrete User Interface 187

4.6.3.a Sub-step: Concrete container re-formation 187
4.6.3.b Sub-step: Concrete individual component re-selection 188
4.6.3.c Sub-step: Layout re-shuffling... 189

4.7 Tool Support ... 190

4.8 Conclusion .. 192

CHAPTER 5 CASE STUDIES ... 195

5.1 Introduction .. 195

5.2 Case Study 1: a Virtual Polling System ... 197
5.2.1 Initial Representation ... 197

5.2.2 Transformation to an Abstract User Interface....................................... 202
5.2.2.a Identification of abstract UI structure.. 202
5.2.2.b Selection of AIC .. 204
5.2.2.c Spatio-Temporal arrangement of abstract interaction objects.... 205
5.2.2.d Definition of abstract dialog control .. 207
5.2.2.e Derivation of AUI to domain mappings.. 207
5.2.2.f Resulting specification .. 208

5.2.3 From Abstract User Interface to Concrete User Interface 210
5.2.3.a Reification of AC into CC.. 210
5.2.3.b Selection of CICs ... 210
5.2.3.c CIC placement ... 212
5.2.3.d Navigation definition ... 212
5.2.3.e Concrete dialog control definition .. 212
5.2.3.f Derivation of CUI to domain relationships................................... 212
5.2.3.g Resulting specification .. 212

5.2.4 Graphical Reshuffling of the CUI.. 214
5.2.5 Reverse Engineering the AUI ... 215
5.2.6 Resulting Specification... 219

5.3 Case Study 2: a Virtual Travel Agent ..220
5.3.1 Initial Representations.. 221
5.3.2 Derivation of the AUI ... 224
5.3.3 Derivation of CUI for desktop... 225
5.3.4 Derivation of CUI for small display .. 226

5.3.4.a Reification of AC into CC.. 227
5.3.4.b Navigation definition .. 229
5.3.4.c Resulting specification .. 229

5.3.5 Derivation of Auditory Interface ... 230
5.3.6 Translation of the Task Model and Forward Engineering the CUI.... 232

5.4 Conclusion ..235

CHAPTER 6 CONCLUSION.. 239

6.1 Context of This Work..239

6.2 Content of This Dissertation ..240

6.3 Validation ..242
6.3.1 External Validation... 242

6.3.2 Internal Validation.. 243
6.3.2.a Ontological Requirements.. 243
6.3.2.b Methodological Requirements ... 248

6.4 Summary of Contributions.. 251

6.5 Future works ...253

REFERENCES .. 256

ANNEX: TOOL SUPPORT .. 281
Attributed Graph Grammars tool.. 281
TransformiXML API... 282
TransformiXML GUI.. 283
GrafiXML.. 284
IdealXML .. 286
ReversiXML .. 287
Code Generators and Interpreters... 287

To Nancy, Eloïse, those who left and those who come.

Acknowledgement

I would like to express my thanks to:

− My advisor, Professor Jean Vanderdonckt, for his constant support and
enthusiasm regarding my work.

− Professors Joëlle Coutaz, Oscar Pastor, Manuel Kolp, and Thierry

Van den Berghe for accepting to participate to the jury of this dissertation.

− My colleagues from IAG school of management at Université catholique
de Louvain.

− My family and friends.

Abstract

In software engineering transformational development is a paradigm consisting in
the progressive refinement of abstract models into concrete models, until
program code. This thesis applies transformational development concepts to User
Interfaces (UIs). It enlarges the paradigm of transformational development by
defining a methodology allowing the realization of various types of development
paths (e.g., forward engineering, reverse engineering, context of use adaptation) in

order to realize multi-path development, we propose an ontology of concepts
defining various viewpoints that can be maintained on a UI system. Viewpoints
are hierarchically structured depending on their level of abstraction. They describe
user tasks, classes of objects, presentational and behavioral aspects of UIs, context
of use, and a set of mappings between these representations. The underlying
mathematical formalism of our ontology being a graph structure (directed,
identified, labeled, constrained, and typed graphs), we transform one viewpoint
into another by the application of conditional graph rewriting rules gathered in
graph grammars. These enable us expressing a wide variety of transformational
heuristics so as to be able to express multiple development paths. Ontology and
transformations may be stored in an XML format called UsiXML (User interface
eXtensible Markup Language) allowing the dissemination, the capitalization, and
the consolidation of UI specifications and transformation catalogs.

a unique framework. Such methodology is referred to as multi-path development. In

1. Introduction

Chapter 1 Introduction

This dissertation is located in the discipline of Engineering for Human-Computer
Interaction (EHCI). This discipline is at the crossroad of two disciplines: Software
Engineering (SE) and Human-Computer Interaction (HCI). SE can be defined as “the
application of a systematic, disciplined, quantifiable approach to development,
operation, and maintenance of software; that is, the application of engineering to
software” [IEEE90]. HCI can be defined as “a discipline concerned with the
design, evaluation and implementation of interactive computing systems for
human use and with the study of major phenomena surrounding them” [Hewe96].

Interactive computing systems are computer systems allowing a certain level of
control by a human agent. This control is operated through a User Interface (UI). A
UI can be defined as any software and/or hardware piece allowing a user to
communicate with a computer system. In other words, a UI is a software
component, a hardware component, or a series of such components enabling a
user to interact with an application so as to reach her task’s goals. Typical user’s
goals are information retrieval, browsing, visualization, resource management in
the large, process or automation control, etc.

1.1 User Interfaces in the Scope of the Software Crisis

The software crisis is a concept that emerged in the early seventies [Dijk72]. The
development of hardware computing power and storage capacity has
progressively pushed software systems to an unprecedented level of complexity.
Software development became a slow, tedious, expensive and error prone activity.
As failure stories accumulated in the history of software development [Meye97,
Stan95], it was acknowledged that software had to be taken out of the hands of
crafted developers and brought to the ones of engineers. Software systems
because of their growing complexity could not be handled neither by a single

1. Introduction

person anymore nor by a group of cognoscenti. All speaking the same language, the
one of the machines! Software development had to become a team activity where
communication and coordination takes, at least, as much time as coding.

The software crisis is still going on. Software development today is still closer to
craft than to science. The quality of software artifacts produced intrinsically
depends on the skills of developers, as the technique they use is rarely measurable
or reproducible.

Many people dreamed about a computer discipline with a level of rigour that is
usually found in “hard” sciences like mathematics, physics or chemistry. Since the
early days of software crisis diagnosis, a lot of efforts have been devoted to make
software projects more structured, predictable, and controllable. This is the role of
the software engineering community.

Numerous research works are conducted in fields such as project management,
requirements analysis, specification languages, software architectures,
programming languages, verification methods and quality testing. These
researches fostered results such as, but not limited to, management practices,
methodological recommendations (e.g., software project management), formal
methods (e.g., B specifications [Abri96]), Computer-Aided Software Engineering
(CASE) tools (e.g., DB-MAIN [Engl99]), programming practices (e.g., use of
patterns [Fowl96]) and concepts (e.g., abstract data types [Lizk74], design by
contract [Meye97]).

Model engineering (i.e., a discipline that is concerned with the development of
models) is part of the numerous solutions proposed to overcome the software
crisis.

A model can be defined as an intentional and simplified representation of a real-
world thing. Model primitives (i.e., model building blocks) are gathered in meta-
models i.e., models describing other models’ concepts and relationships.
“Intentional” stresses that there is always some intent or goal behind the
identification of abstractions populating a model. A model can, for instance,
facilitate understanding, simulation, or testing. A model is said to be a
simplification as it abstracts away details that do not seem relevant to the goal of
the modeling activity. The same real-world artifact could consequently be
modeled with different abstractions.

1. Introduction

The viewpoint concept characterizes the different perspectives that can be
maintained about some real-world thing. Each viewpoint permits the
construction of a peculiar view on the same real-world thing. The concept of real-
world thing should not abuse the reader. A real-world thing is not necessarily
something that has a material existence. A real-world thing refers to a thing, i.e., a
separate and distinct individual quality, fact, idea or usually entity [Merr04]. In
other words, a real-world thing is something that can be distinguished from other
things.

Model-driven development is a development paradigm that relies on model engineering
i.e., in the power of models to build computer systems. It advocates that software
development should be guided as much as possible by the construction, and
refinement of software models at various levels of abstraction. Most of current
development methodologies have been influenced by, can be affiliated to, or are
totally in debt with, this paradigm, for instance: object-oriented methodologies,
database engineering, or agent-oriented methodologies.

Transformational development can be considered as a sub-paradigm of model-driven
development. It presents the development of software as a progressive refinement
of abstract models into concrete models, until program code [Somm99]. In order
to do this, transformational development, it relies on catalogs of transformations
able to (semi-)automatically perform model-to-model and model-to-code
transformations. Transformational development has attracted the attention of the
SE from the beginning (for instance: [Balze72, Chea81, Bend83]).

More recently, along with the Model Driven Architecture (MDA) proposal
[Mill03], model processing and transformation have gained particular importance
in the software engineering literature [Rens03, Kusk02, Gerb02, Mell03]. The
main motivation of these works is to tackle the problem of computing platform
heterogeneousness. For this purpose MDA defines a set of abstraction layers able
to factor out specificities of implementation platforms. In this context, explicit
model-to-model transformations enable the realization of the development
process.

1. Introduction

1.2 On Fragile Bridges between HCI and SE

During the last years, the area of HCI has been compared to the area of SE, the
former being described as mainly empirical, experience-based, and relying on
implicit knowledge as opposed to the latter being notoriously and deliberately
structured, principle-based, and relying on explicit knowledge. The development
life cycle of highly-interactive systems in general and of their UI in particular
forms the cornerstone of HCI. It has been observed for suffering from several
shortcomings that are intrinsic either to the type of interactive systems developed
or to the adopted existing practices. For many years, there has been a dream of
developing any UI in such a way to preserve the quality properties of the SE area.
Among the criticisms addressed to HCI are the following observations:

 Lack of rigour: The development life cycle of interactive systems shared by HCI

and SE does not involve the same level of rigour that is typically used in SE
[Brow97]. In addition, HCI development life cycle is estimated to involve an
order of complexity higher than those found in SE [Wegn97].

 Lack of systematization: as SE dreamed of a well-structured method for

developing highly complex systems, so did HCI for developing interactive
systems. However, the systematization, and the reproducibility found in SE
methods cannot be transposed equally in HCI: the development life cycle
remains inherently open, ill-defined, and highly iterative [Sumn97] as opposed
to the domain of SE where it is structured, well-defined, and progressive
[DSou99].

 Lack of a principle-based approach: where SE methodologies define system

development as a succession of one stage after another according to well-
established principles. In contrast HCI usually advances in a more
opportunistic way when the current result is usable enough to proceed to the
next stage [Puer97].

 Lack of explicitness: not only is the knowledge required to properly conduct the

development life cycle of interactive systems is not as principled as in SE, but
also is it implicitly maintained in the mind of experienced designers. This
knowledge is therefore harder to communicate from one person to another,
although initiatives exist that make this knowledge more explicit through

1. Introduction

design patterns, usability guidelines, etc. [Szek96, Pate00]. Even more, when
this knowledge is made more explicit, nothing can guarantee that it is applied
uniformly and consistently within the same development project or across
various development projects.

It can be observed that the above comparison holds as long as significant efforts
towards structured, principle-based and explicitly-based process realized in SE
remain unparalleled within the area of HCI.

On the other hand, it can be argued that software engineering has paid very little
attention to the problem raised by UIs development. A user interface is an
essential component of software systems. It determines how easily a user may
control underlying functions of a computer program. A program equipped with
powerful functionalities but with a poor UI has little value if its user audience is
supposed to be large and varied. Numerous studies show the importance of a well
designed UI system [Niel94, Sinh04]. But what is a well designed UI? How to
build it? Unfortunately, SE methodologies rarely propose concepts and practices
to achieve the development of UIs. UIs are treated as any pieces of software. And,
from our opinion, they are not!

Although efforts have been undertaken since more than 10 years to bridge the gap
between SE methods and HCI methods [Tarb93, Lim94, Balz95, Bart95, Bod95a,
Boda95b, Robe98, Nune00, Sanc01], it can be said that SE methods rarely adopt a
particular insight on an essential aspect to interactive systems development: the
user.

User Centered Design [Cons99] was proposed as a development paradigm that
focuses on the quality of interaction in the first place (referred as usability).

UCD represents both a collection of user-centric methods and more generally a
philosophy for approaching technology design. UCD methods engage the user, its
activities and its environment in all stages of an interactive application’s analysis
and design. UCD typically uses an extensive initial research phase, coupled with
methods for conceptualizing users and its activities. UCD methods are particularly
suited for constraining contexts of use, complex tasks or critical situations that
require user characteristics, goals and environment to be well understood.

A community of research tries to combine the objectives of UCD with the ones
of software engineering. This community has given birth to numerous research

1. Introduction

providing results, notably, in formal methods [Thimb90, Harr90, Dix91, Unge96,
Pala97, Chat99, Pate00], quality inspection (i.e. usability engineering and
evaluation methods), requirement analysis (i.e., user engineering), methodological
recommendations (see methods cited above), software architecture, CASE tools,
etc.

Model-Driven Development of User Interface (MDDUI) has emerged from this research
stream as a field relying on models to guide the development of user interfaces.
The use of models in HCI to reason on abstract properties of user interfaces has
been a long tradition since [Parn67]. A lot of efforts have been made in applying
formal methods to HCI (see references above), and identifying the abstractions
that were appropriate to HCI with respect to software engineering. Similarly to
what happened in SE, a portion of the scientific community tries to identify how
user interface models can be automatically, or semi-automatically, refined to come
closer to the implementation of the UI system itself.

Transformational development of user-interfaces (TDUI) is a sub-paradigm of model-
driven development of UIs. By analogy with transformational development in SE,
it defines the development of user interface systems as a successive application of
transformations to an initial representation. This generally implies a progressive
refinement of abstract models into concrete models, until program (here UI)
code.

Since the mid-nineties, numerous engineering methods have been proposed to
support transformational development of user interfaces. Most of them are
concentrated on deriving UI code from abstract models, others are focused on
recovering a model from a UI implementation. A more recent trend gave birth to
methods specifically devoted to the adaptation of a UI system to multiple contexts
of use.

Like for the MDA mentioned above, transformational development of UI finds
its root motivations in the concept of heterogeneousness. In this case the
heterogeneousness concerns the variety of contexts of use (referred as a triple
<user, computing platform, physical environment> [Thev01]) for which a UI is
designed. This heterogeneousness stresses the need for abstractions able to factor
out details relevant to specific contexts. From these abstractions, it is possible to
obtain context specific representations by progressive refinements. The advantage
of accessing to such representations is to be able to reason on one single model
and obtain many different UIs.

1. Introduction

Another strong motivation for transformational development of UI is to resist a
constant pressure imposed on UIs: change. UIs is a component that has to rapidly
evolve, this may be due, but not limited to, a change in the:

 Organizational structure [Brow97]: it may be a task redefinition, task
reallocation among workers, redefinition of the organization structure,
adaptation to a dynamic business environment, transfer of task from one
user to another one.

 Organizational process: as a matter of fact, organizations react to changes in

very different ways in their UI development processes. For instance, one
organization starts by recovering existing input/output screens, by
redrawing them and by completing the functional core when the new UI is
validated by the customer (bottom-up approach). Another prefers to modify
the requirement of the system and remaps it to screen design (top-down
approach). A third one tends to apply in parallel all the required adaptations
where they occur (wide spreading approach). A fourth one relies on an
intermediate model and proceeds simultaneously to requirement models,
and the screen design (middle-out approach) [Luo94].

 Hardware platforms: support of new computing platforms [Gaer03],

migration from stationary platforms to mobile computing [Mori03],
adaptation to dynamic environments [Luyt03].

 Software platform: change of the computing language, redesign due to

obsolescence [Boui04].

 User’s requirements: evolution of users with more demands, increasing need
for more usable UIs, evolution of the domain of application [Agra03].

To address the challenges posed by the pressure of change, the existing
development processes are not always considered as appropriate, as they do not
reflect the implication of change throughout the complete application life cycle.

[Sumn97] emphasize the fact that the development process, as usually conducted
in HCI, is a process that is eminently open (several development steps can be
conducted or considered simultaneously), ill-defined (the initial requirements are

1. Introduction

usually broadly incomplete, if not inconsistent), and mostly iterative (it seems
impossible to conduct a development step in a way that its output is definitive).
Nanard and Nanard [Nana95] report that the development life cycle of an
interactive application consists of a sophisticated “Echternach” process that does
not always proceed linearly in a predefined way. It is rather an interwoven set of
development steps, which alternate bottom-up and top-down paths, with
selecting, backtracking, and switching among several actions. Thus any method
and development tool is expected to effectively and efficiently support a flexible
development life cycle, which doesn’t stiffen the mental process of expert
designers in a fixed procedural schema. On the other end, when we consider the
needs of moderately experienced designers, the method and its supporting tool
should enforce a minimum number of priority constraints. These constraints
should define which development artifacts must be specified before others,
suggesting for example how and when to proceed from one development stage to
another.

Relying on model transformations to build a software product allows to better
face change as these changes do not have to be understood in terms of
implementation but in terms of abstract concepts.

A state of the art in transformational development of user interface reveals two
families of shortcomings: ontological and methodological. We address these in the
following sub-sections.

Ontological shortcomings

Ontological shortcomings concern the conceptual frameworks of the approaches
defined so far.

A certain coarse-grain convergence in the concepts that are used to model UI may
be observed. In most of the methods a domain and a task model are used as an
expression of the requirements of the UI system being built. A domain model
describes the objects of an application domain, a task model describes a logical
and temporal ordering of tasks as performed by users in interaction with a system.
Most of the surveyed methods are also equipped with a set of abstractions
enabling a description of the UI itself. These abstractions enable a description of a
UI appearance and behavior in a way that is independent of implementation
details.

1. Introduction

Unfortunately, these similarities hide an important heterogeneousness in the way
each of these models are defined and communicated to the method’s user.
Four main shortcomings may be pointed out from these observations:

 Lack of ontological explicitness - A few methods define in an explicit manner
their underlying concepts. Concepts are generally bounded to tools or
methodological recommendations, thus preventing a designer to grasp the
conceptual foundations of the methodology.

 Lack of ontological rigour - When a method explicitly defines its ontology, the

preciseness of concepts definitions highly varies from one method to
another. In addition, concepts are seldom formally expressed, especially
the relationships between the ontological concepts.

 Lack of ontological commitment - The ontological commitment refers to a

shared understanding of concepts among a scientific community. The fact
that a few ontologies have been defined so far prevents convergence
around a set of concepts.

 Lack of communication of concepts - Research teams tend to conduct their

research and development on their own models. Conceptual consolidation
across methods is difficult as cross-method understanding is a tedious and
time-consuming activity, requiring the full understanding of each method
and establishing correspondence between them. As a consequence,
communication among researchers is made complex.

 Lack of extensibility of concepts – When available, the concepts manipulated

by methods are hardly extensible. This prevents the adaptation of
methodologies to cover new model concepts, notably, the ones related to
new interaction modalities.

Methodological shortcomings

Methodological shortcomings concern the way existing approaches concretize
transformational development with the definition of methodological stages, steps
(i.e., transitions between stages), and transformation catalogs to perform these
steps.

1. Introduction

 Lack of methodological explicitness - Existing approaches are seriously lacking
of explicitness in the way they propose their catalog of transformations
both to the designer and to researchers. The transformation catalogs are
often implicitly maintained in the head of developers and designers
and/or hard-coded in supporting software. Consequently, the
transformational process proposed in the literature consists essentially in a
black box.

 Lack of methodological rigour - When development steps and transformation

catalogs are made explicit the preciseness of their expression is limited.
We are not aware of any formally defined transformation catalog in the
domain of HCI.

 Lack of consistency in applying methodology - When such design knowledge

exists, it is generally not systematically, consistently and correctly applied
throughout the project or across projects. Methodological steps remain
open to interpretation while lack of methodological explicitness hampers
any structured reasoning on the application of transformations.

 Lack of communication of transformation catalogs - Consequently to the lack of

explicitness, the exchange of knowledge regarding transformation catalogs
can be hardly achieved. Even when transformation catalogs are made
explicit in tools, their heterogeneous formats prevent the reuse of
transformations outside the context for which they were designed.

 Lack of predictability of transformation - The implicitness of transformations

decreases the predictability of the transformation results. This causes a
frequent reproach made to transformational development [Myers95,00].

 Lack of modifiability of transformation catalogs - Developing UIs is about

making heuristic decisions in a vast design space. Transformations have
consequently an inherent heuristic nature as they try to translate into
algorithms part of these design decisions. Proposed methods offer very
little possibilities to the designer to modify built-in heuristics: adding,
deleting, modifying, reusing transformations is almost impossible.

 Lack of flexibility in methodological steps. Methods generally come with their

models, their development steps. Due to the implicitness of their
transformation formalism it is almost impossible to adapt the proposed

1. Introduction

methodological steps to the designers’ needs and the project context.
Flexibility is a notorious requirement for user interface development
methods [Brow97].

These shortcomings lead us to conclude that transformational development of
user interfaces can be improved along several dimensions.

1.3 Thesis

Thesis statement

This dissertation addresses the shortcomings previously outlined for achieving
transformation-driven development of user interface. This dissertation provides
an:

(1) ontological framework based on an explicit and rigorous representation of
concepts relevant to UI development.

(2) methodological framework based on the ontological framework previously
introduced. This methodological framework introduces a new paradigm for UI
development called multi-path development of UIs that is characterized by the
following principles:

 Transformation driven: a development method is composed of development
stages. A development step is a transition from one stage to another one.
Development steps rely on explicit and rigorous transformation catalogs.

 Multiple-path: The context of development projects may involve variable

arrangements of development steps. A development path refers to a
particular arrangement of steps. Multi-path development refers to the
capacity of a method to accommodate to various development paths.

Validation

Two kinds of validation are provided to assess the validity of this thesis. A
theoretical validation confronts the methodological framework introduced by this
thesis to the requirements identified after a state of the art of existing

1. Introduction

transformation-driven development methods. A practical validation is provided by
illustrating how the methodological framework can be instantiated on two case
studies.

Scope

The scope of this thesis is delineated by the following statements:

 We focus on a specific kind of software i.e., information systems.
Information systems is “a means of recording and communicating
information to satisfy the requirements of all users, the business activities
they are engaged in and the objectives established for them”[Olle88].

 We consider that the typical user interfaces of information systems are

either:

− Graphical User Interfaces (GUI), which are 2-dimensional and
based on widgets that belong to standard toolkits and window
managers.

− Vocal User Interfaces (VUI), which are UIs exploiting the auditory
channel by standard speech synthesizers and voice recognizers.

 We target this dissertation primarily to the research community and those

persons who define development methodologies in organizations.

1.4 Reading Map

In addition to the introduction and the conclusion, this dissertation is organized in
four chapters.

Chapter 2 reports on some significant pieces of work related to the paradigm of
transformational development of user interfaces. We survey in this chapter more
than 20 different approaches and try to identify and compare their conceptual
content along with their transformational development process. A set of
observations and shortcomings is raised in conclusion of a comparative analysis.
From these observations, we establish a list of requirements for addressing the
observed shortcomings. This list of requirements will help us to assess the
appropriateness of our solution.

1. Introduction

Chapter 3 introduces the reference representations that are used throughout this
work. This addresses the principles of expressiveness and rigour of models
identified above. In this chapter, we rely on conceptual schemas to provide a view
of each important abstraction populating our framework. We present a structuring
of concepts in viewpoints, capturing various levels of abstraction that can be
maintained on a UI. After that, we present the abstract syntax that has been used
to represent our concepts, namely: directed, identified, labeled, and typed graphs.
Finally, we present two concrete syntaxes (i.e., graphical and textual) used to
represent our concepts.

Chapter 4 shows how transformations are represented and executed thanks to
conditional graph rewriting and graph grammars. In a first part, a theoretical
explanation on the formalism and the way we exploit it is provided. An illustration
of the graphical syntax used to represent transformations allows the reader to
quickly understand the examples provided in the rest of the chapter. An
application of this formalism is then presented by proposing several types of
development paths with graph transformations i.e., forward engineering, reverse
engineering, context of use adaptation. Finally, we expose the type of tool support
that has been realized to achieve multi-path transformational development of user
interfaces.

Chapter 5 illustrates the principles of multi-paths transformational development
for two case studies. The first one concerns the development of an on-line polling
system. The second one concerns the development of a virtual travel agent. We
conclude this chapter by an evaluation of the two case studies.

Chapter 6 concludes by discussing the appropriateness of the solution proposed
in this dissertation. Our contributions are summarized and by future works are
proposed.

2. State of the Art

25

Chapter 2 State of the Art

2.1 Current Approaches in User Interface Development

Two elements define the smallest common denominator of what a UI is:

1. A presentation - concerns the physical description of the UI. It consists of a
static representation using available interactors as building blocks. Without
any presentation, a UI has no appearance (or “look”).

2. A dialog - concerns the dynamic behavior of the presentation elements. It

describes the input/output flows between a user and an interactive
application (mediated by the UI). Without any dialog specification, a UI
has no behavior (or “feel”).

Various approaches to build these two UI elements have been reported in the
literature as well as experienced by practitioners. To characterize these
approaches, we rely on three starting points for initiating UI construction, as
defined in the Diane methodology [Bart88] (Fig. 2-1):

1. The internal view – relates to the UI implementation and its description as it
is relevant for the UI developer.

2. The external view – relates to the interface appearance and its behavior, as

perceived by the end user

3. The conceptual view – provides an insight on the logical structure underlying
a UI in designer’s terms. A conceptual view provides the designer with a
set of abstract concepts facilitating reasoning on the artifact that is being

2. State of the Art

26

built (e.g., a finite state machine, a class diagram).

These three views define three possible points where the process of UI
construction can be initiated. All possible transitions between these
representations enable a definition of nine theoretical approaches for constructing
the UI can be identified (Fig. 2-1).

7

6

representation
Internal External

representation

Conceptual
representation

3

1 2

4

9

8

5

7

6

representation
Internal External

representation

Conceptual
representation

3

1 2

4

9

8

5
Figure 2-1 A framework for classifying approaches of UI development practices (adapted

from [Bart88])

 A programmatic approach (transition 1). In this approach, the internal

representation is obtained by directly coding the UI in its target computer
language, e.g., HTML for a markup language or Basic, Pascal for imperative
languages and Java as object-oriented language. Theoretically, a UI can be
coded with any of these languages. Practically, some languages provide
designers with a better support by, offering sets of pre-defined components
especially tailored for UI construction. Several development transitions can be
defined when starting from an internal representation:

– An internal-external generation approach (transition 4) - derives an

external representation from an internal representation (e.g.,
interpretation of HTML code and its rendering within a computing
platform).

– An internal-conceptual derivation approach (transition 7) - derives from

the internal representation a conceptual representation (e.g., reverse

2. State of the Art

27

engineering HTML code to obtain an abstract view of its presentation,
reverse engineering of a domain model from a form displayed. A state
of UI reverse engineering can be found in [Boui04]).

 An exploratory approach (transition 2). In this approach, a developer firstly

provides an external representation of the UI (e.g., with a graphical editor like
those found in Integrated Development Environments like Visual Basic, or
Visual C++, or a mock-up produced by a drawing tool such as Microsoft
Visio).

– An external-internal representation approach (transition 5) – derives an

internal representation from an external representation (e.g., code
generation from forms built in Visual Basic editor).

– An external conceptual (transition 8) derivation - derives a conceptual

representation from an external representation (e.g., Cellest tool
[Elra01] reverse engineers an abstract specification of the presentation
from screen dumps of a UI).

 A specification-based approach (transition 3). This development approach starts

with an abstract representation of a UI (i.e., any UI model).

– A conceptual-external generation approach (transition 9) – derives an
external representation from the conceptual representation. For
instance, Genova [Geno04] produces a UI preview (an external
representation) before generation based on a selection of relevant
information from a class diagram (a conceptual representation)

– A conceptual-internal generation approach (transition 6) - derives an

internal representation from the conceptual representation. In this
case, the tool directly produces the code from the conceptual
representation without any intermediate representation. For instance,
MacIDA directly generates MacApp code from its Activity Chaining
Graph that serves as a conceptual representation [Boda95]

As all these approaches are relevant to our domain of research, these development
approaches and the concepts they manipulate are detailed in the next subsections.

2. State of the Art

28

2.2 Exploratory Approach

The exploratory approach consists of initiating a UI development by a graphical
representation. Two major trends are clearly identified in the exploratory
approach: a mockup approach and a visual programming approach.

2.2.1 Mock-up Approach

Exploratory approach is often used in consulting companies to quickly produce a
working draft to convince a potential client at low cost and to validate the
mockup with the customer so as to begin coding as soon as possible. This
approach finds its extreme in paper prototyping where the UI is drawn on pieces
of paper and post-it that are manipulated by a person to animate the behavior of
the UI depending on the customer’s requests. An exploratory approach consists
of either a hand-drawing or a mock-up constructing. For the first category,
general purpose drawing software (e.g., Corel Draw, Microsoft Powerpoint, Aldus
Persuasion) can be used. Software dedicated to industrial drawing (e.g., Microsoft
Visio, ABC Flowchart) can be preferred as they already encompass the vectorial
drawing of the widgets composing a UI. Even more, DEMAIS [Bail03] already
supports main graphical mechanisms fro expressing presentation constructs and
dialog transitions for a simple multimedia application. For the second category,
sketching tools like Silk [Land96], Denim [Hong01] or JavaSketchit [Caet02] can
be used. A state of of the art on sketching tools can be found in [Coye04].

The Denim tool [Hong01, Newm03] is such a tool that allow designers to draw a
sketch of the presentation of any web page and then to link these sketches
together with arrows (Fig. 2-2). The transition between presentation and
navigation is smoothly ensured thanks to a zoom visualization. The tool never
recognizes however the layout or the widgets as Silk or JavaSketchIt do. This
intuitive and simplistic tool allows the developer sketching a future UI without
being interfered by low level details nor be distracted by physical attributes.
Similarly in FreeForm [Plim04], the developer can then mock-up screen by screen
the future application. Part of the dynamic behavior (e.g., window transitions) of
the UI can be added to simulate UI state transitions.

2. State of the Art

29

Figure 2-2 The Denim tool

The mock-up approach is adequate for preliminary studies. It is very suggestive,
especially for the users. But when it comes to turn a mock-up into a shippable
package, part of the effort might be lost when there no recognition of the mock-
up. Indeed, if no computer support is provided to get an internal representation, a
developer has to completely re-implement the previously done job in a genuine
programming language with no guarantee of consistency with what was sketched
before.

2.2.2 Visual Programming

Visual programming is the most popular way to construct a UI. Most of the major
programming languages or toolkits possess their proprietary visual environment.
Visual specification systems allow the developer to build a UI by combining two
types of aspects:

1. A visual aspect by direct manipulation of widgets: each widget is dragged
from a palette of widgets and dropped onto a working area. As such,
visual programming may be used for constructing mock-ups.

2. A programming aspect of the application underlying a UI. Callbacks

procedures are programmed in a high-level programming language or a
scripting language.

2. State of the Art

30

Figure 2-3 Visual programming with Glade environment

Fig. 2-3 shows the Glade environment [Glad04], the visual environment for
GTK+ [GTK04]. This environment is rather typical of all UI builders. In the top
left corner, a toolbox permits to select different sorts of widgets that the
developer will place by direct manipulation on a working area (in the top right
corner) depicting the UI. Properties such as graphical appearance or event they
respond to can be configured in a property sheet (bottom left corner). The
multiplicity of working spaces (windows) is managed by a project manager
(bottom right corner).

Visual programming is typically based on UI toolkits. Visual programming a UI is
extremely easy and natural as GUIs are visual by nature. It is very efficient for
building simple interfaces. Visual programming increases developers’ productivity
but suffers from the same shortcomings as for programming approaches i.e.,
mainly, a risk of unstructured programming and a difficulty of reasoning on the
properties of the artifact that is being built.

2. State of the Art

31

Programmatic Approach

Interface development practices have significantly evolved with programming
languages development. Roughly, major steps of UI programmatic approach are:
low level programming (i.e., assembly code), high level programming (e.g., C++),
toolkit programming (e.g., Java Foundation Classes [SUN04,Flan99]), scripting,
and use of mark-up language. Note that this classification is not a total partition.
It is based on development practices that evolved with contingent factors such as
technology constraints and application domain requirements.

2.2.3 Low Level Programming

Low level programming consists in providing instructions in machine or assembly
language. Low-level programming for UI development is no longer a common
practice today. It is still used where UI response time is critical (e.g., computer
games programming, real-time applications). Low level programming dramatically
reduces portability and reusability. It requires a high computing knowledge,
advanced programming skills and is time consuming.

2.2.4 High Level Programming

High-level programming develops a UI faster than low level programming thanks
to a set of human-understandable symbols replacing cryptic assembly or machine
instructions. Interface programming using a high level language solely is a line-
consuming activity. High-level programming tries to rely on reusable libraries
containing drawing routines and/or graphical components. These libraries are
often called toolkits.

UI portability is increased with high level languages. One could think that the
interface could be executed on any platform. Unfortunately, this is not the case:
interface systems strongly rely on peculiar OS services for rendering the interface.
By themselves, high-level languages do not intrinsically support UI portability.
Furthermore, they remain cryptic for the non-expert (and sometimes for the
expert too!). Consequently, a developer spends a lot of time to solve
implementation and his prevented to develop higher level reasoning on the

2. State of the Art

32

artifact that is being built.

2.2.5 Toolkit Programming

Toolkits are UI program libraries. They contain common widgets used to build
the interface like input fields, buttons, menus, pre-defined dialog boxes, etc. They
also provide support functions for manipulating widget like events and I/O
handling. Thanks to toolkits, low level issues related to the widget manipulation
can be disregarded by developers. Popular toolkits are Microsoft Foundation
Classes [Feur97](MFC) for Windows operating system, Abstract Windowing
Toolkit (AWT) [SUN04, Flan01] or Swing components [Ecks98] for Java Virtual
Machine, GTK for Linux, Tk [Oust94] or Motif [Foun00] for Unix operating
systems. Fig. 2-4 shows an ‘HelloWorld’ program using AWT toolkit frame
object.

import java.awt.*;

public class Hello extends Frame {
 public static void main(String argv[])
 {
 new Hello();
 }

}

}
show();
resize(200, 200);
add("Center", hello);
Label hello = new Label("Hello World");
Hello() {

Figure 2-4 Toolkit programming provides high level constructs

(a Java/AWT excerpt for drawing a window)

The main advantage of toolkits is that they provide a great flexibility and an
improved control over the UI elements while maintaining a relative ease of use. A
problem with toolkits appears in tradeoffs between the number of features, the
ease of use and the portability. For instance, it turns out that AWT is highly
portable across various platforms but very poor in terms of number or variety of
widgets and customization as it only supports the smallest common denominator
of platforms. OSF Motif, on the other side, is extremely rich and customizable,
yet poorly portable as it only works on top on Unix BSD4.2.

Toolkits require a high learning curve. Several months are generally needed to

2. State of the Art

33

master a specific toolkit. UI quality largely depends on the programmer’s
experience. As toolkits allow developing complex UIs without any constraint, the
problem of “spaghetti callbacks” becomes predominant. Callbacks are calls to
procedures notifying the application that a user action has been achieved. When
the amount of callbacks between the application and the UI is increasing, their
management becomes intractable if no structured approach is adopted.

2.2.6 Mark-up Languages

Mark-up languages [Luyt04] are at the fringe of programming approach and
specification-based approach. Mark-up languages are declarative languages. They
describe what a UI is rather than what to do to produce it. Mark-up languages are
especially good at describing presentation elements of the interface and static
properties such as widget layout, style characteristics,... The considerable success
of mark-up languages for UI development is due to its ease of use. Initially
designed for data, mark-up languages provide a raw description of the UI
elements that can be interpreted by browsers compliant with the mark-up
language. A survey of UI languages has been provided in [Cout02]. Fig. 2-5 gives
an example of dialog described with the User Interface Mark-up Language
(UIML) [Abra99,UIML04].

<UIML>
<HEAD>

NAME="PrintFinishedDialog">

</HEAD>
<APP CLASS="App" NAME="DialogApp">

<AUTHOR>Hubert Lingot</AUTHOR>
<DATE>July 16, 2001</DATE>

<GROUP CLASS="Dialog"

<ELEM CLASS="DialogMessage"
NAME="PrintFinishedMessage"/>
<ELEM CLASS="Dialog Button"
NAME="OKButton"/>

</GROUP>
</APP>
<DEFINE NAME="OkButton"W

<PROPERTIES>
<ACTION

VALUE="DialogApp.EXIST=false"
TRIGGER="Selected"

/>
</PROPERTIES>

</DEFINE>
</UIML>

Figure 2-5 A UIML Dialog Description Example

Mark-up languages are purely descriptive. A purely descriptive language is

2. State of the Art

34

generally insufficient for describing dynamic aspects (i.e., the behavior) of the
interface. Mark-up languages are generally complemented with scripting
languages. Mark-up languages are easy to understand, even for novice developers.
They allow the developer to concentrate on the content of the UI rather than on
presentation aspects. They are very resistant to bit-errors. These reasons explain
the success of XML family languages. From a portability point of view, mark-up
languages rely on platform specific implementation of programs called
“renderers” (or sometimes “browser”).

2. State of the Art

35

2.3 Specification-Based Approach

In software engineering, specification-based (or model-driven) approach relies in
the power of models to construct and reason about software systems.

A model is a simplified and intentional view of real-world things. A model is a
simplification as it withdraws details of real-world objects and tries to identify
properties of interest of real-world objects. Identifying these properties requires
some kind of judgment. That is why modeling is said to be an intentional activity.
One never models for the sake of modeling. Real world concepts can be
abstracted away in different ways. In other words, modeling is not a deterministic
process resulting from observation of the real world.

The goal of specification-based, or model-based approach, for user interface
development is to propose a set of abstractions, development processes and tools
enabling a engineering approach of user interface development. The
characteristics of an engineering approach are its systematic (development based
of rational principles), its reproducibility, its orientation towards quality criteria.

Compared to programming, specifying a UI means to describe it at a higher level
of abstraction which is independent of the implementation. As argued by
[Schn98], the default form for specification in any field is the natural language. It
holds inconvenience of being ambiguous, lengthy and vague. Furthermore natural
language specifications are difficult to prove consistent, correct or complete. The
specification approach uses some form of formal or semi-formal notation to
describe a UI. It has the advantage of being very specific to the interface part to
be described. It presents a disadvantage of being longer to learn but ensures
abstraction.

We present specification-based approaches in three steps. Throughout Sec. 2.4.1
to Sec. 2.4.5, we provide an overview of different abstractions and models defined
in the literature to achieve a specification-based development of UIs. In Sec 2.4.6,
an overview of development methodologies and tools that are considered
significant with respect to specification-based approaches is delivered. This
overview is based on the abstractions and models introduced in Sec. 2.4.1 to 2.4.5.
Sec. 2.4.7 concludes this discussion by providing a systematic comparison of these
methodologies and their associated tools.

2. State of the Art

36

2.3.1 Abstractions

By examining the existing literature, abstractions related to the UI development
can be categorized in three families:

 Computing-independent abstractions are abstractions enabling a UI description
of the system to be built without any reference to the computing
resources with which a UI will be implemented. Computing independent
abstractions encompass task models and domain models.

 UI focused abstractions are abstractions enabling a UI description to be built
while taking into account details of its design. For instance, a given
modality, a particular computing-platform or a widget set. UI focused
abstractions are gathered in two models: a presentation model and a dialog
model.

 Context of use abstractions are abstractions concerning contextual
information describing “situations” for which a system is designed. A
context model or a user model contains such abstractions.

2.3.2 Task Model

User-Centered Design (UCD) has yielded many forms of design practices in
which various characteristics of the context of use are considered. Among these,
task analysis is widely recognized as one fundamental way not only to ensure some
user-centered design [Hack98] but also to improve the understanding of how a
user can interact with a user interface to accomplish a given interactive task.

A task model is often defined as a description of an interactive task to be
performed by the user of an application through the application’s user interface.
Individual elements in a task model represent specific actions that the user may
undertake. Information on subtask ordering as well as conditions on task
execution is also included in this model.

Task analysis methods have been introduced from disciplines with different
backgrounds, different concerns, and different focuses on task. The disciplines
include:

 Cognitive psychology or ergonomics [Stan98]. Task models are used to ensure
the understanding of how users can interact with a given user interface for
carrying out a particular interactive task. Task analysis is useful for
identifying the cognitive processes (e.g., data manipulation, thinking,

2. State of the Art

37

problem solving) and structures (e.g., the intellectual skills and knowledge
of a task) exploited by a user when carrying out a task and for showing
how a user can dynamically change them as the task proceeds [John84]. It
can also be used to predict cognitive load and rectify usability flaws.

 Task planning and allocation. Task models are used to assess task workload,
to plan and allocate tasks to users in a particular organization, and to
provide indicators to redesign work allocation to fit time, space, and other
available resources [Kirw92].

 Software engineering. Task models can capture relevant task information in an
operational form that is machine understandable. This is especially useful
where a system needs to maintain an internal task representation for
dynamic purposes, such as to enable a control on the system state, or an
adaptation to variations in the context of use [Lewi94, Smit96].

 Ethnography. Task models can focus on how humans interact with a
particular user interface in a given context of use, possibly interacting with
other users at the same time.

Existing task models show a great diversity in terms of formalism and depth of
analysis. They are also used to achieve a range of objectives [Boms98, Boms99]:

 To inform designers about potential usability problems, as in HTA
[Ann67].

 To evaluate human performance, as in GOMS [Card83].
 To support design by providing a detailed task model describing task

hierarchy, objects used, and knowledge structures exploited while
interacting, as in TKS [John92] or CTT [Pate00].

 To generate a UI prototype, as in TERESA tool [Pate04].

In general, any task analysis method may involve three related poles:

 Models − capture some facets of the problem and translate them into
systems specifications.

 A stepwise approach − in which a sequence of steps is used to work on
models.

 Software tools − support the approach by manipulating the appropriate
models.

We focus on the first pole, that is, on models. It is assumed that the structuring of
a method’s steps for modeling tasks should remain independent of the task

2. State of the Art

38

model’s contents. Therefore, the methodological part of each task model was
taken to fall outside the scope of our analysis. A tool clearly facilitates the task
modeling activity in hiding the model notation from the analyst and helping her to
capture it, edit it for any modification, and exploit it for future use (e.g., task
simulation, user interface derivation). Most models presented below are software
supported.

Lots of task models have been proposed in the literature. Some representative
task models are CTT [Pate99], Diane+ [Bart88,Tarb93], GOMS [John96], GTA
[Weli98], HTA [Shep95], MAD* [Scap89, Gamb97], MUSE [Lim94], TAG
[Payn86], TAKD [Diap89], TKS [John92]. In [Limb03], we proposed a meta-
model expressing in a common way the concepts manipulated by these task
models. From this survey, core concepts for engineering an interactive system
were identified:

 A set of task attributes enabling a description of the nature of the task
independently of its concrete realization on a particular computer system.

 A hierarchical decomposition of tasks allows a structuring of tasks starting
from high level tasks onto leaf tasks representing user’s actions.

 A task temporal ordering. Sister tasks may be temporally arranged with a
set of temporal operators (e.g., sequencing, parallelism, choice).

 A set of relationship to domain concepts enable to express the “things”
on which a task is operated on.

2.3.3 Domain Model

A domain model captures concepts from the semantics of the application domain.
Without domain concepts a UI description would be an empty shell.

Domain modeling comes from software engineering [Dsou99]. It represents an
essential ingredient to UI engineering methods as it describes its informational
content. The domain model is usually developed by software engineers and
provide “as is” to the UI designers e.g., under the form of an Application
Programming Interface (API). UI designer’s job consists afterwards in connecting
a UI to the provided API.

Historically, the role and content of domain models used for UI development has
evolved from hard-coded data models [Balz95], to entity-relationship-attributes
schemas [Boda94b, Boda95], and to conceptual class diagrams and class diagrams
with methods [Grif02].

2. State of the Art

39

Entity-Relationship-Attribute model (ERA) finds its roots in philosophy (theory of
ontology) and database engineering. ERA models seek to represent real-world
objects as entities equipped with attributes. Relationships can be defined among these
entities to express the possible interaction within entities. ERA is complemented
with a constraint mechanism allowing a limitation on relationships instances
defined among entities e.g., a limitation on the number of instances of entities
participating into a same relationship type (i.e. cardinality constraints). Trident
[Boda95a,b] uses an entity-relationship to describe concepts manipulated by users
while interacting with the system.

A class diagram is an extension of ERA model in the context of Object-Oriented
(OO). It is defined [Breu97] as the description of the static structure of a system
consisting of a number of classes and their relationships. A class describes the
properties of a set of objects and contains attributes and, potentially, methods which
are process manipulating classes’ instances. Structural relationships between
classes of objects can be defined, theses relationships being called associations.
Certain types of associations are so common across different systems that a
precise has been defined for them, they are called generic associations. Two generic
relationships are popular among analysts: Generalization is an association between a
more general class (called superclass) and a more specific class (called subclass). A
subclass holds all features of its superclass and adds some; Aggregation represents a
whole part relationship. Class diagrams have been used notably in [Grif02].

In some cases, a domain model is simply hard coded in the system. This technique
is still considered as part of modeling practices since, in systems using this
technique, abstract characteristics of the code are extracted to enable an
application of model derivation heuristics. For instance, Janus system [Balz95]
uses C++ class structure to derive a presentation model.

Some domain models are expressed in ad hoc formalism. By ad hoc, it is meant a
formalism that is not commonly found within usual CASE tools. The Mimic
language in Mecano [Puer96] expresses the domain model with a structured
declarative language.

2.3.4 User Interface Model

User interface models propose abstractions to improve comprehension, reasoning
and manipulation of what a UI is. The real-world objects abstracted away in this

2. State of the Art

40

case concern all manifestations of a UI in the real world i.e., UI appearance (i.e.,
presentation model) and behavior (i.e., dialog model). Methodologies described in the
literature vary according various dimensions:

 Coverage. Some methods concentrate on behavioral specification only (e.g.,
for property checking) and leave aside the problems related to UI
appearance e.g., Petri Nets [Pala97] or Process Algebra. The integration of
these methods with presentational aspects is still a hot research topic.

 Separation of concerns. Some methods do not make an explicit distinction
between dialog and presentation. For instance, ADEPT [John92] relies on
the task model as only description of the dynamics of the system.

 Level of abstraction. UI models proposed in the literature show a great
diversity in terms of levels of abstraction of their concept. Three levels of
abstraction, and corresponding model, are recurrently mentioned in the
literature: abstract UI model, concrete UI model and final UI (also called
implementation or code level). Abstract and Concrete UI raise many
interpretation issues: What is abstract? What is concrete? With respect to
what? In Fig. 2-6, we identified several levels of abstract and their
correspondence.

Toolkit Independent
Specification

Toolkit Dependent
Specification

Interactor Type Independent
Specification

Control Object Input Object

Button Menu Item Edit Field Dial Pad

Final UI

Code

Rendering

JButton HTMLButton

<BUTTON name="reset"
type="reset">

Task and Domain

C++DialPad

dialPad.cpp
class ….

Toolkit Independent
Specification

Toolkit Dependent
Specification

Interactor Type Independent
Specification

Control Object Input Object

Button Menu Item Edit Field Dial Pad

Final UI

Code

Rendering

JButton HTMLButton

<BUTTON name="reset"
type="reset">

Task and Domain

C++DialPad

dialPad.cpp
class ….

Toolkit Independent
Specification

Toolkit Dependent
Specification

Interactor Type Independent
Specification

Control Object Input Object

Button Menu Item Edit Field Dial Pad

Final UI

Code

Rendering

JButton HTMLButton

<BUTTON name="reset"
type="reset">

Task and Domain

C++DialPad

dialPad.cpp
class ….

Figure 2-6 Various abstraction levels for UI models

A final UI, is composed of two sub-levels. The rendering level concerns the
way a piece of UI related code is rendered on the screen (or other

2. State of the Art

41

interactive space) and made perceivable by a user. Note that this level may
also cover physical devices enabling the interaction with the system. The
code level is the implementation of the user interface. This implementation
is realized using a programming language.

A toolkit dependent specification is a representation of a UI that makes explicit
reference to elements of a specific programming language (or toolkit)
while abstracting away syntactic details of this language. Fig. 2-7 provides
such an example for a UIML? specification making reference to Java
toolkit

Figure 2-7 UIML specification atToolkit Dependent Level

A Toolkit Independent level manipulates a set of concepts that do not make
any reference to specific toolkits. At this level interactor (i.e., widgets) are
defined e.g., a button, a menu, a window. Generally, this level realizes an
abstraction of several toolkits at the same time. This level allows a
description of a UI that can be refined later on for different target
languages (and environments).

A Interactor-Type Independent level provides us with a description of the UI in
terms that are independent of interactor types. The concepts proposed at
this level make a reference to a function endorsed by an interactor (e.g.,
selection, input of a value, output of a value). Assuming that several
interactor types may endorse a same function, a description at this level
allows a refining towards a wide variety of UIs.

Task and domain however not part as is of UI models may be presented at
the top of this framework as they represent the most abstract viewpoint
that can be defined on a UI system.

2. State of the Art

42

2.3.4.a Presentation model

A presentation model is a description of the appearance of a user interface. Most
presentation models found in the literature concern graphical, 2-D, widget-based
UIs that is to say WIMP interfaces (Windows, Icons, Menus and Pointing device).
Some presentation models allow a representation of voice interfaces [Klem00].

The content of presentation models varies across different methodologies. Two
dimensions may help to categorize them:

(1) Type of elements in the scope of the model. The type of elements may be
differentiated across the various levels of abstractions presented in Fig. 2-6.

(2) Layout mechanism exploited. Nearly all models are based on a hierarchical
organization of elements populating an interface. Additional information may be
used to refine a layout description: spatial constraints (e.g., alignment, adjacency)
are used in [Thev02], a mechanism of box embedding is used in Latex typesetting
system [Mitt99] or XUL [Gind01], a specification of absolute coordinates (in
most of programming toolkits).

Constraint language allows specifying constraints on interface elements [Huds96].
Constraints languages provide a natural mechanism for expressing relationships
within the interface structure. They are widely used for layout managers. Some
guidelines are particularly well expressed with constraint languages. Alignment or
groupings of widgets are elements that can be expressed in constraints.
Constraints are generally small chunks of knowledge that are verified at run-time.

X.height = X.parent.height
X.width = [X.parent.width] - 10

Figure 2-8 Definition of widget constraints

Fig. 2-8 shows constraints expressing that a graphical object x should have the
same height as its parent, but a width of 10 pixel less.

A problem with constraint languages is the ambiguity they leave when only a few
constraints are specified (e.g., the usual case). Consistency of constraints is also
something that is to check before rendering. On the other hand, constraints
systems allow a designer to only specify constraints that are relevant in her model

2. State of the Art

43

and leave aside all layout details that do not matter for her at rendering.

Box embedding systems rely on a structuring of elementary widgets within
abstract boxes determining the layout of its content. A box can impose a vertical
or horizontal alignment of its content, an arrangement in grid structures, etc. Box
embedding are used in most of the UI mark up languages [Cout02]. They bring
the advantage of a precise interpretation as they are totally unambiguous while
omitting any reference to absolute coordinates i.e., the layout declaration stays
logical. Furthermore, because of their unambiguousness they are very cheap (in
terms of computational power) to render.

A layout based on absolute coordinates is done through the definition of a set of
coordinates on a display surface where pixels are used as unit references. Absolute
coordinates are absolutely unambiguous, cheap to render. Absolute coordinate
layout presents two major disadvantages: (1) it requires from the designer an
enormous amount of time for specifying each element’s coordinates (2) because
of its lack of abstraction it obfuscates the logical structure of the UI.

2.3.4.b Dialog model

Dialog models enable to reason about the behavior of a UI system. For many,
dialog models are a continuation of task model concepts [Gram96]. We hereafter
give a brief survey of dialog modeling methods that percolated into the field of
HCI methods.

 Backus-Naur Form (BNF) grammars

BNF grammars are typically used to specify command languages. Command
languages express commands that modify the state of the UI on the users
initiative. Fig. 2-9 exemplifies a grammar describing a file manipulation in UNIX.

file-op[Op] := command[Op] + filename + filename |
command[Op] + filelename + directory
command[Op=copy] := 'cp'
command[Op=move] := 'mv'
command[Op=link] := 'ln'

Figure 2-9 A BNF grammar for fille manipulation with UNIX

2. State of the Art

44

Grammars are particularly good in detecting inconsistencies within command sets.
An inconsistent UI may contain unordered or unpredictable interaction.
Inconsistency renders the UI error prone and hard to learn. [Reis81] proposed an
action grammar to describe GUIs. [Payn86], with their Task-Action Grammar
(TAG) extended this grammar by, namely, addressing three levels of
inconsistency: lexical, syntactic, and semantic. These established TAGs accuracy in
predicting. Grammars are effective for expressing sequential commands or users
actions but when it comes to multimodal or direct manipulation they tend to be
heavy to manipulate.

 State Transition Diagrams

A state transition diagram is a finite state machine representation that consists in a
graph of nodes linked by edges. Each node represents a particular state of the
system. Each edge species the input (i.e., event) required to go from one state to
another. State transition diagrams like statecharts presented bellow provide a
mean for specifying the dynamic behavior of the interface. Fig. 2-10 is such a
representation applied to an event/action specification, very frequent in UI field.

e2/a3,a5

e4/a6

State 2

State 3

e1/

State 1

e1/a1,a2 e1/a3

Figure 2-10 State-transition diagram specifying UI events and actions.

Each edge of the type Ex=ax; ay; a::: where Ex is an event associated to a set of
actions ax; ay; a::: which ensure the transition to a target state.

State transition diagrams present several drawbacks for modeling the UI. Indeed,

2. State of the Art

45

today's UI tend to be modeless where one state can lead to many states.
Furthermore this can be done using many different widgets of the UI. Theses two
requirements match the quality criteria of reachability and device multiplicity. In
consequence, state transition diagrams are prone to a combinatorial explosion and
tend to replace nodes by screen prints. [Schn98] reduces the transition space to
window managers in graphical state transition diagrams.

 Statecharts

Similarly to state transition diagrams, statecharts support a graphical
representation of dynamic aspects of systems. Some work specially address the
modeling of UI behavior with statecharts [Horr98]. Statecharts represent state
variables with rounded rectangles called states. State changing mechanisms are
represented with edges between states. State changing is triggered by events and
can be further conditioned (Fig. 2-11). Statecharts facilitate the representation of
state nesting, state history, concurrency and external interrupts.

No CD Loaded

H

(CD in drawer) Eject

CD Loaded

(not end of CD)
&

Timer Expired

CD Playing

Timer expired
&

(end of CD)

CD Stopped

(Track = lapst)
Next Track &

Pause

Pause or Play

Stop

Previous Track & (track > 1)

Previous Track & (track = 1)

Next Track & (track = last)
or

or

Time & Track

fileds not blank

expired
Timer

Play Stop
Timer
expired

Time & Track
fields blank

CD Paused

Figure 2-11 A CD player behavior with statecharts

2. State of the Art

46

Statecharts [Hare87] propose solutions to the shortcomings of state transition
diagrams: statecharts have representational capacities for modularity and
abstraction. The number of states with respect to the complexity of the modeled
system increases slower with statecharts than with state transition diagrams.
Statecharts avoid the problem of duplicating states and transitions. States in
statecharts are hierarchical and capable of representing different levels of
abstraction. Statechart are more convenient for multimodal interfaces as they
provide nesting facilities, external interrupt specification and con-currency
representation.

 Petri Nets

Petri Nets is a graphical formalism associated with a formal notation. Petri nets
are best suited to represent concurrency aspects in software systems. Fig. 2-12
represents a cash withdrawal operation with an automatic telling machine. Petri
nets represent systems with state variables called places (depicted as ellipses), and
state-changing operators called transitions (depicted as rectangles).

Card in pocket Ready to use ATM

ATM Insert Card

ATM.Enter Pin

ATM.WithdrawCard

Withdraw requested

ATM.Withdraw Request

Need money

ATM.Select Amount

ATM.Withdraw Cash

Code entered Code entered

Card in machine Withdraw requested

Amount selected

Cash in pocket

Amount selected

Figure 2-12 Petri net representing a cash withdrawal operation (from [?])

Connections between places and transitions are called arcs (represented by edges).
State marking mechanism called tokens (represented by black solid circles

2. State of the Art

47

distributed around places). State change is the consequence of a mechanism called
firing. A transition is red when all of its input places contain tokens. Firing
involves the redistribution of tokens in the net i.e., input tokens are withdrawn
from input places and output tokens are added in output places. Like State Charts,
Petri nets hold mechanisms to represent additional conditions and nested states.
Petri nets have the advantage of being entirely formalized (State Chart
concurrency mechanism, for instance, has no formal background). Petri nets allow
a checking of several properties of the represented information (e.g., a dialog
model expressed with a Petri net can be checked for completeness or coherence).
In the context of UI they have been used notably by [Pala94,97].

 Event-Response Languages

Event languages treat input stream as a set of events. Events are addressed to
event handlers. Each handler responds to a specific type of event when activated.
This type is specified in a condition clause. The body of the event generates
another event, changes internal state of the system or calls an application
procedure.

Several formalisms are suited for event-response specification. They can be
distinguished following their capacity in managing dialog state variables and
concurrency control. Production rules are often used to describe event-response
specifications.

C−point start−line −> rest−line <rubber band on>
C−point rest−line −> rest−line <draw line>
D−Point rest−line −> <draw line> <rubber band off>

Sel−line −> start−line <highlight ’line’>

Figure 2-13 Event-Response specification using production rules (from [Dix98])

The example given in Fig. 2-13 shows a set of four production rules representing
a poly-line drawing dialog sequence. User events begin with upper case. Sel line
event represents user's selection of line option (e.g., in a menu bar), C-point and D-
point represent user's clicks on the drawing space. System events begin with lower
case, rest-line event means the recording on coordinates of users first point
selection. System events keep trace of the dialog state. System responses are
enclosed within '<>'. They are perceivable events.

2. State of the Art

48

2.3.5 MBIDE Methods and Tools

A wide panel of UI development methodologies exploiting have been proposed in
the literature. These methodologies have been called Model-Based (user) Interface
Development Environments (MBIDEs). A selection of MBIDEs was made on the
basis of the following criteria: originality of the concepts, originality of the
development cycle, definition of an explicit methodology, minimal tool support.

For each MBIDE presented hereafter a summary of the underlying concepts and
development process is proposed. A unified iconographic representation is used
to present development processes (Fig. 2-14). Each symbol represents a type of
models. This constitutes a first attempt to harmonize conceptual frameworks of
these different approaches. Note that the difference between “interactor-type
independent” and “toolkit independent” representation (see Fig. 2-6) is stressed
by two different icons associated with abstract UI. A dialog model is also
represented as a separated entity when the dialog model is substantially important
in the development process. Solid arrows represent the derivation of one model
from one or several other ones. Dashed arrows represent a significant knowledge
adjunction in the design process (e.g., a designer manually determines a layout, a
template is chosen to drive the derivation).

Domain

Task

Abstract
UI

+

Abstract
UI

Concrete
UI

Dialog

Context

User

Final UI

= Domain Model

= Task Model

= Abstract UI Model
(interactor-type independent)

= Abstract UI Model
(toolkit independent)

= Concrete UI Model

= Dialog Model

= Context Model

= User Model

= Final UI

= Derivation

= Knowledge Injection

DomainDomain

TaskTask

Abstract
UI

+
Abstract

UI
Abstract

UI

+

Abstract
UI

Abstract
UI

Concrete
UI

Concrete
UI

DialogDialog

ContextContext

UserUser

Final UI

= Domain Model

= Task Model

= Abstract UI Model
(interactor-type independent)

= Abstract UI Model
(toolkit independent)

= Concrete UI Model

= Dialog Model

= Context Model

= User Model

= Final UI

= Derivation

= Knowledge Injection
Figure 2-14 Symbols used for the state of the art on CADUI tools

2.3.5.a Adept

Adept adopts a user centered design approach [Wils96]. It is based on a
sophisticated task model called Task Knowledge Structure (TKS) [John89,

2. State of the Art

49

John92]. Adept holds a users model [Kel92]. Both task and users models are
elicited during the requirement stage of the application development (Fig. 2-15).

Domain

TKS

Final UI

Abstract
UI

Concrete
UI

UserTask DomainDomain

TKS

Final UI

Abstract
UI

Abstract
UI

Concrete
UI

Concrete
UI

UserUserTaskTask

Figure 2-15 Adept development steps

A task model is, here, defined thanks to a Task Knowledge Structure (TKS). A
TKS is a conceptual representation a person has stored in her memory about a
particular task. Each task in TKS has an associated goal, procedure, actions and
domain objects. Note the inclusion of the domain model into the task model.

A user model in Adept consists of a rule-based system associating design rules
with user stereotypes. It is constructed thanks to a questionnaire that segregates
users characteristics from design options. Retained characteristics are for instance
knowledge of the domain, computer experience, motivation and attitude towards
the system. Production rules are used to derive a UI model. For instance, a rule
“IF Experience =high THEN textual commands” allows a selection of an interaction
style depending on some assessment of a user experience.

After defining a task and user model, an Abstract Interface Model (AIM) is
derived from the task model. The AIM defines abstract interaction objects to be
manipulated by the leaf tasks of an Adept task specification. As it contains
information about the commands to execute to accomplish task, it can be partly
considered as a dialog model. Subsequently, a concrete interface model (CIM) is
built. This model is derived from the AIM and the users' model, it instantiates
Abstract Interaction Objects (AIOs) into concrete interaction objects. The CIM is
then translated into Smalltalk code to produce an executable interface.

2. State of the Art

50

Design knowledge in Adept is expressed under the form of production rules. A
tool (Fig. 2-16) allows a designer to choose among possible conflicting rules, to
modify rules, to add new rules. The right part of the Fig. 2-6 represents
production rules available in the system. For instance, the highlighted rule states
that if an abstract object associated with a task of type “selection” widget and the
manipulated object is of the type “range” then derived concrete object has to be
of a type “slide bar”. The left window of the figure shows a trace of the dialog
between the system and the designer to resolve conflicts between rules.

Figure 2-16 Selecting transformation heuristics with Adept

Adept offers as tool support: a model editor, a user interface design assistant, an
implementation tool.

2.3.5.b Art Studio

ArtStudio [Thev02] consists of a development environment for producing multi-
target UIs embedded with support of plasticity at design-time. For this purpose,
ArtStudio starts from a task model and its relationship to a domain model
(referred to as a concept model in ArtStudio). The task model is decorated with
various mechanisms to indicate variations of the task model depending on
variation of the context of use, primarily the type of platform. This way, the
context model consists of a combination of a platform, a user, and its surrounding
environment.

2. State of the Art

51

The decorated task model initiates then a process where an abstract UI is derived
from the task model so as to identify abstract workspaces (or Presentation Units).
Abstract workspaces, in turn, give rise to a definition of the UI in concrete terms.
A final UI in Java is produced from the concrete specification (Fig. 2-17).
ArtStudio is original in that the UI that is generated supports to some degree the
property of plasticity, that is, the capability of the UI to adapt itself to the current
context of use while maintaining predefined usability properties [Calv01].

Domain

Final UI

Concrete
UI

Abstract
UI

+

Task Context

decoration

mapping rules

DomainDomain

Final UI

Concrete
UI

Concrete
UI

Abstract
UI

+
Abstract

UI
Abstract

UI

+

TaskTask ContextContext

decoration

mapping rules

Figure 2-17 The approach followed in Art Studion.

2.3.5.c Trident

Trident [Boda94,Boda95b] uses a task model, a domain model (including a flow
of control specification), and a presentation model. Trident development process
(Fig. 2-18) starts with a contextual analysis. Context in the sense of Trident means
tasks, users and organizational contexts identification. Trident task model is a
Task Knowledge Structure (TKS) (see above). This task specification embeds part
of a domain description and user mental model.

2. State of the Art

52

Final UI

Abstract
UI

Concrete
UI

UserDomain

TKS

Task

Refined
Domain

Ergonomic
principlles

Interaction style
definition

Dialog

Final UI

Abstract
UI

Abstract
UI

Concrete
UI

Concrete
UI

UserDomain

TKS

Task UserUserDomain

TKS

Task DomainDomain

TKS

TaskTask

Refined
Domain
Refined
Domain

Ergonomic
principlles

Interaction style
definition

DialogDialog

Figure 2-18 Trident development process

From this, so called, contextual analysis several elements can be derived. A
domain model is derived under the form of an entity-relationship-attribute model;
an dialog model skeleton is defined from the specification of actions contained in
a task analysis. Dialog model is specified using an activity chaining graph formally
showing sequences of functions and their respective input/output flow. A
designer selects between several interaction styles. Interaction styles help to
determine dialog mode, dialog control, function triggering mode, and metaphor
style.

Presentation model elements are derived from the activity chaining graphs. Sub-
graphs are mapped onto presentation units that are decomposed into logical
windows. Those logical windows are then populated with abstract interaction
objects (i.e., independent of a target platform). This whole process is guided by
the application of ergonomic rules exposed [Vand97]. AIOs are then mapped
onto concrete interaction objects (i.e., platform-dependent objects). A knowledge
of the target environment is necessary to achieve this step. CIOs are finally
arranged thanks to a sophisticated placement algorithm. Within the environment,
the UI generated can be interpreted for testing purposes and edited. Once the
beautification process is finished, the FUI can be generated for Microsoft Visual
Basic 3.0.

Although Trident contains some extensive design knowledge in a knowledge base
(hundreds of production rules are provided for supporting the development

2. State of the Art

53

process), these rules are hard-coded and totally embedded (i.e., totally unavailable
to a designer) in the system. It is possible to view them, to control their
application (in a mixed-initiative way), but any modification of such a rule would
require a direct intervention of a highly skilled developer who is familiar with, for
instance, the underlying expert system (i.e. AION/DS) and the mechanism of
selection trees.

2.3.5.d FUSE (Formal User Interface Specification Environment)

FUSE [Lonc96] generates a UI code from the task, domain and user model. An
FUSE is also capable of generating help and guidance files, which is original with
respect to other environments. A task model in FUSE consists of a hierarchy of
tasks successively decomposed into sub-tasks until leaf tasks. Leaf tasks are
associated with a function implemented in C++. Other models are also exploited
in Fuse as depicted on Fig. 2-19.

A domain model is a set of algebraic specifications of the functions and data
structures. Algebraic functions are under the form ,AI AI AISpec sum Ax=< >
where AIsum is a declaration of data types and function signatures and AIAx is a
set of pre- and post-conditions associated with functions.

A user model describes user groups and individual users. Users are stereotyped
along three dimensions: motivation, knowledge on the computer system, task
knowledge (each rated low, medium or high). FUSE also holds a dynamic system
to record user's properties at run-time.

Final UI

UserDomainTask

Presentation
Guidelines

Dialog
Guidelines

Abstract
UI (logical UI)

Final UI

UserUserDomainDomainTaskTask

Presentation
Guidelines

Dialog
Guidelines

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Figure 2-19 Fuse development process

Once created, FUSE input models are transformed into a logical UI model.

2. State of the Art

54

“Dialog guidelines” are provided to achieve this transformation operation. A
logical UI is a sort of abstract UI model, it consists in a set of views containing a
description of user actions, system actions, and objects associated with user tasks.
A logical UI is represented with a formalism called Hierarchic Interaction graph
Template (HIT). This formalism is based on attributed grammars and on data
flow diagrams. From a logical UI and a set of “layout guideline” specification, a
C++ user interface (along with help and guidance files) is generated at run-time.

2.3.5.e Genova

Genova is a commercial tool that generates a UI code for several languages (Java,
C++, Visual Basic) starting with an enriched class diagram (Fig. 2-20).

Domain

Final UI

Domain Model
Annotation

Presentgation
Characteristics

Concrete
UI

DomainDomain

Final UI

Domain Model
Annotation

Presentgation
Characteristics

Concrete
UI

Concrete
UI

Figure 2-20 Genova Development Process

As a start, a designer defines an application class diagram. Classes that have to be
represented on the user interface are annotated. From this information, a draft
presentation model is generated. Roughly, this draft presentation model consists
of a filtering of the input class diagram according to designer’s annotations.

From this draft presentation model, a designer is able to choose between
presentation templates called style guides. She uses built-in transformation rules
for this purpose. For instance, the developer can map data types to abstract
interaction objects (i.e., types of objects independent of any target platform) or
choose among a dozen of heuristics to determine the choice of dialog units.

Genova consists of a plug-in on top of the Rational Rose CASE tool that is used
to edit the class diagram. Its UI design assistant proposes dialog windows to
customize pre-existing transformation rules (Fig. 2-21).

2. State of the Art

55

Figure 2-21 Defining presentation characteristics using Genova

Although Genova is distinguishable as it enables designers to modify dialog
templates, it does not make explicit neither the internal format of models nor the
transformation rules between them. In other words, the customization process is
limited to the tool options.

2.3.5.f Janus

Janus [Balz93,95,96] allows its user to perform a derivation of a presentation
model on the basis of an object model. Janus application model is an object
oriented model issued from an object oriented analysis (Fig. 2-22).

2. State of the Art

56

Domain

Final UI

Domain Model
Annotation

Concrete
UI

DomainDomain

Final UI

Domain Model
Annotation

Concrete
UI

Concrete
UI

Figure 2-22 Janus Development Process

Janus transformations rules consist in window definition and widget selection
rules. For instance a rule asserts that every domain class (that is not abstract)
must give rise to a window. A knowledge base associates method names with
concrete interaction objects. Janus uses generic relationships like aggregation or
generalization in order to derive, notably, windows transitions.

Figure 2-23 Illustration of a transformation heuristic in Janus

Janus development cycle is presented in Fig. 2-22. After being transformed into
an internal format (JSD), a domain model is transformed into a form-based
presentation that is linked to methods implementations in C++. Fig. 2-23
graphically represents how an object class of the domain model (left part) is
mapped onto a window in the presentation model (right part). Although this
graphical representation facilitates the understanding of the aims and scope of the
transformation, little or no information is provided on their format. Being hard
coded in the sofware, nobody can access them, unless perhaps the developers of
Janus. Janus has been recently packaged in a commercial tool, called Otris

2. State of the Art

57

(www.otris.de), that suffers from the same shortcomings.

2.3.5.g JustUI

JustUI consists of a UI development method starting from a CTT task model and
a domain model expressed as a UML class diagram specified in Oliva Nova Model
Editor (ON ME) [Moli02]. From the information contained in both models, a
pattern-matching approach is adopted that identifies stereotypical sub-tasks and
map them onto typical patterns for information systems. These patterns are
structured into three levels in a Hierarchical Action Tree (HAT) (Fig. 2-24):

 Level 1: The first level contains the HAT pattern, providing the access to
the application.

 Level 2: The second level contains the Interaction Units. The UI is
decomposed in several scenarios to support user tasks.

 Level 3: The third level is composed of patterns that add semantics for
interaction units.

Once these patterns are applied, an abstract UI is generated that consists of a
hierarchical decomposition of Interaction Units, a generalization of Presentation
Units [Boda95c] to both presentation and dialog. This decomposition of
Interaction Units is exploited to give rise to the final code, which can be generated
for multiple computing platforms, including JavaBeans, ColdFusion, HTML,
C++ and Visual Basic.

2. State of the Art

58

A uses B

A B

Legend

Hierarchical
Action Tree

Service
Interaction Unit

Instance
Interaction Unit

Population
Interaction Unit

Master/Detail
Interaction Unit

Introduction

Defined
Selection

Argument
Grouping

Status
Recovery

Dependency

Supplementary
Information

Filter

Order Criterium

Display Set

Actions

Navigations

Master
Interaction Unit

Details
Interaction Units

Level 3Level 2Level 1

Figure 2-24 The Hierarchical Action Tree of JustUI.

DomainTask DomainDomainTaskTask

Final UI

Pattern matching

Abstract
UI (logical UI)

Final UI

Pattern-based coding

Abstract
UI (logical UI)

Abstract
UI ((Hierarchical

interaction
Templates)

DomainTask DomainDomainTaskTask

Final UI

Pattern matching

Abstract
UI (logical UI)

Final UI

Pattern-based coding

Abstract
UI (logical UI)

Abstract
UI ((Hierarchical

interaction
Templates)

Final UI

Pattern matching

Abstract
UI (logical UI)

Final UI

Pattern-based coding

Abstract
UI (logical UI)

Abstract
UI ((Hierarchical

interaction
Templates)

Figure 2-25 Illustration of the pattern-matching approach followed by JustUI

2. State of the Art

59

2.3.5.h Mastermind (Models Allowing Shared Tools and Explicit
Representations Making Interfaces Natural to Develop)

Mastermind is the continuation of Humanoid [Luo93,Szek90,Szek92] and UIDE
[Fole91,Fole95].

Domain

Final UI

Abstract
UI Task

Concrete
UI

DomainDomain

Final UI

Abstract
UI

Abstract
UI TaskTask

Concrete
UI

Concrete
UI

Figure 2-27 Mastermind’s development process

Mastermind has three component models: task, presentation and application.
These models are implemented with CORBA IDL. The use of a unique language
facilitates the establishment of mappings between models (Fig. 2-27).

A task model consists of a hierarchy of tasks decomposed in necessary sub-tasks.
A task is described by several attributes such as: goal and effect (i.e., task post-
condition), task type, associated methods signature, and associated presentation
elements (i.e., widgets). A task model in Mastermind covers aspects of dialog
specification as it also specifies user's interaction with the system. The task model
plays a central role in Mastermind architecture as it expresses constraints on the
sequencing of behavior in presentation and application model.

A domain model (application model is Masterminds terminology) is based on OO
design techniques. It contains application class structures and methods signatures.
Objects are extended with a mechanism of pre-condition and notification i.e., a
publish-subscribe event language. This event language allows task or presentation
model elements to declare interest in any modification of the domain model.

An abstract UI model specifies both static (in terms of toolkit independent
widgets) and dynamic aspects (a combination of statecharts and Petri nets). An
event response language (called interaction diagram) operates as a binding
between presentation and dialog. Mastermind takes into account direct

2. State of the Art

60

manipulation interfaces, by using a mechanism for expressing functional
constraints between the presentation elements.

Mastermind starts with the definition of task, domain and presentation models.
No tool is provided to support this task. Models can be defined in parallel but
some co-ordination is needed. Models are linked by hand. An implementation
tool generates C++ code from the declarative specifications in Corba IDL.

Humanoid is complemented by Kurt Sirewalt [Stir9,Stir98, Stir99,Stir00] works on
Mastermind Dialog Language (MDL). MDL formalizes models as concurrent
agents that synchronize on common events. It seeks efficiency by implementing a
dialog component (i.e., implementation of the task model) that synchronizes
presentation and application components. Humanoid is more interested in
resolving the problem of composing models to form a run-time system than to
define a transformational mechanism allowing a derivation of a component from
another.

2.3.5.i MOBI-D

Mobi-D [Puer97] is the continuation of Mecano environment [Puer96]. Mobi-D
involves five basic models in the development Process (Fig. 2-28): task, domain,
user, presentation, and dialog model. Mobi-D distinguishes between two levels of
abstraction among models. The abstract level concerns task, domain, and user
model. A concrete level concerns presentation, and dialog model.

Final UI

Abstract
UI

Domain UserTask

Dialog and presentation
parameters

Widget selection
parameters

Final UI

Abstract
UI

Abstract
UI

Domain UserTask DomainDomain UserUserTaskTask

Dialog and presentation
parameters

Widget selection
parameters

Figure 2-28 Mobi-D development process

Mobi-D development cycle is the following. A task, domain, and user model are

2. State of the Art

61

obtained from a requirement analysis. A tool (U-tel) is provided to extract
elements of these three models from scenarios. Mobi-D offers two software tools
to improve UI derivation. The first tool is a model editor that allows users to
manually link elements of models by dragging and dropping elements onto each
other. This editor does not provide any guidance in how to set the mappings and
is intended to be used for mapping models of the same level of abstraction (i.e.,
abstract level). Inter-level mapping is supported by a tool called TIMM. TIMM's
role is to explore all concrete elements that could potentially be linked with the
current abstract element and to select a subset of these interactors using the rules
of its knowledge base. Developers can freely choose to use one of the proposed
interactors or to set their own mappings. They can access to the knowledge base
and modify existing rules. TIMM also allows the establishment global orientations
for the task and domain to abstract UI model: navigational preferences, style,
number and size of windows, etc. Fig. 2-29 exemplifies a dialog window allowing
a developer to configure transformation rules enabling a derivation of CIOs from
AIOs.

Figure 2-29 Abstract Interaction Object Selection in Mobi-D

At the end of the design phase, the Mobi-D interface-builder tool exploits all
parameters provided by a designer to generate a C++ UI. Models components are
declaratively described using a language called Mimic. The entire mapping
between elements of the interface is declared using MIMIC in a sixth model
component called the design model. Following Mimics's grammar, a design model
is an unordered collection of design mappings. Each design consists of a mapping
between model elements that can be conditioned.

2. State of the Art

62

2.3.5.j TADEUS

TADEUS [Elwe95] uses four models: task, domain, user and dialog to generate an
executable UI specification (Fig. 2-30).

Domain

Final UI

Abstract
UI

User Task

Presentation
Characteristics

Domain

Final UI

Abstract
UI

User Task DomainDomain

Final UI

Abstract
UI

Abstract
UI

UserUser TaskTask

Presentation
Characteristics

Figure 2-30 Tadeus development process

Instead of generating executable code, Tadeus generates specification file
executable by an external UIMS (User Interface Management System), namely the
ISA system. A task model in Tadeus is similar to the one used in Adept (see
above). It consists in a hierarchy of task/goals, sub-tasks/sub-goals ordered by
temporal operators. Tasks are linked to users interested in the task performance
and onto domain objects manipulated during the task execution. Task and domain
models are part of a single graphical representation used to construct a dialog
model.

A domain model is the result of an OO-like analysis. It consists in a class diagram
schema with attributes and methods for each object.

A user model, in Tadeus, is also inspired from TKSs. It categorizes users of the
system and maps them onto roles. The relationship between roles and task has
several attributes such as task execution frequency, preferred input device, etc.
These attributes govern the selection of interaction techniques, including widgets.

An abstract user interface consists of a so-called dialog model that intertwines
structural and behavioral aspects. This dialog model is built in two steps. Dialog
modeling assumes a prior construction of task, domain and user model. The first
step of dialog modeling is to define views on task/domain model. The definition

2. State of the Art

63

of views consists of designating tasks and domain objects that should be
represented on a same window. The developer performs this step by annotating a
task/domain tree. This annotation results of a static state specification of the
dialog model. A second step consists in building a dynamic specification with
dialog graphs [Schl96]. Dialog graphs are a notation for specifying multiple instances
of windows, hierarchical dialog structuring and modal dialogue boxes. Dialogue
graphs theory makes a distinction between intra-view dialog called processing dialog
and inter-views dialog called navigation dialog.

Intra-view dialog is defined through interaction tables. It consists mainly in
grouping concrete objects together and determining a position for groups. Intra-
view dialog is specified after the abstract to concrete mapping. Inter-views dialog
is specified via dialog graph in itself.

Dialog graphs distinguish different dialog view types (single, multimodal,
complex,...) and transition types (concurrent or sequential). A graph manipulation
algorithm reduces the graph complexity (a major shortcoming of state transition
diagram).

At the end of the development process, a designer has to define several layout
attributes such as background color, default interactors to display on windows.
Additionally, for each view determined in the dialog modeling, a designer defines
which abstract object should represent the view. Abstract objects are then
mapped onto one or several concrete object. Rules are provided for the selection
of concrete objects. These rules essentially exploit data types.

Design knowledge is mentioned to be used in Tadeus. Due to the lack of
information provided it is unsure to determine its nature and use. No external
mechanism is provided to manipulate rules. We suppose they are hard-coded in
the system.

2.3.5.k Teallach

Teallach [Brif98,Barc99,Grif01] is an MBIDE specifically designed for OO
databases access applications. It exploits model mapping in a very explicit manner.
It also holds a flexible development cycle allowing a construction and cross-
consolidation of different models simultaneously. Teallach contains a domain,
task, and presentation models. Dialog elements are distributed across task and

2. State of the Art

64

presentation models.

A domain model is expressed with an object-oriented data along with a
specification of operations manipulating these data. Data and operations are
defined in the context of an object-oriented database on top of which an
application is built. Teallach domain model is automatically generated from an
object database schema under the ODMG format. Transient and persistent
objects are represented the same way. Originally, Teallach allows definitions of
object states.

A task model holds, here, information about the dynamic aspects of the
interaction of the user with the system and data processing requirements. Leaf
tasks (called primitive tasks) are either action tasks or interaction tasks. Action tasks
are activities that can be carried out by the application or by the user. They can be
mapped to a domain object operation. Interaction tasks are interactive behavior
carried out by the user. An interaction task is mapped onto a presentation object.
To specify the information flows within the task model elements, Teallach uses a
mapping between tasks and domain object states or presentation elements states.
A domain object state or presentation element state is associated with any
composite task (e.g., intermediary level tasks).

A presentation model is a specification of the interface appearance. It is
hierarchical. The presentation uses external resources i.e., existing widget sets or
any developer defined widget. Two levels of abstraction are explicitly defined
within Teallach:

The final user interface generated by Teallach relies on Java Swing's widget set.
Designer is allowed to define custom widgets. An abstract presentation model
defines high-level categories of widget. Categories are established on the base of
roles a widget can play within an interface. Categories are: free container (i.e., a
top level container), container (i.e., a non-top level container), inputter (e.g., an
input box), displayer (e.g., a label), editor (e.g., an updatable table), chooser (e.g., a
radio button), action item (e.g., a button).

2. State of the Art

65

Domain

Final UI

Task

Abstract
UI

+

DomainDomain

Final UI

TaskTask

Abstract
UI

+
Abstract

UI
Abstract

UI

+

Figure 2-31 Teallach Development Process

Teallach development process (Fig. 2-31) consists of two activities: component
models construction and component model mapping. Mappings have been
divided into two categories: linking and deriving. Linking consists of simply
associating two component model elements. Deriving consists of constructing one
component model element from another one. Both activities are further explained
later. Teallach development cycle has the originality of being lowly constraining in
the sequence of development steps. Indeed, Teallach allows the developer to start
with any of the three component models construction. In the same way, mappings
can be done in any order. Teallach generates a running interface in Java.

Design knowledge in Teallach surely exists at least in the head of their authors but
is not documented anywhere. Therefore, we were not able to specify these design
knowledge properties.

Tool support consists of a model editor, a design assistant, and an implementation
module. Fig. 2-32 represents the model editor. The left window is the domain
model editor. The top right window is the task model editor. The bottom right
window is the presentation model editor. Models can be mapped graphically by
drawing lines between model elements. Dialog boxes appear for specifying further
information on a newly created mapping.

2. State of the Art

66

Figure 2-32 Teallach Model Editor

In addition, Teallach holds a mechanism for maintaining links integrity through an
alert system that warns the developer for any link breaking.

2.3.5.l Teresa

[Pate03] introduced a method for producing multiple FUIs for multiple
computing platforms at design time. They suggest starting with the task model of
the system, then identifying the AUI specifications in terms of its static structure
(the presentation model) and dynamic behavior (the dialog model): such abstract
specifications are exploited to drive the implementation. This time, the translation
from one context of use to another is operated at the highest level: task and
concepts. This allows maximal flexibility, to later support multiple variations of
the task depending on constraints imposed by the context of use. Here again, the
context of use is limited to computing platforms only. The whole process is
defined for design time and not for run-time. For instance, there is no embarked
model that will be used during the execution of the interactive system, contrarily
to the Seescoa approach analyzed below. Fig. 2-33 graphically depicts how the
TERESA tool supports this approach. At the AUI level, the tool provides designers
with some assistance in refining the specifications for the different computing

2. State of the Art

67

platforms considered. The AUI is described in terms of Abstract Interaction
Objects (AIOs) [Vand93] that are in turn transformed into Concrete Interaction
Objects (CIOs) [Vand93] once a specific target has been selected.

Domain

Final UI

Concrete
UI

Abstract
UI

+

Task ContextDomainDomain

Final UI

Concrete
UI

Concrete
UI

Abstract
UI

+
Abstract

UI
Abstract

UI

+

TaskTask ContextContext

Figure 2-33 The TERESA development approach

2.3.5.m Seescoa

Seescoa [Luyt03] consists of a suite of models and a mechanism to automatically
produce different FUIs at runtime for different computing platforms, possibly
equipped with different input/output devices offering various modalities (e.g. a
joystick). This system is context-sensitive as it is expressed first in a modality-
independent way, and then connected to a specialization for each specific
platform. The context-sensitivity of the UI is here focusing on computing
platforms variations. An AUI is maintained that contains specifications for the
different rendering mechanisms (presentation aspects) and their related behavior
(dialog aspects). These specifications are written in a XML-compliant User
Interface Description Language (UIDL) that is then transformed into platform-
specific specifications using XSLT transformations. These specifications are then
connected to a high-level description of input/output devices. A case study is
presented that automatically produces three Final UIs at run-time: for HTML in a
Web browser, for Java with Abstract Window Toolkit (AWT) on a Java-enabled
terminal, and for Java with Swing library. Although the process is straightforward,
generated UIs appear to have the same layout of final objects, but coming from
the same CIOs.
Fig. 2-34(a) graphically depicts the process followed in this work to produce
context-sensitive UIs. A translation is performed at the abstract level before going
down in the framework for each specific configuration (here restricted to a

2. State of the Art

68

platform). No concepts or task models are explicitly used in this version. The
entry point of this forward engineering approach is therefore located at the level
of Abstract UIs. Dygimes [Luyt04] is an extended version of Seescoa that adopts
the same approach as in Seescoa, except that the AUI is obtained from a CTT
task model [Pate00] that is progressively transformed into a priority tree as a
starting point for obtaining the AUI. These differences are highlighted in Fig. 2-
34(b).

Final UIFinal UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Concrete

UI

Concrete

UI
Concrete

UI

ContextContextContext TaskTaskTask

DialogDialogDialog

Final UIFinal UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Concrete

UI

Concrete

UI
Concrete

UI

ContextContextContext

Final UIFinal UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Concrete

UI

Concrete

UI
Concrete

UI
Concrete

UI

Concrete

UI
Concrete

UI

ContextContextContextContextContextContext TaskTaskTaskTaskTaskTask

DialogDialogDialogDialogDialogDialog

Final UIFinal UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Concrete

UI

Concrete

UI
Concrete

UI

ContextContextContext

Final UIFinal UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Abstract
UI (logical UI)

Abstract
UI (logical UI)

Abstract
UI

Concrete

UI

Concrete

UI
Concrete

UI
Concrete

UI

Concrete

UI
Concrete

UI

ContextContextContextContextContextContext

Figure 2-34 The Seescoa development approach (a) and its Dygimes extension (b)

2.3.5.n Vista

Vista is a system supporting a so called co-evolutionary design of interactive systems.
Co-evolutionary design is defined as the co-evolution (i.e., concurrent) of as set of
design artifacts maintained by different stakeholders in a development process
(i.e., software engineers and HCI specialists). The following views are considered in
Vista:

 A task model codifies the human activities that the computer system is
meant to support. A dialog model (termed task-oriented specification) is
based on the task hierarchy. The task-oriented specification is formalized
in User-Action Notation (UAN) [Hart90]. UAN specifies the user actions,
interface feedbacks, and interface state resulting from the action.

 A domain model is an architectural model called clock architecture. Clock
architecture is a layered Model-View-Controller (MVC) cluster [Grah96].
Components in this model are responsible for the processing of user
inputs and maintenance of display devices.

2. State of the Art

69

 A final UI, at code level, is also presented to designers. This enables a
visualisation at the code level of any change done to other models.

Links between these representations are established in a mixed-initiative, that is
partly by hand and partly through automated analysis conducted by the system.
This automation is based on a set of syntactic linking rules maintained in a
dictionary. Application code is represented by the FUI rectangle.

Fig. 2-36 shows possible design representations. Window (a) is the task model. A
link goes from leave tasks to action specification in window (b). The UAN
specification is linked onto architectural components on window (c). Architectural
components are in their turn linked to the application code.

Figure 2-36 Model editor of Vista Tool (model linking is represented by arrows)

2.3.5.o Morph

MORPH [Moor96, Moor97] identifies basic user interaction tasks (i.e., interactor-
type independent level of Fig. 2-6) in legacy code by applying static program
analysis techniques, including: control flow analysis, data flow analysis, and pattern
matching (Fig. 2-37). The resulting model is then used to transform the detected
abstractions in a graphical environment from a specific widget toolkit.

2. State of the Art

70

Final UI Final UIFinal UI Final UI

Abstract
UI

+

Reverse engineering
options Presentation options

Final UI Final UIFinal UI Final UI

Abstract
UI

+

Final UI Final UIFinal UI Final UI

Abstract
UI

+
Abstract

UI
Abstract

UI

+

Reverse engineering
options Presentation options

Figure 2-37 Development process in Morph

The original code is then modified to take into account the new dialogue structure
of GUIs. MORPH is part of a larger environment called MORALE supporting
complete reengineering process. Morph actually supports separation of concern
with only one level of abstraction, the engine being driven by some parameters
that give already some degree of flexibility. Operationalization is partially
achieved: introducing a new heuristic or rule requires some intervention of
MORPH’s developer.

Figure 2-38 Selection rules in Morph

2.3.5.p More

MORE [Berg04] produces applications that are device independent. A Platform
Independent Application (PIA) can be created either by a design tool or by
abstracting a FUI thanks to a generalization process (Fig. 2-39).

Generalization is done by reverse engineering of HTML code. This process starts
with the detection of interaction elements. Secondly, the properties and semantic

2. State of the Art

71

information of these elements can be inferred. A specialized engine with a device
profile then creates another application specialized for this particular device.
Similarly to MORPH, operationalization and designers’s control remain partial.

Final UI Final UIFinal UI Final UI

Abstract
UI

+

Transformation parameters

Final UI Final UIFinal UI Final UI

Abstract
UI

+

Final UI Final UIFinal UI Final UI

Abstract
UI

+
Abstract

UI
Abstract

UI

+

Transformation parameters

Figure 2-39 More Development Process

2.3.5.q Tamex

The reengineering process in TAMEX [Elra01] allows one to produce HTML UIs
composed of data contained in several other Web pages. The approach (Fig. 2-40)
followed by Tamex is based on the concept of task-specific mediation:
information sources within an application domain are encapsulated in wrapper
agents (data extraction) interacting with an intelligent intermediary agent, the
mediator (aggregate data).

Domain

Final UI Final UI

Wrapping Agent
(data extraction)

Mediator Agent
(data aggregation)

DomainDomain

Final UI Final UI

Wrapping Agent
(data extraction)

Mediator Agent
(data aggregation)

Figure 2-40 Tamex Development Process

XML is used as an intermediate data structure for information exchange and as a
modeling language for the mediator’s domain ontology and task structure. The
information extraction is done with an XPath-based algorithm for generating
extraction rules from HTML.

2. State of the Art

72

2.3.5.r WebRevenge

WebRevenge [Paga03] analyzes Web site HTML code to automatically detect an
underlying logical interaction design (Fig. 2-41). Such a design is represented
through task models that describe how activities should be performed to reach
users’ goals. WebRevenge is capable of deducing a task model from web pages,
which is different from ReversiXML [Boui04], which only recovers the
presentation of the concrete UI.

Final UI

Task

Final UI

TaskTask

Figure 2-41 Web Revenge Design Process

2.3.6 Comparison on MBIDEs

The present section gives a synthetic overview of MBIDEs surveyed in this
chapter. For this purpose, two families of properties are segregated: properties
regarding conceptual content of methodologies, and properties regarding the
model transformations underlying these methodologies. Table 2-1 and Table 2-2
sum up this comparative analysis.

2.3.6.a Ontological properties

Mod. (Models): describes the type of models manipulated by the methodology. T =
task, Do = Domain, Di = dialog, AUI =abstract presentation, AUI = abstract
presentation in terms of user actions and/or interaction space definition, CUI =
concrete user interface, U = user, C = context.

Lnk (Linking): indicates the type of manual linking between different models
involved in the methodology. For instance, T Do indicates that task model
concepts could be manually linked to domain model concepts.

Sep. (Separation of concerns): indicates the extent to which concepts relevant to each
category are separated within the methodology.

2. State of the Art

73

Trg (Target Language): designates the languages of the UI to produce.

Uni. (Uniformity of formalism): refers to the representation formats of different
models in the methodology, whether they are represented using a same formalism.
Value: √ for yes and for no.

Avl. Mod. (Availability of models): refers to the possibility for an external tool to
process the manipulated models. Possible values:

 : models are stored in an internal format not made explicit e.g., models
are tightly coupled with the tools.

 √: means that an external format for models exists e.g. models are
available under a machine understandable format. A typical form is an
XML language.

Ext. Mod. (Extensibility of models definition): refers to the possibility of extending
definitions of models with new elements.
 Orig.: means that models were intended to be extensible, but only by the

originator of the methodology. This guarantees some interoperability of tools
around a language.

 Design: means that models are extensible and the designer (e.g., the tool user)
is responsible for this extension.

 : means that no mechanism supports model extension e.g., the system is
bundled with a particular set of model definitions.

2.3.6.b Methodological properties

Dvt (Development path): indicates the type of development path that is covered by
the methodology. Possible values:

 Fo: means forward engineering
 Re: means reverse engineering
 Ad: means adaptation to context of use.

Tra. (Transformation types): expresses the type of transformations that are supported
automatically or semi-automatically by the tool. Ex “(T, Do, C) AUI illustrates
the transformation process in Teresa e.g., an AUI is transformed from the
combination of a task model, a domain model, and a context model.

Tra. For. (Transformation formalism): refers to the formalism exploited to represent

2. State of the Art

74

transformation rules. Possible values:
 OA: stands for opportunistic algorithm. It means that the transformations

are hard coded and varying according to the type of manipulation at hand. In
other words there is no homogeneity in the way models are processed.

 PR : stands for production rules e.g., rules under the format “If Condition
Then assertion”.

 GR: stands for graph rewriting. The technique exposed in this
dissertation.

(Avl Tra.) Availability of transformation rules: refers to the availability of the
transformation rules for an external tool or method. Possible values: √ for yes and

 for no.

Extensibility of transformation rules: refers to the possibility of extending definitions
of transformation rules with new rules.

 Orig.: means that an extension mechanism exists for rules but solely by
the originator of the methodology.

 Design: means that rules are extensible by the designer.
 : means that no mechanism supports transformation rules extension

e.g., the rules are bundled with the system.

Traceability of transformations: indicates whether the application of transformation
may be observed or not. Value: √ for yes and for no.

Pattern support: refers to the possibility of using patterns either as building blocks
for model construction or as support for model transformation. Value: √ for yes
and for no.

2.
 S

ta
te

 o
f

th
e

A
rt

75

T
ab

le
 2

-1
 C

om
p

ar
is

on
 o

f
on

to
lo

gi
ca

l a
sp

ec
ts

M

od
.

Ln
k

Tr
g

Se
p.

A

vl

M
od

.
E

xt
.

M
od

A

de
pt

T,

 D
o,

 A
U

I,
CU

I
T

 D
o,

 T

 U

Sm
all

Ta
lk

M

ed
.

A
rt

St
ud

io

T,

C,

D
o,

A

U
I,

CU
I

T
 C

, T
 D

o
Ja

va

H
ig

h

Tr
id

en
t

T,

U
,

D
o,

D

o+
,

D
i,

 A
U

I,
CU

I
T,

 U

 D
o

M

ed
.

FU
SE

T,

 U
, D

o,
 A

U
I

T
 U

, T

 D
o

C+
+

M

ed
.

G
en

ov
a

D
o,

 C
U

I
 —

C+

+
, J

av
a,V

B
H

ig
h

Ja
nu

s
D

o,
 C

U
I

 —

C+
+

H

ig
h

Ju
st

U
I

T,
 D

o,
 A

U
I

(T
 D

o)

 A
U

I
Ja

va
,

H
TM

L,
 V

B,
 C

ol
d

Fu
sio

n,
 C

+
+

H

ig
h

M
as

te
rm

in
d

T,
 D

o,
 A

U
I,

CU
I

T
 D

o,
 T

 A

U
I,

A
U

I
 D

o
C+

+

H
ig

h

M

ob
i-D

T,

 D
o,

 U
, A

U
I

T
 D

o,
 T

 U

, D
o

 U

C+
+

H

ig
h

√

Ta
de

us

T,
 D

o,
 U

, A
U

I
T

 U
, T

 D

o,
 (T

,D
,U

)
 A

U
I

U
IM

S
fil

e
H

ig
h

Te
all

ac
h

D
o,

 T
, A

U
I+

T

 D
o,

 D
o

 A
U

I+
, T

 A

U
I

Ja
va

H

ig
h

Te
re

sa

T,
 A

U
I,

CU
I,

(D
o)

,
C

T
 D

o,
 T

 C

H
TM

L,
 V

X
M

L
M

ed

√

Se
es

co
a

T,
 D

o,
 A

U
I,

CU
I,

D
i,

C
T

 D
o+

, T
 C

Ja

va

H
ig

h
√/

V
ist

a
T,

 D
i,

D
o

T
 D

i,
T

 D
o ,

 D
i

 D
o,

 D
i

 F
U

I
C+

+

H
ig

h

M

or
ph

A

U
I+

—

M

ot
if,

 M
FC

?

M
or

e
A

U
I+

—

H

TM
L

Lo
w

Ta

m
ex

D

o,
 C

U
I

—

H
TM

L
Lo

w

W
eb

 R
ev

en
ge

T

—

ct
tX

M
L

Lo
w

√

O

ur
 m

et
ho

do
lo

gy

T,

D
o,

C,

A

U
I,

CU
I

T
 D

o,
 T

 A

U
I,

A
U

I
 C

U
I,

CU
I

 A
U

I,
T

 C
U

I,
(T

, D
o,

A
U

I,C
U

I)

 C
Ja

va
, X

H
TM

L,
 F

las
h

H
ig

h
√

O
rig

.

2.
 S

ta
te

 o
f

th
e

A
rt

76

T
ab

le
 2

-2
 C

om
p

ar
is

on
 o

f m
et

h
od

ol
og

ic
al

 a
sp

ec
ts

D

vt
.

Tr
a

Fo

r.
A

vl
.

Tr
a.

E
xt

.
Tr

a.
Tr

a.
Tr

a.
Pa

t.

A
de

pt

FO

(T
, D

o)

A
U

I
 C

U
I (

+
U

)
 F

U
I

PR

A
rt

St
ud

io

FO
 +

 A
D

(T

, D
o,

 C
)

A
U

I+
CU

I
 F

U
I

O
A

Tr

id
en

t
FO

(T

, D
o,

 U
)

 D
o+

,D
i

A
U

I
 C

U
I

 F
U

I
PR

FU

SE

FO
 +

A
D

(T

,D
o,

U
)

 A
U

I
 F

U
I

O
A

√
G

en
ov

a
FO

D

o

 C
U

I
 F

U
I

O
A

Ja

nu
s

FO

D
o

 C
U

I
 F

U
I

O
A

Ju

st
U

I
FO

(T

, D
o)

 A

U
I

 F
U

I
O

A

√

M
as

te
rm

in
d

FO

(D
o,

 T
, A

U
I)

 C
U

I
FU

I
O

A

M
ob

i-D

FO
 +

 A
D

(T

, D
o,

 U
)

 A
U

I
 F

U
I

O
A

Ta

de
us

FO

(T

, D
o,

 U
)

 A
U

I
 F

U
I

O

A

Te
all

ac
h

FO

D
o

 T
,

A
U

I
 T

,
T

 A
U

I,
D

o
 P

,
(D

o,
A

U
I,T

)
 F

U
I

O
A

Te
re

sa

FO
 +

 A
D

(T

,D
o,

C)

 A
U

I
 C

U
I

FU
I

O
A

Se

es
co

a
FO

 +
 A

D

T

 (A
U

I,
D

i)
 C

U
I

FU
I

O
A

V

ist
a

FO

—

O
A

M

or
ph

RE

FU

I
 A

U
I+

FU

I
O

A

M
or

e
RE

 +
 A

D

FU
I

 A
U

I+

FU
I

O
A

Ta

m
ex

RE

FU

I
 D

o
CU

I
FU

I
O

A

W
eb

Re
ve

ng
e

RE

FU
I

 T

O
A

O

ur

M
et

ho
do

lo
gy

FO

 +
 A

D
 +

 R
E

FO

 :
(T

 ,D
o)

 A

U
I

 C
U

I
 F

U
I

RE

 :
FU

I
 C

U
I

 A
U

I
 (T

, D
o)

A

D
: (

T,
 D

o,
C)

 (T

’,D
o’

,C
’),

 (A
U

I,
C)

 (A

U
I’,

C’

),
(C

U
I,

C)

 (C
U

I’,
C’

)
O

r a
ny

 o
th

er
 c

om
bi

na
tio

n
of

 tr
an

sf
or

m
at

io
n

G
R

√
D

es
ig

n.

√
√

2. State of the Art

77

2.4 Conclusion

Three UI development approaches were considered in this state of the art:

An exploratory approach provides us with a means of quickly collecting user's
feedback. In this sense, it allows early evaluation and contributes to interface
quality. The problem is that when it comes to produce a running UI, the
developer has to completely re-implement the previously done job in a genuine
programming language. This offers no guarantee of consistency with what was
done before and, consequently, endangers the benefits obtained from an early
user feedback. In consequence, exploratory approach should be taken as it is and
stays confined in the limits of early requirement development steps.

A programming approach allows a straightforward implementation of a final
interface. In terms of quality criteria, these approaches vary depending on the
degree of portability, the resource consumption (expressed in time units,
monetary units, lines of code, etc), and the ease of use (which depends on
provided tool support, intuitiveness of the concepts, legibility of the code, etc).
The programming approach provides no guarantee of quality per se. Programming
(and maintaining) a UI without any method can be a haphazard activity. It gives
no guarantee for regularity. “Rushing to code” without any structure favors a
“trial and error” method. The result of such a work will highly depend on
contingency factors such as the developer's experience or the development
context. Furthermore, communicability between stakeholders is hindered.
Programming languages are poor communication mechanisms. Stakeholders will
hardly reason about UI properties in the programming approach. Programming
approach should be taken as it is. Programming an interface is not engineering it !

A specification-based approach provides us with means to specify relevant properties
of a UI at various levels of abstraction. This approach has many benefits notably
of being reproducible and allowing high level reasoning.

To conclude on these approaches we operate a three step analysis:

First, a set of selected observations is provided. An observation is a synthetic and
descriptive assessment (as opposed to a normative assessment) that is made regarding
properties of surveyed transformational methodologies.

2. State of the Art

78

Second, shortcomings are outlined from observations. A shortcoming is a normative
assessment that is made regarding a property of surveyed transformational
methodologies. A shortcoming is normative in the sense that it positions the state
of the art with respect to ideal properties identified in the software engineering
literature.

Third, a set of requirements for a solution to overcome the above mentioned
shortcomings is identified. The internal validity of the solution proposed in this
dissertation will be assessed with respect to this set of requirements.

2.4.1 Observations

Observation 1: Methodological diversity. Surveyed tools can be categorized
into different categories depending on their main goal. Older tools like Janus,
Trident, Teallach focus on forward engineering user interface starting from
models that abstract away definitions of the interface itself. Mostly coming from
the reverse engineering community, tools like Tamex, More, Morph, and
WebRevenge shed a new light on the need for rich abstract models able to
describe UI aspects in a way that is independent of implementation details. More
recent contributions like Teresa, Seescoa, and ArtStudio introduce new
abstractions to tackle the, so called, problem of multi-context user interfaces.
Again these methods raise the need for high level abstraction allowing a
description of a UI independently of the context in which it is supposed to be
implemented. This question is still a hot research topic. Two methods adopt
slightly different goals than the one described above. Mastermind’s originality lies
in its proposal to compose models at run-time. For this purpose it proposes a set
of inter-model relationships that becomes first class citizens when it comes to
generate a final UI. The problem of model-to-model transformation is out of the
scope of Mastermind. Vista has a different focus as its main goal is to correlate
artifacts being used during a software development process. Vista also proposes a
set of inter-model relationships. Interestingly, part of the discovery of these links
is done automatically.

Observation 2: Inter-method conceptual similarities. A striking convergence
in using certain concepts is to be noticed among all the tools that have been
presented. A domain model is defined in all the presented methods, a task model
is used in a great share of them, a use of UI models (at various levels of
abstraction) is also present in all methods. Regarding dialog models, things seem a

2. State of the Art

79

little bit more heterogeneous. Dialog graphs are presented in Tadeus, Activity-
Chaining Graphs in Trident, Statecharts and Petri Nets in Mastermind, State
Transition Networks in Seescoa, Hierarchical Interaction Templates in Fuse. In
Teresa, the user task model itself constitutes the pivot element to organize the
dialog of the interface elements. A presentation model seems in all methods a
hierarchic decomposition of elements realizing an abstraction from toolkit
specificities. A major common aspect of all the methods is that they all propose
one or several levels of abstractions for describing the presentation of the UI.

Observation 3: Inter-method conceptual dissimilarities. If a coarse-grain
similarity can be assessed (observation 2), a low level comparison of concepts
reveals important dissimilarities between methods. Comparing these model
variations is a tedious activity. As a consequence, cross-method understanding is
hard to gain.

Observation 4: Intra-method heterogeneity. Inside methods, specification
models are numerous and do not easily relate to each other. Each model gives an
insight on some particular aspect of the UI. One model is good for expressing
constraints, another for expressing the behavior and the other the presentation.
While these models may be necessary, they remain hard to integrate because their
modeling primitives are heterogeneous, because they may appear inconsistent with
each other, because their relationships are not explicitly defined, because their
heterogeneous syntaxes raise barriers for their integration.

Observation 5: Conceptual closeness. No method seems to have a particular
concern for extension possibilities of their underlying ontology.

Observation 6: A focus on graphical modality. All (except one) environments
deal at the first place with graphical modality. Only Teresa is concerned with
auditory interfaces.

Observation 7: Transformations are not first class citizens. Transformations
are in most methods hidden to the designer (i.e., built-in), untraceable and, not
modifiable. In some environments, though, rules can be parameterized by dialog
wizards (Mobi-D, Genova), by adjunction of templates (FUSE, Trident), or by
model annotation (Janus, Artstudio). In no method a designer is provided with a
stand-alone language allowing her to define custom transformation rules.

2. State of the Art

80

Observation 8: Multiplicity of transformation formats. For the approaches
where transformations can be identified, a multiplicity of formats, and underlying
paradigms, can be observed. Adept and ArtStudio use production rules, Seescoa
use XSLT transformations and afterwards Java code, Trident uses a prolog-like
expert system and selection trees, Mobi-D uses C++ algorithms, Genius is based
on declarative correspondence tables.

Observation 9: Methodological conglutination of concern. transformation
rules proposed in methods (when they are visible) are not dissociated according
the type of operations they realize on models. A rule partitioning is nowhere made
explicit to the designer.

Observation 10: Single entry point, single exit point. Methods define their
development process with one single entry point (i.e., the development process
starts from an imposed artifact) and one single exit point (i.e., the artifact resulting
from the development cycle is fixed by the method).

Observation 11: Methodological closeness. Proposed methodologies commit
to the definition of development steps. The sequence in which development steps
may be arranged is in no case modifiable.

2.4.2 Shortcomings

From these observations, we can conclude by presenting several shortcomings:

Methodological shortcomings

Shortcoming 1: Lack of ontological explicitness – A few methods define in
an explicit manner their underlying concepts. Concepts are generally bounded to
tools or methodological recommendations, thus preventing a designer to grasp
the conceptual foundations of a methodology (Obs. 1, 3, 4).

Shortcoming 2: Lack of ontological rigour – When a method explicitly defines
its ontology, the preciseness of concepts definitions largely varies from one
method to another. In addition, concepts are seldom formally expressed.,
especially the relationships between the ontological concepts (Obs. 1, 2, 3, 4).

2. State of the Art

81

Shortcoming 3: Lack of ontological commitment – The ontological
commitment refers to a shared understanding of concepts among a scientific
community. The fact that a few ontologies have been defined so far prevents
convergence around a set of concepts (Obs. 1, 2, 3, 4).

Shortcoming 4: Lack of communication of concepts – Research teams tend
to conduct their researches and developments on their own models. Conceptual
consolidation across methods is difficult. Cross-method understanding is a
tedious and time-consuming activity because it necessitates understanding each
peculiarity of each method and establishing correspondence between them. As a
consequence, communication among researchers is made complex (Obs. 1, 3, 4).

Shortcoming 5: Lack of extendibility of concepts – When available, the
concepts manipulated by methods are hardly extendible. This prevents the
adaptation of methodologies to cover new model concepts, notably, the ones
related to new interaction modalities (Obs. 5, 6).

Methodological shortcomings

Methodological shortcomings concern the way existing approaches concretize
transformational development with the definition of methodological stages, steps
(i.e., transitions between stages), and transformation catalogs to perform these
steps.

Shortcoming 6: Lack of methodological explicitness – Existing approaches
seriously lack of explicitness in the way they propose their catalog of
transformations both to the designer and to researchers. The transformation
catalogs are often implicitly maintained in the head of developers and designers
and/or hard-coded in supporting software. Consequently, the transformational
processes proposed in the literature consist essentially in black boxes. This lack of
explicitness dramatically hampers methodological guidance (Obs. 1, 7, 8).

Shortcoming 7: Lack of methodological rigour – When development steps
and transformation catalogs are made explicit the preciseness of their expression
is limited. We are not aware of any formally defined transformation catalog in the
domain of HCI (Obs. 8, 9).

Shortcoming 8: Lack of consistency in applying methodology – When such
design knowledge exists, it is not always systematically, consistently and correctly

2. State of the Art

82

applied throughout the project or across projects. Methodological steps remain
open to interpretation while lack of methodological explicitness hampers any
structured reasoning on the application of transformations (Obs. 4, 9).

Shortcoming 9: Lack of communication of transformation catalogs –
Consequently to the lack of explicitness, the exchange of knowledge regarding
transformation catalogs can be hardly achieved. Even when transformation
catalogs are made explicit in tools, their heterogeneous formats prevents the
reuse of transformations outside the context for which they were designed (Obs.
7, 8).

Shortcoming 10: Lack of predictability of transformation – The implicitness
of transformations decreases the predictability of the transformation results. This
causes a frequent reproach made to transformational development of user
interfaces [Myers95] (Obs. 4, 7, 8, 9).

Shortcoming 11: Lack of modifiability of transformation catalogs –
Developing UIs is about making heuristic decisions in a vast design space.
Transformations have consequently an inherent heuristic nature as they try to
translate into algorithms part of these design decisions. Proposed methods offer
very little possibilities to the designer to modify built-in heuristics: adding,
deleting, modifying, reusing transformations is almost impossible (Obs. 7, 10, 11).

Shortcoming 12: Lack of flexibility in methodological steps – Methods come
usually with their models, their development steps. Due to the implicitness of
their transformation formalism it is almost impossible to tailor the proposed
methodological steps to the designers’ needs and the project context. Flexibility is
a notorious requirement for user interface development methods [Brow97] (Obs.
7, 8, 10, 11).

These shortcomings lead us to conclude that transformational development of
user interfaces can be improved along several dimensions. We provide hereafter a
list of requirement we seek to address with this dissertation. Some of these
requirements are motivated by the above observations and shortcomings, some
are desirable properties found in the literature that apply on any methodology.

2. State of the Art

83

2.4.3 Ontological Requirements

Requirement 1: Ontological explicitness – states that our ontology should be
defined externally to any methodology manipulating it and in an explicit way that
facilitates its dissemination and manipulation among stakeholders (Motivation:
Short. 1).

Requirement 2: Expressivity – means that a conceptual framework should
provide enough details to address problems that motivated the elicitation of its
constituent concepts. In our context models should, at least, provide enough
details to allow an implementation of the system it describes. This essential
requirement is not fulfilled by many formal methods, for instance those focusing
on verifying state properties of the system that is being built (Motivation: general
principle in software engineering, Obs. 6).

Requirement 3: Human readable – means that the provided ontology should
be proposed in a format that enables its legibility by a human agent (Motivation:
Short. 1, 3, 4).

Requirement 4: Formality – states that models are expressed in such a level of
accuracy that it enables automatic reasoning on their properties. (Motivation:
Short. 2, 4).

Requirement 5: Machine readable – states that the proposed ontology should
be legible by a machine. (Motivation: Short. 1, 2, 3, 4).

Requirement 6: Ontological separation of concern – states that models
should differentiate aspects of the problem at hand [Parna72, Dijk76]. Models
defined in our methodology should capture and, segregate, different levels of
abstractions (Motivation: general principle of software engineering).

Requirement 7: Verifiability of specification – is defined as: “the ease of
preparing acceptance procedures, especially test data, and procedures for detecting
failures and tracing them to errors during the validation and operation phases”
[Meye97]. Applied to specification, verifiability refers to the possibility of checking
easily desirable properties (e.g., consistency, usability criteria). This requirement is
facilitated by formality and explicitness. (Motivation: general principle of software
engineering, Short. 2).

2. State of the Art

84

Requirement 8: Ontological homogeneity – refers to the property of a set of
concepts of being defined using a common syntax. All models concepts should be
described in a single formalism that facilitates their integration and processing
(Motivation: Short. 4).

Requirement 9: Reuse of specifications – refers to the possibility of reusing
whole or a part of a specification for another system. The proposed framework
should facilitate reusing specifications (Motivation: Short. 3, 4, general principle in
software engineering [Meye97]).

Requirement 10: Ontological extendibility – refers to the ease of adapting a
conceptual structure to the occurrence of newly elicited concepts. HCI is a vast
area covering the definition of multiple types of interfaces, interaction techniques,
and interaction contexts. A specification language should be equipped with
extension mechanisms to allow its evolution in parallel with the artifact it seeks to
model. (Motivation: Short. 5, general principle of software engineering).

Requirement 11: Standards – states that the expression means used to represent
our ontology should rely on well accepted standards in the software engineering
community. (Motivation: Short. 3, 4).

2.4.4 Methodological Requirements

Requirement 12: Methodological explicitness – states that the constituent
steps of our methodology should be defined in a way that facilitates the
comprehension of its internal logic and its application. (Motivation: Short. 6).

Requirement 13: Methodological flexibility – refers to the ability to initiate
the development from any development stage (i.e., multiple entry points) and to
terminate it at any development stage (i.e., multiple exit points). (Motivation:
Short. 12).

Requirement 14: Methodological formality – states that development steps
should be expressed in such a level of accuracy that it enables an unambiguous
interpretation of the process they describe. (Motivation: Short. 7, 9).

2. State of the Art

85

Requirement 15: Executability – states that development steps should be
expressed in such a level of accuracy that it is possible to execute them by an
automaton. (Motivation: general principle with transformational development
[Send03]).

Requirement 16: Methodological separation of concern. – refers to a
partitioning of methodological steps according to the process types they realize
(Motivation: Obs. 9, Short. 8, general principle in software engineering).

Requirement 17: Methodological extendibility – refers to the ability left to the
designer to extend the development steps proposed in a methodology.
(Motivation: Short. 11, 12).

Requirement 18: Methodological Homogeneity – refers to the property of
methodological steps of being defined using a common syntax. All transformation
steps should be described in a single formalism that facilitates their understanding
and processing (Motivation: Short. 8, Obs. 8, 4).

Requirement 19: Predictability – refers to the possibility provided by a
methodology to foretell the result of the application of development steps.
(Motivation: Short. 10).

Requirement 20: Traceability – is defined [IEEE90] as the “degree to which a
relationship can be established between two or more products (i.e., here models)
of the development process, especially products having a predecessor-successor
or master-subordinate relationship to one another” (Motivation: general principle
in software engineering, Short. 6).

Requirement 21: Correctness – may be defined as the ability of a software to
perform their exact tasks [Meye97]. In the context transformational development,
correctness can be defined as the adequacy of an artifact A with respect to the
other artifact(s) B such that B is the source artifact that was used to derive A
(Motivation: Short. 7)

Requirement 22: Support for tool interoperability – Tool interoperability
refers to the possibility of reusing the output provided by a tool into another tool.
Our method should foster interoperability of tools working on specification
models e.g., editors, critiquing tools, code generators, interpreter (Motivation:
Short. 9).

2. State of the Art

86

Requirement 23: Methodological reuse – refers to the possibility in a
methodology to capitalize on the knowledge defined by designers to perform
development steps and re-using this knowledge for other developments.
(Motivation: Short. 9, general principle in software engineering).

3. An Ontology for User Interface Specification

Chapter 3 An Ontology for
User Interface Specification

3.1 Introduction

Chapter 2 concluded with a list of observations on the state of the art in
transformational development of UIs. From these observations a set of
shortcomings outlined some deficiencies in the approaches described so far in the
literature. A set of requirements was finally elicited to address these shortcomings.

This third chapter addresses the ontological shortcomings and requirements of
Chapter 2 by defining an original ontology aimed at describing various concepts
relevant to UI development.

The word "ontology" initially comes from the area of philosophy where it is a
branch of metaphysics concerned with the nature and relations of being.
It is also defined as a particular theory about the nature of being or the kinds of
existents [Merr04]. In the context of information sciences, an ontology is a formal
specification of a conceptualization [Grub93].

A conceptualization is a simplified representation of the world produced for some
purpose. An ontology is, thus, a set of descriptions of the concepts and
relationships within a field of knowledge used among a community of agents
(humans or computers). Ontologies constrain the interpretation of concepts
within a domain.

87

3. An Ontology for User Interface Specification

88

The main purposes of an ontology is to enable communication between computer
systems in a way that is independent of the individual system technologies,
information architectures and application domain.

A key ingredient of an ontology is a vocabulary of basic terms and a precise
definition of what those terms mean. The terms in an ontology are selected with
great care, ensuring that the most basic (abstract) foundational concepts and
distinctions are defined and specified. The terms chosen form a complete set,
whose relationship one to another is defined using formal or semi-formal
techniques.

Defining an ontology is not only about enumerating its constituent concepts.
Formal foundations used to build an ontology have to be identified and defined
precisely. One should also, and finally, define the appearance of the ontology
considering that an ontology containing the same concepts may be materialized in
the real world through different communication channels. The concepts of
“apple” may be for instance simply orally pronounced or written, but can also be
drawn on a piece of paper or mimed.

The framework presented in Fig. 3-1 (inspired from [Bare02]) distinguishes three
essential components to introduce any ontology: a conceptual content (i.e.,
abstract concepts), the formal foundations used to represent the ontology (i.e.,
abstract syntax), the definition of the appearance of the ontology (i.e., concrete
syntax). The structure of this chapter reflects these three aspects.

Abstract Concepts

Model description
Section 3-2

Abstract Syntax

Identified, Labelled, Typed, Constrained – Graphs
Section 3-3

Concrete Syntax

AGG Visual Notation + usiXML
Section 3-4

Semantic
Mapping

Abstract to Concrete
Mapping

Abstract Concepts

Model description
Section 3-2

Abstract Syntax

Identified, Labelled, Typed, Constrained – Graphs
Section 3-3

Concrete Syntax

AGG Visual Notation + usiXML
Section 3-4

Semantic
Mapping

Abstract to Concrete
Mapping

Figure 3-1 Our language structure

3. An Ontology for User Interface Specification

89

Section 3-2 presents the conceptual content of our language. After introducing the
concept of viewpoint, each model type will be described along with its constituent
concepts. UML class diagrams are used for this purpose along with definitions in
natural language.

Section 3-3, presents the mathematical structures underlying our ontology, i.e., its
abstract syntax. The notion of “directed, identified, labeled typed graph” is
introduced, motivated and exposed.

Section 3-4 presents the concrete syntax of our language. Two syntaxes are going
to be presented: a visual (i.e., graphical) and a textual one (i.e., an XML language
called UsiXML).

3. An Ontology for User Interface Specification

90

3.2 Conceptual Content of the Language

Separation of concerns has been defined after Dikstra [Dijk76]. This principle
states that the different aspects of a problem should be isolated from one to each
other. Separation of concerns allows studying fractions of a matter in an
independent manner while modularizing this matter. A concern gathers properties
relevant to one perspective that can be maintained on an artifact.

A viewpoint is the materialization of a concern. A viewpoint is associated with a
perspective of the thing it models. For instance, in the field of architecture, it is
possible to maintain several viewpoints on a building with respect to a specific
property of this building. Preliminary sketches enable a global vision of the
building to build. A “general prescription document” describes the main
functionalities according to what was agreed with the customer. A “detailed
prescription document” provides a detailed vision of the technical solutions that
must be implemented to meet the general prescription document. The detailed
prescription document may segregate aspects such as electrical equipment, or
sanitary equipment.

In an analogous manner, a structuring in viewpoints, in the context of software
development processes, allows segregating different aspects of the application
being built. Viewpoints may be organized in hierarchy according to the level of
abstraction they provide.

Several viewpoints are identified and motivated in [Calv03]. Our conceptual
framework relies on this work. These viewpoints are hierarchically organized
around a property of independence it holds with respect to the context in which
the system is being built. Four viewpoints are defined:

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular

computing platform either by interpretation (e.g., through a Web browser) or
by execution (e.g., after compilation of code in an interactive development
environment). The final UI has two possible representations, the code and the
rendering. The code concerns the UI representation either as a set of
instructions (in a procedural language) or as a set of assertions (in a declarative
language), or a mix of both. The rendering of the system is a user perceivable
representation of the UI.

3. An Ontology for User Interface Specification

91

2. Concrete UI (CUI): provides a specification of the user interface in terms of

Concrete Interaction Objects and concrete relationships. Concrete objects and
relationships provide a vocabulary that is as independent as possible of any
programming language or toolkit used to implement the UI. A CUI is an
abstraction of the FUI. A CUI defines widgets, layout and interface navigation
and detailed behavior. Although a CUI makes explicit to the final Look & Feel
of a FUI, it is still a mock-up that runs only within a particular environment. A
CUI can also be considered as a reification (i.e., a concretization) of an AUI at
the upper level.

3. Abstract UI (AUI): provides a specification of the user interface in terms of

Abstract Interaction Objects (AIO) and abstract relationships. Abstract
objects and relationships provide us with a vocabulary that is as independent
as possible of any modality (e.g., graphical interaction, vocal interaction,
speech synthesis and recognition, video-based interaction, virtual, augmented
or mixed reality). An AUI can also be defined as a canonical expression of the
rendering of the domain concepts and tasks in a way that is independent from
any modality of interaction. For example, in ARTStudio [Thev01], an AUI is a
collection of related workspaces. The relations between the workspaces are
inferred from the task relationships expressed at the upper level (task and
concepts). AIOs are said to be widget-type independent (see Fig 2-6). An AUI
defines interaction spaces by grouping AUIs (and implicitly tasks of the task
model) according to various criteria (e.g., task model structural patterns,
cognitive load analysis, semantic relationships identification). A set of abstract
relationships is provided to organize AIOs in such a way that a derivation of
navigation and layout is possible at the concrete level. An AUI is considered
as an abstraction of a CUI with respect to modality.

4. Task & Domain (T&D): describe the various tasks to be carried out by the

user in interaction with the system along with the domain-oriented concepts
as they are required by these tasks to be performed. Domain objects are
considered as instances of classes representing the concepts manipulated.

In addition to these viewpoints a context model is introduced to enable to
associate any model element to the context(s) for which it is valid.

From a software engineering background, it is interesting to note that our
viewpoint structuring can be compared (Table 3-1) to the Model-Driven

3. An Ontology for User Interface Specification

92

Architecture proposal provided by the Object Management Group
[OMG01,Mill03]. Model-Driven Architecture proposes a set of concepts and
methodological recommendations to address the development of systems in a
context characterized by a diversity of evolving computing platforms (note that
the concept of platform remains very fuzzy in MDA proposal)..

MDA viewpoints are: (1) a Computation Independent Model (CIM), sometimes
called business model, shows a system in a way that is totally independent of
technology (typically a business class diagram in OO methods). (2) A Platform
Independent Model (PIM) provides a view of the system independently of any
details of the possible platform for which a system is supposed to be built. (3) A
Platform Specific Model (PSM) provides a view of a system that is dependent on a
specific platform type for which a system is supposed to be built. (4) An
implementation is a specification providing all details necessary to put a system
into operation.

Model Driven Architecture Our method

Computing Independent Model Task and Domain
Platform Independent Model (1) Abstract UI

(2) Concrete UI
Platform Specific Model —

Implementation Final UI

Platform Model Context Model

Table 3-1 A comparison of MDA models and our method

The current chapter describes the concepts needed to realize multi-path
development of user interfaces. These concepts were elicited after a state of the
art, partially presented in Chapter 2.

Several ontological formats have been proposed in the literature to formalize
ontologies. OWL Web Ontology Language [W3C04b] is mostly referenced in the
literature. To describe the concepts of our ontology, UML class diagrams
[OMG03a] are used along with natural language explanation and graphical
illustrations when relevant. The use of class diagrams is motivated by the
following arguments. First, our ontology was developed in the context of the
“Cameleon european project”. Communicating easily the content of our ontology
was a major requirement. UML appeared to us an ideal vector as this notation has
become a de facto lingua franca in the software engineering community. Second,

3. An Ontology for User Interface Specification

93

UML is an appropriate notation for describing conceptual schemas [Mart98].
Third, UML is supported by a wide variety of tools (e.g., graphical editors,
documentation, generation) which was not the case of most existing ontology
languages (including OWL) when our ontology was initiated. Fourth, UML class
diagrams proved very useful as a documentation for our XML-based textual
syntax as one class is associated with one XML element, one class attribute is
associated with one XML attribute, composition relationships are associated with
embeddings of XML elements and finally generalizations are translated by XML
schemas [W3C01] generalizations.

3. An Ontology for User Interface Specification

94

3.2.1 Task Model

A task model describes the various tasks to be carried out by a user in interaction
with an interactive system.

After a comparison of a dozen of task modeling techniques [Limb03], an
extended version of ConcurTaskTree (CTT) [Pate97] has been selected to
represent user’s tasks along with their logical and temporal ordering. This choice
has been done for the following reasons:
 Software engineering orientation. CTT, proposes a set of task attributes and task

relationships, that is more oriented to software engineering than psycho-
cognitive analysis (e.g., TKS [John92]).

 Formalism. CTT combines hierarchical structuring of tasks to temporal
ordering of elements with a subset of LOTOS operators. LOTOS is a
grounded formal notation in software engineering for specifying the
ordering of processes in time [Pate97].

 Communication. CTT is supported by a usable tool (i.e., CTTE) and a
graphical notation that facilitates its dissemination and communication
among practitioners.

decomposition
temporal

symbol : string

unaryRelationship
binaryRelationship

independentConcurrencyconcurrencyWithInformationPassing

orderIndependencedisabling suspendResumeenabling

enablingWithInformationPassing

target
targetId : string

source
sourceId : string

taskRelationship
id : string
name : string

1..n

1

1..n

1

1..n1 1..n1

iteration fini teIteration
iterationNumber : integer

optional

deterministicChoice undeterministicChoice

taskModel

task
id : string
name : string
type : string
frequency : integer
importance : integer
structurationLevel : integer
complexityLevel : integer
criticity : integer
centrality : integer
terminationValue : string
userAction : string
taskItem : string

1..n
1

1..n
1

Figure 3-1 Conceptual view on the task model

3. An Ontology for User Interface Specification

95

A task model is therefore composed of tasks and task relationships (Fig. 3-1).
Tasks are, notably, described with a name, and a type. Task type may be: user’s,
interactive, system or abstract. A user task refers to a cognitive action like taking a
decision, or acquiring information. User tasks are notably useful to predict a task
execution time. An interactive task involves an active interaction of the user with
the system (e.g., selecting a value, browsing a collection of items). A system task is
an action that is performed by the system (e.g., check a credit card number,
display a banner). An abstract task is an intermediary construct allowing a
grouping of tasks of different types. Tasks can also have attributes. A task frequency
attribute is an assessment of the relative frequency of execution of a task. Task
frequency is evaluated on a scale from 1 to 5. A task importance attribute assesses
the relative importance of a task with respect to main user’s goals. Task importance
is evaluated on a scale from 1 to 5. A value of 1 means that a task has a low
importance, 5 means that a task is very important. Frequency and importance are
interesting attributes when it comes to adapt a UI to a constraining context
imposing a UI to be pruned of some of its elements (e.g., as display space
decreases it may be interesting to filter out widgets that allow the execution of
unimportant tasks).

Action type and action item enable a refined expression of the nature of leaf tasks
(sometimes called action tasks or leaf tasks). This expression is based on a
taxonomy introduced by [Cons03] to qualify a UI in terms of abstract actions it
supports (Fig. 3-2). The taxonomy is twofold: a verb describes the type of activity
at hand; an expression designates the type of object on which the action is
operated. By combining these two dimensions a derivation of interaction objects
supposed to support a task becomes possible.

3. An Ontology for User Interface Specification

96

Figure 3-2 Constantine's Canonical Abstractions

Task relationships are of two main types: decomposition and temporal.

 Decomposition enables representing the hierarchical structure of a task tree.
 Temporal allows specifying a temporal relationship between sibling tasks of

a task tree. LOTOS [Pate97] operators are used here.

To illustrate task temporal relationships we propose an interpretation of each
operator based on the “design by contract” paradigm introduced by [Meye97].

This paradigm promotes a use of a contract mechanism established with pre- and
post conditions between different methods populating a (object-oriented) system.
In this perspective, a pre-condition is an assertion on the system’s state that a
method requires to guarantee to ensure a post-condition after its execution.

To apply such a mechanism to task modeling concepts and their temporal
relationships, two important types of assertions on state variables of the task
model have to be defined: task termination and task initiation.

Task termination represents a possible conjunction of events allowing asserting that
a task has been performed. For instance, if a task consists in “inputting” a value, it
will terminate when a system event confirms the proper input of this value. A task
consisting, for a train driver, to monitor a value (e.g., the train speed), each 15

3. An Ontology for User Interface Specification

97

minutes, will be considered has terminated if the driver explicitly pushes on a
physical button.

Task initiation represents a possible conjunction of events allowing asserting that a
task has been initiated. For instance, a user has initiated the input of a value but it
was not sent to the database yet.

In this perspective, the execution of an interactive task consists in “accumulating”
events required to its termination. In consequence, it is, by principle, impossible
to guarantee that any interactive task will terminate somewhere in the future as its
termination conditions depend on a user task. With respect to the discussion in
[Dix90], we could ironically argue that the user’s behavior is the first cause of
non-determinism of interactive systems. For system tasks, a value may be
transmitted from the system to assess the termination of an operation.

We propose hereafter a set of tables providing an interpretation for each LOTOS
operator. For each operator we define what a task requires to be initiated and
what it ensures. A termination condition is also provided for each operator. This
condition tells when two temporally related tasks can be considered as terminated.

 Enabling (T1 has to be finished in order to initiate T2)

 Non-deterministic choice (Once one task is finished the other cannot be

accomplished anymore)

T1
>>
T2

T1 Requires: Ø
Ensures: ?

T2 Requires: T1.Termination
Ensures : ?

Termination T1.Termination AND T2.Termination

T1
π
T2

T1 Requires: NOT (T2.Termination)
Ensures: ?

T2 Requires: NOT (T1.Termination)
Ensures : ?

Termination T1.Termination XOR T2.Termination

3. An Ontology for User Interface Specification

98

 Deterministic Choice (Once one task is initiated, the other cannot be

accomplished anymore)

 Parallelism (T1 is interleaved with T2)

 Sequential independence (Is equivalent to (T1>>T2) OR (T2 >>T1))

T1
[]
T2

T1 Requires: NOT (T2.Initiation)
Ensures: ?

T2 Requires: NOT (T1.Initiation)
Ensures: ?

Termination T1.Termination XOR T2.Termination

T1
|||
T2

T1 Requires: Ø
Ensures: ?

T2 Requires: Ø
Ensures : ?

Termination T1.Termination AND T2.Termination

T1
|=|
T2

T1 Requires: NOT(T2.Initiation) XOR T2.Termination
Ensures: ?

T2
Ensures : ?

Termination T1.Termination AND T2.Termination

Requires: NOT(T1.Initiation) XOR T1.Termination

3. An Ontology for User Interface Specification

99

 Deactivation (T2 may interrupt T1 before the termination of T1;. T1 cannot be

resumed after T2 has terminated.)

 Suspend/Resume (T2 may interrupt T1 before the termination of T1. Once

T2 is finished, T1 may be resumed.)

 About Information Passing

Several temporal operators may be decorated with an information passing symbol:
Enabling with information passing (symbol: “[]>”); parallelism with information
passing (symbol: ”|[]|”). Information passing means that two tasks synchronize
on a same piece of data.

For these operators we have to introduce a new assertion on the task model state
regarding the passing of data from one task to another, let’s call it data synchronized.

T1
[>
T2

T1 Requires: Ø
Ensures: Ø

T2 Requires: T1.Initiation AND NOT(T1.Termination)
Ensures: ?

Termination Termination XOR T2.Termination

T1
|>
T2

T1 Requires: Ø
Ensures: ?

T2 Requires: T1.initiation
Ensures: ?

Termination T1.termination OR T2.Termination

3. An Ontology for User Interface Specification

100

 Enabling with information passing (T1 has to be finished in order to

initiate T2 and T2 is synchronized with T1 on some piece of data)

 Parallelism with information passing (T1 is interleaved with T2 while they

synchronize on some data)

Additional operators may affect a task in relation with itself, these operators are
called unary temporal relationships (see Table 3-2).

T* (Iteration) T can be iterated an infinite number of times
T(n) (Finite Iteration) T can be iterated n times
[T] (optional) T is optional

Table 3-2 Unary task relationships

Several additional constraints may be formulated on the consistency of a task
model:

 There exists a maximum of one binary (i.e., temporal or decomposition)

relationship between two tasks.
 If a task is decomposed into another task then this last task must have a

brother task.

T1
>>
T2

T1 Requires: Ø
Ensures: ?

T2 Requires: T1.termination and dataSynchronized
Ensures : ?

Termination T1.termination AND T2.Termination

T1
|[]|
T2

T1 Requires: NOT(T2.initiated) OR dataSynchronized
Ensures: ?

T2 Requires: NOT(T1.initiated) OR dataSynchronized
Ensures : ?

Termination T1.termination AND T2.Termination

3. An Ontology for User Interface Specification

101

 There is only one root task. This means that there is only one element with no
decomposition relationship pointing to it.

3.2.2 Domain Model

A domain model describes the real-world concepts, and their interactions as
understood by users and the operations that are possible on these concepts
[DSou99].

The domain model is generally developed by software engineers and given “as is”
(often under the form of an Application Programming Interface (API)) to UI
designers. The rest of the job consists of connecting the UI to the functional core
API while respecting some architectural principles (e.g., Pac [Cout87], MVC
[Reen79,Kras88]).

As shown in Chapter 2, many formal notations have been introduced to represent
systems of concepts: frames, semantic networks, entity relationship schemas,
structured data models. We selected UML class diagrams as the basis of
expression for our domain model. We considered UML class diagrams as
Extended Entity Relationship model (EER) [Teor86]. The main reason for this
choice is that UML has become a lingua franca in the domain of software
engineering (Req. 11: Standards) and is widely used in industrial practice.

Our meta-model of an UML class diagram is presented in Fig. 3-3. Several
features have been added to the initial UML standard in order to better tackle the
problem of transformational development of UIs. For instance, the domain n of
values attached to attributes is described with a richer precision in order to allow
widget selection (e.g., enumerated domains can be described extensively).

3. An Ontology for User Interface Specification

102

generalization
RoleAName : "IsA"

aggregation
roleAName : "is_composed"
roleACardMin : integer
roleACardMax : integer
roleBName : "composes"
roleBCardMin : integer
roleBCardMax : integer

adHoc
roleAName : string
roleACardMin : integer
roleACardMax : integer
roleBName : string
roleBCardMin : integer
roleBCardMax : integer
roleAInstantiatedCard : integer
roleBInstantiatedCard : integer

source
sourceId : string

target
targetId : string

domainClassRelationship
id : string
name : string

1..n
1

1..n
1

1..n
1

1..n
1

instantiation

enumeratedValue
name : st ring

param
id : string
dataType : string
name : string
paramType : s tring
pass ingType : {byRef, byVal}

att ributeInstance
value : String

attribute
id : string
name : string
attributeDataType : string
attributeCardMin : integer
attributeCardMax : integer
attributeDomainCharacterization : string

0..n

1

0..n

1

method
id : string
name : string

1

0..n

1

0..n

domainModel

object
id : string
name : string
classname : string

0..n

1

0..n

1

0..n

1

0..n

1

domainClass
id : string
name : st ring

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1..n

0..n

1..n

0..n

0..n

0..n

0..n

Figure 3-3 Conceptual model for a domain model

Domain model concepts are classes, attributes, methods, objects and domain
relationships.

A class describes the characteristics of a set of objects sharing a set of common
properties. A class is described with a name. A class may be composed of two
types of features: attributes and methods.

An attribute enables a description of a particular feature of a class. The type of an
attribute refers to common data types found in most programming language i.e.,
Boolean, char, string, integer, float. The type attribute may also make reference to
an object type. The cardinality of an attribute indicates the number of values an
attribute may be associated with. A cardinality can be specified by providing two
integers: a minimal cardinality and a maximal cardinality. An original typology
allows characterizing a type of domain for an attribute. Indeed,
attributeDomainCharacterization takes the value of: interval, continuous interval,
discrete interval, linear interval, circular interval, set[n] (where n is the number of
possible values in an attribute domain). When used in combination with a task
model, this typology helps to map domain attributes to a type of interaction object
by which it will be rendered. For instance, a “choose element” task on an attribute
with a circular interval enables the derivation of a (multi-state) toggle button.

3. An Ontology for User Interface Specification

103

Methods (in this context) are presences which are called either by objects of the
domain or by user interface components. Methods manipulate object’s attributes.
Methods are, here, described with their signature i.e., with their name, type, and
parameters. A set of predefined method names inspired from object oriented
patterns are proposed to facilitate the definition of generic design heuristics. For
instance, the CRUD pattern is used to refer to any method realizing a Create,
Read, Update or Delete operation [Larm01].

Objects are instances of a class. An object is composed of attribute instances which
may have values and define the state of an object.

Finally, domain class relationships describe various types of relationships between
classes. They can be classified in three types: generalization, aggregation, and ad hoc.
Class relationships are described with several attributes enabling the specification
of role names and cardinalities.

3.2.3 Abstract User Interface Model

An Abstract User Interface (AUI) model is a user interface model that represents a
canonical expression of the renderings and manipulation of the domain concepts
and functions in a way that is as independent as possible from modalities and
computing platform specificities.

An AUI (Fig. 3-4) is populated by Abstract Interaction Objects (AIO) and abstract user
interface relationships. These concepts constitute a vocabulary that is independent of
the modality and the computing resources for which a system is targeted at.

A modality (also called interaction technique) can be defined more precisely, after
[Niga95], as the coupling of a physical device d with an interaction language L:
<d, L>. Our language supports, at the concrete level, two modalities: speech (i.e.
auditory) input and output and graphic (i.e., graphical) input and output.

Abstract Interaction Object (AIO) may be of two types Abstract Individual
Components (AIC) and Abstract Containers (AC).

3. An Ontology for User Interface Specification

104

spatioTemporal
dimension1 : integer
dimension2 : integer

source
sourceId : string

target
targetId : string

auiRelationship
id : string
name : string

1..n
1

1..n
1

1..n
1

1..n
1

control
event : string
action : string
controlPriority : integer
initiative : {system, user}
terminationValue : stringoutput

outputContent : uri

navigation

facet
id : string
name : string
ac tionType : string
ac tionItem : string

abstractIndividualC
omponent

0..n

1

0..n

1

abstractContainer
orderType : string
splittability : boolean

1..n1 1..n1

0..n0..1 0..n0..1

mutualEmphasis auiDialogControl
symbol : string

abstractContainment

abstractAdjacency

selectionValue
name : string

input
inputDataType : string
inputCardMin : string
inputCardMax : string
inputCharacterization : string

0..n

1

0..n

1

auiModel

aio
id : string
name : string

1..n

1

1..n

1

Figure 3-4 Concept model for abstract user interfaces

An Abstract Individual Component (AIC) is an abstraction that allows the description
of interaction objects in a way that is independent of the modality in which it will
be rendered in the physical world. Fig. 3-5 presents three possible reification of a
set of abstract interaction objects for, respectively from left to right, tactile
modality, auditory modality and 2D graphical modality. An AIC may be
composed of multiple facets. Each facet describes a particular function an AIC
may endorse in the physical world. Four main facets are identified:

 An input facet describes the input action supported by an AIC.
 An output facet describes what data may be presented to the user by an AIC.
 A navigation facet describes the possible container transition a particular AIC

may enable.
 A control facet describes the links between an AIC and system functions i.e.,

methods from the domain model when existing.

A single AIC may assume several facets at the same time. The AIO that reifies
this multi-facetted AIO will assume all those ‘functionalities’. For instance, a CIO

3. An Ontology for User Interface Specification

105

may display an output while accepting an input from a user, ensure a transition
between windows and trigger a method defined in the domain model.

Figure 3-5 Different reifications in different modalities for a set of control AIC (courtesy of

C. Stephanidis)

An Abstract Container (AC) is an entity allowing a logical grouping of other abstract
containers or abstract individual components. AC are said to support the
execution of a set of logically/semantically connected tasks. They are called
presentation units in [Boda95c] and work spaces in [Thev01]. An AC may be
reified, at the concrete level, into one or more graphical containers like windows,
dialog boxes, layout boxes or time slots in the case of auditory user interfaces.

Abstract User Interface Relationships (AUI relationship) are relationships that can be
drawn between abstract interaction objects of all kinds.

Five types of abstract relationships may be defined at this level:

 Decomposition relationship allows specifying a hierarchical structure of abstract

containers and abstract individual components.
 AbstractAdjacency relationship indicates that two AIO are logically adjacent.
 Spatio-temporal relationship allows a specification of a very precise layout in

time or space in a way that is independent of any modality. For this purpose,
the thirteen possible temporal relationships from Allen [Alle83] are
considered. Basically, there are two types of temporal relationships (Table 3-
3): before (sequential relationship) and simultaneous (that can be equal, meets,
overlaps, during, starts, or finishes relationships). Each basic relationship has
an inverse relationship, except the equal relationship which is symmetric.
Although Allen relationships have been introduced to characterize temporal
intervals, they are suitable for expressing constraints for space and time thanks
to a space-time value. For example, in an “x before y” relationship, there is a
space-time value greater than zero between x and y while in the “x meets y”

3. An Ontology for User Interface Specification

106

relationship the space-time value is equal zero between x and y. As
relationships are abstract at the AUI level, the space-time value is left
unspecified until needed at the CUI level.

Relationship Presentation Relationship Presentation
x before y (1) x after y

(8)

x meets y (2)

y meets x
(9)

x overlays y (3)

y overlays x
(10)

x starts y
(4)

x starts y
(11)

x during y (5)

y during x
(12)

x finishes y (6)

y finishes x
(13)

x equal y (7)

Table 3-3 Allen relationships and their inverse.

Example 1: a before relationship can be used to specify that an AIO
InputFirstname will be presented before another AIO InputLastname. At the
CUI level, this will be turned into for instance: (1) In a graphical desktop: an
edit box for entering the first name, followed by a second edit box for the last
name in the same dialog box. In this case, the relationship represents in a 2-
dimensional space along with a particular space interval. (2) In a mobile
phone interface: a field for entering the first name is first displayed and when
the user has completed the entry, a second field for entering the last name is
displayed. In this case, the relationship represents navigation between two
screens of a UI system.

So far, Allen relationships allow expressing physical constraints according to
one dimension (1D) only: time or space. Allen relationships can be
generalized to n dimensions for expressing similar constraints in a nD space,
and consequently gain in precision. Here, the 2D generalization is kept to

x
y

x
y

x
y

x
y

x
y

x
y

y

x y x y

x y x y

x y x y

3. An Ontology for User Interface Specification

107

express space relationships more precisely in any type of UI involving spatial
expressions [Sung02, Lee03]. To exemplify this, let us assume two AIOs A,
B. The spatial relationship between A and B is defined as follows:
Spatial_Composition (A,B) = (Ri , Rj), where i, j ∈ {1,…,13}, Ri is the identifier
of the spatial relationship between A and B according to the X axis and Rj is
the identifier of the spatial relationship between A and B according to the Y
axis in the matrix reproduced in Fig. 3-7. When a spatial arrangement is
expressed only according to one dimension, Ri = ∅ or Rj = ∅.

R1,1 R2,1 R13,1

R13,13

R1,2

R1,12

R1,3

R1,13 R2,13 Ri,13

R1,11

R1,j

Ri,1R1,1 R2,1 R13,1

R13,13

R1,2

R1,12

R1,3

R1,13 R2,13 Ri,13

R1,11

R1,j

Ri,1

Figure 3-6 Matrix of 2D Allen Relationship

 Dialog control relationship allows a specification of a flow of control between

the abstract interaction objects. Like for task models, LOTOS (see Sec. 3.2.1)
operators are used for this purpose. For instance a relationship
AIC1.EnterCountry []> AIC2.EnterProvince, indicates that AIC2 cannot be
initiated while AIC1 is not achieved and that AIC1 has provided a value for the
data on which the two components synchronize with. Like for tasks, an
interpretation for each type of LOTOS operator may be provided in terms of

3. An Ontology for User Interface Specification

108

pre/post-conditions, termination and initiation states. Dialog control
relationships are defined in a same manner at the concrete UI level.

 Mutual emphasis relationship allows specifying that two components should be
somehow differentiated at the concrete level. This relationship may be useful
in a user interface where the probability of confusing two UI elements is high
(e.g., in an airplane cockpit, a field displaying the angular speed and the
absolute speed).

An additional constraint may be formulated about abstract models:

 There is only one root in the decomposition tree of abstract containers.

3.2.4 Concrete User Interface Model

A Concrete User Interface (CUI) model is a UI model allowing a specification of an
appearance and behavior of a UI with elements that can be perceived by users

By definition, a CUI is modality dependent as any CUI instance refers to the
interaction modalities that have been selected for this UI. This reference can be
unique in case of a “mono-modal” CUI or multiple in case of a multimodal CUI.
Our language supports two modalities for the moment, speech and graphic. In
reference to the definition of the modality found in [Niga95] and provided in Sec.
3.2.3. Speech modality is a combination of speech input and speech output.
Speech Input is described as the couple <microphone, pseudo-natural language
NL>, where NL is defined by a specific grammar. Speech output is similarly
described as the couple <speech synthesizer, pseudo natural language NL>.
Graphic modality is composed of a combination of graphic input and graphic
output. Graphic input is described in terms of <pointing device PD, direct
manipulation> where PD is generally a mouse. Graphic output corresponds to
the couple <screen, drawing language> where a drawing language can be, for
instance, procedural or declarative, pixel based or vector based.

In contrast to its modality dependence, a CUI remains toolkit independent as no
CUI instance does refer to any physical element (i.e., toolkit elements or widget)
of the computing platform. Nonetheless, a CUI description can be detailed
enough to allow a complete rendering of a user interface.

A CUI model (Fig. 3-7) is composed of Concrete Interaction Objects (CIO) and concrete
relationships. Concrete interaction objects and relationships are further refined into
graphical objects and relationships and auditory objects and relationships. Other

3. An Ontology for User Interface Specification

109

types might complement these two categories as more modalities could be taken
into account.

Figure 3-7 Root elements of the concrete user interface model

A Concrete Interaction Object (CIO) is defined as an entity that users can
perceive and/or manipulate (e.g., a push button, a list box, a check box, a sound).
A CIO realizes an abstraction of widget sets found in popular toolkits: graphical
(Java Swing [Ecks98], HTML 4.01 [W3C99], Flash DRK6 [Macr04]) and auditory
(earcons [Crea99] and VoiceXML 2.0 [W3C04]). In other words, CIOs allows an
expression of UI elements that is independent of their actual rendering. Fig. 3-8
shows an example of different renderings for a menu element on three different
platforms.

Figure 3-8 Examples of different graphical CIOs corresponding to a selection AIO

[Courtesy of C. Stephanidis, ICS Forth]

3. An Ontology for User Interface Specification

110

CIOs are further classified depending on the modality they allow to support:
graphical and auditory (Fig. 3-7). Graphical and auditory CIOs are further
decomposed into containers and individual components. We have, thus, elements
called Graphical Containers (GC), Graphical Individual Components (GIC),
Auditory Containers (AC), Auditory Individual Components (AudIC).

The graphical part is the most detailed part of the language as a consequence of
the complexity of this type of UI compared to pure auditory ones.

Figure 3-9 Graphical containers

Graphical containers are detailed in Fig. 3-9. They are classified in the following
types:

 A window is a container that is found in nearly all 2D graphical toolkits. A
window is equipped with native behavior such as close, tile, restore,
minimize, maximize. A window may contain other graphical containers.

 A tabbed dialog box can be viewed as a set of windows stacked onto each

other whose access in enabled by a set of tabs. Tabbed dialog boxes are
composed of tabbed items.

3. An Ontology for User Interface Specification

111

 A table is composed of cells, a table may contain any other graphical

container, including another table. A table is not considered, as in some
languages (e.g., HTML 4.0), a layout mechanism.

 A dialog box is an independent box equipped by default of a confirmation

or cancellation control.

 A menu bar is a container type that hosts menu and menu items.

 A box is the basic layout mechanism in our language. A box can only
contain another box of a graphical individual container. We use a Tex-like
[Mitt04] boxing system, allowing a very precise description of the layout
while omitting any reference to an absolute coordinates positioning of
elements. Boxes may be of several types (differentiated by their attribute
Type): horizontal boxes, vertical boxes, horizontal grid and vertical grid.
Fig. 3-10 shows an example of an embedding of boxes within a window.
Window1 contains a vertical box (VBox1). This vertical box is further
decomposed into a vertical box (VBox2) and a horizontal box (HBox1).
The individual components are displayed accordingly to their mother box
type.

Figure 3-10 Illustration of the embedded box system to specify a 2D layout

Graphical Individual Components (GIC) are detailed in Fig. 3-11. Text components
represent text-based components like a label, an input field, a password field, a
multi-line input field, a complex textual output as a rtf file. A property (isEditable)
allows differentiating text components subject to input or not. Image components

3. An Ontology for User Interface Specification

112

represent all images and can be divided into sub-zones. Video components enable
specifying the insertion of a streaming of images into a UI. A whole range of CUI
enables control, or choice: button, toggle button, check boxes, radio buttons. Spin, combo
box and tree can be populated with an item CIO. A menu is populated with menu
items. A slider may be associated with one or two cursors. Common composed
components are also proposed: drawing canvas, color picker, file picker, date picker, hour
picker, and progression bar.

3. An Ontology for User Interface Specification

Figure 3-11 Graphical Individual Components Types

113

3. An Ontology for User Interface Specification

114

Auditory interaction objects are represented in Fig. 3-12. Auditory Containers represent a
logical grouping of other auditory containers or auditory individual components.
Auditory individual components are of two types: auditory output which may consist in
music, voice or a simple “earcon” (i.e., an auditory icon) or auditory input which
is a mere time slot allowing the user to provide an auditory input using her voice,
or any other physical device able to produce sound.

Figure 3-12 Graphical interaction objects and auditory interaction objects (detail from

CUI)

CUI relationships are exposed in Fig. 3-13. Similarly to Concrete Interaction
Objects they are divided into auditory relationships and graphical relationships. Dialog
control relationship can be defined between both types of interaction objects.

Auditory relationships are of two types: auditory transition enables to specify a
transition between two auditory containers. An attribute transition type
determines the type of transition e.g., open, mute, reduce volume, or restore
volume. A transition effect allows to specify an auditory effect to the transition

3. An Ontology for User Interface Specification

115

e.g., fade-out, fade-in. A relationship auditoryAdjacency indicates a time adjacency
between two auditory components. A delay expressed in seconds indicates a time
space between these components.

Graphical relationships are of four types. Graphical transition specifies navigation links
between the different containers populating the UI. Transition types are : open,
close, minimize, maximize, tile and restore. Some transition effects may be
specified like “box-out”, “box-in”, “fade-out”, “fade-in”. The source of a
graphical transition is generally a graphical individual component. An alignment
may also be specified among any individual component belonging to the same
window. Adjacency indicates that two components are topologically adjacent. A
graphical emphasis indicates that two interaction objects must be differentiated
using rendering artifacts (e.g., using two different colors).

Dialog control allows a specification of a flow of control between the concrete
interaction objects. As so a dialog control may be specified independently of a
task model. LOTOS (see Sec. 3.2.1) operators are used for this purpose. For
instance a relationship CIC1.EnterCountry []> CIC2.EnterProvince, indicates that
CIC2 cannot be initiated while CIC1 is not terminated and that CIC1 has provided
a value for the data on which the two component synchronize with. An
interpretation for each type of LOTOS operator may be provided with pre/post
conditions, termination and initiation states. A Dialog control at the concrete level
is differentiated from dialog control at the abstract level. While initiation and
termination of objects cannot be fully specified at the abstract level (indeed,
abstract objects cannot be mapped onto events), they may be at the concrete level.
For instance, an event may be associated with the termination of a CIO e.g., a
container terminates if such button is pressed.

Any CIO may be associated with any number of behaviors (see Fig. 3-14).
A behavior is the description of an event-response mechanism that results in a
system state change. The specification of a behavior may be decomposed into
three types of elements: an event, a condition, and an action.

3. An Ontology for User Interface Specification

116

Figure 3-13 Relationships ate the concrete user interface level

An event is a description of a run-time occurrence that triggers an action. Some
typical events are described in table 3-4. They consist of any system event (i.e.,
issued from a process belonging to the domain), user interface event (i.e., issued in
the context of the user interface). For instance movePointer([X], [device]) refers to
an event that consists in moving a pointer in the context of a CIO [X]. Events
cannot make any reference to coordinates, as CUI does not. Like User Action
Notation [Hart90], the concept of context of an object (identified by its id) is used
to reference a display area where a particular object is rendered. Note that, the
negative expression of an object context is also allowed. For instance,
depress(NOT[X]), [device]), refers to a depress event (e.g., a mouse down) outside
the context of [X]..[X] can also be unimportant in the realization of an event in
such a case a value null is referenced. The [device] parameter makes reference to
the device from which the event is generated. Each device or device part, is
referenced in a device model (not in the scope of this dissertation) with a unique
identifier.

3. An Ontology for User Interface Specification

117

applicationOrder

temporalOperator
value : {>>,|||, | = |,(n)}

ruleTerm

logicalOperator
value : {AND, OR, XOR, IMPLIES}

methodCallParam
componentIdRef : string
componentProperty : string
returnValue : string

transition
transitionIdRef : string

MethodCall
methodName : String

condition
isPositive : boolean
isNegative : boolean
conditionType : {pre,post}

0..n

1

0..n

1

event
id : string
eventType : string
eventContext : string
device : string

0..n1 0..n1

action
id : string
name : string
description : string

0..n

1..n

0..n

1..n

initiation

1

0..1

1

0..1

termination

1

0..1

1

0..1

cio
id : string
name : string
icon : uri
content : uri
defaultContent : string or uri
defaultIcon : uri
defaultHelp : uri
help : string

0..1

1

0..1

1

0..1

1

0..1

1

behavior
id : string

0..1

1

0..1

1

11 11 10..n 10..n

attributeCondition
expression : string

transformationSystem
id : string
name : string
description : string

1..n

0..n

1..n

0..n

ruleMapping
sourceId : string
targetId : string

rhs

lhs

nac

transformationRule
id : string
name : string
description : string

1

0..n

1

0..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1

0..n

1

0..n

1

1

1

11 11 1

0..n

1

0..n

1

Figure 3-14 Behavioral specification at the concrete level

CIO Events
System event ellapsedTime(n), systemEvent(eventName)
Graphical User Interface Events
All graphical CIOs movePointer(X,device), pointerOver(X,device), moveOutPointer(X,device), click(X,device),

doubleClick(X,device), depress(X,device), release (X,device), dragOver(X,Y,device),

dragDrop(X, Y,device), hasFocus(X), lostFocus(X).

graphicalContainer resize(xFactor,yFactor)

textComponent Change

Slider move(cursor,x)

Spin spinUp, spinDown

Auditory User
Interface

depress(tone)

Table 3-4 List of typical events

Events can be composed into more complex event expressions using a subset of
the LOTOS operators introduced earlier (Sec. 3.2.1). “|||” indicates a
concurrence of events (to be interpreted as a disjunction). “>>” indicates a strict
sequence of events. “|=|” indicates an order independent sequence of events.
“(n)” indicates a finite iteration of events where n is an integer indicating the

3. An Ontology for User Interface Specification

118

iteration factor. For instance, click(Button1, Mouse1LeftBut) |=| depress(null,
KeyBrd_Z) is an event that is an order independent composition of a mouse click
on a button and a keyboard depress.

A condition is the expression of a state that has to hold true before (pre-condition)
or after (post-condition) an action is performed. A condition may be positive or
negative. We express condition as patterns (i.e., a partial description of a state) on
the user interface specification itself. Conditions may be composed using
traditional logical operator. “AND” indicates a conjunction of conditions. “OR”
indicates a disjunction of conditions. “XOR” indicates an exclusive disjunction of
conditions. “IMPLIES” indicates an implication between two conditions.

An action is a process that results in a state change in the system. An action can be
of three types: a method call, a transformation system, or a transition.

A method call is a call to a method that is external to the UI. If a domain model
exists, all method calls must reference a method belonging to this model. A
method call is normally specified with the name of the method (under the form
Class.methodName), but other referencing techniques are not forbidden. The
method call parameters can be specified by making a reference to the value of a
property of an object belonging to the CUI.

A transformation system is the expression of any property change at the UI level. We
use a mechanism to specify property changes on the UI. This mechanism is
similar to the one that will be introduced in Chapter 4. To avoid too much
forward reference, it can be said that a transformation system can be explained as
follows: when a pattern is found in CUI specification, changes should occur on
the elements matching the pattern. A transformation system might be, for
instance, “when a green button is found in the specification, change the color
property of this button to red” or “For all text components belonging to the main
window, increase their font by a factor of 2”.

A transition, also called navigation, is a description of a change in the container’s
visibility property of a user interface system. A transition has a source (a
navigation individual component) and a target (generally a container). Depending
on the type of modality, transitions may be of different types (see above in this
Section).

3. An Ontology for User Interface Specification

119

3.2.5 Context Model

A context model (Fig. 3.15) is a model describing the three aspects of a context of
use in which an end user is carrying out an interactive task with a specific
computing platform in a given surrounding environment [Thev01]. Consequently,
a context is hereby defined as a triple of the form <e, p, u> where e is an element
of the environments set considered for the interactive system, p is an element of
the platforms set considered for the interactive system and u is an element of the
users set for the interactive system.

A User model consists of a user stereotypes. A user stereotype is any set of users
sharing similar characteristics. Stereotypes can be arranged in hierarchy. As so, a
stereotype can be decomposed into sub-stereotypes.

A Platform model captures relevant attributes for each couple software-hardware
platform and attached devices that may significantly influence the context of use
in which the user is carrying the interactive task. Our context model has been
developed in [Flor04]. A platform specification can consist of a series of physical
hardware devices (hardware platform components), a series of software
components (software platform), the characteristics of the network to which the
platform is connected, the capability to support wireless (WapCharacteristics), and
the capability of browsing web pages (BrowserUA).

An Environment model describes any property of interest of the physical
environment where the user is using the UI on the computing platform to
accomplish her interactive tasks. Such attributes may be physical (e.g., lighting
conditions), psychological (e.g., level of stress), and organizational (e.g., location
and role definition in the organization chart).

The context model will not be used in the transformational process described in
this dissertation. Although any UI specification model may be attached to any
number of context specification thanks to the “hasContext” relationship
described in next section.

3. An Ontology for User Interface Specification

120

SoftwarePlatform
audioInputEncoder : Literal (bag)
CcppAccept : Literal (bag)
CcppAccept-Charset : Literal(bag)
handwritingRecognitionSoftware : Literal (bag)
isJavaEnabled : Boolean
JavaPlatform : L iteral (bag)
JVMVersion : Literal (bag)
OSName : L iteral
OSVendor : Literal
OSVersion : Lite ral
speechRecognitionSoftware : Literal (bag)
videoInputEncoder : Literal (bag)

NetworkCharacteristics
capacity : Number
costPerVolume : Literal
costPerTime : Literal

WapCharacteristics

supportedPictogramSet : Literal (bag)
WapDeviceClass : Literal
WmlDeckSize : Number
WmlScriptLibraries : Literal (bag)
WmlScriptVersion : Literal (bag)
WmlVersion : Literal (bag)

BrowserUA
browserName : Lite ral
browserVersi on : Literal
isFrame sCapabl e : Boo lean
HtmlVe rsion : Li teral
isJavaAppletEnable d : Boolean
isJavaScriptEnable d : Boolean
JavaScriptVersion : Lite ral
isT able sCapabl e : Boolean
XhtmlVersion : Lite ral
XhtmlM odul es : Literal

HardwarePlatform
category : Li te ral
isColo rCapable : Boolean
CP U : Lite ral
isImageCa pabl e : Boolean
inputCharSet : Literal (bag)
ke yboa rd : Lite ral
model : Li teral
nu mberOfColo urs : Num ber
nu mberOfGrayScal e : Number
nu mberOfSoftKeys : Number
ou tputCharSet : Li teral (bag)
po intingDe vice : L it era l
po intingRe solu ti on : Li teral
screenS ize : Dimension
screenS izeChar : Di mensio n
isS oundOu tpu tCapable : Boole an
storageCapaci ty : L itera l
isT extInputCap abl e : Boolean
is touchScreen : Boolean
vendo r : Li teral
isV oiceInputCa pabl e : Boo lean
plat formID : stri ng
plat formNa me : string

contextModel

Environm ent
type : string
id : string
name : string
isNoisy : boolean
lightingLevel : string
isStressing : boolean

userStereotype
id : string
stereotypeName : s tr ing
taskExperience : string
systemExperience : string
deviceExperience : string
taskMotivation : string

0..n

0..1

0..n

0..1

Platform
id : string
name : string

0..n

0..1

0..n

0..1

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

0..n

1..n

context
id : string
name : string

0..n

1..n

0..n

1..n

0..1

1..n

0..1

1..n

0..1

1..n

0..1

1..n

0..1

1..n

0..1

1..n

Figure 3-15 Context model

3.2.6 Inter-Model Relationships

Model integration is a well-known issue in transformation driven development of
UI [Puer99]. Rather than proposing a collection of unrelated models and model
elements, our proposal provides a designer with a set of pre-defined relationships
allowing a mapping of elements from heterogeneous models and viewpoints (Fig.
3-16). This can be useful, for instance, for enabling the derivation of the system
architecture (mappings between domain and CUI/AUI models), for traceability in
the development cycle (reification, abstraction and translation), for addressing
context sensitive issues (has context), for dialog control issues, for improving the
preciseness of model derivation heuristics.

3. An Ontology for User Interface Specification

121

manipulatesisExecutedInisReifiedBy isAbstractedInto

mapping
Model

source
sourceId : string

target
targetId : string

interModelRelationship
id : string
name : string

1

1..n1..n 1..n

1

1..n

1

1..n1 1..n1

hasContexttriggers observes updates isTranslatedInto

1

Figure 3-16 Inter-Model Mappings

3.2.6.a Mappings between the domain models and the UI models

Several relationships can be defined to explicit the relationships between the
domain model and the UI models (both abstract and concrete):

 Observes is a mapping defined between an interaction object and a domain

model concept (either an attribute, or an output parameter of a method). This
mapping may be interpreted as follows: the content of a UI object must be
synchronized when

- A mapped attribute is modified. The new state resulting from this
modification should be presented on the UI (the notion of view could
be of interest here).

- A mapped method is executed. Its output parameters are displayed on
the UI.

 Updates is a mapping defined between an interaction object and a domain
model concept (specifically, an attribute). “Updates” describes the situation
where the attribute of an object in the domain model must be synchronized
with the content of a UI object.

 Triggers is a mapping defined between an interaction object and a domain
model concept (specifically, an operation). This mapping describes that a UI
object is able to trigger a method from the domain model.

3.2.6.b Mappings to ensure the traceability of the development cycle

Our ontology is designed to be integrated in a framework where models are
transformed into other models (see Chapter 4). This framework defines several

3. An Ontology for User Interface Specification

122

types of transformations in order to achieve multi-path development of user
interfaces. Traceability mappings are helpful for keeping a trace of the execution of
the transformations. For instance it may be interesting to know which concrete
object reifies which abstract object, or vice versa, which abstract object is an
abstraction of which concrete object.

 Is Executed In maps a task to an interaction object (a container or an individual

component) allowing its execution. This relationship is notably useful for
deriving a dialog control component, for ensuring that all tasks are supported
appropriately by the system.

 Is Reified By indicates that a concrete object is the reification of an abstract one
through a reification transformation.

 Is Abstracted Into indicates that an abstract object is the reification of a concrete
one through an abstraction transformation.

 Is Adapted Into indicates that an interaction object (abstract or concrete) is
adapted into another one as a result of an adaptation transformation.

3.2.6.c Other mappings

Other useful mappings are:

 Manipulates maps a task to a domain concept. It may be an attribute, a set of

attributes, a class (or an object), or a set of classes (or a set of objects). This
relationship is useful when it comes to find the most appropriate interaction
object to support a specific task.

 Has Context maps any model element to one or several contexts of use.

3. An Ontology for User Interface Specification

123

3.3 Abstract Syntax: graphs as underlying formalism

The abstract syntax is defined as the hidden structure of a language, its
mathematical background [Meyer90]. Our abstract syntax takes the form of a, so
called, “enriched” directed graph. That is to say an identified, labeled, typed,
constrained graph. A graph structure naturally describes a set of concepts and
their relationships, it is strongly correlated to the concept of ontology [John01].
Graph structures are appropriate when the number of relationships among the
concepts of an ontology become too large to represent them with another
mathematical structure (e.g., lists, trees, sets). As argued by [Sowa92] graphs are
logically precise (Req. 4: Formality), humanly readable (Req. 3), and
computationally tractable (Req. 5: machine readable). They have been used, for
instance, to represent artifacts like code structures, system requirements, expert
knowledge, causal systems, probabilistic systems, social structures. Additionally,
extensive collections of algorithms for their manipulation are provided in the
scientific literature.

In this section, we use the method introduced in [Mens99] to progressively
consolidate our enriched graph structures that is the foundation of our ontology.

3.3.1 General Definitions

Definition 1. A graph g is defined by a quadruple (g g g gV E source target, , ,)
such that:

1. gV is a finite set of vertices (or nodes);
2. gE is a finite set of edges (or arcs);
3. gsource : E → V, is an injective function that assigns a source

to each edge of E;
4. gtarget : E → V, is an injective function that assigns a target to

each edge of E.

Definition 2. g is said to directed iff
() ()g i j g i je E v v V source e v target e v∀ ∈ ,∃! , ∈ | = ∧ =

3. An Ontology for User Interface Specification

124

3.3.2 Category Theory and Graphs Morphisms

Category theory is a generalized mathematical theory of structures. One of its
goals is to reveal the universal properties of structures of a given kind via their
relationships with one another [Marq97].

A category describes a set of objects that have an identical mathematical structure,
and for which there exists morphisms between those objects and preserving this
structure [Fokk92]. The major benefit of working with categories is that any
property established for a category can established for any structure of this
category.

Graphs are objects of a category of graphs with morphisms as structure
preserving mappings between them.

Notation 1. Implicit graph reference. The notation []gSetName (e.g. gV) or
[]gFunctionName (e.g. gsource) will be replaced by []SetName (e.g. V) or
[]FunctionName (e.g. source) if no confusion is possible (i.e. only one graph
is concerned).

Notation 2. Graph component or element. The expression graph
component or element refers undiscernibly to vertex or edges.

Notation 3. Implicit function reference. Let x stand for a graph
component, []()FunctionName x denotes a function applied to x . In case of
ambiguity : [] () []()v v VFunctionName x FunctionName xσ ∈= and
[] () []()e e EFunctionName x FunctionName xσ ∈=

3. An Ontology for User Interface Specification

125

Other properties of interest of graphs morphisms are :

Thanks to morphisms, our initial graph definition (definition 1) will be extended
with several features (i.e., identifies, label, type, constraints) while being sure to
benefit of all theoretical results provided for the graph category. All features are
then consolidated into a single graph definition to form the mathematical basis of
our language. Such a way to proceed is found in [Mens99]

3.3.3 Identified Graphs

An identification function is introduced in order to univocally identify each node
or edge of a graph. This function is useful as it allows differentiating instances of a
same node that would be considered identical without this identifier.

Definition 4. Interesting graphs morphisms properties:
1. If vm and em are injective (resp. surjective) m is injective (resp.

surjective).
2. If m is injective and surjective (i.e. bijective), m is said to be isomorphic

(written :m G H≅ or simply G H≅).
3. If vm , em are total functions, m is said to be a total graph morphism.

Otherwise m is said to be a partial graph morphism.

Definition 3. Let g = (g g g gV E target source, , ,) and h =
(h h h hV E target source, , ,) be two Graphs; a graph morphism from g to h is a
pair ()v em m m= , of mappings v g h e g hm V V m E E: → , : → , such that:

1. () (())g h e v ge E source m m source e∀ ∈ , = (source nodes are preserved);
2. () (())g h e v he E target m m target e∀ ∈ , = (target nodes are preserved).

Definition 5. Let L = (NodeId, EdgeId) be a pair of disjoint and finite sets of
predefined labels. g is said to be a (I)-graph iff g is a tuple (g, Id) such that:

1. g is a graph (see definition1);
2. Id is a pair of bijective functions, ()v eId Id Id= , where

vId V NodeId: → and eId E EdgeId: → .

3. An Ontology for User Interface Specification

126

From definition 5 and 6, it can be said that (I)-Graph is a category with (I)-Graphs
as objects and identifier preserving morphisms as morphisms.

Note that vId and eId are bijective functions. Two nodes or edges cannot share
the same identifier and for each identifier is univocally mapped onto an identifier.
In mathematical term this can be expressed as follows:

, (), () ()x y V E Id x Id y x y∀ ∈ ∪ = ⇒ = (Id is injective).
, () | ()y NodeId EdgeId x V E Id x y∀ ∈ ∪ ∃ ∈ ∪ = (Id is a surjection).

3.3.4 Labeled Graphs

A label attached to each node and edge is introduced in order to label graph
components with a name.

Definition 7. Let L = (NodeLabel, EdgeLabel) be a pair of disjoint and finite
sets of predefined labels. g is said to be a (L)-graph iff g is a tuple (g, Label)
such that:

1. g is a graph (see definition 1) ;
2. Label is a pair of functions, Label = (v eLabel Label,) where

vLabel V NodeLabel: → and eLabel E EdgeLabel: → .

Definition 6. Let g and h be two (I)-Graphs; Let m be a pair ()v em m m= ,
of mappings v g h e g hm V V m E E: → , : → ; m is an identifier preserving (I)-
Graph morphism if:

1. () (())g g e v ge E source m m source e∀ ∈ , = (source nodes are preserved);
2. () (())g h e v ge E target m m target e∀ ∈ , = (target nodes are preserved);
3. () ()v v gId g Id g m= (nodes Id are preserved);
4. () ()e e gId g Id g m= (edges Id are preserved).

3. An Ontology for User Interface Specification

127

From definition 7 and 8, it can be deduced that (L)-Graph is a category with (L)-
Graphs as objects and label preserving morphisms as morphisms.

An important discussion on the nature of labeling functions is to be made.
Indeed, the property of this function varies following the level of abstraction on
which it is defined.

When our graph structure is exploited to describe a meta-model, a labeling
functions vLabel and eLabel is totally bijective. This property can be
mathematically expressed as follows:

, (), () ()x y V E Label x Label y x y∀ ∈ ∪ = ⇒ = (Label is injective).
, () | ()y NodeLabel EdgeLabel x V E Label x y∀ ∈ ∪ ∃ ∈ ∪ = (Label is a

surjection).

This means that each graph component is univocally associated with a label and
that each label is associated with a graph component. At this level identification
and labeling functions are partly redundant.

But our graph language is supposed to describe meta-types as well as their
instances (these instances being UI models). In this case the labeling functions

vLabel and eLabel are only partial functions. This means that two UI model
elements may share a same label.

Another important remark to be made is that the label is not used to specify a
graph component type. An additional typing mechanism is introduced for this
purpose.

Definition 8. Let g and h be two (L)-Graphs; Let m be a pair ()v em m m= ,
of mappings v g h e g hm V V m E E: → , : → ; m is an label preserving (L)-

Graph morphism if:
1. () (())g g e v ge E source m m source e∀ ∈ , = (source nodes are preserved);
2. () (())g h e v ge E target m m target e∀ ∈ , = (target nodes are preserved);
3. () ()v v gLabel g Label g m= (node labels are preserved);
4. () ()e e gLabel g Label g m= (edge labels are preserved).

3. An Ontology for User Interface Specification

128

3.3.5 Constrained Graphs

Constraining functions that operate on nodes or edges allow us to attach to any
node or edge an arbitrary number of constraints. Constraints can consist in the
expression of cardinality constraints, restrictions on the domain or the co-domain
of certain functions, etc. It is proposed to express these constraints with first
order logic expressions.

From definition 9 and 10, it can be deduced that a (C)-Graph is a category with
(C)-graphs as objects and constraint preserving morphisms as morphisms.

3.3.6 Typed Graphs

Typing allows classifying nodes and edges by attaching types to them. Attaching
several nodes (or edges) to the same types indicates a commonality in terms of
properties between these nodes (or edges).

Definition 10. Let g and h be two (C)-Graphs; Let m be a pair
()v em m m= , of mappings v g h e g hm V V m E E: → , : → ; m is an constraint

preserving (C)-Graph morphism if:
1. () (())g h e v ge E source m m source e∀ ∈ , = (source nodes are preserved);
2. () (())g h e v ge E target m m target e∀ ∈ , = (target nodes are preserved);
3. () ()v v gCo g Co h m= (nodes constraints are preserved);
4. () ()e e gCo g Co g m= (edges constraints are preserved).

Definition 9. Let C = (NodeConstraint, EdgeConstraint) be a pair of disjoint and
finite sets of node constraints and edge constraints. g is said to be a (C)-
graph iif g is a tuple (g Co,) such that:

1. g is a graph (see definition 1);
2. Co is a pair of surjective functions, Co = ()v eCo Co, where

vCo V NodeConstraint: → and eCo E EdgeConstraint: → .

3. An Ontology for User Interface Specification

129

From definition 11 and 12, it can be deduced that a (L)-Graph is a category with
(L)-graphs as objects and type preserving morphisms as morphisms.

The typing functions introduced here are total. This means that for all graph
component there is a corresponding type. A same type may be assigned to several
elements. A type may have no graph component of its type. This is
mathematically expressed as follows:

(), | ()x V E y NodeType EdgeType Type x y∀ ∈ ∪ ∃ ∈ ∪ =

3.3.7 Identified, Labeled, Constrained and Typed graph

All features defined above can be consolidated in a single graph category called
(Identified, Labeled, Constrained, Typed)-Graphs (in short: (I,L,C,TY)-Graphs).
Note that this consolidation could be modularized that is to say that features
presented above can be consolidated "a la carte".

Definition 12. Let g and h be two (TY)-Graphs; Let m be a pair
()v em m m= , of mappings v g h e g hm V V m E E: → , : → ; m is an type

preserving (TY)-Graph morphism if:
1. () (())g h e v ge E source m m source e∀ ∈ , = (source nodes are

preserved);
2. () (())g h e v ge E target m m target e∀ ∈ , = (target nodes are

preserved);
3. () ()v v gTy g Ty g m= (nodes types are preserved);
4. () ()e e gTy g Ty g m= (edges types are preserved).

Definition 11. Let TY = (NodeType, EdgeType) be a pair of disjoint and finite
sets of predefined types. g is said to be a (TY)-graph iff g is a pair (g ,Ty)
such that :

1. g = is a graph (see definition 1);
2. Ty is a pair of total functions attaching a type to each node and

edge of the graph. Type = ()v eTy Ty, where vTy V NodeType: →
and eTy E EdgeType: → .

3. An Ontology for User Interface Specification

130

From definition 13 and 14, it can be deduced that (I,L,C,TY)-Graph is a category
with (I,L,C,TY)-graph as objects and (I,L,C,TY)-Graph morphism as morphisms.

This consolidation has the advantage of being modular. This means that features
presented above can be consolidated in an "a la carte" way to form other
categories.

3.3.8 An Improved Typing Function

We want to have a better control on the typing mechanism. Graph types are
introduced for this purpose ([Monta96,Corra96,Heck96]). Graph types contain all
"type information" that is used to type the model level.

Types that are returned by the functions vTy and eTy (see definition 11) belong
to two type sets (NodeType , EdgeType). These sets contain possible types.
The main idea with graph types is to replace type sets by graphs. In order to
support this, the typing mechanism of definition 11 has to be slightly adapted.

Definition 14. Let g and h be two (I,L,C,TY)-Graphs; Let m be a pair
()v em m m= , of mappings v g h e g hm V V m E E: → , : → ; m is an identifier,

label, constraint, and type preserving (I,L,C,TY)-Graph morphism iff:
1. m is a graph morphism (definition 5)
2. m is an identifier preserving morphism (definition 7)
3. m is a label preserving morphism (definition 9)
4. m is a constraint preserving morphism (definition 11)
5. m is a type preserving morphism (definition 13).

Definition 13. g is an (Identified,Labelled,Constrained,Typed)-graph iff:
1. g is a graph (see definition 1)
2. g is an identified graph (see definition 6)
3. g is a labeled graph (see definition 8)
4. g is a constrained graph (see definition 10)
5. g is a typed graph (see definition 12).

3. An Ontology for User Interface Specification

131

The above definition asserts that there must be a correspondence between, on the
one hand, node and edge type at the model level and, on the second hand, node
and edge labels at the meta-level. Furthermore, constraints defined on labels in
TG are applicable to types in g . This situation is expressed in Fig. 3-17.

(n53)In a Silent Way

: Track

(n45)M. Davis

: Artist

(n46)C. Corea

: Artist

(e14) : Recordsε

Accompanies

Records 0..*
TrackArtist

(e15) : Recordsε

(e17) : Accompaniesε

TG−Typed Graph

Type Graph TG

IsOf

Figure 3-17 Typed Graph and its Graph Type

In addition the following graph morphisms can be defined:

From definition 15 and 16 it can be said that (L,C)-Graph is a category with (L,C)-
graphs as objects and nesting preserving morphisms as morphisms.

Definition 16. Let g and h be two (I,L,C,TY) TG-Typed Graphs;
m g h: → is a (I,L,C,TY) TG-Type preserving graph morphism iff:

1. f is a (I,L,C,TY) graph morphism (see definition 17)
2. () () ()x dom m type h f type g∀ ∈ : = .

Definition 15. Let ()Type NodeType EdgeType= , be a pair of disjoint and
finite sets of types. Let TG be a fixed (L,C)-graph (TG is called a type graph). g
is said to be a (I,L,C,TY) TG-Typed graph iff g is a pair (g,Ty)TG where:

1. g is a (I,L,C,TY,N)-graph (see definition 16).
2. TGTy g TG: → such that type is a total (L,C)-graph morphism.

3. An Ontology for User Interface Specification

132

From definition 15 and 16, it can be asserted that constraints defined in a type
graph TG can also constrain the corresponding TG-Typed graph. For instance, a
cardinality constraint on an edge between two types in a TG graph is effective on
the TG-Typed graph. This could be expressed mathematically as follows:

() " "
{ () " " () } (1 3)

v V ifTy v tutorial E E
E e E Label e isGivenBy source e v E

′∀ ∈ , = ⇒ ∃ ⊆ ∧
′ ′= ∈ | = ∧ = ∧ ≤| |≤

In the above expression we define a cardinality constraint between a node
representing an entity labeled "tutorial" and another entity labeled "speaker". The
expressed constraint says that a tutorial cannot be given by more than three
speakers.

Other constraints can limit the domain or the co-domain of source and target
functions in order to avoid or force the use of certain type of edges with certain
type of nodes. For instance an edge with the label "Is Husband Of" can only
occur between two nodes with label "man" and "woman" (not the case anymore
in Belgium). This example is mathematically expressed as follows:

1 2 1

2 1

() " " ()
() () " " () " "e

e E label e isHusbandOf v v V source e v
target e v Label v man Label v woman
∀ ∈ , = ,∃ , ∈ | = ∧

= ⇒ = ∧ =

The reader may have noticed that examples of constraints have been defined on
labels and not on types. Indeed, these examples are expressed at the concept level.
They will be enforced at the model level. As labels at the concept level are types at
the model level it is normal to express constraints on labels at the meta-level. In
the second example, the "translation" of the constraint at the model level gives:

1 2, () " ", , | ()e E Type e isHusbandOf v v V source e∀ ∈ = ∃ ∈ ∧
2 1 2() () " " () " "target e v Type v man Type v woman= ⇒ = ∧ =

In order, to simplify the expression of type graphs, types can be structured into
partial orders. Organizing nodes and edges of the type graph into a partial order
(see definition 18) presents the advantage of propagating constraints i.e.,
constraints applicable to one type can be directly inherited by all subtypes of this
type.

3. An Ontology for User Interface Specification

133

As said above the definition of type graphs can be exploited to propagate
constraints among types. Such a propagation mechanism is expressed in definition
20.

Definition 19. The set of EdgeLabel (see definition 8) is a partial order if

e E∃≤ ∈ , such that:
1. Reflexivity: vedgelabel EdgeLabel edgelabel n∀ ∈ ⇒ ≤
2. Antisymmetry:

i j i v j

j v i i j

edgelabel edgelabel EdgeLabel ifedgelabel edgelabel

edgelabel edgelabel edgelabel edgelabel

∀ , ∈ , ≤ ∧

≤ ⇒ =

3. Transitivity:
i j k i v

j j v k i v k

edgelabel edgelabel edgelabel EdgeLabel ifedgelabel

edgelabel edgelabel edgelabel edgelabel edgelabel

∀ , , ∈ , ≤

∧ ≤ ⇒ ≤

Definition 17. A (L,C)-type graph TG is said to be (v e≤ ,≤)-ordered graph if
(NodeLabel, v≤) and (EdgeLabel, e≤) are partial order.

Definition 18. The set of NodeLabel (see definition 8) is a partial order if
v E∃≤ ∈ , such that:
1. Reflexivity: vnodelabel NodeLabel nodelabel nodelabel∀ ∈ ⇒ ≤
2. Antisymmetry:

i j i v j

j v i i j

nodelabel nodelabel NodeLabel ifnodelabel nodelabel

nodelabel nodelabel nodelabel nodelabel

∀ , ∈ , ≤

∧ ≤ ⇒ =

3. Transitivity:
i j k i v

j j v k i v k

nodelabel nodelabel nodelabel NodeLabel if nodelabel

nodelabel nodelabel nodelabel nodelabel nodelabel

∀ , , ∈ , ≤

∧ ≤ ⇒ ≤

3. An Ontology for User Interface Specification

134

Definition 20. If T is partial-ordered type graph then the following
inheritance mechanisms must be defined:

1. () ()t vv w V ifvlabel v vlabel w∀ , ∈ : ≤ then
() ()vconstraints w vconstraints v⊆ (constraints of supertypes are

inherited from subtypes)

2.

1 2 1 2 1 1

2 1 2 1

2 2

() ()
() () () ()

() ()
() () () ()

t t

v

t

e E s s t t V if source e s target e t
vlabel s vlabel s vlabel t vlabel t

f E source f s target f t
elabel f elabel e econstraints f econstraints e

∀ ∈ :∀ , , , ∈ : = ∧ = ∧

≤ ∧ ≤ ⇒
∃ ∈ | = ∧ = ∧

= ∧ =

(edge constraints between supertypes are inherited by edges among
subtypes).

3. An Ontology for User Interface Specification

135

3.4 Concrete Syntax: a visual and textual syntax

A concrete syntax is an external appearance of a language. Describing a concrete
syntax of a language consists of describing the allowed sentences of this language.

Historically, concrete syntaxes for formal languages have been expressed textually.
Extended Backus-Naur Form grammars (EBNF), for instance, have been
extensively used for this purpose [ISO96]. Fig. 3-18 shows a possible grammar for
our language.

<uiSpecification>::={<uiModel>}
 <uiModel>::={<node>}| {<edge>}
<node>::= <nodeId> | <name> | <type> | {<attribute>} |{<constraint>}
<edge>::= <edgeId> | <label> | <type> | {<constraint>} | sourceNode | targetNode
<nodeId>::=<id>
<edgeId>::=<id>
<id>::= <char> | {<char>}
<name>::= <char> | {<char>}
<char> ::= a|b|c|d|e|f|g|h|i|k|…|8|9|0|…
<attribute> ::= <name> | value
<value>::= <char> | {<char>}
<type>::= [listOfTypes]
<edge>::= <type> | <attribute> | <sourceNodeId> | <targetNodeId>
<sourceNodeId>::=<id>
<targetNodeId>::=<id>
<constraint>::= …

 Figure 3-18 An excerpt of a BNF grammar of our language

We propose two types of syntax for our language: a visual one and a textual one.
The visual syntax consists of boxes and arrows, a somewhat classic representation
for a graphical structure. This visual syntax is mainly used in this work as an
expression means for the transformation rules that are going to be developed in
Chap. 4. The textual syntax is an XML based language, called UsiXML, its main
use is to serve as exchange format between various applications exploiting our UI
specification models at all development stages.

3. An Ontology for User Interface Specification

136

3.4.1 Visual syntax

A simple visual syntax is proposed based on the conceptual schemas described
above. This syntax is taken from Attributed Graph Grammar tool (AGG)
[Ehri99], a generic tool for specifying and executing graph transformations. This
visual notation is illustrated in Fig. 3-19. A node is represented as a box. Node
types are indicated on the upper part of this box, attribute-value couples are listed
in the upper part of the box. Edges are represented as directional arrows. Their
type appears as their label.

Node type
Node

(Attribute,value)
Edge type

Edge
(Attribute,value)

Node

Edge

Node type
Node

(Attribute,value)
Edge type

Edge
(Attribute,value)

Node

Edge

Figure 3-19 Visual syntax for expressing a host graph

3.4.2 UsiXML: textual syntax

XML stands for eXtensible Markup Language. XML is a subset of SGML, like
HTML. An XML document is a textual document describing a set of data (not
information!) with a tree-like structure. The aim of this format is to define a
standard for exchanging data between heterogeneous applications (Req.22: Support
for tool interoperability).

Unlike HTML, XML allows its users to define customized language elements.
That’s why XML is said extensible (Req. 10: Ontological extendibility). Even if XML,
and markup languages in the large, was designed to be read by machines (Req. 5:
Machine-readable) the fact that the data is conveyed with its underlying structure
facilitates its legibility by a human agent (Req. 3: Human readable).

3. An Ontology for User Interface Specification

137

A definition of elements valid for a certain class of XML documents may be
gathered in a Document Type Definition (DTD) or in a Schema [W3C01]. XML
Schemas were introduced after DTD’s and have the two main advantages of
allowing a stronger typing mechanism, and a definition of inheritance
relationships.

The conceptual schemas presented in Sec. 3.2 have been translated into an XML
schema. The main difficulty in working with XML schemas is that, like DTDs,
they only allow a description of tree-structured documents. A difficulty emerges as
our abstract syntax consists of graphs. To mimic this graph structure we introduce
two main types of XML elements: those that describe concepts called elements nodes
(classes in conceptual schemas), those that describe concept relationships called
element relationship (association classes or associations in conceptual schemas).

Element nodes are described with an XML element tag. XML attributes are used
to describe the element’s attributes (e.g., Fig. 3-20).

Figure 3-20 a UsiXML element

Element relationships are all described using the same structure. An element
allows designating the relationship name. A tag source and a tag target enable a
specification of the source and target of the relationship (e.g., Fig. 3-21).

Figure 3-21 a UsiXML relationship

It is important to note that several relationships may be defined implicitly in
UsiXML taking advantage of an XML document structure.

Figure 3-22 Implicit relationships in UsiXML

3. An Ontology for User Interface Specification

138

The relationships representing a structural decomposition are represented using
the tag embedding structure (i.e., tree structure) of XML. These relationships are
task decomposition and interaction objects decomposition relationships. From
Fig 3-22, a graphicalContainment relationship between Window1 and Button1 may
be inferred from the embedding of the second element in the first one.

The adjacency relationships (abstract, graphical and auditory) are represented by
the sequence of elements in a specification. In Fig. 3-22, a relationship of
graphicalAdjacency may be inferred between Button1 and Button2 from the
ordering of declaration of these elements with Window1.

3. An Ontology for User Interface Specification

139

3.5 Conclusion

This chapter has presented an ontology for the specification of UIs.

For this purpose it introduced the following concepts:

 Viewpoints materializing different “concerns” on the UI system (Req. 6:

Ontological separation of concern). Four viewpoints have been introduced,
motivated, and extensively defined: A final UI viewpoint is the implementation
of a UI system it can be seen from the code level or from the rendering level
(i.e., its appearance); A concrete UI viewpoint is a description of a UI that is, as
independent as possible, of any reference to implementation details (i.e.,
toolkit). An abstract UI has been defined as a description of the UI that is, as
independent as possible, of any reference to the modalities for which a UI is
designed (e.g., graphical interaction, vocal interaction). A Task and Domain
viewpoint concerns a representation of UI systems in terms of tasks to be
carried out by a user in interaction with the system along with the domain-
oriented concepts as they are required by these tasks to be performed.

 UI models have been exposed thanks to conceptual schemas expressed in UML
(Req. 1: Ontological explicitness). UI models gather abstractions of interest in the
development of a UI system. Some of the UI models are transversal to all
viewpoints. A context model describes the context for which a set of models,
a model or a part of a model is specified for. An inter-model relationship
allows relating different models (Req. 8: Ontological homogeneity) either if they
belong to different viewpoints (Req. 20: Traceability) or to a same viewpoint.

In Sec. 3.3, a mathematical formalism has been presented as an abstract syntax for
representing the conceptual schemas of Sec. 3.2., and their instance (Req. 4:
Formality, Req. 8: Ontological homogeneity). This formalism consists in “directed,
identified, labeled, constrained and typed graphs”. We relied on the theory of
categories and the morphism construct to progressively enrich an initial definition
of a directed graph with the desired features. In this way, any theoretical result
proven for the category of graphs can be applied to the graph construct exposed
in this chapter.

Finally, in Sec. 3.4., as any ontology needs a concretization to be manipulated in
the real world, we defined two different, yet semantically equivalent, concrete

3. An Ontology for User Interface Specification

140

syntaxes. These two syntaxes reflect the conceptual structure introduced in Sec.
3.2. while respecting the graph-based mathematical notation introduced in Sec.
3.3. A graphical syntax relies on boxes and arrows to express concepts in the
scope of our language and their relationships. A textual syntax, called UsiXML, is
based on an XML schema definition (Req 5: machine readable, Req. 22: Support for
tool interoperability).

4. Multi-Path Development of User Interfaces

141

Chapter 4 Multi-Path Devel-
opment of User Interfaces

4.1 Introduction

Chapter 2 concluded with an enumeration of observations on the state of the art
in transformational development of UIs. From these observations a set of
shortcomings outlined deficiencies in the approaches described so far in the
literature. A set of requirements was finally elicited to address these shortcomings.

This chapter addresses the methodological shortcomings and requirements of
Chapter 2 by defining a flexible methodological framework for achieving
transformational development of UIs.

Chapter 3 introduced an ontology for describing UIs according to various
viewpoints. This chapter introduces the principles of multi-path development of
UI by integrating the viewpoints in a development methodology where (1) each
viewpoint becomes a development stage (2) each transition between viewpoints is
a development step (3) each development step is realized through a series of
transformations defined in a transformation catalog.

In such a framework, three types of transformations can be identified: model-to-
model transformations, model-to-code transformations (for generating UI code
from models), and finally, code-to-model transformations (for extracting a model
from UI code).

4. Multi-Path Development of User Interfaces

142

This dissertation is focused on model-to-model transformations. Model-to-code
transformations are supported by techniques that have already benefited of a lot
of attention in the literature [Czar00]. Although we also propose, a model-to-code
tool (Sec. 4.8.5), it is simply an adaptation of existing model-to-code solutions to
our proper case. Code-to-model transformations are supported by specific
techniques that would necessitate a dissertation in itself. We rely on [Boui04] to
perform this transformation.

Section 4-2 presents the reference framework that is used to illustrate the multi-
path development of user interfaces. This framework introduces the concepts of
development path, development step and development sub-step.

Section 4.3 introduces the language that is used to perform development steps of
our framework i.e., graph rewriting and graph grammars. Graph rewriting and
graph grammars are introduced and motivated in Sec. 4.3.2. An articulation of
graph grammars with our reference framework is discussed in Sec. 4.3.3. A series
of examples is then provided along with the presentation of the syntax used to
represent graph rewriting rules (Sec. 4.3.4). Finally, the strategy for the application
of rewriting rules is discussed in Sec. 4.3.5.

Section 4.4 illustrates a specific path i.e., forward engineering by decomposing this
path into steps, and then steps into sub-steps. Each sub-step is discussed and
illustrated with one or several graph transformation rules that enable the
realization of this sub-step.

Section 4.5 discusses the application of graph transformation to another
development path: reverse engineering.

Section 4.6 addresses a third type of development path, namely context of use
adaptation. A transformation step has been defined for transforming each
viewpoint into a viewpoint of the same type but adapted to new constraints
imposed by a change in the intended context of use of the UI to build.

Section 4.7 presents a series of tools that have been developed around the
concept of multi-path development of UIs.

Section 4.8 concludes by, notably, discussing our solution to the light of the
requirements identified in Chapter 2.

4. Multi-Path Development of User Interfaces

143

4.2 Reference Development Framework

Chapter 3 introduced a concept of UI viewpoint i.e., task and domain, abstract user
interface, concrete user interface, final user interface. Viewpoints are not only
conceptual perspectives on a UI but also possible stages in a development
process. A framework introduced by [Calv03], integrates viewpoints into a
development process perspective (left part of Fig. 4-1). This framework defines
transitions between different viewpoints. Theses transitions are called development
steps (each occurrence of a numbered arrow of Fig. 4-1).

A development step (hereafter referred as step) is a transformation process of an
instance of a source viewpoint into another instance of a target viewpoint where
source and target viewpoints types are directly adjacent in the development
process.

Task and
Domain
Task and
Domain

Abstract
User Interface

Abstract
User Interface

Concrete
User Interface

Concrete
User Interface

User Interface
Code

User Interface
Code

Reification

Abstraction

Translation

Code Generation

Code Reverse
Engineering

Forward Engineering
section 4.4.1
section 4.4.2
section 4.4.3

Reverse Engineering

section 4.5
Context Adaptation

section 4.6.1
section 4.6.2
section 4.6.3

Task and
Domain
Task and
Domain

Abstract
User Interface

Abstract
User Interface

Concrete
User Interface

Concrete
User Interface

User Interface
Code

User Interface
Code

Reification

Abstraction

Translation

Code Generation

Code Reverse
Engineering

Reification

Abstraction

Translation

Code Generation

Code Reverse
Engineering

Forward Engineering
section 4.4.1
section 4.4.2
section 4.4.3

Reverse Engineering

section 4.5
Context Adaptation

section 4.6.1
section 4.6.2
section 4.6.3

Figure 4-1 Transformation between viewpoints (left, mid.) & chapter reading map (right)

Development steps may be categorized as follows:

 Reification (1,2 in Fig. 4-1) is a transformation of a high-level

requirement into a form that is appropriate for low-level analysis or
design.

 Abstraction (5,6 in Fig. 4-1) is a transformation of a low level
specification into a high-level specification

4. Multi-Path Development of User Interfaces

144

 Translation (7,8,9 in Fig. 4-1) is a transformation of a UI specification to
adapt this specification to the constraints imposed by a new context of
use. The context of use is defined after [Thev01] as a triple of the form (e,
p, u) where e is a possible or actual environments considered for a software
system, p is a possible or actual target platform, u is a user stereotype.

 Code generation (3 in Fig. 4-1) is a process of transforming a concrete
UI model into a compilable or interpretable code.

 Code reverse engineering (4 in Fig. 4-1) is the inverse process of code
generation i.e., it retrieves a concrete UI specification from a coded
artifact.

Development steps may be combined to form development paths.

A development path (hereafter referred as path) represents a realization of a
development activity in a particular project context. It is characterized by an initial
viewpoint and a final viewpoint that is the goal of the development activity. A
development path is represented by an archetypal composition of development
steps.

Different types of development paths can be identified:

 Forward engineering (or requirement derivation) is “the traditional

process of moving from high-level abstractions and logical,
implementation-independent designs to the physical implementation”
[Chik90, Byrn92]. In this dissertation forward engineering can be viewed
as a composition of reifications and code generation enabling a transformation
of a high-level viewpoint into a lower level viewpoint.

 Reverse engineering is “the process of analyzing a subject system to
(i)identify the system's components and their interrelationships and
(ii)create representations of the system in another form or a higher level of
abstraction” [Chik90, Byrn92]. In this dissertation reverse engineering can
be seen as a composition of abstractions and code reverse engineering enabling a
transformation of a low-level viewpoint into a higher level viewpoint.

 Context (of use) adaptation is the process of adapting a UI specification
for another context from the one it was designed for. Context adaptation
can be obtained from a translation of a UI model at any level.

Other development paths like:

4. Multi-Path Development of User Interfaces

145

 Retargeting. This transition is useful in processes where an existing system
should be retargeted, that is migrated from one source computing platform to
another target computing platform that poses different constraints.
Retargeting can be composition of reverse engineering, context adaptation
and forward engineering. In other words a UI code is abstracted away into a
CUI (or an AUI). This CUI (or AUI) is reshuffled according to specific
adaptation heuristics. From this reshuffled CUI (or AUI) a new interface code
is created along a forward engineering process.

 Middle-Out development is a term coined by [Luo95]. It refers to a

situation where a developer starts a development by a specification of the UI
(no task or concept specification is priory built). Several contributions have
shown that, in reality, a development cycle is rarely sequential and even rarely
begins by a task and domain specification. The literature in rapid prototyping
converges with similar observations. Middle-out development shows a
development path starting in the middle of the development cycle e.g., by the
creation of a CUI or AUI model. After several iteration at this level (more
likely until customer’s satisfaction is reached) a specification is reverse
engineered. From this specification the forward engineering path is followed.

 Leapfrog development refers to the situation where an intermediary

viewpoint is bypassed in the transformation process. In our framework for
instance, it might not be needed to define an AUI if only one modality is
targeted.

Development steps may be decomposed into development sub-steps.

A development sub-step (hereafter referred as sub-step) represents the
realization of a particular concern in the achievement of a development step.

Some of these activities have been identified by [Luo95]. It can consist, for
instance, of the selection of concrete interaction objects, the definition of the
navigation, the definition of the container structure. This chapter proposes a set
of sub-steps associated to each development step. The definition of development
sub-steps may depend on the designer’s practice, the organization rules, the type
of artifact that is built, etc.

4. Multi-Path Development of User Interfaces

146

4.3 A Language for Specifying UI Models
Transformation: conditional graph rewriting

4.3.1 Introduction

Model-to-model transformations have received a lot of attention in the recent
literature [Varr02b, Mell03, Agra03]. The profusion of works on model-to-model
transformation is mainly due to the Object Management Group (OMG) proposal
on Model Driven Architecture [Mill02, OMG04].

Several techniques have been proposed in the literature to perform model-to-
model transformation as required by our general framework (see Fig. 4-1). They
have been surveyed in [Gerb02,Send03,Czar03]. The most relevant ones are:

 Imperative languages provide a mean to perform model transformation:

− Text-processing languages like Perl or Awk are popular to perform
small text transformation. These languages cannot be considered
to specify complex transformation systems as they force the
programmer to focus on very low- level syntactic details.

− Several environments provide APIs to manipulate and transform
models and, often, their corresponding meta-models. Jamda
[Booc99], UMLAUT [Ho99], dMof [dMof02], Univers@lis
[Univ99].

 Relational approaches [Ake03, Gerb02] rely on the declaration of mappings

between source and target element types along with the conditions in
which a mapping must be instantiated. Mapping rules can be purely
declarative, and non executable, or executable thanks to a definition of an
execution semantic. Relational approaches are generally implemented
using a logic-based programming language and require a clear separation
of the source and target models.

 XSLT [Clar99] transformations are a good candidate as models have,

generally, a syntactical representation in an XML-compliant format. The
way XSLT proceeds is very appealing as it 1) searches for matches in a
source XML document 2) executes a set of procedural instructions, when
a match is found, to progressively construct a target XML file.

4. Multi-Path Development of User Interfaces

147

Unfortunately, some experiences [Gerb02] showed that XSLT
transformations are not convenient to compute model transformation for
two main reasons 1) their verbosity has been identified as a major problem
to manage complex sets of transformation rules 2) their lack of
abstraction: progressively constructing a target XML file entails an
inclusion, in transformation rules, of syntactic details relative to the target
file.

 Common Warehouse Metamodel specification [OMG03b] provides us with a

set of concepts to describe model transformation. Transformations can be
specified using a black box or a white box metaphor. Transformations are
grouped in transformation tasks (some meaningful set of
transformations). These are themselves grouped in transformation
activities. A control flow of transformation can be defined between
transformation tasks at this level (with the concept of transformation
step). Even if transformations allow a fine-grained mapping between
source and target elements, CWM does not provide us with a predefined
language to specify the way these elements are transformed one to
another.

 Graph rewriting has been used for many years to represent complex

transformation systems. Graph rewriting is based on a pattern matching
mechanism that selects a sub-graph in a graph structure and applies to this
sub-graph any type of transformation (adding, deleting, or modifying a
node or an edge). Graph rewriting rules may be gathered along with the
graph on which they apply to form a, so called, graph grammar. Graph
grammars have been applied in the software engineering field for
representing, notably: software refactoring [Mens03], software evolution
[Heck02], multi-agent system modeling [Depk02], modeling language
formalization [Varr02a]. In the context of UI development, two
approaches make an interesting use of graph rewriting rules: [Freu92]
defines primitives for the manipulation of task models while
[Sucr97,Sucr98] defines state based automaton where state transitions are
operated with transformation rules.

Graph rewriting and graph grammars have been selected in the context of this
dissertation to represent the various types of development steps populating our
framework (see Fig. 4-1). The main reasons for this choice are that graph
grammars:

4. Multi-Path Development of User Interfaces

148

 are rather declarative (they are based on graph patterns expression) and

provide an appealing graphical syntax which does not exclude the use of a
textual one (Req. 12: Methodological explicitness, Req. 17: Methodological
extendibility).

 are based on a formally defined execution semantics based notably on

pushout theory, for which many proofs have been provided (i.e.,
completeness [Habe01]; confluence [Heck02b]). (Req. 14: Methodological
formality, Req. 15: Executability, Req. 19: Predicatbility).

 allow to describe transformations with the same vocabulary as

specification models in a very consistent manner and for all development
steps (Req. 18: Methodological homogeneity).

 provide extensions (i.e., conditional graph rewriting, typed graph

rewriting) to check important properties of the artifact that is produced
after a transformation (Req. 21: Correctness).

 offer modularity by allowing the fragmentation of complex transformation

heuristics into small, independent chunks. The fact that graph rewritings
have no-side effects facilitates this modularization (Req. 16. Methodological
separation of concern).

4.3.2 Graph Rewriting and Graph Grammars: an overview

In Chapter 3, we have introduced a formalism that enables a representation of a
UI specification using a graph structure. For the reasons developed above, graph
rewriting systems appeared a natural choice to perform “high level manipulation”
of graph structures i.e., reification, abstraction, and translation (see Sec. 4-2). We
explain in this section the type of approach adopted in this work.

4.3.2.a An introduction to graph grammars

Graph grammars provide us with an intuitive formalism for manipulating graph
structures. A graph grammar is a set of graph rewriting rules (called in this work
graph transformation rules), a graph to transform (called host graph or initial graph) and

4. Multi-Path Development of User Interfaces

149

a set of parameters (called embed) defining how to apply the rules on the host
graph.

An algebraic approach to graph grammars has been invented by [Ehri73,79].
This approach generalizes, from strings to graphs, context-free grammars as
introduced by Chomsky [Chom56]. This approach is called algebraic because it
considers graphs as a special kind of algebra and defines a gluing operation of
graphs as an algebraic construction called pushout in the category of graphs and
total graph morphisms [Corra97].

The main advantage of the algebraic approach is that it enables proofs for a
general category of graphs (it is based on category theory). Consequently, it is
possible to apply those proofs to a large body of structures belonging to a general
category of graphs.

After [Löwe93], a graph transformation rule (LHS,K,RHS) may be defined as a set of
three graphs LHS, K, RHS. LHS is the Left Hand Side of the rule. It expresses a
graph pattern that, if it matches in the host graph, will be modified to result in
another graph called resultant graph. A LHS may be seen as a condition under
which a transformation rule is applicable. RHS is the Right Hand Side of a rule. K,
called gluing graph, is a sub-graph of LHS or RHS. It has two roles: (1) representing
what is preserved during the rule application (2) showing where added elements
are attached during the rule execution.

Definition 21. The application of a rule r to a graph G consists in the following
steps:
1. Find an occurrence of LHS in G (this occurrence is called a match). If several

occurrences exist, choose one non-deterministically.
2. Remove the part of G which corresponds to (LHS – K)
3. Add RHS – K to the result of last step
4. Embed RHS – K into G – (L – K) as it is given by the corresponding relation

between RHS – K and K

The application of the four steps presented above is common to all algebraic
approaches described in the literature. Two main transformation approaches have
to been introduced in the literature [Roze97]: the Double Pushout Approach
(DPO) and the Single Pushout Approach (SPO). The double pushout approach
is the first approach presented in the literature. The single pushout approach
[Löwe93] is a simplification of the first technique. The main difference between

4. Multi-Path Development of User Interfaces

150

the two techniques is that the first one makes an explicit use of an intermediary
graph construct K called gluing graph from which two total graph morphisms may
be defined :l K LHS→ and :r K RHS→ . The SPO (illustrated by Fig. 4-2)
defines a direct relation between a LHS and its corresponding RHS, this relation
consists of a partial graph morphism :r LHS RHS→ (see definition 4). In this
dissertation we decided to use a SPO because the results obtained for the DPO
are valid for the SPO as this latter has been proved a generalization of the first.
Furthermore, the SPO is more intuitive than the DPO.

Definition 22. A transformation rule r LHS RHS: → is a partial graph
morphism (see definition 4) from LHS to RHS

LHS

G

RHS

G’

r

m m*

r*

LHS

G

RHS

G’

r

m m*

r*

Figure 4-2 A rule application with the simple pushout approach

From definition 22, a direct transformation from G to G’ may be defined as
follows:

Definition 23. A , 'r mG G⇒ is a direct transformation such that ∃ total graph
morphism :m LHS G→ that forms a pushout (*r and *m) with

:r LHS RHS→ .

Intuitivelly, a pushout can be understood as a construction that allows to glue one
part of a structure to another part of a structure. It may be understood as follows:

Definition 24. A pushout (Fig. 4-2) of two graph morphisms :m LHS G→ and

:r LHS RHS→ is a triple (', *: ', *: ')G m RHS G r G G→ → such that:
1. G is a graph (see definition 1), *m and *r are graph morphisms (see

definition 4).
2. *m r° = *r m° (Commutativity. This property guarantees the existence of the

pushout)
3. ∀ graph E , ∀ graph morphism 1 :h RHS E→ , 2 :h G E→ and

4. Multi-Path Development of User Interfaces

151

1 2 : !h r h m° = ° ∃ graph morphism : 'h G E→ such that 1*h m h° = and
2*h r h° = (Universality. This property guarantees that 'G is minimal. For any

other graph for which the commutative property holds there should be only
one graph morphism between 'G and this graph).

LHS

G

RHS

G’

r

m m*

r*

E

h1

h2

h

LHS

G

RHS

G’

r

m m*

r*

E

h1

h2

h

Figure 4-3 Pushout construction applied to graph morphisms

Transformations can be combined to form transformation systems:

Definition 25. A transformation system is an arbitrary group of transformation
rules 1 2 3, , ,..., nr r r r indexed by their name.

From this definition a graph grammar may be defined as:

Definition 26. A graph grammar G can be defined as a tuple (,)G R where G
is a host graph (or initial graph) and R is a transformation system (see definition 25).

An “embed” is an important parameter in the application of a graph transformation
rule. Specifying removals and additions of elements in the resulting graph is not
enough. Indeed, one has to specify what happens with edges coming and going
from a node that is altered during an execution of a transformation. Are they left
dangling? Are they systematically erased? Different types of embed have been
studied in the literature. We adopt a simple and conservative approach regarding
this problem:

 If a node in LHS has a correspondence in RHS, all edges adjacent to this
node are preserved.

 If a node in LHS has no correspondence in RHS, all edges adjacent to this
node are erased.

4. Multi-Path Development of User Interfaces

152

4.3.2.b Conditional graph rewriting

Conditional graph grammars have been discussed very early in the literature.
Conditions may be positive, Positive Application Conditions (PAC), or negative,
Negative Application Condition (NAC). They may be also differentiated
depending on the moment they are checked. The following categories of
application conditions may be listed:

 Positive application pre-conditions are assertions on the host graph that have to
hold true before the application of a rule. Positive application conditions
were already mentioned in the seminal paper on graph grammars in 1969
[Pfalz69] and extended in [Ehri86, Habe96]. Most of positive application
conditions can be expressed within the LHS of a rule itself. Nevertheless,
when a condition falls far from the scope of a LHS it may be useful to
express such condition as a separate structure.

 Negative application pre-conditions, also called forbidden contexts, are
assertions that have to hold false before the application of a rule. Negative
application conditions were mentioned very early in the literature in
[Montanari70] and extended in [Ehrig86, Habe96].

 Positive and Negative application post-conditions are assertions that have to hold
respectively true or false after the application of a rule. If not verified, the
rule application is cancelled. Theoretical foundation of this technique can
be found in [Heck95].

Conditional graph rewriting significantly enhances the expressivity of
transformation rules. It is important to note that our implementation uses positive
application condition to verify the consistency of our grammars. That is to say, verify
that each graph produced by a transformation constitutes a legal sentence of the
target vocabulary. Our target vocabulary is defined by typed graphs (as explained
in Chapter 3). After each application of a rule the transformation engine checks if
the resultant graph is well compliant with the meta-language defined in the graph
of type. This process is referred in the literature as typed graph transformation.

Conditional graph rewriting entails a redefinition of our description of a rule
application:

Definition 27. The application of a rule (with pre- and post-conditions) r to a
graph G consists in the following steps:

4. Multi-Path Development of User Interfaces

153

1. Find an occurrence of LHS in G (this occurrence is called a match). If several
occurrences exist, choose one non-deterministically.

2. Check preconditions of both type PAC and NAC. If not verified, then skip
3. Remove the part of G which corresponds to (LHS – K)
4. Add RHS – K to the result of last step
5. Embed RHS – K into G – (L – K) as it is given by the corresponding relation

between RHS – K and K
6. Check postconditions of both type PAC (and notably that the resulting graph

is properly typed) and NAC. If not verified, then undo the transformation rule

4.3.3 Graph Grammars and the Reference Framework

Graph transformations are used to perform viewpoint-to-viewpoint
transformations i.e., reifications, abstractions and translations (see Fig. 4-1). We
transform a UI specification with a set of transformation rules taken from a
transformation catalog. Transformation rules have a common meta-model with
UI specification models. Indeed, a rule term (i.e., a NAC, a LHS, or a RHS) may be
seen as a fragment of specification. We preserve the consistency of transformed
artifact as the resultant UI specification is checked upon its meta-model.
Transformation rules resulting in a non-consistent resulting graph are not applied.
Our transformations are type preserving.

Meta -Model
Tomato Meta -Model

Meta - Model Subset 1
e.g., Task + Domain Model

Meta -Model Subset 2
e.g., Concrete UI Model

Initial UI Model
e.g., MyTaskandDomainModel

Resultant UI Model
e.g., MyConcreteUIModel

Transformation Rule
Tomato Transformation Catalog

uses
language

is instance
of is instance

of

Meta -Meta -Model
Graph Structure

is instance
of

Meta -Model
 Meta -Model

Meta - Model Subset 1
e.g., Task + Domain Model

Meta -Model Subset 2
e.g., Concrete UI Model

Initial UI Model
e.g., MyTaskandDomainModel

Resultant UI Model
e.g., MyConcreteUIModel

Transformation Rule
 Transformation Catalog

uses
language

is instance
of is instance

of

Meta -Meta -Model
Graph Structure

is instance
of

Figure 4-4 Type preserving UI model transformations

Fig. 4-4 shows how graph transformation articulates with the methodological
concepts introduced in Sec. 4.2. A development path is composed of
development steps. The latter being decomposed into development sub-steps. A
development sub-step is realized by one (and only one) transformation system
and a transformation system is realized by a set of graph transformation rules.

4. Multi-Path Development of User Interfaces

154

Development
step

Development
step

Development
sub-step

Development
sub-step

Development
path

Development
path

Transformation
System

Transformation
System

Transformation
Rule

Transformation
Rule

isComposedOf

isRealizedBy

isComposedOf

isComposedOf

*

1

*

1

1

*

1

0..1

Methodological World

Graph Transformation World

Development
step

Development
step

Development
sub-step

Development
sub-step

Development
path

Development
path

Transformation
System

Transformation
System

Transformation
Rule

Transformation
Rule

isComposedOf

isRealizedBy

isComposedOf

isComposedOf

*

1

*

1

1

*

1

0..1

Methodological World

Graph Transformation World

Development
step

Development
step

Development
sub-step

Development
sub-step

Development
path

Development
path

Transformation
System

Transformation
System

Transformation
Rule

Transformation
Rule

isComposedOf

isRealizedBy

isComposedOf

isComposedOf

*

1

*

1

1

*

1

0..1

Methodological World

Graph Transformation World

Figure 4-5 Articulation of graph transformations with transformational development of

UIs

In the remainder of this chapter, we illustrate three important path types i.e.,
forward engineering, reverse engineering, and adaptation to the context of use. An
example for each development step, and sub-step is provided. All examples use
the graphical formalism of the graph transformation tool AGG [Ehri99]
presented hereafter.

4.3.4 Concrete Syntax for Transformation Rules

4.3.4.a Visual syntax for transformation rules

This section provides several examples of basic transformations in order to allow
a reader that is unfamiliar with the graph transformation techniques to better
understand the more complex transformations of Sec. 4.4, 4.5, and 4.6. We use
simple node types (inspired from football) across the different examples. Each
example shows a particular feature on the type of transformation defined in this
dissertation.

4. Multi-Path Development of User Interfaces

155

 Node creation

The simplest rule that can operate on a graph is a node creation. Fig. 4-6
represents such a rule. Note the emptiness of the left hand side providing that no
condition is necessary to create the node described in the right hand side.

LHS RHS

::=Ø

LHS RHS

::=Ø

Figure 4-6 Creation of a node with attributes

 Node modification (identified instance)

Fig. 4-7 shows a rule selecting a specific node on the base of its id attribute and
assigns to this node a specific attribute value. In this case graph transformation
rules can not be considered as a pattern language as they make an explicit
reference to one graph element in the host graph. Note that even if the node
subject to the transformation is selected on the base of its id, it is necessary to
indicate explicitly the gluing conditions (i.e., figures before the node type). Indeed
the system does not know the semantics of the id (e.g., its uniqueness).

LHS RHS

::=

LHS RHS

::=

Figure 4-7 Node modification (identified instance)

4. Multi-Path Development of User Interfaces

156

 Node modification (unidentified instance)

Fig. 4-8 shows a rule that could be expressed as follows: “for all players that
played the match on the 04/06/04, align their salary to 2000”.

L H S R H S

::=

L H S R H S

::=

Figure 4-8 Node modification unidentified instance

 Negative application condition (1)

A negative application condition could be added to the preceding rule (Fig. 4-9).
This negative application condition transforms the meaning of the rule into: “for
all players that played the match on the 04/06/04, raise their salary to 2000 unless
they played the match of the 10/10/03” (this last match was a very bad one!).

LHS RHS

::=

NAC LHS RHS

::=

NAC

Figure 4-9 Negative application condition

 Negative application condition for iterative execution of rules (2)

If we want to be able to define rules that detect patterns on a graph structure and
make appropriate modifications depending on the presence of this pattern, we
have to let the system search iteratively for the left hand side. Consequently, there
is a risk that the pattern matching algorithm will match several times on the same
instances leading to an infinite looping of the execution of the rule. For this
purpose a special negative application condition has to be introduced. “NAC2” in

4. Multi-Path Development of User Interfaces

157

Fig. 4-10, is such an example. It says that the rule should not be applied if the
salary of the player equals already “2000”.

LHS RHS

::=

NAC1 NAC2 LHS RHS

::=

NAC1 NAC2

Figure 4-10 Negative Application Condition (2)

 Rule with variable and variable condition as positive application condition

Fig. 4-11 could be expressed as follows: “raise by 500 the salary of all players that
played the match of the 04/06/04 only if their salary was inferior to 3000”. This
rule illustrates two different mechanisms. A first one consists in the use of a
variable in the left hand side, this variable is incremented by a constant in the right
hand side (“x:=x+500”). A second one consists in the use of a positive application
condition that compares the value of a variable with a constant (note that x could
have been compared with another variable).

LHS RHS

::=

PAC

“X < 3000”

LHS RHS

::=

PAC

“X < 3000”

Figure 4-11 Rule with variable and positive application condition

 Transfer of an attribute value

Fig. 4-12 illustrates a very altruistic rule, which may be expressed as follows: “If
two players of a same team are friends and one earns more than the other, then
align their salaries”. Here the value of a variable is transferred from one node (the
richest player) to another one (the poor friend).

4. Multi-Path Development of User Interfaces

158

PAC LHS RHS

::=“X > Y”

PAC LHS RHS

::=“X > Y”

Figure 4-12 Transfer of an attribute value

 Edge creation

Fig. 4-13 illustrates a rule that could be expressed as follows “All players of
Louvain United with a salary greater than 3000 should be assigned to the match of
the 04/06/04” (It will be a tough match !)

LHS RHS

::=

PAC

“X > 3000”

NAC LHS RHS

::=

PAC

“X > 3000”

NAC

Figure 4-13 Edge creation

 Node deletion

Fig. 4-14 shows the most delicate operations of all: node deletion. Indeed, the
problem with node deletion is that they raise the question of dangling edges (see
discussion in Sec. 4.3.5). We adopt a very clear policy regarding this problem: all
edges pointing to or originating from a deleted node should be erased. In other
words, no dangling edges are allowed.

4. Multi-Path Development of User Interfaces

159

LHS RHS

::=

LHS RHS

::=

Figure 4-14 Node deletion

4.3.4.b Textual syntax

A textual expression of the transformation rules has been embedded in UsiXML
(see Sec. 3.4.2). This textual syntax allows us to store rules and constitute
transformation catalogs. Fig. 4-16 provides an example of the textual syntax used
for a rule. Note that, the implicitness of the adjacency relationship cannot be
transposed for rules as it raises ambiguities in the interpretation of rules (see
discussion in Sec. 3.4.2).

Figure 4-15 Textual syntax for expressing transformation rules

4. Multi-Path Development of User Interfaces

160

4.3.5 Application Strategy of Transformation Systems

A transformation system is composed of several rules. This raises the problem of
how to apply those rules while guaranteeing important properties: confluence and
termination.

An application strategy of a graph grammar is defined as the order in which
transformation rules are applied to an initial graph. Rules can be applied
concurrently, in an order independent manner, or in a controlled sequential way.
The rule application strategy raises the problem of the determinism of a grammar
i.e., its ability to produce one and only one resultant graph. This property is also
called confluence. The confluence property has been proved for a particular type of
grammars where transformation rules were shown parallely independent [Löwe93].
Very intuitively, confluence can be proved for a parallel execution if one can
demonstrate that transformation rules in a grammar do not interfere with each
other. That is to say that no rule deletes or introduces nodes that are needed by
another one to match.

In the context of this dissertation, the property of parallel independence is almost
never possible to possible to assess. This observation is a consequence of the
intrinsic nature of the process applied to an initial specification model. Indeed,
our transformation systems realize an incremental consolidation of an initial
specification. A transformation system relies, in most cases, on the information
(i.e., specification chunks) generated by a preceding application of another
transformation system.

Consequently, transformation systems proposed in this work must be controlled
with a special technique called Programmed Graph Rewriting [Schü97], a
generalization of ordered rewrite systems introduced in [Bunk82]. This techniques
uses graph rewriting rules as process units that may be composed arbitrarily using
a set of pre-defined operators (e.g., sequences, parallel sequences, loop structures,
test) as so to obtain a desired algorithmic behavior.

Our application strategy is represented in Fig. 4-16. A development step is
externally initiated (e.g., in response to a context change, by a designer’s decision,
by any external entity). Then the first transformation system is executed, when it
is terminated, the second one is applied and so forth until the last transformation
system terminates. A similar progression is applied into transformation systems.
This trivial application strategy solves the problem of confluence.

4. Multi-Path Development of User Interfaces

161

Rule n

Transformation
System 1

Rule 1

Rule 2

…

Rule n

Transformation
System 2

Rule 1

Rule 2

…

Rule n

Transformation
System ...

Rule 1

Rule 2

…

Rule n

Transformation
System n

Rule 1

Rule 2

…

: when source terminates apply target

: execute development step

Development Step α

Rule n

Transformation
System 1

Rule 1

Rule 2

…

Rule n

Transformation
System 2

Rule 1

Rule 2

…

Rule n

Transformation
System ...

Rule 1

Rule 2

…

Rule n

Transformation
System n

Rule 1

Rule 2

…

: when source terminates apply target

: execute development step

Development Step α

Figure 4-16 An ordered application strategy

Considering the application strategy of Fig. 4-16, it can be said that the
termination of a development path can be guaranteed if each of its development
steps terminates. A development step terminates if each of its sub-steps
terminates. (i.e., its associated transformation systems). A transformation system
terminates if each of its composing rules terminates.

A rule terminates when no more match can be found in the resultant graph. Note
that a problem of infinite looping may arise, especially when dealing with non-
deleting grammars. Indeed, a rule application consists at first of searching, non
deterministically, a match into a host graph. It is more likely that a LHS will match
several times on the same sub-graph if no precaution is taken. To solve this
problem, a technique would be to tag already matched sub-graph, an alternative
technique consists of replicating part of a right hand side in the negative
application condition. This last technique was adopted in this work (see example
in Fig. 4-10).

4. Multi-Path Development of User Interfaces

162

4.4 Forward Engineering

Forward engineering can be seen as a sequence of progressive refinements applied
on a high level specification in order to obtain an application code or a lower level
specification. [Czar00] identifies several types of refinements. The following ones
are relevant in our context:

 Decomposition consists of refining a high level concept into a set of lower
level concepts. For instance, a task is mapped onto a set of interaction
objects.

 Choice of representation associate a representation with a higher level concept,
for instance a couple (task, domain concept) is mapped onto a particular
abstract interaction object.

 Specialization states that a more general abstraction is transformed into a
more concrete one, being more specific for a particular context of use. For
instance, an abstract interaction object equipped with an input facet is
transformed into an input field for the graphical modality.

 Concretization involves adding more detail to a concept. For instance,
adding style attributes (e.g., color, border style) to a concrete user interface
specification.

Many of the transformations illustrated bellow can be assigned to one or several
of these types.

Historically, model-driven methodologies have focused primarily on the
derivation of a widget-dependent specification or, even, straightforwardly code
(see Chap. 2) from a data model, a form of a domain model restricted to only data
structures. When such methods and tools had to be used for producing several
UIs for different computing platforms, it turned out that there was no support
and no identification of the common parts, thus resulting on restarting the whole
methodological process from scratch. Toolkit-independent models were
introduced [Paus92] to tackle this problem. These abstractions became the goal
viewpoint of forward engineering processes. In the meantime, it was realized that
domain model (in its various forms) was not expressive enough to describe the
wide variety of user tasks and, more important, their logical and temporal
relationship. Indeed, a domain model is only able to express pattern tasks with a
predefined semantics like create, read, update, delete, search, etc. The only way to

4. Multi-Path Development of User Interfaces

163

specify temporal relationships between these tasks was by using pre-conditions on
domain methods, a very indirect way to describe the interaction of a person with a
system! Task models were introduced in UI engineering [John92] to enable a rich
expression of user’s tasks. It is now acknowledged that task and domain models
should be used in parallel as a starting point of a forward engineering path. That is
the option that has been taken in the illustrations provided in this section. Note,
however, that our approach can accommodate with a definition of rules relying
solely on a task or a domain model. Coverage of older heuristics is thus also
possible.

As shown in Fig. 4-17, the starting point of UI forward engineering is the
construction of a task specification and a domain model. This initial
representation is then transformed into an abstract user interface, which is then
transformed into a concrete user interface model. The concrete user interface
model is then used to generate UI code. A forward engineering development path
is detailed hereafter by decomposing it into development steps, and sub-steps.

Task and
Domain

Abstract
User Interface

Concrete
User Interface

Final
User Interface

T1

T2

T3

Forw
ard

Task and
Domain

Abstract
User Interface

Concrete
User Interface

Final
User Interface

T1

T2

T3

Forw
ard

Figure 4-17 Forward development of UIs

4.4.1 Step: From Task & Domain to Abstract User Interface

Step T1 (see 4-17) concerns the derivation of an AUI from models at the T&D
viewpoint (e.g., a task, a domain or task and domain model). This development
step may involve development sub-steps illustrated in Fig. 4-18.

4. Multi-Path Development of User Interfaces

164

Identification of AUI structure

Spatio-Temporal Arrangement of AIOs

Selection of AIC

Definition of Abstract Dialog Control

STEP : From Task & Domain to AUI

SU
B-

ST
E

PS

Derivation of AUI to Domain Relationships

Identification of AUI structure

Spatio-Temporal Arrangement of AIOs

Selection of AIC

Definition of Abstract Dialog Control

STEP : From Task & Domain to AUI

SU
B-

ST
E

PS

Derivation of AUI to Domain Relationships
Figure 4-18 Development step : from Task & Domain to AUI

To illustrate this step, a decomposition into five sub-steps arranged by logical
order is proposed. This decomposition illustrates the separation of concern
principle applied to transformation processes (Req. 16).

First, abstract containers and abstract individual components (i.e., groups of
abstract objects) are identified; then individual elements specification are refined
and, finally, arranged into the previously identified containers. This completes the
design of the abstract presentation. Then, the dialog is added thanks to two
phases: a definition of abstract dialog control and the derivation of AUI to
domain relationships.

This shows that the decomposition of this step into sub-steps can follow a logical
order that is principle-based, here in a top-down approach.

4.4.1.a Sub-step: Identification of Abstract UI structure

It consists of the definition of groups of abstract interaction objects. Each group
corresponds to a group of tasks tightly coupled together. The meaning of “task
coupling” may vary from one method to another. It goes from simple heuristics
like “for each group of tasks, child of a same task, generate an interaction space”
to sophisticated heuristics exploiting temporal ordering and decomposition
structure between tasks (e.g., enable task sets method proposed by [Pate99] or
information flow between tasks in TRIDENT method proposed by [Boba95c]).
We propose an example based on Teallach methodology [Grif99] that creates an
AUI structure, a transposition of a task hierarchical structure.

4. Multi-Path Development of User Interfaces

165

Example 1 is a transformation system composed of two rules (Rule 4-1, 4-2)
enabling the creation of a simple hierarchical structure containing abstract
individual components and abstract containers.

Rule 4-1: For each leaf task of a task tree, create an Abstract Individual
Component. For each task, parent of a leaf task, create an Abstract Container.
Link the abstract container and the Abstract Individual Element by a containment
relationship.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-1 Creation of abstract individual components derived from task model leaves

Rule 4-2: Create an Abstract Container structure parallel to the task
decomposition structure.

LHS RHS

::=

NAC LHS RHS

::=

NAC

Rule 4-2 Creation of abstract containers derived from task model structure

4.4.1.b Sub-step: Selection of abstract individual component

The current sub-step merges the information contained in the task model and in
the domain model to produce the specification of AICs. An AIC specification is
provided by the identification of its facets. As so, “responsibilities” of each AIC

4. Multi-Path Development of User Interfaces

166

are identified independently of the task and domain models (Req. 13: Methodological
flexibility). To perform this transformation, several elements may be taken into
consideration: action types, action items, task types, data types of domain
attributes, domain of value of domain concepts, enumerated domains, structure of
the domain model (e.g., inheritance, aggregations). It is hard to compare this sub-
step with the literature. The level of abstraction of interactors we propose at this
level is present only in [Grif99]. Consequently, we propose our own heuristic.

Leaf tasks of a task mode are described with an actionType and an itemType
indicating a generic action and a generic object on which an action is being
performed (see Sec 3.2.1). A manipulates relationship add information on the
domain concepts that a task manipulates (itemType being very generic).

Table 4-1, provides us with a systematic expression of possible mappings of task
types to AIC facet types. The left column presents a set of meaningful
combination of values for task actionType and task actionItem. The right column
shows corresponding AIC facets with a refined expression of the actionType and
actionItem at the AIC level, depending on the type of domain concept that is
manipulated (an attribute, a collection of attributes, an object or a collection of
objects).

Task [actionType] +
[actionItem]

AIC Facet type + [actionType] + [actionItem]

[Start/go] + [Operation] [Control]
[Stop/exit] + [Operation] [Control]
[Start/Go] + [Container] [Navigation]
[Stop/exit] + [Container] [Navigation]
[Select] + [Element] [Input] + ([Select] + [Attribute Value] OR [Select] [Object])
[Select] + [Collection] [Input] + ([Select] [Attribute Value Set] OR [Choose]

[Object Set])
[Create] + [Element] [Input] + ([Create] [Attribute Value] OR [Create] [Object])
[Create] + [Collection] [Input] + ([Create] [Attribute Value Set] OR [Create] [Object

Set])
[Delete] + [Element] [Input] + ([Delete] [Attribute Value] OR [Delete] [Object])
[Delete] + [Collection] [Input] + ([Delete] [Attribute Value Set] OR [Delete] [Object

Set])
[Modify] + [Element] [Input] + ([Update] [Attribute Value] OR [Update] [Object])
[Modify] + [Collection] [Input] + ([Update] [Attribute Value Set] OR [Update]

[Object Set])

4. Multi-Path Development of User Interfaces

167

[View] + [Element] [Output] + ([View] [Attribute Value] OR [view] [object])
[View] + [Collection] [Output] + ([View] [Attribute Value Set] OR [View] [Object

Set])
[Monitor] + [Element] [Output] + ([Monitor] [Attribute Value] OR [Monitor]

[Object])
[Monitor] + [Collection] [Output] + ([Monitor] [Attribute Value Set] OR [Monitor]

[Object Set])
[Move] + [Element] [Input] + ([Move] [Attribute] OR [Move] [Object])
[Move] + [Collection] [Input] + ([Move] [Attribute Value Set] OR [Move] [Object

Set])
[Duplicate] + [Element] [Input] + ([Duplicate] [Attribute] OR [Duplicate] [Object])
[Duplicate] + [Collection] [Input] + ([Duplicate] [Attribute Value Set] OR [Duplicate]

[Object Set])

Table 4-1 Association of task action types with AUI facets

Example 2 is composed of Rule 4-3. It exploits information on task action types
to attach appropriate facets to corresponding abstract individual components.

Rule 4-3: for each abstract individual element mapped onto a task such that the
tasks nature consists of the activation of a method and this task is mapped onto a
class, assign to the abstract individual component an action facet that activates the
mapped method.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-3 Creation of a facet for an abstract individual component derived from task action

type

4. Multi-Path Development of User Interfaces

168

4.4.1.c Sub-step: Spatio-temporal arrangement of abstract interaction
objects

The principle of this sub-step is to exploit a task model structure to derive
information on a spatio-temporal arrangement of elements populating an AUI.
Spatio-temporal arrangement is not to be confused with a mechanism for
controlling the locus of control of the UI (this latter concept is referred, in Chap.
3, to dialog control). Spatio-temporal relationships only allow a specification of
layout constraints between AIOs.
A task or domain model contains little information for a precise spatio-temporal
specification. It cannot be said, for instance, that an abstract container partially
overlaps another one, or that two AICs are “right aligned” on the simple basis
that the tasks these AIOs represent are in such or such temporal relationship.

It is not amazing that the problem of layout derivation from task and domain
model have been left in the shadow by the literature. Three solutions are
proposed to face the problem of layout definition: (1) some heavy (and hard-
coded) assumptions are done on the way elements should be organized
topologically. Teresa [Pate03] tool, for instance, calculates layout on the basis of a
built-in algorithm (2) presentation templates are at disposal of the designer to
customize layout structure of the UI [Lonc96] (3) a designer is able, through a
specific tool, to re-shuffle the layout by hand in the model itself [Boda95b]. Of
course in any case a designer is always able to edit and reshuffle a UI at the code
level (i.e., final UI). A problem with this solution is that modifications done in the
code, potentially, endanger the consistency of the UI models with the code that
has been generated.

Nonetheless, we consider that the order in which tasks are specified may reflect
designer’s intent about the ordering of elements allowing the realization of a task.
An abstractAdjacence relationship expresses the existence of an Allen relationship
(with no further detail) between two AIOs. This relationship might be either
specified latter on by hand, by the designer, or left “as is” and transformed into a
concrete relationship

Example 3 is composed of Rule 4-4. It places abstract individual components in
precedence relationship (with abstractAdjacency) based on the fact that the tasks
they represent are sequentially ordered. To perform a complete arrangement,
every type of task temporal relationship has to be covered by a rule.

4. Multi-Path Development of User Interfaces

169

 Rule 4-4: for every couple of AIC mapped onto sister tasks that are sequential
“>>”, create a relationship of type “abstractAdjacence” between these AIOs.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-4 A sequentialisation of abstract individual component derived from task temporal

relationships

4.4.1.d Sub-step: Definition of Abstract Dialog Control

A task model defines temporal constraints between tasks. These constraints have
been expressed in term of pre- and post- conditions in Sec. 3.2.1. Tasks have been
mapped onto abstract containers and abstract individual components in a
preceding sub-step (Sec. 4.4.1.a). The present sub-step transposes task temporal
constraints to the AUI.

The dialog control expresses the locus of control (i.e., availability) for initiating the
dialog in a UI. Dialog control consists of controlling certain states of the user
interface in order to enforce temporal constraints imposed between the elements
of the interface. Dialog control allows answering to the following question: when
is such interaction object available or not?

As for task temporal operators, the abstract dialog control proposed here is based
on an implicit mechanism of pre- and post- conditions underlying temporal
constraints. Fig. 4-19 illustrates a dialog specification for an AUI. Facet types are
represented as icons (i.e., a pen for input, a machine for control on machine
initiative, a user working on a machine for control on user initiative). Abstract
containers are represented as boxes. Temporal constraints are defined between
these elements (see Sec. 3.2.1 for an explanation on temporal operators).

This representation allows a determination of the locus of control of elements i.e.,
to determine when they are available and when they are not. For instance it can be
said that AC.2 cannot be available until AC.1 is “terminated”. And AC.1 will be

4. Multi-Path Development of User Interfaces

170

terminated iff AIC.11 and AIC.12 and AIC.13 will be terminated and so on. Now
an essential question is: what terminates an AIC exactly ? For a control AIC, the
output of the method that is executed can determine if the AIC is terminated or
not. But what terminates an input AIC ? This question is impossible to answer at
this level as the concrete object that will reify this AIC is not known. It might be
an auditoryInput or a textComponent. Their termination events might be, for
instance: a blank for a period of 2 sec. for the auditory element, a click outside the
focus of the object or a “tab key” press for the graphical component.

>>

>> >>

AIC.11:Input age AIC.12:Control (check age
+ feedback)

AIC.13: Input name

AC.1:Record Participants

AC.2:Record participation details

|||

AIC.21:Choose
Activity Type

AIC.22:Input Start Date

|||

AIC.23:Input End Date

>>

AIC.3:Control (Confirm + feedback)

A
C

.0
 R

eg
is

te
r K

id >>

>> >>

AIC.11:Input age AIC.12:Control (check age
+ feedback)

AIC.13: Input name

AC.1:Record Participants

AC.2:Record participation details

|||

AIC.21:Choose
Activity Type

AIC.22:Input Start Date

|||

AIC.23:Input End Date

>>

AIC.3:Control (Confirm + feedback)

A
C

.0
 R

eg
is

te
r K

id

Figure 4-19 Abstract Dialog

Example 4: is composed of Rule 4-5. It consists of a transposition of task
temporal relationship to abstract dialog control relationships.

Rule 4-5: for each couple of sister tasks mapped onto AICs, define a dialog
control relationship between these AIC that has the same semantic as the
temporal relationship.

4. Multi-Path Development of User Interfaces

171

NAC LHS RHS

::=
NAC LHS RHS

::=

Rule 4-5 Abstract Dialog Derivation from Task Model

4.4.1.e Sub-step: Derivation of AUI to domain mappings

Manipulates relationship has been introduced in Sec. 3.2.6. The information
contained in this relationship may be the basis of a refinement expressing
mappings between a UI model (at abstract or concrete level) and domain model.
Three different heuristics may operate in order to achieve this goal: (1) tasks
realizing an input on a domain value allow a derivation of an updates relationship,
(2) a view task or a monitor task may allow a derivation of an observes
relationship, and (3) a task having an operation as item allows a derivation of a
triggers relationship. This example shows a heuristic that is more complex than
merely mapping tasks or domain to UI elements.

Example 5 is composed of one single rule (Rule 4-6) and derives triggers
relationship between an abstract individual component and a domain concept.

Rule 4-6: for each task that manipulates a method, the AIC that represents this
task triggers the method.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-6 Deriving triggering relationships from task domain mappings

4. Multi-Path Development of User Interfaces

172

Example 6 is composed of Rule 4-7 and Rule 4-8. It sheds a new light on
information passing relationship (see Sec. 3.2.1).

Rule 4-7: if two sister tasks manipulate a same attribute and are temporally
constrained with a “sequence with information passing” relationship, each of
these tasks being mapped onto an AIC, then the AIC that is mapped with the
first task updates the attribute manipulated by the tasks. The second AIC observes
this attribute.

LHS RHS

::=

NAC

LHS RHS

::=

NAC

Rule 4-7 Derivation of Updates and observes structure on the base of a task relationship of

sequential information passing

Rule 4-8: if two sister tasks manipulate a same attribute and are temporally
constrained with a “concurrent information passing” relationship, and each of
these tasks is mapped onto an AIC, then both AIC observe and update the
attribute that is manipulated by the tasks.

4. Multi-Path Development of User Interfaces

173

LHS RHS

::=

NAC

LHS RHS

::=

NAC

Rule 4-8 Derivation of Updates and Observes structure on the basis of a task relationship

of concurrent information passing

4.4.2 Step: From Abstract User Interface to Concrete User Interface

Step T2 (see Fig. 4-1) consists of generating a concrete user interface from an
abstract user interface. This development step may involve the development sub-
steps illustrated in Fig. 4-20.

Reification of AC into CC

Arrangement of CICs

Selection of CIC

Concrete Dialog Control Definition

STEP : From AUI to CUI

SU
B-

ST
E

PS

Definition of Navigation

Derivation of CUI to Domain Relationships

Reification of AC into CC

Arrangement of CICs

Selection of CIC

Concrete Dialog Control Definition

STEP : From AUI to CUI

SU
B-

ST
E

PS

Definition of Navigation

Derivation of CUI to Domain Relationships

Figure 4-20 Development Step : from AUI to CUI

4. Multi-Path Development of User Interfaces

174

We decomposed this step into six sub-steps that are arranged by logical order.
First, concrete containers (i.e., windows, boxes for the graphical modality) are
identified; then the individual elements are derived and arranged into the
previously identified containers. This completes the design of the presentation.
After that, the dialog is added thanks to three phases: a definition of potential
navigation, of the control of this navigation, and of other behaviors. Finally CUI
to domain relationships are established by transposing these relationships from
the AUI model.

Again, this shows that a decomposition of the current step into sub-steps can
follow a logical order that is principle-based.

One can equally imagine a bottom-up process where individual elements are first
identified. Then, these objects are assembled together in larger elements, along
with their navigation. This approach largely contrasts with approaches where
presentation and dialog work hand in hand (e.g., in programming by
demonstration). In this type of approach, a combined approach is adopted, but it
is very hard to expand the design knowledge used without largely affecting the
rest of the design knowledge. This does not satisfy Req. 16: methodological separation
of concern.

4.4.2.a Sub-step: Reification of abstract containers into concrete
containers.

An abstract container can be reified into different types of concrete containers.
Variables influencing this transformation are, notably: modality (graphical and
auditory are supported by our conceptual framework), context of use (e.g.,
containers for a cell phone will not be the same that for a wall display), interaction
style (e.g., direct manipulation, menu selection, forms, command language, natural
language), designer’s preference. A major difficulty of this step lies in the problem
of choosing an appropriate level to group abstract containers into a concrete
container (typically a window for a graphical modality). A minimal choice would
be to create a concrete container (e.g., a window) for each leaf group of AIC in
the AUI hierarchy. A maximal solution would be to group all abstract individual
components and all abstract containers into one single concrete container (e.g.,
one window). Several window identification algorithms have been proposed in the
literature. [Jans93] uses the concept of view on entity relationship schema to
identify windows (the principle being one window per defined view); [Balz93] and

4. Multi-Path Development of User Interfaces

175

[Puer94] exploit a class diagram structure (i.e., generalization for [Balz93],
generalization and aggregation in [Puer94]). [Boda95c] relies on a task centered
representation mixed with a specification of task input and output flows (activity
chaining graphs) to identify windows and window transitions. [Pate00] and
[Luyt03] rely solely on task model structure (hierarchical decomposition and
temporal relationships) to identify windows and window transitions. Here again all
these approaches propose algorithms tightly coupled with the representation they
manipulate. In the following example we externalize a simple heuristic based on
Teallach derivation rules [Griff99]. In the original rule, the level “leaf-1” of task
tree was assigned to a window. We exploit here the AUI hierarchical
decomposition for window identification to apply a similar heuristic. An
advantage of our approach is that each proposed algorithm may be modified,
tested, and refined.

Example 7 is a transformation system composed of rule 4-9 and rule 4-10. This
system transforms into windows, abstract containers at a certain depth in the
abstract container hierarchy. All abstract containers content is reified and
embedded into the newly created window.

Rule 4-9: Each abstract container at level “leaf-l” is transformed into a window.
Note that an abstract container is always reified into a, so called, box at the
concrete level. This box is then embedded into a window.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-9 A creation of windows derived from containment relationships at the abstract

level

Rule 4-10: each abstract container contained into an abstract container that was
reified into a window is transformed into an horizontal box and embedded into
the window.

4. Multi-Path Development of User Interfaces

176

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-10 A generation of window structure derived from containment relationship at the

abstract level

4.4.2.b Sub-step: Selection of concrete individual components.

Functionalities of abstract individual components are identified with their facet.
Selection of concrete individual components consists of choosing the appropriate
concrete element that will support whole or a part of the facets associated with an
abstract individual component.

The selection of concrete individual components can be assimilated to the
perennial problem of “widget selection” (see Chapter 2). The major difference in
our approach is that we introduce an intermediary level between task&domain
and concrete widget selection (i.e., the abstract level that synthesizes functionality
of interactors). For instance, MacIda [Peto93] proposes an exploitation of the
characteristics of domain concepts. Rules like the following may be found in this
method: “For each attribute in the domain model generate an input field whose
label is the name of the attribute”. In [Vand97] the widget selection problem was
extensively treated as 238 widget selection rules were provided. Until now it is the
most extensive catalog of rules on the topic. Our method is able to cover all of
these rules.

Example 8 is composed of Rule 4-11. It creates an editable text component (i.e.,
a textbox) to reify an AIO with an input facet.

Rule 4-11: each input facet of an abstract individual component is reified by a
graphical individual component (a type of concrete individual component) of type
“editable text component” (i.e., a text box).

4. Multi-Path Development of User Interfaces

177

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-11 Creation of an editable text component (i.e., an input field) derived from facets

type of abstract components

4.4.2.c Sub-step: Arrangement of concrete individual component.

If specified, Allen relationships between abstract interaction objects may be
interpreted in order to provide concrete layout information (see Sec. 3.2.3 for
more details). It was discussed in Sec. 4.4.1.c that task and domain models provide
very poor information on abstract layout. Abstract layout being defined with
abstractAdjacency relationship, we rely on a concreteAdjacency (specialized into
graphicalAdjacency and auditoryAdjacency) to specify a layout structure at the CUI
level. Combined with our boxing system, this relationship allows us to define
unambiguous layout specifications. Fig. 4-21 shows a layout that is enabled by
these concepts. For this example, the specification would be:

graphicalContainement: MainWindow contains Box1, Box 1 contains Box 11 and
Box 12, Box 12 contains Box 121 and Box 122, Box 121 contains menuItem 1, 2,
3, etc.
graphicalAdjacency (excerpt): Box11 adjacent Box11, Box121 adjacent Box122.,
menuItem1 adjacent menuItem2, menuItem2 adjacent menuItem3,…

4. Multi-Path Development of User Interfaces

178

Enter Title Here

Welcome to usiXML Hbox (11)

Vbox
(121)

Vbox (122)

Hbox (12)

Vbox (1)
Menu
Items
(1,2,3,...)

Enter Title Here

Welcome to usiXML Hbox (11)

Vbox
(121)

Vbox (122)

Hbox (12)

Vbox (1)
Menu
Items
(1,2,3,...)

Figure 4-21 Possible layout using concreteAdjacency and a box embedding system.

Example 9 is composed of Rule 4-12. This example transforms an AUI into a
concrete model for the graphical modality. It chains concrete individual
components according to abstract individual component sequencing.

Rule 4-12: for each couple of abstract individual components related by an
“abstractAjacency” relationship and reified into concrete individual components,
generate a “concreteAdjacency” relationship between the concrete individual
components.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-12 A placement of graphical individual components derived from spatio-temporal

relationships at the abstract level

4. Multi-Path Development of User Interfaces

179

4.4.2.d Sub-step: Definition of navigation

Navigation is defined by a set of transitions between containers populating a UI.
The reader has probably noticed that no navigation has been defined at the
abstract level. Navigation is indeed not an abstract concept as it necessitates a
partitioning into concrete containers. Navigation is only a side effect of reification
of abstract containers into concrete containers. An all embracing UI on a wall
display will require a little navigation in comparison of a cell phone. Ad hoc
navigation objects may be created for this purpose (e.g., a menu bar, a tabbed
dialog box).

Example 10 is composed of Rule 4-13. It generates a button to enable a
navigation between two windows.

Rule 4-13: for each container related to another container belonging to different
windows, and their respective abstract container being related by a “is before
relationship”, generate a navigation button in source container pointing to the
window of target container.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-13 A window navigation definition derived from container adjacency relationships

4.4.2.e Sub-step: Concrete Dialog Control Definition

This sub-step consists of a simple transposition of abstract dialog relationships in
the concrete world.

4. Multi-Path Development of User Interfaces

180

Example 11 is composed of Rule 4-14 transposes a dialog control relationship
between two containers.

Rule 4-14: for each couple of abstract container with a dialog control relationship,
transpose this relationship to the couple of concrete containers that reify them.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-14 Derivation of the concrete dialog from abstract dialog

4.4.2.f Sub-step: Derivation of CUI to domain relationships

This step consists of a transposition of “AUI to domain relationships” to the
concrete level. A simple transitivity property between a domain concept, an
abstract concept and a concrete concept is assumed.

Example 12 is composed of rule Rule 4-15. It transposes an “updates”
relationship from an AIC to the CIC that reifies it.

Rule 4-15: for each AIC updating a domain concept, if a CIC reifies this AIC
then the CIC updates this same domain concept.

4. Multi-Path Development of User Interfaces

181

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-15 Transposition of update relationship

4.4.3 From Concrete User Interface to Code

Step T3 consists in code generation from a CUI. Code generation techniques for
UIs is a very well known topic. [Czar00] presents a state-of-the art of model to
code techniques (e.g., visitor-based approach and template based approach).
Scientific results for this transformation have been shown in systems issued from
research like: Janus [Balze95], Trident [Boda95b], Modi-D [Puer97] or from
commercial world e.g., Genova [Geno04] or Oliva Nova [Moli02]. The present
work does not particularly contribute to this area although several tools have been
developed to provide code generation support from the concrete user interface
level.

4.5 Reverse Engineering

As shown in Fig. 4-22, the starting point of UI reverse engineering is the user
interface code. This code is analyzed and transformed into a higher level
representation i.e., a concrete user interface. From this CUI model, an AUI and,
finally, a task and domain model are retrieved.

4. Multi-Path Development of User Interfaces

182

Task and
Domain

Abstract
User Interface

Concrete
User Interface

Final
User Interface

T3

T2

T1R
ev

er
se

Task and
Domain

Abstract
User Interface

Concrete
User Interface

Final
User Interface

T3

T2

T1R
ev

er
se

Figure 4-22 Reverse Transformational Development of UIs

Step T1 (see Fig. 4-22) consists of retrieving a concrete UI model from UI code
or appearance. A state of the art in reverse engineering of UIs expressed
according to the IEEE Terminology [Chik90] can be found in [Bouil04].

Transition T1 is notably supported by ReversiXML (formerly called Rutabaga
[Boui04]). ReversiXML is an on-line tool functioning as a module of an Apache
server. It takes as input a static HTML page, a configuration file containing a set
of user defined options, and produces a UI at concrete and/or abstract level. The
target language that is used by this tool is UsiXML (see Sec. 3.3.2). T1 step is a
tedious operation since it may require as many “concretizers” as existing
languages. Of course, if one restricts to, let us say markup-languages, some reuse
can be considered. For other families of language (e.g., Lisp, Prolog, Python,
Caml, C++, C#), a separate concretizer may be needed each time. This represents
a serious development effort.

Transition T2 (see Fig. 4-22) consists of deriving an abstract UI specification from
a concrete one. This derivation is relatively trivial because (1) the source model
holds more information than the target model (2) there is a very smooth
conceptual continuum between these two levels. Nevertheless, several
development sub-steps may be identified: abstraction of CIO into AIO,
abstraction of layout relationships, abstraction of navigation, abstraction of dialog,
etc. We provide hereafter an example of such sub-step. In addition this transition
is illustrated by our case study in Sec. 5.2.5.

Example 13 is composed of Rule 4-16. It consists of obtaining an abstract
individual component equipped with an input facet.

4. Multi-Path Development of User Interfaces

183

Rule 4-16: for each editable graphical individual component, create an abstract
individual component equipped with an input facet.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-16 Creation of a facet at the abstract level derived from a type analysis of graphical

individual components

Transition T3 (see Fig. 4-22) is the derivation of a task and concept specification
from an abstract UI. A conceptual gap between AUI level and task and domain
level being large, little information can be extracted from an AUI model to
retrieve a task or domain specification.

Example 14 is composed of Rule 4-17. This example derives information on task
action type from the abstract user interface level.

Rule 4-17: for each abstract individual component equipped with a navigation
facet create a task with action type “start/go” on an item of type “element”.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-17 Definition of task action types derived from an analysis of facets at the abstract

level

4. Multi-Path Development of User Interfaces

184

4.6 Adaptation to context change

Task and
Domain

Abstract
User Interface

Concrete
User Interface

User Interface
Code

Task and
Domain

User Interface
Code

Context A Context BAdaptation

T1

Abstract
User Interface

Concrete
User Interface

T2

T3

Task and
Domain

Abstract
User Interface

Concrete
User Interface

User Interface
Code

Task and
Domain

User Interface
Code

Context A Context BAdaptation

T1

Abstract
User Interface

Abstract
User Interface

Concrete
User Interface

Concrete
User Interface

T2

T3

Figure 4-23 Context adaptation at different levels our framework

Context adaptation (illustrated in Fig. 4-23) covers model transformations
adapting a viewpoint to another context of use. This adaptation may be done by
the application of translations to models belonging to any viewpoint.

4.6.1 Step: From Task & Domain to Task & Domain

We propose one development sub-step type to exemplify adaptation at T1 level
(see Fig. 4-23): transformation of a task model.

4.6.1.a Sub-step: Transformation of a task model

Transformation of a task model can be useful to adapt a task specification to
various categories of users, to various environments. For instance, an expert user
needs less structuring in the accomplishment of a task than a novice user. This has
an influence on the relationships between tasks. Another example is the
management of user’s permissions. Some users may not be allowed to perform
certain tasks (e.g.., editing a document). A task model may also be ‘filtered’
according to various criteria (e.g., erase all tasks manipulating a video stream).
Transformation rules may be defined to adapt a task specification to these
constraints.

4. Multi-Path Development of User Interfaces

185

Example 15 is a transformation system composed of Rule 4-18 and Rule 4-19.
A task hierarchy is “flattened” to allow an (expert) user to perform all tasks at the
same time (i.e., concurrently).

Rule 4-18: (1) erases each intermediary task (i.e., non-leaf and non-root tasks). (2)
attaches every leaf task to the root.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-18 Flattening of a task tree structure

Rule 4-19: for each sister tasks change their temporal relationship into concurrent.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-19 Transforming all temporal relationship to concurrent

4.6.2 Step: From Abstract User Interface to Abstract User Interface

Adaptation at the abstract level concerns abstract container reshuffling and
abstract individual component modification (e.g., facet modification, facet
splitting, facet merging). An example of abstract individual component
modification.

4. Multi-Path Development of User Interfaces

186

4.6.2.a Sub-step: Abstract individual component facet modification.

A modification of an abstract individual component affects its facets in their
specification (e.g., an input facet is mapped onto a different domain concept) or
their structuring (e.g., a facet is transferred onto another abstract component, a
facet is erased).

Example 16 is a transformation system containing Rule 4-20 and Rule 4-21. It
merges the facets of two abstract individual components mapped onto concurrent
tasks. This example is based on the assumption that the tasks of a system must be
concentrated into a lesser number of abstract components. This means that
concrete components resulting from the abstract specification will have to assume
more ‘functionalities’ than in the source version of the specification.

Rule 4-20: for each pair of abstract individual component mapped onto
concurrent tasks, transfer all facets of the abstract individual component that is
mapped onto the task target of the concurrency relationship, to the other abstract
individual component.

NAC LHS RHS

::=::=

NAC LHS RHS

::=::=

Rule 4-20 A merging of facets of abstract individual components

Rule 4-21: erase all abstract individual components that have no facets left.

NAC LHS RHS

::= Ø

NAC LHS RHS

::= Ø

Rule 4-21 Erasing abstract individual components with no facets left

4. Multi-Path Development of User Interfaces

187

4.6.3 Step: From Concrete User Interface to Concrete User Interface

Adaptation at the concrete level is illustrated by several development sub-steps:
container type modification (called concrete container re-formation), modification
of the types of concrete individual components (called concrete individual
components re-selection), layout modification (layout re-shuffling), or navigation
re-definition. Examples for these first three adaptation types are given hereafter.

4.6.3.a Sub-step: Concrete container re-formation

Concrete container Re-Formation may cover situations like container type
transformation (e.g., a window is transformed into a tabbed dialog box), container
system modification (e.g., a system of windows is merged into a single window).

Example 17 is a transformation system composed of Rule 4-22, Rule 4-23, Rule
4-25. This transformation adapts a window into a tabbed dialog box and transfer
the window content into several “tabbed items”.

Rule 4-22: each window is selected and mapped onto a newly created tabbed
dialog box.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-22 Initializing of the adaptation process by creating graphical component to adapt

into

Rule 4-23: transfers every first level box of the window to adapt it into a tabbed
item composing a tabbed dialog box.

4. Multi-Path Development of User Interfaces

188

LHS RHS

::=

LHS RHS

::=

Rule 4-23 Creation of a tabbed item and transfer of the content of the adapted window

Rule 4-25: cleans up the specification of remaining empty main boxes.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-24 Deletion of unnecessary containers

4.6.3.b Sub-step: Concrete individual component re-selection

Re-selection transformations adapt individual component into other individual
components. This covers individual component merging or slitting, or
replacement.

Example 18 is composed of Rule 4-25. It merges a non-editable text component
(i.e., a label) and its adjacent editable text component into one editable text
component. The content of the non-editable text component is transferred into
the editable text component.

Rule 4-25: for each couple of adjacent editable text component and non-editable
text component. Erase the editable text component and transfer its content into
the non-editable text component (unless a content has already been transferred).

4. Multi-Path Development of User Interfaces

189

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-25 Merging of a non-editable text component (e.g., a label) and an editable text

component (e.g., an input field) into one single editable text component

4.6.3.c Sub-step: Layout re-shuffling

A layout at the concrete level is specified with horizontal and vertical boxes. An
elements contained into a box may be glued to an edge of this box. Any
transformation modifying this structuring is categorized as layout reshuffling
transformation.

Example 19 is composed of Rule 4-26. It squeezes all boxes in order to
“verticalize” its layout.

Rule 4-26: each box is transformed into a vertical box and every individual
component is glued to left.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 4-26 Squeezing of a layout structure to display vertically

4. Multi-Path Development of User Interfaces

190

4.7 Tool Support

An identification of tools required to the development of UIs adopting a model-
driven approach has been discussed in [Szek96, Schl96, Puert97]:

 Model editors assist a designer in constructing the models. These tools
consist in syntax editors, form based tools, or visual builders. Some model
editors maintain a textual specification consistent with a graphical
representation.

 Design critics provide a designer with quality assessment facilities.
Models capturing explicit properties of the artifact are an ideal
representation to perform evaluation.

 Design assistants help a designer in refining modeling artifacts. These
tools propose knowledge bases represented as rules (most of them are
production rules).

 Implementation tools translate a specification into a representation that
can be used by a compiler, an interpreter or an interface builder.

We add to this list:

 Transformation tools provide support to the designer to edit, store and
execute model transformation rules.

 Reverse engineering tools extract a modeling artifact from a coded
representation.

Several tools have been exploited or developed in the context of this dissertation.
They all play a certain role in making multi-path development a reality. We have
classified these tools according to the classification framework presented above.
More details on tools is provided in Annex 1.

Tool Functional Coverage Credits
GrafiXML [Usix04] Graphical model editor: CUI

(high fidelity), context model
+ Textual model editor: all
UsiXML models + Code
generation: XHTML 1.0, Java
Swing

In collaboration
with Benjamin
Michotte

VisiXML [Usix04] Graphical model editor: CUI
(mid fidelity)

In collaboration
with Manuel Van
Sluys

FlashiXML Flash Renderer In collaboration

4. Multi-Path Development of User Interfaces

191

with Youri
Vanden Berghe

IdealXML[Usix04] Model editor: Task &
Domain, AUI, inter-model
relationships

In collaboration
with Francisco
Montero

ReversiXML[Boui03] Reverse engineering: from
HTML 4.0 to CUI and/or
AUI

Laurent Bouillon

TransformiXML
API/GUI [Limb04]

Model transformation: from
any UsiXML model to any
UsiXML model

In collaboration
with Victor
Jaquero and
Benjamin
Michotte

AGG Transformation General purpose tool for
graph transformation

Olga Runge, TU
Berlin

Table 4-2 Tools to support our approach

4. Multi-Path Development of User Interfaces

192

4.8 Conclusion

In this chapter, a multi-path development method based on graph transformation
has been introduced, defined and illustrated.

This development method decomposes any development activity in a succession
of development steps that consist of the transformation of the artifact(s) in the
scope of a development stage (here referred as viewpoint) into other development
artifacts. In this context, a development path is defined as an archetypal
composition of development steps. We identified three typical development
paths: forward engineering, reverse engineering, and context (of use) adaptation.
These paths are basically expressed on three types of transformation (i.e.,
abstraction, reification, and translation) so that any development path, consisting
of development steps, can be supported by a transformational approach by
combining transformations of the three types (Req. 13: Methodological flexibility).

To address the requirement of methodological separation of concern (Req. 16),
development steps, have been further decomposed into development sub-steps. A
development sub-step realizes one ‘concern’ of the transformation process e.g.,
definition of the dialog control, definition of the navigation, choice of interactors
type.

To enable the expression (Req. 12: Methodological explicitness) and the execution
(Req. 15: Executability) of the development steps. Each sub-step populating a step
may be associated with a so-called transformation system, itself decomposed into
transformation rules. Transformation systems and transformation rules are
conditional graph rewriting rules sequentially composed into grammars. As so,
transformations can be uniformly and consistently applied through all possible
development paths (Req. 18: Methodological homogeneity). This application is based
on a rigorous execution semantics provided by the graph transformation literature
(Req. 14: Methodological formality, Req. 13: Executability, Req. 17: Predicatbility).
Transformation rules and transformation systems may be stored in a textual
format to enable their capitalization in a sort of development library (Req. 23:
Methodological Reuse, Req. 22: Tool Interoperability).

Transformation systems and transformation sub-steps proposed in this chapter
are only one possibility of realizing different development paths. Our
methodology allows the introduction of new development sub-steps and/or new
transformation systems for realizing sub-steps (Req. 17: methodological extendibility).

4. Multi-Path Development of User Interfaces

193

Allowing a designer to define her own transformation heuristics raises the
problem of the correctness (Req. 21) of our method. Correctness is a relative
notion depending on the context in which it is addressed. Two types of
correctness may be considered: Syntactic (structural) correctness and semantic
correctness [Varr02b]. Syntactic correctness stipulates that for any well-formed
source model, any transformation rule produces a well-formed target model.
Syntactic correctness is guaranteed by construction within our framework by the
fact that all our transformations are type preserving. Graph type checking ensures
that a given transformation will not be applied if the resulting model it produces
violates the meta-model it is supposed to conform to. A graph of types can also
be complemented with the expression of specific consistency constraints
inexpressible within the graph of types. Object Constraint Language (OCL) is
used for this purpose in [Agra03], pre- and post-condition with graph patterns are
used in [Akeh03]. This approach is compatible with ours. Semantic correctness
stipulates a semantic adequacy between a source and a target model. In our
context, semantic correctness proving is very hard to consider as by definition the
domain of discourse of source model and target model are different. Furthermore,
a designer being allowed to define her own transformation rules, a correctness
proof would have to be instantiated for each newly defined rule.

Traceability (Req. 20) has been defined in Chapter 2 as the “degree to which a
relationship can be established between two or more products (i.e., here models)
of the development process, especially products having a predecessor-successor
or master-subordinate relationship to one another” [IEEE90]. A set of inter-
model relationships have been introduced in Chapter 3 to enable the expressing of
relationships of elements across viewpoints. In sec 4-4, 4-5, 4-6, we have seen that
these relationships ensured traceability of the application of transformations i.e., it
is possible to say, using these relationships, which model element is derived from
another one. Although our solution meets the desired requirement, it could be
regretted that these relationships have to be part of the expression of the rule it
self. It could indeed be imagined to produce these traceability relationships
automatically.

A collection of tools has been outlined in Sec. 4-7. These tools materialize our
approach and show how each viewpoint of our framework can be edited (Req. 12
Methodological flexibility) and transformed. The existence of this collection of tools
contributes to the requirement of tool interoperability (Req. 22: Support for tool
interoperability).

4. Multi-Path Development of User Interfaces

194

Practically, the mere fact of decomposing a transformational development process
into steps and sub-steps enables an identification of weaknesses of certain models
in terms of expressivity. As the accuracy in the expression of transformation grew,
some models revealed to need enrichment to allow their exploitation for
derivation means e.g., the task model had to be enriched with various concepts for
instance to describe the intrinsic nature of a task, the domain model needed a
better expression on the nature of the domain of attributes. Some other concepts
needed a more precise interpretation to exploit them in a transformation process
e.g., the information passing.

On the other hand, some elements of a UI specification were shown very difficult
to derive. A notable case is layout derivation. Two solutions can be considered to
overcome this problem. A first one consists of adopting a lot of hypotheses on
the UI structure. We used for instance in Sec. 4.4.1.c a simple heuristic to
sequentialize widgets derived from the relationships between tasks they
supported. This method, however fully automatic, gave arguable results in terms
of both usability and aesthetic. A second solution would be to allow a designer to
visually reshuffle models in a graphical editor. This method is very seducing but
has the major drawback of endangering the consistency of carefully built, or
derived, models. Two solutions may be combined to solve this problem: limit the
designer’s activity to tasks having no consequence on the model consistency,
design specific algorithms (using probably graph grammars) to re-enforce
consistency between models.

While layout generation proved to be very hard to realize automatically, other
aspects of UI construction might also need the intervention of a designer in the
refinement. Transformation driven development of UI have suffered from a lack
of flexibility in their methodological stances. This does not refer only to the
multiple entry point and exit point mentioned in the shortcomings of Chapter 2
but also to the little possibilities that are proposed to a designer to edit a model at
any stage in the transformation process and enrich it manually. This is the
underlying idea of the tool collection presented in Sec. 4.7. We believe that this
essential feature if achieved while keeping a good level of consistency could
benefit substantially to the acceptance of transformational approaches.

5. Case Studies

195

Chapter 5 Case Studies

5.1 Introduction

This chapter applies multi-path development of user interface to two different
case studies. The two cases are progressive in terms of complexity. Their
presentation relies on a series of illustrations showing how artifacts are
progressively transformed according to various development sub-steps, steps, and
paths.

The process adopted to develop the case studies of this chapter consists of: (1)
Building initial models. Such models have been edited with their associated editing
tool. For instance, IdealXML [Mont04] has been used to edit the task and domain
model. (2) Editing and debugging of rules within the AGG graphical
environment. Most of the rules have been elicited prior to realizing these case
studies by a theoretical analysis of development sub-steps as illustrated in Chapter
4. (3) Importing initial models into the AGG graphical environment. (4) Selecting
a transformation set and firing the rules contained in this set. (5) Exporting
resulting models from AGG to UsiXML and illustration.

To facilitate the understanding and the continuous reading of the case studies,
only a significant portion of transformation rules is provided for most sub-steps.
The remaining rules can be defined by analogy to rules previously defined in the
same set.

The first case study is devoted to the development of an opinion polling system, a
reasonable scaled example of a typical information system. The development
scenario is the following: a forward engineering path is applied from a definition
of the task and domain viewpoint to produce both an AUI and a CUI. The CUI is

5. Case Studies

196

reshuffled by hand in our GrafiXML graphical editor. As these modifications are
important and may endanger the consistency with the AUI, a reverse engineering
path is applied to this modified CUI in order to recover a consistent AUI.

The second case study is devoted to the development of a virtual travel agent
inspired from the FIPA [FIPA00] example since it is considered as a
benchmarking case in information systems. The development scenario differs
from the first case study: from a task and domain viewpoint, an AUI is derived.
From this AUI, three different CUIs are forward engineered. Two CUIs specify
two 2D graphical user interfaces. The first one is targeted to a context for a
desktop computing platform allowing the realization of all tasks into one single
window. The second CUI is targeted to a small display context that is typical for a
Personal Digital Assistant (PDA). Elements are distributed as a set of small
screens with a navigation scheme between. The third CUI is devoted to a
derivation of an auditory interface. After this, the initial task model is pruned
according to a heuristics that selects only important tasks so as to produce a new
AUI and a new CUI.

5. Case Studies

197

5.2 Case Study 1: a Virtual Polling System

This case study applies a transformational approach in order to develop a UI
aiming at collecting opinions of users. The scenario proposed for this case study is
(Fig. 5-1): from initial Task & Domain models, an AUI is produced (T1) from
which a CUI is derived (T2). After this, the CUI is manually reshuffled in a CUI
graphical editor and reversed engineered to another AUI to address the round-trip
problem (T3). The CUI can be rendered thanks to any UsiXML-compliant
rendering engine.

Task and
Domain

Abstract
User Interface

Concrete
User Interface

Final
User Interface

Abstract
User Interface

T1 RenderingT2

T3

Task and
Domain

Abstract
User Interface

Concrete
User Interface

Final
User Interface

Abstract
User Interface

T1 RenderingT2

T3

Figure 5-1 Development scenario for case study 1

5.2.1 Initial Representation

Fig. 5-2 illustrates the domain model of our UI as produced by a software
engineer. A participant participates to a questionnaire. A questionnaire is made of
several questions. A question is attached to a series of answers.

Figure 5-2 Class diagram for an opinion poll system

5. Case Studies

198

Fig 5-3. proposes the UsiXML specifications corresponding to the domain model.
Lines 36 to 65 define the four classes of our diagram, the remaining elements
defining the relationships between the domain classes. Lines 38 to 42 show the
definition of an attribute with an enumerated domain, which is difficult with
UML. Lines 51 to 53 show the definition of a method with its parameters.

Figure 5-3 Domain Model in UsiXML

Fig. 5-4 depicts a CTT representation of the task model envisioned for the future
system. The root task consists of participating to an opinion poll. In order to do
this, the user has to provide the system with personal data. After that, the user
iteratively answers some questions. Answering a question is composed of a system
task showing the title of the question and of an interactive task consisting in

5. Case Studies

199

selecting one answer among several proposed ones. Once the questions are
answered, the questionnaire is sent back to its initiator. All temporal relationships
are enabling which means that the source task has to terminate before the target
task can be initiated.

Figure 5-4 Task Model for an Opinion Poll System

Fig. 5-5 presents the UsiXML specifications corresponding to the task model.
Lines 8 to 15 define tasks and their hierarchical structure, while lines 16 to 31
define the temporal relationships between these tasks.

Figure 5-5 Task model expressed in UsiXML

5. Case Studies

200

Fig. 5-6 depicts manipulates relationships between the task and the domain model
as dashed arrows. Provide Personal Data is mapped onto Participant class. Show
Question is mapped onto the attribute title of class Question. The task Select
Answer is mapped onto the attribute title of the class Answer. And finally, the task
Send Questionnaire is mapped onto the method sendQuestionnaire of the class
Questionnaire.

Figure 5-6 Mappings between a task model and a domain model

The UsiXML specifications of the relationships between the task model and the
domain model are reproduced in Fig. 5-7, these relationships are made on the
base of the id attribute of mapped elements.

Figure 5-7 Task to Domain Mapping in UsiXML

5. Case Studies

201

Unfortunately, the initial task representation is not precise enough to perform
transformations. Indeed the task Provide Personal Data is an interactive task
consisting in creating instances of Participant. In reality this task will consist in
providing a value for each attribute of Participant. This could mean that the task
model is not detailed up to the required level of decomposition. Therefore, rule 5-
1 is applied to the task model and decomposes Provide Personal Data into four
new sub-tasks, each of them manipulating an attribute of Participant. These new
sub-tasks have the same type as their mother task. Note the way they are named
using a post-condition on their name attribute.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-1 Consolidation of the task model

Consequently to the execution of this rule, four new tasks are created: create
name, create zipCode, create ageCategory, create sex. “Create” is a very general
action type. In the case of ageCategory and sex, create can be specialized into
select because ageCategory and sex both hold an enumerated domain. This could
be done by hand or performed automatically with the Rule 5-2. Rule 5-3 provides
a default temporal relationship (set to enabling) when two sister tasks have no
temporal relationships. The resulting task specification is provided in Fig. 5-8.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-2 Specializing user action

5. Case Studies

202

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-3 Enabling as default temporal relationships between two sister tasks

Figure 5-8 Refined Task Model for a Virtual Polling System

5.2.2 Transformation to an Abstract User Interface

From these initial representations, a transformation process is initiated to obtain
an abstract user interface model.

5.2.2.a Identification of abstract UI structure

The identification of AUI structure is ensured by applying Rule 5-4, Rule 5-5,
Rule 5-6, Rule 5-7, and Rule 5-8. These rules essentially recreate the task model
structure by a hierarchical decomposition of abstract containers and abstract
individual components.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-4 Create an AC for task that has task children

5. Case Studies

203

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-5 Create an AIC for leaf tasks

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-6 Iterative tasks are mapped onto repetitive AC

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-7 Reconstruct containment relationships between AC

5. Case Studies

204

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-8 Reconstruct containment relationships between AIC

Fig. 5-9 shows how this sub-step is executed: dashed squares depict tasks
grouping in abstract containers, dashed circles depict abstract individual
components. As expressed in Sec. 4-4, more complex heuristics can be deployed
to perform this transformation. Note that the designer can also want to define
abstract containers by hand.

AC1

AC11 AC12

AIC122AIC121

AIC13

AIC112AIC111 AIC113 AIC114

AC1

AC11 AC12

AIC122AIC121

AIC13

AIC112AIC111 AIC113 AIC114

Figure 5-9 Mapping between a task model and an abstract UI

5.2.2.b Selection of AIC

Each AIC can be equipped with facets describing its main purpose/functionality.
As explained in Chapter 4, these facets are derived from the combination of the
task model, the domain model, and the mappings between them. The mappings
between the task and the domain models have been described above. We illustrate

5. Case Studies

205

some of the rules applicable to the present case study. From these mappings it can
be derived that:

 AICs create name and create zipCode are equipped with an input facet of type

“create attribute value”.
 AICs select sex and select ageCategory are equipped with an input facet of

type “select attribute value”. The enumerated values associated to the attribute
are transferred as selection value of the facet from the domain model.

 AIC Show Question is equipped with an output facet of type “output attribute
value” (i.e., the question title).

 AIC Select Answer is equipped with an input facet of type “select attribute
value”. It is also set to repetitive as the amount of instances of answer is only
known at run-time: no enumerated values are provided nor attribute instances.

 AIC Send Questionnaire is equipped with a facet control that references the
name of the method on which it is associated, here sendQuestionnaire

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-9 Create an input facet to AICs that realize creation tasks

5.2.2.c Spatio-Temporal arrangement of abstract interaction objects

We apply Rule 4-4 (reproduced as Rule 5-10), Rule 5-11, Rule 5-12, Rule 5-13.
These rules reveal how implementing hierarchical rules in AGG could be
repetitive: one rule should be introduced for each possible couple with AC and
AIC as elements, that is a total of four rules.

5. Case Studies

206

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-10 Deriving abstract adjacency for <AIC,AIC> couple

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-11 Deriving abstract adjacency for <AC,AIC> couple

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-12 Deriving abstract adjacency for <AIC,AC> couple

5. Case Studies

207

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-13 Deriving abstract adjacency for <AC,AC> couple

5.2.2.d Definition of abstract dialog control

We apply Rule 4-5 and the like to realize this sub-step. Similarly to the previous
step, a rule is defined for each combination of couple with AC and AIC as
elements.

5.2.2.e Derivation of AUI to domain mappings

Rule 4-6 is one of the rules applied in this sub-step. Rule 5-14 is another rule that
is applicable to our case. It creates an updates relationship between the input facet
of an AIC and the attribute manipulated by its associated task.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-14 Derivation of the updates relationship for an input facet

5. Case Studies

208

5.2.2.f Resulting specification

Figs. 5-15 and 5-16 respectively present the results of the above sub-steps and
their corresponding UsiXML specifications. Lines 3 to 36 develop the AIO
decomposition. Lines 38 to 61 represent relationships of abstract dialog control.

*dialog controlabstract adjacency repetitive

>>

>>

>>

>>

>>

>>

>>

AC1 Partcipate Opinion Poll

AC11 Provide Personal Data

AIC Input name

AIC Input
ageCategory

AIC Input zipCode

AIC Input sex

AC12 Answer Question *
AIC Output Question

*AIC Select Answer

AIC Control Send
Questionnaire

AIC Input address

Rule 5-15 Representation of the AUI model for a Virtual Polling System

5. Case Studies

209

Figure 5-10 UsiXML code for AUI

5. Case Studies

210

5.2.3 From Abstract User Interface to Concrete User Interface

5.2.3.a Reification of AC into CC

The simple heuristic solving the current problem consists of representing all tasks
into one single window. This solution is often referred to as the “maximal window
selection” [Vand94]. Other window identification schemes found in [Van94] can
be equally defined. Rule 4-9 and 4-10 are applied to realize this sub-step. Each
abstract container becomes a box except the top level that becomes a window
(“maximal window” solution).

A variant of this rule is used in Sec. 5.3.4.a such that each abstract container
becomes a window.

5.2.3.b Selection of CICs

This sub-step involves the highest number of rules of all transformation sets as
the different combinations of facet types, data types, cardinalities,…, are
numerous. Table 5-1 provides the subset of rules applied in this case study. The
designer can choose among the different alternatives provided by these rules.

Abstract Interaction
Component

Facet
Specification

Information to take into
account

Possible
Concrete

Interaction
Component

“create name” and
“create zipCode”

Create attribute
value

Data type, domain
characteristics

A box with a
label and an
input field (Rule
5-16)

“select sex and select
ageCategory”

Select attribute
value + selection
values known

Data type, domain
characteristics, selection
values

A dropdown list,
a group of
option buttons
(Rule 5-17 and
Rule 5-18)

“Show
Questionnaire”

Output (value
unknown)

Attribute, data type,
domain characteristics

A label

“Select Answer” Select attribute
value + repetitive
(selection values
not known)

Data type, domain
characteristics

A dropdown list,
a group of
option buttons

“Send Questionnaire” Control Feedback A button

Table 5-1 correspondence between AIO types and CIO types

5. Case Studies

211

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-16 Creation of an input CIO from an input AIO

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-17 Creation of a box to hold radio button

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-18 Creation of one radio button per selection value

5. Case Studies

212

5.2.3.c CIC placement

Rule 4-12 is mainly used to perform CIC placement. Like for abstract
arrangement, a duplication of rules is necessary for covering combinations of
couples with CC and CIC as elements.

5.2.3.d Navigation definition

Navigation specifies how the visibility property of CCs is set and, consequently,
defines transitions between them. Since all elements are presented simultaneously
into the same window, there is no particular need to define a sophisticated
navigation scheme, which is the choice adopted here. However, some schemes
can be added later on depending on the level of sophistication the designer want
to add. Navigation definition is applied in Sec. 5.3.4.b.

5.2.3.e Concrete dialog control definition

Rule 4-14 is mainly used to perform CIC placement.

5.2.3.f Derivation of CUI to domain relationships

Rules like Rule 4-15 achieve the transposition of inter-model relationships.

5.2.3.g Resulting specification

The resulting specifications are obtained by realizing the above development sub-
steps. Fig. 5-11 presents a mock-up of the graphical UI. Red rectangles denote
invisible boxes, that are boxes whose visibility property has been set to “invisible”
thanks to rules involved in the navigation definition (Section 5.2.3.d). Grey
rounded rectangles denote visible boxes. The content of Answer Question will be a
table containing questions and answers. The contents of this table will be
determined at run-time when instances of questions and answers are known.

5. Case Studies

213

Figure 5-11 UsiXML code for CUI level

Participate to Opinion PollParticipate to Opinion Poll

Provide Personnal Data

create name

select ageCategory

18-35

45+

35-45

create zipCode

select sex
Female

Male

Send Questionnaire

Answer Question

Question

Answer

Select Answer

Content to determine
at run-time

Participate to Opinion PollParticipate to Opinion Poll

Provide Personnal Data

create name

select ageCategory

18-35

45+

35-45

create zipCode

select sex
Female

Male

Send Questionnaire

Answer Question

Question

Answer

Select Answer

Content to determine
at run-time

Figure 5-12 CUI appearance for Virtual Polling System

5. Case Studies

214

5.2.4 Graphical Reshuffling of the CUI

A satisfactory layout is hard to derive in a systematic manner [Vand94]. No
method surveyed in Chapter 2 allows a graphical reshuffling of the UI layout
before being transformed to a final UI (FUI). With a UsiXML-compliant visual
editing tool, such thing becomes possible. Fig. 5-13 shows a modification (i.e., an
insertion of a box containing a label and a text editing zone) of the CUI presented
in Fig. 5-12.

Consistency problems could arise when the CUI level is modified. If an element is
withdrawn, the AIO it reifies (and transitively the tasks it supports) are no longer
in correspondence and should be consequently erased. If an element is added, an
element at the AUI should be added. Placement and dialog control relationships
should be regenerated in both cases. If an attribute of an object is modified then
AUI and CUI stay consistent. In our development scenario, the CUI is simply
reverse engineered to a new AUI, rebuilt from scratch. Although solving the
round-trip problem is beyond the scope of this dissertation, we demonstrate that a
development scenario could be imagined on top of the concerned levels so as to
address it. The means to address this problem are therefore already present. This
is highlighted in the next section that reverse engineers the reshuffled UI layout.

Participate to Opinion PollParticipate to Opinion Poll

Provide Personnal Data

create name

select ageCategory

18-35

45+

35-45

create zipCode

select sex
Female

Male

Send Questionnaire

Answer Question

Question

Answer

Select Answer

Content to determine
at run-time

Participate to Opinion PollParticipate to Opinion Poll

Provide Personnal Data

create name

select ageCategory

18-35

45+

35-45

create zipCode

select sex
Female

Male

Send Questionnaire

Answer Question

Question

Answer

Select Answer

Content to determine
at run-time

Figure 5-13 Reshuffled CUI

5. Case Studies

215

5.2.5 Reverse Engineering the AUI

After reshuffling the CUI manually, we define Rule 5-19, Rule 5-20, Rule 5-21,
and Rule 5-22 to reconstruct the AUI structure from scratch.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-19 Creating an AC for each graphical container

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-20 Creating an AIC for each graphical individual component

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-21 Recreating abstract containment relationships between ACs and AICs

5. Case Studies

216

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-22 Recreating abstract containment relationships between ACs

After this, AICs facet types have to be recovered from the CIC specifications.
This problem gives birth to many different rules. Here again, the restriction that
“only one right hand side can be specified at a time”, i.e., no disjunction allowed,
turns out to be a true inconvenient. Indeed many different patterns in the CUI
entail creating similar elements at the abstract level. Table 5-2 shows associations
between CIC types and AIC facet types applicable to this case study. The column
“special action” indicates some additional details for the rule representing this
association.

CIC AIC Facet Type

Button Control AIC (Rule 5-23)
Radio button Input for group of radio button. Transfer

of selection values
text components if editable (i.e.,
input field)

Input (See Rule 5-24)

text components if not-editable
(i.e., labels)

Output

Table 5-2 CICs and their associated facet types

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-23 Reverse engineering of a button

5. Case Studies

217

LHS

::=

LHS

::=

RHSRHS

Rule 5-24 RHS to reverse engineer a box containing a label and an input field

Rule 5-24 performs reverse engineering of a complex structure i.e., a box
containing a label that is adjacent to an input field to a corresponding structure at
the AUI level, thus achieving some form of design recovery.

5. Case Studies

218

Rule 5-25 and Rule 5-26 are rules used to reverse engineer, respectively, abstract
adjacency relationship and abstract dialog control. Similarly to forward
engineering, a rule should be defined to cover any possible combinations.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-25 Reverse engineering abstract adjacency

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-26 Reverse engineering AUI dialog control

5. Case Studies

219

5.2.6 Resulting Specification

 The resulting abstract specification is illustrated by Fig. 5-14.

*dialog controlabstract adjacency repetitive

>>

>>

>>

>>

>>

>>

>>

AC1 Partcipate Opinion Poll

AC11 Provide Personal Data

AIC Input name

AIC Input
ageCategory

AIC Input zipCode

AIC Input sex

AC12 Answer Question *
AIC Output Question

*AIC Select Answer

AIC Control Send
Questionnaire

AIC Input address

Figure 5-14 AUI model after reverse engineering process

5. Case Studies

220

5.3 Case Study 2: a Virtual Travel Agent

The second case study considered in this chapter is inspired by the benchmark
specification provided by the FIPA [FIPA00]. This specification describes a
Personal Travel Agent (PTA). The main function of this system is to allow a user
searching, booking, and paying a flight, a rental car, or a hotel room.

The development scenario of this case study starts with an initial Task & Domain
viewpoint (Fig. 5-14). From this viewpoint, an AUI (T1) is produced. Three
different transformations are applied to the AUI to derive a graphical 2D CUI for
a desktop PC i.e., a normal display (T2), a graphical 2D CUI for a small display
(T3), and an auditory CUI (T4). Then the initial Task and Domain viewpoint is
translated (T5) for a new context of use that is considered different and complex
enough to complete the transformation from an adapted AUI instead of the same
initial AUI. This is reflected by some changes in the task and domain models.
From this adaptation, a new AUI is derived (T6) and a CUI for a normal display
(T7) model is translated. This development scenario shows that transformations
can be applied whenever and wherever they are considered appropriate. In this
case, two different AUIs are derived from two task and domain models sharing
the same initial point and several CUIs are derived from the first AUI. Again, only
the newly introduced constructs are detailed.

Task and
Domain

Abstract
User Interface

Concrete
User Interface 1

(2-D Desktop)

Final
User Interface

T1

Rendering

T2

T3 Concrete
User Interface 2
(2-D small display)

Concrete
User Interface 3

(auditory)

Final
User Interface

Final
User Interface

Final
User Interface

Concrete
User Interface

Task and
Domain

Abstract
User Interface

T4

Rendering

Rendering

Rendering

T5

T6 T7

Task and
Domain

Abstract
User Interface

Concrete
User Interface 1

(2-D Desktop)

Final
User Interface

T1

Rendering

T2

T3 Concrete
User Interface 2
(2-D small display)

Concrete
User Interface 3

(auditory)

Final
User Interface

Final
User Interface

Final
User Interface

Concrete
User Interface

Task and
Domain

Abstract
User Interface

T4

Rendering

Rendering

Rendering

T5

T6 T7

Figure 5-15 Development scenario for case study 2

5. Case Studies

221

5.3.1 Initial Representations

Figure 5-16 Class diagram for a PTA

The class diagram (Fig. 5-16) involves 9 classes. Flight characterizes an airplane
flight with its origin, destination, time, date, etc. Client describes client’s
characteristics. FlightPreference describes the preferences of a client in terms of
destination, schedules, and budget. Payment gathers information related to a flight
payment. CreditCard provides information on credit cards, the only payment mean
considered in our system. Budget, Location, Travel-Time and Airport are classes that
are used as data types by FlightPreference and Flight classes.

5. Case Studies

222

The task model represented in Fig. 5-17 with the CTT notation can be described
as follows: the user may either arrange a flight, a hotel room, or a rental car. This
case study focuses on the first possibility. To arrange a flight, the user has first to
search for a flight and then to pay for this flight. To search for a flight, the user
has to determine her preferences, to launch the search and to select a flight among
the results returned by the system. After selecting a flight, the user proceeds to
final payment. For this purpose, the user inputs the details concerning her credit

Figure 5-17 Task model for the PTA

5. Case Studies

223

card whose validity is verified by a system task. The user then confirms her
payment.

The UsiXML specifications corresponding to this case study are substantially
larger than those of the first case study. For this reason, the relationships between
the domain model and the task model are summed up in Table 5-3. A dotted
notation of the form Class.attribute denotes attributes.

Task Domain concept
Determine origin (create element) FlightPreference.origin
Determine Destination (create element) FlightPreference.destination
Determine Via (create element) FlightPreference.via
Determine Time (create element) FlightPreference.time
Determine Budget (create element) FlightPreference.budget
Launch Search (start operation) FlightPreference.searchFlight()
Select Flight (select element) Output parameter of

FlightPreference.searchFlight()
Select Card Type (select element) CreditCard.cardType
Input Card Holder (select element) CreditCard.cardNumber
Input Card Number (select element) CreditCard.cardHolder
Input Expiration Date (select element) CreditCard.expirationDate
CheckCard (start operation) CreditCard.checkValidity()
Confirm Payment (start operation) Payment.proceedPayment()

Table 5-3 Mappings between the Task and the Domain for the PTA

Like for the first case study, before initiating the transformation process, we have
to make sure that the decomposition level is appropriate. From the Task and
Domain viewpoint introduced above, it is observed that all create tasks are well
mapped onto corresponding attributes. This has been identified in the first case
study as an appropriate level of decomposition. To support attributes attached to
complex types, Rule 5-27 creates a sub-task for each attribute composing the
complex data type. For example, the attribute origin is of type Airport ; Rule 5-28
therefore creates three sub-tasks to input the three attributes of the data type:
name, city, and country.

5. Case Studies

224

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-27 Creating sub-tasks for tasks manipulating complex types

5.3.2 Derivation of the AUI

The derivation of the AUI (result in Fig. 5-18) defined for the first case study can
now be reused with two noticeable differences:
 The inclusion of a select task manipulating the output parameter of a method.

This enables the user to perform a selection of the flights returned by the
searchFlight method. As for Answer.title in the first case study, the exact
amount of items in the selection is known only at run-time. Like in this latter
case, this type of configuration gives birth to a repetitive AUI with a input
selection facet.

 The inclusion of a system task of start operation type. This system task is not a
inherent part of the UI but may be represented by a feedback object. Later on,
one can decide whether this feedback object should be incorporated in the
same containers (e.g., a label providing a feedback) or not (e.g., a pop-up
window provides the feedback). In any case, the system task is translated into
a AIC with a control facet.

5. Case Studies

225

>>

>>

|||

|||

|||

>>

>>

>>

|||

|||

|||

|||

|||

AC Arrange Flight

AC Search Flight

AC Determine Prefs

AC Determine Origin

AC Determine Destination

AC Determine Via

AC Determine Time

AC Determine Return-Time

AC Determine Budget

AIC Launch Search
(control searchFlight +
feedback)

AIC Select Flight
(input select
searchFlight)

AC Search Flight

AC Input Card Details

AIC Select Card Type
(Input select a value)

AIC Input Card Holder
(input a String)

AIC Input Card Number
(Input an Integer)

AIC Input Expiration
Date (Input a date)

AIC Confirm Payment
(Control
proceedPayment +
feedback)

A
IC

 C
ontrol C

heck C
ard

(checkValidity +
feedback)

*dialog controlabstract adjacency repetitive

*

Figure 5-18 AUI for Virtual Travel Agent

5.3.3 Derivation of CUI for desktop

The derivation of the CUI for the desktop computing platform (Fig. 5-19) is
based on the same principles than those we for the first case study. In this case,
we define combination boxes (“combo boxes”) for performing a selection when
the number of items to select is greater than three. Any AUI part operating on a
Date data type is mapped onto boxes containing four CICs: a label, a drop-down
list for the day, a drop-down list for the month, and a drop-down list for the year.
Note that a mapping of a date to a date picker at the CUI level can be defined
alternatively.

5. Case Studies

226

A rrange F lightA rrange F light

D eterm ine Prefs

Airpor t N am e

C ity

C ountry

D e te rm ine Or ig in

D e te rm ine V ia

D e te rm ine D estina tion

Airpor t N am e

C ity

C ountry

Airpor t N am e

C ity

C ountry

D e te rm ine T im e

At D ate day m onth year

D epar t T im e

Arr iva l T im e

D eterm ine R eturn- T im e

At D a te day m onth year

D epar t T im e

Arr iva l T im e

Launch Search

Proceed Paym en tSearch F ligh t

D eterm ine Budge t

C urrency

U pper

Low er

F ligh t

Input C ard D eta ils

Se lect C ard T ype

Input C ard H o lder

Inpu t C a rd N um ber

Exp ira tion D a te

V isa

Am ex

M aster C ard

C on firm

Content to determine
at run-time

Feedback of Check CardFeedback of Check Card

OK

Feedback of CheckCard

A rrange F lightA rrange F light

D eterm ine Prefs

Airpor t N am e

C ity

C ountry

D e te rm ine Or ig in

D e te rm ine V ia

D e te rm ine D estina tion

Airpor t N am e

C ity

C ountry

Airpor t N am e

C ity

C ountry

D e te rm ine T im e

At D ate day m onth year

D epar t T im e

Arr iva l T im e

D eterm ine R eturn- T im e

At D a te day m onth year

D epar t T im e

Arr iva l T im e

Launch Search

Proceed Paym en tSearch F ligh t

D eterm ine Budge t

C urrency

U pper

Low er

F ligh t

Input C ard D eta ils

Se lect C ard T ype

Input C ard H o lder

Inpu t C a rd N um ber

Exp ira tion D a te

V isa

Am ex

M aster C ard

C on firm

Content to determine
at run-time

A rrange F lightA rrange F light

D eterm ine Prefs

Airpor t N am e

C ity

C ountry

D e te rm ine Or ig in

D e te rm ine V ia

D e te rm ine D estina tion

Airpor t N am e

C ity

C ountry

Airpor t N am e

C ity

C ountry

D e te rm ine T im e

At D ate day m onth year

D epar t T im e

Arr iva l T im e

D eterm ine R eturn- T im e

At D a te day m onth year

D epar t T im e

Arr iva l T im e

Launch Search

Proceed Paym en tSearch F ligh t

D eterm ine Budge t

C urrency

U pper

Low er

F ligh t

Input C ard D eta ils

Se lect C ard T ype

Input C ard H o lder

Inpu t C a rd N um ber

Exp ira tion D a te

V isa

Am ex

M aster C ard

C on firm

Content to determine
at run-time

Feedback of Check CardFeedback of Check Card

OK

Feedback of CheckCard

Figure 5-19 CUI of the PTA for a desktop application

5.3.4 Derivation of CUI for small display

This derivation seeks to adapt the previously defined AUI for a display that is
smaller than for a desktop. Only a few elements of previously defined
transformation systems have to be re-defined to obtain a UI that is more
appropriate for this constrained display. These transformations are detailed in the
next subsections.

5. Case Studies

227

5.3.4.a Reification of AC into CC

Rule 5-28 states that all ACs at all decomposition levels are mapped onto
windows to reduce the screen density of information manipulated in each
window. More sophisticated rules for graceful degradation of UIs for small
displays are discussed in [Flor04].

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 5-28 Every AC gives birth to a window

 5.
 C

as
e

St
u

d
ie

s

228

NA
C

LH
S

RH
S

::=

NA
C

LH
S

RH
S

::=

R
u

le
 5

-2
9

G
en

er
at

io
n

 o
f

th
e

n
av

ig
at

io
n

 f
or

 s
m

al
l d

is
p

la
y

5. Case Studies

229

5.3.4.b Navigation definition

Since a new type of display is considered, this step is different from the first case
study and the first part of the current case study. The navigation defined here
enables a user to navigate: (1) from any parent window to its children and (2)
from any child to its respective parent window (Rule 5-29).

5.3.4.c Resulting specification

The resulting specification of this step is illustrated in Fig. 5-20.

Arrange FlightArrange Flight

Select Flight

Proceed Payment

Proceed PaymentProceed Payment

Input Card Details

Confirm Payment

Back to Arrange Flight

Search FlightSearch Flight

Determine Prefs

Launch Search

Flight

Back to Arrange Flight

Feedback of Check CardFeedback of Check Card

OK

Feedback of CheckCard

Determine PrefsDetermine Prefs

Determine Origin

Determine Destination

Determin Via

Determine Time

Determine Budget

Back to Search Flight

Launch Search

Determine OriginDetermine Origin

Back to determine prefs

Airport Name

City

Country

Input Card DetailsInput Card Details

Select Card Type

Input Card Holder

Input Card Number

Expiration Date

Visa

Amex

Master Card

Back to Proceed Payment

Determine DestinationDetermine Destination

Airport Name

City

Country

Back to determine prefs

Determine Return-TimeDetermine Return-Time

Back to determine prefs

At Date day month year

Depart Time

Arrival Time

Determine BudgetDetermine Budget

Back to determine prefs

Currency

Upper

Lower

Determine ViaDetermine Via

Back to determine prefs

Airport Name

City

Country

Determine TimeDetermine Time

Back to determine prefs

At Date day month year

Depart Time

Arrival Time

Figure 5-20 CUI of the PTA for a small display

5. Case Studies

230

5.3.5 Derivation of Auditory Interface

There is not a wide range of auditory CIOs in our ontology. Auditory containers
gather auditory individual components. Auditory individual components are
auditory input components and auditory output components. These elements
allow us building auditory UIs as a succession of questions and answers.

Sequentially applying the different development sub-steps defined in Chapter 4 is
not strictly necessary as the complexity of executing this development step is
reasonable.

The reification of AC into CC consists of creating an auditory container for each
AC. Auditory UIs being one-dimensional, per definition the structuring of
interactors in auditory containers has only an importance for navigation definition
i.e., when a possibility is offered to the user to initiate one part of the interface or
another.

The selection of auditory individual components is the richest operation in the
derivation of an auditory CUI. This operation consists of selecting an appropriate
combination of output and input auditory components. Rule 5-30 operates such a
complex transformation by deriving, from an input AIC, what could be called a
“block” of speech dialogue defining a “question-answer-cancel” composite
element. As it may be observed in this rule, inter-model relationships with the
domain model are exploited to directly derive CUI to domain relationship. This
violation of the methodological separation of concern is justified by the fact that
elements of the domain model are used in the definition of the created auditory
components e.g., the name of the mapped domain attribute becomes part of the
output of an auditory element.

Our derivation rules are illustrated on a sub-tree of the case study. Fig. 5-21
proposes an illustration of the dialogue between the user and the vocal system.

5. Case Studies

231

RHS

N
A

C
LH

S

::=

RH
S

RHS

N
A

C
LH

S

::=

RH
S

Rule 5-30 Transforming create AIC into complex input auditory components

5. Case Studies

232

 Please insert the [cardType]
 [Visa]

 You have entered
 [Visa]
 If you want to restart your input, say

yes
 [yes]

 Please insert the [cardType]
 [Amex]

 You have entered
 [Amex]
 If you want to restart your input, say

yes
 [-]

 Please insert the [CardHolder]
 …

Figure 5-21 Instance of a dialog between a user and a vocal system

5.3.6 Translation of the Task Model and Forward Engineering the CUI

As described in the scenario of Fig. 5-15, after producing the three UI described
above, the designer wants to regenerate a UI from a slightly altered version of the
task model. For this purpose, the designer prunes this task model according to the
task importance which is an attribute of the task evaluated on a scale of 1 to 5.
Rule 5-31, Rule 5-32, Rule 5-33, Rule 5-34 realize a pruning of the task model
presented in Fig. 5-16.

PAC LHS RHS

::=
X < 5

PAC LHS RHS

::=
X < 5

Rule 5-31 Erasing unimportant tasks while reconstructing temporal relationships

5. Case Studies

233

Rule 5-32 Erasing unimportant task that have no successor sister

Rule 5-33 Erasing unimportant tasks that have no predecessor sister

Rule 5-34 erasing all tasks that have no father except the root

The task model resulting from the application of these four rules is showed in Fig.
5-22. From this task model it is possible to initiate a development process similar
to the one described at Sec. 5.3.2 and 5.3.3.

5. Case Studies

234

Figure 5-22 Task model of Fig. 5-16 after being pruned

5. Case Studies

235

5.4 Conclusion

The two case studies presented in this chapter show how multi-path
development applies to low to mid-complex examples of both graphical and
auditory interfaces.

To solve these case studies we have followed the following procedure: (1)
Building initial models. Such models have been edited with their associated editing
tool. (2) Editing and debugging of rules within the AGG graphical environment.
Most of these rules have been elicited prior to realizing these case studies by a
theoretical analysis of development sub-steps as illustrated in Chapter 4. (3)
Importing initial models into the AGG graphical environment. (4) Selecting a
transformation set and firing the rules contained in this set. (5) Exporting
resulting models from AGG to UsiXML and illustration.

This process led us to deduce the following conclusions regarding the strengths
and weaknesses of our method.

Our case studies showed the feasibility of developing a UI in a principled-based
and rigorous manner relying on explicit transformation catalogs at any time. The
diversity of development paths that have been presented highlight the possibility
of manipulating UI related artifacts according to different development scenarios
and pave the way to consider multiple other alternatives. In particular, new
development scenarios can be developed by refinement (e.g. a more elaborated
scenario), by composition (e.g., a new scenario by composing several existing
scenarios), by transformation (e.g., a newly defined scenario by deriving other
forms of scenarios from existing ones) or by reusing. The reuse of
transformations has been illustrated when transformation systems have been
straightforwardly reused from one case study to another one. As so, we avoid ad
hoc development catalogs and enable a capitalization of transformations in a
consolidated approach while trying to avoid the proliferation of scenarios that are
close to each other.

The difficulty and weaknesses we encountered while realizing these case studies
are the following:

Lack of expressivity of models. As it was observed in Chapter 4, the mere fact
of decomposing a transformational development process into steps and sub-steps
enables an identification of weaknesses of certain models in terms of expressivity.

5. Case Studies

236

As the preciseness in the expression of transformation grows, some models
revealed to need enrichment to allow their exploitation for derivation means e.g.,
the task model had to be enriched with various concepts. For instance, to describe
the intrinsic nature of a task, the domain model needed a better expression on the
nature of the domain of attributes.

Inherent complexity of certain sub-steps. The complexity of some sub-steps
(for instance, those involving a definition of the layout) relies in the multiple
criteria to be considered simultaneously and the high number of possible design
options. This complexity is not diminished by our method. Only the elements
underlying design options are made explicit, and their performance is enabled in a
formal manner.

Difficulty in finding an appropriate level of generalization when defining
rules remains difficult. Conditional graph rewriting offers expressions having no
side effect i.e., a rule only affect parts of the graph defined in its scope.
Nonetheless, a rule may always have a “wider” scope than planned by its designer.
It therefore affects unexpected graph elements. On the other hand, defining very
precise rules entails defining a collection of rules for realizing a transformation
that could be obtained with the application of one single and more generic rule.
An automatic recognition of sets of rules able to be synthesized in one rule would
be desirable in this case. This problem is an illustration of the rule composition issue
raised in the literature.

Lack of disjunction in the rule expression. There is a redundancy in the
expression of certain rules. Indeed, certain sets of rules operate a similar
modification to the initial graph (i.e., they have a similar RHS) but have slightly
different application conditions (i.e., their LHS). Imagine a rule applying a
transformation to all AICs manipulating String or Integer data. To handle this
case, two distinct rules should be defined. As so, we think that the possibility of
using disjunction in the application conditions of rules could help us to decrease
the number of rules and the risk of inconsistencies in the application of the
method.

Difficulty to get meta-information on the graph. During the execution of
certain sub-steps, it turned out that the state of the specification could have been,
advantageously, complemented by meta-information on the specification itself.
Meta-information is information that is processed by externally analyzing the state of
the specification. For instance, a meta-information could consist of counting the

5. Case Studies

237

number of edges pointing or starting from a specific node. This meta-information
could help us to define meta-heuristics that are rules able to select an appropriate
transformation rule.

Difficulty in ordering rules within transformation systems. It happens that
two rules of a same transformation system apply to similar graph nodes. These
rules are referred to in the literature as a critical pair. In this case, the ordering of
rules has an impact on the graph resulting from the transformation system. Critical
pair analysis is an algorithmic analysis technique operating on graph grammars and
identifying conflicting rule couples. This technique is available in the AGG
environment. Nonetheless, once these pairs are identified, it remains tedious to
modify or re-arrange conflicting rule couples.

Difficulty in ordering sub-steps within steps. In a similar manner to rules, it is
not an easy task to order sub-steps within a same step. Each sub-step, along with
its associated transformation system, produces a graph presenting certain
characteristic i.e., type of nodes and relationships produced during the execution
of the sub-step. Arranging sub-steps such that the information produced by the
previous sub-step will not be modified afterwards remains an undetermined
activity. The help of a formal expression of pre- and post- condition of each sub-
step would certainly improve this aspect.

Difficulty in implementing generalization in AGG environment. AGG as
such does not support hierarchy. This hierarchy had to be mimicked in this
environment by merging sub-types of certain nodes into a single node and using
an attribute to differentiate the subtypes. This is a well known solution to people
who want to translate UML generalizations into database relational schemas.
Consequently, in some cases this entailed the definition of several rules when only
one could be defined. Nonetheless, the lack of hierarchy in AGG did not reduce
the expressivity of the transformation system themselves. Some of them are just
verbose.

Difficulty in coordinating tools around an evolving ontology. The method
that is proposed involves the collaboration of many tools. On the other hand, our
ontology, after its first expression, one year ago, has evolved rapidly. This is due
notably to the feedback received from the first users of UsiXML. Any change
applied to the ontology entails the adaptation of several tools resulting in a lot of
development effort and, also, delays in the support of modifications brought to
the ontology. Coordinating tools in such context is not an easy task.

5. Case Studies

238

Difficulty in generating identifiers. By definition, a rule does not generate the
identifiers of the created elements as it applies to a pattern. Adding the identifier
at the export of the specification has been the choice we made to solve.

6. Conclusion

239

Chapter 6 Conclusion

6.1 Context of This Work

Transformational development is one of the answers provided by the Software
Engineering (SE) community to tackle the problem of building software in a
systematic and principle-based way.

Transformational development in SE defines the development of software as a
progressive refinement of abstract models into concrete models, until program
code [Somm99]. This transformational development relies on catalogs of
transformations able to (semi-)automatically perform model-to-model and model-
to-code transformations.

Transformational development of user-interfaces (TDUI) specializes principles of
transformational development in the context of UI development. By analogy with
transformational development in SE, it defines the development of user interface
systems as a successive application of transformations to an initial representation.
This generally implies a progressive refinement of an abstract model into a
concrete model, until program (here UI) code, or vice versa.

Since the mid-nineties, numerous engineering methods have been proposed to
support TDUI (see Chapter 2). Most of them are concentrated on deriving UI
code from abstract models, others are focused on recovering a model from a UI
implementation. A more recent trend gave birth to methods dedicated to the
adaptation of a UI system to multiple contexts of use, as many variations of these
contexts have been observed.

6. Conclusion

240

6.2 Content of This Dissertation

The state of the art of Chapter 2 reveals a series of shortcomings in existing
approaches for achieving TDUI. These shortcomings delineated our problem
space. These shortcomings lead us to conclude that TDUI can be improved
along several dimensions.

For this purpose, this dissertation proposes (1) an ontological framework based
on an explicit and rigorous representation of concepts relevant to UI development
(2) a methodological framework based on the ontological framework previously
introduced. This methodological framework introduces a new paradigm for UI
development called multi-path development of UIs that is characterized by the
following principles:

 Transformation driven: a development method is composed of development
stages. A development step is a transition from one stage to another one.
Development steps rely on explicit and rigorous transformation catalogs.

 Multiple-path: the context of development projects may involve variable

arrangements of development steps. A development path refers to a
particular arrangement of steps. Multi-path development refers to the
capacity of a method to accommodate to various development paths.

Chapter 3 presents an ontology for the specification of UIs.

Sec. 3-2 details the concepts and relationships in the scope of our ontology. Two
essential artifacts were introduced to structure this ontology:

 Viewpoints materialize different “concerns” on the UI system. Four viewpoints

have been introduced, motivated, and defined: A final UI viewpoint is the
implementation of a UI system as it can be seen from the code level or from
the rendering level (i.e., its appearance); A concrete UI viewpoint is a description
of a UI which is, as independent as possible, of any reference to
implementation details (i.e., toolkit). An abstract UI has been defined as a
description of the UI that is as independent as possible of any reference to the
modalities for which a UI is designed (e.g., graphical interaction, vocal
interaction). A Task and Domain viewpoint concerns a representation of UI
systems in terms of tasks to be carried out by a user in interaction with the

6. Conclusion

241

system along with the domain-oriented concepts as they are required by these
tasks to be performed.

 UI models have been exposed thanks to conceptual schemas expressed in

UML. UI models gather concepts of interest in the development of a UI
system. Some of the UI models are transversal to all viewpoints: a context
model describes the context for which a set of models, a model or a part of a
model is specified for. An inter-model relationship allows a designer to relate
different models across or inside viewpoints.

In Sec. 3.3, a mathematical formalism for representing our ontology is motivated
and presented. This formalism consists in “directed, identified, labeled,
constrained and typed graphs” and can be considered as the abstract syntax of our
ontology. Sec. 3.4. illustrates two different, yet semantically equivalent, concrete
syntaxes for our ontology. These two syntaxes reflect the conceptual structure
introduced in Sec. 3.2. while respecting the graph-based mathematical notation
introduced in Sec. 3.3. A graphical syntax relies on boxes and arrows to express
concepts in the scope of our language and their relationships. An XML compliant
syntax, called UsiXML, relies on XML schemas to enable a textual representation
of any concepts presented in Sec. 3.2.

As a result of Chapter 3, any UI specification model and viewpoint is represented
under the form of a large graph. Chapter 4 introduced a methodology for
manipulating this graph structure to support TDUI.

Chapter 4 presents a development method for achieving multi-path development
of UIs.

This development method decomposes any development activity (i.e, a
development scenario) in a series of development steps consisting in the
transformation of the artifact(s) in the scope of a development stage (here referred as
viewpoint) into other development artifacts. In this context, a development path is
defined as an archetypal composition of development steps. We identified three
typical development paths: forward engineering, reverse engineering, and context
(of use) adaptation.

These paths are basically expressed on three types of transformation (i.e.,
abstraction, reification, and translation) so that any development path, consisting

6. Conclusion

242

of development steps, can be supported by a transformational approach by
combining transformations of the three types.

Development steps have been further decomposed into development sub-steps. A
development sub-step realizes one ‘concern’ of the transformation process at a
time. For instance, the definition of the dialog control, the definition of the
navigation, or the selection of appropriate interactors.

To enable an expression and an execution of the development steps, each sub-
step populating a step may be associated with a so-called transformation system, itself
decomposed into transformation rules.

Transformation systems and transformation rules are conditional graph rewriting rules
sequentially composed into grammars. Conditional graph rewriting and graph
grammars are advantageous in our context as they propose a declarative syntax, an
reasonable computational power, a formally defined execution semantics, an
appealing graphical syntax, a high degree of modularity, and last but not least, they
perfectly integrate with our ontological framework as transformation rules are
composed of fragments of specifications (i.e., patterns).

Transformation rules and transformation systems may be stored in a textual
format to enable their capitalization in a sort of transformation catalogs called
development library.

A collection of tools has been introduced in Sec. 4-7 and annex 1. These tools
materialize our approach and show how each viewpoint of our framework can be
edited and transformed. The existence of this collection of tools contributes to
the requirement of tool interoperability.

6.3 Validation

6.3.1 External Validation

External validation is realized by the application of our method on case studies.
The main goal of these case studies is to show the feasibility i.e., the capability to
solve the problems raised by the presented case studies.

6. Conclusion

243

The two case studies presented in this chapter show how multi-path development
applies to low to mid-complex examples of both graphical and auditory interfaces.

Our case studies showed the feasibility of developing a UI in a principled-based
and rigorous manner relying on explicit transformation catalogs at any time. The
diversity of development paths that have been presented highlights the possibility
of manipulating UI related artifacts according to different development scenarios
and paves the way to consider multiple other alternatives. In particular, new
development scenarios can be developed by refinement (e.g. a more elaborated
scenario), by composition (e.g., a new scenario by composing several existing
scenarios), by transformation (e.g., a newly defined scenario by deriving other
forms of scenarios from existing ones) or by reusing. The reuse of
transformations has been illustrated when transformation systems have been
straightforwardly reused from one case study to another one. As so, we avoid ad
hoc development catalogs and enable a capitalization of transformations in a
consolidated approach while trying to avoid the proliferation of scenarios that are
close to each other.

6.3.2 Internal Validation

The internal validation of a methodology consists in assessing its characteristics
against a set of selected criteria. The relevant criteria, called requirements, for our
methodology have been elicited and motivated after the state of the art of Chapter
2. This section proposes a discussion for each of these requirements.

6.3.2.a Ontological Requirements

Requirement 1: Ontological explicitness – states that our ontology should be
defined externally to any methodology manipulating it and in an explicit way that
facilitates its dissemination and manipulation among stakeholders. (Motivation:
Short. 1).

Discussion: Ontological explicitness has been fully achieved. An ontology for UI
specification has been presented in Chapter 3. This ontology has been defined
independently of any process manipulating it. Any external agent is able to learn
our ontology, access its inner concepts, structure and logic.

6. Conclusion

244

Requirement 2: Expressivity – means that a conceptual framework should
provide enough details to address problems that motivated the elicitation of its
constituent concepts. In our context models should, at least, provide enough
details to allow an implementation of the system it describes. This essential
requirement is not fulfilled by many formal methods, for instance those focusing
on verifying state properties of the system that is being built.

Discussion: The expressivity of our ontology can be assessed with several
arguments:

 Concepts at the CUI provide enough details to enable the generation of a final

UI for several toolkits, including HTML, XHTML, Flash DRK6, Java AWT,
Java Swing, to name a few.

 Concepts at AUI provide enough details to enable the generation of a CUI for

several modalities. This has been namely illustrated in Chapter 4 and in the
second case study of Chapter 5.

 The expressivity of the domain model is the one of UML class/object

diagrams (although several concepts were added to enable UI derivation). It is
out of the scope of this dissertation to discussion of the expressivity of such
notation.

 The expressivity of our task model outweighs the one of CTT, the reference

formalism that was chosen to represent user’s tasks. This formalism has
proven unsatisfactory for several reasons: the expression of leaf task is not
precise (or constrained) enough to enable the derivation of precise UI
specifications, the connection to the domain model remain somewhat vague
(they are only done using a reference to a textual list of objects), the LOTOS
temporal relationships give rise to interpretation arguments between experts.
Yet, CTT remains the most popular notation in TDUI for user task
specification.

 Inter-model relationships increase dramatically the expressivity of each model

taken individually.

Lack of expressivity could appear in the future along with the application of our
method for UI types or development context for which it was not thought for.

6. Conclusion

245

Requirement 3: Human readable – means that the provided ontology should be
proposed in a format that enables its legibility by a human agent.

Discussion: The assessment of this requirement is somewhat tempered. Indeed, our
graphical syntax has been proved efficient for specifying rules. The examples of
Chapter 4 and 5 show the appropriateness of this formalism for human use. On
the other hand when it comes to visualize models, graphical notation becomes
hard to manage as the number of nodes and relationships grows. That is why
tools presented in Chapter 4 use UML, CTT, WYSIWYG UI representations
instead of a collection of nodes and edges. Property sheets allow us to provide
and visualize complementary details of a specification. On the other hand, the
XML syntax, called UsiXML, is not intended for direct human usage. UsiXML
allows a grasp on the structure of specification models (e.g., for visualizing
hierarchy of elements) but is very hard to read when it comes to interpret
relationships (the reader has to search the Id of the nodes in relation in the
specification).

Requirement 4: Formality – states that models are expressed in such a level of
accuracy that it enables automatic reasoning on their properties. (Motivation:
Short. 2, 4).

Discussion: The formality of our ontology relies in its abstract syntax i.e., a
mathematical graph structure (i.e., directed, identified, labeled, constrained, typed
graphs). This graph structure is built by a progressive consolidation of an initial
simple graph category thanks to graph morphisms. This allows us to benefit from
any theoretical result proved for a simple graph category.

Requirement 5: Machine readable – states that the proposed ontology should be
legible by a machine.

Discussion: This requirement is completely met by the definition of an XML syntax
enabling the expression of the concepts of our ontology and in compliance with
the abstract syntax defined for this ontology. The collection of tools that
manipulate UsiXML format is an evidence of the machine readability of this
syntax.

Requirement 6: Ontological separation of concern – states that models should
differentiate aspects of the problem at hand [Parna72,Dijk76]. Models defined in
our methodology should capture and, segregate, different levels of abstractions.

6. Conclusion

246

Discussion: The concepts of viewpoint and UI model allow a segregation of the
concepts of our ontology into different abstraction layers. The CUI viewpoint is
the toolkit independent level, the AUI level is the modality independent level, the
Task and Domain viewpoint is the computation independent level.

Requirement 7: Verifiability of specification – is defined as: “the ease of
preparing acceptance procedures, especially test data, and procedures for detecting
failures and tracing them to errors during the validation and operation phases”
[Meye97]. Applied to specification, verifiability refers to the possibility of checking
easily desirable properties (e.g., consistency, usability criteria).

Discussion: This requirement is facilitated by formality and explicitness. Verifiability
has not been addressed, per se, in the context of this dissertation. The fact that
our ontology has been defined explicitly and formally facilitates its verification.

Requirement 8: Ontological homogeneity – refers to the property for a set of
concepts of being defined using a common syntax. All models concepts should be
described in a single formalism that facilitates their integration and processing.

Discussion: This requirement is met by the definition of all our concepts within a
single abstract syntax. This requirement has been a major motivation for choosing
graphs as a representational structure.

Requirement 9: Reuse of specifications – refers to the possibility of reusing
whole or a part of a specification for another system. The proposed framework
should facilitate reusing specifications.

Discussion: The fact that any specification can be exchanged using an XML syntax
facilitates reuse of specifications. The ability of transforming theses specifications
with a set of transformation rules increase the possibilities for reusing the
specifications. Yet, this dissertation has not addressed the problem of providing
meta-descriptors for indexing specification fragments. The use of specification
chunks as a pattern language should be addressed in our future works.

Requirement 10: Ontological extendibility – refers to the ease of adapting a
conceptual structure to the occurrence of newly elicited concepts. HCI is a vast
area covering the definition of multiple types of interfaces, interaction techniques,
and interaction contexts. A specification language should be equipped with

6. Conclusion

247

extension mechanisms to allow its evolution in parallel with the artifact it seeks to
model. This property is particularly relevant in the domain of TDUI as new
widgets, interaction devices, techniques and styles are constantly appearing.

Discussion: Extendibility is facilitated by several characteristics of our ontology:

 Modularity of our framework. Each model of our framework is defined

independently of the others (application of separation of concerns). Extending
our methodology to other models is possible by simply defining a conceptual
schema for this model and translating it into our concrete syntax. New inter-
model relationships can be defined to relate this newly introduced artifact with
the rest of our ontology. New rules may then be defined to take this new
model into account in the transformation process.

 Structuring of models. Each model is based on partial orders of node types

and edge types. This clear structuring facilitates the introduction of new
concepts while not endangering the existing structure of models, thus
implying some ontological stability. For instance, CIO types are sub-typed
into graphical CIO and auditory CIO, CUI relationships are partitioned in
graphical relationship and auditory relationship. Adding 3D CIOs and 3D
relationships would consist in adding a type for CIO and a type for CUI
relationships.

Requirement 11: Standards – states that the expression means that the rules used
to represent our ontology should rely on well accepted standards in the software
engineering community.

Discussion: The expression of the conceptual schemas relies on UML class
diagrams. Our textual concrete syntax relies on XML schemas. The advantages of
these respective techniques remain valid in our approach.
Methodological Requirements

Requirement 12: Methodological explicitness – states that the constituent steps
of our methodology should be defined in a way that facilitates the comprehension
of its internal logic and its application.

Discussion: Methodological explicitness is guaranteed by several factors:
Ontological explicitness is a pre-requisite of methodological explicitness.
Decomposition of development paths into development steps, and sub-steps.

6. Conclusion

248

Existence of a well-defined syntax for expressing methodological steps.

Requirement 13: Methodological flexibility – refers to the ability to initiate the
development from any development stage (i.e., multiple entry points) and to
terminate it at any development stage (i.e., multiple exit points).

Discussion: Methodological flexibility has been demonstrated in Chapter 4 and 5. It
is improved by several factors:
 Ontological separation of concerns.
 Our ontology was designed to allow an exploitation of models independently

of the definition of other models. For instance it is possible to initiate
development from any model, single or combined with others, and to
terminate it similarly with an equivalent degree of freedom.

Requirement 14: Methodological formality – states that development steps
should be expressed in such a level of accuracy that it enables an unambiguous
interpretation of the process they describe.

Discussion: the level of formality of our methodology is tantamount to the one of
conditional graph rewriting and graph grammars. Therefore no room is left for
another interpretation of development steps and sub-steps that is not allowed by
this formalism.

Requirement 15: Executability – states that development steps should be
expressed in such a level of accuracy that it is possible to execute them by an
automaton.

Discussion: Using conditional graph rewriting and graph grammars enables the
executability of our transformation rules. The fact that each development sub-step
is coupled with one transformation system ensures the executability of each
transformation step.

6.3.2.b Methodological Requirements

Requirement 16: Methodological separation of concerns. – refers to a
partitioning of methodological steps according to the process types they realize.

6. Conclusion

249

Discussion: Methodological separation of concerns is one property that is satisfied
by the underlying concepts of our methodology: viewpoint, development stage,
development path, development step and development sub-step. These
methodological concepts have been dissociated from the concepts realizing them
i.e., transformation systems and transformation rules.

Requirement 17: Methodological extendibility – refers to the ability left to the
designer to extend the development steps proposed in a methodology.

Discussion: Transformation systems and transformation sub-steps proposed in
Chapter 4 and 5 are only possibilities of realizing different development paths.
Our methodology allows the introduction of new development sub-steps and/or
new transformation systems for realizing sub-steps, thus encouraging the
exploration of alternatives for each sub-step.

Requirement 18: Methodological homogeneity – refers to the property of
methodological steps of being defined using a common syntax. All transformation
steps should be described in a single formalism that facilitates their understanding
and processing.

Discussion: This requirement is met for any model-to-model transformation. It
could be regretted that, in EHCI, graph grammars have not yet been used in the
model-to-code and code-to-model steps.

Requirement 19: Predictability – refers to the possibility provided by a
methodology to foretell the result of the application of development steps.

Discussion: Predictability is positively impacted by several elements.
 The execution of rules relies on an explicit and formal execution semantics.
 The application strategy of grammars defined in Sec. 4.3.5 ensures the

confluence of our grammars.
 The designer is at any time able to access and modify the transformation

systems and sub-steps definitions.
 Methodological steps may be applied step by step.

Consequently, our development process is totally transparent to the designer. The
only barrier to predictability remains the knowledge prerequisites from the
designer’s side.

6. Conclusion

250

Requirement 20: Traceability – is defined [IEEE90] as the “degree to which a
relationship can be established between two or more products (i.e., here models)
of the development process, especially products having a predecessor-successor
or master-subordinate relationship to one another”.

Discussion: A set of inter-model relationships have been introduced in Chapter 3 to
enable the expression of relationships of elements across viewpoints. In sec 4-4,
4-5, 4-6, these relationships have been used to ensure traceability of the
application of transformations i.e., it is possible to say, using these relationships,
which model element is derived from another one. Our solution meets the desired
requirement, although it can be regretted that these relationships have to be part
of the rule expression itself. These traceability relationships could be produced
automatically.

Requirement 21: Correctness – can be defined as the ability of a software to
perform their exact tasks [Meye97]. In the context transformational development,
correctness can be defined as the adequacy of an artifact A with respect to the
other artifact(s) B such that B is the source artifact that was used to derive A.

Discussion: Correctness is a relative notion depending on the context in which it is
addressed. Two types of correctness can be considered: Syntactic (structural)
correctness and semantic correctness [Varro02b]. Syntactic correctness states that
for any well-formed source model, any transformation rule produces a well-
formed target model. Syntactic correctness is guaranteed by construction within
our framework by the fact that all our transformations are type preserving. Graph
type checking ensures that a given transformation will not be applied if the
resulting model it produces violates the meta-model it is supposed to conform to.
A graph of types may also be accompanied with the expression of specific
consistency constraints inexpressible within the graph of types. Object Constraint
Language (OCL) is used for this purpose in [Agra03], pre- and post-condition
with graph patterns are used in [Akeh03]. Semantic correctness states that a
semantic adequacy between a source and a target model (this corresponds to the
definition given for Req. 21). In our context, proving semantic correctness is hard
as, by definition, the domain of discourse of source model and target model are
different. Furthermore, a designer is allowed to define her own transformation
rules, a correctness proof would have to be instantiated for each newly defined
rule.

6. Conclusion

251

Requirement 22: Support for tool interoperability – Tool interoperability refers
to the possibility of reusing the output provided by a tool into another tool. Our
method should foster interoperability of tools working on specification models
e.g., editors, critiquing tools, code generators, interpreters.

Discussion: Support for tool interoperability is positively impacted by a common
UI description language that is shared among tools (UsiXML) and that the
coverage of UsiXML is large enough to accommodate multiple tools. When new
concepts need to be introduced in our ontology, the support of new tolls can be
maintained by relying on ontological extendibility.

Requirement 23: Methodological reuse – refers to the possibility in a
methodology to capitalize on the knowledge defined by designers to perform
development steps and re-using this knowledge for other developments.

Discussion: The reuse of transformations has been illustrated by the fact that
transformation systems can be reused from one case study to another one. When
no possibilities exist for reusing a transformation sub-step, the methodological
extendibility enables the definition of new transformations.

6.4 Summary of Contributions

The contributions of this work can be summarized depending on the type of
audience it might affect:

 The intended audience of this dissertation is the research community and

those persons responsible for development methodologies in organizations.
This dissertation provides a mean of expression, structuring, and execution
of a TDUI realizing various development scenarios so as to support multi-
path development of user interfaces.

− The expression of transformation catalogs realizing TDUI relies on

an explicit and formal definition of concepts partitioned in different
viewpoints, each maintaining a particular insight on UI systems.
Transformations themselves are formally expressed with conditional
graph rewriting and graph grammars. This expression enables and
exchange of transformation catalogs among the research community
and thus fosters incremental research and development efforts.

6. Conclusion

252

− The structuring of the development process is ensured by the

introduction of the following concepts: development path,
development step, development sub-step. Both the underlying
concepts and their articulation together structure TDUI so as to
enable a composition of development steps into relevant development
paths.

− The execution of transformation catalogs realizing TDUI is defined

by the execution semantics provided for programmed graph rewriting.
Development sub-steps are associated with development systems
which in turn are composed of transformation rules.

Although not initially intended, this dissertation is also beneficial for other
communities such as:

 HCI designers and developers:

− Expression of design knowledge. The design knowledge that is tacitly

and implicitly maintained in the head of designers is made explicit,
thus identifying potential gaps.

− Formalization of design knowledge and models used to design UIs.
This allows identifying potential conflicts, contradictions and
underspecified aspects of the design knowledge used to design UIs in
the everyday practice.

− Communication of design knowledge and models. Once explicit the
design knowledge can be communicated and consolidated among
designers. This fosters consistency in the development efforts across
development projects in an organization.

 Software engineering community. Those interested in transformational

approaches in software engineering will find in this dissertation an
application of this paradigm to a specific problem domain.

 Graph transformation community. The graph transformation community

consolidates its theoretical fundamentals since the late sixties. This dissertation
provides a significant application of these fundamentals to a domain that
remains unprecedented.

6. Conclusion

253

6.5 Future works

A lot of things remain to be done around the framework presented in this
dissertation. We point out the following things as the most interesting issues for
us:

Extend the ontology to other types of UI: the ontology that was proposed only
covers concrete user interfaces for 2-D graphical interfaces and auditory user
interface. One could consider extensions to 3-D UIs, virtual reality, mixed reality
and tangible interfaces. The extension to multi-modal UIs (i.e. UIs where
modalities are intertwined) could also be considered.

Extend the ontology to other types of model and concepts: Models in the
scope of our ontology have been defined in a modular manner. Right now, the
most desirable model extension we’d like to do is to consider UML workflow
models for replacing CTT models. Workflow models present many advantages
with respect to CTT and offer a very appropriate notation for collaborative
applications. Another model that could be consolidated is the context model. For
instance, a context model for multi-surface and distributed user interface could be
taken into account [Lach04].

Define high-level building blocks for supporting design. As we dispose of a
language for expressing a wide range of concepts describing UIs, an idea could be
to define high-level building blocks that would overweight the level of individual
concepts themselves. Like proposed by [Fowl01] with his analysis patterns
[Fowl96], it is possible with our textual syntax to store UI descriptions
corresponding to commonly found UI across various business areas. These
“patterns” could be defined at different levels of our ontology. At domain level:
reusing existing OO patterns could even be considered. At task level: Molina
[Moli03] identified several task-based patterns that could be expressed using our
syntax. More complex patterns could couple domain patterns and task patterns.
At abstract and concrete UI levels, specification chunks could describe domain
specific UI parts like a form for a registration, or a payment window. This raises
the problem of indexing these specification chunks, retrieving them and
assembling them in a meaningful manner.

Extend methodological steps definition. The decomposition of the
development process proposed in this dissertation is probably not adequate for all

6. Conclusion

254

development situations. New sub-steps could be identified depending on the
application type and the development context.

Expand the flexibility of development steps. This may be done by introducing
richer control structures to pilot the application of rules (e.g., loops, conditional
structures), and by introducing human intervention for controlling methodological
steps during their execution.

Extend catalogs of transformations. This dissertation has shown that for a
same sub-step definition alternate transformation systems could be applied. Our
transformation catalogs are certainly not exhaustive and could be enriched with
new transformation systems.

Extend formal foundations to improve the articulation of sub-steps.
Considering the difficulties to order sub-steps within steps, it would be worth to
define a formal foundation of the expression of sub-step pre and post conditions.
Such formal expression could rely on the theory of abstract proving that
automatically generates a valid post condition by applying a transformation on a
precondition, thus allowing a checking of a property of correctness by construction
[Abra87].

Validate catalogs of transformation by human factors experts. This may be
done by: (1) empirical testing of transformation catalogs by human factors expert
conducting studies to discover, introduce or modify transformation rules within a
same transformation system or across (2) usability testing of UIs produced by our
application of the TDUI paradigm (3) external validation of our method on more
case studies with varying parameters (4) consider the incorporation of usability
properties in the transformation process itself.

Hide the complexity. It might be argued that conditional graph rewriting and
graph grammars require, from the designer’s side, a substantial knowledge in
formal methods. Interesting works could lead to a decrease in complexity in the
expression of transformation rules. For instance, generating traceability links
automatically could be considered.

Embed transformation systems in run-time scenarios. The transformation
process proposed in this work was imagined at design time. Nonetheless, no
elements of our methodology prevent to consider the application of
transformation systems at run-time. This might be considered for scenarios such

6. Conclusion

255

as dynamic (re-)allocation of tasks, dynamic adaptation to changes in the context
of use, partial or total migration, and distributed UIs.

Thanks for reading this document or at least this last page !

References

256

References

A

[Abra87]

Abramsky S., and Hankin C., Abstract Interpretation of Declarative Languages. Ellis-
Horwood, Chichester, 1987.

[Abra99]
Abrams M., Phanouriou C., Batongbacal A. L., Williams S., and Shuster J., UIML: An
Appliance-Independent XML User Interface Language, in Mendelzon A. (Ed.), Proceedings of
8th International World-Wide Web Conference WWW'8 (Toronto, May 11-14, 1999),
Elsevier Science Publishers, Amsterdam, 1999. Available online: http://www8.org/w8-
papers/5b-hypertext-media/uiml/uiml.html.

[Abri98]
Abrial J.-R., The B-Book: Assigning Programs to Meanings, Cambridge
University Press, Cambridge, 1996.

[Abow91]
Abowd G., Formal Aspects of Human-Computer Interaction, PhD thesis, University of Oxford,
1991.

[Agra03]
Agrawal A., Karsai G., and Ledeczi A., An End-to-end Domain-Driven Software Development
Framework, in Companion of the 18th Annual ACM SIGPLAN Conference on Object-
oriented Programming, OOPSLA’03 (Anaheim, October 26-30), ACM Press, New York,
2003, pp. 8–15.

[Akeh03]
Akehurst, D., Kent S., and Patrascoiu O., A Relational Approach to Defining and Implementing
Transformations in Metamodels, in Software and Systems Modeling 2(4), 2003, pp. 215–239.
Available on-line: http:// www .cs.kent.ac.uk/pubs/2003/1764, 2003.

[Alle83]
Allen J. F., Maintaining Knowledge about Temporal Intervals, in Communication of ACM, 26,
1983, pp. 123-154.

[Anne00]
Annett, J., Cunningham, D., and Mathias-Jones, P. A method for measuring team skills, in
Ergonomics, 43, 2000, pp. 1076–1094.

[Anne67]
Annett J., and Duncan K., Task analysis and training design in Occupational Psychology, 41,
1967, pp. 211-227.

[Aren91]
Arens Y., Miller L., and Sondheimer N. K., Presentation Design Using an Integrated
Knowledge Base, Addison-Wesley, Reading, 1991, pp. 241-258.

 [Azev00]
Azevedo P., Merrick R., and Roberts D., OVID to AUIML - user-oriented interface modelling
in Nunes N. (Ed.), Proceedings of 1st International Workshop "Towards a UML Profile for
Interactive Systems Development" TUPIS'00 (York, October 2-3, 2000), 2000.
Accessible at
http://math.uma.pt/tupis00/submissions/azevedoroberts/azevedoroberts.html.

B

References

257

[Baad98]
Baader F., Nipkow T., Term Rewritting and all that, Cambridge University Press,
Cambridge, 1998.

[Bail03]
Bailey, B.P., and Konstan, J.A. Are Informal Tools Better? Comparing DEMAIS, Pencil
and Paper, and Authorware for Early Multimedia Design. Proc. of the ACM Conference
on Human Factors in Computing Systems CHI’2003 (Fort Lauderdale, April 2003). ACM
Press, New York, 2003, pp. 313-320

[Barc99]
Barclay P. J., Griffiths T. , McKirdy J., Paton N.W., Cooper R., and Kennedy J., The
teallach tool : Using models for flexible user interface design, in Vanderdonckt J. (Ed.),
Proceedings of CADUI'99, Kluwer Academic, 1999, pp. 139-157.

[Ball00]
Ball T., Colby Ch., Danielsen P., Jagadeesan L. J., Jagadeesan R., Läufer K., Matag P.,
and Rehor K., SISL: Several interfaces, single logic, Technical report, Loyola University,
Chicago, January 6th, 2000.

[Balz76]
Balzer R., Goldman N., Wile, D., On the Transformational Implementation approach to
programming, in Proceedings of the 2nd International Conference on Software Engineering
ICSE ’76 (San Francisco, California, United States), 1976, pp. 337-344.

[Balz93]
Balzert, H., Der JANUS-Dialogexperte: vom Fachkonzept zur Dialogstruktur, in
Proceedings der GI-Fachtagung Softwaretechnik SoftwareTechnikTands’93, Dortmund,
1993, pp. 62-72.

[Balz95]
Balzert, H., From OOA to GUI - The JANUS-System, in Nordbyn, K., Helmersen, P.H.,
Gilmore, D.J., Arnesen, S.A. (Eds.), Proceedings of the Fifth IFIP TC13 Conference on
Human-Computer Interaction INTERACT’95 (Lillehammer, June 25-29, 1995),
Chapman & Hall, London, 1995, pp. 319–324.

[Balz96]
Balzert H., Hofmann F., Kruschinski V. , and Miemann C., The JANUS application
development environment - generating more than the user interface, in Vanderdonckt J. (Ed.), Proc.
Of the 2nd Int. Workshop on Computer-Aided Design of User Interfaces CADUI'96
(Namur 5-7 June 1996), Namur University Press, Namur, 1996, pp. 183-206.

[Bare02]
Baresi, L., Heckel R., Tutorial Notes on Foundations and Applications of Graph Transformation,
An introduction from a software engineering perspective, First Int. Conference on
Graph Transformation ICGT’02 (7-12 september 2002, Barcelona, Spain), Electronic
Notes in Computer Science, 2002.

[Bart88]
M.-F. BARTHET, Logiciels interactifs et ergonomie, Dunod Informatique, Paris, 1988

[Bart95]
Barthet M. F., The DIANE method and its connection with MERISE method, in Proc. of IEA
World Conference ’95 (Rio de Janeiro), 1995.

 [Bart96]
Barthet, M.-F., and Tarby, J.-C., The Diane+ method, in Vanderdonckt J. (Ed.), Computer-
aided design of user interfaces, Presses Universitaires de Namur, Namur, 1996, pp. 95–
120.

[Baum00]
Baumeister L. K., John B. E., and Byrne M. D., A comparison of tools for building GOMS
models tools for design, in Proc. of ACM Confereence On Human Factors in Computing
Systems CHI'2000, ACM Press, New York, 2000.

References

258

[Bear96]
Beard, D. V., Smith, D. K., and Denelsbeck, K. M., QGOMS: A direct-manipulation tool for
simple GOMS models, in Proceedings of ACM Conference on Human Factors in
Computing Systems CHI ’96, ACM Press, New York, 1996, pp. 25–26.

[Bend83]
Bendas J.B., Design through transformation, in Proceedings of the 20th ACM IEEE
conference on Design Automation Conference (Miami Beach, Florida, United States),
IEEE Press, 1983, pp. 253-256.

[Bett02]
Bettin, J., Measuring the Potential of Domain-Specific Modelling Techniques, in Proceedings of the
2nd Domain-Specific Modelling Languages Workshop DSVL’2002, satellite event of
OOPSLA 2002, Working Papers W-334, Helsinki School of Economics, 2002, pp. 39-44.
Available on-line: http://www.cis.uab.edu/info/OOPSLA-DSVL2/Papers/Bettin.pdf

[Bhar95]
Bharat K. A., and Hudson S. E., Supporting distributed, concurent, one-way constraints
in user interface applications in Proceedings of the 8th ACM Syposium on User Interface
and Software Technology, ACM press, 1995, pp. 121-132.

[Boda94]
Bodart F. , Hennebert A. , Leheureux J. , Provot I. , Sacré B. , and Vanderdonckt J., A
model-based approach to presentation: A continuum from task analysis to prototype, in Paternò F
(Ed.), Proceedings of 1st Eurographics Workshop on Design, Specification, Verification Od Interactive
Systems DSV-IS'94 (Carrara, June 8-10, 1994), pages 25-39, Vienna, 1994. Eurographics
Series.

[Boda94b]
Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J., Towards a Dynamic
Strategy for Computer-Aided Visual Placement, in Proc. of 2nd ACM Workshop on Advanced
Visual Interfaces AVI'94 (Bari, 1-4 June 1994), T. Catarci, M.F. Costabile, S. Levialdi &
G. Santucci (Eds.), ACM Press, New York, 1994, pp. 78-87.

[Boda95a]
Bodart F. , Hennebert A. , Leheureux J. , Provot I. , Vanderdonckt J. , and Zucchinetti
G. , Key activities for a development methodology of interactive applications, in Benyon D. and
Palanque P. (Eds.), Critical Issues in User Interface Systems Engineering (London),
Springer-Verlag,1995, pp. 109-134.

[Boda95b]
Bodart F. , Hennebert A. , Lheureux J. , Provot I. , Sacré B. , and Vanderdonckt J.,
Towards a systematic building of software architecture: The TRIDENT methodological guide in
Proceedings of 1st Eurographics Workshop on Design, Specification, Verification of
Interactive Systems DSV-IS'95 (Vienna), Springer Verlag, 1995.

[Boda95c]
Bodart F., Hennebert A.-M., Leheureux J.-M., Vanderdonckt J., Computer-Aided Window
Identification in TRIDENT, in Nordbyn K., Helmersen P.H., Gilmore D.J.and Arnesen
S.A. (Eds.), Proceedings of Fifth IFIP TC 13 International Conference on Human-
Computer Interaction INTERACT 95 (Lillehammer, 27-29 June 1995), , Chapman &
Hall, London, 1995, pp. 331-336.

[Boeh84]
Boehm W. , Gray T.E., and Seewaldt T., Prototyping versus specifying: A multiproject experiment
in IEEE Transactions on Software Engineering, 10(3), 1984.

[Booc03]
Boocock, P., The Jamda Project, 6 May 2003. Available online: http://jamda.source
forge.net/.

[Boms98a]

References

259

Bomsdorf B. and Szwillus G., From task to dialogue: Task-based user interface design, in
SIGCHI Bulletin 30, 1998, pp. 40-42. Available online:
http://www.acm.org/sigchi/bulletin/ 1998.4/szwillus.html.

[Boms99a]
Bomsdorf, B.,and Szwillus, G., Tool support for task-based user interface design., SIGCHI
Bulletin, 31(4), 1999, pp. 27–29. Available online: http://www.uni-paderborn.de/cs/ag-
szwillus/chi99/ws/

[Boms99b]
Bomsdorf B., and Swillius G., CMF a coherent modelling framework for task-based user interactive
design, in Vanderdonckt J., and Puerta A. (Eds.), Computer-Aided Design of User
Interfaces II, Proceedings of the Third International Conference on Computer-Aided
Design of User Interfaces CADUI 99 (Louvain-La-Neuve, Belgium, 21-23 October
1999), Springer Verlag, 1999, pp. 293-311.

[Boui04]
Bouillon, L., Vanderdonckt, J., and Chow, K.C., Flexible Re-engineering of Web Sites in
Proceedings of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal,
Portugal, 13-16 January 2004), ACM Press, New York, 2004, pp. 132-139.

[Breu97]
Breu R., Hinkel U., Hofmann C., Klein C., Paech B., Rumpe B., and Thurner V., Towards
a formalization of the unified modeling language, in Proceedings of 11th European Conference
on Object-Oriented Programming ECOOP'97 (Jyväskylä, Finland), Springer Verlag,
LNCS, 1997.

[Brow97]
Brown, J., Exploring Human-Computer Interaction and Software Engineering. Methodologies for the
Creation of Interactive Software, in SIGCHI Bulletin 29(1), 1997, pp. 32–35.

[Brow97]
Browne T., Dávila D., Rugaber S., and Stirewalt K., Using declarative descriptions to model user
interfaces with MASTERMIND, in Paterno F., and Palanque P. (Eds.), Formal Methods
in Human Computer Interaction, Springer-Verlag, Berlin, 1997.

[Bunk82],
Bunke, H, Attributed Programmed Graph Grammars and Their Application to Schematic Diagram
Interpretation in IEEE Pattern Analysis and Machine Intelligence, 4(6), November, 1982,
pp. 574-582.

[Byrn92]
Byrne E. J., A conceptual foundation for software re-engineering in Proceedings of the
Conference on Software Maintenance, IEEE Computer Society Press, November 1992
pages 216--235.

C

[Caet02] Caetano, A., Goulart, N., Fonseca, M. and Jorge, J., JavaS-ketchIt: Issues in Sketching the

Look of User Interfaces, Proc. of the 2002 AAAI Spring Symposium - Sketch
Understanding (Palo Alto, March 2002), 2002, pp. 9-14.

[Calv01a]
Calvary G. , Coutaz J. , and Thevenin D., Supporting Context Changes for Plastic User Interfaces
: A Process and a Mechanism, in Blandford A. , Vanderdonckt J. , and Gray P. (Eds.), Joint
Proceedings of HCI'2001 and IHM'2001 (Lille,10-14 September 2001), Springer Verlag,
London, 2001, pp. 349-363.

[Calv01b]
Calvary G. , Coutaz J. , and Thevenin D., A unifying reference framework for the development of
plastic user interfaces, in Proceedings of IFIP WG 2.7 Conference on Engineering the User
Interface EHCI'2001 (Toronto, May 11-13, 2001)., Chapman & Hall, London, 2001.

References

260

[Calv03]
Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J.,
A Unifying Reference Framework for Multi-Target User Interfaces in Interacting with Computers,
15(3), June 2003, pp. 289–308.

[Card83]
Card S.K., Moran T.P., and Newell A., The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, New York, 1983.

[Cast02]
Castro J., Kolp M., and J. Mylopoulos, Towards Requirements-Driven Information Systems
Engineering: The Tropos Project, in Information Systems, 27, Elsevier, Amsterdam, 2002.

[Crea99]
Crease, M., Gray, P., and Brewster, S.A. Resource Sensitive Multi-Modal Widgets, in Volume
II of the Proceedings of INTERACT '99 (Edinburgh, UK), British Computer Society,
1999, pp. 21-22.

[Chatt99]
Chatty S., and Dewan P. (Eds.), Engineering for Human-Computer Interaction, Kluwer
Academics, 1999.

[Chea81]
Cheatham T. E., Holloway G. H., and Townley J. A., Program Refinement By Transformation,
in Proceedings of the 5th international conference on Software engineering International
Conference on Software Engineering ICSE 81 (San Diego, California, United States),
IEEE press, 1881, pp. 430-437.

[Chik90]
Chikofsky E.J. and Cross J.H., Reverse Engineering and Design Recovery: A
Taxonomy in IEEE Software, 1(7), January 1990, pp. 13-17.

[Chom56]
Chomsky N., Three models for the description of language in IRE Transaction on Information
Theory, 2, 1956, pp. 113-123.
Workshop on Source Code Analysis and Manipulation SCAM'01 (Florence, 10 Nov.
2001), IEEE Computer Society Press, Los Alamitos, 2001, pp. 168-178.

[Cons99]
Contantine, L., and Lockwood L., Software for Use: A Practical Guide to the Models and
Methods of Usage-Centered Design, Addison-Wesley, Reading, 1999.

[Cons03]
Constantine L. L., Canonical Abstract Prototypes for Abstract Visual and Interaction in
Proceedings of the 10th International workshop on Design, Specification and Evaluation
of Interactive Systems DSV-IS 2003 (june 11-13 2003, Funchal, Portugal), LNCS 2844,
Springer Verlag, Berlin, 2003, pp. 1-15.

[Cord01]
Cordy J.R., Dean T.R., Malton A.J. and Schneider K.A., Software Engineering
by Source Transformation - Ex-perience with TXL, Proc. of IEEE 1st Int.

[Corr97]
Corradini, Ehrig H. , Heckel R. , Korff M. , Löwe M. , Ribeiro L. , and Wagner A.,
Algebraic approaches to graph transformation - part I: Single pushout approach and comparison with
double pushout approach, in Rozenberg G. (Ed.), Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Foundations, World Scientific,1997, pp.
247-312.

[Cout87]
Coutaz J., PAC, An Implementation Model for Dialog Design in Proceedings of Interact `87
(Stuttgart, September 1987), 1987, pp. 431-436.

[Cout02]

References

261

Coutaz J., Limbourg Q., Loubna I., Paternò F., Santoro, C., and Vanderdonckt J., XML
specification for User Interface Modeling Language, Cameleon Project Delivrable 1.3,
2002.

[Coye04]
Coyette A., Faulkner S., Kolp M., Limbourg Q., and Vanderdonckt, J., SketchiXML:
Towards a Multi-Agent Design Tool for Sketching User Interfaces Based on USIXML, IAG, July
2004, submitted to publication.

[Clar99]
Clark J., XSL: Transformations (XSLT). version 1.0 W3C recommendation, Technical report,
W3C, 1999. Available online: http://www.w3.org/TR/xslt.

[Czar00]
Czarnecki, K., and Eisenecker, U.W., Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, Reading, 2000.

[Czar03]
Czarnecki, K., and Helsen S., Classification of Model Transformation Approaches, in
Online Proceedings of the OOPLSLA’03 workshop on Generative Techniques in the
Context of Model Driven Architectures, 2003, avalaible at
http://www.softmetaware.com/oopsla2003/mda-workshop.html.

D

 [Depk02]

Depke, R., Heckel, R., and Küster, J.M., Formal Agent-Oriented Modeling with UML and
Graph Transformation, in Science of Computer Programming, 44(2), August 2002, pp. 229–
252.

[Diap90]
Diaper D., Task analysis for knowledge descriptions (TAKD): The method and examples in Diaper
D. (Ed.), Task Analysis for Human-Computer Interaction, Ellis-Horwood, 1990, pp. 108-
159.

[Dijk72]
Dijkstra, E. W., The Humble Programmer, in Communication of the ACM, 15(10), 1972, pp.
859-866.

[Dijk76]
Dijkstra, E. W., The discipline of programming, Prentice Hall, Engelwood Cliffs, NJ, 1976.

[Ditt00]
Dittmar A., More precise descriptions of temporal relations within task models, in Pallanque P. and
Paternó F. (Eds.), Proc. of the 7th Int. Workshop on Design, Specification, and
Verification of Interactive Systems DSV-IS'00 (Limerick, 5-6 June 2000), volume 1946 of
Lecture Notes in Computer Science, pages 151-158, Berlin, 2000. Springer Verlag.

[Dix90]
Dix A. J., Non-determinism as a paradigm for understanding the user interface
in Thimbleby H. W., and Harrison M. D. (Eds.), Formal Methods in Human-Computer
Interaction, Cambridge University Press, Cambridge, pp. 97-127.

[Dix91]
Dix, A. J., Formal methods for interactive systems, Academic Press, London, 1991.

[Dix98]
Dix A., Finalay J., Abowd G., and Beale R., Human-Computer Interaction, , 2nd edition,
Prentice Hall Europe, London, 1998.

[dMof02]
dMoF, dMOF 1.1, An OMG Meta Object Facility Implementation, The Corba Service Product
Manager, University of Queensland. Available online:
http://www.dstc.edu.au/Products/CORBA/MOF/, may 08 2002.

References

262

[Dsou99]
D'Souza, D.F., and Wills, A.C., Objects, Components and Frameworks with UML: The Catalysis
Approach, Addison-Wesley, Reading, 1999.

E

[Ecks98]

R. Eckstein. Java Swing. O'Reilly, 1st edition, 1998.
[Ehri73]

Ehrig H., Pfender M., and Schneider H. J., Graph Grammars and algebraic approach, in
14th Annual IEEE Symposium on Switching and Automata Theory, 1973, pp. 197-180.

[Ehri79]
Ehrig H., Introduction to the algebraic theory of graph grammars - a survey, in Proceedings
International Workshop on Graph Grammars and their Applacation to Computer
Science and Biology, Springer-Verlag, 1979, pp. 1-69.

[Ehri86]
Ehrig H., and Habel A., Graph grammars with application conditions in
Rozenberg G., and Salomaa A. (Eds.), The Book of L, Springer-Verlag, 1986. pp. 87-100.

[Ehri99]
Ehrig, H., Engels, G., Kreowski, H-J., and Rozenberg, G. (eds.), Handbook of Graph
Grammars and Computing by Graph Transformation, Application, Languages and Tools, Vol. 2,
World Scientific, Singapore, 1999.

[Eise00]
Eisenstein J. , Vanderdonckt J. , and Puerta A., Adapting to mobile contexts with user-interface
modeling, in Proceedings of IEEE Workshop on Mobile Computing Systems and
Applications WCSMA'2000 (Monterey, December 7-8, 2000), IEEE Computer Press,
Los Alamitos, 2000, pp. 83-92.

[Eise01]
Eisenstein J. , Vanderdonckt J. , and Puerta A. . Applying model-based techniques to the
development of UIs for mobile computers, in Proceedings of ACM Conference on Intelligent
User Interfaces IUI'2001 (Albuquerque, January 11-13, 2001), ACM Press, New York,
2001, pp. 69-76.

[Elwe95]
Elwert T. and Schlungbaum T., Modelling and generation of graphical user interfaces in the
TADEUS approach, in. Bastide R., and Palanque P. (Eds.), Design, Specification and
Verification of Interactive Systems DSV-IS ‘95, Springer-Verlag, Wien, 1995, pp. 193-
208.

[Engl99]
Englebert V., Hainaut J.-L., DB-MAIN: A Next Generation Meta-CASE, in Information
Systems Journal, 24(2), 1999, pp. 99-112.

F

[Feur97]
R. Feur. MFC Programming. Addisson-Wesley Advanced Windows Series, 1997.

[Fipa00]
Foundation for Physical Agents, Fipa Personnal Travel Assistance Specification, 2000.
Available online: http://ww.fipa.org.

[Flor04]
Florins M., and Gemo M., A UA/PROF- based platform model for use in model-based approaches
to user interface design, Salamandre report, March 2004.

[Flor04b]

References

263

Florins, M., Vanderdonckt, J., Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems, in Proc. of 8th ACM Int. Conf. on Intelligent User
Interfaces IUI’2004 (Funchal, 13-16 January 2004), ACM Press, New York, 2004, pp.
140-147.

[Fokk92]
Fokkinga M.M,. A gentle introduction to category theory: the calculational approach, in Lecture
Notes of the STOP 1992 Summerschool on Constructive Algorithmics, University of
Utrecht, September 1992, pp. 1-72.

[Fole91]
Foley J. , Kim W. , Kovacevic S. , and Murray K., GUIDE - an intelligent user interface
design environment, in Sullivan J. and Tyler S. (Eds.), Architectures for Intelligent
Interfaces: Elements and Prototypes, Addison-Wesley, 1991, pp. 339-384.

[Fole95]
Foley J., History, results and bibliography of the user interface development environment (UIDE), an
early model-based system for user interface design and implementation, in Proceedings of DSV-IS'94,
Springer Verlag, Vienna, 1995, pp. 3-14.

[Fowle96]
Fowler M., Analysis Patterns, 1st edition, Addisson-Wesley Professional, Reading, 1996.

[Foun00]
Fountain A. and Ferguson P., Motif Reference Manual, O'Reilly, 2nd edition, 2000.

[Flan99]
D. Flanagan. Java Foundation Classes in a Nutshell. O'Reilly, 1st edition, 1999.

[Freu92]
Freund, R., Haberstroh, B., and Stary, C., Applying Graph Grammars for Task-Oriented User
Interface Development, in Koczkodaj W.W., Lauer, P. E., and Toptsis, A.A. (Eds.),
Proceedings of 4th International Conference on Computing and Information ICCI’92
(Toronto, May 28-30, 1992). IEEE Computer Society Press, Los Alamitos, 1992, pp.
389–392.

G

[Gala93]

Galaxy Application Environment. Visix Software Inc., 11440 Commerce Park Drive,
Reston (VA 22091), 1993.

[Gamb97]
Gamboa, F., Scapin D. L., Editing MAD* task descriptions for specifying user interfaces, at both
semantic and presentation levels, in M. D. Harrison & J. C. Torres, (Eds.), Proceedings of
Fourth International Workshop on Design, Specification, and Verification of Interactive
Systems DSV-IS ’97, Springer-Verlag, Berlin, 1997, pp. 193–208.

[Gerb02]
Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood, A.: 2002, Transformation: The
Missing Link of MDA, in Proceedings of the 1st International Conference on Graph
Transformation ICGT’02 (Barcelona, October 7-12, 2002), Lecture Notes in Computer
Science, Vol. 2505. Springer-Verlag, Berlin, pp. 90–105.

[Geno04]
 Genova development Environment, Genera, Trondheim, Norway, 2004. Available online:

http://www.genera.no.
[Gind00]

R. Ginda. Writing a mozilla application with and javascript. In Proceedings of O'Reilly Open
Source Software Convention (Monterey, July 19-20, 2000), 2000. Accessible at
http://www.mozilla.org/docs/ora-oss2000/chatzilla/overview.html.

[Glad04]

References

264

Glade. Glade homepage, 2004. http://glade.gnome.org/.
[Goul85]

Gould J. D. and Lewis C., Designing for Usability : Key principles and what designers think, in
Communication of the ACM, 28(3), 1985, pp. 300-311.

[Grae03]
Gaeremynck Y., Bergman L.D., and Lau T., MORE for Less: Model Recovery from
Visual Interfaces for Multi-Device Application Design in Proceedings of the 8th ACM
International Conference on Intelligent User Interfaces IUI’2003 (Miami, 12-15 Jan.
2003), ACM Press, New York, 2003, pp 69-76.

[Gram96]
Gram C. and Cockton G., Design Principles for Interactive Software, Chapman & Hall,
London, 1996.

[Grah96]
Graham T., Damker H. , Morton C. , Telford E. , and Urnes T., The clock methodology:
Bridging the gap between user interface design and implementation, Technical Report CS-96-04,
York University (Canada), 1996.

 [Griff01]
Griffiths, T., Barclay, P., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C., and Pinheiro da Silva, P., Teallach: a Model-based User Interface Development
Environment for Object Data-bases in Interacting with Computers 14(1), pp. 31–68.

[Grif99]
Griffiths T.A., Barclay P.J., McKirdy J. , Paton N.W., Gray P.D., Kennedy J. , Cooper
R. , Goble C.A., West A. , and Smyth M., Teallach: A model-based user interface development
environment for object databases, in Paton N.W. and Griffiths T. (Eds.), Proceedings of User
Interfaces to Data Intensive Systems UIDIS ’99, IEEE Press, Los Alamitos, 1999, pages
86-96.

[Grif98]
Griffiths T. , McKirdy J. , Forrester G. , Paton N. , Kennedy J. , Barclay P. , Cooper R. ,
Goble C. , and Gray P., Exploiting model-based techniques for user interfaces to database, in
Proceedings of Visual Database Systems (VDB ’89), Chapman & Hall, London, 1998,
pp. 21-46.

[Gree88]
Green T.R.G., Schiele F. , and Payne S.J., Formalisable Model of User Knowledge in
Human-Computer Interaction, Academic Press, 1988, pp. 3-46.

[Grub93]
Gruber T. R., A translation Approach to Portable Ontologies, in Knowledge Acquisition, 5(2),
1993, pp. 199-220.

[GTK04]
The GTK home page, 2004. http://www.gtk.org.

H

[Habe96]

Habel A. , Heckel R. , and Taentzer G., Graph grammars with negative application conditions in
Fundamenta Informaticae, 26(3), 1996.

[Habe01]
Habel A., and Plump D., Computational Completeness of Programming Languages
Based on Graph Transformation, in Honsell F., and Miculan M. (Eds.), Foundations of
Software Science and Computation Structures (FOSSACS) 2001, Lecture Notes in
Computer Science 2030, Springer Verlag, 2001, pp. 230-245.

[Hack98]

References

265

Hackos, J. T., and Redish, J. C., User and task analysis for interface design, Wiley, New York,
1998.

[Hare87]
Harel D., Statecharts: A visual formalism for complex systems in Science of Computer
Programming, 8, 1987, pp. 231-274.

[Harr90]
Harrison, M.D. and Thimbleby, H.W., editors, Formal Methods in Human Computer
Interaction, Cambridge University Press, Cambridge, 1990.

[Hart90]
 Hartson H., Siochi A., and Hix D., The UAN: A user-oriented representation for direct
manipulation interface design in ACM Transactions on Interactive Systems, 8(3), 1990, pp.
181-203.

[Hart99]
Hartson, H.R. and Hix, D., Toward Empirically Derived Methodologies and Tools for Human-
Computer Interface Development in International Journal of Man-Machine Studies, 31(4),
1999, pp. 477–494.

[Heck95]
Heckel R. and Wagner A., Ensuring consistency of conditional graph grammars - a constructive
approach, in Lecture Notes in Theoretical Computer Science, Springer Verlag, 1995.

[Heck02]
Heckel, R., Mens, T. and Wermelinger, M. (eds.), Proceedings of the Workshop on Software
Evolution through Transformations: Toward Uniform Support throughout the Software Life-Cycle.
Electronic Notes in Theoretical Computer Science 72(4). On-line:
http://www1.elsevier.com/ gejng/31/29/23/127/49/show/Products/notes/index.htt,
2002.

[Heck02b]
Heckel, R., Küster, J.M., Taenzer, G., Confluence of Typed Attributed Graph
Transformation Systems, in [Corr02], pp. 161-176.

[Hewe96]
Hewett T. T., Baecker R., Carey T., Gasen J. , Mantei M., Perlman G., Strong G.,
and Verplank W., Curricula for human-computer interaction, Technical Report 608920, ACM
Special Interest Group on Computer-Human Interaction Curriculum Development,
1996.

[Ho99]
Ho, W.-M., Jézéquel, J.-M., Le Guennec, A., and Pennaneach, F, UMLAUT: An
Extensible UML Transformation Framework, in Proceedings of the 14th IEEE International
Conference on Automated Software Engineering ASE'99 (Cocoa Beach, October 12-15,
1999), IEEE Computer Society Press, Los Alamitos, 1999, pp. 275–279.

[Hong01]
Hong, J.I., Li, F.C., Lin, J., and Landay, J.A. End-User Perceptions of Formal and
Informal Representations of Web Sites, Extended Abstracts of Proc. of ACM Conf. on
Human Factors in Computing Systems CHI 2001 (Seattle, March 31-April 5, 2001). ACM
Press, New York, 2001.

[Horr98]
Horrocks I., Constructing the User Interface with Statecharts, Addisson-Wesley, Harlow, 1998.

[Huds96]
S.E. Hudson and I. Smith. Ultra-lightweight constraints. In Proceedings of the ACM
Symposium on User Interface Software Technology, pages 147-155, 1996.

I

[IEEE90]

References

266

IEEE society, Glossary of Software Engineering Terminology, IEEE Standard n° 610.12-1990,
IEEE press, 1990.

[ISO96]
International Standard Organization, ISO EBNF standard, ISO/IEC 14977:1996(E)
document, 1996.

J

[Jame91]
James M.G., PRODUSER: PROcess for developing USER interfaces, in J. Karat, editor, Taking
Software Design Seriously, Academic Press, 1991.

[Jans93]
Janssen, C., Weisbecker, A., Ziegler, Generating User Interfaces from Data Models and Dialogue
Net Specifications, in Ashlund, S., Mullet, K. Henderson, A., Hollnagel, E., White, T. (Eds.),
Proceedings of the ACM Conference on Human Factors in Computing Systems
InterCHI’93 (Amsterdam, April 14-19), ACM Press, New York, 1993, pp. 418-423.

[John84]
Johnson, P., Diaper, D., and Long, J., Tasks, skill and knowledge: Task analysis for knowledge
based descriptions in Proceedings of First IFIP Conference on Human-Computer
Interaction Interact ’84, Elsevier Science Publishers, North-Holland, 1984, pp. 23–28.

[John88]
Johnson P. , Johnson H. , Waddington R. , and Shouls A., Task related knowledge structures:
Analysis, modelling and application, in Jones D.M., and Winder R. (Eds.), People and
Computers IV (Manchester, 1988), Cambridge University Press, Cambridge, 1988.

 [John89]
Johnson P., and Johnson H., Knowledge analysis of task: Task analysis and specification for
human-computer systems, in Downton A. (Ed.), Engineering the Human-Computer
Interface, McGraw-Hill, Maidenhead, 1989, p. 119-144.

 [John90]
John B.E., Extensions of GOMS analyses to expert performance requiring perception of dynamic visual
and auditory information, in Proceedings of ACM Conference on Human Factors in
Computing Systems CHI'90 (Seattle, USA), ACM Press, New York, 1990, pp. 107-115.

[John92a]
Johnson P., Human-Computer Interaction: Psychology, Task Analysis and Software Engineering,
McGraw-Hill, London, 1992.

[John92]
Johnson P., Markopoulos P., and Johnson H., Task knowledge structures: A specification of user
task models and interaction dialogues, in Proceedings of Task Analysis in Human-Computer
Interaction, 11th Int. Workshop on Informatics and Psychology (Schraeding, June 9-11),
1992.

[John96]
John B. E. and Kieras D. E., The GOMS familly of user interfaces analysis techniques: Comparison
and contrasts in ACM Transactions on Computer-Human Interaction, 3(4), 1996, pp. 320-
351.

[John01]
Johnson M., and Dampney, On category theory as a (meta) ontology for information systems,
Proceedings of the international conference on Formal Ontology in Information Systems
FOIS 01 (Ogunquit, Maine, USA), 2001, pp. 59-69.

K

[Kier95]

References

267

Kieras D.E., Wood S.D., Abotel K., and Hornof A., GLEAN: A computer-based tool for
rapid GOMS model usability evaluation of user interface designs, in Proceedings of the ACM
Symposium on User Interface Software and Technology UIST'95, ACM Press, New
York, 1995, pp. 91-100.

[Kier99]
Kieras D,. A guide to GOMS model usability evaluation using GOMSL and GLEAN3,
Technical report, University of Michigan, 1999.

[Kim93]
Kim, W.C. and Foley, J.D, Providing High-level Control and Expert Assistance in the User
Interface Presentation Design, in Ashlund, S., Mullet, K. Henderson, A., Hollnagel, E., White,
T. (Eds.), Proceedings of the ACM Conference on Human Factors in Computing
Systems InterCHI’93 (Amsterdam, April 14-19), ACM Press, New York, 1993, pp. 430-
437.

[Kirw92]
Kirwan, B., and Ainsworth, L. K., A guide to task analysis, Taylor & Francis, London, 1992.

[Kirw00]
Kirwan B.and Ainsworth L. K., A Guide to Task Analysis, Taylor and Francis, London,
2000.

[Kell92]
Kelly C., and Cogan L., User modelling and user interface design, in Harrisson M., Monk
A., Diaper D. (Eds.), People and Computers, Cambridge University Press, Cambridge,
1992, pp. 227-246.

[Kepp03]
A. Kepple, J. Warmer, W. Bast, MDA Explained - The Model Driven Architecture: Practice and
Promise, Addison Wesley, 2003.

[Kras88]
Krasner G., Pope S., A Cookbook for Using Model-View-Controller User Interface Paradigm in
Smalltalk-80 in Journal of Object Oriented Programming, August/September, 1988, pp.
26-49.

[Kusk02]
Kuske, S., Gogolla, M., Kollmann, R., Kreowski, H.-G., An Integrated Semantics for UML
Class, Object and State Diagrams Based on Graph Transformation, in Butler, M.J., Petre, L., Sere,
K. (Eds.), Proceedings of 3rd International Conference on Integrated Formal Methods
IFM’02 (Turku, May 15-18 2002), Lecture Notes in Computer Science, Vol. 2335.
Springer-Verlag, Berlin, 2002, pp. 11–28.

L

[Lach04]

Lachenal C., Barralon N., Rey G., Coutaz J., I-AM, A Middleware for Multi-surface, Multi-
instrument, Multi-cursor interaction, submitted for publication to UIST 04.

[Land96]
Landay, J.A., Interactive Sketching for the Early Stages of User Interface Design,. Ph.D. thesis,
report #CMU-CS-96-201, Computer Science Department, Carnegie Mellon Uni-versity,
Pittsburgh, December 1996.

[Larm01]
Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
and the Unified Process, Prentice Hall, Englewood Cliffs, 2001.

[Laur95]
Lauridsen, O., Systematic methods for user interface design in Engineering for Human-
Computer Interaction, Proceedings of the IFIP TC2/WG2.7 Working Conference on
Engineering for Human-Computer Interaction EHCI 95(Yellowstone Park, USA, August

References

268

1995), Bass L. J., Unger, C. (Eds.), IFIP Conference Proceedings 45, Chapman & Hall,
1996, pp.169-188.

[Lee03]
Lee D.H., Ko H.I., and Sung M.Y., Collaborative Multimedia Presentation
Authoring in a 3D Spatio-Temporal Space, in Proceedings of HCI ‘03 (Poenix Park,
Kangwondo, February 10-13, 2003), 2003, pp. 575-580.

[Lim94]
Lim K. Y., and Long J., The MUSE Method for Usability Engineering, Cambridge Series on
Human-Computer Interaction, Cambridge University Press, Cambridge (UK), 1994.

[Lim96]
Lim, K.Y.,and Long, J., Structured task analysis: An instantiation of the MUSEmethod for
usability engineering in Interacting With Computers, 8(1), 1996, pp. 31–50.

[Limb00]
Limbourg Q., Vanderdonckt J., and Souchon N., The task-dialog and task presentation
mapping problem: Some preliminary results, in Palanque P., and Paternó F. (Eds), Proc.Of the
7th Int. Workshop on Design, Specification, and Verification of Interactive Systems
DSV-IS'00 (Limerick, Ireland, June 5-6 2000), . Springer Verlag, Berlin, 2000, pp. 227-
246.

[Limb03a]
Limbourg, Q. and Vanderdonckt, J., Comparing Task Models for User Interface Design, in
Diaper, D., Stanton, N. (Eds.), The Handbook of Task Analysis for Human-Computer
Interaction, Lawrence Erlbaum Associates, Mahwah, pp. 135-154.

[Limb04]
Limbourg, Q. and Vanderdonckt, J., Transformational Development of User Interfaces with
Graph Transformations, in Proceedings of 5th International Conference on Computer-Aided
Design of User Interfaces CADUI’2004 (Madeira, January 14-16, 2004), Kluwer
Academics Publishers, Dordrecht, 2004.

[Limb04b]
Limbourg, Q., Vanderdonckt, J., Michotte, B., and Bouillon, B.: 19 February 2004,
TOMATOXML, a General Purpose XML Compliant User Interface Description Language,
TOMATOXML V1.2.0. Working Paper n°105. Institut d’Administration et de Gestion
(IAG), Louvain-la-Neuve.

[Limb04c]
Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., and Trevisan,
D.:, USIXML: A User Interface Description Language for Context-Sensitive User
Interfaces, in Luyten, K., Abrams, M., Limbourg, Q., Vanderdonckt, J. (Eds.),
Proceedings of the ACM AVI’2004 Workshop Developing User Interfaces with XML:
Advances on User Interface Description Languages UIXML’04 (Gallipoli, 2004), 2004.
Available online http://www.edm.luc.ac.be/uixml2004/index.php?selected=program

[Lizk74]
Lizkov B. H., and Zilles S. N., Programming with Abstract Data Types, Computation
Structure Group Memo n°99, MIT, Project MAC, Cambridge, 1974.

[Lonc96]
Lonczewski F., and Schreiber S., The FUSE-system : An integrated user interface design
environment, in Vanderdonckt J. (Eds.), Proceedings of CADUI'96, Presses Universitaires
de Namur, Namur, 1996, pp. 37-56.

[Löwe93]
Löwe M., Algebraic approach to single-pushout graph transformation in Theoretical Computer
Science, Vol. 1, 1993, pp. 181-224.

[Lu98]

References

269

Lu, S., Paris, C., and Vander Linden, K., Towards the automatic generation of task models from
object oriented diagrams, in Proceedings of Seventh IFIP Working Conference on
Engineering for Human-Computer Interaction
(EHCI ’98), Kluwer Academic Dordrecht, 1998.

[Luo93]
Luo P., Szekely P., and Neches R., Management of interface design in HUMANOID, In
Proceedings of InterCHI'93, 1993, pp. 107-114.

[Luo94]
Luo P., A human-computer collaboration paradigm for bridging design conceptualization and
implementation, in Paternó F. (Ed.), Design, Specification and Verification of Interactive
Systems '94 (Heidelberg, 1994), Springer-Verlag, 1994, pp. 129-147.

[Luo95]
Luo, P., A Human-Computer Collaboration Paradigm for Bridging Design Conceptualization and
Implementation in Paternò F. (Ed.), Interactive Systems: Design, Specification, and
Verification, Proc. of the 1st Eurographics Workshop on Design, Specification, and
Verification of Interactive Systems DSV-IS’94, (Bocca di Magra, June 8-10, 1994),
Springer-Verlag, Berlin, pp. 129–147.

[Luyt04]
Luyten, K., Abrams, M., Limbourg, Q., Vanderdonckt, J., Proceedings of the ACM
AVI'2004 Workshop "Developing User Interfaces with XML: Advances on User
Interface Description Languages" UIXML'04 (Gallipoli, May 25, 2004), Gallipoli, 2004.

M

[Macr04]

Macromedia Inc., DevNet Resource Kit Volume 6, 2004. Available online:
http://www.macromedia.com/software/drk/productinfo/product_overview/volume6/

[Mahf95]
Mahfoudhi A., Abed M. , and Angue J.-C., TOOD: Task object oriented description for
ergonomic interfaces specification, in Proceedings of IFA/IFIP/IFO/IEA Symposium on
Analysis, Design and Evaluation of Man-Machine Systems (Cambridge, June 27-29,
1995), 1995.

[Mahf01]
Mahfoudhi, A., Abed, M., and Tabary,D., From the formal specifications of user tasks to the
automatic generation of the HCI specifications, in Blandford A., Vanderdonckt J., & Gray P.,
(Eds.), People and computers XV, Springer, London, 2001, pp. 331–
347.

[Mark97]
Markopoulos P., A Compositional Model for the formal specification of user interface software, PhD
thesis, Departement of Computer Science, Queen Mary and Westfield College, University
of London, 1997.

[Marq97]
Marquis J.-P., Stanford encyclopedia of philosophy: Category theory, 1997. Available online:
http://plato.stanford.edu/entries/category-theory/.

[Mart98]
Martin J., and Odell J., Object-Oriented Software Methods, 2nd edition, Prentice Hall, Upper
Saddle River, New Jersey, 1998.

[Mell03]
Mellor S. J., and Clark A. J. (Eds.), Introduction to Model Driven-Development, in IEEE
Software 20(5), 2003, pp. 14-18.

[Mens99]

References

270

Mens T., A Formal Foundation for Object-Oriented Software Evolution, PhD thesis, Vrije
Universiteit Brussel, 1999.

[Mens01]
Mens, T., Van Eetvelde, N., Janssens, D., and Demeyer, S., Formalising Refactoring with
Graph Transformations, in Fundamenta Informaticae, 21, 2001, pp. 1001–1022.

[Merl94]
Merlo E.,. Gagné P.-Y, and Thiboutôt A., Inference of Graphical AUIDL
Specifications for the Reverse Engineering of User Interfaces, in Proc. of
IEEE Int. Conf. on Software Maintenance, IEEE Computer Society Press, Los
Alamitos, 1994, pp. 80-88.

[Merl95]
Merlo. E., Gagné P.-Y., Girard J.-F., Kontogiannis K., Hendren L.,
Panagaden P., and De Mori R., Reengineering User Interfaces, in IEEE Software,
12(1), January 1995, pp. 64-73.

[Merr04]
Merriam-Webster. Collegiate dictionnary online, 2004. Available online: http://www.m-
w.com.

[Meye97]
Meyer B., Object-Oriented Software Construction, Prentice Hall, Upper Saddle River, New
Jersey, 2nd edition, 1997.

[Meye90]
Meyer, B., Introduction to the Theory of Programming Languages, Prentice Hall, New
York, 1990.

[Mill03]
Miller, J., Mukerij J., MDA Guide version 1.0.1, 2003. Available online : www.omg.org.

[Mitt04]
Mittelbach F., and Goosens M., The Latex Companion, Second Edition, Addisson-Wesley,
2004.

[Moli02]
 Molina, P.J., Meliá, S., Pastor, O,.Just-UI: A User Interface Specification Model, in: Kolski C.,

Vanderdonckt J. (Eds.), Computer-Aided Design of User Interfaces III, Kluwer
Academic Publishers, Dordrecht, 2002, pp. 63-74.

[Moor96]
Moore M.M., Rule-Based Detection for Reengineering User Interfaces, in Proceedings of the 3rd
IEEE Working Conf. on Reverse Engineering WCRE’96 (Monterey, 8-10 Nov. 1996),
IEEE Press, Los Alamitos, 1996, pp. 42-49.

[Moor97]
Moore M.M., and Rugaber S., Using Knowledge Representation to Understand
Interactive Systems, in Proc. of the 5th IEEE Int. Workshop on Program
Comprehension IWPC'97 (Dearborn, 28-30 May 1997), IEEE
Press, Los Alamitos, 1997, pp. 60-69.

[Mont70]
Montanari, U.G., Separable Graphs, planar Graphs and Web Grammars, in Inf. Contr., 16,
1970, pp. 243-267.

[Mont04]
Montero F., Limbourg Q., and Vanderdonckt J., Pattern-Based Design of User Interfaces
based on USIXML, 2004, submitted for publication.

[Moli03]
Molina P. J., Belenguer J., and Pastor O., Describing Just-UI Concepts Using a Task
Notation, in proceedings of DSV-IS 2003(Funchal, Madeira. June, 2003), Lecture Notes
in Computer Science, Berlin, Springer Verlag, 2000.

References

271

[Mori03]
Mori, G., Paternò, F., and Santoro, C., Tool Support for Designing Nomadic
Applications, in Proceedings of IUI 2003 (Miami, Florida, January 12-15), ACM Press,
New York, 2003.

[Myer91]
Myers B.A., Separating application code from toolkits: Eliminating the spaghetti of call-
backs ui builders, in Proceedings of the ACM Symposium on User Interface Software
and Technology UIST'91, ACM Press, pp. 211-220, 1991.

[Myer92]
Myers B. A., and Rosson M. B., Survey on user interface programming, in Proceedings of the
SIGCHI conference on Human factors in computing systems SIGCHI'92, 1992, pp. 195-
202.

[Myer95a]
Myer B. A., User Interface Software Tools in ACM Transactions on Computer-Human
Interaction, 2(1), March 1995, pp. 64-103.

 [Myer00]
Myers B., Hudson S. , and Pausch R., Past, present, future of user interface tools, ACM
Transactions on Computer-Human Interaction, 7(1), 2000, pp. 3-28.

N

[Nana95]

Nanard, J. and Nanard M., Hypertext Design Environment and the Hypertext Design Process in
Communications of the ACM 38(8), August 1995, pp. 49–56.

[Nava01]
Navarre D., Planque P., Bastide R. , and Sy O., A model-BAsed tool for interactive prototyping of
highly interactive applications, in Proc. Of the 12th IEEE Int. Workshop on Rapid System
Prototyping (Monterey, USA), IEEE Press, Los Alamitos, 2001.

[Newm03]
Newman M. N., Lin J., Hong J. I., and Landay J. A., DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice, in Human-Computer Interaction, 18(3), 2003, pp.
259-324.

[Niel94]
Nielsen J., and Levy J., Measuring usability: preference vs.
performance, Communications of the ACM, 37(4), April 1994, pp.66-75.

 [Niga95]
Nigay L., Coutaz J., A Generic Platform for Addressing the Multimodal Challenge, in Proceedings
of CHI’95, ACM Press, New York, 1995, pp. 98-105.

O
[Olle88]

Olle T.W., Hagelstein J., Macdonald I. G., Rolland C., Sol H.G., Van Assche F., Verijn-
Stuart A., Information Systems Methodologies, a framework for understanding, Addisson-Wesley,
1988.

[Olse86]
Olsen D.R., MIKE: The Menu Interaction Kontrol Environment in ACM Transactions on
Graphics 5(4), October 1986, pp. 318–344.

[Olse83]
Olsen D. R., Syngraph, a graphical user interface generator, in Computer Graphincs.
Proceedings SIGGRAPH'83 (Detroit, USA), 1983, pp. 43-50.

[Olse98]
Olsen D. R., Developing User Interfaces, Morgan Kaufmann Publishers, San Francisco, 1998.

References

272

[OMG01]
Object Management Group, The Model Driven Architecture (MDA), draft, 9 July 2001.
Available at http://www.omg.org/mda/specs.htm.

[OMG03a]
Object Management Group, The Unified Modelling Language specification, version 1.5,
01 March 2003. Available online:
http://www.omg.org/technology/documents/formal/uml.htm

[OMG03b]
Object Management Group, Common Warehouse Specification version 1.1., march 2003,
Available online: http://www.omg.org/docs/formal/03-03-02 .pdf.

[Oust94]
J. Ousterhout, Tcl and TK Toolkit, Addisson Wesley, Reading, 1994.

P

[Pala94]
Palanque Ph., and Bastide R., Petri net based design of user-driven interfaces using interactive
cooperative object formalism, in Paternò F. (Ed.), Proceedings of 1st Eurographics Workshop
on Design, Specification and Verification of Interactive Systems, DSV-IS 94,Springer
Verlag, 1994.

[Pala97]
Palanque P., Spécifications formelles et systèmes interactifs: Vers des systèmes fiables et
utilisables. travail d'Habilitation à diriger des recherches. Technical report, Université de
Toulouse 1, 1997.

[Pala97]
Palanque, P. and Paterno,F.(Eds.), Formal Methods in Human Computer Interaction, Springer-
Verlag, London, 1997.

[Parn69]
Parnas, D. L., On the Use of Transition Diagram in the Design of a User Interface for Interactive
Computer System, in Proceedings of the 24th National Conference, ACM press, New York,
1969, pp. 379-385.

[Parna72]
Parnas D.L., On the Criteria to be used in Decomposing Systems into Modules in Communication
of the ACM, 15 (12), 1972.

[Part83]
Partsch, H. and Steinbruggen, R., Program Transformation Systems, ACM Computing
Surveys 15(3), September 1983, pp. 199–236.

[Pate97]
Paternò F. , Mancini C. , and Meniconi S., ConcurTaskTree: A diagrammatic notation for
specifying task models, in Howard S. , Hammond J. , and Lindgaard G. (Eds.), Proceedings
of IFIP TC 13 International Conference on Human-Computer Interaction Interact'97
(Sydney, July 14-18, 1997), Kluwer Academic Publishers, Boston, 1997, pp. 362-369.

[Pate98]
Paternò F. , Santoro C. , and Tahmassebi S., Formal model for cooperative tasks: Concepts and
an application for en-route air traffic control, in Markopoulos P., and Johnson P. (Eds.), Proc.
Of 5th Int. Workshop on Design, Specification, and Verification of Interactive Systems
DSV-IS’98 (Abingdon, June 3-5, 1998), Springer-Verlag, Vienna, 1998.

[Pate00]
Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer-Verlag,
Berlin, 2000.

[Pate02]

References

273

Paternò. F, and Santoro. C., One model, many interfaces, in Kolski C., and Vanderdonckt J.
(Eds.), Proceedings of the 4th International Conference on Computer-Aided Design of
User Interfaces CADUI'2002 (Valenciennes, 15-17 May 2002), Kluwer Academics
Publishers, Dordrecht, 2002, pp. 143-154.

[Pate03]
Paternò, F.,and Santoro, C., A Unified Method for Designing Interactive Systems
Adaptable to Mobile and Stationary Platforms, Interacting with Computers, Elsevier, 15,
2003, pp. 349-366.

[Paga02]
Paganelli L., and Paternò F., Automatic Reconstruction of the Underlying
Interaction Design of Web Applications, in Proc. of the 14th ACM Int. Conf. on
Software Engineering and Knowledge Engineering SEKE’02 (Ischia, 15-19 July
2002), ACM Press, New York, pp. 439-445.

[Paus92]
Pausch, R., Conway, M. and DeLine, R. Lessons Learned from SUIT, the Simple
User Interface Toolkit Practice and Experience, ACM Transactions on
Information Systems, 10 (4), 1992, pp. 320–344.

[Payn86]
Payne S. J., and Green T. R. J., Task-action grammars: A model of the mental representation of
task languages in Human-Computer Interaction, 2(2), 1986, 93-133.

[Peto93]
Petoud I., and Pigneur Y., An Automatic and Visual, Approach for User Interface Design,
Engineering for Human-Computer Interaction, North Holland, Amsterdam, 1993, pp.
403-420.

[Pfal69]
Pfalz, J. L., Rozenberg, A., Web Grammars. Proceedings of the International joint
Conference on Artificial intelligence, Washington, 1969, pp. 609-619.

[Pinh00]
Pinhero Da Silva P., User interface declarative models and development environments: A survey in
Paternò F., and Palanque P., Interactive Systems. Design Specification, and Verification
DSV-IS ‘00, LNCS, Springer Verlag, Amsterdam, 2000, pp. 207-226.

[Plim04] Plimmer B., and Apperley M., Interacting with Sketched Interface Designs: An Evaluation
Study,.Proc. of ACM Conf. on Human Factors in Computing Systems CHI'04 (Vienna,
April 2004), ACM Press, New York, 2004.

[Puer94]
Puerta, A. R., Eriksson, H., Gennari, J. H., and Musen, M. A., Beyond Data Models for
Automated User Interface Generation, in People and Computers IX, Proceedings of
HCI'94, Cambridge University Press, Cambridge, 1994, pp 352-366.

[Puer96]
Puerta, A.R., The MECANO Project: Comprehensive and Integrated Support for Model-Based
Interface Development, in Vanderdonckt, J. (Ed.), Proceedings of the 2nd International
Workshop on Computer-Aided Design of User Interfaces CADUI’96 (Namur, June 5-7
1996), Presses Universitaires de Namur, Namur, 1996, pp. 19-36.

[Puer97]
Puerta, A.R., A Model-Based Interface Development Environment, in IEEE Software 14(4),
1997, pp. 41–47. Available online: http://www.arpuerta. com/pubs/ieee97.htm

[Puer98]
Puerta A.R., Supporting user-centered design of adaptive user interfaces via interface models, in First
Annual Workshop On Real-Time Intelligent User Interfaces For Decision Support And
Information Visualization, January 1998.

[Puer99]

References

274

Puerta, A. and Eisenstein, J., Towards a General Computational Framework for Model-Based
Interface Development Systems Model-Based Interfaces, in Proceedings of 3rd International ACM
Conference on Intelligent User Interfaces IUI’99 (Redondo Beach, 5-8 January 1999),
ACM Press, New York, 1999, pp. 171–178.Available online: http://www.arpuerta.
com/pubs/iui99.htm

 [Puer01]
Puerta A. and Eisenstein J., A representational basis for user interface transformations, in Wiecha
Ch., and Szekely P. (Eds.), Proceedings of CHI'2001 Workshop "Transforming the UI
for Anyone, Anywhere - Enabling an Increased Variety of Users, Devices, and Tasks
Through Interface Transformations" (Seattle, April 1-2, 2001), ACM Press, New York,
2001.

R

[Raml01]

El-Ramly M., Iglinski P., Stroulia E., Sorenson P., and Matichuk B.,
Modeling the System-User Dialog Using Interaction Traces, in Proc. of 8th
IEEE Working Conf. on Reverse Engineering WCRE’2001 (Stuttgart, 5-7 Oct.
2001), IEEE CS. Press, Los Alamitos, 2001, pp. 208-217.

[Reen79]
Reenskaug T., Models-Views-Controllers, Technical note, Xerox PARC, December
1979. Available online: http://heim.ifi.uio.no/~trygver/mvc/index.html.

[Reis81]
Reisner P., Formal grammar and human factors design of interactive graphics systems, in IEEE
transaction on software engineering, 7, 1981, pp. 229-240.

[Rens03]
Rensik, A. (Ed.): 2003, Proceedings of the 1st Workshop on Model-Driven Architecture: Foundations
and Applications MDAFA’03 (Enschede, June 26-27, 2003), CTIT Technical Report TR-
CTIT-03-27, University of Twente, Twente, 2003. Available online:
http://trese.cs.utwente.nl/mdafa2003/

[Ricc01]
F. Ricca, P. Tonella, and I.D. Baxter, “Restructuring Web Applications via
Transformation Rules”, Proc. of IEEE Workshop on Source Code Analysis and
Manipulation SCAM’2001 (Florence, 5-9 Nov. 2001), IEEE Computer Soc. Press,
Los Alamitos, 2001, pp. 150-160

[Robe98]
Roberts, D., Berry, D., Isensee, S. and Mullaly, J. Designing for the User with OVID:
Bridging User Interface Design and Software Engineering. Macmillan Technical
Publishing: Indianapolis, 1998.

[Rosz97]
Rozenberg G. (Ed.), Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 1: Foundations, World Scientific, Singapore, 1997.

[Ruga99]
Rugaber S., A Tool Suite for Evolving Legacy Software, in Proc. of IEEE Int.
Conf. on Software Maintenance ICSM'99 (Oxford, 30 August-3 Sep. 1999), IEEE
Comp. Society Press, Los Alamitos, 1999, pp. 33-39.

[Rumb91]
Rumbaugh J., Object-Oriented Modelling and Design, Prentice-Hall, 1991.

S

[Sacr95]

References

275

Sacré B. , Provot I. , and Vanderdonckt J., Une description orientée-objet des objets interactifs
abstraits utilisés en interface homme-machine, Technical Report rapport de recherche
IHM/Ergo/10, Institut d'Informatique, FUNDP Namur, 1992. Révision du 13
novembre 1995.

[Savi01]
Savidis, D. Akoumianakis, and C. Stephanidis. The Unified User Interface Design Method,
chapter 21, pages 417-440. Lawrence Erlbaum Associates, Mahwah, 2001.

[Scap89]
Scapin D., and Pierret-Golbreich C., Towards a method for task description: MAD, in
Berlinguet L., and Berthelette D. (Eds.), Proc. Of the Conf. Work with Display Units
WWU'89, Elsevier Science Publishers, Amsterdam, 1989, pp. 27-34.

[Scap01]
Scapin, D. L.,and Bastien, J. M. C., Analyse des tâches et aide ergonomique à la conception :
l’approche MAD*, in Kolski C. (Ed.), Analyse et conception de l’IHM: Interaction
homme-machine pour les systèmes d’information, Edition Hermes,
Paris, 2001, pp. 85–116.

[Schl96]
Schlungbaum E., Model-based user interface software tools - current state of declarative models,
Technical Report GIT-GVU 96-30, Georgia Institute of Technology, 1996.

[Schl96]
 Schlungbaum E.and Elwert T., Dialogue graphs - a formal and visual specification technique for
dialogue modeling, in Siddiqi J.I., Roast C.R. (Eds.), Proceedings of the BCS-Facs
Workshop on Formal Aspects of the Human-Computer Interface, Springer-Verlag,
London, 1996.

[Schl97]
Schlungbaum E., Tutorial notes on model-based interface development environments, state of the art
and challenges of further development, presented at the Conference on Prototyping of User
Interfaces: Basic, Techniques and Experience PB'97, 1997

[Schn98]
Schneiderman B., Designing the User Interface. Strategies for Effective Human-Computer Interaction,
Third edition, Addisson-Wesley, Reading, 1998.

[Schr94]
Schreiber S., Specification and generation of user interfaces with the BOSS system, in Gornostaev
J. et al, (Eds.), Proceedings East-West International Conference on Human-Computer
Interaction EWHCI'94 (St. Petersburg, August 2-6, 1994), Springer, Moskau, 1994.

[Schü97]
Schürr, A., Programmed Graph Replacement Systems, in [Rosz97], pp. 479-546.

[Send03]
Sendall S., and Kozacynski W., Model Transformation: The Heart and Soul of Model-Driven
Software Development, in IEEE Software, 20(5), 2003, pp. 42-45.

[Shep89]
Shepherd, A. (1989). Analysis and training in information technology Tasks. In D. Diaper
(Ed.), Task analysis for human-computer interaction (pp. 15–55). Chichester, England:
Ellis Horwood.

[Shep95]
Shepherd, A., Task analysis as a framework for examining HCI Tasks, in Monk A. and Gilbert
N. (Eds.), Perspectives on HCI: Diverse approaches, Academic Press London, 1995, pp.
145–174.

[Sinh04]
Sinha R., ROI of usability, A collection of links, 2004. Available online:
http://www.rashmisinha.com/useroi.html.

[Smit96]

References

276

Smith, M. J.,and O’Neill, J. E., Beyond task analysis: Exploiting task models in application
implementation, in Proceedings of ACM Conference on Human Aspects in Computing
Systems CHI ’96, ACM Press, NewYork, 1996, pp. 263–264.

[Somm99]
I. Sommerville, Sofgtware Engineering, 5th edition, Addisson Wesley, 1999.

[Souc02]
Souchon N., Limbourg Q., and Vanderdonckt J., Task modelling in multiple contexts of use, In
Proceedings of the 9th International Workshop on Design, Specification and Verification
of Interactive Systems Workshop DSV-IS'02 (Rostock, June 12-14, 2002), LNCS,
Springer Verlag, 2002.

[Sowa92]
Sowa J. F., Conceptual Graphs Summary, in Eklund P., Nagle T., Nagle J., and Gerholz L.
(Eds.), Conceptual Structures: Current Research and Practice, Ellis Horwood, 1992, pp.
3-52.

[Stan95]
Standish Group, Chaos Software Development Report, 1995. Available online:
www.projectsmart.co.uk/docs/chaos_report.pdf

[Stan98]
Stanton, N., and Young, M., Is utility in the eye of the beholder? A study of ergonomics methods, in
Applied Ergonomics, 29(1), 1998, pp. 41–54.

[Stan04]
Stănciluescu, A., Limbourg, Q., Vanderdonckt, J., Graful – modalitate de reprezentare a
elementelor interfeţei cu utilizatorul, Proc. of 1st National Conference on Computer-Human
Interaction ROCHI’2004 (Bucharest, September 23-24, 2004), Ştefan Trăuşan-Matu, S.,
Pribeanu, C. (Eds.), Polytechnic University of Bucharest, Bucharest, 2004, to appear.

[Stir97]
Stirewalt K., Automatic Generation of Interactive Systems from Declarative Models, PhD thesis,
Georgia Institute of Technology, 1997.

[Stir98]
Stirewalt R. E. K., MDL: A language for bonding UI models, in Vanderdonckt J. (Ed.), Proc.
Of the 3rd Int. Workshop on Computer-Aided Design of User Interfaces (21-23
October 1999, Louvain-la-Neuve, Belgium), Luwer Academics, Dordrecht, 1998, pp.
159-170.

[Stir98]
Stirewalt R. E. K., and Rugaber S., Automating UI generation by model composition, in Proc. Of
the 13th Conf. On Automated Software Engineering ASE'98 (Honolulu, 13-16 October
1998), IEEE Press, Los Alamitos, 1998.

[Stir00]
Stirewalt R. E. K., and Rugaber S., The model-composition problem in user-interface generation, in
Automated Software Engineering, 7, April 2000, pp.101-124.

[Strou00]
Stroulia E., Thomson J., and Situ Q., Constructing XML-speaking Wrappers
for WEB Applications: Towards an Interoperating WEB, in Proc. of IEEE 7th
Working Conf. on Reverse Engineering WCRE’2000 (Brisbane, 23-25 Nov.2000), IEEE
Computer Society Press, Los Alamitos, 2000, pp. 59-69.

[Strou03]
Stroulia E., El-Ramly M., Iglinski P., and. Sorenson P.G., UI Reverse
Engineering in Support of Interface Migration to the Web, in Journal of
Automated Software Engineering, 10(3), July 2003, pp. 271-301

[Sucr97]

References

277

Sucrow B., Formal specification of human-computer interaction by graph grammars under
consideration of information resources, in, Proceedings of the 1997 Automated Software Engineering
Conference (ASE `97), IEEE Computer Society, 1997, pp. 28-35.

[Sucr98]
Sucrow, B., On Integrating Software-Ergonomic Aspects in the Specification Process of Graphical User
Interfaces in Transactions of the SDPS Journal of Integrated Design & Process Science,
2(2), June 1998, pp. 32–42.

[Sumn97]
Sumner, T., Bonnardel, N., and Harstad Kallak, B., The Cognitive Ergonomics of Knowledge-
Based Design Support Systems, in Proceedings of ACM Conference on Human Aspects in
Computing Systems CHI’97 (Atlanta, March 22-27 1997), ACM Press, New York, 1997,
pp. 83–90.

[Sutc89]
Sutcliffe, A. (1989). Task analysis, systems analysis and design: Symbiosis or synthesis?
InteractingWith Computers, 1(1), 6–12.

[SUN04]
SUN Microsystems. Java fondation classes home page, 2004. Available online:
http://www.java.sun.com/products/jfc.

[Sung02]
Sung M.Y., Lee D. H., Rho S.J., Rhee S.Y., Authoring Together in a 3D
Spatio-Temporal Space, in Proceedings on ACM Multimedia ‘02 Workshop of
International Conference on Immersive Telepresence ITP (Juan-les-Pins,
France, December 6, 2002.

[Szek90]
P. Szekely. Template-based mapping of application data to interactive displays, in Proceedings of
UIST'90, ACM Press, 1990, pp. 1-9.

[Szek92]
Szekely P. , Luo P. , and Neches R., Facilitating the exporation of interface design alternatives: The
HUMANOID model of interface design, in Proceedings of SIGCHI'92, 1992, pp. 507-515.

 [Szek96a]
Szekely P. , Sukaviriya P. , Castells J. , Muthukumarasamy J., and Salcher E., Declarative
interface models for user interface construction tools : The MASTERMIND approach, in
Engineering for Human-Computer Interaction, Chapman & Hall, London, 1996, pp 120-
150.

 [Szek96b]
Szekely P., Retrospective and challenges for model-based interface development in Vanderdonckt J.
(Ed.), Proc. Of 2nd Int. Workshop on Computer-Aided Design of User Interfaces
CADUI’96 (Namur, June 5-7, 1996), Presses Universitaires de Namur, Namur, 1996.

T

[Tarb93]
Tarby J.C.. Gestion automatique du dialogue homme-machine à partir des spécifications conceptuelles.
Master's thesis, Université de Toulouse I, September 1993.

[Tarb96]
Tarby J-C, and M-F Barthet, The DIANE+ method, in Vanderdonckt J. (Ed.), Computer-
Aided Design of User Interfaces, Proc. of the 1st Int. Workshop on Computer-Aided
Design of User Interfaces CADUI'96 (Namur, 5-7 June 1996), Presses Universitaires de
Namur, Namur, 1996, pp. 95-119.

[Taub90]
Tauber M. J., ETAG: Extended task action grammar. a language for the description of the user's
task language in Diaper D. , Gilmore D. , Cockton G. , and Shackel B. (Eds.), Proc. of the

References

278

3rd IFIP TC 13 Conf. On Human Computer Interaction Interact '90 (Cambridge, 27-31
August 1990), Elsevier, Amsterdam, 1990, pp 163-168.

[Teor86]
Teory T.J., Yang D., Fry J.P., A Logical Design Methodology for Relational Databases
using the Extended Entity-Relationship Model, ACM computing surveys 18(2), june
1986, pp. 197-222.

[Thev99]
Thevenin D., and Coutaz J., Plasticity of user interfaces: Framework and research agenda, in Sasse
A., and Johnson Ch. (Eds.), Proceedings of 7th IFIP TC 13 International Confercence
on Human-Computer Interaction Interact'99 (Edinburgh, August 30-September 3, 1999),
IOS Press, London, 1999, pp. 110-117.

[Thim90]
Thimbleby H. W., User Interface Design, Addison-Wesley, 1990.

[Thev01]
Thevenin, D., Adaptation en Interaction Homme-Machine: le cas de la Plasticité, Ph.D. thesis,
Université Joseph Fourrier, Grenoble, France, 2001. Available online:
http://iihm.imag.fr/publs/2001.

[Trae99]
Traetteberg H., Modeling work: Workflow and task modeling, in Vanderdonckt J., and Puerta
A.R. (Eds.), Proc. Of 3rd Int. Conf. On Computer-Aided Design of User Interfaces
CADUI’99 (Louvain-la-Neuve, 21-23 October 1999), Kluwer Academics, Dordrecht,
1999, pp. 275-280.

[Trev02]
Trevisan, D., Vanderdonckt, J., and Macq, B, Analyzing Interaction in Augmented Reality
Systems in Pingali, G., Jain, R. (Eds.), Proceedings of ACM Multimedia 2002 International
Workshop on Immersive Telepresence ITP’2002 (Juan Les Pins, 6 December 2002),
ACM Press, New York, 2002, pp. 56–59.

[Tsib00]
Tsibidis G., Arvantitis T.N., and Baber C., CHI 2000 proposal for the what, who, where, when,
why and how of context-awareness, in Proc. Of CHI’2000 Workshop on Context Awareness
(The Hague, April 1-6, 2000), Research report 2000-18e.Atlanta, GVU Center, Georgia
University of Technology, 2000.

U

[Unge96]

Unger, C., and Bass L. (Eds) Engineering for HCI, Kluwer Academics Publishers, 1996.
[Univ99]

Univers@lis:, France Telecom. Available online: http://universalis.elibel.tm.fr/ site/
[Usco01]

Uscom. The tea widget set, 2001. Available online: http://uscom.com/~isoft map .html
[UIML04]

UIML.Org. Homepage of the user interface markup language, 2004. www.uiml.org.

V

[Vand93]

Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic Interaction
Objects Selection, in Ashlund, S., Mullet, K. Henderson, A., Hollnagel, E., White, T. (Eds.),
Proceedings of the ACM Conference on Human Factors in Computing Systems

References

279

InterCHI’93 (Amsterdam, April 14-19, 1993), ACM Press, New York, 1993, pp. 424-
429.

[Vand93]
Vanderdonckt J., and Bodart F., Encapsulating knowledge for intelligent automatic interaction
objects selection In Ashlund S., Mullet K., Henderson A., Hollnagel E., and White T. (Eds.),
Proceedings of the ACM Conference on Human Factors in Computing Systems
InterCHI'93 (Amsterdam, 24-29 April 1993), ACM Press pages, New York, 1993, pp.
424-429.

[Vand96]
Van der Veer G. C., Van der Lenting B. F., and Bergevoet B. A. J., GTA: Groupware task
analysis - modelling complexity in Acta Psychologica, 91, 1996, pp. 297-322.

[Vand97]
Vanderdonckt J., Conception Assistée de la Présentation D'une Interface Homme-Machine
Ergonomique Pour Une Application de Gestion Hautement Interactive. PhD thesis, Facultés
Universitaires Notre-Dame de la Paix, Institut d'Informatique, Namur, 1997.

[Vand98]
Vanderdonckt, J. (Ed.), Proc. Of the 3rd Int. Workshop on Computer-Aided Design of User
Interfaces CADUI'99 (21-23 October, Louvain-la,Neuve, Belgium), Kluwer Academics,
Dordrecht, 1998.

[Varr02]
Varró, D., A Formal Semantics of UML Statecharts by Model Transition Systems, in Proceedings
of the 1st International Conference on Graph Transformation ICGT’02 (Barcelona,
October 7-12, 2002), Lecture Notes in Computer Science, Vol. 2505. Springer-Verlag,
Berlin, pp. 378-392.

[Varr02b]
Varró, D., Varró, G., and Pataricza, A., Designing the Automatic Transformation of Visual
Languages, in Science of Computer Programming, 44, 2002, pp. 205–227.

[Veer96]
van der Veer, G. C., Van der Lenting, B. F., and Bergevoet, B. A. J., GTA: Groupware task
analysis-modeling completity, in Acta Psychological, 91, 1996, pp. 297–322.

W

[W3C99]

W3C consortium, HTML 4.01 specification, W3C Recommendation, 24 Dec. 1999. Available
at http://www.w3.org/TR/REC-html40/

[W3C01]
W3C Consortium, XML Schema Specification, W3C Recommendation, 2 May 2001. Available
at http://www.w3.org/XML/Schema#dev

[W3C04]
W3C consortium, Voice Extensible Markup Language (VoiceXML) Version 2.0,
W3C Recommendation, 16 March 2004 available at http://www.w3.org/TR/voicexml20/

[W3C04b]
W3C consortium, OWL Web Ontology Language Reference, W3C Recommendation, 10 February
2004. Available at http://www.w3.org/TR/owl-ref/

[Wals99]
Walsh N., Learning Perl/Tk. Graphical User Interfaces with Perl, O'Reilly, 1999.

[Wegn97]
Wegner, P., Why Interaction is more Powerful than Algorithms in Communications of the
ACM, 40(5), 1997, pp. 80-91.

[Weis93]

References

280

Weiser M., Some computer science issues in ubiquitous computing, in Communication of the
ACM, 36(7), 1993, pp. 75-84.

[Weli98a]
Van Welie M. , Van der Veer G.C., and Eliens A., An ontology for task world models, in
Markopoulos P., and Johnson P. (Eds.), Proc. Of 5th Int. Workshop on Design,
Specification, and Verification of Interactive Systems DSV-IS’98 (Abingdon, June 3-5,
1998), pages 57-70, Vienna, 1998. Springer-Verlag.

[Weli98b]
van Welie, M., and van der Veer, G. C., EUTERPE: Tools support for analyzing cooperative
environments, in Green T.R. G., Bannon L., Warren C. P.,and Buckkleys J. (Eds.),
Cognition and co-operation, INRIA, Roquencourt, 1998, pp. 25–30.

 [Wiec90]
Wiecha C et al., ITS: A Tool for Radly Developinf Interactive Applications, in ACM
Transactions on Information Systems, 8(3), pp. 204-236, 1990.

 [Wils96]
Wilson S., and Johnson P., Bridging the generation gap: From tasks to user interface design,
in Vanderdonckt J. (Ed.), Proceedings of the 2nd International Workshop on Computer-
Aided Design of User Interfaces CADUI'96, Presses Universitaires de Namur, Namur,
pp. 77-94, 1996.

X

[XVT96]

XVT, XVT Software, Inc., 4900 Pearl East Circle, Boulder, CO, 80301, USA, 1996.

Z

[Zand95]
Vander Zanden B., and Myers B. A., Demonstrational and constraint-based techniques for
oictorially specifying application objects and behaviours, in ACM transactions on Computer-
Human Interaction, 2(4), 1995, pp. 308-356.

[Zand96]
Vander Zanden B.T., and Venckus S.A., An empirical study of constraint usage in graphical
applications, in Proceedings of the ACM Syposium on User Interface Software and
Technology (UIST’96), 1996, pp. 136-146.

Annex

281

Annex: Tool Support

Attributed Graph Grammars tool

Requirements:

 Edition (including debugging) of transformation rules and models
 Execution of transformations
 Import and export function to and from UsiXML.

AGG (Attributed Graph Grammars tool) [Ehri99] is an multi-purpose graph
transformation tool built in the “graph grammar group” at TU Berlin. It provides
1) a programming language enabling the specification of graph grammars 2) a
customizable interpreter enabling graph transformations. AGG may be used in
two different ways: through its Graphical User Interface (GUI) or through its
Application Programming Interface (API). AGG can be considered as a genuine
programming environment based on graph transformations. Fig. A-1 illustrates
the GUI of AGG. Frame 1 is the grammar explorer. Frames 2, 3 and 4 enable to
specify sub-graphs composing a production: a negative application (frame 2), a
left hand side (frame 3) and a right hand side (frame 4). The host graph on which
a production will be applied is represented in Frame 5.

In the context of this dissertation, AGG was used as a transformation editor
(including debugging functions) and interpreter. An import and an export
function from and to (a preliminary version of) UsiXML models has been
developed and described in [Stan04].

Annex

282

Figure A-1 AGG Graphical User Interface

TransformiXML API

Requirement:

 Interpretation of transformation rules from a UsiXML description of rules
and host models.

Several Application Programming Interfaces are available to perform model-to-
model transformations (e.g., DMOF [dMof02] or Univers@lis [univ99]). AGG
API was selected due to our prior experience with its GUI version. Using AGG
API as a transformation tool allows us to realize the following scenario (Fig. A-2):
an initial model along with a set of rules expressed in UsiXML are transmitted to
transformiXML API. UsiXML elements (models and rules) are parsed and
transformed into AGG object types. Rules are successively applied to the models.
The resulting specification, under the form of AGG objects, is parsed and
transformed into UsiXML elements. This process is notably described in
[Limb04].

Annex

283

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

Figure A-2 Development process based on transformation application.

TransformiXML GUI

Requirements:
 Allow to manage a development library (a library containing a catalog of

transformation rules)
 Allow to associate development sub-step with transformation systems
 Execute transformations

Fig A-3 presents a prototype of TransformiXML. The basic flow of tasks with
transformiXML GUI is the following: a user chooses an input file containing
models to transform. She, then, chooses a development path by selecting a
starting point and a destination point (e.g., the viewpoint to obtain at the end of
the process). Depending on the content of the input file some of the development
paths may not be available. A tree allows the user to visualize the proposed
development model (i.e., all the steps and sub-steps for a chosen path). The user
can load another development model for the selected path. Now the task of the
user consists in attaching one transformation system for each development sub-
step. By clicking on a sub-step in the tree, a set of transformation systems
realizing the chosen sub-step are displayed. A transformation system may be
attached to the current sub-step by clicking “Attach to current sub-step”. The user
may also want to edit the rules either in an XML editor (the one of grafiXML, for
instance) or in AGG environment. After attaching a transformation system for
each rule in the development model, the user may apply the transformation either
step by step or as a whole. The result of the transformation is then explicitly saved
in a UsiXML file.

Annex

284

Figure A-3 TransformiXML

GrafiXML

Requirements:
 Edition in a WYSIWYG manner (What You See Is What You Get) of

models at the CUI level (for graphical UIs).
 Import/ Export from and to UsiXML.

Editing a concrete UI in UsiXML directly can be considered as a tedious task, a
specific editor called GrafiXML has been developed to face the development of
CUI models. In this editor, the designer can draw in direct manipulation any
graphical UI by directly placing CIOs and editing their properties in a property
sheet (Fig. A-4). At any time, the designer may want to see the corresponding
UsiXML specifications (Fig. A-5) and edit it. Selecting a UsiXML tag
automatically displays possible values for this tag in a contextual menu. When the
tag or the elements are modified, those changes are propagated to the graphical
representation. In this way, a bidirectional mapping is maintained between a UI
and its UsiXML specifications: each time a part is modified, the other one is
updated accordingly.

Annex

285

Figure A-4 GrafiXML main window

Figure A-5 UsiXML textual editor within GrafiXML tool

Annex

286

IdealXML

Requirement:

 Edition of Domain Model
 Edition of Task model
 Edition of AUI Model

IdealXML is described in [Mont04]. IdealXML enables to specify in a WYSIWYG
manner the task model (Fig A-6 upper-left), the domain model (Fig 4-29 upper-
right) and, the abstract user interface model (Fig A-6 lower-left).
The task model has the appearance of CTT notation introduced by [Pate99]. The
domain model has the appearance of a class diagram. The AUI model has the
form of a hierarchical structure of embedded boxes whose leafs are abstract
individual components and their facets (specific icons have been designed to
represent facet types).

Figure A-6 Domain, Task, AUI model editors in IdealXML

Annex

287

ReversiXML

A specific tool, called ReversiXML (formerly called Rutabaga [Boui04]),
automatically reverse engineers the presentation aspects from an existing HTML
Web page at both the CUI and AUI levels. This tool allows developers to recover
an existing UI so as to incorporate it again in the development process. In this
case, a re-engineering can be obtained by combining two abstractions, one
translation, and two reifications. This is particularly useful for the evolution of
legacy systems.

Code Generators and Interpreters

Requirements:
 Generate “renderable” code in a high level language
 Render UsiXML

Two tools allow one to obtain a graphical rendering from a CUI specification.
GrafiXML is equipped with an export module that allows a generation of
XHTML code and Java Swing objects (see export menu in Fig. A-7).
TransformiXML allows an interpretation of a CUI specification directly in flash.
In this case a CUI may be assimilated to the final user interface.

Figure A-7 GrafiXML export formats (left) and a UsiXML specification interpreted by

FlashiXML (right)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

