

USIXML: A USER INTERFACE DESCRIPTION LANGUAGE SUP-
PORTING MULTIPLE LEVELS OF INDEPENDENCE

QUENTIN LIMBOURG and JEAN VANDERDONCKT

Université catholique de Louvain, School of Management (IAG)
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

{limbourg, vanderdonckt} @ isys.ucl.ac.be – http://www.usixml.org

USer Interface eXtensible Markup Language (UsiXML) consists of a User Interface
Description Language (UIDL) allowing designers to specify a user interface at mul-
tiple levels of abstraction depending on the development path they are following:
task and concepts, abstract user interface, concrete user interface, and final user in-
terface. These levels support to some extent independence with respect to device,
computing platform, modality of interaction, channel of information, and context of
use. A single user interface can be specified and produced at and from different,
possibly multiple, levels of abstraction while maintaining the mappings between
these levels if required. Thus, the development process can be initiated from any
level of abstraction and proceed towards obtaining one or many final user interfaces
for various contexts of use (forward engineering), by recovering the final user inter-
face into any upper level (reverse engineering), or by adapting at any level of ab-
straction (reengineering).

1 Introduction

Due to the rapid changes of today’s organisations and their business, many in-
formation systems departments face the problem of quickly adapting the User Inter-
face (UI) of their interactive applications to these changes. These changes include,
but are not limited to: task redefinition or reallocation among workers [4], support of
new computing platforms, migration from stationary platforms to mobile computing
[16], evolution of users with more demands, increasing need for more usable UIs,
transfer of task from one user to another one [6], redefinition of the organisation
structure, adaptation to dynamic environments [15], change of the language, redesign
due to obsolescence [3], evolution of the domain model [1]. All these changes
change to some extent the context of use, which is hereby referred to as the complete
environment where final users have to carry out their interactive tasks to fulfil the
roles they are playing in their organisations.

Organisations react to changes in different ways in their UI development proc-
esses. As a result, different development scenarios may be identified as potential de-
velopment practices adopted in reaction to change. For instance, one organisation
starts by recovering existing input/output screens, by redrawing them and by com-
pleting the functional core when the new UI is validated by the customer (reverse
engineering approach). Another organisation prefers to modify the domain model
(e.g., a UML class diagram [11]) and the task model [17] to be mapped further to

 1

screen design (forward engineering approach). A third one tends to apply in parallel
all the required adaptations where they occur (wide spreading approach). A fourth
one relies on an intermediate model and propagates changes to all artefacts exploited
in the development process (middle-out approach) [14]. The UI development proc-
ess has also been empirically observed as an ill-defined, incomplete, and incremental
process [21] that is not well supported by rigid development methods and tools. Ex-
isting methods and tools usually force developers to act in a pre-defined and inflexi-
ble way. The variety of the approaches adopted in organisations and the rigidity of
existing solutions provide ample motivations for a UI development paradigm that is
flexible enough to accommodate multiple development paths and design situations
while staying precise enough in the definition of its concepts and development steps.
To overcome these shortcomings, the development paradigm of multi-path UI de-
velopment is characterised by the following principles:

• Formal definition of UI models: any UI is expressed through to a suite of models
that are analysable, editable, and exploitable by software.

• Transformational approach: each model stored according to the ontological
format can be subject to transformations realizing various development steps.

• Multiple development paths: development steps can be combined together to
form development paths that are compatible with the organisation’s develop-
ment scenario. For example, a series of transformations can be applied to pro-
gressively move from a task model to a dialog model, to recover a domain
model from a presentation model, or to derive a presentation model from both
the task and domain models.

• Flexible development approaches: development scenarios (e.g., forward engi-
neering, reverse engineering, wide spreading, or middle-out) are supported by
flexibly following alternate development paths.

The remainder of this paper is structured as follows: Section 2 reports on some
significant work related to the multi-path UI development. Section 3 introduces the
reference representations used throughout this paper to address the principles of ex-
pressiveness and central storage of models based on USer Interface eXtensible
Markup Language (UsiXML). Section 4 shows how a transformational approach is
represented and implemented thanks to graph grammars and graph transformations
applied on model expressed in UsiXML and stored in the model repository. Section
5 provides an overview of tools developed so far around UsiXML. Section 6 con-
cludes the paper by reporting on some benefits and difficulties encountered so far.

2 Related Work

The multi-path UI development, as defined in Section 1, is at the intersection of
two areas of research and development: on the one hand, UI modelling and design of
multi-platform UIs represent significant advances in Human-Computer Interaction

 2

(HCI) and on the other hand, program transformation is considered promising in
Software Engineering (SE) and as a mean to bridge the gap between [4].

Teallach tool and method [10] exploit three models: a task model, a domain
model as a class diagram, and a presentation model both at logical and physical lev-
els. Teallach enables designers to start building a UI from any model and maps con-
cepts from different models one to each other.

UIML consists of a UI Description Language (UIDL) supporting the develop-
ment of UIs for multiple computing platforms by introducing a description that is
platform-independent to be further expanded with peers once a target platform has
been chosen [2]. The TIDE tool [2] transforms a basic task model into a final UI.

XIML [8] is a more general UIDL than UIML as it can specify any type of
model, any model element, and relationships between. The predefined models and
relationships can be expanded to fit a particular context of use.

SeescoaXML [15] is the UIDL exploited in the SEESCOA project to support the
production of UIs for multiple platforms and the run-time migration of the full UI.

TERESA (Transformation Environment for inteRactivE Systems representA-
tions) [16] producing different UIs for multiple computing platforms by refining a
general task model for the different platforms. Then, various presentation and dia-
logue techniques are used to map the refinements into XHTML code adapted for
each platform such as Web, PocketPC, and mobile phones.

RIML [19] consists of an XML-based language combines features of several ex-
isting markup languages (e.g., XForms, SMIL) in a XHTML language profile. This
language is used to transform any RIML-compliant document into multiple target
languages suitable for visual or vocal browsers on mobile devices.

The above pieces of work all represent an instance with some degree of cover-
age and restrictions of the multi-path UI development. Regarding the UI expressive-
ness for multiple contexts of use, UIML, RIML, XIML, TERESA and SeescoaXML
are UIDLs that address the basic requirements of UI modelling and expressivity.
XIML is probably the most expressive one as a new model, element or relationship
can be defined internally. Yet, there is no systematic support of these relationships
until they are covered by specific software. Regarding the transformational ap-
proach, Seescoa, Teallach, TERESA and TIDE include some transformation mecha-
nism to map a model onto another one, but the logics and the definition of transfor-
mation rules are completely hard coded with little or no control by designers. In ad-
dition, the definition of these representations is not independent of the transforma-
tion engine. Regarding multiple development paths, only Teallach explicitly ad-
dresses the problem as models can be mapped one onto another according to differ-
ent ways. Other typically apply top-down (e.g., TIDE), bottom-up (e.g., VAQUITA
[3]), middle-out (e.g., MIDAS [14]), but none of them support all approaches.

 3

To satisfy the requirements subsumed by the four principles of multi-path devel-

opment, Graph Transformation (GT) [18] will be exploited as a mean to realize de-
velopment steps. Substantive experience shows applicability in numerous fields of
science (e.g., biology, operational research) and, notably, to computer science (e.g.,
model checking, parallel computing, software engineering). GTs are operated in two
steps: expressing abstract concepts in the form of a graph structure and defining op-
erations producing relevant transformations on the graph structure. Sucrow [20] used
GT techniques to formally describe UI dialog with dialog states (the appearance of a
UI at a particular moment in time) and dialog transitions (transformations of dialog
states). To support “a continuous specification process of graphical UIs”, two models
are defined in the development process: abstract and concrete. Elements such as dia-
log patterns, style guides, and metaphors are used to automate abstract to concrete
transitions. However, conceptual coverage and fundamental aspects of this work re-
main missing: presented concepts are limited at the model level without going to any
final UI and there is no description of the ontology underlying the method.

To structure the models involved in the UI development process and to charac-
terise the model transformations to be expressed through GTs, a reference frame-
work is now introduced.

3 The Reference Framework used for Multi-path UI Development

Multi-path UI development is based on the Cameleon Reference Framework [5]
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to
manipulate any specific artefact of interest as a model or a UI representation) [5]:

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular comput-
ing platform either by interpretation (e.g., through a Web browser) or by execu-
tion (e.g., after compilation of code in an interactive development environment).

2. Concrete UI (CUI): concretises an abstract UI for a given context of use into
Concrete Interaction Objects (CIOs) so as to define widgets layout and interface
navigation. This process abstracts a FUI into a UI definition that is independent
of any computing platform. Although a CUI makes explicit the final Look &
Feel of a FUI, it is still a mock-up that runs only within a particular environ-
ment. A CUI is also an abstraction of the FUI with respect to the platform.

3. Abstract UI (AUI): defines interaction spaces (or presentation units) by group-
ing subtasks according to various criteria (e.g., task model structural patterns,
cognitive load analysis, semantic relationships identification), a navigation
scheme between the interaction spaces and selects Abstract Interaction Objects
(AIOs) for each concept so that they are independent of any context of use. An
AUI abstracts a CUI into a UI definition that is independent of any modality of

 4

interaction (e.g., graphical interaction, vocal interaction). An AUI can also be
considered as a canonical expression of the rendering of the domain concepts
and tasks in a way that is independent from any modality of interaction.

4. Task & Concepts (T&C): describe the various tasks to be carried out and the
domain-oriented concepts as they are required by these tasks to be performed.
These objects are instances of classes representing the concepts manipulated.

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Figure 1 The Cameleon Reference Framework

This framework exhibits three types of basic transformation types: (1,2) Ab-
straction (respectively, Reification) is a process of elicitation of artefacts that are
more abstract (respectively, concrete) than the artefacts that serve as input to this
process. Abstraction is the opposite of reification. (3) Translation is a process that
elicits artefacts intended for a particular context of use from artefacts of a similar de-
velopment step but aimed at a different context of use. With respect to this frame-
work, multi-path UI development refers to a UI engineering method and tool that en-
ables a designer to (1) start a development activity from any entry point of the refer-
ence framework (Fig. 1), (2) get substantial support in the performance of all basic
transformation types and their combinations of Fig. 1. To enable such a develop-
ment, two important requirements gathered from observations are:

1. A language that enables the expression and the manipulation (e.g., creation,
modification, deletion) of the model at each development steps and for each
context of use. For this purpose, UsiXML is introduced and defined.

2. A mechanism to express design knowledge that would provide a substantial
support to the designer in the realisation of transformations. For this purpose, a
GT technique is introduced and defined based on UsiXML.

4 Graph Transformation Specification with UsiXML

Graph transformation techniques were chosen to formalize UsiXML, the lan-
guage designed to support multi-path UI development, because it is (1) Visual: every
element within a GT based language has a graphical syntax; (2) Formal: GT is based

 5

on a sound mathematical formalism (algebraic definition of graph transformation
and category theory) and enables verifying formal properties on represented arte-
facts; (3) Seamless: it allows representing manipulated artefacts and rules within a
single formalism. Furthermore, the formalism applies equally to all levels of abstrac-
tion of UsiXML (Fig. 2). UsiXML model collection is structured according to the
four basic levels of abstractions defined in the Cameleon Reference Framework that
is intended to express the UI development life cycle for context-sensitive interactive
applications. Each level of Fig. 1 can be itself further decomposed into two sub-
levels (Fig. 2):

• At the FUI level, the rendering materialises how a particular UI coded in one
language (markup, programming or declarative) is rendered depending on the
UI toolkit, the window manager and the presentation manager. For example, a
push button programmed in HTML at the code sub-level can be rendered differ-
ently, here on MacOS X and Java Swing. Therefore, the code sub-level is mate-
rialised onto the rendering sub-level.

• Since the CUI level is supposed to abstract the FUI independently of any com-
puting platform, this level can be further decomposed into two sub-levels: plat-
form-independent CIO and CIO type. For example, a HTML push-button be-
longs to the type “Graphical 2D push button”. Other members of this category
include a Windows push button and XmButton, the OSF/Motif counterpart.

• Since the AUI level is assumed to abstract the CUI independently of any modal-
ity of interaction, this level can be further decomposed into two sub-levels: mo-
dality-independent AIO and AIO type. For example, a software control (whether
in 2D or in 3D) and a physical control (e.g., a physical button on a control panel
or a function key) both belong to the category of control AIO.

• At the T&C level, a task of a certain type (here, download a file) is specified
that naturally leads to AIO for controlling the downloading.

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load

Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load

Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Figure 2 Example of transformations in UsiXML

The organisation of the framework into four levels allows any transformation of
a UI model from one level to another one. Furthermore, transformations can be com-
bined so as to define more complex transformations. For example, if a Graphical

 6

User Interface (GUI) needs to be virtualised, a series of abstractions is applied until
the sub-level “Software control AIO” sub-level is reached. Then, a series of reifica-
tions can be applied to come back to the FUI level to find out another object satisfy-
ing the same constraints, but in 3D. If the GUI needs to be transformed for a UI for
augmented reality for instance, the next sub-level can be reached with an additional
abstraction and so forth.

Combining transformations allows establishing development paths. Here, some
first examples are given of multi-path UI development. To face multi-path develop-
ment of UIs in general, UsiXML is equipped with a collection of basic UI models
(i.e., domain model, task model, AUI model, CUI model, context model and map-
ping model) (Fig. 4) and a so-called transformation model (Fig. 3) [12].

Figure 3 UsiXML Model Collection

Beyond the task and domain models, the AUI and CUI models, UsiXML is
equipped with the following models:

• uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component
model sin any order and any number, such as task model, a domain model, an
abstract UI model, a concrete UI model, mapping model, and context model. A
user interface model needs not include one of each model component. More-
over, there may be more than one of a particular kind of model component.

• mappingModel: is a model containing a series of related mappings between
models or elements of models. A mapping model serves to gather a set of inter-
model relationships that are semantically related.

• contextModel: is a model describing the three aspects of a context of use in
which a end user is carrying out an interactive task with a specific computing
platform in a given surrounding environment. Consequently, a context model
consists of a user model, a platform model, and an environment model.

• transformationModel: is a model containing a description of model transfor-
mations as defined in the framework in fig. 1.

 7

Transformations are specified using transformation systems. Transformation

systems rely on the theory of graph grammars [18]. We first explain what a trans-
formation system is and then illustrate how they may be used to specify UI model
transformation. The proposed formalism to represent model-to-model transformation
in UsiXML is graph transformations. This formalism has been discussed in [12,13].
UsiXML has been designed with an underlying graph structure. Consequently any
graph transformation rule can be applied to a UsiXML specification. A transforma-
tion system is composed of several transformation rules. Technically, a rule is graph
rewriting rule equipped with negative application conditions and attribute conditions
[19].

Figure 4 Transformation model as defined in UsiXML

Fig. 5 illustrates how a transformation system applies to a UsiXML specifica-
tion: let G be a UsiXML specification, when 1) a Left Hand Side (LHS) matches into
G and 2) a Negative Application Condition (NAC) does not matches into G (note
that several NAC may be associated with a rule) 3) the LHS is replaced by a Right
Hand Side (RHS). G is resultantly transformed into G, a resultant UsiXML specifi-
cation. All elements of G not covered by the match are considered as unchanged.
All elements contained in the LHS and not contained in the RHS are considered as
deleted (i.e., rules have destructive power). To add to the expressive power of trans-
formation rules, variables may be associated to attributes within a LHS. Theses vari-
ables are initialised in the LHS, their value can be used to assign an attribute in the
expression of the RHS (e.g., LHS: button.name:=x, RHS : task.name:=x). An ex-

 8

pression may also be de-fined to compare a variable declared in the LHS with a con-
stant or with another variable. This mechanism is called attribute condition. We de-
tail hereafter a simplified scenario illustrating the three basic types of transformation
(thus inducing directionalities) mentioned in Section 3.

Figure 5 Transformation system in UsiXML

Step 1-Abstraction: a designer reverse engineers an HTML page with Rever-
siXML [3] in order to obtain a CUI model. Transformation 1 (Fig. 6) is an abstrac-
tion that takes a button at the concrete level and abstracts it away into an abstract in-
teraction object. The LHS selects every button and the method they activate and cre-
ate a corresponding abstract interaction object equipped with a control facet mapped
onto the method triggered by its corresponding concrete interaction object. Some be-
havioural specification is preserved at the abstract level.

Note that behaviour specification in UsiXML is also done with graph transfor-
mations rules. It is out of the scope of this paper to explicit this mechanism. This is
why rule 1 in transformation 1, in its LHS, embeds a fragment of transformation sys-
tem specification. This may seem confusing at first sight but is very powerful at the
end i.e., we dispose of a mechanism trans-forming a UI behavioural specification
into another one! In the RHS, one also see that a relationship is abstracted into has
been created. This relationship ensures traceability of rule application and helps in
maintaining coherence among different levels of abstraction.

Step 2-Reification : the designer decides to add, by hand, to the abstract level a
navigation facet to every abstract interaction object that has a control facet. From
this new abstract specification, Transformation 2 (Fig. 7) reifies every abstract inter-
action object into image components (i.e., a type of CIO). By default, the control
facet is activated when an event onMouseOver is triggered, and the navigation facet
is activated when the imageComponent is double-clicked. This rule may be cus-
tomized by the designer to reflect his own preference or needs.

 9

Figure 6 An abstraction Figure 7 A reification

Step 3-Translation: to adapt a UI to a new type of display/browser that has the
characteristic to be tall and narrow. The designer decides then to apply Transforma-
tion 3 (Fig. 8) to her CUI model. This transformation is made of a rule that rule se-
lects all boxes (basic layout structure at the CUI level), sets these boxes to vertical.
All widgets contained in this box are then glued to the left of the box (again in the
idea of minimizing the width of the resulting UI). Note the presence of a negative
application condition (too long to show in previous examples) that ensures that rule
1 in transformation 3 is not applied to an already formatted box. Fig. 8 shows a sim-
ple example of translation specified with UsiXML. This rule of the rule selects all
boxes (basic layout structure at the CUI level), sets these boxes to vertical. All wid-

 10

gets contained in this box are then glued to the left of the box (again in the idea of
minimizing the width of the resulting UI). A negative application condition ensures
that a rule is not applied to an already formatted box.

Figure 8 Transformation 3

LHSNAC RHS

::=

LHSNAC RHS

::=

Figure 9 Graphical representation of the transformation

Alternatively to textual representation, transformation rules are easily expressed
in a graphical syntax. Fig. 9 shows a graphical equivalent of the rule contained in
Fig. 8. A general purpose tool for graph transformation called AGG (Attributed
Graph Grammars) was used to specify this example. No proof the superiority of
graphical formalism over textual ones, but at least UsiXML designer has the choice
between both. Traceability (and as a side-effect reversibility) of model transforma-
tion is enabled thanks to a set of ‘so-called’ interModelMappings (e.g., isAbstract-
edInto, IsReifiedInto, isTranslatedInto) allowing to relate model elements belong-
ing to different models. As so it is possible to keep a trace of the application of rules
i.e., when a new element is created a mapping indicates of what element it is an ab-
straction, a reification, a translation, etc. Another advantage of using these mappings
is to support multi-path development is that they explicitly connect the various levels
of our framework and realizes a seamless integration of the different models used to
describe the system. Knowing the mappings of a model increases dramatically the
understanding of the underlying structure of a UI. It enables to answer, at no cost, to

 11

question like: what task a interaction object enables?, what domain object attributes
are updated by what interaction object?

5 Tool Support

Table 1 provides an overview of major tools developed around UsiXML. Some tools
are dedicated to editing various models involved in UsiXML while others are de-
voted to producing (semi-)automatically models and code from and to the four dif-
ferent levels of the reference framework depicted in fig. 1.

GrafiXML* Graphical model editor: CUI (high fidelity), context model
+ Textual model editor: all UsiXML models + Code gen-
eration: XHTML 1.0, Java Swing

VisiXML* Graphical model editor: CUI (mid fidelity)
SketchiXML [7] Model editor: CUI (pen-based sketching tool)
IdealXML* Model editor: Task & Domain, AUI, inter-model relation-

ships
KnowiXML [9] Model editor: task & AUI + Model transformation: from

Task to AUI
ReversiXML*[3] Reverse engineering: from HTML 4.0 to CUI and/or AUI
TransformiXML* Model transformation: from any UsiXML model to any

UsiXML model
*See UsiXML web site at http://www.usixml.org

Table 1 Set of tools currently developed around UsiXML

6 Conclusion

Information systems are subject to a constant pressure toward change and adap-
tation to ever changing contexts of work. UIs represent an important and a crucial
software component of information system. Multi-path UI development has been
proposed to cope with the problem of UI adaptation to an evolving context of use.
Multi-path UI development has been defined as an engineering method and tool that
enables a designer to start a UI development by several entry points in the develop-
ment cycle and from this entry point get a substantial support to build a qualitative
UI. Main features of multi-way UI development are:

1. A flexible development process based on transformations
2. A unique formal language to specify UI related artefacts. So far, these concepts

have been hard coded in software tools, thus preventing anyone from reusing,
re-defining or exchanging them. UsiXML provides a mean to overcome these
shortcomings. The core of this language is composed of a set of integrated mod-
els expressed in a formal and uniform format, governed by a common meta-
model definition, graphically expressible and a modular, modifiable and exten-
sible repository of executable design knowledge that is also represented with a

 12

http://www.usixml.org/

graphical syntax. Furthermore, a definition of an XML notation supporting the
exchange of models and executable design knowledge has been presented.

3. A transformational approach based on systematic rules that guarantee semantic
equivalence when applied, some of them being reversible.

4. A tool supporting the expression and manipulation of models and design knowl-
edge visually.

With increase of design experience, a copious catalogue of transformation rules
can be assembled into meaningful grammars. The level of support provided to the
accomplishment of design steps varies from one transition to another. Indeed, some
transitions are better known than others. For instance, the reification between physi-
cal and logical UI can be supported by hundreds of rules namely by widget selection
rules. On the contrary, rules that enable the translation of a task model from a desk-
top PC to a handheld PC are, for now, understudied. Some transitions are intrinsi-
cally harder to support (e.g., abstraction transitions). For instance, retrieving a task
model from the physical UI is not a trivial problem.

Acknowledgements

We hereby acknowledge the support of the Cameleon research project (http://giove.
cnuce.cnr.it/cameleon.html) under the umbrella of the European Fifth Framework
Programme (FP5-2000-IST2) and of the SIMILAR network of excellence
(http://www.similar.cc), the European research task force creating human-machine
interfaces similar to human-human communication of the European Sixth Frame-
work Programme (FP6-2002-IST1-507609).

References

1. Agrawal, A., Karsai, G. and Ledeczi, K., An End-to-end Domain-Driven Soft-
ware Development Framework. in OOPSLA’2003: Companion of the 18th An-
nual ACM SIGPLAN Conf. on Object-oriented Programming Systems, Lan-
guages, and Applications. ACM Press, New York, 2003, 8–15.

2. Ali, M.F., Pérez-Quiñones, M.A. and Abrams M., Building Multi-Platform User
Interfaces with UIML. in Multiple User Interfaces: Engineering and Application
Framework. John Wiley and Sons, New York, 2003.

3. Bouillon, L., Vanderdonckt, J. and Chow, K.C., Flexible Re-engineering of Web
Sites. in Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces. 132–139.

4. Brown, J., Exploring Human-Computer Interaction and Software Engineering
Methodologies for the Creation of Interactive Software. SIGCHI Bulletin, 29
(1), 1997, 32–35.

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vander-
donckt, J., A Unifying Reference Framework for Multi-Target User Interfaces.
Interacting with Computers, 15(3), 2003, 289–308.

6. Chikofsky, E.J. and Cross, J.H., Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 1 (7), 1990, 13–17.

 13

7. Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., Vanderdonckt, J., Sketchi-

XML: Towards a Multi-Agent Design Tool for Sketching User Interfaces Based
on UsiXML. in Proc. of Tamodia’2004

8. Eisenstein, J., Vanderdonckt, J. and Puerta, A., Model-Based User-Interface
Development Techniques for Mobile Computing. in Proc. of 5th ACM Int. Conf.
on Intelligent User Interfaces IUI’2001. ACM Press, New York, 2001, 69–76.

9. Furtado, E., Furtado, V., Sousa, K., Vanderdonckt, J., Limbourg, Q., Knowi-
XML: A Knowledge-Based System Generating Multiple Abstract User Inter-
faces in UsiXML. in Proc. of Tamodia’2004

10. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D.,
Cooper, R., Goble, C.A. and da Silva, P.P., Teallach: A Model-Based User In-
terface Development Environment for Object Databases. Interacting with Com-
puters, 14(1), December 2001, 31–68.

11. Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Prentice Hall, 2001.

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L. and Lopez, V.,
UsiXML: a Language Supporting Multi-Path Development of User Interfaces.
in Proc. of 9th IFIP Working Conf. on Engineering for Human-Computer Inter-
action jointly with 11th Int. Workshop on Design, Specification, and Verification
of Interactive Systems. Kluwer Academics, Dordrecht, 2004.

13. Limbourg, Q. and Vanderdonckt, J., Transformational Development of User In-
terfaces with Graph Transformations. in Proc. of 5th Int. Conf. on Computer-
Aided Design of User Interfaces. Kluwer Academics Pub., 2004, pp. 107-120.

14. Luo, P., A Human-Computer Collaboration Paradgim for Bridging Besign Con-
ceptualization and Implementation. in Proc. of DSV-IS’94. 129–147.

15. Luyten, K., Van Laerhoven, T., Coninx, K. and Van Reeth, F.: Runtime Trans-
formations for Modal Independent User Interface Migration. Interacting with
Computers, 15(3), 2003, 329–347.

16. Mori, G., Paternò, F. and Santoro, C., Tool Support for Designing Nomadic Ap-
plications. in Proc. of 7th ACM Int. Conf. on Intelligent User Interfaces. ACM
Press, New York, 2003, 141–148.

17. Paternò, F., Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, Berlin, 2000.

18. Rozenberg, G. ed. Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, Singapore, 1997.

19. Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M., Dermler, G., A Sin-
gle source authoring language to enhance the access from mobile devices to
Web enterprise applications, WWW2003 Developers Day Mobile Web Track,
12th World Wide Web Conference WWW’03 (Budapest, 20-24 May 2003).

20. Sucrow, B., On Integrating Software-Ergonomic Aspects in the Specification
Process of Graphical User Interfaces. Transactions of the SDPS Journal of Inte-
grated Design & Process Science. 2(2), June 1998, 32–42.

21. Sumner, T., Bonnardel, N. and Kallak, B.H., The Cognitive Ergonomics of
Knowledge-Based Design Support Systems. in Proc. of CHI’97, 83–90.

 14

